Merge tag 'pm-5.11-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / drivers / nvme / target / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/nvme.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/wait.h>
17 #include <linux/inet.h>
18 #include <asm/unaligned.h>
19
20 #include <rdma/ib_verbs.h>
21 #include <rdma/rdma_cm.h>
22 #include <rdma/rw.h>
23 #include <rdma/ib_cm.h>
24
25 #include <linux/nvme-rdma.h>
26 #include "nvmet.h"
27
28 /*
29  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
30  */
31 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE     PAGE_SIZE
32 #define NVMET_RDMA_MAX_INLINE_SGE               4
33 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE         max_t(int, SZ_16K, PAGE_SIZE)
34
35 /* Assume mpsmin == device_page_size == 4KB */
36 #define NVMET_RDMA_MAX_MDTS                     8
37 #define NVMET_RDMA_MAX_METADATA_MDTS            5
38
39 struct nvmet_rdma_srq;
40
41 struct nvmet_rdma_cmd {
42         struct ib_sge           sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
43         struct ib_cqe           cqe;
44         struct ib_recv_wr       wr;
45         struct scatterlist      inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
46         struct nvme_command     *nvme_cmd;
47         struct nvmet_rdma_queue *queue;
48         struct nvmet_rdma_srq   *nsrq;
49 };
50
51 enum {
52         NVMET_RDMA_REQ_INLINE_DATA      = (1 << 0),
53         NVMET_RDMA_REQ_INVALIDATE_RKEY  = (1 << 1),
54 };
55
56 struct nvmet_rdma_rsp {
57         struct ib_sge           send_sge;
58         struct ib_cqe           send_cqe;
59         struct ib_send_wr       send_wr;
60
61         struct nvmet_rdma_cmd   *cmd;
62         struct nvmet_rdma_queue *queue;
63
64         struct ib_cqe           read_cqe;
65         struct ib_cqe           write_cqe;
66         struct rdma_rw_ctx      rw;
67
68         struct nvmet_req        req;
69
70         bool                    allocated;
71         u8                      n_rdma;
72         u32                     flags;
73         u32                     invalidate_rkey;
74
75         struct list_head        wait_list;
76         struct list_head        free_list;
77 };
78
79 enum nvmet_rdma_queue_state {
80         NVMET_RDMA_Q_CONNECTING,
81         NVMET_RDMA_Q_LIVE,
82         NVMET_RDMA_Q_DISCONNECTING,
83 };
84
85 struct nvmet_rdma_queue {
86         struct rdma_cm_id       *cm_id;
87         struct ib_qp            *qp;
88         struct nvmet_port       *port;
89         struct ib_cq            *cq;
90         atomic_t                sq_wr_avail;
91         struct nvmet_rdma_device *dev;
92         struct nvmet_rdma_srq   *nsrq;
93         spinlock_t              state_lock;
94         enum nvmet_rdma_queue_state state;
95         struct nvmet_cq         nvme_cq;
96         struct nvmet_sq         nvme_sq;
97
98         struct nvmet_rdma_rsp   *rsps;
99         struct list_head        free_rsps;
100         spinlock_t              rsps_lock;
101         struct nvmet_rdma_cmd   *cmds;
102
103         struct work_struct      release_work;
104         struct list_head        rsp_wait_list;
105         struct list_head        rsp_wr_wait_list;
106         spinlock_t              rsp_wr_wait_lock;
107
108         int                     idx;
109         int                     host_qid;
110         int                     comp_vector;
111         int                     recv_queue_size;
112         int                     send_queue_size;
113
114         struct list_head        queue_list;
115 };
116
117 struct nvmet_rdma_port {
118         struct nvmet_port       *nport;
119         struct sockaddr_storage addr;
120         struct rdma_cm_id       *cm_id;
121         struct delayed_work     repair_work;
122 };
123
124 struct nvmet_rdma_srq {
125         struct ib_srq            *srq;
126         struct nvmet_rdma_cmd    *cmds;
127         struct nvmet_rdma_device *ndev;
128 };
129
130 struct nvmet_rdma_device {
131         struct ib_device        *device;
132         struct ib_pd            *pd;
133         struct nvmet_rdma_srq   **srqs;
134         int                     srq_count;
135         size_t                  srq_size;
136         struct kref             ref;
137         struct list_head        entry;
138         int                     inline_data_size;
139         int                     inline_page_count;
140 };
141
142 static bool nvmet_rdma_use_srq;
143 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
144 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
145
146 static int srq_size_set(const char *val, const struct kernel_param *kp);
147 static const struct kernel_param_ops srq_size_ops = {
148         .set = srq_size_set,
149         .get = param_get_int,
150 };
151
152 static int nvmet_rdma_srq_size = 1024;
153 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
154 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
155
156 static DEFINE_IDA(nvmet_rdma_queue_ida);
157 static LIST_HEAD(nvmet_rdma_queue_list);
158 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
159
160 static LIST_HEAD(device_list);
161 static DEFINE_MUTEX(device_list_mutex);
162
163 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
164 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
165 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
166 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
167 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
169 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
170 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
171                                 struct nvmet_rdma_rsp *r);
172 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
173                                 struct nvmet_rdma_rsp *r);
174
175 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
176
177 static int srq_size_set(const char *val, const struct kernel_param *kp)
178 {
179         int n = 0, ret;
180
181         ret = kstrtoint(val, 10, &n);
182         if (ret != 0 || n < 256)
183                 return -EINVAL;
184
185         return param_set_int(val, kp);
186 }
187
188 static int num_pages(int len)
189 {
190         return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
191 }
192
193 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
194 {
195         return nvme_is_write(rsp->req.cmd) &&
196                 rsp->req.transfer_len &&
197                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
198 }
199
200 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
201 {
202         return !nvme_is_write(rsp->req.cmd) &&
203                 rsp->req.transfer_len &&
204                 !rsp->req.cqe->status &&
205                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
206 }
207
208 static inline struct nvmet_rdma_rsp *
209 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
210 {
211         struct nvmet_rdma_rsp *rsp;
212         unsigned long flags;
213
214         spin_lock_irqsave(&queue->rsps_lock, flags);
215         rsp = list_first_entry_or_null(&queue->free_rsps,
216                                 struct nvmet_rdma_rsp, free_list);
217         if (likely(rsp))
218                 list_del(&rsp->free_list);
219         spin_unlock_irqrestore(&queue->rsps_lock, flags);
220
221         if (unlikely(!rsp)) {
222                 int ret;
223
224                 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
225                 if (unlikely(!rsp))
226                         return NULL;
227                 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
228                 if (unlikely(ret)) {
229                         kfree(rsp);
230                         return NULL;
231                 }
232
233                 rsp->allocated = true;
234         }
235
236         return rsp;
237 }
238
239 static inline void
240 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
241 {
242         unsigned long flags;
243
244         if (unlikely(rsp->allocated)) {
245                 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
246                 kfree(rsp);
247                 return;
248         }
249
250         spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
251         list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
252         spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
253 }
254
255 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
256                                 struct nvmet_rdma_cmd *c)
257 {
258         struct scatterlist *sg;
259         struct ib_sge *sge;
260         int i;
261
262         if (!ndev->inline_data_size)
263                 return;
264
265         sg = c->inline_sg;
266         sge = &c->sge[1];
267
268         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
269                 if (sge->length)
270                         ib_dma_unmap_page(ndev->device, sge->addr,
271                                         sge->length, DMA_FROM_DEVICE);
272                 if (sg_page(sg))
273                         __free_page(sg_page(sg));
274         }
275 }
276
277 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
278                                 struct nvmet_rdma_cmd *c)
279 {
280         struct scatterlist *sg;
281         struct ib_sge *sge;
282         struct page *pg;
283         int len;
284         int i;
285
286         if (!ndev->inline_data_size)
287                 return 0;
288
289         sg = c->inline_sg;
290         sg_init_table(sg, ndev->inline_page_count);
291         sge = &c->sge[1];
292         len = ndev->inline_data_size;
293
294         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
295                 pg = alloc_page(GFP_KERNEL);
296                 if (!pg)
297                         goto out_err;
298                 sg_assign_page(sg, pg);
299                 sge->addr = ib_dma_map_page(ndev->device,
300                         pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
301                 if (ib_dma_mapping_error(ndev->device, sge->addr))
302                         goto out_err;
303                 sge->length = min_t(int, len, PAGE_SIZE);
304                 sge->lkey = ndev->pd->local_dma_lkey;
305                 len -= sge->length;
306         }
307
308         return 0;
309 out_err:
310         for (; i >= 0; i--, sg--, sge--) {
311                 if (sge->length)
312                         ib_dma_unmap_page(ndev->device, sge->addr,
313                                         sge->length, DMA_FROM_DEVICE);
314                 if (sg_page(sg))
315                         __free_page(sg_page(sg));
316         }
317         return -ENOMEM;
318 }
319
320 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
321                         struct nvmet_rdma_cmd *c, bool admin)
322 {
323         /* NVMe command / RDMA RECV */
324         c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
325         if (!c->nvme_cmd)
326                 goto out;
327
328         c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
329                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
330         if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
331                 goto out_free_cmd;
332
333         c->sge[0].length = sizeof(*c->nvme_cmd);
334         c->sge[0].lkey = ndev->pd->local_dma_lkey;
335
336         if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
337                 goto out_unmap_cmd;
338
339         c->cqe.done = nvmet_rdma_recv_done;
340
341         c->wr.wr_cqe = &c->cqe;
342         c->wr.sg_list = c->sge;
343         c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
344
345         return 0;
346
347 out_unmap_cmd:
348         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
349                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
350 out_free_cmd:
351         kfree(c->nvme_cmd);
352
353 out:
354         return -ENOMEM;
355 }
356
357 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
358                 struct nvmet_rdma_cmd *c, bool admin)
359 {
360         if (!admin)
361                 nvmet_rdma_free_inline_pages(ndev, c);
362         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
363                                 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
364         kfree(c->nvme_cmd);
365 }
366
367 static struct nvmet_rdma_cmd *
368 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
369                 int nr_cmds, bool admin)
370 {
371         struct nvmet_rdma_cmd *cmds;
372         int ret = -EINVAL, i;
373
374         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
375         if (!cmds)
376                 goto out;
377
378         for (i = 0; i < nr_cmds; i++) {
379                 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
380                 if (ret)
381                         goto out_free;
382         }
383
384         return cmds;
385
386 out_free:
387         while (--i >= 0)
388                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
389         kfree(cmds);
390 out:
391         return ERR_PTR(ret);
392 }
393
394 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
395                 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
396 {
397         int i;
398
399         for (i = 0; i < nr_cmds; i++)
400                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
401         kfree(cmds);
402 }
403
404 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
405                 struct nvmet_rdma_rsp *r)
406 {
407         /* NVMe CQE / RDMA SEND */
408         r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
409         if (!r->req.cqe)
410                 goto out;
411
412         r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
413                         sizeof(*r->req.cqe), DMA_TO_DEVICE);
414         if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
415                 goto out_free_rsp;
416
417         if (!ib_uses_virt_dma(ndev->device))
418                 r->req.p2p_client = &ndev->device->dev;
419         r->send_sge.length = sizeof(*r->req.cqe);
420         r->send_sge.lkey = ndev->pd->local_dma_lkey;
421
422         r->send_cqe.done = nvmet_rdma_send_done;
423
424         r->send_wr.wr_cqe = &r->send_cqe;
425         r->send_wr.sg_list = &r->send_sge;
426         r->send_wr.num_sge = 1;
427         r->send_wr.send_flags = IB_SEND_SIGNALED;
428
429         /* Data In / RDMA READ */
430         r->read_cqe.done = nvmet_rdma_read_data_done;
431         /* Data Out / RDMA WRITE */
432         r->write_cqe.done = nvmet_rdma_write_data_done;
433
434         return 0;
435
436 out_free_rsp:
437         kfree(r->req.cqe);
438 out:
439         return -ENOMEM;
440 }
441
442 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
443                 struct nvmet_rdma_rsp *r)
444 {
445         ib_dma_unmap_single(ndev->device, r->send_sge.addr,
446                                 sizeof(*r->req.cqe), DMA_TO_DEVICE);
447         kfree(r->req.cqe);
448 }
449
450 static int
451 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
452 {
453         struct nvmet_rdma_device *ndev = queue->dev;
454         int nr_rsps = queue->recv_queue_size * 2;
455         int ret = -EINVAL, i;
456
457         queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
458                         GFP_KERNEL);
459         if (!queue->rsps)
460                 goto out;
461
462         for (i = 0; i < nr_rsps; i++) {
463                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
464
465                 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
466                 if (ret)
467                         goto out_free;
468
469                 list_add_tail(&rsp->free_list, &queue->free_rsps);
470         }
471
472         return 0;
473
474 out_free:
475         while (--i >= 0) {
476                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
477
478                 list_del(&rsp->free_list);
479                 nvmet_rdma_free_rsp(ndev, rsp);
480         }
481         kfree(queue->rsps);
482 out:
483         return ret;
484 }
485
486 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
487 {
488         struct nvmet_rdma_device *ndev = queue->dev;
489         int i, nr_rsps = queue->recv_queue_size * 2;
490
491         for (i = 0; i < nr_rsps; i++) {
492                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
493
494                 list_del(&rsp->free_list);
495                 nvmet_rdma_free_rsp(ndev, rsp);
496         }
497         kfree(queue->rsps);
498 }
499
500 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
501                 struct nvmet_rdma_cmd *cmd)
502 {
503         int ret;
504
505         ib_dma_sync_single_for_device(ndev->device,
506                 cmd->sge[0].addr, cmd->sge[0].length,
507                 DMA_FROM_DEVICE);
508
509         if (cmd->nsrq)
510                 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
511         else
512                 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
513
514         if (unlikely(ret))
515                 pr_err("post_recv cmd failed\n");
516
517         return ret;
518 }
519
520 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
521 {
522         spin_lock(&queue->rsp_wr_wait_lock);
523         while (!list_empty(&queue->rsp_wr_wait_list)) {
524                 struct nvmet_rdma_rsp *rsp;
525                 bool ret;
526
527                 rsp = list_entry(queue->rsp_wr_wait_list.next,
528                                 struct nvmet_rdma_rsp, wait_list);
529                 list_del(&rsp->wait_list);
530
531                 spin_unlock(&queue->rsp_wr_wait_lock);
532                 ret = nvmet_rdma_execute_command(rsp);
533                 spin_lock(&queue->rsp_wr_wait_lock);
534
535                 if (!ret) {
536                         list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
537                         break;
538                 }
539         }
540         spin_unlock(&queue->rsp_wr_wait_lock);
541 }
542
543 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
544 {
545         struct ib_mr_status mr_status;
546         int ret;
547         u16 status = 0;
548
549         ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
550         if (ret) {
551                 pr_err("ib_check_mr_status failed, ret %d\n", ret);
552                 return NVME_SC_INVALID_PI;
553         }
554
555         if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
556                 switch (mr_status.sig_err.err_type) {
557                 case IB_SIG_BAD_GUARD:
558                         status = NVME_SC_GUARD_CHECK;
559                         break;
560                 case IB_SIG_BAD_REFTAG:
561                         status = NVME_SC_REFTAG_CHECK;
562                         break;
563                 case IB_SIG_BAD_APPTAG:
564                         status = NVME_SC_APPTAG_CHECK;
565                         break;
566                 }
567                 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
568                        mr_status.sig_err.err_type,
569                        mr_status.sig_err.expected,
570                        mr_status.sig_err.actual);
571         }
572
573         return status;
574 }
575
576 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
577                 struct nvme_command *cmd, struct ib_sig_domain *domain,
578                 u16 control, u8 pi_type)
579 {
580         domain->sig_type = IB_SIG_TYPE_T10_DIF;
581         domain->sig.dif.bg_type = IB_T10DIF_CRC;
582         domain->sig.dif.pi_interval = 1 << bi->interval_exp;
583         domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
584         if (control & NVME_RW_PRINFO_PRCHK_REF)
585                 domain->sig.dif.ref_remap = true;
586
587         domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
588         domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
589         domain->sig.dif.app_escape = true;
590         if (pi_type == NVME_NS_DPS_PI_TYPE3)
591                 domain->sig.dif.ref_escape = true;
592 }
593
594 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
595                                      struct ib_sig_attrs *sig_attrs)
596 {
597         struct nvme_command *cmd = req->cmd;
598         u16 control = le16_to_cpu(cmd->rw.control);
599         u8 pi_type = req->ns->pi_type;
600         struct blk_integrity *bi;
601
602         bi = bdev_get_integrity(req->ns->bdev);
603
604         memset(sig_attrs, 0, sizeof(*sig_attrs));
605
606         if (control & NVME_RW_PRINFO_PRACT) {
607                 /* for WRITE_INSERT/READ_STRIP no wire domain */
608                 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
