Merge tag 'cgroup-for-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[linux-2.6-microblaze.git] / drivers / nvme / target / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/inet.h>
20 #include <linux/llist.h>
21 #include <crypto/hash.h>
22 #include <trace/events/sock.h>
23
24 #include "nvmet.h"
25
26 #define NVMET_TCP_DEF_INLINE_DATA_SIZE  (4 * PAGE_SIZE)
27 #define NVMET_TCP_MAXH2CDATA            0x400000 /* 16M arbitrary limit */
28 #define NVMET_TCP_BACKLOG 128
29
30 static int param_store_val(const char *str, int *val, int min, int max)
31 {
32         int ret, new_val;
33
34         ret = kstrtoint(str, 10, &new_val);
35         if (ret)
36                 return -EINVAL;
37
38         if (new_val < min || new_val > max)
39                 return -EINVAL;
40
41         *val = new_val;
42         return 0;
43 }
44
45 static int set_params(const char *str, const struct kernel_param *kp)
46 {
47         return param_store_val(str, kp->arg, 0, INT_MAX);
48 }
49
50 static const struct kernel_param_ops set_param_ops = {
51         .set    = set_params,
52         .get    = param_get_int,
53 };
54
55 /* Define the socket priority to use for connections were it is desirable
56  * that the NIC consider performing optimized packet processing or filtering.
57  * A non-zero value being sufficient to indicate general consideration of any
58  * possible optimization.  Making it a module param allows for alternative
59  * values that may be unique for some NIC implementations.
60  */
61 static int so_priority;
62 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
63 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
64
65 /* Define a time period (in usecs) that io_work() shall sample an activated
66  * queue before determining it to be idle.  This optional module behavior
67  * can enable NIC solutions that support socket optimized packet processing
68  * using advanced interrupt moderation techniques.
69  */
70 static int idle_poll_period_usecs;
71 device_param_cb(idle_poll_period_usecs, &set_param_ops,
72                 &idle_poll_period_usecs, 0644);
73 MODULE_PARM_DESC(idle_poll_period_usecs,
74                 "nvmet tcp io_work poll till idle time period in usecs: Default 0");
75
76 #ifdef CONFIG_NVME_TARGET_TCP_TLS
77 /*
78  * TLS handshake timeout
79  */
80 static int tls_handshake_timeout = 10;
81 module_param(tls_handshake_timeout, int, 0644);
82 MODULE_PARM_DESC(tls_handshake_timeout,
83                  "nvme TLS handshake timeout in seconds (default 10)");
84 #endif
85
86 #define NVMET_TCP_RECV_BUDGET           8
87 #define NVMET_TCP_SEND_BUDGET           8
88 #define NVMET_TCP_IO_WORK_BUDGET        64
89
90 enum nvmet_tcp_send_state {
91         NVMET_TCP_SEND_DATA_PDU,
92         NVMET_TCP_SEND_DATA,
93         NVMET_TCP_SEND_R2T,
94         NVMET_TCP_SEND_DDGST,
95         NVMET_TCP_SEND_RESPONSE
96 };
97
98 enum nvmet_tcp_recv_state {
99         NVMET_TCP_RECV_PDU,
100         NVMET_TCP_RECV_DATA,
101         NVMET_TCP_RECV_DDGST,
102         NVMET_TCP_RECV_ERR,
103 };
104
105 enum {
106         NVMET_TCP_F_INIT_FAILED = (1 << 0),
107 };
108
109 struct nvmet_tcp_cmd {
110         struct nvmet_tcp_queue          *queue;
111         struct nvmet_req                req;
112
113         struct nvme_tcp_cmd_pdu         *cmd_pdu;
114         struct nvme_tcp_rsp_pdu         *rsp_pdu;
115         struct nvme_tcp_data_pdu        *data_pdu;
116         struct nvme_tcp_r2t_pdu         *r2t_pdu;
117
118         u32                             rbytes_done;
119         u32                             wbytes_done;
120
121         u32                             pdu_len;
122         u32                             pdu_recv;
123         int                             sg_idx;
124         char                            recv_cbuf[CMSG_LEN(sizeof(char))];
125         struct msghdr                   recv_msg;
126         struct bio_vec                  *iov;
127         u32                             flags;
128
129         struct list_head                entry;
130         struct llist_node               lentry;
131
132         /* send state */
133         u32                             offset;
134         struct scatterlist              *cur_sg;
135         enum nvmet_tcp_send_state       state;
136
137         __le32                          exp_ddgst;
138         __le32                          recv_ddgst;
139 };
140
141 enum nvmet_tcp_queue_state {
142         NVMET_TCP_Q_CONNECTING,
143         NVMET_TCP_Q_TLS_HANDSHAKE,
144         NVMET_TCP_Q_LIVE,
145         NVMET_TCP_Q_DISCONNECTING,
146         NVMET_TCP_Q_FAILED,
147 };
148
149 struct nvmet_tcp_queue {
150         struct socket           *sock;
151         struct nvmet_tcp_port   *port;
152         struct work_struct      io_work;
153         struct nvmet_cq         nvme_cq;
154         struct nvmet_sq         nvme_sq;
155         struct kref             kref;
156
157         /* send state */
158         struct nvmet_tcp_cmd    *cmds;
159         unsigned int            nr_cmds;
160         struct list_head        free_list;
161         struct llist_head       resp_list;
162         struct list_head        resp_send_list;
163         int                     send_list_len;
164         struct nvmet_tcp_cmd    *snd_cmd;
165
166         /* recv state */
167         int                     offset;
168         int                     left;
169         enum nvmet_tcp_recv_state rcv_state;
170         struct nvmet_tcp_cmd    *cmd;
171         union nvme_tcp_pdu      pdu;
172
173         /* digest state */
174         bool                    hdr_digest;
175         bool                    data_digest;
176         struct ahash_request    *snd_hash;
177         struct ahash_request    *rcv_hash;
178
179         /* TLS state */
180         key_serial_t            tls_pskid;
181         struct delayed_work     tls_handshake_tmo_work;
182
183         unsigned long           poll_end;
184
185         spinlock_t              state_lock;
186         enum nvmet_tcp_queue_state state;
187
188         struct sockaddr_storage sockaddr;
189         struct sockaddr_storage sockaddr_peer;
190         struct work_struct      release_work;
191
192         int                     idx;
193         struct list_head        queue_list;
194
195         struct nvmet_tcp_cmd    connect;
196
197         struct page_frag_cache  pf_cache;
198
199         void (*data_ready)(struct sock *);
200         void (*state_change)(struct sock *);
201         void (*write_space)(struct sock *);
202 };
203
204 struct nvmet_tcp_port {
205         struct socket           *sock;
206         struct work_struct      accept_work;
207         struct nvmet_port       *nport;
208         struct sockaddr_storage addr;
209         void (*data_ready)(struct sock *);
210 };
211
212 static DEFINE_IDA(nvmet_tcp_queue_ida);
213 static LIST_HEAD(nvmet_tcp_queue_list);
214 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
215
216 static struct workqueue_struct *nvmet_tcp_wq;
217 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
218 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
219 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
220
221 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
222                 struct nvmet_tcp_cmd *cmd)
223 {
224         if (unlikely(!queue->nr_cmds)) {
225                 /* We didn't allocate cmds yet, send 0xffff */
226                 return USHRT_MAX;
227         }
228
229         return cmd - queue->cmds;
230 }
231
232 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
233 {
234         return nvme_is_write(cmd->req.cmd) &&
235                 cmd->rbytes_done < cmd->req.transfer_len;
236 }
237
238 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
239 {
240         return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
241 }
242
243 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
244 {
245         return !nvme_is_write(cmd->req.cmd) &&
246                 cmd->req.transfer_len > 0 &&
247                 !cmd->req.cqe->status;
248 }
249
250 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
251 {
252         return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
253                 !cmd->rbytes_done;
254 }
255
256 static inline struct nvmet_tcp_cmd *
257 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
258 {
259         struct nvmet_tcp_cmd *cmd;
260
261         cmd = list_first_entry_or_null(&queue->free_list,
262                                 struct nvmet_tcp_cmd, entry);
263         if (!cmd)
264                 return NULL;
265         list_del_init(&cmd->entry);
266
267         cmd->rbytes_done = cmd->wbytes_done = 0;
268         cmd->pdu_len = 0;
269         cmd->pdu_recv = 0;
270         cmd->iov = NULL;
271         cmd->flags = 0;
272         return cmd;
273 }
274
275 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
276 {
277         if (unlikely(cmd == &cmd->queue->connect))
278                 return;
279
280         list_add_tail(&cmd->entry, &cmd->queue->free_list);
281 }
282
283 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
284 {
285         return queue->sock->sk->sk_incoming_cpu;
286 }
287
288 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
289 {
290         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
291 }
292
293 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
294 {
295         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
296 }
297
298 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
299                 void *pdu, size_t len)
300 {
301         struct scatterlist sg;
302
303         sg_init_one(&sg, pdu, len);
304         ahash_request_set_crypt(hash, &sg, pdu + len, len);
305         crypto_ahash_digest(hash);
306 }
307
308 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
309         void *pdu, size_t len)
310 {
311         struct nvme_tcp_hdr *hdr = pdu;
312         __le32 recv_digest;
313         __le32 exp_digest;
314
315         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
316                 pr_err("queue %d: header digest enabled but no header digest\n",
317                         queue->idx);
318                 return -EPROTO;
319         }
320
321         recv_digest = *(__le32 *)(pdu + hdr->hlen);
322         nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
323         exp_digest = *(__le32 *)(pdu + hdr->hlen);
324         if (recv_digest != exp_digest) {
325                 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
326                         queue->idx, le32_to_cpu(recv_digest),
327                         le32_to_cpu(exp_digest));
328                 return -EPROTO;
329         }
330
331         return 0;
332 }
333
334 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
335 {
336         struct nvme_tcp_hdr *hdr = pdu;
337         u8 digest_len = nvmet_tcp_hdgst_len(queue);
338         u32 len;
339
340         len = le32_to_cpu(hdr->plen) - hdr->hlen -
341                 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
342
343         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
344                 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
345                 return -EPROTO;
346         }
347
348         return 0;
349 }
350
351 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
352 {
353         kfree(cmd->iov);
354         sgl_free(cmd->req.sg);
355         cmd->iov = NULL;
356         cmd->req.sg = NULL;
357 }
358
359 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
360 {
361         struct bio_vec *iov = cmd->iov;
362         struct scatterlist *sg;
363         u32 length, offset, sg_offset;
364         int nr_pages;
365
366         length = cmd->pdu_len;
367         nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
368         offset = cmd->rbytes_done;
369         cmd->sg_idx = offset / PAGE_SIZE;
370         sg_offset = offset % PAGE_SIZE;
371         sg = &cmd->req.sg[cmd->sg_idx];
372
373         while (length) {
374                 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
375
376                 bvec_set_page(iov, sg_page(sg), iov_len,
377                                 sg->offset + sg_offset);
378
379                 length -= iov_len;
380                 sg = sg_next(sg);
381                 iov++;
382                 sg_offset = 0;
383         }
384
385         iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
386                       nr_pages, cmd->pdu_len);
387 }
388
389 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
390 {
391         queue->rcv_state = NVMET_TCP_RECV_ERR;
392         if (queue->nvme_sq.ctrl)
393                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
394         else
395                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
396 }
397
398 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
399 {
400         queue->rcv_state = NVMET_TCP_RECV_ERR;
401         if (status == -EPIPE || status == -ECONNRESET)
402                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
403         else
404                 nvmet_tcp_fatal_error(queue);
405 }
406
407 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
408 {
409         struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
410         u32 len = le32_to_cpu(sgl->length);
411
412         if (!len)
413                 return 0;
414
415         if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
416                           NVME_SGL_FMT_OFFSET)) {
417                 if (!nvme_is_write(cmd->req.cmd))
418                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
419
420                 if (len > cmd->req.port->inline_data_size)
421                         return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
422                 cmd->pdu_len = len;
423         }
424         cmd->req.transfer_len += len;
425
426         cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
427         if (!cmd->req.sg)
428                 return NVME_SC_INTERNAL;
429         cmd->cur_sg = cmd->req.sg;
430
431         if (nvmet_tcp_has_data_in(cmd)) {
432                 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
433                                 sizeof(*cmd->iov), GFP_KERNEL);
434                 if (!cmd->iov)
435                         goto err;
436         }
437
438         return 0;
439 err:
440         nvmet_tcp_free_cmd_buffers(cmd);
441         return NVME_SC_INTERNAL;
442 }
443
444 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
445                 struct nvmet_tcp_cmd *cmd)
446 {
447         ahash_request_set_crypt(hash, cmd->req.sg,
448                 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
449         crypto_ahash_digest(hash);
450 }
451
452 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
453 {
454         struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
455         struct nvmet_tcp_queue *queue = cmd->queue;
456         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
457         u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
458
459         cmd->offset = 0;
460         cmd->state = NVMET_TCP_SEND_DATA_PDU;
461
462         pdu->hdr.type = nvme_tcp_c2h_data;
463         pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
464                                                 NVME_TCP_F_DATA_SUCCESS : 0);
465         pdu->hdr.hlen = sizeof(*pdu);
466         pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
467         pdu->hdr.plen =
468                 cpu_to_le32(pdu->hdr.hlen + hdgst +
469                                 cmd->req.transfer_len + ddgst);
470         pdu->command_id = cmd->req.cqe->command_id;
471         pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
472         pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
473
474         if (queue->data_digest) {
475                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
476                 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
477         }
478
479         if (cmd->queue->hdr_digest) {
480                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
481                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
482         }
483 }
484
485 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
486 {
487         struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
488         struct nvmet_tcp_queue *queue = cmd->queue;
489         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
490
491         cmd->offset = 0;
492         cmd->state = NVMET_TCP_SEND_R2T;
493
494         pdu->hdr.type = nvme_tcp_r2t;
495         pdu->hdr.flags = 0;
496         pdu->hdr.hlen = sizeof(*pdu);
497         pdu->hdr.pdo = 0;
498         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
499
500         pdu->command_id = cmd->req.cmd->common.command_id;
501         pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
502         pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
503         pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
504         if (cmd->queue->hdr_digest) {
505                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
506                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
507         }
508 }
509
510 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
511 {
512         struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
513         struct nvmet_tcp_queue *queue = cmd->queue;
514         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
515
516         cmd->offset = 0;
517         cmd->state = NVMET_TCP_SEND_RESPONSE;
518
519         pdu->hdr.type = nvme_tcp_rsp;
520         pdu->hdr.flags = 0;
521         pdu->hdr.hlen = sizeof(*pdu);
522         pdu->hdr.pdo = 0;
523         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
524         if (cmd->queue->hdr_digest) {
525                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
526                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
527         }
528 }
529
530 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
531 {
532         struct llist_node *node;
533         struct nvmet_tcp_cmd *cmd;
534
535         for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
536                 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
537                 list_add(&cmd->entry, &queue->resp_send_list);
538                 queue->send_list_len++;
539         }
540 }
541
542 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
543 {
544         queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
545                                 struct nvmet_tcp_cmd, entry);
546         if (!queue->snd_cmd) {
547                 nvmet_tcp_process_resp_list(queue);
548                 queue->snd_cmd =
549                         list_first_entry_or_null(&queue->resp_send_list,
550                                         struct nvmet_tcp_cmd, entry);
551                 if (unlikely(!queue->snd_cmd))
552                         return NULL;
553         }
554
555         list_del_init(&queue->snd_cmd->entry);
556         queue->send_list_len--;
557
558         if (nvmet_tcp_need_data_out(queue->snd_cmd))
559                 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
560         else if (nvmet_tcp_need_data_in(queue->snd_cmd))
561                 nvmet_setup_r2t_pdu(queue->snd_cmd);
562         else
563                 nvmet_setup_response_pdu(queue->snd_cmd);
564
565         return queue->snd_cmd;
566 }
567
568 static void nvmet_tcp_queue_response(struct nvmet_req *req)
569 {
570         struct nvmet_tcp_cmd *cmd =
571                 container_of(req, struct nvmet_tcp_cmd, req);
572         struct nvmet_tcp_queue  *queue = cmd->queue;
573         struct nvme_sgl_desc *sgl;
574         u32 len;
575
576         if (unlikely(cmd == queue->cmd)) {
577                 sgl = &cmd->req.cmd->common.dptr.sgl;
578                 len = le32_to_cpu(sgl->length);
579
580                 /*
581                  * Wait for inline data before processing the response.
582                  * Avoid using helpers, this might happen before
583                  * nvmet_req_init is completed.
584                  */
585                 if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
586                     len && len <= cmd->req.port->inline_data_size &&
587                     nvme_is_write(cmd->req.cmd))
588                         return;
589         }
590
591         llist_add(&cmd->lentry, &queue->resp_list);
592         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
593 }
594
595 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
596 {
597         if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
598                 nvmet_tcp_queue_response(&cmd->req);
599         else
600                 cmd->req.execute(&cmd->req);
601 }
602
603 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
604 {
605         struct msghdr msg = {
606                 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
607         };
608         struct bio_vec bvec;
609         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
610         int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
611         int ret;
612
613         bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
614         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
615         ret = sock_sendmsg(cmd->queue->sock, &msg);
616         if (ret <= 0)
617                 return ret;
618
619         cmd->offset += ret;
620         left -= ret;
621
622         if (left)
623                 return -EAGAIN;
624
625         cmd->state = NVMET_TCP_SEND_DATA;
626         cmd->offset  = 0;
627         return 1;
628 }
629
630 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
631 {
632         struct nvmet_tcp_queue *queue = cmd->queue;
633         int ret;
634
635         while (cmd->cur_sg) {
636                 struct msghdr msg = {
637                         .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
638                 };
639                 struct page *page = sg_page(cmd->cur_sg);
640                 struct bio_vec bvec;
641                 u32 left = cmd->cur_sg->length - cmd->offset;
642
643                 if ((!last_in_batch && cmd->queue->send_list_len) ||
644                     cmd->wbytes_done + left < cmd->req.transfer_len ||
645                     queue->data_digest || !queue->nvme_sq.sqhd_disabled)
646                         msg.msg_flags |= MSG_MORE;
647
648                 bvec_set_page(&bvec, page, left, cmd->offset);
649                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
650                 ret = sock_sendmsg(cmd->queue->sock, &msg);
651                 if (ret <= 0)
652                         return ret;
653
654                 cmd->offset += ret;
655                 cmd->wbytes_done += ret;
656
657                 /* Done with sg?*/
658                 if (cmd->offset == cmd->cur_sg->length) {
659                         cmd->cur_sg = sg_next(cmd->cur_sg);
660                         cmd->offset = 0;
661                 }
662         }
663
664         if (queue->data_digest) {
665                 cmd->state = NVMET_TCP_SEND_DDGST;
666                 cmd->offset = 0;
667         } else {
668                 if (queue->nvme_sq.sqhd_disabled) {
669                         cmd->queue->snd_cmd = NULL;
670                         nvmet_tcp_put_cmd(cmd);
671                 } else {
672                         nvmet_setup_response_pdu(cmd);
673                 }
674         }
675
676         if (queue->nvme_sq.sqhd_disabled)
677                 nvmet_tcp_free_cmd_buffers(cmd);
678
679         return 1;
680
681 }
682
683 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
684                 bool last_in_batch)
685 {
686         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
687         struct bio_vec bvec;
688         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
689         int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
690         int ret;
691
692         if (!last_in_batch && cmd->queue->send_list_len)
693                 msg.msg_flags |= MSG_MORE;
694         else
695                 msg.msg_flags |= MSG_EOR;
696
697         bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
698         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
699         ret = sock_sendmsg(cmd->queue->sock, &msg);
700         if (ret <= 0)
701                 return ret;
702         cmd->offset += ret;
703         left -= ret;
704
705         if (left)
706                 return -EAGAIN;
707
708         nvmet_tcp_free_cmd_buffers(cmd);
709         cmd->queue->snd_cmd = NULL;
710         nvmet_tcp_put_cmd(cmd);
711         return 1;
712 }
713
714 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
715 {
716         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
717         struct bio_vec bvec;
718         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
719         int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
720         int ret;
721
722         if (!last_in_batch && cmd->queue->send_list_len)
723                 msg.msg_flags |= MSG_MORE;
724         else
725                 msg.msg_flags |= MSG_EOR;
726
727         bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
728         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
729         ret = sock_sendmsg(cmd->queue->sock, &msg);
730         if (ret <= 0)
731                 return ret;
732         cmd->offset += ret;
733         left -= ret;
734
735         if (left)
736                 return -EAGAIN;
737
738         cmd->queue->snd_cmd = NULL;
739         return 1;
740 }
741
742 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
743 {
744         struct nvmet_tcp_queue *queue = cmd->queue;
745         int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
746         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
747         struct kvec iov = {
748                 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
749                 .iov_len = left
750         };
751         int ret;
752
753         if (!last_in_batch && cmd->queue->send_list_len)
754                 msg.msg_flags |= MSG_MORE;
755         else
756                 msg.msg_flags |= MSG_EOR;
757
758         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
759         if (unlikely(ret <= 0))
760                 return ret;
761
762         cmd->offset += ret;
763         left -= ret;
764
765         if (left)
766                 return -EAGAIN;
767
768         if (queue->nvme_sq.sqhd_disabled) {
769                 cmd->queue->snd_cmd = NULL;
770                 nvmet_tcp_put_cmd(cmd);
771         } else {
772                 nvmet_setup_response_pdu(cmd);
773         }
774         return 1;
775 }
776
777 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
778                 bool last_in_batch)
779 {
780         struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
781         int ret = 0;
782
783         if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
784                 cmd = nvmet_tcp_fetch_cmd(queue);
785                 if (unlikely(!cmd))
786                         return 0;
787         }
788
789         if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
790                 ret = nvmet_try_send_data_pdu(cmd);
791                 if (ret <= 0)
792                         goto done_send;
793         }
794
795         if (cmd->state == NVMET_TCP_SEND_DATA) {
796                 ret = nvmet_try_send_data(cmd, last_in_batch);
797                 if (ret <= 0)
798                         goto done_send;
799         }
800
801         if (cmd->state == NVMET_TCP_SEND_DDGST) {
802                 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
803                 if (ret <= 0)
804                         goto done_send;
805         }
806
807         if (cmd->state == NVMET_TCP_SEND_R2T) {
808                 ret = nvmet_try_send_r2t(cmd, last_in_batch);
809                 if (ret <= 0)
810                         goto done_send;
811         }
812
813         if (cmd->state == NVMET_TCP_SEND_RESPONSE)
814                 ret = nvmet_try_send_response(cmd, last_in_batch);
815
816 done_send:
817         if (ret < 0) {
818                 if (ret == -EAGAIN)
819                         return 0;
820                 return ret;
821         }
822
823         return 1;
824 }
825
826 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
827                 int budget, int *sends)
828 {
829         int i, ret = 0;
830
831         for (i = 0; i < budget; i++) {
832                 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
833                 if (unlikely(ret < 0)) {
834                         nvmet_tcp_socket_error(queue, ret);
835                         goto done;
836                 } else if (ret == 0) {
837                         break;
838                 }
839                 (*sends)++;
840         }
841 done:
842         return ret;
843 }
844
845 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
846 {
847         queue->offset = 0;
848         queue->left = sizeof(struct nvme_tcp_hdr);
849         queue->cmd = NULL;
850         queue->rcv_state = NVMET_TCP_RECV_PDU;
851 }
852
853 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
854 {
855         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
856
857         ahash_request_free(queue->rcv_hash);
858         ahash_request_free(queue->snd_hash);
859         crypto_free_ahash(tfm);
860 }
861
862 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
863 {
864         struct crypto_ahash *tfm;
865
866         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
867         if (IS_ERR(tfm))
868                 return PTR_ERR(tfm);
869
870         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
871         if (!queue->snd_hash)
872                 goto free_tfm;
873         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
874
875         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
876         if (!queue->rcv_hash)
877                 goto free_snd_hash;
878         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
879
880         return 0;
881 free_snd_hash:
882         ahash_request_free(queue->snd_hash);
883 free_tfm:
884         crypto_free_ahash(tfm);
885         return -ENOMEM;
886 }
887
888
889 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
890 {
891         struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
892         struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
893         struct msghdr msg = {};
894         struct kvec iov;
895         int ret;
896
897         if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
898                 pr_err("bad nvme-tcp pdu length (%d)\n",
899                         le32_to_cpu(icreq->hdr.plen));
900                 nvmet_tcp_fatal_error(queue);
901         }
902
903         if (icreq->pfv != NVME_TCP_PFV_1_0) {
904                 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
905                 return -EPROTO;
906         }
907
908         if (icreq->hpda != 0) {
909                 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
910                         icreq->hpda);
911                 return -EPROTO;
912         }
913
914         queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
915         queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
916         if (queue->hdr_digest || queue->data_digest) {
917                 ret = nvmet_tcp_alloc_crypto(queue);
918                 if (ret)
919                         return ret;
920         }
921
922         memset(icresp, 0, sizeof(*icresp));
923         icresp->hdr.type = nvme_tcp_icresp;
924         icresp->hdr.hlen = sizeof(*icresp);
925         icresp->hdr.pdo = 0;
926         icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
927         icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
928         icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
929         icresp->cpda = 0;
930         if (queue->hdr_digest)
931                 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
932         if (queue->data_digest)
933                 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
934
935         iov.iov_base = icresp;
936         iov.iov_len = sizeof(*icresp);
937         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
938         if (ret < 0) {
939                 queue->state = NVMET_TCP_Q_FAILED;
940                 return ret; /* queue removal will cleanup */
941         }
942
943         queue->state = NVMET_TCP_Q_LIVE;
944         nvmet_prepare_receive_pdu(queue);
945         return 0;
946 }
947
948 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
949                 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
950 {
951         size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
952         int ret;
953
954         /*
955          * This command has not been processed yet, hence we are trying to
956          * figure out if there is still pending data left to receive. If
957          * we don't, we can simply prepare for the next pdu and bail out,
958          * otherwise we will need to prepare a buffer and receive the
959          * stale data before continuing forward.
960          */
961         if (!nvme_is_write(cmd->req.cmd) || !data_len ||
962             data_len > cmd->req.port->inline_data_size) {
963                 nvmet_prepare_receive_pdu(queue);
964                 return;
965         }
966
967         ret = nvmet_tcp_map_data(cmd);
968         if (unlikely(ret)) {
969                 pr_err("queue %d: failed to map data\n", queue->idx);
970                 nvmet_tcp_fatal_error(queue);
971                 return;
972         }
973
974         queue->rcv_state = NVMET_TCP_RECV_DATA;
975         nvmet_tcp_build_pdu_iovec(cmd);
976         cmd->flags |= NVMET_TCP_F_INIT_FAILED;
977 }
978
979 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
980 {
981         struct nvme_tcp_data_pdu *data = &queue->pdu.data;
982         struct nvmet_tcp_cmd *cmd;
983         unsigned int exp_data_len;
984
985         if (likely(queue->nr_cmds)) {
986                 if (unlikely(data->ttag >= queue->nr_cmds)) {
987                         pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
988                                 queue->idx, data->ttag, queue->nr_cmds);
989                         goto err_proto;
990                 }
991                 cmd = &queue->cmds[data->ttag];
992         } else {
993                 cmd = &queue->connect;
994         }
995
996         if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
997                 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
998                         data->ttag, le32_to_cpu(data->data_offset),
999                         cmd->rbytes_done);
1000                 goto err_proto;
1001         }
1002
1003         exp_data_len = le32_to_cpu(data->hdr.plen) -
1004                         nvmet_tcp_hdgst_len(queue) -
1005                         nvmet_tcp_ddgst_len(queue) -
1006                         sizeof(*data);
1007
1008         cmd->pdu_len = le32_to_cpu(data->data_length);
1009         if (unlikely(cmd->pdu_len != exp_data_len ||
1010                      cmd->pdu_len == 0 ||
1011                      cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
1012                 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
1013                 goto err_proto;
1014         }
1015         cmd->pdu_recv = 0;
1016         nvmet_tcp_build_pdu_iovec(cmd);
1017         queue->cmd = cmd;
1018         queue->rcv_state = NVMET_TCP_RECV_DATA;
1019
1020         return 0;
1021
1022 err_proto:
1023         /* FIXME: use proper transport errors */
1024         nvmet_tcp_fatal_error(queue);
1025         return -EPROTO;
1026 }
1027
1028 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
1029 {
1030         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1031         struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1032         struct nvmet_req *req;
1033         int ret;
1034
1035         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1036                 if (hdr->type != nvme_tcp_icreq) {
1037                         pr_err("unexpected pdu type (%d) before icreq\n",
1038                                 hdr->type);
1039                         nvmet_tcp_fatal_error(queue);
1040                         return -EPROTO;
1041                 }
1042                 return nvmet_tcp_handle_icreq(queue);
1043         }
1044
1045         if (unlikely(hdr->type == nvme_tcp_icreq)) {
1046                 pr_err("queue %d: received icreq pdu in state %d\n",
1047                         queue->idx, queue->state);
1048                 nvmet_tcp_fatal_error(queue);
1049                 return -EPROTO;
1050         }
1051
1052         if (hdr->type == nvme_tcp_h2c_data) {
1053                 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1054                 if (unlikely(ret))
1055                         return ret;
1056                 return 0;
1057         }
1058
1059         queue->cmd = nvmet_tcp_get_cmd(queue);
1060         if (unlikely(!queue->cmd)) {
1061                 /* This should never happen */
1062                 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1063                         queue->idx, queue->nr_cmds, queue->send_list_len,
1064                         nvme_cmd->common.opcode);
1065                 nvmet_tcp_fatal_error(queue);
1066                 return -ENOMEM;
1067         }
1068
1069         req = &queue->cmd->req;
1070         memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1071
1072         if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1073                         &queue->nvme_sq, &nvmet_tcp_ops))) {
1074                 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1075                         req->cmd, req->cmd->common.command_id,
1076                         req->cmd->common.opcode,
1077                         le32_to_cpu(req->cmd->common.dptr.sgl.length));
1078
1079                 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1080                 return 0;
1081         }
1082
1083         ret = nvmet_tcp_map_data(queue->cmd);
1084         if (unlikely(ret)) {
1085                 pr_err("queue %d: failed to map data\n", queue->idx);
1086                 if (nvmet_tcp_has_inline_data(queue->cmd))
1087                         nvmet_tcp_fatal_error(queue);
1088                 else
1089                         nvmet_req_complete(req, ret);
1090                 ret = -EAGAIN;
1091                 goto out;
1092         }
1093
1094         if (nvmet_tcp_need_data_in(queue->cmd)) {
1095                 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1096                         queue->rcv_state = NVMET_TCP_RECV_DATA;
1097                         nvmet_tcp_build_pdu_iovec(queue->cmd);
1098                         return 0;
1099                 }
1100                 /* send back R2T */
1101                 nvmet_tcp_queue_response(&queue->cmd->req);
1102                 goto out;
1103         }
1104
1105         queue->cmd->req.execute(&queue->cmd->req);
1106 out:
1107         nvmet_prepare_receive_pdu(queue);
1108         return ret;
1109 }
1110
1111 static const u8 nvme_tcp_pdu_sizes[] = {
1112         [nvme_tcp_icreq]        = sizeof(struct nvme_tcp_icreq_pdu),
1113         [nvme_tcp_cmd]          = sizeof(struct nvme_tcp_cmd_pdu),
1114         [nvme_tcp_h2c_data]     = sizeof(struct nvme_tcp_data_pdu),
1115 };
1116
1117 static inline u8 nvmet_tcp_pdu_size(u8 type)
1118 {
1119         size_t idx = type;
1120
1121         return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1122                 nvme_tcp_pdu_sizes[idx]) ?
1123                         nvme_tcp_pdu_sizes[idx] : 0;
1124 }
1125
1126 static inline bool nvmet_tcp_pdu_valid(u8 type)
1127 {
1128         switch (type) {
1129         case nvme_tcp_icreq:
1130         case nvme_tcp_cmd:
1131         case nvme_tcp_h2c_data:
1132                 /* fallthru */
1133                 return true;
1134         }
1135
1136         return false;
1137 }
1138
1139 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1140                 struct msghdr *msg, char *cbuf)
1141 {
1142         struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1143         u8 ctype, level, description;
1144         int ret = 0;
1145
1146         ctype = tls_get_record_type(queue->sock->sk, cmsg);
1147         switch (ctype) {
1148         case 0:
1149                 break;
1150         case TLS_RECORD_TYPE_DATA:
1151                 break;
1152         case TLS_RECORD_TYPE_ALERT:
1153                 tls_alert_recv(queue->sock->sk, msg, &level, &description);
1154                 if (level == TLS_ALERT_LEVEL_FATAL) {
1155                         pr_err("queue %d: TLS Alert desc %u\n",
1156                                queue->idx, description);
1157                         ret = -ENOTCONN;
1158                 } else {
1159                         pr_warn("queue %d: TLS Alert desc %u\n",
1160                                queue->idx, description);
1161                         ret = -EAGAIN;
1162                 }
1163                 break;
1164         default:
1165                 /* discard this record type */
1166                 pr_err("queue %d: TLS record %d unhandled\n",
1167                        queue->idx, ctype);
1168                 ret = -EAGAIN;
1169                 break;
1170         }
1171         return ret;
1172 }
1173
1174 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1175 {
1176         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1177         int len, ret;
1178         struct kvec iov;
1179         char cbuf[CMSG_LEN(sizeof(char))] = {};
1180         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1181
1182 recv:
1183         iov.iov_base = (void *)&queue->pdu + queue->offset;
1184         iov.iov_len = queue->left;
1185         if (queue->tls_pskid) {
1186                 msg.msg_control = cbuf;
1187                 msg.msg_controllen = sizeof(cbuf);
1188         }
1189         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1190                         iov.iov_len, msg.msg_flags);
1191         if (unlikely(len < 0))
1192                 return len;
1193         if (queue->tls_pskid) {
1194                 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1195                 if (ret < 0)
1196                         return ret;
1197         }
1198
1199         queue->offset += len;
1200         queue->left -= len;
1201         if (queue->left)
1202                 return -EAGAIN;
1203
1204         if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1205                 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1206
1207                 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1208                         pr_err("unexpected pdu type %d\n", hdr->type);
1209                         nvmet_tcp_fatal_error(queue);
1210                         return -EIO;
1211                 }
1212
1213                 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1214                         pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1215                         return -EIO;
1216                 }
1217
1218                 queue->left = hdr->hlen - queue->offset + hdgst;
1219                 goto recv;
1220         }
1221
1222         if (queue->hdr_digest &&
1223             nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1224                 nvmet_tcp_fatal_error(queue); /* fatal */
1225                 return -EPROTO;
1226         }
1227
1228         if (queue->data_digest &&
1229             nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1230                 nvmet_tcp_fatal_error(queue); /* fatal */
1231                 return -EPROTO;
1232         }
1233
1234         return nvmet_tcp_done_recv_pdu(queue);
1235 }
1236
1237 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1238 {
1239         struct nvmet_tcp_queue *queue = cmd->queue;
1240
1241         nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1242         queue->offset = 0;
1243         queue->left = NVME_TCP_DIGEST_LENGTH;
1244         queue->rcv_state = NVMET_TCP_RECV_DDGST;
1245 }
1246
1247 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1248 {
1249         struct nvmet_tcp_cmd  *cmd = queue->cmd;
1250         int len, ret;
1251
1252         while (msg_data_left(&cmd->recv_msg)) {
1253                 len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1254                         cmd->recv_msg.msg_flags);
1255                 if (len <= 0)
1256                         return len;
1257                 if (queue->tls_pskid) {
1258                         ret = nvmet_tcp_tls_record_ok(cmd->queue,
1259                                         &cmd->recv_msg, cmd->recv_cbuf);
1260                         if (ret < 0)
1261                                 return ret;
1262                 }
1263
1264                 cmd->pdu_recv += len;
1265                 cmd->rbytes_done += len;
1266         }
1267
1268         if (queue->data_digest) {
1269                 nvmet_tcp_prep_recv_ddgst(cmd);
1270                 return 0;
1271         }
1272
1273         if (cmd->rbytes_done == cmd->req.transfer_len)
1274                 nvmet_tcp_execute_request(cmd);
1275
1276         nvmet_prepare_receive_pdu(queue);
1277         return 0;
1278 }
1279
1280 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1281 {
1282         struct nvmet_tcp_cmd *cmd = queue->cmd;
1283         int ret, len;
1284         char cbuf[CMSG_LEN(sizeof(char))] = {};
1285         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1286         struct kvec iov = {
1287                 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1288                 .iov_len = queue->left
1289         };
1290
1291         if (queue->tls_pskid) {
1292                 msg.msg_control = cbuf;
1293                 msg.msg_controllen = sizeof(cbuf);
1294         }
1295         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1296                         iov.iov_len, msg.msg_flags);
1297         if (unlikely(len < 0))
1298                 return len;
1299         if (queue->tls_pskid) {
1300                 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1301                 if (ret < 0)
1302                         return ret;
1303         }
1304
1305         queue->offset += len;
1306         queue->left -= len;
1307         if (queue->left)
1308                 return -EAGAIN;
1309
1310         if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1311                 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1312                         queue->idx, cmd->req.cmd->common.command_id,
1313                         queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1314                         le32_to_cpu(cmd->exp_ddgst));
1315                 nvmet_req_uninit(&cmd->req);
1316                 nvmet_tcp_free_cmd_buffers(cmd);
1317                 nvmet_tcp_fatal_error(queue);
1318                 ret = -EPROTO;
1319                 goto out;
1320         }
1321
1322         if (cmd->rbytes_done == cmd->req.transfer_len)
1323                 nvmet_tcp_execute_request(cmd);
1324
1325         ret = 0;
1326 out:
1327         nvmet_prepare_receive_pdu(queue);
1328         return ret;
1329 }
1330
1331 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1332 {
1333         int result = 0;
1334
1335         if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1336                 return 0;
1337
1338         if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1339                 result = nvmet_tcp_try_recv_pdu(queue);
1340                 if (result != 0)
1341                         goto done_recv;
1342         }
1343
1344         if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1345                 result = nvmet_tcp_try_recv_data(queue);
1346                 if (result != 0)
1347                         goto done_recv;
1348         }
1349
1350         if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1351                 result = nvmet_tcp_try_recv_ddgst(queue);
1352                 if (result != 0)
1353                         goto done_recv;
1354         }
1355
1356 done_recv:
1357         if (result < 0) {
1358                 if (result == -EAGAIN)
1359                         return 0;
1360                 return result;
1361         }
1362         return 1;
1363 }
1364
1365 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1366                 int budget, int *recvs)
1367 {
1368         int i, ret = 0;
1369
1370         for (i = 0; i < budget; i++) {
1371                 ret = nvmet_tcp_try_recv_one(queue);
1372                 if (unlikely(ret < 0)) {
1373                         nvmet_tcp_socket_error(queue, ret);
1374                         goto done;
1375                 } else if (ret == 0) {
1376                         break;
1377                 }
1378                 (*recvs)++;
1379         }
1380 done:
1381         return ret;
1382 }
1383
1384 static void nvmet_tcp_release_queue(struct kref *kref)
1385 {
1386         struct nvmet_tcp_queue *queue =
1387                 container_of(kref, struct nvmet_tcp_queue, kref);
1388
1389         WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1390         queue_work(nvmet_wq, &queue->release_work);
1391 }
1392
1393 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1394 {
1395         spin_lock_bh(&queue->state_lock);
1396         if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1397                 /* Socket closed during handshake */
1398                 tls_handshake_cancel(queue->sock->sk);
1399         }
1400         if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1401                 queue->state = NVMET_TCP_Q_DISCONNECTING;
1402                 kref_put(&queue->kref, nvmet_tcp_release_queue);
1403         }
1404         spin_unlock_bh(&queue->state_lock);
1405 }
1406
1407 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1408 {
1409         queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1410 }
1411
1412 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1413                 int ops)
1414 {
1415         if (!idle_poll_period_usecs)
1416                 return false;
1417
1418         if (ops)
1419                 nvmet_tcp_arm_queue_deadline(queue);
1420
1421         return !time_after(jiffies, queue->poll_end);
1422 }
1423
1424 static void nvmet_tcp_io_work(struct work_struct *w)
1425 {
1426         struct nvmet_tcp_queue *queue =
1427                 container_of(w, struct nvmet_tcp_queue, io_work);
1428         bool pending;
1429         int ret, ops = 0;
1430
1431         do {
1432                 pending = false;
1433
1434                 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1435                 if (ret > 0)
1436                         pending = true;
1437                 else if (ret < 0)
1438                         return;
1439
1440                 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1441                 if (ret > 0)
1442                         pending = true;
1443                 else if (ret < 0)
1444                         return;
1445
1446         } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1447
1448         /*
1449          * Requeue the worker if idle deadline period is in progress or any
1450          * ops activity was recorded during the do-while loop above.
1451          */
1452         if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1453                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1454 }
1455
1456 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1457                 struct nvmet_tcp_cmd *c)
1458 {
1459         u8 hdgst = nvmet_tcp_hdgst_len(queue);
1460
1461         c->queue = queue;
1462         c->req.port = queue->port->nport;
1463
1464         c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1465                         sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1466         if (!c->cmd_pdu)
1467                 return -ENOMEM;
1468         c->req.cmd = &c->cmd_pdu->cmd;
1469
1470         c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1471                         sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1472         if (!c->rsp_pdu)
1473                 goto out_free_cmd;
1474         c->req.cqe = &c->rsp_pdu->cqe;
1475
1476         c->data_pdu = page_frag_alloc(&queue->pf_cache,
1477                         sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1478         if (!c->data_pdu)
1479                 goto out_free_rsp;
1480
1481         c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1482                         sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1483         if (!c->r2t_pdu)
1484                 goto out_free_data;
1485
1486         if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1487                 c->recv_msg.msg_control = c->recv_cbuf;
1488                 c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1489         }
1490         c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1491
1492         list_add_tail(&c->entry, &queue->free_list);
1493
1494         return 0;
1495 out_free_data:
1496         page_frag_free(c->data_pdu);
1497 out_free_rsp:
1498         page_frag_free(c->rsp_pdu);
1499 out_free_cmd:
1500         page_frag_free(c->cmd_pdu);
1501         return -ENOMEM;
1502 }
1503
1504 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1505 {
1506         page_frag_free(c->r2t_pdu);
1507         page_frag_free(c->data_pdu);
1508         page_frag_free(c->rsp_pdu);
1509         page_frag_free(c->cmd_pdu);
1510 }
1511
1512 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1513 {
1514         struct nvmet_tcp_cmd *cmds;
1515         int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1516
1517         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1518         if (!cmds)
1519                 goto out;
1520
1521         for (i = 0; i < nr_cmds; i++) {
1522                 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1523                 if (ret)
1524                         goto out_free;
1525         }
1526
1527         queue->cmds = cmds;
1528
1529         return 0;
1530 out_free:
1531         while (--i >= 0)
1532                 nvmet_tcp_free_cmd(cmds + i);
1533         kfree(cmds);
1534 out:
1535         return ret;
1536 }
1537
1538 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1539 {
1540         struct nvmet_tcp_cmd *cmds = queue->cmds;
1541         int i;
1542
1543         for (i = 0; i < queue->nr_cmds; i++)
1544                 nvmet_tcp_free_cmd(cmds + i);
1545
1546         nvmet_tcp_free_cmd(&queue->connect);
1547         kfree(cmds);
1548 }
1549
1550 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1551 {
1552         struct socket *sock = queue->sock;
1553
1554         write_lock_bh(&sock->sk->sk_callback_lock);
1555         sock->sk->sk_data_ready =  queue->data_ready;
1556         sock->sk->sk_state_change = queue->state_change;
1557         sock->sk->sk_write_space = queue->write_space;
1558         sock->sk->sk_user_data = NULL;
1559         write_unlock_bh(&sock->sk->sk_callback_lock);
1560 }
1561
1562 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1563 {
1564         struct nvmet_tcp_cmd *cmd = queue->cmds;
1565         int i;
1566
1567         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1568                 if (nvmet_tcp_need_data_in(cmd))
1569                         nvmet_req_uninit(&cmd->req);
1570         }
1571
1572         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1573                 /* failed in connect */
1574                 nvmet_req_uninit(&queue->connect.req);
1575         }
1576 }
1577
1578 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1579 {
1580         struct nvmet_tcp_cmd *cmd = queue->cmds;
1581         int i;
1582
1583         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1584                 if (nvmet_tcp_need_data_in(cmd))
1585                         nvmet_tcp_free_cmd_buffers(cmd);
1586         }
1587
1588         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect))
1589                 nvmet_tcp_free_cmd_buffers(&queue->connect);
1590 }
1591
1592 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1593 {
1594         struct page *page;
1595         struct nvmet_tcp_queue *queue =
1596                 container_of(w, struct nvmet_tcp_queue, release_work);
1597
1598         mutex_lock(&nvmet_tcp_queue_mutex);
1599         list_del_init(&queue->queue_list);
1600         mutex_unlock(&nvmet_tcp_queue_mutex);
1601
1602         nvmet_tcp_restore_socket_callbacks(queue);
1603         cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1604         cancel_work_sync(&queue->io_work);
1605         /* stop accepting incoming data */
1606         queue->rcv_state = NVMET_TCP_RECV_ERR;
1607
1608         nvmet_tcp_uninit_data_in_cmds(queue);
1609         nvmet_sq_destroy(&queue->nvme_sq);
1610         cancel_work_sync(&queue->io_work);
1611         nvmet_tcp_free_cmd_data_in_buffers(queue);
1612         /* ->sock will be released by fput() */
1613         fput(queue->sock->file);
1614         nvmet_tcp_free_cmds(queue);
1615         if (queue->hdr_digest || queue->data_digest)
1616                 nvmet_tcp_free_crypto(queue);
1617         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1618         page = virt_to_head_page(queue->pf_cache.va);
1619         __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1620         kfree(queue);
1621 }
1622
1623 static void nvmet_tcp_data_ready(struct sock *sk)
1624 {
1625         struct nvmet_tcp_queue *queue;
1626
1627         trace_sk_data_ready(sk);
1628
1629         read_lock_bh(&sk->sk_callback_lock);
1630         queue = sk->sk_user_data;
1631         if (likely(queue)) {
1632                 if (queue->data_ready)
1633                         queue->data_ready(sk);
1634                 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1635                         queue_work_on(queue_cpu(queue), nvmet_tcp_wq,
1636                                       &queue->io_work);
1637         }
1638         read_unlock_bh(&sk->sk_callback_lock);
1639 }
1640
1641 static void nvmet_tcp_write_space(struct sock *sk)
1642 {
1643         struct nvmet_tcp_queue *queue;
1644
1645         read_lock_bh(&sk->sk_callback_lock);
1646         queue = sk->sk_user_data;
1647         if (unlikely(!queue))
1648                 goto out;
1649
1650         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1651                 queue->write_space(sk);
1652                 goto out;
1653         }
1654
1655         if (sk_stream_is_writeable(sk)) {
1656                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1657                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1658         }
1659 out:
1660         read_unlock_bh(&sk->sk_callback_lock);
1661 }
1662
1663 static void nvmet_tcp_state_change(struct sock *sk)
1664 {
1665         struct nvmet_tcp_queue *queue;
1666
1667         read_lock_bh(&sk->sk_callback_lock);
1668         queue = sk->sk_user_data;
1669         if (!queue)
1670                 goto done;
1671
1672         switch (sk->sk_state) {
1673         case TCP_FIN_WAIT2:
1674         case TCP_LAST_ACK:
1675                 break;
1676         case TCP_FIN_WAIT1:
1677         case TCP_CLOSE_WAIT:
1678         case TCP_CLOSE:
1679                 /* FALLTHRU */
1680                 nvmet_tcp_schedule_release_queue(queue);
1681                 break;
1682         default:
1683                 pr_warn("queue %d unhandled state %d\n",
1684                         queue->idx, sk->sk_state);
1685         }
1686 done:
1687         read_unlock_bh(&sk->sk_callback_lock);
1688 }
1689
1690 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1691 {
1692         struct socket *sock = queue->sock;
1693         struct inet_sock *inet = inet_sk(sock->sk);
1694         int ret;
1695
1696         ret = kernel_getsockname(sock,
1697                 (struct sockaddr *)&queue->sockaddr);
1698         if (ret < 0)
1699                 return ret;
1700
1701         ret = kernel_getpeername(sock,
1702                 (struct sockaddr *)&queue->sockaddr_peer);
1703         if (ret < 0)
1704                 return ret;
1705
1706         /*
1707          * Cleanup whatever is sitting in the TCP transmit queue on socket
1708          * close. This is done to prevent stale data from being sent should
1709          * the network connection be restored before TCP times out.
1710          */
1711         sock_no_linger(sock->sk);
1712
1713         if (so_priority > 0)
1714                 sock_set_priority(sock->sk, so_priority);
1715
1716         /* Set socket type of service */
1717         if (inet->rcv_tos > 0)
1718                 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1719
1720         ret = 0;
1721         write_lock_bh(&sock->sk->sk_callback_lock);
1722         if (sock->sk->sk_state != TCP_ESTABLISHED) {
1723                 /*
1724                  * If the socket is already closing, don't even start
1725                  * consuming it
1726                  */
1727                 ret = -ENOTCONN;
1728         } else {
1729                 sock->sk->sk_user_data = queue;
1730                 queue->data_ready = sock->sk->sk_data_ready;
1731                 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1732                 queue->state_change = sock->sk->sk_state_change;
1733                 sock->sk->sk_state_change = nvmet_tcp_state_change;
1734                 queue->write_space = sock->sk->sk_write_space;
1735                 sock->sk->sk_write_space = nvmet_tcp_write_space;
1736                 if (idle_poll_period_usecs)
1737                         nvmet_tcp_arm_queue_deadline(queue);
1738                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1739         }
1740         write_unlock_bh(&sock->sk->sk_callback_lock);
1741
1742         return ret;
1743 }
1744
1745 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1746 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1747 {
1748         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1749         int len, ret;
1750         struct kvec iov = {
1751                 .iov_base = (u8 *)&queue->pdu + queue->offset,
1752                 .iov_len = sizeof(struct nvme_tcp_hdr),
1753         };
1754         char cbuf[CMSG_LEN(sizeof(char))] = {};
1755         struct msghdr msg = {
1756                 .msg_control = cbuf,
1757                 .msg_controllen = sizeof(cbuf),
1758                 .msg_flags = MSG_PEEK,
1759         };
1760
1761         if (nvmet_port_secure_channel_required(queue->port->nport))
1762                 return 0;
1763
1764         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1765                         iov.iov_len, msg.msg_flags);
1766         if (unlikely(len < 0)) {
1767                 pr_debug("queue %d: peek error %d\n",
1768                          queue->idx, len);
1769                 return len;
1770         }
1771
1772         ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1773         if (ret < 0)
1774                 return ret;
1775
1776         if (len < sizeof(struct nvme_tcp_hdr)) {
1777                 pr_debug("queue %d: short read, %d bytes missing\n",
1778                          queue->idx, (int)iov.iov_len - len);
1779                 return -EAGAIN;
1780         }
1781         pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1782                  queue->idx, hdr->type, hdr->hlen, hdr->plen,
1783                  (int)sizeof(struct nvme_tcp_icreq_pdu));
1784         if (hdr->type == nvme_tcp_icreq &&
1785             hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1786             hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) {
1787                 pr_debug("queue %d: icreq detected\n",
1788                          queue->idx);
1789                 return len;
1790         }
1791         return 0;
1792 }
1793
1794 static void nvmet_tcp_tls_handshake_done(void *data, int status,
1795                                          key_serial_t peerid)
1796 {
1797         struct nvmet_tcp_queue *queue = data;
1798
1799         pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1800                  queue->idx, peerid, status);
1801         spin_lock_bh(&queue->state_lock);
1802         if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1803                 spin_unlock_bh(&queue->state_lock);
1804                 return;
1805         }
1806         if (!status) {
1807                 queue->tls_pskid = peerid;
1808                 queue->state = NVMET_TCP_Q_CONNECTING;
1809         } else
1810                 queue->state = NVMET_TCP_Q_FAILED;
1811         spin_unlock_bh(&queue->state_lock);
1812
1813         cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1814         if (status)
1815                 nvmet_tcp_schedule_release_queue(queue);
1816         else
1817                 nvmet_tcp_set_queue_sock(queue);
1818         kref_put(&queue->kref, nvmet_tcp_release_queue);
1819 }
1820
1821 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1822 {
1823         struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1824                         struct nvmet_tcp_queue, tls_handshake_tmo_work);
1825
1826         pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1827         /*
1828          * If tls_handshake_cancel() fails we've lost the race with
1829          * nvmet_tcp_tls_handshake_done() */
1830         if (!tls_handshake_cancel(queue->sock->sk))
1831                 return;
1832         spin_lock_bh(&queue->state_lock);
1833         if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1834                 spin_unlock_bh(&queue->state_lock);
1835                 return;
1836         }
1837         queue->state = NVMET_TCP_Q_FAILED;
1838         spin_unlock_bh(&queue->state_lock);
1839         nvmet_tcp_schedule_release_queue(queue);
1840         kref_put(&queue->kref, nvmet_tcp_release_queue);
1841 }
1842
1843 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1844 {
1845         int ret = -EOPNOTSUPP;
1846         struct tls_handshake_args args;
1847
1848         if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1849                 pr_warn("cannot start TLS in state %d\n", queue->state);
1850                 return -EINVAL;
1851         }
1852
1853         kref_get(&queue->kref);
1854         pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1855         memset(&args, 0, sizeof(args));
1856         args.ta_sock = queue->sock;
1857         args.ta_done = nvmet_tcp_tls_handshake_done;
1858         args.ta_data = queue;
1859         args.ta_keyring = key_serial(queue->port->nport->keyring);
1860         args.ta_timeout_ms = tls_handshake_timeout * 1000;
1861
1862         ret = tls_server_hello_psk(&args, GFP_KERNEL);
1863         if (ret) {
1864                 kref_put(&queue->kref, nvmet_tcp_release_queue);
1865                 pr_err("failed to start TLS, err=%d\n", ret);
1866         } else {
1867                 queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work,
1868                                    tls_handshake_timeout * HZ);
1869         }
1870         return ret;
1871 }
1872 #else
1873 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {}
1874 #endif
1875
1876 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1877                 struct socket *newsock)
1878 {
1879         struct nvmet_tcp_queue *queue;
1880         struct file *sock_file = NULL;
1881         int ret;
1882
1883         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1884         if (!queue) {
1885                 ret = -ENOMEM;
1886                 goto out_release;
1887         }
1888
1889         INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1890         INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1891         kref_init(&queue->kref);
1892         queue->sock = newsock;
1893         queue->port = port;
1894         queue->nr_cmds = 0;
1895         spin_lock_init(&queue->state_lock);
1896         if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1897             NVMF_TCP_SECTYPE_TLS13)
1898                 queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1899         else
1900                 queue->state = NVMET_TCP_Q_CONNECTING;
1901         INIT_LIST_HEAD(&queue->free_list);
1902         init_llist_head(&queue->resp_list);
1903         INIT_LIST_HEAD(&queue->resp_send_list);
1904
1905         sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1906         if (IS_ERR(sock_file)) {
1907                 ret = PTR_ERR(sock_file);
1908                 goto out_free_queue;
1909         }
1910
1911         queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1912         if (queue->idx < 0) {
1913                 ret = queue->idx;
1914                 goto out_sock;
1915         }
1916
1917         ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1918         if (ret)
1919                 goto out_ida_remove;
1920
1921         ret = nvmet_sq_init(&queue->nvme_sq);
1922         if (ret)
1923                 goto out_free_connect;
1924
1925         nvmet_prepare_receive_pdu(queue);
1926
1927         mutex_lock(&nvmet_tcp_queue_mutex);
1928         list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1929         mutex_unlock(&nvmet_tcp_queue_mutex);
1930
1931         INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1932                           nvmet_tcp_tls_handshake_timeout);
1933 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1934         if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1935                 struct sock *sk = queue->sock->sk;
1936
1937                 /* Restore the default callbacks before starting upcall */
1938                 read_lock_bh(&sk->sk_callback_lock);
1939                 sk->sk_user_data = NULL;
1940                 sk->sk_data_ready = port->data_ready;
1941                 read_unlock_bh(&sk->sk_callback_lock);
1942                 if (!nvmet_tcp_try_peek_pdu(queue)) {
1943                         if (!nvmet_tcp_tls_handshake(queue))
1944                                 return;
1945                         /* TLS handshake failed, terminate the connection */
1946                         goto out_destroy_sq;
1947                 }
1948                 /* Not a TLS connection, continue with normal processing */
1949                 queue->state = NVMET_TCP_Q_CONNECTING;
1950         }
1951 #endif
1952
1953         ret = nvmet_tcp_set_queue_sock(queue);
1954         if (ret)
1955                 goto out_destroy_sq;
1956
1957         return;
1958 out_destroy_sq:
1959         mutex_lock(&nvmet_tcp_queue_mutex);
1960         list_del_init(&queue->queue_list);
1961         mutex_unlock(&nvmet_tcp_queue_mutex);
1962         nvmet_sq_destroy(&queue->nvme_sq);
1963 out_free_connect:
1964         nvmet_tcp_free_cmd(&queue->connect);
1965 out_ida_remove:
1966         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1967 out_sock:
1968         fput(queue->sock->file);
1969 out_free_queue:
1970         kfree(queue);
1971 out_release:
1972         pr_err("failed to allocate queue, error %d\n", ret);
1973         if (!sock_file)
1974                 sock_release(newsock);
1975 }
1976
1977 static void nvmet_tcp_accept_work(struct work_struct *w)
1978 {
1979         struct nvmet_tcp_port *port =
1980                 container_of(w, struct nvmet_tcp_port, accept_work);
1981         struct socket *newsock;
1982         int ret;
1983
1984         while (true) {
1985                 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1986                 if (ret < 0) {
1987                         if (ret != -EAGAIN)
1988                                 pr_warn("failed to accept err=%d\n", ret);
1989                         return;
1990                 }
1991                 nvmet_tcp_alloc_queue(port, newsock);
1992         }
1993 }
1994
1995 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1996 {
1997         struct nvmet_tcp_port *port;
1998
1999         trace_sk_data_ready(sk);
2000
2001         read_lock_bh(&sk->sk_callback_lock);
2002         port = sk->sk_user_data;
2003         if (!port)
2004                 goto out;
2005
2006         if (sk->sk_state == TCP_LISTEN)
2007                 queue_work(nvmet_wq, &port->accept_work);
2008 out:
2009         read_unlock_bh(&sk->sk_callback_lock);
2010 }
2011
2012 static int nvmet_tcp_add_port(struct nvmet_port *nport)
2013 {
2014         struct nvmet_tcp_port *port;
2015         __kernel_sa_family_t af;
2016         int ret;
2017
2018         port = kzalloc(sizeof(*port), GFP_KERNEL);
2019         if (!port)
2020                 return -ENOMEM;
2021
2022         switch (nport->disc_addr.adrfam) {
2023         case NVMF_ADDR_FAMILY_IP4:
2024                 af = AF_INET;
2025                 break;
2026         case NVMF_ADDR_FAMILY_IP6:
2027                 af = AF_INET6;
2028                 break;
2029         default:
2030                 pr_err("address family %d not supported\n",
2031                                 nport->disc_addr.adrfam);
2032                 ret = -EINVAL;
2033                 goto err_port;
2034         }
2035
2036         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
2037                         nport->disc_addr.trsvcid, &port->addr);
2038         if (ret) {
2039                 pr_err("malformed ip/port passed: %s:%s\n",
2040                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2041                 goto err_port;
2042         }
2043
2044         port->nport = nport;
2045         INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2046         if (port->nport->inline_data_size < 0)
2047                 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2048
2049         ret = sock_create(port->addr.ss_family, SOCK_STREAM,
2050                                 IPPROTO_TCP, &port->sock);
2051         if (ret) {
2052                 pr_err("failed to create a socket\n");
2053                 goto err_port;
2054         }
2055
2056         port->sock->sk->sk_user_data = port;
2057         port->data_ready = port->sock->sk->sk_data_ready;
2058         port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2059         sock_set_reuseaddr(port->sock->sk);
2060         tcp_sock_set_nodelay(port->sock->sk);
2061         if (so_priority > 0)
2062                 sock_set_priority(port->sock->sk, so_priority);
2063
2064         ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
2065                         sizeof(port->addr));
2066         if (ret) {
2067                 pr_err("failed to bind port socket %d\n", ret);
2068                 goto err_sock;
2069         }
2070
2071         ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG);
2072         if (ret) {
2073                 pr_err("failed to listen %d on port sock\n", ret);
2074                 goto err_sock;
2075         }
2076
2077         nport->priv = port;
2078         pr_info("enabling port %d (%pISpc)\n",
2079                 le16_to_cpu(nport->disc_addr.portid), &port->addr);
2080
2081         return 0;
2082
2083 err_sock:
2084         sock_release(port->sock);
2085 err_port:
2086         kfree(port);
2087         return ret;
2088 }
2089
2090 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2091 {
2092         struct nvmet_tcp_queue *queue;
2093
2094         mutex_lock(&nvmet_tcp_queue_mutex);
2095         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2096                 if (queue->port == port)
2097                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2098         mutex_unlock(&nvmet_tcp_queue_mutex);
2099 }
2100
2101 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2102 {
2103         struct nvmet_tcp_port *port = nport->priv;
2104
2105         write_lock_bh(&port->sock->sk->sk_callback_lock);
2106         port->sock->sk->sk_data_ready = port->data_ready;
2107         port->sock->sk->sk_user_data = NULL;
2108         write_unlock_bh(&port->sock->sk->sk_callback_lock);
2109         cancel_work_sync(&port->accept_work);
2110         /*
2111          * Destroy the remaining queues, which are not belong to any
2112          * controller yet.
2113          */
2114         nvmet_tcp_destroy_port_queues(port);
2115
2116         sock_release(port->sock);
2117         kfree(port);
2118 }
2119
2120 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2121 {
2122         struct nvmet_tcp_queue *queue;
2123
2124         mutex_lock(&nvmet_tcp_queue_mutex);
2125         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2126                 if (queue->nvme_sq.ctrl == ctrl)
2127                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2128         mutex_unlock(&nvmet_tcp_queue_mutex);
2129 }
2130
2131 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2132 {
2133         struct nvmet_tcp_queue *queue =
2134                 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2135
2136         if (sq->qid == 0) {
2137                 struct nvmet_tcp_queue *q;
2138                 int pending = 0;
2139
2140                 /* Check for pending controller teardown */
2141                 mutex_lock(&nvmet_tcp_queue_mutex);
2142                 list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) {
2143                         if (q->nvme_sq.ctrl == sq->ctrl &&
2144                             q->state == NVMET_TCP_Q_DISCONNECTING)
2145                                 pending++;
2146                 }
2147                 mutex_unlock(&nvmet_tcp_queue_mutex);
2148                 if (pending > NVMET_TCP_BACKLOG)
2149                         return NVME_SC_CONNECT_CTRL_BUSY;
2150         }
2151
2152         queue->nr_cmds = sq->size * 2;
2153         if (nvmet_tcp_alloc_cmds(queue))
2154                 return NVME_SC_INTERNAL;
2155         return 0;
2156 }
2157
2158 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2159                 struct nvmet_port *nport, char *traddr)
2160 {
2161         struct nvmet_tcp_port *port = nport->priv;
2162
2163         if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
2164                 struct nvmet_tcp_cmd *cmd =
2165                         container_of(req, struct nvmet_tcp_cmd, req);
2166                 struct nvmet_tcp_queue *queue = cmd->queue;
2167
2168                 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
2169         } else {
2170                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2171         }
2172 }
2173
2174 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2175         .owner                  = THIS_MODULE,
2176         .type                   = NVMF_TRTYPE_TCP,
2177         .msdbd                  = 1,
2178         .add_port               = nvmet_tcp_add_port,
2179         .remove_port            = nvmet_tcp_remove_port,
2180         .queue_response         = nvmet_tcp_queue_response,
2181         .delete_ctrl            = nvmet_tcp_delete_ctrl,
2182         .install_queue          = nvmet_tcp_install_queue,
2183         .disc_traddr            = nvmet_tcp_disc_port_addr,
2184 };
2185
2186 static int __init nvmet_tcp_init(void)
2187 {
2188         int ret;
2189
2190         nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
2191                                 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2192         if (!nvmet_tcp_wq)
2193                 return -ENOMEM;
2194
2195         ret = nvmet_register_transport(&nvmet_tcp_ops);
2196         if (ret)
2197                 goto err;
2198
2199         return 0;
2200 err:
2201         destroy_workqueue(nvmet_tcp_wq);
2202         return ret;
2203 }
2204
2205 static void __exit nvmet_tcp_exit(void)
2206 {
2207         struct nvmet_tcp_queue *queue;
2208
2209         nvmet_unregister_transport(&nvmet_tcp_ops);
2210
2211         flush_workqueue(nvmet_wq);
2212         mutex_lock(&nvmet_tcp_queue_mutex);
2213         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2214                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2215         mutex_unlock(&nvmet_tcp_queue_mutex);
2216         flush_workqueue(nvmet_wq);
2217
2218         destroy_workqueue(nvmet_tcp_wq);
2219         ida_destroy(&nvmet_tcp_queue_ida);
2220 }
2221
2222 module_init(nvmet_tcp_init);
2223 module_exit(nvmet_tcp_exit);
2224
2225 MODULE_DESCRIPTION("NVMe target TCP transport driver");
2226 MODULE_LICENSE("GPL v2");
2227 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */