Merge tag 'regulator-fix-v5.14-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / nvme / target / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/nvme.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/wait.h>
17 #include <linux/inet.h>
18 #include <asm/unaligned.h>
19
20 #include <rdma/ib_verbs.h>
21 #include <rdma/rdma_cm.h>
22 #include <rdma/rw.h>
23 #include <rdma/ib_cm.h>
24
25 #include <linux/nvme-rdma.h>
26 #include "nvmet.h"
27
28 /*
29  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
30  */
31 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE     PAGE_SIZE
32 #define NVMET_RDMA_MAX_INLINE_SGE               4
33 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE         max_t(int, SZ_16K, PAGE_SIZE)
34
35 /* Assume mpsmin == device_page_size == 4KB */
36 #define NVMET_RDMA_MAX_MDTS                     8
37 #define NVMET_RDMA_MAX_METADATA_MDTS            5
38
39 struct nvmet_rdma_srq;
40
41 struct nvmet_rdma_cmd {
42         struct ib_sge           sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
43         struct ib_cqe           cqe;
44         struct ib_recv_wr       wr;
45         struct scatterlist      inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
46         struct nvme_command     *nvme_cmd;
47         struct nvmet_rdma_queue *queue;
48         struct nvmet_rdma_srq   *nsrq;
49 };
50
51 enum {
52         NVMET_RDMA_REQ_INLINE_DATA      = (1 << 0),
53         NVMET_RDMA_REQ_INVALIDATE_RKEY  = (1 << 1),
54 };
55
56 struct nvmet_rdma_rsp {
57         struct ib_sge           send_sge;
58         struct ib_cqe           send_cqe;
59         struct ib_send_wr       send_wr;
60
61         struct nvmet_rdma_cmd   *cmd;
62         struct nvmet_rdma_queue *queue;
63
64         struct ib_cqe           read_cqe;
65         struct ib_cqe           write_cqe;
66         struct rdma_rw_ctx      rw;
67
68         struct nvmet_req        req;
69
70         bool                    allocated;
71         u8                      n_rdma;
72         u32                     flags;
73         u32                     invalidate_rkey;
74
75         struct list_head        wait_list;
76         struct list_head        free_list;
77 };
78
79 enum nvmet_rdma_queue_state {
80         NVMET_RDMA_Q_CONNECTING,
81         NVMET_RDMA_Q_LIVE,
82         NVMET_RDMA_Q_DISCONNECTING,
83 };
84
85 struct nvmet_rdma_queue {
86         struct rdma_cm_id       *cm_id;
87         struct ib_qp            *qp;
88         struct nvmet_port       *port;
89         struct ib_cq            *cq;
90         atomic_t                sq_wr_avail;
91         struct nvmet_rdma_device *dev;
92         struct nvmet_rdma_srq   *nsrq;
93         spinlock_t              state_lock;
94         enum nvmet_rdma_queue_state state;
95         struct nvmet_cq         nvme_cq;
96         struct nvmet_sq         nvme_sq;
97
98         struct nvmet_rdma_rsp   *rsps;
99         struct list_head        free_rsps;
100         spinlock_t              rsps_lock;
101         struct nvmet_rdma_cmd   *cmds;
102
103         struct work_struct      release_work;
104         struct list_head        rsp_wait_list;
105         struct list_head        rsp_wr_wait_list;
106         spinlock_t              rsp_wr_wait_lock;
107
108         int                     idx;
109         int                     host_qid;
110         int                     comp_vector;
111         int                     recv_queue_size;
112         int                     send_queue_size;
113
114         struct list_head        queue_list;
115 };
116
117 struct nvmet_rdma_port {
118         struct nvmet_port       *nport;
119         struct sockaddr_storage addr;
120         struct rdma_cm_id       *cm_id;
121         struct delayed_work     repair_work;
122 };
123
124 struct nvmet_rdma_srq {
125         struct ib_srq            *srq;
126         struct nvmet_rdma_cmd    *cmds;
127         struct nvmet_rdma_device *ndev;
128 };
129
130 struct nvmet_rdma_device {
131         struct ib_device        *device;
132         struct ib_pd            *pd;
133         struct nvmet_rdma_srq   **srqs;
134         int                     srq_count;
135         size_t                  srq_size;
136         struct kref             ref;
137         struct list_head        entry;
138         int                     inline_data_size;
139         int                     inline_page_count;
140 };
141
142 static bool nvmet_rdma_use_srq;
143 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
144 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
145
146 static int srq_size_set(const char *val, const struct kernel_param *kp);
147 static const struct kernel_param_ops srq_size_ops = {
148         .set = srq_size_set,
149         .get = param_get_int,
150 };
151
152 static int nvmet_rdma_srq_size = 1024;
153 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
154 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
155
156 static DEFINE_IDA(nvmet_rdma_queue_ida);
157 static LIST_HEAD(nvmet_rdma_queue_list);
158 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
159
160 static LIST_HEAD(device_list);
161 static DEFINE_MUTEX(device_list_mutex);
162
163 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
164 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
165 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
166 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
167 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
169 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
170 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
171                                 struct nvmet_rdma_rsp *r);
172 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
173                                 struct nvmet_rdma_rsp *r);
174
175 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
176
177 static int srq_size_set(const char *val, const struct kernel_param *kp)
178 {
179         int n = 0, ret;
180
181         ret = kstrtoint(val, 10, &n);
182         if (ret != 0 || n < 256)
183                 return -EINVAL;
184
185         return param_set_int(val, kp);
186 }
187
188 static int num_pages(int len)
189 {
190         return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
191 }
192
193 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
194 {
195         return nvme_is_write(rsp->req.cmd) &&
196                 rsp->req.transfer_len &&
197                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
198 }
199
200 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
201 {
202         return !nvme_is_write(rsp->req.cmd) &&
203                 rsp->req.transfer_len &&
204                 !rsp->req.cqe->status &&
205                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
206 }
207
208 static inline struct nvmet_rdma_rsp *
209 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
210 {
211         struct nvmet_rdma_rsp *rsp;
212         unsigned long flags;
213
214         spin_lock_irqsave(&queue->rsps_lock, flags);
215         rsp = list_first_entry_or_null(&queue->free_rsps,
216                                 struct nvmet_rdma_rsp, free_list);
217         if (likely(rsp))
218                 list_del(&rsp->free_list);
219         spin_unlock_irqrestore(&queue->rsps_lock, flags);
220
221         if (unlikely(!rsp)) {
222                 int ret;
223
224                 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
225                 if (unlikely(!rsp))
226                         return NULL;
227                 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
228                 if (unlikely(ret)) {
229                         kfree(rsp);
230                         return NULL;
231                 }
232
233                 rsp->allocated = true;
234         }
235
236         return rsp;
237 }
238
239 static inline void
240 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
241 {
242         unsigned long flags;
243
244         if (unlikely(rsp->allocated)) {
245                 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
246                 kfree(rsp);
247                 return;
248         }
249
250         spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
251         list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
252         spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
253 }
254
255 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
256                                 struct nvmet_rdma_cmd *c)
257 {
258         struct scatterlist *sg;
259         struct ib_sge *sge;
260         int i;
261
262         if (!ndev->inline_data_size)
263                 return;
264
265         sg = c->inline_sg;
266         sge = &c->sge[1];
267
268         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
269                 if (sge->length)
270                         ib_dma_unmap_page(ndev->device, sge->addr,
271                                         sge->length, DMA_FROM_DEVICE);
272                 if (sg_page(sg))
273                         __free_page(sg_page(sg));
274         }
275 }
276
277 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
278                                 struct nvmet_rdma_cmd *c)
279 {
280         struct scatterlist *sg;
281         struct ib_sge *sge;
282         struct page *pg;
283         int len;
284         int i;
285
286         if (!ndev->inline_data_size)
287                 return 0;
288
289         sg = c->inline_sg;
290         sg_init_table(sg, ndev->inline_page_count);
291         sge = &c->sge[1];
292         len = ndev->inline_data_size;
293
294         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
295                 pg = alloc_page(GFP_KERNEL);
296                 if (!pg)
297                         goto out_err;
298                 sg_assign_page(sg, pg);
299                 sge->addr = ib_dma_map_page(ndev->device,
300                         pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
301                 if (ib_dma_mapping_error(ndev->device, sge->addr))
302                         goto out_err;
303                 sge->length = min_t(int, len, PAGE_SIZE);
304                 sge->lkey = ndev->pd->local_dma_lkey;
305                 len -= sge->length;
306         }
307
308         return 0;
309 out_err:
310         for (; i >= 0; i--, sg--, sge--) {
311                 if (sge->length)