609                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
610                                           pi_type);
611                 /* Clear the PRACT bit since HCA will generate/verify the PI */
612                 control &= ~NVME_RW_PRINFO_PRACT;
613                 cmd->rw.control = cpu_to_le16(control);
614                 /* PI is added by the HW */
615                 req->transfer_len += req->metadata_len;
616         } else {
617                 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
618                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
619                                           pi_type);
620                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
621                                           pi_type);
622         }
623
624         if (control & NVME_RW_PRINFO_PRCHK_REF)
625                 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
626         if (control & NVME_RW_PRINFO_PRCHK_GUARD)
627                 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
628         if (control & NVME_RW_PRINFO_PRCHK_APP)
629                 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
630 }
631
632 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
633                                   struct ib_sig_attrs *sig_attrs)
634 {
635         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
636         struct nvmet_req *req = &rsp->req;
637         int ret;
638
639         if (req->metadata_len)
640                 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
641                         cm_id->port_num, req->sg, req->sg_cnt,
642                         req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
643                         addr, key, nvmet_data_dir(req));
644         else
645                 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
646                                        req->sg, req->sg_cnt, 0, addr, key,
647                                        nvmet_data_dir(req));
648
649         return ret;
650 }
651
652 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
653 {
654         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
655         struct nvmet_req *req = &rsp->req;
656
657         if (req->metadata_len)
658                 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
659                         cm_id->port_num, req->sg, req->sg_cnt,
660                         req->metadata_sg, req->metadata_sg_cnt,
661                         nvmet_data_dir(req));
662         else
663                 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
664                                     req->sg, req->sg_cnt, nvmet_data_dir(req));
665 }
666
667 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
668 {
669         struct nvmet_rdma_queue *queue = rsp->queue;
670
671         atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
672
673         if (rsp->n_rdma)
674                 nvmet_rdma_rw_ctx_destroy(rsp);
675
676         if (rsp->req.sg != rsp->cmd->inline_sg)
677                 nvmet_req_free_sgls(&rsp->req);
678
679         if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
680                 nvmet_rdma_process_wr_wait_list(queue);
681
682         nvmet_rdma_put_rsp(rsp);
683 }
684
685 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
686 {
687         if (queue->nvme_sq.ctrl) {
688                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
689         } else {
690                 /*
691                  * we didn't setup the controller yet in case
692                  * of admin connect error, just disconnect and
693                  * cleanup the queue
694                  */
695                 nvmet_rdma_queue_disconnect(queue);
696         }
697 }
698
699 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
700 {
701         struct nvmet_rdma_rsp *rsp =
702                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
703         struct nvmet_rdma_queue *queue = cq->cq_context;
704
705         nvmet_rdma_release_rsp(rsp);
706
707         if (unlikely(wc->status != IB_WC_SUCCESS &&
708                      wc->status != IB_WC_WR_FLUSH_ERR)) {
709                 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
710                         wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
711                 nvmet_rdma_error_comp(queue);
712         }
713 }
714
715 static void nvmet_rdma_queue_response(struct nvmet_req *req)
716 {
717         struct nvmet_rdma_rsp *rsp =
718                 container_of(req, struct nvmet_rdma_rsp, req);
719         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
720         struct ib_send_wr *first_wr;
721
722         if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
723                 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
724                 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
725         } else {
726                 rsp->send_wr.opcode = IB_WR_SEND;
727         }
728
729         if (nvmet_rdma_need_data_out(rsp)) {
730                 if (rsp->req.metadata_len)
731                         first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
732                                         cm_id->port_num, &rsp->write_cqe, NULL);
733                 else
734                         first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
735                                         cm_id->port_num, NULL, &rsp->send_wr);
736         } else {
737                 first_wr = &rsp->send_wr;
738         }
739
740         nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
741
742         ib_dma_sync_single_for_device(rsp->queue->dev->device,
743                 rsp->send_sge.addr, rsp->send_sge.length,
744                 DMA_TO_DEVICE);
745
746         if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
747                 pr_err("sending cmd response failed\n");
748                 nvmet_rdma_release_rsp(rsp);
749         }
750 }
751
752 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
753 {
754         struct nvmet_rdma_rsp *rsp =
755                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
756         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
757         u16 status = 0;
758
759         WARN_ON(rsp->n_rdma <= 0);
760         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
761         rsp->n_rdma = 0;
762
763         if (unlikely(wc->status != IB_WC_SUCCESS)) {
764                 nvmet_rdma_rw_ctx_destroy(rsp);
765                 nvmet_req_uninit(&rsp->req);
766                 nvmet_rdma_release_rsp(rsp);
767                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
768                         pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
769                                 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
770                         nvmet_rdma_error_comp(queue);
771                 }
772                 return;
773         }
774
775         if (rsp->req.metadata_len)
776                 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
777         nvmet_rdma_rw_ctx_destroy(rsp);
778
779         if (unlikely(status))
780                 nvmet_req_complete(&rsp->req, status);
781         else
782                 rsp->req.execute(&rsp->req);
783 }
784
785 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
786 {
787         struct nvmet_rdma_rsp *rsp =
788                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
789         struct nvmet_rdma_queue *queue = cq->cq_context;
790         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
791         u16 status;
792
793         if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
794                 return;
795
796         WARN_ON(rsp->n_rdma <= 0);
797         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
798         rsp->n_rdma = 0;
799
800         if (unlikely(wc->status != IB_WC_SUCCESS)) {
801                 nvmet_rdma_rw_ctx_destroy(rsp);
802                 nvmet_req_uninit(&rsp->req);
803                 nvmet_rdma_release_rsp(rsp);
804                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
805                         pr_info("RDMA WRITE for CQE 0x%p failed with status %s (%d).\n",
806                                 wc->wr_cqe, ib_wc_status_msg(wc->status),
807                                 wc->status);
808                         nvmet_rdma_error_comp(queue);
809                 }
810                 return;
811         }
812
813         /*
814          * Upon RDMA completion check the signature status
815          * - if succeeded send good NVMe response
816          * - if failed send bad NVMe response with appropriate error
817          */
818         status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
819         if (unlikely(status))
820                 rsp->req.cqe->status = cpu_to_le16(status << 1);
821         nvmet_rdma_rw_ctx_destroy(rsp);
822
823         if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
824                 pr_err("sending cmd response failed\n");
825                 nvmet_rdma_release_rsp(rsp);
826         }
827 }
828
829 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
830                 u64 off)
831 {
832         int sg_count = num_pages(len);
833         struct scatterlist *sg;
834         int i;
835
836         sg = rsp->cmd->inline_sg;
837         for (i = 0; i < sg_count; i++, sg++) {
838                 if (i < sg_count - 1)
839                         sg_unmark_end(sg);
840                 else
841                         sg_mark_end(sg);
842                 sg->offset = off;
843                 sg->length = min_t(int, len, PAGE_SIZE - off);
844                 len -= sg->length;
845                 if (!i)
846                         off = 0;
847         }
848
849         rsp->req.sg = rsp->cmd->inline_sg;
850         rsp->req.sg_cnt = sg_count;
851 }
852
853 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
854 {
855         struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
856         u64 off = le64_to_cpu(sgl->addr);
857         u32 len = le32_to_cpu(sgl->length);
858
859         if (!nvme_is_write(rsp->req.cmd)) {
860                 rsp->req.error_loc =
861                         offsetof(struct nvme_common_command, opcode);
862                 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
863         }
864
865         if (off + len > rsp->queue->dev->inline_data_size) {
866                 pr_err("invalid inline data offset!\n");
867                 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
868         }
869
870         /* no data command? */
871         if (!len)
872                 return 0;
873
874         nvmet_rdma_use_inline_sg(rsp, len, off);
875         rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
876         rsp->req.transfer_len += len;
877         return 0;
878 }
879
880 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
881                 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
882 {
883         u64 addr = le64_to_cpu(sgl->addr);
884         u32 key = get_unaligned_le32(sgl->key);
885         struct ib_sig_attrs sig_attrs;
886         int ret;
887
888         rsp->req.transfer_len = get_unaligned_le24(sgl->length);
889
890         /* no data command? */
891         if (!rsp->req.transfer_len)
892                 return 0;
893
894         if (rsp->req.metadata_len)
895                 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
896
897         ret = nvmet_req_alloc_sgls(&rsp->req);
898         if (unlikely(ret < 0))
899                 goto error_out;
900
901         ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
902         if (unlikely(ret < 0))
903                 goto error_out;
904         rsp->n_rdma += ret;
905
906         if (invalidate) {
907                 rsp->invalidate_rkey = key;
908                 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
909         }
910
911         return 0;
912
913 error_out:
914         rsp->req.transfer_len = 0;
915         return NVME_SC_INTERNAL;
916 }
917
918 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
919 {
920         struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
921
922         switch (sgl->type >> 4) {
923         case NVME_SGL_FMT_DATA_DESC:
924                 switch (sgl->type & 0xf) {
925                 case NVME_SGL_FMT_OFFSET:
926                         return nvmet_rdma_map_sgl_inline(rsp);
927                 default:
928                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
929                         rsp->req.error_loc =
930                                 offsetof(struct nvme_common_command, dptr);
931                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
932                 }
933         case NVME_KEY_SGL_FMT_DATA_DESC:
934                 switch (sgl->type & 0xf) {
935                 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
936                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
937                 case NVME_SGL_FMT_ADDRESS:
938                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
939                 default:
940                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
941                         rsp->req.error_loc =
942                                 offsetof(struct nvme_common_command, dptr);
943                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
944                 }
945         default:
946                 pr_err("invalid SGL type: %#x\n", sgl->type);
947                 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
948                 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
949         }
950 }
951
952 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
953 {
954         struct nvmet_rdma_queue *queue = rsp->queue;
955
956         if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
957                         &queue->sq_wr_avail) < 0)) {
958                 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
959                                 1 + rsp->n_rdma, queue->idx,
960                                 queue->nvme_sq.ctrl->cntlid);
961                 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
962                 return false;
963         }
964
965         if (nvmet_rdma_need_data_in(rsp)) {
966                 if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
967                                 queue->cm_id->port_num, &rsp->read_cqe, NULL))
968                         nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
969         } else {
970                 rsp->req.execute(&rsp->req);
971         }
972
973         return true;
974 }
975
976 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
977                 struct nvmet_rdma_rsp *cmd)
978 {
979         u16 status;
980
981         ib_dma_sync_single_for_cpu(queue->dev->device,
982                 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
983                 DMA_FROM_DEVICE);
984         ib_dma_sync_single_for_cpu(queue->dev->device,
985                 cmd->send_sge.addr, cmd->send_sge.length,
986                 DMA_TO_DEVICE);
987
988         if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
989                         &queue->nvme_sq, &nvmet_rdma_ops))
990                 return;
991
992         status = nvmet_rdma_map_sgl(cmd);
993         if (status)
994                 goto out_err;
995
996         if (unlikely(!nvmet_rdma_execute_command(cmd))) {
997                 spin_lock(&queue->rsp_wr_wait_lock);
998                 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
999                 spin_unlock(&queue->rsp_wr_wait_lock);
1000         }
1001
1002         return;
1003
1004 out_err:
1005         nvmet_req_complete(&cmd->req, status);
1006 }
1007
1008 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1009 {
1010         struct nvmet_rdma_cmd *cmd =
1011                 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1012         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1013         struct nvmet_rdma_rsp *rsp;
1014
1015         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1016                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1017                         pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1018                                 wc->wr_cqe, ib_wc_status_msg(wc->status),
1019                                 wc->status);
1020                         nvmet_rdma_error_comp(queue);
1021                 }
1022                 return;
1023         }
1024
1025         if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1026                 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1027                 nvmet_rdma_error_comp(queue);
1028                 return;
1029         }
1030
1031         cmd->queue = queue;
1032         rsp = nvmet_rdma_get_rsp(queue);
1033         if (unlikely(!rsp)) {
1034                 /*
1035                  * we get here only under memory pressure,
1036                  * silently drop and have the host retry
1037                  * as we can't even fail it.
1038                  */
1039                 nvmet_rdma_post_recv(queue->dev, cmd);
1040                 return;
1041         }
1042         rsp->queue = queue;
1043         rsp->cmd = cmd;
1044         rsp->flags = 0;
1045         rsp->req.cmd = cmd->nvme_cmd;
1046         rsp->req.port = queue->port;
1047         rsp->n_rdma = 0;
1048
1049         if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1050                 unsigned long flags;
1051
1052                 spin_lock_irqsave(&queue->state_lock, flags);
1053                 if (queue->state == NVMET_RDMA_Q_CONNECTING)
1054                         list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1055                 else
1056                         nvmet_rdma_put_rsp(rsp);
1057                 spin_unlock_irqrestore(&queue->state_lock, flags);
1058                 return;
1059         }
1060
1061         nvmet_rdma_handle_command(queue, rsp);
1062 }
1063
1064 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1065 {
1066         nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1067                              false);
1068         ib_destroy_srq(nsrq->srq);
1069
1070         kfree(nsrq);
1071 }
1072
1073 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1074 {
1075         int i;
1076
1077         if (!ndev->srqs)
1078                 return;
1079
1080         for (i = 0; i < ndev->srq_count; i++)
1081                 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1082
1083         kfree(ndev->srqs);
1084 }
1085
1086 static struct nvmet_rdma_srq *
1087 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1088 {
1089         struct ib_srq_init_attr srq_attr = { NULL, };
1090         size_t srq_size = ndev->srq_size;
1091         struct nvmet_rdma_srq *nsrq;
1092         struct ib_srq *srq;
1093         int ret, i;
1094
1095         nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1096         if (!nsrq)
1097                 return ERR_PTR(-ENOMEM);
1098
1099         srq_attr.attr.max_wr = srq_size;
1100         srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1101         srq_attr.attr.srq_limit = 0;
1102         srq_attr.srq_type = IB_SRQT_BASIC;
1103         srq = ib_create_srq(ndev->pd, &srq_attr);
1104         if (IS_ERR(srq)) {
1105                 ret = PTR_ERR(srq);
1106                 goto out_free;
1107         }
1108
1109         nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1110         if (IS_ERR(nsrq->cmds)) {
1111                 ret = PTR_ERR(nsrq->cmds);
1112                 goto out_destroy_srq;
1113         }
1114
1115         nsrq->srq = srq;
1116         nsrq->ndev = ndev;
1117
1118         for (i = 0; i < srq_size; i++) {
1119                 nsrq->cmds[i].nsrq = nsrq;
1120                 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1121                 if (ret)
1122                         goto out_free_cmds;
1123         }
1124
1125         return nsrq;
1126
1127 out_free_cmds:
1128         nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1129 out_destroy_srq:
1130         ib_destroy_srq(srq);
1131 out_free:
1132         kfree(nsrq);
1133         return ERR_PTR(ret);
1134 }
1135
1136 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1137 {
1138         int i, ret;
1139
1140         if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1141                 /*
1142                  * If SRQs aren't supported we just go ahead and use normal
1143                  * non-shared receive queues.
1144                  */
1145                 pr_info("SRQ requested but not supported.\n");
1146                 return 0;
1147         }
1148
1149         ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1150                              nvmet_rdma_srq_size);
1151         ndev->srq_count = min(ndev->device->num_comp_vectors,
1152                               ndev->device->attrs.max_srq);
1153
1154         ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1155         if (!ndev->srqs)
1156                 return -ENOMEM;
1157
1158         for (i = 0; i < ndev->srq_count; i++) {
1159                 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1160                 if (IS_ERR(ndev->srqs[i])) {
1161                         ret = PTR_ERR(ndev->srqs[i]);
1162                         goto err_srq;
1163                 }
1164         }
1165
1166         return 0;
1167
1168 err_srq:
1169         while (--i >= 0)
1170                 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1171         kfree(ndev->srqs);
1172         return ret;
1173 }
1174
1175 static void nvmet_rdma_free_dev(struct kref *ref)
1176 {
1177         struct nvmet_rdma_device *ndev =
1178                 container_of(ref, struct nvmet_rdma_device, ref);
1179
1180         mutex_lock(&device_list_mutex);
1181         list_del(&ndev->entry);
1182         mutex_unlock(&device_list_mutex);
1183
1184         nvmet_rdma_destroy_srqs(ndev);
1185         ib_dealloc_pd(ndev->pd);
1186
1187         kfree(ndev);
1188 }
1189
1190 static struct nvmet_rdma_device *
1191 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1192 {
1193         struct nvmet_rdma_port *port = cm_id->context;
1194         struct nvmet_port *nport = port->nport;
1195         struct nvmet_rdma_device *ndev;
1196         int inline_page_count;
1197         int inline_sge_count;
1198         int ret;
1199
1200         mutex_lock(&device_list_mutex);
1201         list_for_each_entry(ndev, &device_list, entry) {
1202                 if (ndev->device->node_guid == cm_id->device->node_guid &&
1203                     kref_get_unless_zero(&ndev->ref))
1204                         goto out_unlock;
1205         }
1206
1207         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1208         if (!ndev)
1209                 goto out_err;
1210
1211         inline_page_count = num_pages(nport->inline_data_size);
1212         inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1213                                 cm_id->device->attrs.max_recv_sge) - 1;
1214         if (inline_page_count > inline_sge_count) {
1215                 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1216                         nport->inline_data_size, cm_id->device->name,
1217                         inline_sge_count * PAGE_SIZE);
1218                 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1219                 inline_page_count = inline_sge_count;
1220         }
1221         ndev->inline_data_size = nport->inline_data_size;
1222         ndev->inline_page_count = inline_page_count;
1223         ndev->device = cm_id->device;
1224         kref_init(&ndev->ref);
1225
1226         ndev->pd = ib_alloc_pd(ndev->device, 0);
1227         if (IS_ERR(ndev->pd))
1228                 goto out_free_dev;
1229
1230         if (nvmet_rdma_use_srq) {
1231                 ret = nvmet_rdma_init_srqs(ndev);
1232                 if (ret)
1233                         goto out_free_pd;
1234         }
1235
1236         list_add(&ndev->entry, &device_list);
1237 out_unlock:
1238         mutex_unlock(&device_list_mutex);
1239         pr_debug("added %s.\n", ndev->device->name);
1240         return ndev;
1241
1242 out_free_pd:
1243         ib_dealloc_pd(ndev->pd);
1244 out_free_dev:
1245         kfree(ndev);
1246 out_err:
1247         mutex_unlock(&device_list_mutex);
1248         return NULL;
1249 }
1250
1251 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1252 {
1253         struct ib_qp_init_attr qp_attr;
1254         struct nvmet_rdma_device *ndev = queue->dev;
1255         int nr_cqe, ret, i, factor;
1256
1257         /*
1258          * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1259          */
1260         nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1261
1262         queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1263                                    queue->comp_vector, IB_POLL_WORKQUEUE);
1264         if (IS_ERR(queue->cq)) {
1265                 ret = PTR_ERR(queue->cq);
1266                 pr_err("failed to create CQ cqe= %d ret= %d\n",
1267                        nr_cqe + 1, ret);
1268                 goto out;
1269         }
1270
1271         memset(&qp_attr, 0, sizeof(qp_attr));
1272         qp_attr.qp_context = queue;
1273         qp_attr.event_handler = nvmet_rdma_qp_event;
1274         qp_attr.send_cq = queue->cq;
1275         qp_attr.recv_cq = queue->cq;
1276         qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1277         qp_attr.qp_type = IB_QPT_RC;
1278         /* +1 for drain */
1279         qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1280         factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1281                                    1 << NVMET_RDMA_MAX_MDTS);
1282         qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1283         qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1284                                         ndev->device->attrs.max_send_sge);
1285
1286         if (queue->nsrq) {
1287                 qp_attr.srq = queue->nsrq->srq;
1288         } else {
1289                 /* +1 for drain */
1290                 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1291                 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1292         }
1293
1294         if (queue->port->pi_enable && queue->host_qid)
1295                 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1296
1297         ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1298         if (ret) {
1299                 pr_err("failed to create_qp ret= %d\n", ret);
1300                 goto err_destroy_cq;
1301         }
1302         queue->qp = queue->cm_id->qp;
1303
1304         atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1305
1306         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1307                  __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1308                  qp_attr.cap.max_send_wr, queue->cm_id);
1309
1310         if (!queue->nsrq) {
1311                 for (i = 0; i < queue->recv_queue_size; i++) {
1312                         queue->cmds[i].queue = queue;
1313                         ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1314                         if (ret)
1315                                 goto err_destroy_qp;
1316                 }
1317         }
1318
1319 out:
1320         return ret;
1321
1322 err_destroy_qp:
1323         rdma_destroy_qp(queue->cm_id);
1324 err_destroy_cq:
1325         ib_cq_pool_put(queue->cq, nr_cqe + 1);
1326         goto out;
1327 }
1328
1329 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1330 {
1331         ib_drain_qp(queue->qp);
1332         if (queue->cm_id)
1333                 rdma_destroy_id(queue->cm_id);
1334         ib_destroy_qp(queue->qp);
1335         ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1336                        queue->send_queue_size + 1);
1337 }
1338
1339 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1340 {
1341         pr_debug("freeing queue %d\n", queue->idx);
1342
1343         nvmet_sq_destroy(&queue->nvme_sq);
1344
1345         nvmet_rdma_destroy_queue_ib(queue);
1346         if (!queue->nsrq) {
1347                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1348                                 queue->recv_queue_size,
1349                                 !queue->host_qid);
1350         }
1351         nvmet_rdma_free_rsps(queue);
1352         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1353         kfree(queue);
1354 }
1355
1356 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1357 {
1358         struct nvmet_rdma_queue *queue =
1359                 container_of(w, struct nvmet_rdma_queue, release_work);
1360         struct nvmet_rdma_device *dev = queue->dev;
1361
1362         nvmet_rdma_free_queue(queue);
1363
1364         kref_put(&dev->ref, nvmet_rdma_free_dev);
1365 }
1366
1367 static int
1368 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1369                                 struct nvmet_rdma_queue *queue)
1370 {
1371         struct nvme_rdma_cm_req *req;
1372
1373         req = (struct nvme_rdma_cm_req *)conn->private_data;
1374         if (!req || conn->private_data_len == 0)
1375                 return NVME_RDMA_CM_INVALID_LEN;
1376
1377         if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1378                 return NVME_RDMA_CM_INVALID_RECFMT;
1379
1380         queue->host_qid = le16_to_cpu(req->qid);
1381
1382         /*
1383          * req->hsqsize corresponds to our recv queue size plus 1
1384          * req->hrqsize corresponds to our send queue size
1385          */
1386         queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1387         queue->send_queue_size = le16_to_cpu(req->hrqsize);
1388
1389         if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1390                 return NVME_RDMA_CM_INVALID_HSQSIZE;
1391
1392         /* XXX: Should we enforce some kind of max for IO queues? */
1393
1394         return 0;
1395 }
1396
1397 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1398                                 enum nvme_rdma_cm_status status)
1399 {
1400         struct nvme_rdma_cm_rej rej;
1401
1402         pr_debug("rejecting connect request: status %d (%s)\n",
1403                  status, nvme_rdma_cm_msg(status));
1404
1405         rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1406         rej.sts = cpu_to_le16(status);
1407
1408         return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1409                            IB_CM_REJ_CONSUMER_DEFINED);
1410 }
1411
1412 static struct nvmet_rdma_queue *
1413 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1414                 struct rdma_cm_id *cm_id,
1415                 struct rdma_cm_event *event)
1416 {
1417         struct nvmet_rdma_port *port = cm_id->context;
1418         struct nvmet_rdma_queue *queue;
1419         int ret;
1420
1421         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1422         if (!queue) {
1423                 ret = NVME_RDMA_CM_NO_RSC;
1424                 goto out_reject;
1425         }
1426
1427         ret = nvmet_sq_init(&queue->nvme_sq);
1428         if (ret) {
1429                 ret = NVME_RDMA_CM_NO_RSC;
1430                 goto out_free_queue;
1431         }
1432
1433         ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1434         if (ret)
1435                 goto out_destroy_sq;
1436
1437         /*
1438          * Schedules the actual release because calling rdma_destroy_id from
1439          * inside a CM callback would trigger a deadlock. (great API design..)
1440          */
1441         INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1442         queue->dev = ndev;
1443         queue->cm_id = cm_id;
1444         queue->port = port->nport;
1445
1446         spin_lock_init(&queue->state_lock);
1447         queue->state = NVMET_RDMA_Q_CONNECTING;
1448         INIT_LIST_HEAD(&queue->rsp_wait_list);
1449         INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1450         spin_lock_init(&queue->rsp_wr_wait_lock);
1451         INIT_LIST_HEAD(&queue->free_rsps);
1452         spin_lock_init(&queue->rsps_lock);
1453         INIT_LIST_HEAD(&queue->queue_list);
1454
1455         queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1456         if (queue->idx < 0) {
1457                 ret = NVME_RDMA_CM_NO_RSC;
1458                 goto out_destroy_sq;
1459         }
1460
1461         /*
1462          * Spread the io queues across completion vectors,
1463          * but still keep all admin queues on vector 0.
1464          */
1465         queue->comp_vector = !queue->host_qid ? 0 :
1466                 queue->idx % ndev->device->num_comp_vectors;
1467
1468
1469         ret = nvmet_rdma_alloc_rsps(queue);
1470         if (ret) {
1471                 ret = NVME_RDMA_CM_NO_RSC;
1472                 goto out_ida_remove;
1473         }
1474
1475         if (ndev->srqs) {
1476                 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1477         } else {
1478                 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1479                                 queue->recv_queue_size,
1480                                 !queue->host_qid);
1481                 if (IS_ERR(queue->cmds)) {
1482                         ret = NVME_RDMA_CM_NO_RSC;
1483                         goto out_free_responses;
1484                 }
1485         }
1486
1487         ret = nvmet_rdma_create_queue_ib(queue);
1488         if (ret) {
1489                 pr_err("%s: creating RDMA queue failed (%d).\n",
1490                         __func__, ret);
1491                 ret = NVME_RDMA_CM_NO_RSC;
1492                 goto out_free_cmds;
1493         }
1494
1495         return queue;
1496
1497 out_free_cmds:
1498         if (!queue->nsrq) {
1499                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1500                                 queue->recv_queue_size,
1501                                 !queue->host_qid);
1502         }
1503 out_free_responses:
1504         nvmet_rdma_free_rsps(queue);
1505 out_ida_remove:
1506         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1507 out_destroy_sq:
1508         nvmet_sq_destroy(&queue->nvme_sq);
1509 out_free_queue:
1510         kfree(queue);
1511 out_reject:
1512         nvmet_rdma_cm_reject(cm_id, ret);
1513         return NULL;
1514 }
1515
1516 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1517 {
1518         struct nvmet_rdma_queue *queue = priv;
1519
1520         switch (event->event) {
1521         case IB_EVENT_COMM_EST:
1522                 rdma_notify(queue->cm_id, event->event);
1523                 break;
1524         case IB_EVENT_QP_LAST_WQE_REACHED:
1525                 pr_debug("received last WQE reached event for queue=0x%p\n",
1526                          queue);
1527                 break;
1528         default:
1529                 pr_err("received IB QP event: %s (%d)\n",
1530                        ib_event_msg(event->event), event->event);
1531                 break;
1532         }
1533 }
1534
1535 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1536                 struct nvmet_rdma_queue *queue,
1537                 struct rdma_conn_param *p)
1538 {
1539         struct rdma_conn_param  param = { };
1540         struct nvme_rdma_cm_rep priv = { };
1541         int ret = -ENOMEM;
1542
1543         param.rnr_retry_count = 7;
1544         param.flow_control = 1;
1545         param.initiator_depth = min_t(u8, p->initiator_depth,
1546                 queue->dev->device->attrs.max_qp_init_rd_atom);
1547         param.private_data = &priv;
1548         param.private_data_len = sizeof(priv);
1549         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1550         priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1551
1552         ret = rdma_accept(cm_id, &param);
1553         if (ret)
1554                 pr_err("rdma_accept failed (error code = %d)\n", ret);
1555
1556         return ret;
1557 }
1558
1559 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1560                 struct rdma_cm_event *event)
1561 {
1562         struct nvmet_rdma_device *ndev;
1563         struct nvmet_rdma_queue *queue;
1564         int ret = -EINVAL;
1565
1566         ndev = nvmet_rdma_find_get_device(cm_id);
1567         if (!ndev) {
1568                 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1569                 return -ECONNREFUSED;
1570         }
1571
1572         queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1573         if (!queue) {
1574                 ret = -ENOMEM;
1575                 goto put_device;
1576         }
1577
1578         if (queue->host_qid == 0) {
1579                 /* Let inflight controller teardown complete */
1580                 flush_scheduled_work();
1581         }
1582
1583         ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1584         if (ret) {
1585                 /*
1586                  * Don't destroy the cm_id in free path, as we implicitly
1587                  * destroy the cm_id here with non-zero ret code.
1588                  */
1589                 queue->cm_id = NULL;
1590                 goto free_queue;
1591         }
1592
1593         mutex_lock(&nvmet_rdma_queue_mutex);
1594         list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1595         mutex_unlock(&nvmet_rdma_queue_mutex);
1596
1597         return 0;
1598
1599 free_queue:
1600         nvmet_rdma_free_queue(queue);
1601 put_device:
1602         kref_put(&ndev->ref, nvmet_rdma_free_dev);
1603
1604         return ret;
1605 }
1606
1607 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1608 {
1609         unsigned long flags;
1610
1611         spin_lock_irqsave(&queue->state_lock, flags);
1612         if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1613                 pr_warn("trying to establish a connected queue\n");
1614                 goto out_unlock;
1615         }
1616         queue->state = NVMET_RDMA_Q_LIVE;
1617
1618         while (!list_empty(&queue->rsp_wait_list)) {
1619                 struct nvmet_rdma_rsp *cmd;
1620
1621                 cmd = list_first_entry(&queue->rsp_wait_list,
1622                                         struct nvmet_rdma_rsp, wait_list);
1623                 list_del(&cmd->wait_list);
1624
1625                 spin_unlock_irqrestore(&queue->state_lock, flags);
1626                 nvmet_rdma_handle_command(queue, cmd);
1627                 spin_lock_irqsave(&queue->state_lock, flags);
1628         }
1629
1630 out_unlock:
1631         spin_unlock_irqrestore(&queue->state_lock, flags);
1632 }
1633
1634 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1635 {
1636         bool disconnect = false;
1637         unsigned long flags;
1638
1639         pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1640
1641         spin_lock_irqsave(&queue->state_lock, flags);
1642         switch (queue->state) {
1643         case NVMET_RDMA_Q_CONNECTING:
1644         case NVMET_RDMA_Q_LIVE:
1645                 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1646                 disconnect = true;
1647                 break;
1648         case NVMET_RDMA_Q_DISCONNECTING:
1649                 break;
1650         }
1651         spin_unlock_irqrestore(&queue->state_lock, flags);
1652
1653         if (disconnect) {
1654                 rdma_disconnect(queue->cm_id);
1655                 schedule_work(&queue->release_work);
1656         }
1657 }
1658
1659 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1660 {
1661         bool disconnect = false;
1662
1663         mutex_lock(&nvmet_rdma_queue_mutex);
1664         if (!list_empty(&queue->queue_list)) {
1665                 list_del_init(&queue->queue_list);
1666                 disconnect = true;
1667         }
1668         mutex_unlock(&nvmet_rdma_queue_mutex);
1669
1670         if (disconnect)
1671                 __nvmet_rdma_queue_disconnect(queue);
1672 }
1673
1674 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1675                 struct nvmet_rdma_queue *queue)
1676 {
1677         WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1678
1679         mutex_lock(&nvmet_rdma_queue_mutex);
1680         if (!list_empty(&queue->queue_list))
1681                 list_del_init(&queue->queue_list);
1682         mutex_unlock(&nvmet_rdma_queue_mutex);
1683
1684         pr_err("failed to connect queue %d\n", queue->idx);
1685         schedule_work(&queue->release_work);
1686 }
1687
1688 /**
1689  * nvme_rdma_device_removal() - Handle RDMA device removal
1690  * @cm_id:      rdma_cm id, used for nvmet port
1691  * @queue:      nvmet rdma queue (cm id qp_context)
1692  *
1693  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1694  * to unplug. Note that this event can be generated on a normal
1695  * queue cm_id and/or a device bound listener cm_id (where in this
1696  * case queue will be null).
1697  *
1698  * We registered an ib_client to handle device removal for queues,
1699  * so we only need to handle the listening port cm_ids. In this case
1700  * we nullify the priv to prevent double cm_id destruction and destroying
1701  * the cm_id implicitely by returning a non-zero rc to the callout.
1702  */
1703 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1704                 struct nvmet_rdma_queue *queue)
1705 {
1706         struct nvmet_rdma_port *port;
1707
1708         if (queue) {
1709                 /*
1710                  * This is a queue cm_id. we have registered
1711                  * an ib_client to handle queues removal
1712                  * so don't interfear and just return.
1713                  */
1714                 return 0;
1715         }
1716
1717         port = cm_id->context;
1718
1719         /*
1720          * This is a listener cm_id. Make sure that
1721          * future remove_port won't invoke a double
1722          * cm_id destroy. use atomic xchg to make sure
1723          * we don't compete with remove_port.
1724          */
1725         if (xchg(&port->cm_id, NULL) != cm_id)
1726                 return 0;
1727
1728         /*
1729          * We need to return 1 so that the core will destroy
1730          * it's own ID.  What a great API design..
1731          */
1732         return 1;
1733 }
1734
1735 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1736                 struct rdma_cm_event *event)
1737 {
1738         struct nvmet_rdma_queue *queue = NULL;
1739         int ret = 0;
1740
1741         if (cm_id->qp)
1742                 queue = cm_id->qp->qp_context;
1743
1744         pr_debug("%s (%d): status %d id %p\n",
1745                 rdma_event_msg(event->event), event->event,
1746                 event->status, cm_id);
1747
1748         switch (event->event) {
1749         case RDMA_CM_EVENT_CONNECT_REQUEST:
1750                 ret = nvmet_rdma_queue_connect(cm_id, event);
1751                 break;
1752         case RDMA_CM_EVENT_ESTABLISHED:
1753                 nvmet_rdma_queue_established(queue);
1754                 break;
1755         case RDMA_CM_EVENT_ADDR_CHANGE:
1756                 if (!queue) {
1757                         struct nvmet_rdma_port *port = cm_id->context;
1758
1759                         schedule_delayed_work(&port->repair_work, 0);
1760                         break;
1761                 }
1762                 fallthrough;
1763         case RDMA_CM_EVENT_DISCONNECTED:
1764         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1765                 nvmet_rdma_queue_disconnect(queue);
1766                 break;
1767         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1768                 ret = nvmet_rdma_device_removal(cm_id, queue);
1769                 break;
1770         case RDMA_CM_EVENT_REJECTED:
1771                 pr_debug("Connection rejected: %s\n",
1772                          rdma_reject_msg(cm_id, event->status));
1773                 fallthrough;
1774         case RDMA_CM_EVENT_UNREACHABLE:
1775         case RDMA_CM_EVENT_CONNECT_ERROR:
1776                 nvmet_rdma_queue_connect_fail(cm_id, queue);
1777                 break;
1778         default:
1779                 pr_err("received unrecognized RDMA CM event %d\n",
1780                         event->event);
1781                 break;
1782         }
1783
1784         return ret;
1785 }
1786
1787 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1788 {
1789         struct nvmet_rdma_queue *queue;
1790
1791 restart:
1792         mutex_lock(&nvmet_rdma_queue_mutex);
1793         list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1794                 if (queue->nvme_sq.ctrl == ctrl) {
1795                         list_del_init(&queue->queue_list);
1796                         mutex_unlock(&nvmet_rdma_queue_mutex);
1797
1798                         __nvmet_rdma_queue_disconnect(queue);
1799                         goto restart;
1800                 }
1801         }
1802         mutex_unlock(&nvmet_rdma_queue_mutex);
1803 }
1804
1805 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1806 {
1807         struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1808
1809         if (cm_id)
1810                 rdma_destroy_id(cm_id);
1811 }
1812
1813 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1814 {
1815         struct sockaddr *addr = (struct sockaddr *)&port->addr;
1816         struct rdma_cm_id *cm_id;
1817         int ret;
1818
1819         cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1820                         RDMA_PS_TCP, IB_QPT_RC);
1821         if (IS_ERR(cm_id)) {
1822                 pr_err("CM ID creation failed\n");
1823                 return PTR_ERR(cm_id);
1824         }
1825
1826         /*
1827          * Allow both IPv4 and IPv6 sockets to bind a single port
1828          * at the same time.
1829          */
1830         ret = rdma_set_afonly(cm_id, 1);
1831         if (ret) {
1832                 pr_err("rdma_set_afonly failed (%d)\n", ret);
1833                 goto out_destroy_id;
1834         }
1835
1836         ret = rdma_bind_addr(cm_id, addr);
1837         if (ret) {
1838                 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1839                 goto out_destroy_id;
1840         }
1841
1842         ret = rdma_listen(cm_id, 128);
1843         if (ret) {
1844                 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1845                 goto out_destroy_id;
1846         }
1847
1848         if (port->nport->pi_enable &&
1849             !(cm_id->device->attrs.device_cap_flags &
1850               IB_DEVICE_INTEGRITY_HANDOVER)) {
1851                 pr_err("T10-PI is not supported for %pISpcs\n", addr);
1852                 ret = -EINVAL;
1853                 goto out_destroy_id;
1854         }
1855
1856         port->cm_id = cm_id;
1857         return 0;
1858
1859 out_destroy_id:
1860         rdma_destroy_id(cm_id);
1861         return ret;
1862 }
1863
1864 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1865 {
1866         struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1867                         struct nvmet_rdma_port, repair_work);
1868         int ret;
1869
1870         nvmet_rdma_disable_port(port);
1871         ret = nvmet_rdma_enable_port(port);
1872         if (ret)
1873                 schedule_delayed_work(&port->repair_work, 5 * HZ);
1874 }
1875
1876 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1877 {
1878         struct nvmet_rdma_port *port;
1879         __kernel_sa_family_t af;
1880         int ret;
1881
1882         port = kzalloc(sizeof(*port), GFP_KERNEL);
1883         if (!port)
1884                 return -ENOMEM;
1885
1886         nport->priv = port;
1887         port->nport = nport;
1888         INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1889
1890         switch (nport->disc_addr.adrfam) {
1891         case NVMF_ADDR_FAMILY_IP4:
1892                 af = AF_INET;
1893                 break;
1894         case NVMF_ADDR_FAMILY_IP6:
1895                 af = AF_INET6;
1896                 break;
1897         default:
1898                 pr_err("address family %d not supported\n",
1899                         nport->disc_addr.adrfam);
1900                 ret = -EINVAL;
1901                 goto out_free_port;
1902         }
1903
1904         if (nport->inline_data_size < 0) {
1905                 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1906         } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1907                 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1908                         nport->inline_data_size,
1909                         NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1910                 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1911         }
1912
1913         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1914                         nport->disc_addr.trsvcid, &port->addr);
1915         if (ret) {
1916                 pr_err("malformed ip/port passed: %s:%s\n",
1917                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1918                 goto out_free_port;
1919         }
1920
1921         ret = nvmet_rdma_enable_port(port);
1922         if (ret)
1923                 goto out_free_port;
1924
1925         pr_info("enabling port %d (%pISpcs)\n",
1926                 le16_to_cpu(nport->disc_addr.portid),
1927                 (struct sockaddr *)&port->addr);
1928
1929         return 0;
1930
1931 out_free_port:
1932         kfree(port);
1933         return ret;
1934 }
1935
1936 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1937 {
1938         struct nvmet_rdma_port *port = nport->priv;
1939
1940         cancel_delayed_work_sync(&port->repair_work);
1941         nvmet_rdma_disable_port(port);
1942         kfree(port);
1943 }
1944
1945 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1946                 struct nvmet_port *nport, char *traddr)
1947 {
1948         struct nvmet_rdma_port *port = nport->priv;
1949         struct rdma_cm_id *cm_id = port->cm_id;
1950
1951         if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1952                 struct nvmet_rdma_rsp *rsp =
1953                         container_of(req, struct nvmet_rdma_rsp, req);
1954                 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1955                 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1956
1957                 sprintf(traddr, "%pISc", addr);
1958         } else {
1959                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1960         }
1961 }
1962
1963 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1964 {
1965         if (ctrl->pi_support)
1966                 return NVMET_RDMA_MAX_METADATA_MDTS;
1967         return NVMET_RDMA_MAX_MDTS;
1968 }
1969
1970 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1971         .owner                  = THIS_MODULE,
1972         .type                   = NVMF_TRTYPE_RDMA,
1973         .msdbd                  = 1,
1974         .flags                  = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
1975         .add_port               = nvmet_rdma_add_port,
1976         .remove_port            = nvmet_rdma_remove_port,
1977         .queue_response         = nvmet_rdma_queue_response,
1978         .delete_ctrl            = nvmet_rdma_delete_ctrl,
1979         .disc_traddr            = nvmet_rdma_disc_port_addr,
1980         .get_mdts               = nvmet_rdma_get_mdts,
1981 };
1982
1983 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1984 {
1985         struct nvmet_rdma_queue *queue, *tmp;
1986         struct nvmet_rdma_device *ndev;
1987         bool found = false;
1988
1989         mutex_lock(&device_list_mutex);
1990         list_for_each_entry(ndev, &device_list, entry) {
1991                 if (ndev->device == ib_device) {
1992                         found = true;
1993                         break;
1994                 }
1995         }
1996         mutex_unlock(&device_list_mutex);
1997
1998         if (!found)
1999                 return;
2000
2001         /*
2002          * IB Device that is used by nvmet controllers is being removed,
2003          * delete all queues using this device.
2004          */
2005         mutex_lock(&nvmet_rdma_queue_mutex);
2006         list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2007                                  queue_list) {
2008                 if (queue->dev->device != ib_device)
2009                         continue;
2010
2011                 pr_info("Removing queue %d\n", queue->idx);
2012                 list_del_init(&queue->queue_list);
2013                 __nvmet_rdma_queue_disconnect(queue);
2014         }
2015         mutex_unlock(&nvmet_rdma_queue_mutex);
2016
2017         flush_scheduled_work();
2018 }
2019
2020 static struct ib_client nvmet_rdma_ib_client = {
2021         .name   = "nvmet_rdma",
2022         .remove = nvmet_rdma_remove_one
2023 };
2024
2025 static int __init nvmet_rdma_init(void)
2026 {
2027         int ret;
2028
2029         ret = ib_register_client(&nvmet_rdma_ib_client);
2030         if (ret)
2031                 return ret;
2032
2033         ret = nvmet_register_transport(&nvmet_rdma_ops);
2034         if (ret)
2035                 goto err_ib_client;
2036
2037         return 0;
2038
2039 err_ib_client:
2040         ib_unregister_client(&nvmet_rdma_ib_client);
2041         return ret;
2042 }
2043
2044 static void __exit nvmet_rdma_exit(void)
2045 {
2046         nvmet_unregister_transport(&nvmet_rdma_ops);
2047         ib_unregister_client(&nvmet_rdma_ib_client);
2048         WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2049         ida_destroy(&nvmet_rdma_queue_ida);
2050 }
2051
2052 module_init(nvmet_rdma_init);
2053 module_exit(nvmet_rdma_exit);
2054
2055 MODULE_LICENSE("GPL v2");
2056 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */