Merge remote-tracking branch 'drm-misc/drm-misc-next-fixes' into drm-misc-fixes
[linux-2.6-microblaze.git] / drivers / nvme / target / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT              256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod {                /* for an LS RQST RCV */
29         struct nvmefc_ls_rsp            *lsrsp;
30         struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
31
32         struct list_head                ls_rcv_list; /* tgtport->ls_rcv_list */
33
34         struct nvmet_fc_tgtport         *tgtport;
35         struct nvmet_fc_tgt_assoc       *assoc;
36         void                            *hosthandle;
37
38         union nvmefc_ls_requests        *rqstbuf;
39         union nvmefc_ls_responses       *rspbuf;
40         u16                             rqstdatalen;
41         dma_addr_t                      rspdma;
42
43         struct scatterlist              sg[2];
44
45         struct work_struct              work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op {             /* for an LS RQST XMT */
49         struct nvmefc_ls_req            ls_req;
50
51         struct nvmet_fc_tgtport         *tgtport;
52         void                            *hosthandle;
53
54         int                             ls_error;
55         struct list_head                lsreq_list; /* tgtport->ls_req_list */
56         bool                            req_queued;
57 };
58
59
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
62
63 enum nvmet_fcp_datadir {
64         NVMET_FCP_NODATA,
65         NVMET_FCP_WRITE,
66         NVMET_FCP_READ,
67         NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71         struct nvmefc_tgt_fcp_req       *fcpreq;
72
73         struct nvme_fc_cmd_iu           cmdiubuf;
74         struct nvme_fc_ersp_iu          rspiubuf;
75         dma_addr_t                      rspdma;
76         struct scatterlist              *next_sg;
77         struct scatterlist              *data_sg;
78         int                             data_sg_cnt;
79         u32                             offset;
80         enum nvmet_fcp_datadir          io_dir;
81         bool                            active;
82         bool                            abort;
83         bool                            aborted;
84         bool                            writedataactive;
85         spinlock_t                      flock;
86
87         struct nvmet_req                req;
88         struct work_struct              defer_work;
89
90         struct nvmet_fc_tgtport         *tgtport;
91         struct nvmet_fc_tgt_queue       *queue;
92
93         struct list_head                fcp_list;       /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97         struct nvmet_fc_target_port     fc_target_port;
98
99         struct list_head                tgt_list; /* nvmet_fc_target_list */
100         struct device                   *dev;   /* dev for dma mapping */
101         struct nvmet_fc_target_template *ops;
102
103         struct nvmet_fc_ls_iod          *iod;
104         spinlock_t                      lock;
105         struct list_head                ls_rcv_list;
106         struct list_head                ls_req_list;
107         struct list_head                ls_busylist;
108         struct list_head                assoc_list;
109         struct list_head                host_list;
110         struct ida                      assoc_cnt;
111         struct nvmet_fc_port_entry      *pe;
112         struct kref                     ref;
113         u32                             max_sg_cnt;
114 };
115
116 struct nvmet_fc_port_entry {
117         struct nvmet_fc_tgtport         *tgtport;
118         struct nvmet_port               *port;
119         u64                             node_name;
120         u64                             port_name;
121         struct list_head                pe_list;
122 };
123
124 struct nvmet_fc_defer_fcp_req {
125         struct list_head                req_list;
126         struct nvmefc_tgt_fcp_req       *fcp_req;
127 };
128
129 struct nvmet_fc_tgt_queue {
130         bool                            ninetypercent;
131         u16                             qid;
132         u16                             sqsize;
133         u16                             ersp_ratio;
134         __le16                          sqhd;
135         atomic_t                        connected;
136         atomic_t                        sqtail;
137         atomic_t                        zrspcnt;
138         atomic_t                        rsn;
139         spinlock_t                      qlock;
140         struct nvmet_cq                 nvme_cq;
141         struct nvmet_sq                 nvme_sq;
142         struct nvmet_fc_tgt_assoc       *assoc;
143         struct list_head                fod_list;
144         struct list_head                pending_cmd_list;
145         struct list_head                avail_defer_list;
146         struct workqueue_struct         *work_q;
147         struct kref                     ref;
148         struct rcu_head                 rcu;
149         struct nvmet_fc_fcp_iod         fod[];          /* array of fcp_iods */
150 } __aligned(sizeof(unsigned long long));
151
152 struct nvmet_fc_hostport {
153         struct nvmet_fc_tgtport         *tgtport;
154         void                            *hosthandle;
155         struct list_head                host_list;
156         struct kref                     ref;
157         u8                              invalid;
158 };
159
160 struct nvmet_fc_tgt_assoc {
161         u64                             association_id;
162         u32                             a_id;
163         atomic_t                        terminating;
164         struct nvmet_fc_tgtport         *tgtport;
165         struct nvmet_fc_hostport        *hostport;
166         struct nvmet_fc_ls_iod          *rcv_disconn;
167         struct list_head                a_list;
168         struct nvmet_fc_tgt_queue __rcu *queues[NVMET_NR_QUEUES + 1];
169         struct kref                     ref;
170         struct work_struct              del_work;
171         struct rcu_head                 rcu;
172 };
173
174
175 static inline int
176 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
177 {
178         return (iodptr - iodptr->tgtport->iod);
179 }
180
181 static inline int
182 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
183 {
184         return (fodptr - fodptr->queue->fod);
185 }
186
187
188 /*
189  * Association and Connection IDs:
190  *
191  * Association ID will have random number in upper 6 bytes and zero
192  *   in lower 2 bytes
193  *
194  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
195  *
196  * note: Association ID = Connection ID for queue 0
197  */
198 #define BYTES_FOR_QID                   sizeof(u16)
199 #define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
200 #define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
201
202 static inline u64
203 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
204 {
205         return (assoc->association_id | qid);
206 }
207
208 static inline u64
209 nvmet_fc_getassociationid(u64 connectionid)
210 {
211         return connectionid & ~NVMET_FC_QUEUEID_MASK;
212 }
213
214 static inline u16
215 nvmet_fc_getqueueid(u64 connectionid)
216 {
217         return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
218 }
219
220 static inline struct nvmet_fc_tgtport *
221 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
222 {
223         return container_of(targetport, struct nvmet_fc_tgtport,
224                                  fc_target_port);
225 }
226
227 static inline struct nvmet_fc_fcp_iod *
228 nvmet_req_to_fod(struct nvmet_req *nvme_req)
229 {
230         return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
231 }
232
233
234 /* *************************** Globals **************************** */
235
236
237 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
238
239 static LIST_HEAD(nvmet_fc_target_list);
240 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
241 static LIST_HEAD(nvmet_fc_portentry_list);
242
243
244 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
245 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
246 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
247 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
248 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
249 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
250 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
251 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
252 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
253                                         struct nvmet_fc_fcp_iod *fod);
254 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
255 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
256                                 struct nvmet_fc_ls_iod *iod);
257
258
259 /* *********************** FC-NVME DMA Handling **************************** */
260
261 /*
262  * The fcloop device passes in a NULL device pointer. Real LLD's will
263  * pass in a valid device pointer. If NULL is passed to the dma mapping
264  * routines, depending on the platform, it may or may not succeed, and
265  * may crash.
266  *
267  * As such:
268  * Wrapper all the dma routines and check the dev pointer.
269  *
270  * If simple mappings (return just a dma address, we'll noop them,
271  * returning a dma address of 0.
272  *
273  * On more complex mappings (dma_map_sg), a pseudo routine fills
274  * in the scatter list, setting all dma addresses to 0.
275  */
276
277 static inline dma_addr_t
278 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
279                 enum dma_data_direction dir)
280 {
281         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
282 }
283
284 static inline int
285 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
286 {
287         return dev ? dma_mapping_error(dev, dma_addr) : 0;
288 }
289
290 static inline void
291 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
292         enum dma_data_direction dir)
293 {
294         if (dev)
295                 dma_unmap_single(dev, addr, size, dir);
296 }
297
298 static inline void
299 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
300                 enum dma_data_direction dir)
301 {
302         if (dev)
303                 dma_sync_single_for_cpu(dev, addr, size, dir);
304 }
305
306 static inline void
307 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
308                 enum dma_data_direction dir)
309 {
310         if (dev)
311                 dma_sync_single_for_device(dev, addr, size, dir);
312 }
313
314 /* pseudo dma_map_sg call */
315 static int
316 fc_map_sg(struct scatterlist *sg, int nents)
317 {
318         struct scatterlist *s;
319         int i;
320
321         WARN_ON(nents == 0 || sg[0].length == 0);
322
323         for_each_sg(sg, s, nents, i) {
324                 s->dma_address = 0L;
325 #ifdef CONFIG_NEED_SG_DMA_LENGTH
326                 s->dma_length = s->length;
327 #endif
328         }
329         return nents;
330 }
331
332 static inline int
333 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
334                 enum dma_data_direction dir)
335 {
336         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
337 }
338
339 static inline void
340 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
341                 enum dma_data_direction dir)
342 {
343         if (dev)
344                 dma_unmap_sg(dev, sg, nents, dir);
345 }
346
347
348 /* ********************** FC-NVME LS XMT Handling ************************* */
349
350
351 static void
352 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
353 {
354         struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
355         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
356         unsigned long flags;
357
358         spin_lock_irqsave(&tgtport->lock, flags);
359
360         if (!lsop->req_queued) {
361                 spin_unlock_irqrestore(&tgtport->lock, flags);
362                 return;
363         }
364
365         list_del(&lsop->lsreq_list);
366
367         lsop->req_queued = false;
368
369         spin_unlock_irqrestore(&tgtport->lock, flags);
370
371         fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
372                                   (lsreq->rqstlen + lsreq->rsplen),
373                                   DMA_BIDIRECTIONAL);
374
375         nvmet_fc_tgtport_put(tgtport);
376 }
377
378 static int
379 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
380                 struct nvmet_fc_ls_req_op *lsop,
381                 void (*done)(struct nvmefc_ls_req *req, int status))
382 {
383         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
384         unsigned long flags;
385         int ret = 0;
386
387         if (!tgtport->ops->ls_req)
388                 return -EOPNOTSUPP;
389
390         if (!nvmet_fc_tgtport_get(tgtport))
391                 return -ESHUTDOWN;
392
393         lsreq->done = done;
394         lsop->req_queued = false;
395         INIT_LIST_HEAD(&lsop->lsreq_list);
396
397         lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
398                                   lsreq->rqstlen + lsreq->rsplen,
399                                   DMA_BIDIRECTIONAL);
400         if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
401                 ret = -EFAULT;
402                 goto out_puttgtport;
403         }
404         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
405
406         spin_lock_irqsave(&tgtport->lock, flags);
407
408         list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
409
410         lsop->req_queued = true;
411
412         spin_unlock_irqrestore(&tgtport->lock, flags);
413
414         ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
415                                    lsreq);
416         if (ret)
417                 goto out_unlink;
418
419         return 0;
420
421 out_unlink:
422         lsop->ls_error = ret;
423         spin_lock_irqsave(&tgtport->lock, flags);
424         lsop->req_queued = false;
425         list_del(&lsop->lsreq_list);
426         spin_unlock_irqrestore(&tgtport->lock, flags);
427         fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
428                                   (lsreq->rqstlen + lsreq->rsplen),
429                                   DMA_BIDIRECTIONAL);
430 out_puttgtport:
431         nvmet_fc_tgtport_put(tgtport);
432
433         return ret;
434 }
435
436 static int
437 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
438                 struct nvmet_fc_ls_req_op *lsop,
439                 void (*done)(struct nvmefc_ls_req *req, int status))
440 {
441         /* don't wait for completion */
442
443         return __nvmet_fc_send_ls_req(tgtport, lsop, done);
444 }
445
446 static void
447 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
448 {
449         struct nvmet_fc_ls_req_op *lsop =
450                 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
451
452         __nvmet_fc_finish_ls_req(lsop);
453
454         /* fc-nvme target doesn't care about success or failure of cmd */
455
456         kfree(lsop);
457 }
458
459 /*
460  * This routine sends a FC-NVME LS to disconnect (aka terminate)
461  * the FC-NVME Association.  Terminating the association also
462  * terminates the FC-NVME connections (per queue, both admin and io
463  * queues) that are part of the association. E.g. things are torn
464  * down, and the related FC-NVME Association ID and Connection IDs
465  * become invalid.
466  *
467  * The behavior of the fc-nvme target is such that it's
468  * understanding of the association and connections will implicitly
469  * be torn down. The action is implicit as it may be due to a loss of
470  * connectivity with the fc-nvme host, so the target may never get a
471  * response even if it tried.  As such, the action of this routine
472  * is to asynchronously send the LS, ignore any results of the LS, and
473  * continue on with terminating the association. If the fc-nvme host
474  * is present and receives the LS, it too can tear down.
475  */
476 static void
477 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
478 {
479         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
480         struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
481         struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
482         struct nvmet_fc_ls_req_op *lsop;
483         struct nvmefc_ls_req *lsreq;
484         int ret;
485
486         /*
487          * If ls_req is NULL or no hosthandle, it's an older lldd and no
488          * message is normal. Otherwise, send unless the hostport has
489          * already been invalidated by the lldd.
490          */
491         if (!tgtport->ops->ls_req || !assoc->hostport ||
492             assoc->hostport->invalid)
493                 return;
494
495         lsop = kzalloc((sizeof(*lsop) +
496                         sizeof(*discon_rqst) + sizeof(*discon_acc) +
497                         tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
498         if (!lsop) {
499                 dev_info(tgtport->dev,
500                         "{%d:%d} send Disconnect Association failed: ENOMEM\n",
501                         tgtport->fc_target_port.port_num, assoc->a_id);
502                 return;
503         }
504
505         discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
506         discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
507         lsreq = &lsop->ls_req;
508         if (tgtport->ops->lsrqst_priv_sz)
509                 lsreq->private = (void *)&discon_acc[1];
510         else
511                 lsreq->private = NULL;
512
513         lsop->tgtport = tgtport;
514         lsop->hosthandle = assoc->hostport->hosthandle;
515
516         nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
517                                 assoc->association_id);
518
519         ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
520                                 nvmet_fc_disconnect_assoc_done);
521         if (ret) {
522                 dev_info(tgtport->dev,
523                         "{%d:%d} XMT Disconnect Association failed: %d\n",
524                         tgtport->fc_target_port.port_num, assoc->a_id, ret);
525                 kfree(lsop);
526         }
527 }
528
529
530 /* *********************** FC-NVME Port Management ************************ */
531
532
533 static int
534 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
535 {
536         struct nvmet_fc_ls_iod *iod;
537         int i;
538
539         iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
540                         GFP_KERNEL);
541         if (!iod)
542                 return -ENOMEM;
543
544         tgtport->iod = iod;
545
546         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
547                 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
548                 iod->tgtport = tgtport;
549                 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
550
551                 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
552                                        sizeof(union nvmefc_ls_responses),
553                                        GFP_KERNEL);
554                 if (!iod->rqstbuf)
555                         goto out_fail;
556
557                 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
558
559                 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
560                                                 sizeof(*iod->rspbuf),
561                                                 DMA_TO_DEVICE);
562                 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
563                         goto out_fail;
564         }
565
566         return 0;
567
568 out_fail:
569         kfree(iod->rqstbuf);
570         list_del(&iod->ls_rcv_list);
571         for (iod--, i--; i >= 0; iod--, i--) {
572                 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
573                                 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
574                 kfree(iod->rqstbuf);
575                 list_del(&iod->ls_rcv_list);
576         }
577
578         kfree(iod);
579
580         return -EFAULT;
581 }
582
583 static void
584 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
585 {
586         struct nvmet_fc_ls_iod *iod = tgtport->iod;
587         int i;
588
589         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
590                 fc_dma_unmap_single(tgtport->dev,
591                                 iod->rspdma, sizeof(*iod->rspbuf),
592                                 DMA_TO_DEVICE);
593                 kfree(iod->rqstbuf);
594                 list_del(&iod->ls_rcv_list);
595         }
596         kfree(tgtport->iod);
597 }
598
599 static struct nvmet_fc_ls_iod *
600 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
601 {
602         struct nvmet_fc_ls_iod *iod;
603         unsigned long flags;
604
605         spin_lock_irqsave(&tgtport->lock, flags);
606         iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
607                                         struct nvmet_fc_ls_iod, ls_rcv_list);
608         if (iod)
609                 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
610         spin_unlock_irqrestore(&tgtport->lock, flags);
611         return iod;
612 }
613
614
615 static void
616 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
617                         struct nvmet_fc_ls_iod *iod)
618 {
619         unsigned long flags;
620
621         spin_lock_irqsave(&tgtport->lock, flags);
622         list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
623         spin_unlock_irqrestore(&tgtport->lock, flags);
624 }
625
626 static void
627 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
628                                 struct nvmet_fc_tgt_queue *queue)
629 {
630         struct nvmet_fc_fcp_iod *fod = queue->fod;
631         int i;
632
633         for (i = 0; i < queue->sqsize; fod++, i++) {
634                 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
635                 fod->tgtport = tgtport;
636                 fod->queue = queue;
637                 fod->active = false;
638                 fod->abort = false;
639                 fod->aborted = false;
640                 fod->fcpreq = NULL;
641                 list_add_tail(&fod->fcp_list, &queue->fod_list);
642                 spin_lock_init(&fod->flock);
643
644                 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
645                                         sizeof(fod->rspiubuf), DMA_TO_DEVICE);
646                 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
647                         list_del(&fod->fcp_list);
648                         for (fod--, i--; i >= 0; fod--, i--) {
649                                 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
650                                                 sizeof(fod->rspiubuf),
651                                                 DMA_TO_DEVICE);
652                                 fod->rspdma = 0L;
653                                 list_del(&fod->fcp_list);
654                         }
655
656                         return;
657                 }
658         }
659 }
660
661 static void
662 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
663                                 struct nvmet_fc_tgt_queue *queue)
664 {
665         struct nvmet_fc_fcp_iod *fod = queue->fod;
666         int i;
667
668         for (i = 0; i < queue->sqsize; fod++, i++) {
669                 if (fod->rspdma)
670                         fc_dma_unmap_single(tgtport->dev, fod->rspdma,
671                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
672         }
673 }
674
675 static struct nvmet_fc_fcp_iod *
676 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
677 {
678         struct nvmet_fc_fcp_iod *fod;
679
680         lockdep_assert_held(&queue->qlock);
681
682         fod = list_first_entry_or_null(&queue->fod_list,
683                                         struct nvmet_fc_fcp_iod, fcp_list);
684         if (fod) {
685                 list_del(&fod->fcp_list);
686                 fod->active = true;
687                 /*
688                  * no queue reference is taken, as it was taken by the
689                  * queue lookup just prior to the allocation. The iod
690                  * will "inherit" that reference.
691                  */
692         }
693         return fod;
694 }
695
696
697 static void
698 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
699                        struct nvmet_fc_tgt_queue *queue,
700                        struct nvmefc_tgt_fcp_req *fcpreq)
701 {
702         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
703
704         /*
705          * put all admin cmds on hw queue id 0. All io commands go to
706          * the respective hw queue based on a modulo basis
707          */
708         fcpreq->hwqid = queue->qid ?
709                         ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
710
711         nvmet_fc_handle_fcp_rqst(tgtport, fod);
712 }
713
714 static void
715 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
716 {
717         struct nvmet_fc_fcp_iod *fod =
718                 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
719
720         /* Submit deferred IO for processing */
721         nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
722
723 }
724
725 static void
726 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
727                         struct nvmet_fc_fcp_iod *fod)
728 {
729         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
730         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
731         struct nvmet_fc_defer_fcp_req *deferfcp;
732         unsigned long flags;
733
734         fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
735                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
736
737         fcpreq->nvmet_fc_private = NULL;
738
739         fod->active = false;
740         fod->abort = false;
741         fod->aborted = false;
742         fod->writedataactive = false;
743         fod->fcpreq = NULL;
744
745         tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
746
747         /* release the queue lookup reference on the completed IO */
748         nvmet_fc_tgt_q_put(queue);
749
750         spin_lock_irqsave(&queue->qlock, flags);
751         deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
752                                 struct nvmet_fc_defer_fcp_req, req_list);
753         if (!deferfcp) {
754                 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
755                 spin_unlock_irqrestore(&queue->qlock, flags);
756                 return;
757         }
758
759         /* Re-use the fod for the next pending cmd that was deferred */
760         list_del(&deferfcp->req_list);
761
762         fcpreq = deferfcp->fcp_req;
763
764         /* deferfcp can be reused for another IO at a later date */
765         list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
766
767         spin_unlock_irqrestore(&queue->qlock, flags);
768
769         /* Save NVME CMD IO in fod */
770         memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
771
772         /* Setup new fcpreq to be processed */
773         fcpreq->rspaddr = NULL;
774         fcpreq->rsplen  = 0;
775         fcpreq->nvmet_fc_private = fod;
776         fod->fcpreq = fcpreq;
777         fod->active = true;
778
779         /* inform LLDD IO is now being processed */
780         tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
781
782         /*
783          * Leave the queue lookup get reference taken when
784          * fod was originally allocated.
785          */
786
787         queue_work(queue->work_q, &fod->defer_work);
788 }
789
790 static struct nvmet_fc_tgt_queue *
791 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
792                         u16 qid, u16 sqsize)
793 {
794         struct nvmet_fc_tgt_queue *queue;
795         int ret;
796
797         if (qid > NVMET_NR_QUEUES)
798                 return NULL;
799
800         queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
801         if (!queue)
802                 return NULL;
803
804         if (!nvmet_fc_tgt_a_get(assoc))
805                 goto out_free_queue;
806
807         queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
808                                 assoc->tgtport->fc_target_port.port_num,
809                                 assoc->a_id, qid);
810         if (!queue->work_q)
811                 goto out_a_put;
812
813         queue->qid = qid;
814         queue->sqsize = sqsize;
815         queue->assoc = assoc;
816         INIT_LIST_HEAD(&queue->fod_list);
817         INIT_LIST_HEAD(&queue->avail_defer_list);
818         INIT_LIST_HEAD(&queue->pending_cmd_list);
819         atomic_set(&queue->connected, 0);
820         atomic_set(&queue->sqtail, 0);
821         atomic_set(&queue->rsn, 1);
822         atomic_set(&queue->zrspcnt, 0);
823         spin_lock_init(&queue->qlock);
824         kref_init(&queue->ref);
825
826         nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
827
828         ret = nvmet_sq_init(&queue->nvme_sq);
829         if (ret)
830                 goto out_fail_iodlist;
831
832         WARN_ON(assoc->queues[qid]);
833         rcu_assign_pointer(assoc->queues[qid], queue);
834
835         return queue;
836
837 out_fail_iodlist:
838         nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
839         destroy_workqueue(queue->work_q);
840 out_a_put:
841         nvmet_fc_tgt_a_put(assoc);
842 out_free_queue:
843         kfree(queue);
844         return NULL;
845 }
846
847
848 static void
849 nvmet_fc_tgt_queue_free(struct kref *ref)
850 {
851         struct nvmet_fc_tgt_queue *queue =
852                 container_of(ref, struct nvmet_fc_tgt_queue, ref);
853
854         rcu_assign_pointer(queue->assoc->queues[queue->qid], NULL);
855
856         nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
857
858         nvmet_fc_tgt_a_put(queue->assoc);
859
860         destroy_workqueue(queue->work_q);
861
862         kfree_rcu(queue, rcu);
863 }
864
865 static void
866 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
867 {
868         kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
869 }
870
871 static int
872 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
873 {
874         return kref_get_unless_zero(&queue->ref);
875 }
876
877
878 static void
879 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
880 {
881         struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
882         struct nvmet_fc_fcp_iod *fod = queue->fod;
883         struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
884         unsigned long flags;
885         int i;
886         bool disconnect;
887
888         disconnect = atomic_xchg(&queue->connected, 0);
889
890         /* if not connected, nothing to do */
891         if (!disconnect)
892                 return;
893
894         spin_lock_irqsave(&queue->qlock, flags);
895         /* abort outstanding io's */
896         for (i = 0; i < queue->sqsize; fod++, i++) {
897                 if (fod->active) {
898                         spin_lock(&fod->flock);
899                         fod->abort = true;
900                         /*
901                          * only call lldd abort routine if waiting for
902                          * writedata. other outstanding ops should finish
903                          * on their own.
904                          */
905                         if (fod->writedataactive) {
906                                 fod->aborted = true;
907                                 spin_unlock(&fod->flock);
908                                 tgtport->ops->fcp_abort(
909                                         &tgtport->fc_target_port, fod->fcpreq);
910                         } else
911                                 spin_unlock(&fod->flock);
912                 }
913         }
914
915         /* Cleanup defer'ed IOs in queue */
916         list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
917                                 req_list) {
918                 list_del(&deferfcp->req_list);
919                 kfree(deferfcp);
920         }
921
922         for (;;) {
923                 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
924                                 struct nvmet_fc_defer_fcp_req, req_list);
925                 if (!deferfcp)
926                         break;
927
928                 list_del(&deferfcp->req_list);
929                 spin_unlock_irqrestore(&queue->qlock, flags);
930
931                 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
932                                 deferfcp->fcp_req);
933
934                 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
935                                 deferfcp->fcp_req);
936
937                 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
938                                 deferfcp->fcp_req);
939
940                 /* release the queue lookup reference */
941                 nvmet_fc_tgt_q_put(queue);
942
943                 kfree(deferfcp);
944
945                 spin_lock_irqsave(&queue->qlock, flags);
946         }
947         spin_unlock_irqrestore(&queue->qlock, flags);
948
949         flush_workqueue(queue->work_q);
950
951         nvmet_sq_destroy(&queue->nvme_sq);
952
953         nvmet_fc_tgt_q_put(queue);
954 }
955
956 static struct nvmet_fc_tgt_queue *
957 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
958                                 u64 connection_id)
959 {
960         struct nvmet_fc_tgt_assoc *assoc;
961         struct nvmet_fc_tgt_queue *queue;
962         u64 association_id = nvmet_fc_getassociationid(connection_id);
963         u16 qid = nvmet_fc_getqueueid(connection_id);
964
965         if (qid > NVMET_NR_QUEUES)
966                 return NULL;
967
968         rcu_read_lock();
969         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
970                 if (association_id == assoc->association_id) {
971                         queue = rcu_dereference(assoc->queues[qid]);
972                         if (queue &&
973                             (!atomic_read(&queue->connected) ||
974                              !nvmet_fc_tgt_q_get(queue)))
975                                 queue = NULL;
976                         rcu_read_unlock();
977                         return queue;
978                 }
979         }
980         rcu_read_unlock();
981         return NULL;
982 }
983
984 static void
985 nvmet_fc_hostport_free(struct kref *ref)
986 {
987         struct nvmet_fc_hostport *hostport =
988                 container_of(ref, struct nvmet_fc_hostport, ref);
989         struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
990         unsigned long flags;
991
992         spin_lock_irqsave(&tgtport->lock, flags);
993         list_del(&hostport->host_list);
994         spin_unlock_irqrestore(&tgtport->lock, flags);
995         if (tgtport->ops->host_release && hostport->invalid)
996                 tgtport->ops->host_release(hostport->hosthandle);
997         kfree(hostport);
998         nvmet_fc_tgtport_put(tgtport);
999 }
1000
1001 static void
1002 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1003 {
1004         kref_put(&hostport->ref, nvmet_fc_hostport_free);
1005 }
1006
1007 static int
1008 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1009 {
1010         return kref_get_unless_zero(&hostport->ref);
1011 }
1012
1013 static void
1014 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1015 {
1016         /* if LLDD not implemented, leave as NULL */
1017         if (!hostport || !hostport->hosthandle)
1018                 return;
1019
1020         nvmet_fc_hostport_put(hostport);
1021 }
1022
1023 static struct nvmet_fc_hostport *
1024 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1025 {
1026         struct nvmet_fc_hostport *host;
1027
1028         lockdep_assert_held(&tgtport->lock);
1029
1030         list_for_each_entry(host, &tgtport->host_list, host_list) {
1031                 if (host->hosthandle == hosthandle && !host->invalid) {
1032                         if (nvmet_fc_hostport_get(host))
1033                                 return (host);
1034                 }
1035         }
1036
1037         return NULL;
1038 }
1039
1040 static struct nvmet_fc_hostport *
1041 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1042 {
1043         struct nvmet_fc_hostport *newhost, *match = NULL;
1044         unsigned long flags;
1045
1046         /* if LLDD not implemented, leave as NULL */
1047         if (!hosthandle)
1048                 return NULL;
1049
1050         /*
1051          * take reference for what will be the newly allocated hostport if
1052          * we end up using a new allocation
1053          */
1054         if (!nvmet_fc_tgtport_get(tgtport))
1055                 return ERR_PTR(-EINVAL);
1056
1057         spin_lock_irqsave(&tgtport->lock, flags);
1058         match = nvmet_fc_match_hostport(tgtport, hosthandle);
1059         spin_unlock_irqrestore(&tgtport->lock, flags);
1060
1061         if (match) {
1062                 /* no new allocation - release reference */
1063                 nvmet_fc_tgtport_put(tgtport);
1064                 return match;
1065         }
1066
1067         newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1068         if (!newhost) {
1069                 /* no new allocation - release reference */
1070                 nvmet_fc_tgtport_put(tgtport);
1071                 return ERR_PTR(-ENOMEM);
1072         }
1073
1074         spin_lock_irqsave(&tgtport->lock, flags);
1075         match = nvmet_fc_match_hostport(tgtport, hosthandle);
1076         if (match) {
1077                 /* new allocation not needed */
1078                 kfree(newhost);
1079                 newhost = match;
1080                 /* no new allocation - release reference */
1081                 nvmet_fc_tgtport_put(tgtport);
1082         } else {
1083                 newhost->tgtport = tgtport;
1084                 newhost->hosthandle = hosthandle;
1085                 INIT_LIST_HEAD(&newhost->host_list);
1086                 kref_init(&newhost->ref);
1087
1088                 list_add_tail(&newhost->host_list, &tgtport->host_list);
1089         }
1090         spin_unlock_irqrestore(&tgtport->lock, flags);
1091
1092         return newhost;
1093 }
1094
1095 static void
1096 nvmet_fc_delete_assoc(struct work_struct *work)
1097 {
1098         struct nvmet_fc_tgt_assoc *assoc =
1099                 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1100
1101         nvmet_fc_delete_target_assoc(assoc);
1102         nvmet_fc_tgt_a_put(assoc);
1103 }
1104
1105 static struct nvmet_fc_tgt_assoc *
1106 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1107 {
1108         struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1109         unsigned long flags;
1110         u64 ran;
1111         int idx;
1112         bool needrandom = true;
1113
1114         assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1115         if (!assoc)
1116                 return NULL;
1117
1118         idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
1119         if (idx < 0)
1120                 goto out_free_assoc;
1121
1122         if (!nvmet_fc_tgtport_get(tgtport))
1123                 goto out_ida;
1124
1125         assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1126         if (IS_ERR(assoc->hostport))
1127                 goto out_put;
1128
1129         assoc->tgtport = tgtport;
1130         assoc->a_id = idx;
1131         INIT_LIST_HEAD(&assoc->a_list);
1132         kref_init(&assoc->ref);
1133         INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1134         atomic_set(&assoc->terminating, 0);
1135
1136         while (needrandom) {
1137                 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1138                 ran = ran << BYTES_FOR_QID_SHIFT;
1139
1140                 spin_lock_irqsave(&tgtport->lock, flags);
1141                 needrandom = false;
1142                 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1143                         if (ran == tmpassoc->association_id) {
1144                                 needrandom = true;
1145                                 break;
1146                         }
1147                 }
1148                 if (!needrandom) {
1149                         assoc->association_id = ran;
1150                         list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1151                 }
1152                 spin_unlock_irqrestore(&tgtport->lock, flags);
1153         }
1154
1155         return assoc;
1156
1157 out_put:
1158         nvmet_fc_tgtport_put(tgtport);
1159 out_ida:
1160         ida_simple_remove(&tgtport->assoc_cnt, idx);
1161 out_free_assoc:
1162         kfree(assoc);
1163         return NULL;
1164 }
1165
1166 static void
1167 nvmet_fc_target_assoc_free(struct kref *ref)
1168 {
1169         struct nvmet_fc_tgt_assoc *assoc =
1170                 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1171         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1172         struct nvmet_fc_ls_iod  *oldls;
1173         unsigned long flags;
1174
1175         /* Send Disconnect now that all i/o has completed */
1176         nvmet_fc_xmt_disconnect_assoc(assoc);
1177
1178         nvmet_fc_free_hostport(assoc->hostport);
1179         spin_lock_irqsave(&tgtport->lock, flags);
1180         list_del_rcu(&assoc->a_list);
1181         oldls = assoc->rcv_disconn;
1182         spin_unlock_irqrestore(&tgtport->lock, flags);
1183         /* if pending Rcv Disconnect Association LS, send rsp now */
1184         if (oldls)
1185                 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1186         ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
1187         dev_info(tgtport->dev,
1188                 "{%d:%d} Association freed\n",
1189                 tgtport->fc_target_port.port_num, assoc->a_id);
1190         kfree_rcu(assoc, rcu);
1191         nvmet_fc_tgtport_put(tgtport);
1192 }
1193
1194 static void
1195 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1196 {
1197         kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1198 }
1199
1200 static int
1201 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1202 {
1203         return kref_get_unless_zero(&assoc->ref);
1204 }
1205
1206 static void
1207 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1208 {
1209         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1210         struct nvmet_fc_tgt_queue *queue;
1211         int i, terminating;
1212
1213         terminating = atomic_xchg(&assoc->terminating, 1);
1214
1215         /* if already terminating, do nothing */
1216         if (terminating)
1217                 return;
1218
1219
1220         for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1221                 rcu_read_lock();
1222                 queue = rcu_dereference(assoc->queues[i]);
1223                 if (!queue) {
1224                         rcu_read_unlock();
1225                         continue;
1226                 }
1227
1228                 if (!nvmet_fc_tgt_q_get(queue)) {
1229                         rcu_read_unlock();
1230                         continue;
1231                 }
1232                 rcu_read_unlock();
1233                 nvmet_fc_delete_target_queue(queue);
1234                 nvmet_fc_tgt_q_put(queue);
1235         }
1236
1237         dev_info(tgtport->dev,
1238                 "{%d:%d} Association deleted\n",
1239                 tgtport->fc_target_port.port_num, assoc->a_id);
1240
1241         nvmet_fc_tgt_a_put(assoc);
1242 }
1243
1244 static struct nvmet_fc_tgt_assoc *
1245 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1246                                 u64 association_id)
1247 {
1248         struct nvmet_fc_tgt_assoc *assoc;
1249         struct nvmet_fc_tgt_assoc *ret = NULL;
1250
1251         rcu_read_lock();
1252         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1253                 if (association_id == assoc->association_id) {
1254                         ret = assoc;
1255                         if (!nvmet_fc_tgt_a_get(assoc))
1256                                 ret = NULL;
1257                         break;
1258                 }
1259         }
1260         rcu_read_unlock();
1261
1262         return ret;
1263 }
1264
1265 static void
1266 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1267                         struct nvmet_fc_port_entry *pe,
1268                         struct nvmet_port *port)
1269 {
1270         lockdep_assert_held(&nvmet_fc_tgtlock);
1271
1272         pe->tgtport = tgtport;
1273         tgtport->pe = pe;
1274
1275         pe->port = port;
1276         port->priv = pe;
1277
1278         pe->node_name = tgtport->fc_target_port.node_name;
1279         pe->port_name = tgtport->fc_target_port.port_name;
1280         INIT_LIST_HEAD(&pe->pe_list);
1281
1282         list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1283 }
1284
1285 static void
1286 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1287 {
1288         unsigned long flags;
1289
1290         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1291         if (pe->tgtport)
1292                 pe->tgtport->pe = NULL;
1293         list_del(&pe->pe_list);
1294         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1295 }
1296
1297 /*
1298  * called when a targetport deregisters. Breaks the relationship
1299  * with the nvmet port, but leaves the port_entry in place so that
1300  * re-registration can resume operation.
1301  */
1302 static void
1303 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1304 {
1305         struct nvmet_fc_port_entry *pe;
1306         unsigned long flags;
1307
1308         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1309         pe = tgtport->pe;
1310         if (pe)
1311                 pe->tgtport = NULL;
1312         tgtport->pe = NULL;
1313         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1314 }
1315
1316 /*
1317  * called when a new targetport is registered. Looks in the
1318  * existing nvmet port_entries to see if the nvmet layer is
1319  * configured for the targetport's wwn's. (the targetport existed,
1320  * nvmet configured, the lldd unregistered the tgtport, and is now
1321  * reregistering the same targetport).  If so, set the nvmet port
1322  * port entry on the targetport.
1323  */
1324 static void
1325 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1326 {
1327         struct nvmet_fc_port_entry *pe;
1328         unsigned long flags;
1329
1330         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1331         list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1332                 if (tgtport->fc_target_port.node_name == pe->node_name &&
1333                     tgtport->fc_target_port.port_name == pe->port_name) {
1334                         WARN_ON(pe->tgtport);
1335                         tgtport->pe = pe;
1336                         pe->tgtport = tgtport;
1337                         break;
1338                 }
1339         }
1340         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1341 }
1342
1343 /**
1344  * nvme_fc_register_targetport - transport entry point called by an
1345  *                              LLDD to register the existence of a local
1346  *                              NVME subystem FC port.
1347  * @pinfo:     pointer to information about the port to be registered
1348  * @template:  LLDD entrypoints and operational parameters for the port
1349  * @dev:       physical hardware device node port corresponds to. Will be
1350  *             used for DMA mappings
1351  * @portptr:   pointer to a local port pointer. Upon success, the routine
1352  *             will allocate a nvme_fc_local_port structure and place its
1353  *             address in the local port pointer. Upon failure, local port
1354  *             pointer will be set to NULL.
1355  *
1356  * Returns:
1357  * a completion status. Must be 0 upon success; a negative errno
1358  * (ex: -ENXIO) upon failure.
1359  */
1360 int
1361 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1362                         struct nvmet_fc_target_template *template,
1363                         struct device *dev,
1364                         struct nvmet_fc_target_port **portptr)
1365 {
1366         struct nvmet_fc_tgtport *newrec;
1367         unsigned long flags;
1368         int ret, idx;
1369
1370         if (!template->xmt_ls_rsp || !template->fcp_op ||
1371             !template->fcp_abort ||
1372             !template->fcp_req_release || !template->targetport_delete ||
1373             !template->max_hw_queues || !template->max_sgl_segments ||
1374             !template->max_dif_sgl_segments || !template->dma_boundary) {
1375                 ret = -EINVAL;
1376                 goto out_regtgt_failed;
1377         }
1378
1379         newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1380                          GFP_KERNEL);
1381         if (!newrec) {
1382                 ret = -ENOMEM;
1383                 goto out_regtgt_failed;
1384         }
1385
1386         idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1387         if (idx < 0) {
1388                 ret = -ENOSPC;
1389                 goto out_fail_kfree;
1390         }
1391
1392         if (!get_device(dev) && dev) {
1393                 ret = -ENODEV;
1394                 goto out_ida_put;
1395         }
1396
1397         newrec->fc_target_port.node_name = pinfo->node_name;
1398         newrec->fc_target_port.port_name = pinfo->port_name;
1399         if (template->target_priv_sz)
1400                 newrec->fc_target_port.private = &newrec[1];
1401         else
1402                 newrec->fc_target_port.private = NULL;
1403         newrec->fc_target_port.port_id = pinfo->port_id;
1404         newrec->fc_target_port.port_num = idx;
1405         INIT_LIST_HEAD(&newrec->tgt_list);
1406         newrec->dev = dev;
1407         newrec->ops = template;
1408         spin_lock_init(&newrec->lock);
1409         INIT_LIST_HEAD(&newrec->ls_rcv_list);
1410         INIT_LIST_HEAD(&newrec->ls_req_list);
1411         INIT_LIST_HEAD(&newrec->ls_busylist);
1412         INIT_LIST_HEAD(&newrec->assoc_list);
1413         INIT_LIST_HEAD(&newrec->host_list);
1414         kref_init(&newrec->ref);
1415         ida_init(&newrec->assoc_cnt);
1416         newrec->max_sg_cnt = template->max_sgl_segments;
1417
1418         ret = nvmet_fc_alloc_ls_iodlist(newrec);
1419         if (ret) {
1420                 ret = -ENOMEM;
1421                 goto out_free_newrec;
1422         }
1423
1424         nvmet_fc_portentry_rebind_tgt(newrec);
1425
1426         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1427         list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1428         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1429
1430         *portptr = &newrec->fc_target_port;
1431         return 0;
1432
1433 out_free_newrec:
1434         put_device(dev);
1435 out_ida_put:
1436         ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1437 out_fail_kfree:
1438         kfree(newrec);
1439 out_regtgt_failed:
1440         *portptr = NULL;
1441         return ret;
1442 }
1443 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1444
1445
1446 static void
1447 nvmet_fc_free_tgtport(struct kref *ref)
1448 {
1449         struct nvmet_fc_tgtport *tgtport =
1450                 container_of(ref, struct nvmet_fc_tgtport, ref);
1451         struct device *dev = tgtport->dev;
1452         unsigned long flags;
1453
1454         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1455         list_del(&tgtport->tgt_list);
1456         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1457
1458         nvmet_fc_free_ls_iodlist(tgtport);
1459
1460         /* let the LLDD know we've finished tearing it down */
1461         tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1462
1463         ida_simple_remove(&nvmet_fc_tgtport_cnt,
1464                         tgtport->fc_target_port.port_num);
1465
1466         ida_destroy(&tgtport->assoc_cnt);
1467
1468         kfree(tgtport);
1469
1470         put_device(dev);
1471 }
1472
1473 static void
1474 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1475 {
1476         kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1477 }
1478
1479 static int
1480 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1481 {
1482         return kref_get_unless_zero(&tgtport->ref);
1483 }
1484
1485 static void
1486 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1487 {
1488         struct nvmet_fc_tgt_assoc *assoc;
1489
1490         rcu_read_lock();
1491         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1492                 if (!nvmet_fc_tgt_a_get(assoc))
1493                         continue;
1494                 if (!schedule_work(&assoc->del_work))
1495                         /* already deleting - release local reference */
1496                         nvmet_fc_tgt_a_put(assoc);
1497         }
1498         rcu_read_unlock();
1499 }
1500
1501 /**
1502  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1503  *                       to remove references to a hosthandle for LS's.
1504  *
1505  * The nvmet-fc layer ensures that any references to the hosthandle
1506  * on the targetport are forgotten (set to NULL).  The LLDD will
1507  * typically call this when a login with a remote host port has been
1508  * lost, thus LS's for the remote host port are no longer possible.
1509  *
1510  * If an LS request is outstanding to the targetport/hosthandle (or
1511  * issued concurrently with the call to invalidate the host), the
1512  * LLDD is responsible for terminating/aborting the LS and completing
1513  * the LS request. It is recommended that these terminations/aborts
1514  * occur after calling to invalidate the host handle to avoid additional
1515  * retries by the nvmet-fc transport. The nvmet-fc transport may
1516  * continue to reference host handle while it cleans up outstanding
1517  * NVME associations. The nvmet-fc transport will call the
1518  * ops->host_release() callback to notify the LLDD that all references
1519  * are complete and the related host handle can be recovered.
1520  * Note: if there are no references, the callback may be called before
1521  * the invalidate host call returns.
1522  *
1523  * @target_port: pointer to the (registered) target port that a prior
1524  *              LS was received on and which supplied the transport the
1525  *              hosthandle.
1526  * @hosthandle: the handle (pointer) that represents the host port
1527  *              that no longer has connectivity and that LS's should
1528  *              no longer be directed to.
1529  */
1530 void
1531 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1532                         void *hosthandle)
1533 {
1534         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1535         struct nvmet_fc_tgt_assoc *assoc, *next;
1536         unsigned long flags;
1537         bool noassoc = true;
1538
1539         spin_lock_irqsave(&tgtport->lock, flags);
1540         list_for_each_entry_safe(assoc, next,
1541                                 &tgtport->assoc_list, a_list) {
1542                 if (!assoc->hostport ||
1543                     assoc->hostport->hosthandle != hosthandle)
1544                         continue;
1545                 if (!nvmet_fc_tgt_a_get(assoc))
1546                         continue;
1547                 assoc->hostport->invalid = 1;
1548                 noassoc = false;
1549                 if (!schedule_work(&assoc->del_work))
1550                         /* already deleting - release local reference */
1551                         nvmet_fc_tgt_a_put(assoc);
1552         }
1553         spin_unlock_irqrestore(&tgtport->lock, flags);
1554
1555         /* if there's nothing to wait for - call the callback */
1556         if (noassoc && tgtport->ops->host_release)
1557                 tgtport->ops->host_release(hosthandle);
1558 }
1559 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1560
1561 /*
1562  * nvmet layer has called to terminate an association
1563  */
1564 static void
1565 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1566 {
1567         struct nvmet_fc_tgtport *tgtport, *next;
1568         struct nvmet_fc_tgt_assoc *assoc;
1569         struct nvmet_fc_tgt_queue *queue;
1570         unsigned long flags;
1571         bool found_ctrl = false;
1572
1573         /* this is a bit ugly, but don't want to make locks layered */
1574         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1575         list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1576                         tgt_list) {
1577                 if (!nvmet_fc_tgtport_get(tgtport))
1578                         continue;
1579                 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1580
1581                 rcu_read_lock();
1582                 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1583                         queue = rcu_dereference(assoc->queues[0]);
1584                         if (queue && queue->nvme_sq.ctrl == ctrl) {
1585                                 if (nvmet_fc_tgt_a_get(assoc))
1586                                         found_ctrl = true;
1587                                 break;
1588                         }
1589                 }
1590                 rcu_read_unlock();
1591
1592                 nvmet_fc_tgtport_put(tgtport);
1593
1594                 if (found_ctrl) {
1595                         if (!schedule_work(&assoc->del_work))
1596                                 /* already deleting - release local reference */
1597                                 nvmet_fc_tgt_a_put(assoc);
1598                         return;
1599                 }
1600
1601                 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1602         }
1603         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1604 }
1605
1606 /**
1607  * nvme_fc_unregister_targetport - transport entry point called by an
1608  *                              LLDD to deregister/remove a previously
1609  *                              registered a local NVME subsystem FC port.
1610  * @target_port: pointer to the (registered) target port that is to be
1611  *               deregistered.
1612  *
1613  * Returns:
1614  * a completion status. Must be 0 upon success; a negative errno
1615  * (ex: -ENXIO) upon failure.
1616  */
1617 int
1618 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1619 {
1620         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1621
1622         nvmet_fc_portentry_unbind_tgt(tgtport);
1623
1624         /* terminate any outstanding associations */
1625         __nvmet_fc_free_assocs(tgtport);
1626
1627         /*
1628          * should terminate LS's as well. However, LS's will be generated
1629          * at the tail end of association termination, so they likely don't
1630          * exist yet. And even if they did, it's worthwhile to just let
1631          * them finish and targetport ref counting will clean things up.
1632          */
1633
1634         nvmet_fc_tgtport_put(tgtport);
1635
1636         return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1639
1640
1641 /* ********************** FC-NVME LS RCV Handling ************************* */
1642
1643
1644 static void
1645 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1646                         struct nvmet_fc_ls_iod *iod)
1647 {
1648         struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1649         struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1650         struct nvmet_fc_tgt_queue *queue;
1651         int ret = 0;
1652
1653         memset(acc, 0, sizeof(*acc));
1654
1655         /*
1656          * FC-NVME spec changes. There are initiators sending different
1657          * lengths as padding sizes for Create Association Cmd descriptor
1658          * was incorrect.
1659          * Accept anything of "minimum" length. Assume format per 1.15
1660          * spec (with HOSTID reduced to 16 bytes), ignore how long the
1661          * trailing pad length is.
1662          */
1663         if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1664                 ret = VERR_CR_ASSOC_LEN;
1665         else if (be32_to_cpu(rqst->desc_list_len) <
1666                         FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1667                 ret = VERR_CR_ASSOC_RQST_LEN;
1668         else if (rqst->assoc_cmd.desc_tag !=
1669                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1670                 ret = VERR_CR_ASSOC_CMD;
1671         else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1672                         FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1673                 ret = VERR_CR_ASSOC_CMD_LEN;
1674         else if (!rqst->assoc_cmd.ersp_ratio ||
1675                  (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1676                                 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1677                 ret = VERR_ERSP_RATIO;
1678
1679         else {
1680                 /* new association w/ admin queue */
1681                 iod->assoc = nvmet_fc_alloc_target_assoc(
1682                                                 tgtport, iod->hosthandle);
1683                 if (!iod->assoc)
1684                         ret = VERR_ASSOC_ALLOC_FAIL;
1685                 else {
1686                         queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1687                                         be16_to_cpu(rqst->assoc_cmd.sqsize));
1688                         if (!queue)
1689                                 ret = VERR_QUEUE_ALLOC_FAIL;
1690                 }
1691         }
1692
1693         if (ret) {
1694                 dev_err(tgtport->dev,
1695                         "Create Association LS failed: %s\n",
1696                         validation_errors[ret]);
1697                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1698                                 sizeof(*acc), rqst->w0.ls_cmd,
1699                                 FCNVME_RJT_RC_LOGIC,
1700                                 FCNVME_RJT_EXP_NONE, 0);
1701                 return;
1702         }
1703
1704         queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1705         atomic_set(&queue->connected, 1);
1706         queue->sqhd = 0;        /* best place to init value */
1707
1708         dev_info(tgtport->dev,
1709                 "{%d:%d} Association created\n",
1710                 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1711
1712         /* format a response */
1713
1714         iod->lsrsp->rsplen = sizeof(*acc);
1715
1716         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1717                         fcnvme_lsdesc_len(
1718                                 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1719                         FCNVME_LS_CREATE_ASSOCIATION);
1720         acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1721         acc->associd.desc_len =
1722                         fcnvme_lsdesc_len(
1723                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1724         acc->associd.association_id =
1725                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1726         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1727         acc->connectid.desc_len =
1728                         fcnvme_lsdesc_len(
1729                                 sizeof(struct fcnvme_lsdesc_conn_id));
1730         acc->connectid.connection_id = acc->associd.association_id;
1731 }
1732
1733 static void
1734 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1735                         struct nvmet_fc_ls_iod *iod)
1736 {
1737         struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1738         struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1739         struct nvmet_fc_tgt_queue *queue;
1740         int ret = 0;
1741
1742         memset(acc, 0, sizeof(*acc));
1743
1744         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1745                 ret = VERR_CR_CONN_LEN;
1746         else if (rqst->desc_list_len !=
1747                         fcnvme_lsdesc_len(
1748                                 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1749                 ret = VERR_CR_CONN_RQST_LEN;
1750         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1751                 ret = VERR_ASSOC_ID;
1752         else if (rqst->associd.desc_len !=
1753                         fcnvme_lsdesc_len(
1754                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1755                 ret = VERR_ASSOC_ID_LEN;
1756         else if (rqst->connect_cmd.desc_tag !=
1757                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1758                 ret = VERR_CR_CONN_CMD;
1759         else if (rqst->connect_cmd.desc_len !=
1760                         fcnvme_lsdesc_len(
1761                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1762                 ret = VERR_CR_CONN_CMD_LEN;
1763         else if (!rqst->connect_cmd.ersp_ratio ||
1764                  (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1765                                 be16_to_cpu(rqst->connect_cmd.sqsize)))
1766                 ret = VERR_ERSP_RATIO;
1767
1768         else {
1769                 /* new io queue */
1770                 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1771                                 be64_to_cpu(rqst->associd.association_id));
1772                 if (!iod->assoc)
1773                         ret = VERR_NO_ASSOC;
1774                 else {
1775                         queue = nvmet_fc_alloc_target_queue(iod->assoc,
1776                                         be16_to_cpu(rqst->connect_cmd.qid),
1777                                         be16_to_cpu(rqst->connect_cmd.sqsize));
1778                         if (!queue)
1779                                 ret = VERR_QUEUE_ALLOC_FAIL;
1780
1781                         /* release get taken in nvmet_fc_find_target_assoc */
1782                         nvmet_fc_tgt_a_put(iod->assoc);
1783                 }
1784         }
1785
1786         if (ret) {
1787                 dev_err(tgtport->dev,
1788                         "Create Connection LS failed: %s\n",
1789                         validation_errors[ret]);
1790                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1791                                 sizeof(*acc), rqst->w0.ls_cmd,
1792                                 (ret == VERR_NO_ASSOC) ?
1793                                         FCNVME_RJT_RC_INV_ASSOC :
1794                                         FCNVME_RJT_RC_LOGIC,
1795                                 FCNVME_RJT_EXP_NONE, 0);
1796                 return;
1797         }
1798
1799         queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1800         atomic_set(&queue->connected, 1);
1801         queue->sqhd = 0;        /* best place to init value */
1802
1803         /* format a response */
1804
1805         iod->lsrsp->rsplen = sizeof(*acc);
1806
1807         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1808                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1809                         FCNVME_LS_CREATE_CONNECTION);
1810         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1811         acc->connectid.desc_len =
1812                         fcnvme_lsdesc_len(
1813                                 sizeof(struct fcnvme_lsdesc_conn_id));
1814         acc->connectid.connection_id =
1815                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1816                                 be16_to_cpu(rqst->connect_cmd.qid)));
1817 }
1818
1819 /*
1820  * Returns true if the LS response is to be transmit
1821  * Returns false if the LS response is to be delayed
1822  */
1823 static int
1824 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1825                         struct nvmet_fc_ls_iod *iod)
1826 {
1827         struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1828                                                 &iod->rqstbuf->rq_dis_assoc;
1829         struct fcnvme_ls_disconnect_assoc_acc *acc =
1830                                                 &iod->rspbuf->rsp_dis_assoc;
1831         struct nvmet_fc_tgt_assoc *assoc = NULL;
1832         struct nvmet_fc_ls_iod *oldls = NULL;
1833         unsigned long flags;
1834         int ret = 0;
1835
1836         memset(acc, 0, sizeof(*acc));
1837
1838         ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1839         if (!ret) {
1840                 /* match an active association - takes an assoc ref if !NULL */
1841                 assoc = nvmet_fc_find_target_assoc(tgtport,
1842                                 be64_to_cpu(rqst->associd.association_id));
1843                 iod->assoc = assoc;
1844                 if (!assoc)
1845                         ret = VERR_NO_ASSOC;
1846         }
1847
1848         if (ret || !assoc) {
1849                 dev_err(tgtport->dev,
1850                         "Disconnect LS failed: %s\n",
1851                         validation_errors[ret]);
1852                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1853                                 sizeof(*acc), rqst->w0.ls_cmd,
1854                                 (ret == VERR_NO_ASSOC) ?
1855                                         FCNVME_RJT_RC_INV_ASSOC :
1856                                         FCNVME_RJT_RC_LOGIC,
1857                                 FCNVME_RJT_EXP_NONE, 0);
1858                 return true;
1859         }
1860
1861         /* format a response */
1862
1863         iod->lsrsp->rsplen = sizeof(*acc);
1864
1865         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1866                         fcnvme_lsdesc_len(
1867                                 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1868                         FCNVME_LS_DISCONNECT_ASSOC);
1869
1870         /* release get taken in nvmet_fc_find_target_assoc */
1871         nvmet_fc_tgt_a_put(assoc);
1872
1873         /*
1874          * The rules for LS response says the response cannot
1875          * go back until ABTS's have been sent for all outstanding
1876          * I/O and a Disconnect Association LS has been sent.
1877          * So... save off the Disconnect LS to send the response
1878          * later. If there was a prior LS already saved, replace
1879          * it with the newer one and send a can't perform reject
1880          * on the older one.
1881          */
1882         spin_lock_irqsave(&tgtport->lock, flags);
1883         oldls = assoc->rcv_disconn;
1884         assoc->rcv_disconn = iod;
1885         spin_unlock_irqrestore(&tgtport->lock, flags);
1886
1887         nvmet_fc_delete_target_assoc(assoc);
1888
1889         if (oldls) {
1890                 dev_info(tgtport->dev,
1891                         "{%d:%d} Multiple Disconnect Association LS's "
1892                         "received\n",
1893                         tgtport->fc_target_port.port_num, assoc->a_id);
1894                 /* overwrite good response with bogus failure */
1895                 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1896                                                 sizeof(*iod->rspbuf),
1897                                                 /* ok to use rqst, LS is same */
1898                                                 rqst->w0.ls_cmd,
1899                                                 FCNVME_RJT_RC_UNAB,
1900                                                 FCNVME_RJT_EXP_NONE, 0);
1901                 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1902         }
1903
1904         return false;
1905 }
1906
1907
1908 /* *********************** NVME Ctrl Routines **************************** */
1909
1910
1911 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1912
1913 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1914
1915 static void
1916 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1917 {
1918         struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1919         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1920
1921         fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1922                                 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1923         nvmet_fc_free_ls_iod(tgtport, iod);
1924         nvmet_fc_tgtport_put(tgtport);
1925 }
1926
1927 static void
1928 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1929                                 struct nvmet_fc_ls_iod *iod)
1930 {
1931         int ret;
1932
1933         fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1934                                   sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1935
1936         ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1937         if (ret)
1938                 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1939 }
1940
1941 /*
1942  * Actual processing routine for received FC-NVME LS Requests from the LLD
1943  */
1944 static void
1945 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1946                         struct nvmet_fc_ls_iod *iod)
1947 {
1948         struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1949         bool sendrsp = true;
1950
1951         iod->lsrsp->nvme_fc_private = iod;
1952         iod->lsrsp->rspbuf = iod->rspbuf;
1953         iod->lsrsp->rspdma = iod->rspdma;
1954         iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1955         /* Be preventative. handlers will later set to valid length */
1956         iod->lsrsp->rsplen = 0;
1957
1958         iod->assoc = NULL;
1959
1960         /*
1961          * handlers:
1962          *   parse request input, execute the request, and format the
1963          *   LS response
1964          */
1965         switch (w0->ls_cmd) {
1966         case FCNVME_LS_CREATE_ASSOCIATION:
1967                 /* Creates Association and initial Admin Queue/Connection */
1968                 nvmet_fc_ls_create_association(tgtport, iod);
1969                 break;
1970         case FCNVME_LS_CREATE_CONNECTION:
1971                 /* Creates an IO Queue/Connection */
1972                 nvmet_fc_ls_create_connection(tgtport, iod);
1973                 break;
1974         case FCNVME_LS_DISCONNECT_ASSOC:
1975                 /* Terminate a Queue/Connection or the Association */
1976                 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1977                 break;
1978         default:
1979                 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1980                                 sizeof(*iod->rspbuf), w0->ls_cmd,
1981                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1982         }
1983
1984         if (sendrsp)
1985                 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1986 }
1987
1988 /*
1989  * Actual processing routine for received FC-NVME LS Requests from the LLD
1990  */
1991 static void
1992 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1993 {
1994         struct nvmet_fc_ls_iod *iod =
1995                 container_of(work, struct nvmet_fc_ls_iod, work);
1996         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1997
1998         nvmet_fc_handle_ls_rqst(tgtport, iod);
1999 }
2000
2001
2002 /**
2003  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2004  *                       upon the reception of a NVME LS request.
2005  *
2006  * The nvmet-fc layer will copy payload to an internal structure for
2007  * processing.  As such, upon completion of the routine, the LLDD may
2008  * immediately free/reuse the LS request buffer passed in the call.
2009  *
2010  * If this routine returns error, the LLDD should abort the exchange.
2011  *
2012  * @target_port: pointer to the (registered) target port the LS was
2013  *              received on.
2014  * @hosthandle: pointer to the host specific data, gets stored in iod.
2015  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2016  *              the exchange corresponding to the LS.
2017  * @lsreqbuf:   pointer to the buffer containing the LS Request
2018  * @lsreqbuf_len: length, in bytes, of the received LS request
2019  */
2020 int
2021 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2022                         void *hosthandle,
2023                         struct nvmefc_ls_rsp *lsrsp,
2024                         void *lsreqbuf, u32 lsreqbuf_len)
2025 {
2026         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2027         struct nvmet_fc_ls_iod *iod;
2028         struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2029
2030         if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2031                 dev_info(tgtport->dev,
2032                         "RCV %s LS failed: payload too large (%d)\n",
2033                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2034                                 nvmefc_ls_names[w0->ls_cmd] : "",
2035                         lsreqbuf_len);
2036                 return -E2BIG;
2037         }
2038
2039         if (!nvmet_fc_tgtport_get(tgtport)) {
2040                 dev_info(tgtport->dev,
2041                         "RCV %s LS failed: target deleting\n",
2042                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2043                                 nvmefc_ls_names[w0->ls_cmd] : "");
2044                 return -ESHUTDOWN;
2045         }
2046
2047         iod = nvmet_fc_alloc_ls_iod(tgtport);
2048         if (!iod) {
2049                 dev_info(tgtport->dev,
2050                         "RCV %s LS failed: context allocation failed\n",
2051                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2052                                 nvmefc_ls_names[w0->ls_cmd] : "");
2053                 nvmet_fc_tgtport_put(tgtport);
2054                 return -ENOENT;
2055         }
2056
2057         iod->lsrsp = lsrsp;
2058         iod->fcpreq = NULL;
2059         memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2060         iod->rqstdatalen = lsreqbuf_len;
2061         iod->hosthandle = hosthandle;
2062
2063         schedule_work(&iod->work);
2064
2065         return 0;
2066 }
2067 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2068
2069
2070 /*
2071  * **********************
2072  * Start of FCP handling
2073  * **********************
2074  */
2075
2076 static int
2077 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2078 {
2079         struct scatterlist *sg;
2080         unsigned int nent;
2081
2082         sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2083         if (!sg)
2084                 goto out;
2085
2086         fod->data_sg = sg;
2087         fod->data_sg_cnt = nent;
2088         fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2089                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
2090                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
2091                                 /* note: write from initiator perspective */
2092         fod->next_sg = fod->data_sg;
2093
2094         return 0;
2095
2096 out:
2097         return NVME_SC_INTERNAL;
2098 }
2099
2100 static void
2101 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2102 {
2103         if (!fod->data_sg || !fod->data_sg_cnt)
2104                 return;
2105
2106         fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2107                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
2108                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
2109         sgl_free(fod->data_sg);
2110         fod->data_sg = NULL;
2111         fod->data_sg_cnt = 0;
2112 }
2113
2114
2115 static bool
2116 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2117 {
2118         u32 sqtail, used;
2119
2120         /* egad, this is ugly. And sqtail is just a best guess */
2121         sqtail = atomic_read(&q->sqtail) % q->sqsize;
2122
2123         used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2124         return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2125 }
2126
2127 /*
2128  * Prep RSP payload.
2129  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2130  */
2131 static void
2132 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2133                                 struct nvmet_fc_fcp_iod *fod)
2134 {
2135         struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2136         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2137         struct nvme_completion *cqe = &ersp->cqe;
2138         u32 *cqewd = (u32 *)cqe;
2139         bool send_ersp = false;
2140         u32 rsn, rspcnt, xfr_length;
2141
2142         if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2143                 xfr_length = fod->req.transfer_len;
2144         else
2145                 xfr_length = fod->offset;
2146
2147         /*
2148          * check to see if we can send a 0's rsp.
2149          *   Note: to send a 0's response, the NVME-FC host transport will
2150          *   recreate the CQE. The host transport knows: sq id, SQHD (last
2151          *   seen in an ersp), and command_id. Thus it will create a
2152          *   zero-filled CQE with those known fields filled in. Transport
2153          *   must send an ersp for any condition where the cqe won't match
2154          *   this.
2155          *
2156          * Here are the FC-NVME mandated cases where we must send an ersp:
2157          *  every N responses, where N=ersp_ratio
2158          *  force fabric commands to send ersp's (not in FC-NVME but good
2159          *    practice)
2160          *  normal cmds: any time status is non-zero, or status is zero
2161          *     but words 0 or 1 are non-zero.
2162          *  the SQ is 90% or more full
2163          *  the cmd is a fused command
2164          *  transferred data length not equal to cmd iu length
2165          */
2166         rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2167         if (!(rspcnt % fod->queue->ersp_ratio) ||
2168             nvme_is_fabrics((struct nvme_command *) sqe) ||
2169             xfr_length != fod->req.transfer_len ||
2170             (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2171             (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2172             queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2173                 send_ersp = true;
2174
2175         /* re-set the fields */
2176         fod->fcpreq->rspaddr = ersp;
2177         fod->fcpreq->rspdma = fod->rspdma;
2178
2179         if (!send_ersp) {
2180                 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2181                 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2182         } else {
2183                 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2184                 rsn = atomic_inc_return(&fod->queue->rsn);
2185                 ersp->rsn = cpu_to_be32(rsn);
2186                 ersp->xfrd_len = cpu_to_be32(xfr_length);
2187                 fod->fcpreq->rsplen = sizeof(*ersp);
2188         }
2189
2190         fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2191                                   sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2192 }
2193
2194 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2195
2196 static void
2197 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2198                                 struct nvmet_fc_fcp_iod *fod)
2199 {
2200         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2201
2202         /* data no longer needed */
2203         nvmet_fc_free_tgt_pgs(fod);
2204
2205         /*
2206          * if an ABTS was received or we issued the fcp_abort early
2207          * don't call abort routine again.
2208          */
2209         /* no need to take lock - lock was taken earlier to get here */
2210         if (!fod->aborted)
2211                 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2212
2213         nvmet_fc_free_fcp_iod(fod->queue, fod);
2214 }
2215
2216 static void
2217 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2218                                 struct nvmet_fc_fcp_iod *fod)
2219 {
2220         int ret;
2221
2222         fod->fcpreq->op = NVMET_FCOP_RSP;
2223         fod->fcpreq->timeout = 0;
2224
2225         nvmet_fc_prep_fcp_rsp(tgtport, fod);
2226
2227         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2228         if (ret)
2229                 nvmet_fc_abort_op(tgtport, fod);
2230 }
2231
2232 static void
2233 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2234                                 struct nvmet_fc_fcp_iod *fod, u8 op)
2235 {
2236         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2237         struct scatterlist *sg = fod->next_sg;
2238         unsigned long flags;
2239         u32 remaininglen = fod->req.transfer_len - fod->offset;
2240         u32 tlen = 0;
2241         int ret;
2242
2243         fcpreq->op = op;
2244         fcpreq->offset = fod->offset;
2245         fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2246
2247         /*
2248          * for next sequence:
2249          *  break at a sg element boundary
2250          *  attempt to keep sequence length capped at
2251          *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2252          *    be longer if a single sg element is larger
2253          *    than that amount. This is done to avoid creating
2254          *    a new sg list to use for the tgtport api.
2255          */
2256         fcpreq->sg = sg;
2257         fcpreq->sg_cnt = 0;
2258         while (tlen < remaininglen &&
2259                fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2260                tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2261                 fcpreq->sg_cnt++;
2262                 tlen += sg_dma_len(sg);
2263                 sg = sg_next(sg);
2264         }
2265         if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2266                 fcpreq->sg_cnt++;
2267                 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2268                 sg = sg_next(sg);
2269         }
2270         if (tlen < remaininglen)
2271                 fod->next_sg = sg;
2272         else
2273                 fod->next_sg = NULL;
2274
2275         fcpreq->transfer_length = tlen;
2276         fcpreq->transferred_length = 0;
2277         fcpreq->fcp_error = 0;
2278         fcpreq->rsplen = 0;
2279
2280         /*
2281          * If the last READDATA request: check if LLDD supports
2282          * combined xfr with response.
2283          */
2284         if ((op == NVMET_FCOP_READDATA) &&
2285             ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2286             (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2287                 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2288                 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2289         }
2290
2291         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2292         if (ret) {
2293                 /*
2294                  * should be ok to set w/o lock as its in the thread of
2295                  * execution (not an async timer routine) and doesn't
2296                  * contend with any clearing action
2297                  */
2298                 fod->abort = true;
2299
2300                 if (op == NVMET_FCOP_WRITEDATA) {
2301                         spin_lock_irqsave(&fod->flock, flags);
2302                         fod->writedataactive = false;
2303                         spin_unlock_irqrestore(&fod->flock, flags);
2304                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2305                 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2306                         fcpreq->fcp_error = ret;
2307                         fcpreq->transferred_length = 0;
2308                         nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2309                 }
2310         }
2311 }
2312
2313 static inline bool
2314 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2315 {
2316         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2317         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2318
2319         /* if in the middle of an io and we need to tear down */
2320         if (abort) {
2321                 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2322                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2323                         return true;
2324                 }
2325
2326                 nvmet_fc_abort_op(tgtport, fod);
2327                 return true;
2328         }
2329
2330         return false;
2331 }
2332
2333 /*
2334  * actual done handler for FCP operations when completed by the lldd
2335  */
2336 static void
2337 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2338 {
2339         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2340         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2341         unsigned long flags;
2342         bool abort;
2343
2344         spin_lock_irqsave(&fod->flock, flags);
2345         abort = fod->abort;
2346         fod->writedataactive = false;
2347         spin_unlock_irqrestore(&fod->flock, flags);
2348
2349         switch (fcpreq->op) {
2350
2351         case NVMET_FCOP_WRITEDATA:
2352                 if (__nvmet_fc_fod_op_abort(fod, abort))
2353                         return;
2354                 if (fcpreq->fcp_error ||
2355                     fcpreq->transferred_length != fcpreq->transfer_length) {
2356                         spin_lock_irqsave(&fod->flock, flags);
2357                         fod->abort = true;
2358                         spin_unlock_irqrestore(&fod->flock, flags);
2359
2360                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2361                         return;
2362                 }
2363
2364                 fod->offset += fcpreq->transferred_length;
2365                 if (fod->offset != fod->req.transfer_len) {
2366                         spin_lock_irqsave(&fod->flock, flags);
2367                         fod->writedataactive = true;
2368                         spin_unlock_irqrestore(&fod->flock, flags);
2369
2370                         /* transfer the next chunk */
2371                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2372                                                 NVMET_FCOP_WRITEDATA);
2373                         return;
2374                 }
2375
2376                 /* data transfer complete, resume with nvmet layer */
2377                 fod->req.execute(&fod->req);
2378                 break;
2379
2380         case NVMET_FCOP_READDATA:
2381         case NVMET_FCOP_READDATA_RSP:
2382                 if (__nvmet_fc_fod_op_abort(fod, abort))
2383                         return;
2384                 if (fcpreq->fcp_error ||
2385                     fcpreq->transferred_length != fcpreq->transfer_length) {
2386                         nvmet_fc_abort_op(tgtport, fod);
2387                         return;
2388                 }
2389
2390                 /* success */
2391
2392                 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2393                         /* data no longer needed */
2394                         nvmet_fc_free_tgt_pgs(fod);
2395                         nvmet_fc_free_fcp_iod(fod->queue, fod);
2396                         return;
2397                 }
2398
2399                 fod->offset += fcpreq->transferred_length;
2400                 if (fod->offset != fod->req.transfer_len) {
2401                         /* transfer the next chunk */
2402                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2403                                                 NVMET_FCOP_READDATA);
2404                         return;
2405                 }
2406
2407                 /* data transfer complete, send response */
2408
2409                 /* data no longer needed */
2410                 nvmet_fc_free_tgt_pgs(fod);
2411
2412                 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2413
2414                 break;
2415
2416         case NVMET_FCOP_RSP:
2417                 if (__nvmet_fc_fod_op_abort(fod, abort))
2418                         return;
2419                 nvmet_fc_free_fcp_iod(fod->queue, fod);
2420                 break;
2421
2422         default:
2423                 break;
2424         }
2425 }
2426
2427 static void
2428 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2429 {
2430         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2431
2432         nvmet_fc_fod_op_done(fod);
2433 }
2434
2435 /*
2436  * actual completion handler after execution by the nvmet layer
2437  */
2438 static void
2439 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2440                         struct nvmet_fc_fcp_iod *fod, int status)
2441 {
2442         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2443         struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2444         unsigned long flags;
2445         bool abort;
2446
2447         spin_lock_irqsave(&fod->flock, flags);
2448         abort = fod->abort;
2449         spin_unlock_irqrestore(&fod->flock, flags);
2450
2451         /* if we have a CQE, snoop the last sq_head value */
2452         if (!status)
2453                 fod->queue->sqhd = cqe->sq_head;
2454
2455         if (abort) {
2456                 nvmet_fc_abort_op(tgtport, fod);
2457                 return;
2458         }
2459
2460         /* if an error handling the cmd post initial parsing */
2461         if (status) {
2462                 /* fudge up a failed CQE status for our transport error */
2463                 memset(cqe, 0, sizeof(*cqe));
2464                 cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2465                 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2466                 cqe->command_id = sqe->command_id;
2467                 cqe->status = cpu_to_le16(status);
2468         } else {
2469
2470                 /*
2471                  * try to push the data even if the SQE status is non-zero.
2472                  * There may be a status where data still was intended to
2473                  * be moved
2474                  */
2475                 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2476                         /* push the data over before sending rsp */
2477                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2478                                                 NVMET_FCOP_READDATA);
2479                         return;
2480                 }
2481
2482                 /* writes & no data - fall thru */
2483         }
2484
2485         /* data no longer needed */
2486         nvmet_fc_free_tgt_pgs(fod);
2487
2488         nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2489 }
2490
2491
2492 static void
2493 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2494 {
2495         struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2496         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2497
2498         __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2499 }
2500
2501
2502 /*
2503  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2504  */
2505 static void
2506 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2507                         struct nvmet_fc_fcp_iod *fod)
2508 {
2509         struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2510         u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2511         int ret;
2512
2513         /*
2514          * Fused commands are currently not supported in the linux
2515          * implementation.
2516          *
2517          * As such, the implementation of the FC transport does not
2518          * look at the fused commands and order delivery to the upper
2519          * layer until we have both based on csn.
2520          */
2521
2522         fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2523
2524         if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2525                 fod->io_dir = NVMET_FCP_WRITE;
2526                 if (!nvme_is_write(&cmdiu->sqe))
2527                         goto transport_error;
2528         } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2529                 fod->io_dir = NVMET_FCP_READ;
2530                 if (nvme_is_write(&cmdiu->sqe))
2531                         goto transport_error;
2532         } else {
2533                 fod->io_dir = NVMET_FCP_NODATA;
2534                 if (xfrlen)
2535                         goto transport_error;
2536         }
2537
2538         fod->req.cmd = &fod->cmdiubuf.sqe;
2539         fod->req.cqe = &fod->rspiubuf.cqe;
2540         if (tgtport->pe)
2541                 fod->req.port = tgtport->pe->port;
2542
2543         /* clear any response payload */
2544         memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2545
2546         fod->data_sg = NULL;
2547         fod->data_sg_cnt = 0;
2548
2549         ret = nvmet_req_init(&fod->req,
2550                                 &fod->queue->nvme_cq,
2551                                 &fod->queue->nvme_sq,
2552                                 &nvmet_fc_tgt_fcp_ops);
2553         if (!ret) {
2554                 /* bad SQE content or invalid ctrl state */
2555                 /* nvmet layer has already called op done to send rsp. */
2556                 return;
2557         }
2558
2559         fod->req.transfer_len = xfrlen;
2560
2561         /* keep a running counter of tail position */
2562         atomic_inc(&fod->queue->sqtail);
2563
2564         if (fod->req.transfer_len) {
2565                 ret = nvmet_fc_alloc_tgt_pgs(fod);
2566                 if (ret) {
2567                         nvmet_req_complete(&fod->req, ret);
2568                         return;
2569                 }
2570         }
2571         fod->req.sg = fod->data_sg;
2572         fod->req.sg_cnt = fod->data_sg_cnt;
2573         fod->offset = 0;
2574
2575         if (fod->io_dir == NVMET_FCP_WRITE) {
2576                 /* pull the data over before invoking nvmet layer */
2577                 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2578                 return;
2579         }
2580
2581         /*
2582          * Reads or no data:
2583          *
2584          * can invoke the nvmet_layer now. If read data, cmd completion will
2585          * push the data
2586          */
2587         fod->req.execute(&fod->req);
2588         return;
2589
2590 transport_error:
2591         nvmet_fc_abort_op(tgtport, fod);
2592 }
2593
2594 /**
2595  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2596  *                       upon the reception of a NVME FCP CMD IU.
2597  *
2598  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2599  * layer for processing.
2600  *
2601  * The nvmet_fc layer allocates a local job structure (struct
2602  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2603  * CMD IU buffer to the job structure. As such, on a successful
2604  * completion (returns 0), the LLDD may immediately free/reuse
2605  * the CMD IU buffer passed in the call.
2606  *
2607  * However, in some circumstances, due to the packetized nature of FC
2608  * and the api of the FC LLDD which may issue a hw command to send the
2609  * response, but the LLDD may not get the hw completion for that command
2610  * and upcall the nvmet_fc layer before a new command may be
2611  * asynchronously received - its possible for a command to be received
2612  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2613  * the appearance of more commands received than fits in the sq.
2614  * To alleviate this scenario, a temporary queue is maintained in the
2615  * transport for pending LLDD requests waiting for a queue job structure.
2616  * In these "overrun" cases, a temporary queue element is allocated
2617  * the LLDD request and CMD iu buffer information remembered, and the
2618  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2619  * structure is freed, it is immediately reallocated for anything on the
2620  * pending request list. The LLDDs defer_rcv() callback is called,
2621  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2622  * is then started normally with the transport.
2623  *
2624  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2625  * the completion as successful but must not reuse the CMD IU buffer
2626  * until the LLDD's defer_rcv() callback has been called for the
2627  * corresponding struct nvmefc_tgt_fcp_req pointer.
2628  *
2629  * If there is any other condition in which an error occurs, the
2630  * transport will return a non-zero status indicating the error.
2631  * In all cases other than -EOVERFLOW, the transport has not accepted the
2632  * request and the LLDD should abort the exchange.
2633  *
2634  * @target_port: pointer to the (registered) target port the FCP CMD IU
2635  *              was received on.
2636  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2637  *              the exchange corresponding to the FCP Exchange.
2638  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2639  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2640  */
2641 int
2642 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2643                         struct nvmefc_tgt_fcp_req *fcpreq,
2644                         void *cmdiubuf, u32 cmdiubuf_len)
2645 {
2646         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2647         struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2648         struct nvmet_fc_tgt_queue *queue;
2649         struct nvmet_fc_fcp_iod *fod;
2650         struct nvmet_fc_defer_fcp_req *deferfcp;
2651         unsigned long flags;
2652
2653         /* validate iu, so the connection id can be used to find the queue */
2654         if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2655                         (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2656                         (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2657                         (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2658                 return -EIO;
2659
2660         queue = nvmet_fc_find_target_queue(tgtport,
2661                                 be64_to_cpu(cmdiu->connection_id));
2662         if (!queue)
2663                 return -ENOTCONN;
2664
2665         /*
2666          * note: reference taken by find_target_queue
2667          * After successful fod allocation, the fod will inherit the
2668          * ownership of that reference and will remove the reference
2669          * when the fod is freed.
2670          */
2671
2672         spin_lock_irqsave(&queue->qlock, flags);
2673
2674         fod = nvmet_fc_alloc_fcp_iod(queue);
2675         if (fod) {
2676                 spin_unlock_irqrestore(&queue->qlock, flags);
2677
2678                 fcpreq->nvmet_fc_private = fod;
2679                 fod->fcpreq = fcpreq;
2680
2681                 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2682
2683                 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2684
2685                 return 0;
2686         }
2687
2688         if (!tgtport->ops->defer_rcv) {
2689                 spin_unlock_irqrestore(&queue->qlock, flags);
2690                 /* release the queue lookup reference */
2691                 nvmet_fc_tgt_q_put(queue);
2692                 return -ENOENT;
2693         }
2694
2695         deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2696                         struct nvmet_fc_defer_fcp_req, req_list);
2697         if (deferfcp) {
2698                 /* Just re-use one that was previously allocated */
2699                 list_del(&deferfcp->req_list);
2700         } else {
2701                 spin_unlock_irqrestore(&queue->qlock, flags);
2702
2703                 /* Now we need to dynamically allocate one */
2704                 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2705                 if (!deferfcp) {
2706                         /* release the queue lookup reference */
2707                         nvmet_fc_tgt_q_put(queue);
2708                         return -ENOMEM;
2709                 }
2710                 spin_lock_irqsave(&queue->qlock, flags);
2711         }
2712
2713         /* For now, use rspaddr / rsplen to save payload information */
2714         fcpreq->rspaddr = cmdiubuf;
2715         fcpreq->rsplen  = cmdiubuf_len;
2716         deferfcp->fcp_req = fcpreq;
2717
2718         /* defer processing till a fod becomes available */
2719         list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2720
2721         /* NOTE: the queue lookup reference is still valid */
2722
2723         spin_unlock_irqrestore(&queue->qlock, flags);
2724
2725         return -EOVERFLOW;
2726 }
2727 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2728
2729 /**
2730  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2731  *                       upon the reception of an ABTS for a FCP command
2732  *
2733  * Notify the transport that an ABTS has been received for a FCP command
2734  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2735  * LLDD believes the command is still being worked on
2736  * (template_ops->fcp_req_release() has not been called).
2737  *
2738  * The transport will wait for any outstanding work (an op to the LLDD,
2739  * which the lldd should complete with error due to the ABTS; or the
2740  * completion from the nvmet layer of the nvme command), then will
2741  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2742  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2743  * to the ABTS either after return from this function (assuming any
2744  * outstanding op work has been terminated) or upon the callback being
2745  * called.
2746  *
2747  * @target_port: pointer to the (registered) target port the FCP CMD IU
2748  *              was received on.
2749  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2750  *              to the exchange that received the ABTS.
2751  */
2752 void
2753 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2754                         struct nvmefc_tgt_fcp_req *fcpreq)
2755 {
2756         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2757         struct nvmet_fc_tgt_queue *queue;
2758         unsigned long flags;
2759
2760         if (!fod || fod->fcpreq != fcpreq)
2761                 /* job appears to have already completed, ignore abort */
2762                 return;
2763
2764         queue = fod->queue;
2765
2766         spin_lock_irqsave(&queue->qlock, flags);
2767         if (fod->active) {
2768                 /*
2769                  * mark as abort. The abort handler, invoked upon completion
2770                  * of any work, will detect the aborted status and do the
2771                  * callback.
2772                  */
2773                 spin_lock(&fod->flock);
2774                 fod->abort = true;
2775                 fod->aborted = true;
2776                 spin_unlock(&fod->flock);
2777         }
2778         spin_unlock_irqrestore(&queue->qlock, flags);
2779 }
2780 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2781
2782
2783 struct nvmet_fc_traddr {
2784         u64     nn;
2785         u64     pn;
2786 };
2787
2788 static int
2789 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2790 {
2791         u64 token64;
2792
2793         if (match_u64(sstr, &token64))
2794                 return -EINVAL;
2795         *val = token64;
2796
2797         return 0;
2798 }
2799
2800 /*
2801  * This routine validates and extracts the WWN's from the TRADDR string.
2802  * As kernel parsers need the 0x to determine number base, universally
2803  * build string to parse with 0x prefix before parsing name strings.
2804  */
2805 static int
2806 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2807 {
2808         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2809         substring_t wwn = { name, &name[sizeof(name)-1] };
2810         int nnoffset, pnoffset;
2811
2812         /* validate if string is one of the 2 allowed formats */
2813         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2814                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2815                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2816                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2817                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2818                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2819                                                 NVME_FC_TRADDR_OXNNLEN;
2820         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2821                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2822                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2823                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2824                 nnoffset = NVME_FC_TRADDR_NNLEN;
2825                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2826         } else
2827                 goto out_einval;
2828
2829         name[0] = '0';
2830         name[1] = 'x';
2831         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2832
2833         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2834         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2835                 goto out_einval;
2836
2837         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2838         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2839                 goto out_einval;
2840
2841         return 0;
2842
2843 out_einval:
2844         pr_warn("%s: bad traddr string\n", __func__);
2845         return -EINVAL;
2846 }
2847
2848 static int
2849 nvmet_fc_add_port(struct nvmet_port *port)
2850 {
2851         struct nvmet_fc_tgtport *tgtport;
2852         struct nvmet_fc_port_entry *pe;
2853         struct nvmet_fc_traddr traddr = { 0L, 0L };
2854         unsigned long flags;
2855         int ret;
2856
2857         /* validate the address info */
2858         if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2859             (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2860                 return -EINVAL;
2861
2862         /* map the traddr address info to a target port */
2863
2864         ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2865                         sizeof(port->disc_addr.traddr));
2866         if (ret)
2867                 return ret;
2868
2869         pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2870         if (!pe)
2871                 return -ENOMEM;
2872
2873         ret = -ENXIO;
2874         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2875         list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2876                 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2877                     (tgtport->fc_target_port.port_name == traddr.pn)) {
2878                         /* a FC port can only be 1 nvmet port id */
2879                         if (!tgtport->pe) {
2880                                 nvmet_fc_portentry_bind(tgtport, pe, port);
2881                                 ret = 0;
2882                         } else
2883                                 ret = -EALREADY;
2884                         break;
2885                 }
2886         }
2887         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2888
2889         if (ret)
2890                 kfree(pe);
2891
2892         return ret;
2893 }
2894
2895 static void
2896 nvmet_fc_remove_port(struct nvmet_port *port)
2897 {
2898         struct nvmet_fc_port_entry *pe = port->priv;
2899
2900         nvmet_fc_portentry_unbind(pe);
2901
2902         kfree(pe);
2903 }
2904
2905 static void
2906 nvmet_fc_discovery_chg(struct nvmet_port *port)
2907 {
2908         struct nvmet_fc_port_entry *pe = port->priv;
2909         struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2910
2911         if (tgtport && tgtport->ops->discovery_event)
2912                 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2913 }
2914
2915 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2916         .owner                  = THIS_MODULE,
2917         .type                   = NVMF_TRTYPE_FC,
2918         .msdbd                  = 1,
2919         .add_port               = nvmet_fc_add_port,
2920         .remove_port            = nvmet_fc_remove_port,
2921         .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2922         .delete_ctrl            = nvmet_fc_delete_ctrl,
2923         .discovery_chg          = nvmet_fc_discovery_chg,
2924 };
2925
2926 static int __init nvmet_fc_init_module(void)
2927 {
2928         return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2929 }
2930
2931 static void __exit nvmet_fc_exit_module(void)
2932 {
2933         /* sanity check - all lports should be removed */
2934         if (!list_empty(&nvmet_fc_target_list))
2935                 pr_warn("%s: targetport list not empty\n", __func__);
2936
2937         nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2938
2939         ida_destroy(&nvmet_fc_tgtport_cnt);
2940 }
2941
2942 module_init(nvmet_fc_init_module);
2943 module_exit(nvmet_fc_exit_module);
2944
2945 MODULE_LICENSE("GPL v2");