312                         ib_dma_unmap_page(ndev->device, sge->addr,
313                                         sge->length, DMA_FROM_DEVICE);
314                 if (sg_page(sg))
315                         __free_page(sg_page(sg));
316         }
317         return -ENOMEM;
318 }
319
320 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
321                         struct nvmet_rdma_cmd *c, bool admin)
322 {
323         /* NVMe command / RDMA RECV */
324         c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
325         if (!c->nvme_cmd)
326                 goto out;
327
328         c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
329                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
330         if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
331                 goto out_free_cmd;
332
333         c->sge[0].length = sizeof(*c->nvme_cmd);
334         c->sge[0].lkey = ndev->pd->local_dma_lkey;
335
336         if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
337                 goto out_unmap_cmd;
338
339         c->cqe.done = nvmet_rdma_recv_done;
340
341         c->wr.wr_cqe = &c->cqe;
342         c->wr.sg_list = c->sge;
343         c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
344
345         return 0;
346
347 out_unmap_cmd:
348         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
349                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
350 out_free_cmd:
351         kfree(c->nvme_cmd);
352
353 out:
354         return -ENOMEM;
355 }
356
357 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
358                 struct nvmet_rdma_cmd *c, bool admin)
359 {
360         if (!admin)
361                 nvmet_rdma_free_inline_pages(ndev, c);
362         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
363                                 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
364         kfree(c->nvme_cmd);
365 }
366
367 static struct nvmet_rdma_cmd *
368 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
369                 int nr_cmds, bool admin)
370 {
371         struct nvmet_rdma_cmd *cmds;
372         int ret = -EINVAL, i;
373
374         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
375         if (!cmds)
376                 goto out;
377
378         for (i = 0; i < nr_cmds; i++) {
379                 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
380                 if (ret)
381                         goto out_free;
382         }
383
384         return cmds;
385
386 out_free:
387         while (--i >= 0)
388                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
389         kfree(cmds);
390 out:
391         return ERR_PTR(ret);
392 }
393
394 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
395                 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
396 {
397         int i;
398
399         for (i = 0; i < nr_cmds; i++)
400                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
401         kfree(cmds);
402 }
403
404 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
405                 struct nvmet_rdma_rsp *r)
406 {
407         /* NVMe CQE / RDMA SEND */
408         r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
409         if (!r->req.cqe)
410                 goto out;
411
412         r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
413                         sizeof(*r->req.cqe), DMA_TO_DEVICE);
414         if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
415                 goto out_free_rsp;
416
417         if (!ib_uses_virt_dma(ndev->device))
418                 r->req.p2p_client = &ndev->device->dev;
419         r->send_sge.length = sizeof(*r->req.cqe);
420         r->send_sge.lkey = ndev->pd->local_dma_lkey;
421
422         r->send_cqe.done = nvmet_rdma_send_done;
423
424         r->send_wr.wr_cqe = &r->send_cqe;
425         r->send_wr.sg_list = &r->send_sge;
426         r->send_wr.num_sge = 1;
427         r->send_wr.send_flags = IB_SEND_SIGNALED;
428
429         /* Data In / RDMA READ */
430         r->read_cqe.done = nvmet_rdma_read_data_done;
431         /* Data Out / RDMA WRITE */
432         r->write_cqe.done = nvmet_rdma_write_data_done;
433
434         return 0;
435
436 out_free_rsp:
437         kfree(r->req.cqe);
438 out:
439         return -ENOMEM;
440 }
441
442 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
443                 struct nvmet_rdma_rsp *r)
444 {
445         ib_dma_unmap_single(ndev->device, r->send_sge.addr,
446                                 sizeof(*r->req.cqe), DMA_TO_DEVICE);
447         kfree(r->req.cqe);
448 }
449
450 static int
451 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
452 {
453         struct nvmet_rdma_device *ndev = queue->dev;
454         int nr_rsps = queue->recv_queue_size * 2;
455         int ret = -EINVAL, i;
456
457         queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
458                         GFP_KERNEL);
459         if (!queue->rsps)
460                 goto out;
461
462         for (i = 0; i < nr_rsps; i++) {
463                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
464
465                 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
466                 if (ret)
467                         goto out_free;
468
469                 list_add_tail(&rsp->free_list, &queue->free_rsps);
470         }
471
472         return 0;
473
474 out_free:
475         while (--i >= 0) {
476                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
477
478                 list_del(&rsp->free_list);
479                 nvmet_rdma_free_rsp(ndev, rsp);
480         }
481         kfree(queue->rsps);
482 out:
483         return ret;
484 }
485
486 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
487 {
488         struct nvmet_rdma_device *ndev = queue->dev;
489         int i, nr_rsps = queue->recv_queue_size * 2;
490
491         for (i = 0; i < nr_rsps; i++) {
492                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
493
494                 list_del(&rsp->free_list);
495                 nvmet_rdma_free_rsp(ndev, rsp);
496         }
497         kfree(queue->rsps);
498 }
499
500 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
501                 struct nvmet_rdma_cmd *cmd)
502 {
503         int ret;
504
505         ib_dma_sync_single_for_device(ndev->device,
506                 cmd->sge[0].addr, cmd->sge[0].length,
507                 DMA_FROM_DEVICE);
508
509         if (cmd->nsrq)
510                 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
511         else
512                 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
513
514         if (unlikely(ret))
515                 pr_err("post_recv cmd failed\n");
516
517         return ret;
518 }
519
520 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
521 {
522         spin_lock(&queue->rsp_wr_wait_lock);
523         while (!list_empty(&queue->rsp_wr_wait_list)) {
524                 struct nvmet_rdma_rsp *rsp;
525                 bool ret;
526
527                 rsp = list_entry(queue->rsp_wr_wait_list.next,
528                                 struct nvmet_rdma_rsp, wait_list);
529                 list_del(&rsp->wait_list);
530
531                 spin_unlock(&queue->rsp_wr_wait_lock);
532                 ret = nvmet_rdma_execute_command(rsp);
533                 spin_lock(&queue->rsp_wr_wait_lock);
534
535                 if (!ret) {
536                         list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
537                         break;
538                 }
539         }
540         spin_unlock(&queue->rsp_wr_wait_lock);
541 }
542
543 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
544 {
545         struct ib_mr_status mr_status;
546         int ret;
547         u16 status = 0;
548
549         ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
550         if (ret) {
551                 pr_err("ib_check_mr_status failed, ret %d\n", ret);
552                 return NVME_SC_INVALID_PI;
553         }
554
555         if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
556                 switch (mr_status.sig_err.err_type) {
557                 case IB_SIG_BAD_GUARD:
558                         status = NVME_SC_GUARD_CHECK;
559                         break;
560                 case IB_SIG_BAD_REFTAG:
561                         status = NVME_SC_REFTAG_CHECK;
562                         break;
563                 case IB_SIG_BAD_APPTAG:
564                         status = NVME_SC_APPTAG_CHECK;
565                         break;
566                 }
567                 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
568                        mr_status.sig_err.err_type,
569                        mr_status.sig_err.expected,
570                        mr_status.sig_err.actual);
571         }
572
573         return status;
574 }
575
576 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
577                 struct nvme_command *cmd, struct ib_sig_domain *domain,
578                 u16 control, u8 pi_type)
579 {
580         domain->sig_type = IB_SIG_TYPE_T10_DIF;
581         domain->sig.dif.bg_type = IB_T10DIF_CRC;
582         domain->sig.dif.pi_interval = 1 << bi->interval_exp;
583         domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
584         if (control & NVME_RW_PRINFO_PRCHK_REF)
585                 domain->sig.dif.ref_remap = true;
586
587         domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
588         domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
589         domain->sig.dif.app_escape = true;
590         if (pi_type == NVME_NS_DPS_PI_TYPE3)
591                 domain->sig.dif.ref_escape = true;
592 }
593
594 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
595                                      struct ib_sig_attrs *sig_attrs)
596 {
597         struct nvme_command *cmd = req->cmd;
598         u16 control = le16_to_cpu(cmd->rw.control);
599         u8 pi_type = req->ns->pi_type;
600         struct blk_integrity *bi;
601
602         bi = bdev_get_integrity(req->ns->bdev);
603
604         memset(sig_attrs, 0, sizeof(*sig_attrs));
605
606         if (control & NVME_RW_PRINFO_PRACT) {
607                 /* for WRITE_INSERT/READ_STRIP no wire domain */
608                 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
609                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
610                                           pi_type);
611                 /* Clear the PRACT bit since HCA will generate/verify the PI */
612                 control &= ~NVME_RW_PRINFO_PRACT;
613                 cmd->rw.control = cpu_to_le16(control);
614                 /* PI is added by the HW */
615                 req->transfer_len += req->metadata_len;
616         } else {
617                 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
618                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
619                                           pi_type);
620                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
621                                           pi_type);
622         }
623
624         if (control & NVME_RW_PRINFO_PRCHK_REF)
625                 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
626         if (control & NVME_RW_PRINFO_PRCHK_GUARD)
627                 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
628         if (control & NVME_RW_PRINFO_PRCHK_APP)
629                 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
630 }
631
632 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
633                                   struct ib_sig_attrs *sig_attrs)
634 {
635         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
636         struct nvmet_req *req = &rsp->req;
637         int ret;
638
639         if (req->metadata_len)
640                 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
641                         cm_id->port_num, req->sg, req->sg_cnt,
642                         req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
643                         addr, key, nvmet_data_dir(req));
644         else
645                 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
646                                        req->sg, req->sg_cnt, 0, addr, key,
647                                        nvmet_data_dir(req));
648
649         return ret;
650 }
651
652 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
653 {
654         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
655         struct nvmet_req *req = &rsp->req;
656
657         if (req->metadata_len)
658                 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
659                         cm_id->port_num, req->sg, req->sg_cnt,
660                         req->metadata_sg, req->metadata_sg_cnt,
661                         nvmet_data_dir(req));
662         else
663                 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
664                                     req->sg, req->sg_cnt, nvmet_data_dir(req));
665 }
666
667 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
668 {
669         struct nvmet_rdma_queue *queue = rsp->queue;
670
671         atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
672
673         if (rsp->n_rdma)
674                 nvmet_rdma_rw_ctx_destroy(rsp);
675
676         if (rsp->req.sg != rsp->cmd->inline_sg)
677                 nvmet_req_free_sgls(&rsp->req);
678
679         if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
680                 nvmet_rdma_process_wr_wait_list(queue);
681
682         nvmet_rdma_put_rsp(rsp);
683 }
684
685 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
686 {
687         if (queue->nvme_sq.ctrl) {
688                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
689         } else {
690                 /*
691                  * we didn't setup the controller yet in case
692                  * of admin connect error, just disconnect and
693                  * cleanup the queue
694                  */
695                 nvmet_rdma_queue_disconnect(queue);
696         }
697 }
698
699 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
700 {
701         struct nvmet_rdma_rsp *rsp =
702                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
703         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
704
705         nvmet_rdma_release_rsp(rsp);
706
707         if (unlikely(wc->status != IB_WC_SUCCESS &&
708                      wc->status != IB_WC_WR_FLUSH_ERR)) {
709                 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
710                         wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
711                 nvmet_rdma_error_comp(queue);
712         }
713 }
714
715 static void nvmet_rdma_queue_response(struct nvmet_req *req)
716 {
717         struct nvmet_rdma_rsp *rsp =
718                 container_of(req, struct nvmet_rdma_rsp, req);
719         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
720         struct ib_send_wr *first_wr;
721
722         if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
723                 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
724                 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
725         } else {
726                 rsp->send_wr.opcode = IB_WR_SEND;
727         }
728
729         if (nvmet_rdma_need_data_out(rsp)) {
730                 if (rsp->req.metadata_len)
731                         first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
732                                         cm_id->port_num, &rsp->write_cqe, NULL);
733                 else
734                         first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
735                                         cm_id->port_num, NULL, &rsp->send_wr);
736         } else {
737                 first_wr = &rsp->send_wr;
738         }
739
740         nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
741
742         ib_dma_sync_single_for_device(rsp->queue->dev->device,
743                 rsp->send_sge.addr, rsp->send_sge.length,
744                 DMA_TO_DEVICE);
745
746         if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
747                 pr_err("sending cmd response failed\n");
748                 nvmet_rdma_release_rsp(rsp);
749         }
750 }
751
752 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
753 {
754         struct nvmet_rdma_rsp *rsp =
755                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
756         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
757         u16 status = 0;
758
759         WARN_ON(rsp->n_rdma <= 0);
760         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
761         rsp->n_rdma = 0;
762
763         if (unlikely(wc->status != IB_WC_SUCCESS)) {
764                 nvmet_rdma_rw_ctx_destroy(rsp);
765                 nvmet_req_uninit(&rsp->req);
766                 nvmet_rdma_release_rsp(rsp);
767                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
768                         pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
769                                 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
770                         nvmet_rdma_error_comp(queue);
771                 }
772                 return;
773         }
774
775         if (rsp->req.metadata_len)
776                 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
777         nvmet_rdma_rw_ctx_destroy(rsp);
778
779         if (unlikely(status))
780                 nvmet_req_complete(&rsp->req, status);
781         else
782                 rsp->req.execute(&rsp->req);
783 }
784
785 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
786 {
787         struct nvmet_rdma_rsp *rsp =
788                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
789         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
790         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
791         u16 status;
792
793         if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
794                 return;
795
796         WARN_ON(rsp->n_rdma <= 0);
797         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
798         rsp->n_rdma = 0;
799
800         if (unlikely(wc->status != IB_WC_SUCCESS)) {
801                 nvmet_rdma_rw_ctx_destroy(rsp);
802                 nvmet_req_uninit(&rsp->req);
803                 nvmet_rdma_release_rsp(rsp);
804                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
805                         pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
806                                 ib_wc_status_msg(wc->status), wc->status);
807                         nvmet_rdma_error_comp(queue);
808                 }
809                 return;
810         }
811
812         /*
813          * Upon RDMA completion check the signature status
814          * - if succeeded send good NVMe response
815          * - if failed send bad NVMe response with appropriate error
816          */
817         status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
818         if (unlikely(status))
819                 rsp->req.cqe->status = cpu_to_le16(status << 1);
820         nvmet_rdma_rw_ctx_destroy(rsp);
821
822         if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
823                 pr_err("sending cmd response failed\n");
824                 nvmet_rdma_release_rsp(rsp);
825         }
826 }
827
828 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
829                 u64 off)
830 {
831         int sg_count = num_pages(len);
832         struct scatterlist *sg;
833         int i;
834
835         sg = rsp->cmd->inline_sg;
836         for (i = 0; i < sg_count; i++, sg++) {
837                 if (i < sg_count - 1)
838                         sg_unmark_end(sg);
839                 else
840                         sg_mark_end(sg);
841                 sg->offset = off;
842                 sg->length = min_t(int, len, PAGE_SIZE - off);
843                 len -= sg->length;
844                 if (!i)
845                         off = 0;
846         }
847
848         rsp->req.sg = rsp->cmd->inline_sg;
849         rsp->req.sg_cnt = sg_count;
850 }
851
852 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
853 {
854         struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
855         u64 off = le64_to_cpu(sgl->addr);
856         u32 len = le32_to_cpu(sgl->length);
857
858         if (!nvme_is_write(rsp->req.cmd)) {
859                 rsp->req.error_loc =
860                         offsetof(struct nvme_common_command, opcode);
861                 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
862         }
863
864         if (off + len > rsp->queue->dev->inline_data_size) {
865                 pr_err("invalid inline data offset!\n");
866                 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
867         }
868
869         /* no data command? */
870         if (!len)
871                 return 0;
872
873         nvmet_rdma_use_inline_sg(rsp, len, off);
874         rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
875         rsp->req.transfer_len += len;
876         return 0;
877 }
878
879 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
880                 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
881 {
882         u64 addr = le64_to_cpu(sgl->addr);
883         u32 key = get_unaligned_le32(sgl->key);
884         struct ib_sig_attrs sig_attrs;
885         int ret;
886
887         rsp->req.transfer_len = get_unaligned_le24(sgl->length);
888
889         /* no data command? */
890         if (!rsp->req.transfer_len)
891                 return 0;
892
893         if (rsp->req.metadata_len)
894                 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
895
896         ret = nvmet_req_alloc_sgls(&rsp->req);
897         if (unlikely(ret < 0))
898                 goto error_out;
899
900         ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
901         if (unlikely(ret < 0))
902                 goto error_out;
903         rsp->n_rdma += ret;
904
905         if (invalidate) {
906                 rsp->invalidate_rkey = key;
907                 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
908         }
909
910         return 0;
911
912 error_out:
913         rsp->req.transfer_len = 0;
914         return NVME_SC_INTERNAL;
915 }
916
917 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
918 {
919         struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
920
921         switch (sgl->type >> 4) {
922         case NVME_SGL_FMT_DATA_DESC:
923                 switch (sgl->type & 0xf) {
924                 case NVME_SGL_FMT_OFFSET:
925                         return nvmet_rdma_map_sgl_inline(rsp);
926                 default:
927                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
928                         rsp->req.error_loc =
929                                 offsetof(struct nvme_common_command, dptr);
930                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
931                 }
932         case NVME_KEY_SGL_FMT_DATA_DESC:
933                 switch (sgl->type & 0xf) {
934                 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
935                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
936                 case NVME_SGL_FMT_ADDRESS:
937                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
938                 default:
939                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
940                         rsp->req.error_loc =
941                                 offsetof(struct nvme_common_command, dptr);
942                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
943                 }
944         default:
945                 pr_err("invalid SGL type: %#x\n", sgl->type);
946                 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
947                 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
948         }
949 }
950
951 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
952 {
953         struct nvmet_rdma_queue *queue = rsp->queue;
954
955         if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
956                         &queue->sq_wr_avail) < 0)) {
957                 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
958                                 1 + rsp->n_rdma, queue->idx,
959                                 queue->nvme_sq.ctrl->cntlid);
960                 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
961                 return false;
962         }
963
964         if (nvmet_rdma_need_data_in(rsp)) {
965                 if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
966                                 queue->cm_id->port_num, &rsp->read_cqe, NULL))
967                         nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
968         } else {
969                 rsp->req.execute(&rsp->req);
970         }
971
972         return true;
973 }
974
975 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
976                 struct nvmet_rdma_rsp *cmd)
977 {
978         u16 status;
979
980         ib_dma_sync_single_for_cpu(queue->dev->device,
981                 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
982                 DMA_FROM_DEVICE);
983         ib_dma_sync_single_for_cpu(queue->dev->device,
984                 cmd->send_sge.addr, cmd->send_sge.length,
985                 DMA_TO_DEVICE);
986
987         if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
988                         &queue->nvme_sq, &nvmet_rdma_ops))
989                 return;
990
991         status = nvmet_rdma_map_sgl(cmd);
992         if (status)
993                 goto out_err;
994
995         if (unlikely(!nvmet_rdma_execute_command(cmd))) {
996                 spin_lock(&queue->rsp_wr_wait_lock);
997                 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
998                 spin_unlock(&queue->rsp_wr_wait_lock);
999         }
1000
1001         return;
1002
1003 out_err:
1004         nvmet_req_complete(&cmd->req, status);
1005 }
1006
1007 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1008 {
1009         struct nvmet_rdma_cmd *cmd =
1010                 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1011         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1012         struct nvmet_rdma_rsp *rsp;
1013
1014         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1015                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1016                         pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1017                                 wc->wr_cqe, ib_wc_status_msg(wc->status),
1018                                 wc->status);
1019                         nvmet_rdma_error_comp(queue);
1020                 }
1021                 return;
1022         }
1023
1024         if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1025                 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1026                 nvmet_rdma_error_comp(queue);
1027                 return;
1028         }
1029
1030         cmd->queue = queue;
1031         rsp = nvmet_rdma_get_rsp(queue);
1032         if (unlikely(!rsp)) {
1033                 /*
1034                  * we get here only under memory pressure,
1035                  * silently drop and have the host retry
1036                  * as we can't even fail it.
1037                  */
1038                 nvmet_rdma_post_recv(queue->dev, cmd);
1039                 return;
1040         }
1041         rsp->queue = queue;
1042         rsp->cmd = cmd;
1043         rsp->flags = 0;
1044         rsp->req.cmd = cmd->nvme_cmd;
1045         rsp->req.port = queue->port;
1046         rsp->n_rdma = 0;
1047
1048         if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1049                 unsigned long flags;
1050
1051                 spin_lock_irqsave(&queue->state_lock, flags);
1052                 if (queue->state == NVMET_RDMA_Q_CONNECTING)
1053                         list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1054                 else
1055                         nvmet_rdma_put_rsp(rsp);
1056                 spin_unlock_irqrestore(&queue->state_lock, flags);
1057                 return;
1058         }
1059
1060         nvmet_rdma_handle_command(queue, rsp);
1061 }
1062
1063 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1064 {
1065         nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1066                              false);
1067         ib_destroy_srq(nsrq->srq);
1068
1069         kfree(nsrq);
1070 }
1071
1072 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1073 {
1074         int i;
1075
1076         if (!ndev->srqs)
1077                 return;
1078
1079         for (i = 0; i < ndev->srq_count; i++)
1080                 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1081
1082         kfree(ndev->srqs);
1083 }
1084
1085 static struct nvmet_rdma_srq *
1086 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1087 {
1088         struct ib_srq_init_attr srq_attr = { NULL, };
1089         size_t srq_size = ndev->srq_size;
1090         struct nvmet_rdma_srq *nsrq;
1091         struct ib_srq *srq;
1092         int ret, i;
1093
1094         nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1095         if (!nsrq)
1096                 return ERR_PTR(-ENOMEM);
1097
1098         srq_attr.attr.max_wr = srq_size;
1099         srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1100         srq_attr.attr.srq_limit = 0;
1101         srq_attr.srq_type = IB_SRQT_BASIC;
1102         srq = ib_create_srq(ndev->pd, &srq_attr);
1103         if (IS_ERR(srq)) {
1104                 ret = PTR_ERR(srq);
1105                 goto out_free;
1106         }
1107
1108         nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1109         if (IS_ERR(nsrq->cmds)) {
1110                 ret = PTR_ERR(nsrq->cmds);
1111                 goto out_destroy_srq;
1112         }
1113
1114         nsrq->srq = srq;
1115         nsrq->ndev = ndev;
1116
1117         for (i = 0; i < srq_size; i++) {
1118                 nsrq->cmds[i].nsrq = nsrq;
1119                 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1120                 if (ret)
1121                         goto out_free_cmds;
1122         }
1123
1124         return nsrq;
1125
1126 out_free_cmds:
1127         nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1128 out_destroy_srq:
1129         ib_destroy_srq(srq);
1130 out_free:
1131         kfree(nsrq);
1132         return ERR_PTR(ret);
1133 }
1134
1135 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1136 {
1137         int i, ret;
1138
1139         if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1140                 /*
1141                  * If SRQs aren't supported we just go ahead and use normal
1142                  * non-shared receive queues.
1143                  */
1144                 pr_info("SRQ requested but not supported.\n");
1145                 return 0;
1146         }
1147
1148         ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1149                              nvmet_rdma_srq_size);
1150         ndev->srq_count = min(ndev->device->num_comp_vectors,
1151                               ndev->device->attrs.max_srq);
1152
1153         ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1154         if (!ndev->srqs)
1155                 return -ENOMEM;
1156
1157         for (i = 0; i < ndev->srq_count; i++) {
1158                 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1159                 if (IS_ERR(ndev->srqs[i])) {
1160                         ret = PTR_ERR(ndev->srqs[i]);
1161                         goto err_srq;
1162                 }
1163         }
1164
1165         return 0;
1166
1167 err_srq:
1168         while (--i >= 0)
1169                 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1170         kfree(ndev->srqs);
1171         return ret;
1172 }
1173
1174 static void nvmet_rdma_free_dev(struct kref *ref)
1175 {
1176         struct nvmet_rdma_device *ndev =
1177                 container_of(ref, struct nvmet_rdma_device, ref);
1178
1179         mutex_lock(&device_list_mutex);
1180         list_del(&ndev->entry);
1181         mutex_unlock(&device_list_mutex);
1182
1183         nvmet_rdma_destroy_srqs(ndev);
1184         ib_dealloc_pd(ndev->pd);
1185
1186         kfree(ndev);
1187 }
1188
1189 static struct nvmet_rdma_device *
1190 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1191 {
1192         struct nvmet_rdma_port *port = cm_id->context;
1193         struct nvmet_port *nport = port->nport;
1194         struct nvmet_rdma_device *ndev;
1195         int inline_page_count;
1196         int inline_sge_count;
1197         int ret;
1198
1199         mutex_lock(&device_list_mutex);
1200         list_for_each_entry(ndev, &device_list, entry) {
1201                 if (ndev->device->node_guid == cm_id->device->node_guid &&
1202                     kref_get_unless_zero(&ndev->ref))
1203                         goto out_unlock;
1204         }
1205
1206         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1207         if (!ndev)
1208                 goto out_err;
1209
1210         inline_page_count = num_pages(nport->inline_data_size);
1211         inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1212                                 cm_id->device->attrs.max_recv_sge) - 1;
1213         if (inline_page_count > inline_sge_count) {
1214                 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1215                         nport->inline_data_size, cm_id->device->name,
1216                         inline_sge_count * PAGE_SIZE);
1217                 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1218                 inline_page_count = inline_sge_count;
1219         }
1220         ndev->inline_data_size = nport->inline_data_size;
1221         ndev->inline_page_count = inline_page_count;
1222
1223         if (nport->pi_enable && !(cm_id->device->attrs.device_cap_flags &
1224                                   IB_DEVICE_INTEGRITY_HANDOVER)) {
1225                 pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1226                         cm_id->device->name);
1227                 nport->pi_enable = false;
1228         }
1229
1230         ndev->device = cm_id->device;
1231         kref_init(&ndev->ref);
1232
1233         ndev->pd = ib_alloc_pd(ndev->device, 0);
1234         if (IS_ERR(ndev->pd))
1235                 goto out_free_dev;
1236
1237         if (nvmet_rdma_use_srq) {
1238                 ret = nvmet_rdma_init_srqs(ndev);
1239                 if (ret)
1240                         goto out_free_pd;
1241         }
1242
1243         list_add(&ndev->entry, &device_list);
1244 out_unlock:
1245         mutex_unlock(&device_list_mutex);
1246         pr_debug("added %s.\n", ndev->device->name);
1247         return ndev;
1248
1249 out_free_pd:
1250         ib_dealloc_pd(ndev->pd);
1251 out_free_dev:
1252         kfree(ndev);
1253 out_err:
1254         mutex_unlock(&device_list_mutex);
1255         return NULL;
1256 }
1257
1258 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1259 {
1260         struct ib_qp_init_attr qp_attr = { };
1261         struct nvmet_rdma_device *ndev = queue->dev;
1262         int nr_cqe, ret, i, factor;
1263
1264         /*
1265          * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1266          */
1267         nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1268
1269         queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1270                                    queue->comp_vector, IB_POLL_WORKQUEUE);
1271         if (IS_ERR(queue->cq)) {
1272                 ret = PTR_ERR(queue->cq);
1273                 pr_err("failed to create CQ cqe= %d ret= %d\n",
1274                        nr_cqe + 1, ret);
1275                 goto out;
1276         }
1277
1278         qp_attr.qp_context = queue;
1279         qp_attr.event_handler = nvmet_rdma_qp_event;
1280         qp_attr.send_cq = queue->cq;
1281         qp_attr.recv_cq = queue->cq;
1282         qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1283         qp_attr.qp_type = IB_QPT_RC;
1284         /* +1 for drain */
1285         qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1286         factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1287                                    1 << NVMET_RDMA_MAX_MDTS);
1288         qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1289         qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1290                                         ndev->device->attrs.max_send_sge);
1291
1292         if (queue->nsrq) {
1293                 qp_attr.srq = queue->nsrq->srq;
1294         } else {
1295                 /* +1 for drain */
1296                 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1297                 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1298         }
1299
1300         if (queue->port->pi_enable && queue->host_qid)
1301                 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1302
1303         ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1304         if (ret) {
1305                 pr_err("failed to create_qp ret= %d\n", ret);
1306                 goto err_destroy_cq;
1307         }
1308         queue->qp = queue->cm_id->qp;
1309
1310         atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1311
1312         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1313                  __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1314                  qp_attr.cap.max_send_wr, queue->cm_id);
1315
1316         if (!queue->nsrq) {
1317                 for (i = 0; i < queue->recv_queue_size; i++) {
1318                         queue->cmds[i].queue = queue;
1319                         ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1320                         if (ret)
1321                                 goto err_destroy_qp;
1322                 }
1323         }
1324
1325 out:
1326         return ret;
1327
1328 err_destroy_qp:
1329         rdma_destroy_qp(queue->cm_id);
1330 err_destroy_cq:
1331         ib_cq_pool_put(queue->cq, nr_cqe + 1);
1332         goto out;
1333 }
1334
1335 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1336 {
1337         ib_drain_qp(queue->qp);
1338         if (queue->cm_id)
1339                 rdma_destroy_id(queue->cm_id);
1340         ib_destroy_qp(queue->qp);
1341         ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1342                        queue->send_queue_size + 1);
1343 }
1344
1345 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1346 {
1347         pr_debug("freeing queue %d\n", queue->idx);
1348
1349         nvmet_sq_destroy(&queue->nvme_sq);
1350
1351         nvmet_rdma_destroy_queue_ib(queue);
1352         if (!queue->nsrq) {
1353                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1354                                 queue->recv_queue_size,
1355                                 !queue->host_qid);
1356         }
1357         nvmet_rdma_free_rsps(queue);
1358         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1359         kfree(queue);
1360 }
1361
1362 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1363 {
1364         struct nvmet_rdma_queue *queue =
1365                 container_of(w, struct nvmet_rdma_queue, release_work);
1366         struct nvmet_rdma_device *dev = queue->dev;
1367
1368         nvmet_rdma_free_queue(queue);
1369
1370         kref_put(&dev->ref, nvmet_rdma_free_dev);
1371 }
1372
1373 static int
1374 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1375                                 struct nvmet_rdma_queue *queue)
1376 {
1377         struct nvme_rdma_cm_req *req;
1378
1379         req = (struct nvme_rdma_cm_req *)conn->private_data;
1380         if (!req || conn->private_data_len == 0)
1381                 return NVME_RDMA_CM_INVALID_LEN;
1382
1383         if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1384                 return NVME_RDMA_CM_INVALID_RECFMT;
1385
1386         queue->host_qid = le16_to_cpu(req->qid);
1387
1388         /*
1389          * req->hsqsize corresponds to our recv queue size plus 1
1390          * req->hrqsize corresponds to our send queue size
1391          */
1392         queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1393         queue->send_queue_size = le16_to_cpu(req->hrqsize);
1394
1395         if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1396                 return NVME_RDMA_CM_INVALID_HSQSIZE;
1397
1398         /* XXX: Should we enforce some kind of max for IO queues? */
1399
1400         return 0;
1401 }
1402
1403 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1404                                 enum nvme_rdma_cm_status status)
1405 {
1406         struct nvme_rdma_cm_rej rej;
1407
1408         pr_debug("rejecting connect request: status %d (%s)\n",
1409                  status, nvme_rdma_cm_msg(status));
1410
1411         rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1412         rej.sts = cpu_to_le16(status);
1413
1414         return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1415                            IB_CM_REJ_CONSUMER_DEFINED);
1416 }
1417
1418 static struct nvmet_rdma_queue *
1419 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1420                 struct rdma_cm_id *cm_id,
1421                 struct rdma_cm_event *event)
1422 {
1423         struct nvmet_rdma_port *port = cm_id->context;
1424         struct nvmet_rdma_queue *queue;
1425         int ret;
1426
1427         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1428         if (!queue) {
1429                 ret = NVME_RDMA_CM_NO_RSC;
1430                 goto out_reject;
1431         }
1432
1433         ret = nvmet_sq_init(&queue->nvme_sq);
1434         if (ret) {
1435                 ret = NVME_RDMA_CM_NO_RSC;
1436                 goto out_free_queue;
1437         }
1438
1439         ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1440         if (ret)
1441                 goto out_destroy_sq;
1442
1443         /*
1444          * Schedules the actual release because calling rdma_destroy_id from
1445          * inside a CM callback would trigger a deadlock. (great API design..)
1446          */
1447         INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1448         queue->dev = ndev;
1449         queue->cm_id = cm_id;
1450         queue->port = port->nport;
1451
1452         spin_lock_init(&queue->state_lock);
1453         queue->state = NVMET_RDMA_Q_CONNECTING;
1454         INIT_LIST_HEAD(&queue->rsp_wait_list);
1455         INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1456         spin_lock_init(&queue->rsp_wr_wait_lock);
1457         INIT_LIST_HEAD(&queue->free_rsps);
1458         spin_lock_init(&queue->rsps_lock);
1459         INIT_LIST_HEAD(&queue->queue_list);
1460
1461         queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1462         if (queue->idx < 0) {
1463                 ret = NVME_RDMA_CM_NO_RSC;
1464                 goto out_destroy_sq;
1465         }
1466
1467         /*
1468          * Spread the io queues across completion vectors,
1469          * but still keep all admin queues on vector 0.
1470          */
1471         queue->comp_vector = !queue->host_qid ? 0 :
1472                 queue->idx % ndev->device->num_comp_vectors;
1473
1474
1475         ret = nvmet_rdma_alloc_rsps(queue);
1476         if (ret) {
1477                 ret = NVME_RDMA_CM_NO_RSC;
1478                 goto out_ida_remove;
1479         }
1480
1481         if (ndev->srqs) {
1482                 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1483         } else {
1484                 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1485                                 queue->recv_queue_size,
1486                                 !queue->host_qid);
1487                 if (IS_ERR(queue->cmds)) {
1488                         ret = NVME_RDMA_CM_NO_RSC;
1489                         goto out_free_responses;
1490                 }
1491         }
1492
1493         ret = nvmet_rdma_create_queue_ib(queue);
1494         if (ret) {
1495                 pr_err("%s: creating RDMA queue failed (%d).\n",
1496                         __func__, ret);
1497                 ret = NVME_RDMA_CM_NO_RSC;
1498                 goto out_free_cmds;
1499         }
1500
1501         return queue;
1502
1503 out_free_cmds:
1504         if (!queue->nsrq) {
1505                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1506                                 queue->recv_queue_size,
1507                                 !queue->host_qid);
1508         }
1509 out_free_responses:
1510         nvmet_rdma_free_rsps(queue);
1511 out_ida_remove:
1512         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1513 out_destroy_sq:
1514         nvmet_sq_destroy(&queue->nvme_sq);
1515 out_free_queue:
1516         kfree(queue);
1517 out_reject:
1518         nvmet_rdma_cm_reject(cm_id, ret);
1519         return NULL;
1520 }
1521
1522 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1523 {
1524         struct nvmet_rdma_queue *queue = priv;
1525
1526         switch (event->event) {
1527         case IB_EVENT_COMM_EST:
1528                 rdma_notify(queue->cm_id, event->event);
1529                 break;
1530         case IB_EVENT_QP_LAST_WQE_REACHED:
1531                 pr_debug("received last WQE reached event for queue=0x%p\n",
1532                          queue);
1533                 break;
1534         default:
1535                 pr_err("received IB QP event: %s (%d)\n",
1536                        ib_event_msg(event->event), event->event);
1537                 break;
1538         }
1539 }
1540
1541 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1542                 struct nvmet_rdma_queue *queue,
1543                 struct rdma_conn_param *p)
1544 {
1545         struct rdma_conn_param  param = { };
1546         struct nvme_rdma_cm_rep priv = { };
1547         int ret = -ENOMEM;
1548
1549         param.rnr_retry_count = 7;
1550         param.flow_control = 1;
1551         param.initiator_depth = min_t(u8, p->initiator_depth,
1552                 queue->dev->device->attrs.max_qp_init_rd_atom);
1553         param.private_data = &priv;
1554         param.private_data_len = sizeof(priv);
1555         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1556         priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1557
1558         ret = rdma_accept(cm_id, &param);
1559         if (ret)
1560                 pr_err("rdma_accept failed (error code = %d)\n", ret);
1561
1562         return ret;
1563 }
1564
1565 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1566                 struct rdma_cm_event *event)
1567 {
1568         struct nvmet_rdma_device *ndev;
1569         struct nvmet_rdma_queue *queue;
1570         int ret = -EINVAL;
1571
1572         ndev = nvmet_rdma_find_get_device(cm_id);
1573         if (!ndev) {
1574                 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1575                 return -ECONNREFUSED;
1576         }
1577
1578         queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1579         if (!queue) {
1580                 ret = -ENOMEM;
1581                 goto put_device;
1582         }
1583
1584         if (queue->host_qid == 0) {
1585                 /* Let inflight controller teardown complete */
1586                 flush_scheduled_work();
1587         }
1588
1589         ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1590         if (ret) {
1591                 /*
1592                  * Don't destroy the cm_id in free path, as we implicitly
1593                  * destroy the cm_id here with non-zero ret code.
1594                  */
1595                 queue->cm_id = NULL;
1596                 goto free_queue;
1597         }
1598
1599         mutex_lock(&nvmet_rdma_queue_mutex);
1600         list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1601         mutex_unlock(&nvmet_rdma_queue_mutex);
1602
1603         return 0;
1604
1605 free_queue:
1606         nvmet_rdma_free_queue(queue);
1607 put_device:
1608         kref_put(&ndev->ref, nvmet_rdma_free_dev);
1609
1610         return ret;
1611 }
1612
1613 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1614 {
1615         unsigned long flags;
1616
1617         spin_lock_irqsave(&queue->state_lock, flags);
1618         if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1619                 pr_warn("trying to establish a connected queue\n");
1620                 goto out_unlock;
1621         }
1622         queue->state = NVMET_RDMA_Q_LIVE;
1623
1624         while (!list_empty(&queue->rsp_wait_list)) {
1625                 struct nvmet_rdma_rsp *cmd;
1626
1627                 cmd = list_first_entry(&queue->rsp_wait_list,
1628                                         struct nvmet_rdma_rsp, wait_list);
1629                 list_del(&cmd->wait_list);
1630
1631                 spin_unlock_irqrestore(&queue->state_lock, flags);
1632                 nvmet_rdma_handle_command(queue, cmd);
1633                 spin_lock_irqsave(&queue->state_lock, flags);
1634         }
1635
1636 out_unlock:
1637         spin_unlock_irqrestore(&queue->state_lock, flags);
1638 }
1639
1640 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1641 {
1642         bool disconnect = false;
1643         unsigned long flags;
1644
1645         pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1646
1647         spin_lock_irqsave(&queue->state_lock, flags);
1648         switch (queue->state) {
1649         case NVMET_RDMA_Q_CONNECTING:
1650                 while (!list_empty(&queue->rsp_wait_list)) {
1651                         struct nvmet_rdma_rsp *rsp;
1652
1653                         rsp = list_first_entry(&queue->rsp_wait_list,
1654                                                struct nvmet_rdma_rsp,
1655                                                wait_list);
1656                         list_del(&rsp->wait_list);
1657                         nvmet_rdma_put_rsp(rsp);
1658                 }
1659                 fallthrough;
1660         case NVMET_RDMA_Q_LIVE:
1661                 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1662                 disconnect = true;
1663                 break;
1664         case NVMET_RDMA_Q_DISCONNECTING:
1665                 break;
1666         }
1667         spin_unlock_irqrestore(&queue->state_lock, flags);
1668
1669         if (disconnect) {
1670                 rdma_disconnect(queue->cm_id);
1671                 schedule_work(&queue->release_work);
1672         }
1673 }
1674
1675 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1676 {
1677         bool disconnect = false;
1678
1679         mutex_lock(&nvmet_rdma_queue_mutex);
1680         if (!list_empty(&queue->queue_list)) {
1681                 list_del_init(&queue->queue_list);
1682                 disconnect = true;
1683         }
1684         mutex_unlock(&nvmet_rdma_queue_mutex);
1685
1686         if (disconnect)
1687                 __nvmet_rdma_queue_disconnect(queue);
1688 }
1689
1690 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1691                 struct nvmet_rdma_queue *queue)
1692 {
1693         WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1694
1695         mutex_lock(&nvmet_rdma_queue_mutex);
1696         if (!list_empty(&queue->queue_list))
1697                 list_del_init(&queue->queue_list);
1698         mutex_unlock(&nvmet_rdma_queue_mutex);
1699
1700         pr_err("failed to connect queue %d\n", queue->idx);
1701         schedule_work(&queue->release_work);
1702 }
1703
1704 /**
1705  * nvme_rdma_device_removal() - Handle RDMA device removal
1706  * @cm_id:      rdma_cm id, used for nvmet port
1707  * @queue:      nvmet rdma queue (cm id qp_context)
1708  *
1709  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1710  * to unplug. Note that this event can be generated on a normal
1711  * queue cm_id and/or a device bound listener cm_id (where in this
1712  * case queue will be null).
1713  *
1714  * We registered an ib_client to handle device removal for queues,
1715  * so we only need to handle the listening port cm_ids. In this case
1716  * we nullify the priv to prevent double cm_id destruction and destroying
1717  * the cm_id implicitely by returning a non-zero rc to the callout.
1718  */
1719 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1720                 struct nvmet_rdma_queue *queue)
1721 {
1722         struct nvmet_rdma_port *port;
1723
1724         if (queue) {
1725                 /*
1726                  * This is a queue cm_id. we have registered
1727                  * an ib_client to handle queues removal
1728                  * so don't interfear and just return.
1729                  */
1730                 return 0;
1731         }
1732
1733         port = cm_id->context;
1734
1735         /*
1736          * This is a listener cm_id. Make sure that
1737          * future remove_port won't invoke a double
1738          * cm_id destroy. use atomic xchg to make sure
1739          * we don't compete with remove_port.
1740          */
1741         if (xchg(&port->cm_id, NULL) != cm_id)
1742                 return 0;
1743
1744         /*
1745          * We need to return 1 so that the core will destroy
1746          * it's own ID.  What a great API design..
1747          */
1748         return 1;
1749 }
1750
1751 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1752                 struct rdma_cm_event *event)
1753 {
1754         struct nvmet_rdma_queue *queue = NULL;
1755         int ret = 0;
1756
1757         if (cm_id->qp)
1758                 queue = cm_id->qp->qp_context;
1759
1760         pr_debug("%s (%d): status %d id %p\n",
1761                 rdma_event_msg(event->event), event->event,
1762                 event->status, cm_id);
1763
1764         switch (event->event) {
1765         case RDMA_CM_EVENT_CONNECT_REQUEST:
1766                 ret = nvmet_rdma_queue_connect(cm_id, event);
1767                 break;
1768         case RDMA_CM_EVENT_ESTABLISHED:
1769                 nvmet_rdma_queue_established(queue);
1770                 break;
1771         case RDMA_CM_EVENT_ADDR_CHANGE:
1772                 if (!queue) {
1773                         struct nvmet_rdma_port *port = cm_id->context;
1774
1775                         schedule_delayed_work(&port->repair_work, 0);
1776                         break;
1777                 }
1778                 fallthrough;
1779         case RDMA_CM_EVENT_DISCONNECTED:
1780         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1781                 nvmet_rdma_queue_disconnect(queue);
1782                 break;
1783         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1784                 ret = nvmet_rdma_device_removal(cm_id, queue);
1785                 break;
1786         case RDMA_CM_EVENT_REJECTED:
1787                 pr_debug("Connection rejected: %s\n",
1788                          rdma_reject_msg(cm_id, event->status));
1789                 fallthrough;
1790         case RDMA_CM_EVENT_UNREACHABLE:
1791         case RDMA_CM_EVENT_CONNECT_ERROR:
1792                 nvmet_rdma_queue_connect_fail(cm_id, queue);
1793                 break;
1794         default:
1795                 pr_err("received unrecognized RDMA CM event %d\n",
1796                         event->event);
1797                 break;
1798         }
1799
1800         return ret;
1801 }
1802
1803 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1804 {
1805         struct nvmet_rdma_queue *queue;
1806
1807 restart:
1808         mutex_lock(&nvmet_rdma_queue_mutex);
1809         list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1810                 if (queue->nvme_sq.ctrl == ctrl) {
1811                         list_del_init(&queue->queue_list);
1812                         mutex_unlock(&nvmet_rdma_queue_mutex);
1813
1814                         __nvmet_rdma_queue_disconnect(queue);
1815                         goto restart;
1816                 }
1817         }
1818         mutex_unlock(&nvmet_rdma_queue_mutex);
1819 }
1820
1821 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1822 {
1823         struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1824
1825         if (cm_id)
1826                 rdma_destroy_id(cm_id);
1827 }
1828
1829 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1830 {
1831         struct sockaddr *addr = (struct sockaddr *)&port->addr;
1832         struct rdma_cm_id *cm_id;
1833         int ret;
1834
1835         cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1836                         RDMA_PS_TCP, IB_QPT_RC);
1837         if (IS_ERR(cm_id)) {
1838                 pr_err("CM ID creation failed\n");
1839                 return PTR_ERR(cm_id);
1840         }
1841
1842         /*
1843          * Allow both IPv4 and IPv6 sockets to bind a single port
1844          * at the same time.
1845          */
1846         ret = rdma_set_afonly(cm_id, 1);
1847         if (ret) {
1848                 pr_err("rdma_set_afonly failed (%d)\n", ret);
1849                 goto out_destroy_id;
1850         }
1851
1852         ret = rdma_bind_addr(cm_id, addr);
1853         if (ret) {
1854                 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1855                 goto out_destroy_id;
1856         }
1857
1858         ret = rdma_listen(cm_id, 128);
1859         if (ret) {
1860                 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1861                 goto out_destroy_id;
1862         }
1863
1864         port->cm_id = cm_id;
1865         return 0;
1866
1867 out_destroy_id:
1868         rdma_destroy_id(cm_id);
1869         return ret;
1870 }
1871
1872 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1873 {
1874         struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1875                         struct nvmet_rdma_port, repair_work);
1876         int ret;
1877
1878         nvmet_rdma_disable_port(port);
1879         ret = nvmet_rdma_enable_port(port);
1880         if (ret)
1881                 schedule_delayed_work(&port->repair_work, 5 * HZ);
1882 }
1883
1884 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1885 {
1886         struct nvmet_rdma_port *port;
1887         __kernel_sa_family_t af;
1888         int ret;
1889
1890         port = kzalloc(sizeof(*port), GFP_KERNEL);
1891         if (!port)
1892                 return -ENOMEM;
1893
1894         nport->priv = port;
1895         port->nport = nport;
1896         INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1897
1898         switch (nport->disc_addr.adrfam) {
1899         case NVMF_ADDR_FAMILY_IP4:
1900                 af = AF_INET;
1901                 break;
1902         case NVMF_ADDR_FAMILY_IP6:
1903                 af = AF_INET6;
1904                 break;
1905         default:
1906                 pr_err("address family %d not supported\n",
1907                         nport->disc_addr.adrfam);
1908                 ret = -EINVAL;
1909                 goto out_free_port;
1910         }
1911
1912         if (nport->inline_data_size < 0) {
1913                 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1914         } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1915                 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1916                         nport->inline_data_size,
1917                         NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1918                 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1919         }
1920
1921         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1922                         nport->disc_addr.trsvcid, &port->addr);
1923         if (ret) {
1924                 pr_err("malformed ip/port passed: %s:%s\n",
1925                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1926                 goto out_free_port;
1927         }
1928
1929         ret = nvmet_rdma_enable_port(port);
1930         if (ret)
1931                 goto out_free_port;
1932
1933         pr_info("enabling port %d (%pISpcs)\n",
1934                 le16_to_cpu(nport->disc_addr.portid),
1935                 (struct sockaddr *)&port->addr);
1936
1937         return 0;
1938
1939 out_free_port:
1940         kfree(port);
1941         return ret;
1942 }
1943
1944 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1945 {
1946         struct nvmet_rdma_port *port = nport->priv;
1947
1948         cancel_delayed_work_sync(&port->repair_work);
1949         nvmet_rdma_disable_port(port);
1950         kfree(port);
1951 }
1952
1953 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1954                 struct nvmet_port *nport, char *traddr)
1955 {
1956         struct nvmet_rdma_port *port = nport->priv;
1957         struct rdma_cm_id *cm_id = port->cm_id;
1958
1959         if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1960                 struct nvmet_rdma_rsp *rsp =
1961                         container_of(req, struct nvmet_rdma_rsp, req);
1962                 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1963                 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1964
1965                 sprintf(traddr, "%pISc", addr);
1966         } else {
1967                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1968         }
1969 }
1970
1971 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1972 {
1973         if (ctrl->pi_support)
1974                 return NVMET_RDMA_MAX_METADATA_MDTS;
1975         return NVMET_RDMA_MAX_MDTS;
1976 }
1977
1978 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1979         .owner                  = THIS_MODULE,
1980         .type                   = NVMF_TRTYPE_RDMA,
1981         .msdbd                  = 1,
1982         .flags                  = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
1983         .add_port               = nvmet_rdma_add_port,
1984         .remove_port            = nvmet_rdma_remove_port,
1985         .queue_response         = nvmet_rdma_queue_response,
1986         .delete_ctrl            = nvmet_rdma_delete_ctrl,
1987         .disc_traddr            = nvmet_rdma_disc_port_addr,
1988         .get_mdts               = nvmet_rdma_get_mdts,
1989 };
1990
1991 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1992 {
1993         struct nvmet_rdma_queue *queue, *tmp;
1994         struct nvmet_rdma_device *ndev;
1995         bool found = false;
1996
1997         mutex_lock(&device_list_mutex);
1998         list_for_each_entry(ndev, &device_list, entry) {
1999                 if (ndev->device == ib_device) {
2000                         found = true;
2001                         break;
2002                 }
2003         }
2004         mutex_unlock(&device_list_mutex);
2005
2006         if (!found)
2007                 return;
2008
2009         /*
2010          * IB Device that is used by nvmet controllers is being removed,
2011          * delete all queues using this device.
2012          */
2013         mutex_lock(&nvmet_rdma_queue_mutex);
2014         list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2015                                  queue_list) {
2016                 if (queue->dev->device != ib_device)
2017                         continue;
2018
2019                 pr_info("Removing queue %d\n", queue->idx);
2020                 list_del_init(&queue->queue_list);
2021                 __nvmet_rdma_queue_disconnect(queue);
2022         }
2023         mutex_unlock(&nvmet_rdma_queue_mutex);
2024
2025         flush_scheduled_work();
2026 }
2027
2028 static struct ib_client nvmet_rdma_ib_client = {
2029         .name   = "nvmet_rdma",
2030         .remove = nvmet_rdma_remove_one
2031 };
2032
2033 static int __init nvmet_rdma_init(void)
2034 {
2035         int ret;
2036
2037         ret = ib_register_client(&nvmet_rdma_ib_client);
2038         if (ret)
2039                 return ret;
2040
2041         ret = nvmet_register_transport(&nvmet_rdma_ops);
2042         if (ret)
2043                 goto err_ib_client;
2044
2045         return 0;
2046
2047 err_ib_client:
2048         ib_unregister_client(&nvmet_rdma_ib_client);
2049         return ret;
2050 }
2051
2052 static void __exit nvmet_rdma_exit(void)
2053 {
2054         nvmet_unregister_transport(&nvmet_rdma_ops);
2055         ib_unregister_client(&nvmet_rdma_ib_client);
2056         WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2057         ida_destroy(&nvmet_rdma_queue_ida);
2058 }
2059
2060 module_init(nvmet_rdma_init);
2061 module_exit(nvmet_rdma_exit);
2062
2063 MODULE_LICENSE("GPL v2");
2064 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */