soundwire: sysfs: add slave status and device number before probe
[linux-2.6-microblaze.git] / drivers / nvme / target / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17
18 #include "nvmet.h"
19
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE  (4 * PAGE_SIZE)
21
22 /* Define the socket priority to use for connections were it is desirable
23  * that the NIC consider performing optimized packet processing or filtering.
24  * A non-zero value being sufficient to indicate general consideration of any
25  * possible optimization.  Making it a module param allows for alternative
26  * values that may be unique for some NIC implementations.
27  */
28 static int so_priority;
29 module_param(so_priority, int, 0644);
30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
31
32 #define NVMET_TCP_RECV_BUDGET           8
33 #define NVMET_TCP_SEND_BUDGET           8
34 #define NVMET_TCP_IO_WORK_BUDGET        64
35
36 enum nvmet_tcp_send_state {
37         NVMET_TCP_SEND_DATA_PDU,
38         NVMET_TCP_SEND_DATA,
39         NVMET_TCP_SEND_R2T,
40         NVMET_TCP_SEND_DDGST,
41         NVMET_TCP_SEND_RESPONSE
42 };
43
44 enum nvmet_tcp_recv_state {
45         NVMET_TCP_RECV_PDU,
46         NVMET_TCP_RECV_DATA,
47         NVMET_TCP_RECV_DDGST,
48         NVMET_TCP_RECV_ERR,
49 };
50
51 enum {
52         NVMET_TCP_F_INIT_FAILED = (1 << 0),
53 };
54
55 struct nvmet_tcp_cmd {
56         struct nvmet_tcp_queue          *queue;
57         struct nvmet_req                req;
58
59         struct nvme_tcp_cmd_pdu         *cmd_pdu;
60         struct nvme_tcp_rsp_pdu         *rsp_pdu;
61         struct nvme_tcp_data_pdu        *data_pdu;
62         struct nvme_tcp_r2t_pdu         *r2t_pdu;
63
64         u32                             rbytes_done;
65         u32                             wbytes_done;
66
67         u32                             pdu_len;
68         u32                             pdu_recv;
69         int                             sg_idx;
70         int                             nr_mapped;
71         struct msghdr                   recv_msg;
72         struct kvec                     *iov;
73         u32                             flags;
74
75         struct list_head                entry;
76         struct llist_node               lentry;
77
78         /* send state */
79         u32                             offset;
80         struct scatterlist              *cur_sg;
81         enum nvmet_tcp_send_state       state;
82
83         __le32                          exp_ddgst;
84         __le32                          recv_ddgst;
85 };
86
87 enum nvmet_tcp_queue_state {
88         NVMET_TCP_Q_CONNECTING,
89         NVMET_TCP_Q_LIVE,
90         NVMET_TCP_Q_DISCONNECTING,
91 };
92
93 struct nvmet_tcp_queue {
94         struct socket           *sock;
95         struct nvmet_tcp_port   *port;
96         struct work_struct      io_work;
97         int                     cpu;
98         struct nvmet_cq         nvme_cq;
99         struct nvmet_sq         nvme_sq;
100
101         /* send state */
102         struct nvmet_tcp_cmd    *cmds;
103         unsigned int            nr_cmds;
104         struct list_head        free_list;
105         struct llist_head       resp_list;
106         struct list_head        resp_send_list;
107         int                     send_list_len;
108         struct nvmet_tcp_cmd    *snd_cmd;
109
110         /* recv state */
111         int                     offset;
112         int                     left;
113         enum nvmet_tcp_recv_state rcv_state;
114         struct nvmet_tcp_cmd    *cmd;
115         union nvme_tcp_pdu      pdu;
116
117         /* digest state */
118         bool                    hdr_digest;
119         bool                    data_digest;
120         struct ahash_request    *snd_hash;
121         struct ahash_request    *rcv_hash;
122
123         spinlock_t              state_lock;
124         enum nvmet_tcp_queue_state state;
125
126         struct sockaddr_storage sockaddr;
127         struct sockaddr_storage sockaddr_peer;
128         struct work_struct      release_work;
129
130         int                     idx;
131         struct list_head        queue_list;
132
133         struct nvmet_tcp_cmd    connect;
134
135         struct page_frag_cache  pf_cache;
136
137         void (*data_ready)(struct sock *);
138         void (*state_change)(struct sock *);
139         void (*write_space)(struct sock *);
140 };
141
142 struct nvmet_tcp_port {
143         struct socket           *sock;
144         struct work_struct      accept_work;
145         struct nvmet_port       *nport;
146         struct sockaddr_storage addr;
147         int                     last_cpu;
148         void (*data_ready)(struct sock *);
149 };
150
151 static DEFINE_IDA(nvmet_tcp_queue_ida);
152 static LIST_HEAD(nvmet_tcp_queue_list);
153 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
154
155 static struct workqueue_struct *nvmet_tcp_wq;
156 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
157 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
158 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
159
160 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
161                 struct nvmet_tcp_cmd *cmd)
162 {
163         return cmd - queue->cmds;
164 }
165
166 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
167 {
168         return nvme_is_write(cmd->req.cmd) &&
169                 cmd->rbytes_done < cmd->req.transfer_len;
170 }
171
172 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
173 {
174         return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
175 }
176
177 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
178 {
179         return !nvme_is_write(cmd->req.cmd) &&
180                 cmd->req.transfer_len > 0 &&
181                 !cmd->req.cqe->status;
182 }
183
184 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
185 {
186         return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
187                 !cmd->rbytes_done;
188 }
189
190 static inline struct nvmet_tcp_cmd *
191 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
192 {
193         struct nvmet_tcp_cmd *cmd;
194
195         cmd = list_first_entry_or_null(&queue->free_list,
196                                 struct nvmet_tcp_cmd, entry);
197         if (!cmd)
198                 return NULL;
199         list_del_init(&cmd->entry);
200
201         cmd->rbytes_done = cmd->wbytes_done = 0;
202         cmd->pdu_len = 0;
203         cmd->pdu_recv = 0;
204         cmd->iov = NULL;
205         cmd->flags = 0;
206         return cmd;
207 }
208
209 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
210 {
211         if (unlikely(cmd == &cmd->queue->connect))
212                 return;
213
214         list_add_tail(&cmd->entry, &cmd->queue->free_list);
215 }
216
217 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
218 {
219         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
220 }
221
222 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
223 {
224         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
225 }
226
227 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
228                 void *pdu, size_t len)
229 {
230         struct scatterlist sg;
231
232         sg_init_one(&sg, pdu, len);
233         ahash_request_set_crypt(hash, &sg, pdu + len, len);
234         crypto_ahash_digest(hash);
235 }
236
237 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
238         void *pdu, size_t len)
239 {
240         struct nvme_tcp_hdr *hdr = pdu;
241         __le32 recv_digest;
242         __le32 exp_digest;
243
244         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
245                 pr_err("queue %d: header digest enabled but no header digest\n",
246                         queue->idx);
247                 return -EPROTO;
248         }
249
250         recv_digest = *(__le32 *)(pdu + hdr->hlen);
251         nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
252         exp_digest = *(__le32 *)(pdu + hdr->hlen);
253         if (recv_digest != exp_digest) {
254                 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
255                         queue->idx, le32_to_cpu(recv_digest),
256                         le32_to_cpu(exp_digest));
257                 return -EPROTO;
258         }
259
260         return 0;
261 }
262
263 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
264 {
265         struct nvme_tcp_hdr *hdr = pdu;
266         u8 digest_len = nvmet_tcp_hdgst_len(queue);
267         u32 len;
268
269         len = le32_to_cpu(hdr->plen) - hdr->hlen -
270                 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
271
272         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
273                 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
274                 return -EPROTO;
275         }
276
277         return 0;
278 }
279
280 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
281 {
282         struct scatterlist *sg;
283         int i;
284
285         sg = &cmd->req.sg[cmd->sg_idx];
286
287         for (i = 0; i < cmd->nr_mapped; i++)
288                 kunmap(sg_page(&sg[i]));
289 }
290
291 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
292 {
293         struct kvec *iov = cmd->iov;
294         struct scatterlist *sg;
295         u32 length, offset, sg_offset;
296
297         length = cmd->pdu_len;
298         cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
299         offset = cmd->rbytes_done;
300         cmd->sg_idx = DIV_ROUND_UP(offset, PAGE_SIZE);
301         sg_offset = offset % PAGE_SIZE;
302         sg = &cmd->req.sg[cmd->sg_idx];
303
304         while (length) {
305                 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
306
307                 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
308                 iov->iov_len = iov_len;
309
310                 length -= iov_len;
311                 sg = sg_next(sg);
312                 iov++;
313         }
314
315         iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
316                 cmd->nr_mapped, cmd->pdu_len);
317 }
318
319 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
320 {
321         queue->rcv_state = NVMET_TCP_RECV_ERR;
322         if (queue->nvme_sq.ctrl)
323                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
324         else
325                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
326 }
327
328 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
329 {
330         if (status == -EPIPE || status == -ECONNRESET)
331                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
332         else
333                 nvmet_tcp_fatal_error(queue);
334 }
335
336 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
337 {
338         struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
339         u32 len = le32_to_cpu(sgl->length);
340
341         if (!len)
342                 return 0;
343
344         if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
345                           NVME_SGL_FMT_OFFSET)) {
346                 if (!nvme_is_write(cmd->req.cmd))
347                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
348
349                 if (len > cmd->req.port->inline_data_size)
350                         return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
351                 cmd->pdu_len = len;
352         }
353         cmd->req.transfer_len += len;
354
355         cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
356         if (!cmd->req.sg)
357                 return NVME_SC_INTERNAL;
358         cmd->cur_sg = cmd->req.sg;
359
360         if (nvmet_tcp_has_data_in(cmd)) {
361                 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
362                                 sizeof(*cmd->iov), GFP_KERNEL);
363                 if (!cmd->iov)
364                         goto err;
365         }
366
367         return 0;
368 err:
369         sgl_free(cmd->req.sg);
370         return NVME_SC_INTERNAL;
371 }
372
373 static void nvmet_tcp_ddgst(struct ahash_request *hash,
374                 struct nvmet_tcp_cmd *cmd)
375 {
376         ahash_request_set_crypt(hash, cmd->req.sg,
377                 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
378         crypto_ahash_digest(hash);
379 }
380
381 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
382 {
383         struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
384         struct nvmet_tcp_queue *queue = cmd->queue;
385         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
386         u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
387
388         cmd->offset = 0;
389         cmd->state = NVMET_TCP_SEND_DATA_PDU;
390
391         pdu->hdr.type = nvme_tcp_c2h_data;
392         pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
393                                                 NVME_TCP_F_DATA_SUCCESS : 0);
394         pdu->hdr.hlen = sizeof(*pdu);
395         pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
396         pdu->hdr.plen =
397                 cpu_to_le32(pdu->hdr.hlen + hdgst +
398                                 cmd->req.transfer_len + ddgst);
399         pdu->command_id = cmd->req.cqe->command_id;
400         pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
401         pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
402
403         if (queue->data_digest) {
404                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
405                 nvmet_tcp_ddgst(queue->snd_hash, cmd);
406         }
407
408         if (cmd->queue->hdr_digest) {
409                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
410                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
411         }
412 }
413
414 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
415 {
416         struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
417         struct nvmet_tcp_queue *queue = cmd->queue;
418         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
419
420         cmd->offset = 0;
421         cmd->state = NVMET_TCP_SEND_R2T;
422
423         pdu->hdr.type = nvme_tcp_r2t;
424         pdu->hdr.flags = 0;
425         pdu->hdr.hlen = sizeof(*pdu);
426         pdu->hdr.pdo = 0;
427         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
428
429         pdu->command_id = cmd->req.cmd->common.command_id;
430         pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
431         pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
432         pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
433         if (cmd->queue->hdr_digest) {
434                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
435                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
436         }
437 }
438
439 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
440 {
441         struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
442         struct nvmet_tcp_queue *queue = cmd->queue;
443         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
444
445         cmd->offset = 0;
446         cmd->state = NVMET_TCP_SEND_RESPONSE;
447
448         pdu->hdr.type = nvme_tcp_rsp;
449         pdu->hdr.flags = 0;
450         pdu->hdr.hlen = sizeof(*pdu);
451         pdu->hdr.pdo = 0;
452         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
453         if (cmd->queue->hdr_digest) {
454                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
455                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
456         }
457 }
458
459 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
460 {
461         struct llist_node *node;
462         struct nvmet_tcp_cmd *cmd;
463
464         for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
465                 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
466                 list_add(&cmd->entry, &queue->resp_send_list);
467                 queue->send_list_len++;
468         }
469 }
470
471 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
472 {
473         queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
474                                 struct nvmet_tcp_cmd, entry);
475         if (!queue->snd_cmd) {
476                 nvmet_tcp_process_resp_list(queue);
477                 queue->snd_cmd =
478                         list_first_entry_or_null(&queue->resp_send_list,
479                                         struct nvmet_tcp_cmd, entry);
480                 if (unlikely(!queue->snd_cmd))
481                         return NULL;
482         }
483
484         list_del_init(&queue->snd_cmd->entry);
485         queue->send_list_len--;
486
487         if (nvmet_tcp_need_data_out(queue->snd_cmd))
488                 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
489         else if (nvmet_tcp_need_data_in(queue->snd_cmd))
490                 nvmet_setup_r2t_pdu(queue->snd_cmd);
491         else
492                 nvmet_setup_response_pdu(queue->snd_cmd);
493
494         return queue->snd_cmd;
495 }
496
497 static void nvmet_tcp_queue_response(struct nvmet_req *req)
498 {
499         struct nvmet_tcp_cmd *cmd =
500                 container_of(req, struct nvmet_tcp_cmd, req);
501         struct nvmet_tcp_queue  *queue = cmd->queue;
502
503         llist_add(&cmd->lentry, &queue->resp_list);
504         queue_work_on(cmd->queue->cpu, nvmet_tcp_wq, &cmd->queue->io_work);
505 }
506
507 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
508 {
509         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
510         int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
511         int ret;
512
513         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
514                         offset_in_page(cmd->data_pdu) + cmd->offset,
515                         left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
516         if (ret <= 0)
517                 return ret;
518
519         cmd->offset += ret;
520         left -= ret;
521
522         if (left)
523                 return -EAGAIN;
524
525         cmd->state = NVMET_TCP_SEND_DATA;
526         cmd->offset  = 0;
527         return 1;
528 }
529
530 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
531 {
532         struct nvmet_tcp_queue *queue = cmd->queue;
533         int ret;
534
535         while (cmd->cur_sg) {
536                 struct page *page = sg_page(cmd->cur_sg);
537                 u32 left = cmd->cur_sg->length - cmd->offset;
538                 int flags = MSG_DONTWAIT;
539
540                 if ((!last_in_batch && cmd->queue->send_list_len) ||
541                     cmd->wbytes_done + left < cmd->req.transfer_len ||
542                     queue->data_digest || !queue->nvme_sq.sqhd_disabled)
543                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
544
545                 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
546                                         left, flags);
547                 if (ret <= 0)
548                         return ret;
549
550                 cmd->offset += ret;
551                 cmd->wbytes_done += ret;
552
553                 /* Done with sg?*/
554                 if (cmd->offset == cmd->cur_sg->length) {
555                         cmd->cur_sg = sg_next(cmd->cur_sg);
556                         cmd->offset = 0;
557                 }
558         }
559
560         if (queue->data_digest) {
561                 cmd->state = NVMET_TCP_SEND_DDGST;
562                 cmd->offset = 0;
563         } else {
564                 if (queue->nvme_sq.sqhd_disabled) {
565                         cmd->queue->snd_cmd = NULL;
566                         nvmet_tcp_put_cmd(cmd);
567                 } else {
568                         nvmet_setup_response_pdu(cmd);
569                 }
570         }
571
572         if (queue->nvme_sq.sqhd_disabled) {
573                 kfree(cmd->iov);
574                 sgl_free(cmd->req.sg);
575         }
576
577         return 1;
578
579 }
580
581 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
582                 bool last_in_batch)
583 {
584         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
585         int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
586         int flags = MSG_DONTWAIT;
587         int ret;
588
589         if (!last_in_batch && cmd->queue->send_list_len)
590                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
591         else
592                 flags |= MSG_EOR;
593
594         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
595                 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
596         if (ret <= 0)
597                 return ret;
598         cmd->offset += ret;
599         left -= ret;
600
601         if (left)
602                 return -EAGAIN;
603
604         kfree(cmd->iov);
605         sgl_free(cmd->req.sg);
606         cmd->queue->snd_cmd = NULL;
607         nvmet_tcp_put_cmd(cmd);
608         return 1;
609 }
610
611 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
612 {
613         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
614         int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
615         int flags = MSG_DONTWAIT;
616         int ret;
617
618         if (!last_in_batch && cmd->queue->send_list_len)
619                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
620         else
621                 flags |= MSG_EOR;
622
623         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
624                 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
625         if (ret <= 0)
626                 return ret;
627         cmd->offset += ret;
628         left -= ret;
629
630         if (left)
631                 return -EAGAIN;
632
633         cmd->queue->snd_cmd = NULL;
634         return 1;
635 }
636
637 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
638 {
639         struct nvmet_tcp_queue *queue = cmd->queue;
640         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
641         struct kvec iov = {
642                 .iov_base = &cmd->exp_ddgst + cmd->offset,
643                 .iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset
644         };
645         int ret;
646
647         if (!last_in_batch && cmd->queue->send_list_len)
648                 msg.msg_flags |= MSG_MORE;
649         else
650                 msg.msg_flags |= MSG_EOR;
651
652         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
653         if (unlikely(ret <= 0))
654                 return ret;
655
656         cmd->offset += ret;
657
658         if (queue->nvme_sq.sqhd_disabled) {
659                 cmd->queue->snd_cmd = NULL;
660                 nvmet_tcp_put_cmd(cmd);
661         } else {
662                 nvmet_setup_response_pdu(cmd);
663         }
664         return 1;
665 }
666
667 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
668                 bool last_in_batch)
669 {
670         struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
671         int ret = 0;
672
673         if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
674                 cmd = nvmet_tcp_fetch_cmd(queue);
675                 if (unlikely(!cmd))
676                         return 0;
677         }
678
679         if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
680                 ret = nvmet_try_send_data_pdu(cmd);
681                 if (ret <= 0)
682                         goto done_send;
683         }
684
685         if (cmd->state == NVMET_TCP_SEND_DATA) {
686                 ret = nvmet_try_send_data(cmd, last_in_batch);
687                 if (ret <= 0)
688                         goto done_send;
689         }
690
691         if (cmd->state == NVMET_TCP_SEND_DDGST) {
692                 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
693                 if (ret <= 0)
694                         goto done_send;
695         }
696
697         if (cmd->state == NVMET_TCP_SEND_R2T) {
698                 ret = nvmet_try_send_r2t(cmd, last_in_batch);
699                 if (ret <= 0)
700                         goto done_send;
701         }
702
703         if (cmd->state == NVMET_TCP_SEND_RESPONSE)
704                 ret = nvmet_try_send_response(cmd, last_in_batch);
705
706 done_send:
707         if (ret < 0) {
708                 if (ret == -EAGAIN)
709                         return 0;
710                 return ret;
711         }
712
713         return 1;
714 }
715
716 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
717                 int budget, int *sends)
718 {
719         int i, ret = 0;
720
721         for (i = 0; i < budget; i++) {
722                 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
723                 if (unlikely(ret < 0)) {
724                         nvmet_tcp_socket_error(queue, ret);
725                         goto done;
726                 } else if (ret == 0) {
727                         break;
728                 }
729                 (*sends)++;
730         }
731 done:
732         return ret;
733 }
734
735 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
736 {
737         queue->offset = 0;
738         queue->left = sizeof(struct nvme_tcp_hdr);
739         queue->cmd = NULL;
740         queue->rcv_state = NVMET_TCP_RECV_PDU;
741 }
742
743 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
744 {
745         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
746
747         ahash_request_free(queue->rcv_hash);
748         ahash_request_free(queue->snd_hash);
749         crypto_free_ahash(tfm);
750 }
751
752 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
753 {
754         struct crypto_ahash *tfm;
755
756         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
757         if (IS_ERR(tfm))
758                 return PTR_ERR(tfm);
759
760         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
761         if (!queue->snd_hash)
762                 goto free_tfm;
763         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
764
765         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
766         if (!queue->rcv_hash)
767                 goto free_snd_hash;
768         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
769
770         return 0;
771 free_snd_hash:
772         ahash_request_free(queue->snd_hash);
773 free_tfm:
774         crypto_free_ahash(tfm);
775         return -ENOMEM;
776 }
777
778
779 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
780 {
781         struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
782         struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
783         struct msghdr msg = {};
784         struct kvec iov;
785         int ret;
786
787         if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
788                 pr_err("bad nvme-tcp pdu length (%d)\n",
789                         le32_to_cpu(icreq->hdr.plen));
790                 nvmet_tcp_fatal_error(queue);
791         }
792
793         if (icreq->pfv != NVME_TCP_PFV_1_0) {
794                 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
795                 return -EPROTO;
796         }
797
798         if (icreq->hpda != 0) {
799                 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
800                         icreq->hpda);
801                 return -EPROTO;
802         }
803
804         queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
805         queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
806         if (queue->hdr_digest || queue->data_digest) {
807                 ret = nvmet_tcp_alloc_crypto(queue);
808                 if (ret)
809                         return ret;
810         }
811
812         memset(icresp, 0, sizeof(*icresp));
813         icresp->hdr.type = nvme_tcp_icresp;
814         icresp->hdr.hlen = sizeof(*icresp);
815         icresp->hdr.pdo = 0;
816         icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
817         icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
818         icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
819         icresp->cpda = 0;
820         if (queue->hdr_digest)
821                 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
822         if (queue->data_digest)
823                 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
824
825         iov.iov_base = icresp;
826         iov.iov_len = sizeof(*icresp);
827         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
828         if (ret < 0)
829                 goto free_crypto;
830
831         queue->state = NVMET_TCP_Q_LIVE;
832         nvmet_prepare_receive_pdu(queue);
833         return 0;
834 free_crypto:
835         if (queue->hdr_digest || queue->data_digest)
836                 nvmet_tcp_free_crypto(queue);
837         return ret;
838 }
839
840 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
841                 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
842 {
843         size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
844         int ret;
845
846         if (!nvme_is_write(cmd->req.cmd) ||
847             data_len > cmd->req.port->inline_data_size) {
848                 nvmet_prepare_receive_pdu(queue);
849                 return;
850         }
851
852         ret = nvmet_tcp_map_data(cmd);
853         if (unlikely(ret)) {
854                 pr_err("queue %d: failed to map data\n", queue->idx);
855                 nvmet_tcp_fatal_error(queue);
856                 return;
857         }
858
859         queue->rcv_state = NVMET_TCP_RECV_DATA;
860         nvmet_tcp_map_pdu_iovec(cmd);
861         cmd->flags |= NVMET_TCP_F_INIT_FAILED;
862 }
863
864 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
865 {
866         struct nvme_tcp_data_pdu *data = &queue->pdu.data;
867         struct nvmet_tcp_cmd *cmd;
868
869         cmd = &queue->cmds[data->ttag];
870
871         if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
872                 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
873                         data->ttag, le32_to_cpu(data->data_offset),
874                         cmd->rbytes_done);
875                 /* FIXME: use path and transport errors */
876                 nvmet_req_complete(&cmd->req,
877                         NVME_SC_INVALID_FIELD | NVME_SC_DNR);
878                 return -EPROTO;
879         }
880
881         cmd->pdu_len = le32_to_cpu(data->data_length);
882         cmd->pdu_recv = 0;
883         nvmet_tcp_map_pdu_iovec(cmd);
884         queue->cmd = cmd;
885         queue->rcv_state = NVMET_TCP_RECV_DATA;
886
887         return 0;
888 }
889
890 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
891 {
892         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
893         struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
894         struct nvmet_req *req;
895         int ret;
896
897         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
898                 if (hdr->type != nvme_tcp_icreq) {
899                         pr_err("unexpected pdu type (%d) before icreq\n",
900                                 hdr->type);
901                         nvmet_tcp_fatal_error(queue);
902                         return -EPROTO;
903                 }
904                 return nvmet_tcp_handle_icreq(queue);
905         }
906
907         if (hdr->type == nvme_tcp_h2c_data) {
908                 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
909                 if (unlikely(ret))
910                         return ret;
911                 return 0;
912         }
913
914         queue->cmd = nvmet_tcp_get_cmd(queue);
915         if (unlikely(!queue->cmd)) {
916                 /* This should never happen */
917                 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
918                         queue->idx, queue->nr_cmds, queue->send_list_len,
919                         nvme_cmd->common.opcode);
920                 nvmet_tcp_fatal_error(queue);
921                 return -ENOMEM;
922         }
923
924         req = &queue->cmd->req;
925         memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
926
927         if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
928                         &queue->nvme_sq, &nvmet_tcp_ops))) {
929                 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
930                         req->cmd, req->cmd->common.command_id,
931                         req->cmd->common.opcode,
932                         le32_to_cpu(req->cmd->common.dptr.sgl.length));
933
934                 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
935                 return -EAGAIN;
936         }
937
938         ret = nvmet_tcp_map_data(queue->cmd);
939         if (unlikely(ret)) {
940                 pr_err("queue %d: failed to map data\n", queue->idx);
941                 if (nvmet_tcp_has_inline_data(queue->cmd))
942                         nvmet_tcp_fatal_error(queue);
943                 else
944                         nvmet_req_complete(req, ret);
945                 ret = -EAGAIN;
946                 goto out;
947         }
948
949         if (nvmet_tcp_need_data_in(queue->cmd)) {
950                 if (nvmet_tcp_has_inline_data(queue->cmd)) {
951                         queue->rcv_state = NVMET_TCP_RECV_DATA;
952                         nvmet_tcp_map_pdu_iovec(queue->cmd);
953                         return 0;
954                 }
955                 /* send back R2T */
956                 nvmet_tcp_queue_response(&queue->cmd->req);
957                 goto out;
958         }
959
960         queue->cmd->req.execute(&queue->cmd->req);
961 out:
962         nvmet_prepare_receive_pdu(queue);
963         return ret;
964 }
965
966 static const u8 nvme_tcp_pdu_sizes[] = {
967         [nvme_tcp_icreq]        = sizeof(struct nvme_tcp_icreq_pdu),
968         [nvme_tcp_cmd]          = sizeof(struct nvme_tcp_cmd_pdu),
969         [nvme_tcp_h2c_data]     = sizeof(struct nvme_tcp_data_pdu),
970 };
971
972 static inline u8 nvmet_tcp_pdu_size(u8 type)
973 {
974         size_t idx = type;
975
976         return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
977                 nvme_tcp_pdu_sizes[idx]) ?
978                         nvme_tcp_pdu_sizes[idx] : 0;
979 }
980
981 static inline bool nvmet_tcp_pdu_valid(u8 type)
982 {
983         switch (type) {
984         case nvme_tcp_icreq:
985         case nvme_tcp_cmd:
986         case nvme_tcp_h2c_data:
987                 /* fallthru */
988                 return true;
989         }
990
991         return false;
992 }
993
994 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
995 {
996         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
997         int len;
998         struct kvec iov;
999         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1000
1001 recv:
1002         iov.iov_base = (void *)&queue->pdu + queue->offset;
1003         iov.iov_len = queue->left;
1004         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1005                         iov.iov_len, msg.msg_flags);
1006         if (unlikely(len < 0))
1007                 return len;
1008
1009         queue->offset += len;
1010         queue->left -= len;
1011         if (queue->left)
1012                 return -EAGAIN;
1013
1014         if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1015                 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1016
1017                 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1018                         pr_err("unexpected pdu type %d\n", hdr->type);
1019                         nvmet_tcp_fatal_error(queue);
1020                         return -EIO;
1021                 }
1022
1023                 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1024                         pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1025                         return -EIO;
1026                 }
1027
1028                 queue->left = hdr->hlen - queue->offset + hdgst;
1029                 goto recv;
1030         }
1031
1032         if (queue->hdr_digest &&
1033             nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) {
1034                 nvmet_tcp_fatal_error(queue); /* fatal */
1035                 return -EPROTO;
1036         }
1037
1038         if (queue->data_digest &&
1039             nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1040                 nvmet_tcp_fatal_error(queue); /* fatal */
1041                 return -EPROTO;
1042         }
1043
1044         return nvmet_tcp_done_recv_pdu(queue);
1045 }
1046
1047 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1048 {
1049         struct nvmet_tcp_queue *queue = cmd->queue;
1050
1051         nvmet_tcp_ddgst(queue->rcv_hash, cmd);
1052         queue->offset = 0;
1053         queue->left = NVME_TCP_DIGEST_LENGTH;
1054         queue->rcv_state = NVMET_TCP_RECV_DDGST;
1055 }
1056
1057 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1058 {
1059         struct nvmet_tcp_cmd  *cmd = queue->cmd;
1060         int ret;
1061
1062         while (msg_data_left(&cmd->recv_msg)) {
1063                 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1064                         cmd->recv_msg.msg_flags);
1065                 if (ret <= 0)
1066                         return ret;
1067
1068                 cmd->pdu_recv += ret;
1069                 cmd->rbytes_done += ret;
1070         }
1071
1072         nvmet_tcp_unmap_pdu_iovec(cmd);
1073
1074         if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1075             cmd->rbytes_done == cmd->req.transfer_len) {
1076                 if (queue->data_digest) {
1077                         nvmet_tcp_prep_recv_ddgst(cmd);
1078                         return 0;
1079                 }
1080                 cmd->req.execute(&cmd->req);
1081         }
1082
1083         nvmet_prepare_receive_pdu(queue);
1084         return 0;
1085 }
1086
1087 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1088 {
1089         struct nvmet_tcp_cmd *cmd = queue->cmd;
1090         int ret;
1091         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1092         struct kvec iov = {
1093                 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1094                 .iov_len = queue->left
1095         };
1096
1097         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1098                         iov.iov_len, msg.msg_flags);
1099         if (unlikely(ret < 0))
1100                 return ret;
1101
1102         queue->offset += ret;
1103         queue->left -= ret;
1104         if (queue->left)
1105                 return -EAGAIN;
1106
1107         if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1108                 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1109                         queue->idx, cmd->req.cmd->common.command_id,
1110                         queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1111                         le32_to_cpu(cmd->exp_ddgst));
1112                 nvmet_tcp_finish_cmd(cmd);
1113                 nvmet_tcp_fatal_error(queue);
1114                 ret = -EPROTO;
1115                 goto out;
1116         }
1117
1118         if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1119             cmd->rbytes_done == cmd->req.transfer_len)
1120                 cmd->req.execute(&cmd->req);
1121         ret = 0;
1122 out:
1123         nvmet_prepare_receive_pdu(queue);
1124         return ret;
1125 }
1126
1127 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1128 {
1129         int result = 0;
1130
1131         if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1132                 return 0;
1133
1134         if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1135                 result = nvmet_tcp_try_recv_pdu(queue);
1136                 if (result != 0)
1137                         goto done_recv;
1138         }
1139
1140         if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1141                 result = nvmet_tcp_try_recv_data(queue);
1142                 if (result != 0)
1143                         goto done_recv;
1144         }
1145
1146         if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1147                 result = nvmet_tcp_try_recv_ddgst(queue);
1148                 if (result != 0)
1149                         goto done_recv;
1150         }
1151
1152 done_recv:
1153         if (result < 0) {
1154                 if (result == -EAGAIN)
1155                         return 0;
1156                 return result;
1157         }
1158         return 1;
1159 }
1160
1161 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1162                 int budget, int *recvs)
1163 {
1164         int i, ret = 0;
1165
1166         for (i = 0; i < budget; i++) {
1167                 ret = nvmet_tcp_try_recv_one(queue);
1168                 if (unlikely(ret < 0)) {
1169                         nvmet_tcp_socket_error(queue, ret);
1170                         goto done;
1171                 } else if (ret == 0) {
1172                         break;
1173                 }
1174                 (*recvs)++;
1175         }
1176 done:
1177         return ret;
1178 }
1179
1180 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1181 {
1182         spin_lock(&queue->state_lock);
1183         if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1184                 queue->state = NVMET_TCP_Q_DISCONNECTING;
1185                 schedule_work(&queue->release_work);
1186         }
1187         spin_unlock(&queue->state_lock);
1188 }
1189
1190 static void nvmet_tcp_io_work(struct work_struct *w)
1191 {
1192         struct nvmet_tcp_queue *queue =
1193                 container_of(w, struct nvmet_tcp_queue, io_work);
1194         bool pending;
1195         int ret, ops = 0;
1196
1197         do {
1198                 pending = false;
1199
1200                 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1201                 if (ret > 0)
1202                         pending = true;
1203                 else if (ret < 0)
1204                         return;
1205
1206                 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1207                 if (ret > 0)
1208                         pending = true;
1209                 else if (ret < 0)
1210                         return;
1211
1212         } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1213
1214         /*
1215          * We exahusted our budget, requeue our selves
1216          */
1217         if (pending)
1218                 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1219 }
1220
1221 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1222                 struct nvmet_tcp_cmd *c)
1223 {
1224         u8 hdgst = nvmet_tcp_hdgst_len(queue);
1225
1226         c->queue = queue;
1227         c->req.port = queue->port->nport;
1228
1229         c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1230                         sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1231         if (!c->cmd_pdu)
1232                 return -ENOMEM;
1233         c->req.cmd = &c->cmd_pdu->cmd;
1234
1235         c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1236                         sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1237         if (!c->rsp_pdu)
1238                 goto out_free_cmd;
1239         c->req.cqe = &c->rsp_pdu->cqe;
1240
1241         c->data_pdu = page_frag_alloc(&queue->pf_cache,
1242                         sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1243         if (!c->data_pdu)
1244                 goto out_free_rsp;
1245
1246         c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1247                         sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1248         if (!c->r2t_pdu)
1249                 goto out_free_data;
1250
1251         c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1252
1253         list_add_tail(&c->entry, &queue->free_list);
1254
1255         return 0;
1256 out_free_data:
1257         page_frag_free(c->data_pdu);
1258 out_free_rsp:
1259         page_frag_free(c->rsp_pdu);
1260 out_free_cmd:
1261         page_frag_free(c->cmd_pdu);
1262         return -ENOMEM;
1263 }
1264
1265 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1266 {
1267         page_frag_free(c->r2t_pdu);
1268         page_frag_free(c->data_pdu);
1269         page_frag_free(c->rsp_pdu);
1270         page_frag_free(c->cmd_pdu);
1271 }
1272
1273 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1274 {
1275         struct nvmet_tcp_cmd *cmds;
1276         int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1277
1278         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1279         if (!cmds)
1280                 goto out;
1281
1282         for (i = 0; i < nr_cmds; i++) {
1283                 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1284                 if (ret)
1285                         goto out_free;
1286         }
1287
1288         queue->cmds = cmds;
1289
1290         return 0;
1291 out_free:
1292         while (--i >= 0)
1293                 nvmet_tcp_free_cmd(cmds + i);
1294         kfree(cmds);
1295 out:
1296         return ret;
1297 }
1298
1299 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1300 {
1301         struct nvmet_tcp_cmd *cmds = queue->cmds;
1302         int i;
1303
1304         for (i = 0; i < queue->nr_cmds; i++)
1305                 nvmet_tcp_free_cmd(cmds + i);
1306
1307         nvmet_tcp_free_cmd(&queue->connect);
1308         kfree(cmds);
1309 }
1310
1311 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1312 {
1313         struct socket *sock = queue->sock;
1314
1315         write_lock_bh(&sock->sk->sk_callback_lock);
1316         sock->sk->sk_data_ready =  queue->data_ready;
1317         sock->sk->sk_state_change = queue->state_change;
1318         sock->sk->sk_write_space = queue->write_space;
1319         sock->sk->sk_user_data = NULL;
1320         write_unlock_bh(&sock->sk->sk_callback_lock);
1321 }
1322
1323 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1324 {
1325         nvmet_req_uninit(&cmd->req);
1326         nvmet_tcp_unmap_pdu_iovec(cmd);
1327         kfree(cmd->iov);
1328         sgl_free(cmd->req.sg);
1329 }
1330
1331 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1332 {
1333         struct nvmet_tcp_cmd *cmd = queue->cmds;
1334         int i;
1335
1336         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1337                 if (nvmet_tcp_need_data_in(cmd))
1338                         nvmet_tcp_finish_cmd(cmd);
1339         }
1340
1341         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1342                 /* failed in connect */
1343                 nvmet_tcp_finish_cmd(&queue->connect);
1344         }
1345 }
1346
1347 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1348 {
1349         struct nvmet_tcp_queue *queue =
1350                 container_of(w, struct nvmet_tcp_queue, release_work);
1351
1352         mutex_lock(&nvmet_tcp_queue_mutex);
1353         list_del_init(&queue->queue_list);
1354         mutex_unlock(&nvmet_tcp_queue_mutex);
1355
1356         nvmet_tcp_restore_socket_callbacks(queue);
1357         flush_work(&queue->io_work);
1358
1359         nvmet_tcp_uninit_data_in_cmds(queue);
1360         nvmet_sq_destroy(&queue->nvme_sq);
1361         cancel_work_sync(&queue->io_work);
1362         sock_release(queue->sock);
1363         nvmet_tcp_free_cmds(queue);
1364         if (queue->hdr_digest || queue->data_digest)
1365                 nvmet_tcp_free_crypto(queue);
1366         ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1367
1368         kfree(queue);
1369 }
1370
1371 static void nvmet_tcp_data_ready(struct sock *sk)
1372 {
1373         struct nvmet_tcp_queue *queue;
1374
1375         read_lock_bh(&sk->sk_callback_lock);
1376         queue = sk->sk_user_data;
1377         if (likely(queue))
1378                 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1379         read_unlock_bh(&sk->sk_callback_lock);
1380 }
1381
1382 static void nvmet_tcp_write_space(struct sock *sk)
1383 {
1384         struct nvmet_tcp_queue *queue;
1385
1386         read_lock_bh(&sk->sk_callback_lock);
1387         queue = sk->sk_user_data;
1388         if (unlikely(!queue))
1389                 goto out;
1390
1391         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1392                 queue->write_space(sk);
1393                 goto out;
1394         }
1395
1396         if (sk_stream_is_writeable(sk)) {
1397                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1398                 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1399         }
1400 out:
1401         read_unlock_bh(&sk->sk_callback_lock);
1402 }
1403
1404 static void nvmet_tcp_state_change(struct sock *sk)
1405 {
1406         struct nvmet_tcp_queue *queue;
1407
1408         write_lock_bh(&sk->sk_callback_lock);
1409         queue = sk->sk_user_data;
1410         if (!queue)
1411                 goto done;
1412
1413         switch (sk->sk_state) {
1414         case TCP_FIN_WAIT1:
1415         case TCP_CLOSE_WAIT:
1416         case TCP_CLOSE:
1417                 /* FALLTHRU */
1418                 sk->sk_user_data = NULL;
1419                 nvmet_tcp_schedule_release_queue(queue);
1420                 break;
1421         default:
1422                 pr_warn("queue %d unhandled state %d\n",
1423                         queue->idx, sk->sk_state);
1424         }
1425 done:
1426         write_unlock_bh(&sk->sk_callback_lock);
1427 }
1428
1429 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1430 {
1431         struct socket *sock = queue->sock;
1432         struct inet_sock *inet = inet_sk(sock->sk);
1433         int ret;
1434
1435         ret = kernel_getsockname(sock,
1436                 (struct sockaddr *)&queue->sockaddr);
1437         if (ret < 0)
1438                 return ret;
1439
1440         ret = kernel_getpeername(sock,
1441                 (struct sockaddr *)&queue->sockaddr_peer);
1442         if (ret < 0)
1443                 return ret;
1444
1445         /*
1446          * Cleanup whatever is sitting in the TCP transmit queue on socket
1447          * close. This is done to prevent stale data from being sent should
1448          * the network connection be restored before TCP times out.
1449          */
1450         sock_no_linger(sock->sk);
1451
1452         if (so_priority > 0)
1453                 sock_set_priority(sock->sk, so_priority);
1454
1455         /* Set socket type of service */
1456         if (inet->rcv_tos > 0)
1457                 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1458
1459         write_lock_bh(&sock->sk->sk_callback_lock);
1460         sock->sk->sk_user_data = queue;
1461         queue->data_ready = sock->sk->sk_data_ready;
1462         sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1463         queue->state_change = sock->sk->sk_state_change;
1464         sock->sk->sk_state_change = nvmet_tcp_state_change;
1465         queue->write_space = sock->sk->sk_write_space;
1466         sock->sk->sk_write_space = nvmet_tcp_write_space;
1467         write_unlock_bh(&sock->sk->sk_callback_lock);
1468
1469         return 0;
1470 }
1471
1472 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1473                 struct socket *newsock)
1474 {
1475         struct nvmet_tcp_queue *queue;
1476         int ret;
1477
1478         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1479         if (!queue)
1480                 return -ENOMEM;
1481
1482         INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1483         INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1484         queue->sock = newsock;
1485         queue->port = port;
1486         queue->nr_cmds = 0;
1487         spin_lock_init(&queue->state_lock);
1488         queue->state = NVMET_TCP_Q_CONNECTING;
1489         INIT_LIST_HEAD(&queue->free_list);
1490         init_llist_head(&queue->resp_list);
1491         INIT_LIST_HEAD(&queue->resp_send_list);
1492
1493         queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1494         if (queue->idx < 0) {
1495                 ret = queue->idx;
1496                 goto out_free_queue;
1497         }
1498
1499         ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1500         if (ret)
1501                 goto out_ida_remove;
1502
1503         ret = nvmet_sq_init(&queue->nvme_sq);
1504         if (ret)
1505                 goto out_free_connect;
1506
1507         port->last_cpu = cpumask_next_wrap(port->last_cpu,
1508                                 cpu_online_mask, -1, false);
1509         queue->cpu = port->last_cpu;
1510         nvmet_prepare_receive_pdu(queue);
1511
1512         mutex_lock(&nvmet_tcp_queue_mutex);
1513         list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1514         mutex_unlock(&nvmet_tcp_queue_mutex);
1515
1516         ret = nvmet_tcp_set_queue_sock(queue);
1517         if (ret)
1518                 goto out_destroy_sq;
1519
1520         queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1521
1522         return 0;
1523 out_destroy_sq:
1524         mutex_lock(&nvmet_tcp_queue_mutex);
1525         list_del_init(&queue->queue_list);
1526         mutex_unlock(&nvmet_tcp_queue_mutex);
1527         nvmet_sq_destroy(&queue->nvme_sq);
1528 out_free_connect:
1529         nvmet_tcp_free_cmd(&queue->connect);
1530 out_ida_remove:
1531         ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1532 out_free_queue:
1533         kfree(queue);
1534         return ret;
1535 }
1536
1537 static void nvmet_tcp_accept_work(struct work_struct *w)
1538 {
1539         struct nvmet_tcp_port *port =
1540                 container_of(w, struct nvmet_tcp_port, accept_work);
1541         struct socket *newsock;
1542         int ret;
1543
1544         while (true) {
1545                 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1546                 if (ret < 0) {
1547                         if (ret != -EAGAIN)
1548                                 pr_warn("failed to accept err=%d\n", ret);
1549                         return;
1550                 }
1551                 ret = nvmet_tcp_alloc_queue(port, newsock);
1552                 if (ret) {
1553                         pr_err("failed to allocate queue\n");
1554                         sock_release(newsock);
1555                 }
1556         }
1557 }
1558
1559 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1560 {
1561         struct nvmet_tcp_port *port;
1562
1563         read_lock_bh(&sk->sk_callback_lock);
1564         port = sk->sk_user_data;
1565         if (!port)
1566                 goto out;
1567
1568         if (sk->sk_state == TCP_LISTEN)
1569                 schedule_work(&port->accept_work);
1570 out:
1571         read_unlock_bh(&sk->sk_callback_lock);
1572 }
1573
1574 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1575 {
1576         struct nvmet_tcp_port *port;
1577         __kernel_sa_family_t af;
1578         int ret;
1579
1580         port = kzalloc(sizeof(*port), GFP_KERNEL);
1581         if (!port)
1582                 return -ENOMEM;
1583
1584         switch (nport->disc_addr.adrfam) {
1585         case NVMF_ADDR_FAMILY_IP4:
1586                 af = AF_INET;
1587                 break;
1588         case NVMF_ADDR_FAMILY_IP6:
1589                 af = AF_INET6;
1590                 break;
1591         default:
1592                 pr_err("address family %d not supported\n",
1593                                 nport->disc_addr.adrfam);
1594                 ret = -EINVAL;
1595                 goto err_port;
1596         }
1597
1598         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1599                         nport->disc_addr.trsvcid, &port->addr);
1600         if (ret) {
1601                 pr_err("malformed ip/port passed: %s:%s\n",
1602                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1603                 goto err_port;
1604         }
1605
1606         port->nport = nport;
1607         port->last_cpu = -1;
1608         INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1609         if (port->nport->inline_data_size < 0)
1610                 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1611
1612         ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1613                                 IPPROTO_TCP, &port->sock);
1614         if (ret) {
1615                 pr_err("failed to create a socket\n");
1616                 goto err_port;
1617         }
1618
1619         port->sock->sk->sk_user_data = port;
1620         port->data_ready = port->sock->sk->sk_data_ready;
1621         port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1622         sock_set_reuseaddr(port->sock->sk);
1623         tcp_sock_set_nodelay(port->sock->sk);
1624         if (so_priority > 0)
1625                 sock_set_priority(port->sock->sk, so_priority);
1626
1627         ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1628                         sizeof(port->addr));
1629         if (ret) {
1630                 pr_err("failed to bind port socket %d\n", ret);
1631                 goto err_sock;
1632         }
1633
1634         ret = kernel_listen(port->sock, 128);
1635         if (ret) {
1636                 pr_err("failed to listen %d on port sock\n", ret);
1637                 goto err_sock;
1638         }
1639
1640         nport->priv = port;
1641         pr_info("enabling port %d (%pISpc)\n",
1642                 le16_to_cpu(nport->disc_addr.portid), &port->addr);
1643
1644         return 0;
1645
1646 err_sock:
1647         sock_release(port->sock);
1648 err_port:
1649         kfree(port);
1650         return ret;
1651 }
1652
1653 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1654 {
1655         struct nvmet_tcp_port *port = nport->priv;
1656
1657         write_lock_bh(&port->sock->sk->sk_callback_lock);
1658         port->sock->sk->sk_data_ready = port->data_ready;
1659         port->sock->sk->sk_user_data = NULL;
1660         write_unlock_bh(&port->sock->sk->sk_callback_lock);
1661         cancel_work_sync(&port->accept_work);
1662
1663         sock_release(port->sock);
1664         kfree(port);
1665 }
1666
1667 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1668 {
1669         struct nvmet_tcp_queue *queue;
1670
1671         mutex_lock(&nvmet_tcp_queue_mutex);
1672         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1673                 if (queue->nvme_sq.ctrl == ctrl)
1674                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1675         mutex_unlock(&nvmet_tcp_queue_mutex);
1676 }
1677
1678 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1679 {
1680         struct nvmet_tcp_queue *queue =
1681                 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1682
1683         if (sq->qid == 0) {
1684                 /* Let inflight controller teardown complete */
1685                 flush_scheduled_work();
1686         }
1687
1688         queue->nr_cmds = sq->size * 2;
1689         if (nvmet_tcp_alloc_cmds(queue))
1690                 return NVME_SC_INTERNAL;
1691         return 0;
1692 }
1693
1694 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1695                 struct nvmet_port *nport, char *traddr)
1696 {
1697         struct nvmet_tcp_port *port = nport->priv;
1698
1699         if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1700                 struct nvmet_tcp_cmd *cmd =
1701                         container_of(req, struct nvmet_tcp_cmd, req);
1702                 struct nvmet_tcp_queue *queue = cmd->queue;
1703
1704                 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1705         } else {
1706                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1707         }
1708 }
1709
1710 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1711         .owner                  = THIS_MODULE,
1712         .type                   = NVMF_TRTYPE_TCP,
1713         .msdbd                  = 1,
1714         .add_port               = nvmet_tcp_add_port,
1715         .remove_port            = nvmet_tcp_remove_port,
1716         .queue_response         = nvmet_tcp_queue_response,
1717         .delete_ctrl            = nvmet_tcp_delete_ctrl,
1718         .install_queue          = nvmet_tcp_install_queue,
1719         .disc_traddr            = nvmet_tcp_disc_port_addr,
1720 };
1721
1722 static int __init nvmet_tcp_init(void)
1723 {
1724         int ret;
1725
1726         nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0);
1727         if (!nvmet_tcp_wq)
1728                 return -ENOMEM;
1729
1730         ret = nvmet_register_transport(&nvmet_tcp_ops);
1731         if (ret)
1732                 goto err;
1733
1734         return 0;
1735 err:
1736         destroy_workqueue(nvmet_tcp_wq);
1737         return ret;
1738 }
1739
1740 static void __exit nvmet_tcp_exit(void)
1741 {
1742         struct nvmet_tcp_queue *queue;
1743
1744         nvmet_unregister_transport(&nvmet_tcp_ops);
1745
1746         flush_scheduled_work();
1747         mutex_lock(&nvmet_tcp_queue_mutex);
1748         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1749                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1750         mutex_unlock(&nvmet_tcp_queue_mutex);
1751         flush_scheduled_work();
1752
1753         destroy_workqueue(nvmet_tcp_wq);
1754 }
1755
1756 module_init(nvmet_tcp_init);
1757 module_exit(nvmet_tcp_exit);
1758
1759 MODULE_LICENSE("GPL v2");
1760 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */