nvmet-tcp: set SO_PRIORITY for accepted sockets
[linux-2.6-microblaze.git] / drivers / nvme / target / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17
18 #include "nvmet.h"
19
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE  (4 * PAGE_SIZE)
21
22 /* Define the socket priority to use for connections were it is desirable
23  * that the NIC consider performing optimized packet processing or filtering.
24  * A non-zero value being sufficient to indicate general consideration of any
25  * possible optimization.  Making it a module param allows for alternative
26  * values that may be unique for some NIC implementations.
27  */
28 static int so_priority;
29 module_param(so_priority, int, 0644);
30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
31
32 #define NVMET_TCP_RECV_BUDGET           8
33 #define NVMET_TCP_SEND_BUDGET           8
34 #define NVMET_TCP_IO_WORK_BUDGET        64
35
36 enum nvmet_tcp_send_state {
37         NVMET_TCP_SEND_DATA_PDU,
38         NVMET_TCP_SEND_DATA,
39         NVMET_TCP_SEND_R2T,
40         NVMET_TCP_SEND_DDGST,
41         NVMET_TCP_SEND_RESPONSE
42 };
43
44 enum nvmet_tcp_recv_state {
45         NVMET_TCP_RECV_PDU,
46         NVMET_TCP_RECV_DATA,
47         NVMET_TCP_RECV_DDGST,
48         NVMET_TCP_RECV_ERR,
49 };
50
51 enum {
52         NVMET_TCP_F_INIT_FAILED = (1 << 0),
53 };
54
55 struct nvmet_tcp_cmd {
56         struct nvmet_tcp_queue          *queue;
57         struct nvmet_req                req;
58
59         struct nvme_tcp_cmd_pdu         *cmd_pdu;
60         struct nvme_tcp_rsp_pdu         *rsp_pdu;
61         struct nvme_tcp_data_pdu        *data_pdu;
62         struct nvme_tcp_r2t_pdu         *r2t_pdu;
63
64         u32                             rbytes_done;
65         u32                             wbytes_done;
66
67         u32                             pdu_len;
68         u32                             pdu_recv;
69         int                             sg_idx;
70         int                             nr_mapped;
71         struct msghdr                   recv_msg;
72         struct kvec                     *iov;
73         u32                             flags;
74
75         struct list_head                entry;
76         struct llist_node               lentry;
77
78         /* send state */
79         u32                             offset;
80         struct scatterlist              *cur_sg;
81         enum nvmet_tcp_send_state       state;
82
83         __le32                          exp_ddgst;
84         __le32                          recv_ddgst;
85 };
86
87 enum nvmet_tcp_queue_state {
88         NVMET_TCP_Q_CONNECTING,
89         NVMET_TCP_Q_LIVE,
90         NVMET_TCP_Q_DISCONNECTING,
91 };
92
93 struct nvmet_tcp_queue {
94         struct socket           *sock;
95         struct nvmet_tcp_port   *port;
96         struct work_struct      io_work;
97         int                     cpu;
98         struct nvmet_cq         nvme_cq;
99         struct nvmet_sq         nvme_sq;
100
101         /* send state */
102         struct nvmet_tcp_cmd    *cmds;
103         unsigned int            nr_cmds;
104         struct list_head        free_list;
105         struct llist_head       resp_list;
106         struct list_head        resp_send_list;
107         int                     send_list_len;
108         struct nvmet_tcp_cmd    *snd_cmd;
109
110         /* recv state */
111         int                     offset;
112         int                     left;
113         enum nvmet_tcp_recv_state rcv_state;
114         struct nvmet_tcp_cmd    *cmd;
115         union nvme_tcp_pdu      pdu;
116
117         /* digest state */
118         bool                    hdr_digest;
119         bool                    data_digest;
120         struct ahash_request    *snd_hash;
121         struct ahash_request    *rcv_hash;
122
123         spinlock_t              state_lock;
124         enum nvmet_tcp_queue_state state;
125
126         struct sockaddr_storage sockaddr;
127         struct sockaddr_storage sockaddr_peer;
128         struct work_struct      release_work;
129
130         int                     idx;
131         struct list_head        queue_list;
132
133         struct nvmet_tcp_cmd    connect;
134
135         struct page_frag_cache  pf_cache;
136
137         void (*data_ready)(struct sock *);
138         void (*state_change)(struct sock *);
139         void (*write_space)(struct sock *);
140 };
141
142 struct nvmet_tcp_port {
143         struct socket           *sock;
144         struct work_struct      accept_work;
145         struct nvmet_port       *nport;
146         struct sockaddr_storage addr;
147         int                     last_cpu;
148         void (*data_ready)(struct sock *);
149 };
150
151 static DEFINE_IDA(nvmet_tcp_queue_ida);
152 static LIST_HEAD(nvmet_tcp_queue_list);
153 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
154
155 static struct workqueue_struct *nvmet_tcp_wq;
156 static struct nvmet_fabrics_ops nvmet_tcp_ops;
157 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
158 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
159
160 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
161                 struct nvmet_tcp_cmd *cmd)
162 {
163         return cmd - queue->cmds;
164 }
165
166 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
167 {
168         return nvme_is_write(cmd->req.cmd) &&
169                 cmd->rbytes_done < cmd->req.transfer_len;
170 }
171
172 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
173 {
174         return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
175 }
176
177 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
178 {
179         return !nvme_is_write(cmd->req.cmd) &&
180                 cmd->req.transfer_len > 0 &&
181                 !cmd->req.cqe->status;
182 }
183
184 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
185 {
186         return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
187                 !cmd->rbytes_done;
188 }
189
190 static inline struct nvmet_tcp_cmd *
191 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
192 {
193         struct nvmet_tcp_cmd *cmd;
194
195         cmd = list_first_entry_or_null(&queue->free_list,
196                                 struct nvmet_tcp_cmd, entry);
197         if (!cmd)
198                 return NULL;
199         list_del_init(&cmd->entry);
200
201         cmd->rbytes_done = cmd->wbytes_done = 0;
202         cmd->pdu_len = 0;
203         cmd->pdu_recv = 0;
204         cmd->iov = NULL;
205         cmd->flags = 0;
206         return cmd;
207 }
208
209 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
210 {
211         if (unlikely(cmd == &cmd->queue->connect))
212                 return;
213
214         list_add_tail(&cmd->entry, &cmd->queue->free_list);
215 }
216
217 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
218 {
219         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
220 }
221
222 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
223 {
224         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
225 }
226
227 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
228                 void *pdu, size_t len)
229 {
230         struct scatterlist sg;
231
232         sg_init_one(&sg, pdu, len);
233         ahash_request_set_crypt(hash, &sg, pdu + len, len);
234         crypto_ahash_digest(hash);
235 }
236
237 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
238         void *pdu, size_t len)
239 {
240         struct nvme_tcp_hdr *hdr = pdu;
241         __le32 recv_digest;
242         __le32 exp_digest;
243
244         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
245                 pr_err("queue %d: header digest enabled but no header digest\n",
246                         queue->idx);
247                 return -EPROTO;
248         }
249
250         recv_digest = *(__le32 *)(pdu + hdr->hlen);
251         nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
252         exp_digest = *(__le32 *)(pdu + hdr->hlen);
253         if (recv_digest != exp_digest) {
254                 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
255                         queue->idx, le32_to_cpu(recv_digest),
256                         le32_to_cpu(exp_digest));
257                 return -EPROTO;
258         }
259
260         return 0;
261 }
262
263 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
264 {
265         struct nvme_tcp_hdr *hdr = pdu;
266         u8 digest_len = nvmet_tcp_hdgst_len(queue);
267         u32 len;
268
269         len = le32_to_cpu(hdr->plen) - hdr->hlen -
270                 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
271
272         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
273                 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
274                 return -EPROTO;
275         }
276
277         return 0;
278 }
279
280 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
281 {
282         struct scatterlist *sg;
283         int i;
284
285         sg = &cmd->req.sg[cmd->sg_idx];
286
287         for (i = 0; i < cmd->nr_mapped; i++)
288                 kunmap(sg_page(&sg[i]));
289 }
290
291 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
292 {
293         struct kvec *iov = cmd->iov;
294         struct scatterlist *sg;
295         u32 length, offset, sg_offset;
296
297         length = cmd->pdu_len;
298         cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
299         offset = cmd->rbytes_done;
300         cmd->sg_idx = DIV_ROUND_UP(offset, PAGE_SIZE);
301         sg_offset = offset % PAGE_SIZE;
302         sg = &cmd->req.sg[cmd->sg_idx];
303
304         while (length) {
305                 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
306
307                 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
308                 iov->iov_len = iov_len;
309
310                 length -= iov_len;
311                 sg = sg_next(sg);
312                 iov++;
313         }
314
315         iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
316                 cmd->nr_mapped, cmd->pdu_len);
317 }
318
319 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
320 {
321         queue->rcv_state = NVMET_TCP_RECV_ERR;
322         if (queue->nvme_sq.ctrl)
323                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
324         else
325                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
326 }
327
328 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
329 {
330         struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
331         u32 len = le32_to_cpu(sgl->length);
332
333         if (!len)
334                 return 0;
335
336         if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
337                           NVME_SGL_FMT_OFFSET)) {
338                 if (!nvme_is_write(cmd->req.cmd))
339                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
340
341                 if (len > cmd->req.port->inline_data_size)
342                         return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
343                 cmd->pdu_len = len;
344         }
345         cmd->req.transfer_len += len;
346
347         cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
348         if (!cmd->req.sg)
349                 return NVME_SC_INTERNAL;
350         cmd->cur_sg = cmd->req.sg;
351
352         if (nvmet_tcp_has_data_in(cmd)) {
353                 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
354                                 sizeof(*cmd->iov), GFP_KERNEL);
355                 if (!cmd->iov)
356                         goto err;
357         }
358
359         return 0;
360 err:
361         sgl_free(cmd->req.sg);
362         return NVME_SC_INTERNAL;
363 }
364
365 static void nvmet_tcp_ddgst(struct ahash_request *hash,
366                 struct nvmet_tcp_cmd *cmd)
367 {
368         ahash_request_set_crypt(hash, cmd->req.sg,
369                 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
370         crypto_ahash_digest(hash);
371 }
372
373 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
374 {
375         struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
376         struct nvmet_tcp_queue *queue = cmd->queue;
377         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
378         u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
379
380         cmd->offset = 0;
381         cmd->state = NVMET_TCP_SEND_DATA_PDU;
382
383         pdu->hdr.type = nvme_tcp_c2h_data;
384         pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
385                                                 NVME_TCP_F_DATA_SUCCESS : 0);
386         pdu->hdr.hlen = sizeof(*pdu);
387         pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
388         pdu->hdr.plen =
389                 cpu_to_le32(pdu->hdr.hlen + hdgst +
390                                 cmd->req.transfer_len + ddgst);
391         pdu->command_id = cmd->req.cqe->command_id;
392         pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
393         pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
394
395         if (queue->data_digest) {
396                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
397                 nvmet_tcp_ddgst(queue->snd_hash, cmd);
398         }
399
400         if (cmd->queue->hdr_digest) {
401                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
402                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
403         }
404 }
405
406 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
407 {
408         struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
409         struct nvmet_tcp_queue *queue = cmd->queue;
410         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
411
412         cmd->offset = 0;
413         cmd->state = NVMET_TCP_SEND_R2T;
414
415         pdu->hdr.type = nvme_tcp_r2t;
416         pdu->hdr.flags = 0;
417         pdu->hdr.hlen = sizeof(*pdu);
418         pdu->hdr.pdo = 0;
419         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
420
421         pdu->command_id = cmd->req.cmd->common.command_id;
422         pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
423         pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
424         pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
425         if (cmd->queue->hdr_digest) {
426                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
427                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
428         }
429 }
430
431 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
432 {
433         struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
434         struct nvmet_tcp_queue *queue = cmd->queue;
435         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
436
437         cmd->offset = 0;
438         cmd->state = NVMET_TCP_SEND_RESPONSE;
439
440         pdu->hdr.type = nvme_tcp_rsp;
441         pdu->hdr.flags = 0;
442         pdu->hdr.hlen = sizeof(*pdu);
443         pdu->hdr.pdo = 0;
444         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
445         if (cmd->queue->hdr_digest) {
446                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
447                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
448         }
449 }
450
451 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
452 {
453         struct llist_node *node;
454
455         node = llist_del_all(&queue->resp_list);
456         if (!node)
457                 return;
458
459         while (node) {
460                 struct nvmet_tcp_cmd *cmd = llist_entry(node,
461                                         struct nvmet_tcp_cmd, lentry);
462
463                 list_add(&cmd->entry, &queue->resp_send_list);
464                 node = node->next;
465                 queue->send_list_len++;
466         }
467 }
468
469 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
470 {
471         queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
472                                 struct nvmet_tcp_cmd, entry);
473         if (!queue->snd_cmd) {
474                 nvmet_tcp_process_resp_list(queue);
475                 queue->snd_cmd =
476                         list_first_entry_or_null(&queue->resp_send_list,
477                                         struct nvmet_tcp_cmd, entry);
478                 if (unlikely(!queue->snd_cmd))
479                         return NULL;
480         }
481
482         list_del_init(&queue->snd_cmd->entry);
483         queue->send_list_len--;
484
485         if (nvmet_tcp_need_data_out(queue->snd_cmd))
486                 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
487         else if (nvmet_tcp_need_data_in(queue->snd_cmd))
488                 nvmet_setup_r2t_pdu(queue->snd_cmd);
489         else
490                 nvmet_setup_response_pdu(queue->snd_cmd);
491
492         return queue->snd_cmd;
493 }
494
495 static void nvmet_tcp_queue_response(struct nvmet_req *req)
496 {
497         struct nvmet_tcp_cmd *cmd =
498                 container_of(req, struct nvmet_tcp_cmd, req);
499         struct nvmet_tcp_queue  *queue = cmd->queue;
500
501         llist_add(&cmd->lentry, &queue->resp_list);
502         queue_work_on(cmd->queue->cpu, nvmet_tcp_wq, &cmd->queue->io_work);
503 }
504
505 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
506 {
507         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
508         int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
509         int ret;
510
511         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
512                         offset_in_page(cmd->data_pdu) + cmd->offset,
513                         left, MSG_DONTWAIT | MSG_MORE);
514         if (ret <= 0)
515                 return ret;
516
517         cmd->offset += ret;
518         left -= ret;
519
520         if (left)
521                 return -EAGAIN;
522
523         cmd->state = NVMET_TCP_SEND_DATA;
524         cmd->offset  = 0;
525         return 1;
526 }
527
528 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd)
529 {
530         struct nvmet_tcp_queue *queue = cmd->queue;
531         int ret;
532
533         while (cmd->cur_sg) {
534                 struct page *page = sg_page(cmd->cur_sg);
535                 u32 left = cmd->cur_sg->length - cmd->offset;
536
537                 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
538                                         left, MSG_DONTWAIT | MSG_MORE);
539                 if (ret <= 0)
540                         return ret;
541
542                 cmd->offset += ret;
543                 cmd->wbytes_done += ret;
544
545                 /* Done with sg?*/
546                 if (cmd->offset == cmd->cur_sg->length) {
547                         cmd->cur_sg = sg_next(cmd->cur_sg);
548                         cmd->offset = 0;
549                 }
550         }
551
552         if (queue->data_digest) {
553                 cmd->state = NVMET_TCP_SEND_DDGST;
554                 cmd->offset = 0;
555         } else {
556                 if (queue->nvme_sq.sqhd_disabled) {
557                         cmd->queue->snd_cmd = NULL;
558                         nvmet_tcp_put_cmd(cmd);
559                 } else {
560                         nvmet_setup_response_pdu(cmd);
561                 }
562         }
563
564         if (queue->nvme_sq.sqhd_disabled) {
565                 kfree(cmd->iov);
566                 sgl_free(cmd->req.sg);
567         }
568
569         return 1;
570
571 }
572
573 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
574                 bool last_in_batch)
575 {
576         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
577         int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
578         int flags = MSG_DONTWAIT;
579         int ret;
580
581         if (!last_in_batch && cmd->queue->send_list_len)
582                 flags |= MSG_MORE;
583         else
584                 flags |= MSG_EOR;
585
586         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
587                 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
588         if (ret <= 0)
589                 return ret;
590         cmd->offset += ret;
591         left -= ret;
592
593         if (left)
594                 return -EAGAIN;
595
596         kfree(cmd->iov);
597         sgl_free(cmd->req.sg);
598         cmd->queue->snd_cmd = NULL;
599         nvmet_tcp_put_cmd(cmd);
600         return 1;
601 }
602
603 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
604 {
605         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
606         int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
607         int flags = MSG_DONTWAIT;
608         int ret;
609
610         if (!last_in_batch && cmd->queue->send_list_len)
611                 flags |= MSG_MORE;
612         else
613                 flags |= MSG_EOR;
614
615         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
616                 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
617         if (ret <= 0)
618                 return ret;
619         cmd->offset += ret;
620         left -= ret;
621
622         if (left)
623                 return -EAGAIN;
624
625         cmd->queue->snd_cmd = NULL;
626         return 1;
627 }
628
629 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd)
630 {
631         struct nvmet_tcp_queue *queue = cmd->queue;
632         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
633         struct kvec iov = {
634                 .iov_base = &cmd->exp_ddgst + cmd->offset,
635                 .iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset
636         };
637         int ret;
638
639         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
640         if (unlikely(ret <= 0))
641                 return ret;
642
643         cmd->offset += ret;
644
645         if (queue->nvme_sq.sqhd_disabled) {
646                 cmd->queue->snd_cmd = NULL;
647                 nvmet_tcp_put_cmd(cmd);
648         } else {
649                 nvmet_setup_response_pdu(cmd);
650         }
651         return 1;
652 }
653
654 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
655                 bool last_in_batch)
656 {
657         struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
658         int ret = 0;
659
660         if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
661                 cmd = nvmet_tcp_fetch_cmd(queue);
662                 if (unlikely(!cmd))
663                         return 0;
664         }
665
666         if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
667                 ret = nvmet_try_send_data_pdu(cmd);
668                 if (ret <= 0)
669                         goto done_send;
670         }
671
672         if (cmd->state == NVMET_TCP_SEND_DATA) {
673                 ret = nvmet_try_send_data(cmd);
674                 if (ret <= 0)
675                         goto done_send;
676         }
677
678         if (cmd->state == NVMET_TCP_SEND_DDGST) {
679                 ret = nvmet_try_send_ddgst(cmd);
680                 if (ret <= 0)
681                         goto done_send;
682         }
683
684         if (cmd->state == NVMET_TCP_SEND_R2T) {
685                 ret = nvmet_try_send_r2t(cmd, last_in_batch);
686                 if (ret <= 0)
687                         goto done_send;
688         }
689
690         if (cmd->state == NVMET_TCP_SEND_RESPONSE)
691                 ret = nvmet_try_send_response(cmd, last_in_batch);
692
693 done_send:
694         if (ret < 0) {
695                 if (ret == -EAGAIN)
696                         return 0;
697                 return ret;
698         }
699
700         return 1;
701 }
702
703 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
704                 int budget, int *sends)
705 {
706         int i, ret = 0;
707
708         for (i = 0; i < budget; i++) {
709                 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
710                 if (ret <= 0)
711                         break;
712                 (*sends)++;
713         }
714
715         return ret;
716 }
717
718 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
719 {
720         queue->offset = 0;
721         queue->left = sizeof(struct nvme_tcp_hdr);
722         queue->cmd = NULL;
723         queue->rcv_state = NVMET_TCP_RECV_PDU;
724 }
725
726 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
727 {
728         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
729
730         ahash_request_free(queue->rcv_hash);
731         ahash_request_free(queue->snd_hash);
732         crypto_free_ahash(tfm);
733 }
734
735 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
736 {
737         struct crypto_ahash *tfm;
738
739         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
740         if (IS_ERR(tfm))
741                 return PTR_ERR(tfm);
742
743         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
744         if (!queue->snd_hash)
745                 goto free_tfm;
746         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
747
748         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
749         if (!queue->rcv_hash)
750                 goto free_snd_hash;
751         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
752
753         return 0;
754 free_snd_hash:
755         ahash_request_free(queue->snd_hash);
756 free_tfm:
757         crypto_free_ahash(tfm);
758         return -ENOMEM;
759 }
760
761
762 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
763 {
764         struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
765         struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
766         struct msghdr msg = {};
767         struct kvec iov;
768         int ret;
769
770         if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
771                 pr_err("bad nvme-tcp pdu length (%d)\n",
772                         le32_to_cpu(icreq->hdr.plen));
773                 nvmet_tcp_fatal_error(queue);
774         }
775
776         if (icreq->pfv != NVME_TCP_PFV_1_0) {
777                 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
778                 return -EPROTO;
779         }
780
781         if (icreq->hpda != 0) {
782                 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
783                         icreq->hpda);
784                 return -EPROTO;
785         }
786
787         queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
788         queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
789         if (queue->hdr_digest || queue->data_digest) {
790                 ret = nvmet_tcp_alloc_crypto(queue);
791                 if (ret)
792                         return ret;
793         }
794
795         memset(icresp, 0, sizeof(*icresp));
796         icresp->hdr.type = nvme_tcp_icresp;
797         icresp->hdr.hlen = sizeof(*icresp);
798         icresp->hdr.pdo = 0;
799         icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
800         icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
801         icresp->maxdata = cpu_to_le32(0xffff); /* FIXME: support r2t */
802         icresp->cpda = 0;
803         if (queue->hdr_digest)
804                 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
805         if (queue->data_digest)
806                 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
807
808         iov.iov_base = icresp;
809         iov.iov_len = sizeof(*icresp);
810         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
811         if (ret < 0)
812                 goto free_crypto;
813
814         queue->state = NVMET_TCP_Q_LIVE;
815         nvmet_prepare_receive_pdu(queue);
816         return 0;
817 free_crypto:
818         if (queue->hdr_digest || queue->data_digest)
819                 nvmet_tcp_free_crypto(queue);
820         return ret;
821 }
822
823 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
824                 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
825 {
826         size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
827         int ret;
828
829         if (!nvme_is_write(cmd->req.cmd) ||
830             data_len > cmd->req.port->inline_data_size) {
831                 nvmet_prepare_receive_pdu(queue);
832                 return;
833         }
834
835         ret = nvmet_tcp_map_data(cmd);
836         if (unlikely(ret)) {
837                 pr_err("queue %d: failed to map data\n", queue->idx);
838                 nvmet_tcp_fatal_error(queue);
839                 return;
840         }
841
842         queue->rcv_state = NVMET_TCP_RECV_DATA;
843         nvmet_tcp_map_pdu_iovec(cmd);
844         cmd->flags |= NVMET_TCP_F_INIT_FAILED;
845 }
846
847 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
848 {
849         struct nvme_tcp_data_pdu *data = &queue->pdu.data;
850         struct nvmet_tcp_cmd *cmd;
851
852         cmd = &queue->cmds[data->ttag];
853
854         if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
855                 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
856                         data->ttag, le32_to_cpu(data->data_offset),
857                         cmd->rbytes_done);
858                 /* FIXME: use path and transport errors */
859                 nvmet_req_complete(&cmd->req,
860                         NVME_SC_INVALID_FIELD | NVME_SC_DNR);
861                 return -EPROTO;
862         }
863
864         cmd->pdu_len = le32_to_cpu(data->data_length);
865         cmd->pdu_recv = 0;
866         nvmet_tcp_map_pdu_iovec(cmd);
867         queue->cmd = cmd;
868         queue->rcv_state = NVMET_TCP_RECV_DATA;
869
870         return 0;
871 }
872
873 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
874 {
875         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
876         struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
877         struct nvmet_req *req;
878         int ret;
879
880         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
881                 if (hdr->type != nvme_tcp_icreq) {
882                         pr_err("unexpected pdu type (%d) before icreq\n",
883                                 hdr->type);
884                         nvmet_tcp_fatal_error(queue);
885                         return -EPROTO;
886                 }
887                 return nvmet_tcp_handle_icreq(queue);
888         }
889
890         if (hdr->type == nvme_tcp_h2c_data) {
891                 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
892                 if (unlikely(ret))
893                         return ret;
894                 return 0;
895         }
896
897         queue->cmd = nvmet_tcp_get_cmd(queue);
898         if (unlikely(!queue->cmd)) {
899                 /* This should never happen */
900                 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
901                         queue->idx, queue->nr_cmds, queue->send_list_len,
902                         nvme_cmd->common.opcode);
903                 nvmet_tcp_fatal_error(queue);
904                 return -ENOMEM;
905         }
906
907         req = &queue->cmd->req;
908         memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
909
910         if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
911                         &queue->nvme_sq, &nvmet_tcp_ops))) {
912                 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
913                         req->cmd, req->cmd->common.command_id,
914                         req->cmd->common.opcode,
915                         le32_to_cpu(req->cmd->common.dptr.sgl.length));
916
917                 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
918                 return -EAGAIN;
919         }
920
921         ret = nvmet_tcp_map_data(queue->cmd);
922         if (unlikely(ret)) {
923                 pr_err("queue %d: failed to map data\n", queue->idx);
924                 if (nvmet_tcp_has_inline_data(queue->cmd))
925                         nvmet_tcp_fatal_error(queue);
926                 else
927                         nvmet_req_complete(req, ret);
928                 ret = -EAGAIN;
929                 goto out;
930         }
931
932         if (nvmet_tcp_need_data_in(queue->cmd)) {
933                 if (nvmet_tcp_has_inline_data(queue->cmd)) {
934                         queue->rcv_state = NVMET_TCP_RECV_DATA;
935                         nvmet_tcp_map_pdu_iovec(queue->cmd);
936                         return 0;
937                 }
938                 /* send back R2T */
939                 nvmet_tcp_queue_response(&queue->cmd->req);
940                 goto out;
941         }
942
943         queue->cmd->req.execute(&queue->cmd->req);
944 out:
945         nvmet_prepare_receive_pdu(queue);
946         return ret;
947 }
948
949 static const u8 nvme_tcp_pdu_sizes[] = {
950         [nvme_tcp_icreq]        = sizeof(struct nvme_tcp_icreq_pdu),
951         [nvme_tcp_cmd]          = sizeof(struct nvme_tcp_cmd_pdu),
952         [nvme_tcp_h2c_data]     = sizeof(struct nvme_tcp_data_pdu),
953 };
954
955 static inline u8 nvmet_tcp_pdu_size(u8 type)
956 {
957         size_t idx = type;
958
959         return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
960                 nvme_tcp_pdu_sizes[idx]) ?
961                         nvme_tcp_pdu_sizes[idx] : 0;
962 }
963
964 static inline bool nvmet_tcp_pdu_valid(u8 type)
965 {
966         switch (type) {
967         case nvme_tcp_icreq:
968         case nvme_tcp_cmd:
969         case nvme_tcp_h2c_data:
970                 /* fallthru */
971                 return true;
972         }
973
974         return false;
975 }
976
977 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
978 {
979         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
980         int len;
981         struct kvec iov;
982         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
983
984 recv:
985         iov.iov_base = (void *)&queue->pdu + queue->offset;
986         iov.iov_len = queue->left;
987         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
988                         iov.iov_len, msg.msg_flags);
989         if (unlikely(len < 0))
990                 return len;
991
992         queue->offset += len;
993         queue->left -= len;
994         if (queue->left)
995                 return -EAGAIN;
996
997         if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
998                 u8 hdgst = nvmet_tcp_hdgst_len(queue);
999
1000                 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1001                         pr_err("unexpected pdu type %d\n", hdr->type);
1002                         nvmet_tcp_fatal_error(queue);
1003                         return -EIO;
1004                 }
1005
1006                 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1007                         pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1008                         return -EIO;
1009                 }
1010
1011                 queue->left = hdr->hlen - queue->offset + hdgst;
1012                 goto recv;
1013         }
1014
1015         if (queue->hdr_digest &&
1016             nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) {
1017                 nvmet_tcp_fatal_error(queue); /* fatal */
1018                 return -EPROTO;
1019         }
1020
1021         if (queue->data_digest &&
1022             nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1023                 nvmet_tcp_fatal_error(queue); /* fatal */
1024                 return -EPROTO;
1025         }
1026
1027         return nvmet_tcp_done_recv_pdu(queue);
1028 }
1029
1030 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1031 {
1032         struct nvmet_tcp_queue *queue = cmd->queue;
1033
1034         nvmet_tcp_ddgst(queue->rcv_hash, cmd);
1035         queue->offset = 0;
1036         queue->left = NVME_TCP_DIGEST_LENGTH;
1037         queue->rcv_state = NVMET_TCP_RECV_DDGST;
1038 }
1039
1040 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1041 {
1042         struct nvmet_tcp_cmd  *cmd = queue->cmd;
1043         int ret;
1044
1045         while (msg_data_left(&cmd->recv_msg)) {
1046                 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1047                         cmd->recv_msg.msg_flags);
1048                 if (ret <= 0)
1049                         return ret;
1050
1051                 cmd->pdu_recv += ret;
1052                 cmd->rbytes_done += ret;
1053         }
1054
1055         nvmet_tcp_unmap_pdu_iovec(cmd);
1056
1057         if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1058             cmd->rbytes_done == cmd->req.transfer_len) {
1059                 if (queue->data_digest) {
1060                         nvmet_tcp_prep_recv_ddgst(cmd);
1061                         return 0;
1062                 }
1063                 cmd->req.execute(&cmd->req);
1064         }
1065
1066         nvmet_prepare_receive_pdu(queue);
1067         return 0;
1068 }
1069
1070 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1071 {
1072         struct nvmet_tcp_cmd *cmd = queue->cmd;
1073         int ret;
1074         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1075         struct kvec iov = {
1076                 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1077                 .iov_len = queue->left
1078         };
1079
1080         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1081                         iov.iov_len, msg.msg_flags);
1082         if (unlikely(ret < 0))
1083                 return ret;
1084
1085         queue->offset += ret;
1086         queue->left -= ret;
1087         if (queue->left)
1088                 return -EAGAIN;
1089
1090         if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1091                 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1092                         queue->idx, cmd->req.cmd->common.command_id,
1093                         queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1094                         le32_to_cpu(cmd->exp_ddgst));
1095                 nvmet_tcp_finish_cmd(cmd);
1096                 nvmet_tcp_fatal_error(queue);
1097                 ret = -EPROTO;
1098                 goto out;
1099         }
1100
1101         if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1102             cmd->rbytes_done == cmd->req.transfer_len)
1103                 cmd->req.execute(&cmd->req);
1104         ret = 0;
1105 out:
1106         nvmet_prepare_receive_pdu(queue);
1107         return ret;
1108 }
1109
1110 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1111 {
1112         int result = 0;
1113
1114         if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1115                 return 0;
1116
1117         if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1118                 result = nvmet_tcp_try_recv_pdu(queue);
1119                 if (result != 0)
1120                         goto done_recv;
1121         }
1122
1123         if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1124                 result = nvmet_tcp_try_recv_data(queue);
1125                 if (result != 0)
1126                         goto done_recv;
1127         }
1128
1129         if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1130                 result = nvmet_tcp_try_recv_ddgst(queue);
1131                 if (result != 0)
1132                         goto done_recv;
1133         }
1134
1135 done_recv:
1136         if (result < 0) {
1137                 if (result == -EAGAIN)
1138                         return 0;
1139                 return result;
1140         }
1141         return 1;
1142 }
1143
1144 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1145                 int budget, int *recvs)
1146 {
1147         int i, ret = 0;
1148
1149         for (i = 0; i < budget; i++) {
1150                 ret = nvmet_tcp_try_recv_one(queue);
1151                 if (ret <= 0)
1152                         break;
1153                 (*recvs)++;
1154         }
1155
1156         return ret;
1157 }
1158
1159 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1160 {
1161         spin_lock(&queue->state_lock);
1162         if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1163                 queue->state = NVMET_TCP_Q_DISCONNECTING;
1164                 schedule_work(&queue->release_work);
1165         }
1166         spin_unlock(&queue->state_lock);
1167 }
1168
1169 static void nvmet_tcp_io_work(struct work_struct *w)
1170 {
1171         struct nvmet_tcp_queue *queue =
1172                 container_of(w, struct nvmet_tcp_queue, io_work);
1173         bool pending;
1174         int ret, ops = 0;
1175
1176         do {
1177                 pending = false;
1178
1179                 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1180                 if (ret > 0) {
1181                         pending = true;
1182                 } else if (ret < 0) {
1183                         if (ret == -EPIPE || ret == -ECONNRESET)
1184                                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1185                         else
1186                                 nvmet_tcp_fatal_error(queue);
1187                         return;
1188                 }
1189
1190                 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1191                 if (ret > 0) {
1192                         /* transmitted message/data */
1193                         pending = true;
1194                 } else if (ret < 0) {
1195                         if (ret == -EPIPE || ret == -ECONNRESET)
1196                                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1197                         else
1198                                 nvmet_tcp_fatal_error(queue);
1199                         return;
1200                 }
1201
1202         } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1203
1204         /*
1205          * We exahusted our budget, requeue our selves
1206          */
1207         if (pending)
1208                 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1209 }
1210
1211 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1212                 struct nvmet_tcp_cmd *c)
1213 {
1214         u8 hdgst = nvmet_tcp_hdgst_len(queue);
1215
1216         c->queue = queue;
1217         c->req.port = queue->port->nport;
1218
1219         c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1220                         sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1221         if (!c->cmd_pdu)
1222                 return -ENOMEM;
1223         c->req.cmd = &c->cmd_pdu->cmd;
1224
1225         c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1226                         sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1227         if (!c->rsp_pdu)
1228                 goto out_free_cmd;
1229         c->req.cqe = &c->rsp_pdu->cqe;
1230
1231         c->data_pdu = page_frag_alloc(&queue->pf_cache,
1232                         sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1233         if (!c->data_pdu)
1234                 goto out_free_rsp;
1235
1236         c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1237                         sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1238         if (!c->r2t_pdu)
1239                 goto out_free_data;
1240
1241         c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1242
1243         list_add_tail(&c->entry, &queue->free_list);
1244
1245         return 0;
1246 out_free_data:
1247         page_frag_free(c->data_pdu);
1248 out_free_rsp:
1249         page_frag_free(c->rsp_pdu);
1250 out_free_cmd:
1251         page_frag_free(c->cmd_pdu);
1252         return -ENOMEM;
1253 }
1254
1255 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1256 {
1257         page_frag_free(c->r2t_pdu);
1258         page_frag_free(c->data_pdu);
1259         page_frag_free(c->rsp_pdu);
1260         page_frag_free(c->cmd_pdu);
1261 }
1262
1263 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1264 {
1265         struct nvmet_tcp_cmd *cmds;
1266         int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1267
1268         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1269         if (!cmds)
1270                 goto out;
1271
1272         for (i = 0; i < nr_cmds; i++) {
1273                 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1274                 if (ret)
1275                         goto out_free;
1276         }
1277
1278         queue->cmds = cmds;
1279
1280         return 0;
1281 out_free:
1282         while (--i >= 0)
1283                 nvmet_tcp_free_cmd(cmds + i);
1284         kfree(cmds);
1285 out:
1286         return ret;
1287 }
1288
1289 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1290 {
1291         struct nvmet_tcp_cmd *cmds = queue->cmds;
1292         int i;
1293
1294         for (i = 0; i < queue->nr_cmds; i++)
1295                 nvmet_tcp_free_cmd(cmds + i);
1296
1297         nvmet_tcp_free_cmd(&queue->connect);
1298         kfree(cmds);
1299 }
1300
1301 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1302 {
1303         struct socket *sock = queue->sock;
1304
1305         write_lock_bh(&sock->sk->sk_callback_lock);
1306         sock->sk->sk_data_ready =  queue->data_ready;
1307         sock->sk->sk_state_change = queue->state_change;
1308         sock->sk->sk_write_space = queue->write_space;
1309         sock->sk->sk_user_data = NULL;
1310         write_unlock_bh(&sock->sk->sk_callback_lock);
1311 }
1312
1313 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1314 {
1315         nvmet_req_uninit(&cmd->req);
1316         nvmet_tcp_unmap_pdu_iovec(cmd);
1317         kfree(cmd->iov);
1318         sgl_free(cmd->req.sg);
1319 }
1320
1321 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1322 {
1323         struct nvmet_tcp_cmd *cmd = queue->cmds;
1324         int i;
1325
1326         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1327                 if (nvmet_tcp_need_data_in(cmd))
1328                         nvmet_tcp_finish_cmd(cmd);
1329         }
1330
1331         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1332                 /* failed in connect */
1333                 nvmet_tcp_finish_cmd(&queue->connect);
1334         }
1335 }
1336
1337 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1338 {
1339         struct nvmet_tcp_queue *queue =
1340                 container_of(w, struct nvmet_tcp_queue, release_work);
1341
1342         mutex_lock(&nvmet_tcp_queue_mutex);
1343         list_del_init(&queue->queue_list);
1344         mutex_unlock(&nvmet_tcp_queue_mutex);
1345
1346         nvmet_tcp_restore_socket_callbacks(queue);
1347         flush_work(&queue->io_work);
1348
1349         nvmet_tcp_uninit_data_in_cmds(queue);
1350         nvmet_sq_destroy(&queue->nvme_sq);
1351         cancel_work_sync(&queue->io_work);
1352         sock_release(queue->sock);
1353         nvmet_tcp_free_cmds(queue);
1354         if (queue->hdr_digest || queue->data_digest)
1355                 nvmet_tcp_free_crypto(queue);
1356         ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1357
1358         kfree(queue);
1359 }
1360
1361 static void nvmet_tcp_data_ready(struct sock *sk)
1362 {
1363         struct nvmet_tcp_queue *queue;
1364
1365         read_lock_bh(&sk->sk_callback_lock);
1366         queue = sk->sk_user_data;
1367         if (likely(queue))
1368                 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1369         read_unlock_bh(&sk->sk_callback_lock);
1370 }
1371
1372 static void nvmet_tcp_write_space(struct sock *sk)
1373 {
1374         struct nvmet_tcp_queue *queue;
1375
1376         read_lock_bh(&sk->sk_callback_lock);
1377         queue = sk->sk_user_data;
1378         if (unlikely(!queue))
1379                 goto out;
1380
1381         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1382                 queue->write_space(sk);
1383                 goto out;
1384         }
1385
1386         if (sk_stream_is_writeable(sk)) {
1387                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1388                 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1389         }
1390 out:
1391         read_unlock_bh(&sk->sk_callback_lock);
1392 }
1393
1394 static void nvmet_tcp_state_change(struct sock *sk)
1395 {
1396         struct nvmet_tcp_queue *queue;
1397
1398         write_lock_bh(&sk->sk_callback_lock);
1399         queue = sk->sk_user_data;
1400         if (!queue)
1401                 goto done;
1402
1403         switch (sk->sk_state) {
1404         case TCP_FIN_WAIT1:
1405         case TCP_CLOSE_WAIT:
1406         case TCP_CLOSE:
1407                 /* FALLTHRU */
1408                 sk->sk_user_data = NULL;
1409                 nvmet_tcp_schedule_release_queue(queue);
1410                 break;
1411         default:
1412                 pr_warn("queue %d unhandled state %d\n",
1413                         queue->idx, sk->sk_state);
1414         }
1415 done:
1416         write_unlock_bh(&sk->sk_callback_lock);
1417 }
1418
1419 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1420 {
1421         struct socket *sock = queue->sock;
1422         struct inet_sock *inet = inet_sk(sock->sk);
1423         struct linger sol = { .l_onoff = 1, .l_linger = 0 };
1424         int ret;
1425
1426         ret = kernel_getsockname(sock,
1427                 (struct sockaddr *)&queue->sockaddr);
1428         if (ret < 0)
1429                 return ret;
1430
1431         ret = kernel_getpeername(sock,
1432                 (struct sockaddr *)&queue->sockaddr_peer);
1433         if (ret < 0)
1434                 return ret;
1435
1436         /*
1437          * Cleanup whatever is sitting in the TCP transmit queue on socket
1438          * close. This is done to prevent stale data from being sent should
1439          * the network connection be restored before TCP times out.
1440          */
1441         ret = kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
1442                         (char *)&sol, sizeof(sol));
1443         if (ret)
1444                 return ret;
1445
1446         if (so_priority > 0) {
1447                 ret = kernel_setsockopt(sock, SOL_SOCKET, SO_PRIORITY,
1448                                 (char *)&so_priority, sizeof(so_priority));
1449                 if (ret)
1450                         return ret;
1451         }
1452
1453         /* Set socket type of service */
1454         if (inet->rcv_tos > 0) {
1455                 int tos = inet->rcv_tos;
1456
1457                 ret = kernel_setsockopt(sock, SOL_IP, IP_TOS,
1458                                 (char *)&tos, sizeof(tos));
1459                 if (ret)
1460                         return ret;
1461         }
1462
1463         write_lock_bh(&sock->sk->sk_callback_lock);
1464         sock->sk->sk_user_data = queue;
1465         queue->data_ready = sock->sk->sk_data_ready;
1466         sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1467         queue->state_change = sock->sk->sk_state_change;
1468         sock->sk->sk_state_change = nvmet_tcp_state_change;
1469         queue->write_space = sock->sk->sk_write_space;
1470         sock->sk->sk_write_space = nvmet_tcp_write_space;
1471         write_unlock_bh(&sock->sk->sk_callback_lock);
1472
1473         return 0;
1474 }
1475
1476 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1477                 struct socket *newsock)
1478 {
1479         struct nvmet_tcp_queue *queue;
1480         int ret;
1481
1482         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1483         if (!queue)
1484                 return -ENOMEM;
1485
1486         INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1487         INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1488         queue->sock = newsock;
1489         queue->port = port;
1490         queue->nr_cmds = 0;
1491         spin_lock_init(&queue->state_lock);
1492         queue->state = NVMET_TCP_Q_CONNECTING;
1493         INIT_LIST_HEAD(&queue->free_list);
1494         init_llist_head(&queue->resp_list);
1495         INIT_LIST_HEAD(&queue->resp_send_list);
1496
1497         queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1498         if (queue->idx < 0) {
1499                 ret = queue->idx;
1500                 goto out_free_queue;
1501         }
1502
1503         ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1504         if (ret)
1505                 goto out_ida_remove;
1506
1507         ret = nvmet_sq_init(&queue->nvme_sq);
1508         if (ret)
1509                 goto out_free_connect;
1510
1511         port->last_cpu = cpumask_next_wrap(port->last_cpu,
1512                                 cpu_online_mask, -1, false);
1513         queue->cpu = port->last_cpu;
1514         nvmet_prepare_receive_pdu(queue);
1515
1516         mutex_lock(&nvmet_tcp_queue_mutex);
1517         list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1518         mutex_unlock(&nvmet_tcp_queue_mutex);
1519
1520         ret = nvmet_tcp_set_queue_sock(queue);
1521         if (ret)
1522                 goto out_destroy_sq;
1523
1524         queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1525
1526         return 0;
1527 out_destroy_sq:
1528         mutex_lock(&nvmet_tcp_queue_mutex);
1529         list_del_init(&queue->queue_list);
1530         mutex_unlock(&nvmet_tcp_queue_mutex);
1531         nvmet_sq_destroy(&queue->nvme_sq);
1532 out_free_connect:
1533         nvmet_tcp_free_cmd(&queue->connect);
1534 out_ida_remove:
1535         ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1536 out_free_queue:
1537         kfree(queue);
1538         return ret;
1539 }
1540
1541 static void nvmet_tcp_accept_work(struct work_struct *w)
1542 {
1543         struct nvmet_tcp_port *port =
1544                 container_of(w, struct nvmet_tcp_port, accept_work);
1545         struct socket *newsock;
1546         int ret;
1547
1548         while (true) {
1549                 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1550                 if (ret < 0) {
1551                         if (ret != -EAGAIN)
1552                                 pr_warn("failed to accept err=%d\n", ret);
1553                         return;
1554                 }
1555                 ret = nvmet_tcp_alloc_queue(port, newsock);
1556                 if (ret) {
1557                         pr_err("failed to allocate queue\n");
1558                         sock_release(newsock);
1559                 }
1560         }
1561 }
1562
1563 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1564 {
1565         struct nvmet_tcp_port *port;
1566
1567         read_lock_bh(&sk->sk_callback_lock);
1568         port = sk->sk_user_data;
1569         if (!port)
1570                 goto out;
1571
1572         if (sk->sk_state == TCP_LISTEN)
1573                 schedule_work(&port->accept_work);
1574 out:
1575         read_unlock_bh(&sk->sk_callback_lock);
1576 }
1577
1578 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1579 {
1580         struct nvmet_tcp_port *port;
1581         __kernel_sa_family_t af;
1582         int opt, ret;
1583
1584         port = kzalloc(sizeof(*port), GFP_KERNEL);
1585         if (!port)
1586                 return -ENOMEM;
1587
1588         switch (nport->disc_addr.adrfam) {
1589         case NVMF_ADDR_FAMILY_IP4:
1590                 af = AF_INET;
1591                 break;
1592         case NVMF_ADDR_FAMILY_IP6:
1593                 af = AF_INET6;
1594                 break;
1595         default:
1596                 pr_err("address family %d not supported\n",
1597                                 nport->disc_addr.adrfam);
1598                 ret = -EINVAL;
1599                 goto err_port;
1600         }
1601
1602         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1603                         nport->disc_addr.trsvcid, &port->addr);
1604         if (ret) {
1605                 pr_err("malformed ip/port passed: %s:%s\n",
1606                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1607                 goto err_port;
1608         }
1609
1610         port->nport = nport;
1611         port->last_cpu = -1;
1612         INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1613         if (port->nport->inline_data_size < 0)
1614                 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1615
1616         ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1617                                 IPPROTO_TCP, &port->sock);
1618         if (ret) {
1619                 pr_err("failed to create a socket\n");
1620                 goto err_port;
1621         }
1622
1623         port->sock->sk->sk_user_data = port;
1624         port->data_ready = port->sock->sk->sk_data_ready;
1625         port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1626
1627         opt = 1;
1628         ret = kernel_setsockopt(port->sock, IPPROTO_TCP,
1629                         TCP_NODELAY, (char *)&opt, sizeof(opt));
1630         if (ret) {
1631                 pr_err("failed to set TCP_NODELAY sock opt %d\n", ret);
1632                 goto err_sock;
1633         }
1634
1635         ret = kernel_setsockopt(port->sock, SOL_SOCKET, SO_REUSEADDR,
1636                         (char *)&opt, sizeof(opt));
1637         if (ret) {
1638                 pr_err("failed to set SO_REUSEADDR sock opt %d\n", ret);
1639                 goto err_sock;
1640         }
1641
1642         if (so_priority > 0) {
1643                 ret = kernel_setsockopt(port->sock, SOL_SOCKET, SO_PRIORITY,
1644                                 (char *)&so_priority, sizeof(so_priority));
1645                 if (ret) {
1646                         pr_err("failed to set SO_PRIORITY sock opt %d\n", ret);
1647                         goto err_sock;
1648                 }
1649         }
1650
1651         ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1652                         sizeof(port->addr));
1653         if (ret) {
1654                 pr_err("failed to bind port socket %d\n", ret);
1655                 goto err_sock;
1656         }
1657
1658         ret = kernel_listen(port->sock, 128);
1659         if (ret) {
1660                 pr_err("failed to listen %d on port sock\n", ret);
1661                 goto err_sock;
1662         }
1663
1664         nport->priv = port;
1665         pr_info("enabling port %d (%pISpc)\n",
1666                 le16_to_cpu(nport->disc_addr.portid), &port->addr);
1667
1668         return 0;
1669
1670 err_sock:
1671         sock_release(port->sock);
1672 err_port:
1673         kfree(port);
1674         return ret;
1675 }
1676
1677 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1678 {
1679         struct nvmet_tcp_port *port = nport->priv;
1680
1681         write_lock_bh(&port->sock->sk->sk_callback_lock);
1682         port->sock->sk->sk_data_ready = port->data_ready;
1683         port->sock->sk->sk_user_data = NULL;
1684         write_unlock_bh(&port->sock->sk->sk_callback_lock);
1685         cancel_work_sync(&port->accept_work);
1686
1687         sock_release(port->sock);
1688         kfree(port);
1689 }
1690
1691 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1692 {
1693         struct nvmet_tcp_queue *queue;
1694
1695         mutex_lock(&nvmet_tcp_queue_mutex);
1696         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1697                 if (queue->nvme_sq.ctrl == ctrl)
1698                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1699         mutex_unlock(&nvmet_tcp_queue_mutex);
1700 }
1701
1702 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1703 {
1704         struct nvmet_tcp_queue *queue =
1705                 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1706
1707         if (sq->qid == 0) {
1708                 /* Let inflight controller teardown complete */
1709                 flush_scheduled_work();
1710         }
1711
1712         queue->nr_cmds = sq->size * 2;
1713         if (nvmet_tcp_alloc_cmds(queue))
1714                 return NVME_SC_INTERNAL;
1715         return 0;
1716 }
1717
1718 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1719                 struct nvmet_port *nport, char *traddr)
1720 {
1721         struct nvmet_tcp_port *port = nport->priv;
1722
1723         if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1724                 struct nvmet_tcp_cmd *cmd =
1725                         container_of(req, struct nvmet_tcp_cmd, req);
1726                 struct nvmet_tcp_queue *queue = cmd->queue;
1727
1728                 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1729         } else {
1730                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1731         }
1732 }
1733
1734 static struct nvmet_fabrics_ops nvmet_tcp_ops = {
1735         .owner                  = THIS_MODULE,
1736         .type                   = NVMF_TRTYPE_TCP,
1737         .msdbd                  = 1,
1738         .has_keyed_sgls         = 0,
1739         .add_port               = nvmet_tcp_add_port,
1740         .remove_port            = nvmet_tcp_remove_port,
1741         .queue_response         = nvmet_tcp_queue_response,
1742         .delete_ctrl            = nvmet_tcp_delete_ctrl,
1743         .install_queue          = nvmet_tcp_install_queue,
1744         .disc_traddr            = nvmet_tcp_disc_port_addr,
1745 };
1746
1747 static int __init nvmet_tcp_init(void)
1748 {
1749         int ret;
1750
1751         nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0);
1752         if (!nvmet_tcp_wq)
1753                 return -ENOMEM;
1754
1755         ret = nvmet_register_transport(&nvmet_tcp_ops);
1756         if (ret)
1757                 goto err;
1758
1759         return 0;
1760 err:
1761         destroy_workqueue(nvmet_tcp_wq);
1762         return ret;
1763 }
1764
1765 static void __exit nvmet_tcp_exit(void)
1766 {
1767         struct nvmet_tcp_queue *queue;
1768
1769         nvmet_unregister_transport(&nvmet_tcp_ops);
1770
1771         flush_scheduled_work();
1772         mutex_lock(&nvmet_tcp_queue_mutex);
1773         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1774                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1775         mutex_unlock(&nvmet_tcp_queue_mutex);
1776         flush_scheduled_work();
1777
1778         destroy_workqueue(nvmet_tcp_wq);
1779 }
1780
1781 module_init(nvmet_tcp_init);
1782 module_exit(nvmet_tcp_exit);
1783
1784 MODULE_LICENSE("GPL v2");
1785 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */