random: mix rdrand with entropy sent in from userspace
[linux-2.6-microblaze.git] / drivers / nvme / target / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
25
26 #include "nvmet.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29
30
31 /* *************************** Data Structures/Defines ****************** */
32
33
34 #define NVMET_LS_CTX_COUNT              256
35
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE              2048
38
39 struct nvmet_fc_tgtport;
40 struct nvmet_fc_tgt_assoc;
41
42 struct nvmet_fc_ls_iod {
43         struct nvmefc_tgt_ls_req        *lsreq;
44         struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
45
46         struct list_head                ls_list;        /* tgtport->ls_list */
47
48         struct nvmet_fc_tgtport         *tgtport;
49         struct nvmet_fc_tgt_assoc       *assoc;
50
51         u8                              *rqstbuf;
52         u8                              *rspbuf;
53         u16                             rqstdatalen;
54         dma_addr_t                      rspdma;
55
56         struct scatterlist              sg[2];
57
58         struct work_struct              work;
59 } __aligned(sizeof(unsigned long long));
60
61 #define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
62 #define NVMET_FC_MAX_XFR_SGENTS         (NVMET_FC_MAX_SEQ_LENGTH / PAGE_SIZE)
63
64 enum nvmet_fcp_datadir {
65         NVMET_FCP_NODATA,
66         NVMET_FCP_WRITE,
67         NVMET_FCP_READ,
68         NVMET_FCP_ABORTED,
69 };
70
71 struct nvmet_fc_fcp_iod {
72         struct nvmefc_tgt_fcp_req       *fcpreq;
73
74         struct nvme_fc_cmd_iu           cmdiubuf;
75         struct nvme_fc_ersp_iu          rspiubuf;
76         dma_addr_t                      rspdma;
77         struct scatterlist              *data_sg;
78         int                             data_sg_cnt;
79         u32                             offset;
80         enum nvmet_fcp_datadir          io_dir;
81         bool                            active;
82         bool                            abort;
83         bool                            aborted;
84         bool                            writedataactive;
85         spinlock_t                      flock;
86
87         struct nvmet_req                req;
88         struct work_struct              work;
89         struct work_struct              done_work;
90         struct work_struct              defer_work;
91
92         struct nvmet_fc_tgtport         *tgtport;
93         struct nvmet_fc_tgt_queue       *queue;
94
95         struct list_head                fcp_list;       /* tgtport->fcp_list */
96 };
97
98 struct nvmet_fc_tgtport {
99
100         struct nvmet_fc_target_port     fc_target_port;
101
102         struct list_head                tgt_list; /* nvmet_fc_target_list */
103         struct device                   *dev;   /* dev for dma mapping */
104         struct nvmet_fc_target_template *ops;
105
106         struct nvmet_fc_ls_iod          *iod;
107         spinlock_t                      lock;
108         struct list_head                ls_list;
109         struct list_head                ls_busylist;
110         struct list_head                assoc_list;
111         struct ida                      assoc_cnt;
112         struct nvmet_port               *port;
113         struct kref                     ref;
114         u32                             max_sg_cnt;
115 };
116
117 struct nvmet_fc_defer_fcp_req {
118         struct list_head                req_list;
119         struct nvmefc_tgt_fcp_req       *fcp_req;
120 };
121
122 struct nvmet_fc_tgt_queue {
123         bool                            ninetypercent;
124         u16                             qid;
125         u16                             sqsize;
126         u16                             ersp_ratio;
127         __le16                          sqhd;
128         int                             cpu;
129         atomic_t                        connected;
130         atomic_t                        sqtail;
131         atomic_t                        zrspcnt;
132         atomic_t                        rsn;
133         spinlock_t                      qlock;
134         struct nvmet_port               *port;
135         struct nvmet_cq                 nvme_cq;
136         struct nvmet_sq                 nvme_sq;
137         struct nvmet_fc_tgt_assoc       *assoc;
138         struct nvmet_fc_fcp_iod         *fod;           /* array of fcp_iods */
139         struct list_head                fod_list;
140         struct list_head                pending_cmd_list;
141         struct list_head                avail_defer_list;
142         struct workqueue_struct         *work_q;
143         struct kref                     ref;
144 } __aligned(sizeof(unsigned long long));
145
146 struct nvmet_fc_tgt_assoc {
147         u64                             association_id;
148         u32                             a_id;
149         struct nvmet_fc_tgtport         *tgtport;
150         struct list_head                a_list;
151         struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES + 1];
152         struct kref                     ref;
153         struct work_struct              del_work;
154 };
155
156
157 static inline int
158 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
159 {
160         return (iodptr - iodptr->tgtport->iod);
161 }
162
163 static inline int
164 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
165 {
166         return (fodptr - fodptr->queue->fod);
167 }
168
169
170 /*
171  * Association and Connection IDs:
172  *
173  * Association ID will have random number in upper 6 bytes and zero
174  *   in lower 2 bytes
175  *
176  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
177  *
178  * note: Association ID = Connection ID for queue 0
179  */
180 #define BYTES_FOR_QID                   sizeof(u16)
181 #define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
182 #define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
183
184 static inline u64
185 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
186 {
187         return (assoc->association_id | qid);
188 }
189
190 static inline u64
191 nvmet_fc_getassociationid(u64 connectionid)
192 {
193         return connectionid & ~NVMET_FC_QUEUEID_MASK;
194 }
195
196 static inline u16
197 nvmet_fc_getqueueid(u64 connectionid)
198 {
199         return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
200 }
201
202 static inline struct nvmet_fc_tgtport *
203 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
204 {
205         return container_of(targetport, struct nvmet_fc_tgtport,
206                                  fc_target_port);
207 }
208
209 static inline struct nvmet_fc_fcp_iod *
210 nvmet_req_to_fod(struct nvmet_req *nvme_req)
211 {
212         return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
213 }
214
215
216 /* *************************** Globals **************************** */
217
218
219 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
220
221 static LIST_HEAD(nvmet_fc_target_list);
222 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
223
224
225 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
226 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
227 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work);
228 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
229 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
230 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
231 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
232 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
233 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
234 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
235 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
236                                         struct nvmet_fc_fcp_iod *fod);
237 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
238
239
240 /* *********************** FC-NVME DMA Handling **************************** */
241
242 /*
243  * The fcloop device passes in a NULL device pointer. Real LLD's will
244  * pass in a valid device pointer. If NULL is passed to the dma mapping
245  * routines, depending on the platform, it may or may not succeed, and
246  * may crash.
247  *
248  * As such:
249  * Wrapper all the dma routines and check the dev pointer.
250  *
251  * If simple mappings (return just a dma address, we'll noop them,
252  * returning a dma address of 0.
253  *
254  * On more complex mappings (dma_map_sg), a pseudo routine fills
255  * in the scatter list, setting all dma addresses to 0.
256  */
257
258 static inline dma_addr_t
259 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
260                 enum dma_data_direction dir)
261 {
262         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
263 }
264
265 static inline int
266 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
267 {
268         return dev ? dma_mapping_error(dev, dma_addr) : 0;
269 }
270
271 static inline void
272 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
273         enum dma_data_direction dir)
274 {
275         if (dev)
276                 dma_unmap_single(dev, addr, size, dir);
277 }
278
279 static inline void
280 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
281                 enum dma_data_direction dir)
282 {
283         if (dev)
284                 dma_sync_single_for_cpu(dev, addr, size, dir);
285 }
286
287 static inline void
288 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
289                 enum dma_data_direction dir)
290 {
291         if (dev)
292                 dma_sync_single_for_device(dev, addr, size, dir);
293 }
294
295 /* pseudo dma_map_sg call */
296 static int
297 fc_map_sg(struct scatterlist *sg, int nents)
298 {
299         struct scatterlist *s;
300         int i;
301
302         WARN_ON(nents == 0 || sg[0].length == 0);
303
304         for_each_sg(sg, s, nents, i) {
305                 s->dma_address = 0L;
306 #ifdef CONFIG_NEED_SG_DMA_LENGTH
307                 s->dma_length = s->length;
308 #endif
309         }
310         return nents;
311 }
312
313 static inline int
314 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
315                 enum dma_data_direction dir)
316 {
317         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
318 }
319
320 static inline void
321 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
322                 enum dma_data_direction dir)
323 {
324         if (dev)
325                 dma_unmap_sg(dev, sg, nents, dir);
326 }
327
328
329 /* *********************** FC-NVME Port Management ************************ */
330
331
332 static int
333 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
334 {
335         struct nvmet_fc_ls_iod *iod;
336         int i;
337
338         iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
339                         GFP_KERNEL);
340         if (!iod)
341                 return -ENOMEM;
342
343         tgtport->iod = iod;
344
345         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
346                 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
347                 iod->tgtport = tgtport;
348                 list_add_tail(&iod->ls_list, &tgtport->ls_list);
349
350                 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
351                         GFP_KERNEL);
352                 if (!iod->rqstbuf)
353                         goto out_fail;
354
355                 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
356
357                 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
358                                                 NVME_FC_MAX_LS_BUFFER_SIZE,
359                                                 DMA_TO_DEVICE);
360                 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
361                         goto out_fail;
362         }
363
364         return 0;
365
366 out_fail:
367         kfree(iod->rqstbuf);
368         list_del(&iod->ls_list);
369         for (iod--, i--; i >= 0; iod--, i--) {
370                 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
371                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
372                 kfree(iod->rqstbuf);
373                 list_del(&iod->ls_list);
374         }
375
376         kfree(iod);
377
378         return -EFAULT;
379 }
380
381 static void
382 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
383 {
384         struct nvmet_fc_ls_iod *iod = tgtport->iod;
385         int i;
386
387         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
388                 fc_dma_unmap_single(tgtport->dev,
389                                 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
390                                 DMA_TO_DEVICE);
391                 kfree(iod->rqstbuf);
392                 list_del(&iod->ls_list);
393         }
394         kfree(tgtport->iod);
395 }
396
397 static struct nvmet_fc_ls_iod *
398 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
399 {
400         struct nvmet_fc_ls_iod *iod;
401         unsigned long flags;
402
403         spin_lock_irqsave(&tgtport->lock, flags);
404         iod = list_first_entry_or_null(&tgtport->ls_list,
405                                         struct nvmet_fc_ls_iod, ls_list);
406         if (iod)
407                 list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
408         spin_unlock_irqrestore(&tgtport->lock, flags);
409         return iod;
410 }
411
412
413 static void
414 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
415                         struct nvmet_fc_ls_iod *iod)
416 {
417         unsigned long flags;
418
419         spin_lock_irqsave(&tgtport->lock, flags);
420         list_move(&iod->ls_list, &tgtport->ls_list);
421         spin_unlock_irqrestore(&tgtport->lock, flags);
422 }
423
424 static void
425 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
426                                 struct nvmet_fc_tgt_queue *queue)
427 {
428         struct nvmet_fc_fcp_iod *fod = queue->fod;
429         int i;
430
431         for (i = 0; i < queue->sqsize; fod++, i++) {
432                 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
433                 INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work);
434                 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
435                 fod->tgtport = tgtport;
436                 fod->queue = queue;
437                 fod->active = false;
438                 fod->abort = false;
439                 fod->aborted = false;
440                 fod->fcpreq = NULL;
441                 list_add_tail(&fod->fcp_list, &queue->fod_list);
442                 spin_lock_init(&fod->flock);
443
444                 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
445                                         sizeof(fod->rspiubuf), DMA_TO_DEVICE);
446                 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
447                         list_del(&fod->fcp_list);
448                         for (fod--, i--; i >= 0; fod--, i--) {
449                                 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
450                                                 sizeof(fod->rspiubuf),
451                                                 DMA_TO_DEVICE);
452                                 fod->rspdma = 0L;
453                                 list_del(&fod->fcp_list);
454                         }
455
456                         return;
457                 }
458         }
459 }
460
461 static void
462 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
463                                 struct nvmet_fc_tgt_queue *queue)
464 {
465         struct nvmet_fc_fcp_iod *fod = queue->fod;
466         int i;
467
468         for (i = 0; i < queue->sqsize; fod++, i++) {
469                 if (fod->rspdma)
470                         fc_dma_unmap_single(tgtport->dev, fod->rspdma,
471                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
472         }
473 }
474
475 static struct nvmet_fc_fcp_iod *
476 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
477 {
478         struct nvmet_fc_fcp_iod *fod;
479
480         lockdep_assert_held(&queue->qlock);
481
482         fod = list_first_entry_or_null(&queue->fod_list,
483                                         struct nvmet_fc_fcp_iod, fcp_list);
484         if (fod) {
485                 list_del(&fod->fcp_list);
486                 fod->active = true;
487                 /*
488                  * no queue reference is taken, as it was taken by the
489                  * queue lookup just prior to the allocation. The iod
490                  * will "inherit" that reference.
491                  */
492         }
493         return fod;
494 }
495
496
497 static void
498 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
499                        struct nvmet_fc_tgt_queue *queue,
500                        struct nvmefc_tgt_fcp_req *fcpreq)
501 {
502         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
503
504         /*
505          * put all admin cmds on hw queue id 0. All io commands go to
506          * the respective hw queue based on a modulo basis
507          */
508         fcpreq->hwqid = queue->qid ?
509                         ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
510
511         if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR)
512                 queue_work_on(queue->cpu, queue->work_q, &fod->work);
513         else
514                 nvmet_fc_handle_fcp_rqst(tgtport, fod);
515 }
516
517 static void
518 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
519 {
520         struct nvmet_fc_fcp_iod *fod =
521                 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
522
523         /* Submit deferred IO for processing */
524         nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
525
526 }
527
528 static void
529 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
530                         struct nvmet_fc_fcp_iod *fod)
531 {
532         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
533         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
534         struct nvmet_fc_defer_fcp_req *deferfcp;
535         unsigned long flags;
536
537         fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
538                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
539
540         fcpreq->nvmet_fc_private = NULL;
541
542         fod->active = false;
543         fod->abort = false;
544         fod->aborted = false;
545         fod->writedataactive = false;
546         fod->fcpreq = NULL;
547
548         tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
549
550         /* release the queue lookup reference on the completed IO */
551         nvmet_fc_tgt_q_put(queue);
552
553         spin_lock_irqsave(&queue->qlock, flags);
554         deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
555                                 struct nvmet_fc_defer_fcp_req, req_list);
556         if (!deferfcp) {
557                 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
558                 spin_unlock_irqrestore(&queue->qlock, flags);
559                 return;
560         }
561
562         /* Re-use the fod for the next pending cmd that was deferred */
563         list_del(&deferfcp->req_list);
564
565         fcpreq = deferfcp->fcp_req;
566
567         /* deferfcp can be reused for another IO at a later date */
568         list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
569
570         spin_unlock_irqrestore(&queue->qlock, flags);
571
572         /* Save NVME CMD IO in fod */
573         memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
574
575         /* Setup new fcpreq to be processed */
576         fcpreq->rspaddr = NULL;
577         fcpreq->rsplen  = 0;
578         fcpreq->nvmet_fc_private = fod;
579         fod->fcpreq = fcpreq;
580         fod->active = true;
581
582         /* inform LLDD IO is now being processed */
583         tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
584
585         /*
586          * Leave the queue lookup get reference taken when
587          * fod was originally allocated.
588          */
589
590         queue_work(queue->work_q, &fod->defer_work);
591 }
592
593 static int
594 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
595 {
596         int cpu, idx, cnt;
597
598         if (tgtport->ops->max_hw_queues == 1)
599                 return WORK_CPU_UNBOUND;
600
601         /* Simple cpu selection based on qid modulo active cpu count */
602         idx = !qid ? 0 : (qid - 1) % num_active_cpus();
603
604         /* find the n'th active cpu */
605         for (cpu = 0, cnt = 0; ; ) {
606                 if (cpu_active(cpu)) {
607                         if (cnt == idx)
608                                 break;
609                         cnt++;
610                 }
611                 cpu = (cpu + 1) % num_possible_cpus();
612         }
613
614         return cpu;
615 }
616
617 static struct nvmet_fc_tgt_queue *
618 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
619                         u16 qid, u16 sqsize)
620 {
621         struct nvmet_fc_tgt_queue *queue;
622         unsigned long flags;
623         int ret;
624
625         if (qid > NVMET_NR_QUEUES)
626                 return NULL;
627
628         queue = kzalloc((sizeof(*queue) +
629                                 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
630                                 GFP_KERNEL);
631         if (!queue)
632                 return NULL;
633
634         if (!nvmet_fc_tgt_a_get(assoc))
635                 goto out_free_queue;
636
637         queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
638                                 assoc->tgtport->fc_target_port.port_num,
639                                 assoc->a_id, qid);
640         if (!queue->work_q)
641                 goto out_a_put;
642
643         queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
644         queue->qid = qid;
645         queue->sqsize = sqsize;
646         queue->assoc = assoc;
647         queue->port = assoc->tgtport->port;
648         queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
649         INIT_LIST_HEAD(&queue->fod_list);
650         INIT_LIST_HEAD(&queue->avail_defer_list);
651         INIT_LIST_HEAD(&queue->pending_cmd_list);
652         atomic_set(&queue->connected, 0);
653         atomic_set(&queue->sqtail, 0);
654         atomic_set(&queue->rsn, 1);
655         atomic_set(&queue->zrspcnt, 0);
656         spin_lock_init(&queue->qlock);
657         kref_init(&queue->ref);
658
659         nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
660
661         ret = nvmet_sq_init(&queue->nvme_sq);
662         if (ret)
663                 goto out_fail_iodlist;
664
665         WARN_ON(assoc->queues[qid]);
666         spin_lock_irqsave(&assoc->tgtport->lock, flags);
667         assoc->queues[qid] = queue;
668         spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
669
670         return queue;
671
672 out_fail_iodlist:
673         nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
674         destroy_workqueue(queue->work_q);
675 out_a_put:
676         nvmet_fc_tgt_a_put(assoc);
677 out_free_queue:
678         kfree(queue);
679         return NULL;
680 }
681
682
683 static void
684 nvmet_fc_tgt_queue_free(struct kref *ref)
685 {
686         struct nvmet_fc_tgt_queue *queue =
687                 container_of(ref, struct nvmet_fc_tgt_queue, ref);
688         unsigned long flags;
689
690         spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
691         queue->assoc->queues[queue->qid] = NULL;
692         spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
693
694         nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
695
696         nvmet_fc_tgt_a_put(queue->assoc);
697
698         destroy_workqueue(queue->work_q);
699
700         kfree(queue);
701 }
702
703 static void
704 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
705 {
706         kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
707 }
708
709 static int
710 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
711 {
712         return kref_get_unless_zero(&queue->ref);
713 }
714
715
716 static void
717 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
718 {
719         struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
720         struct nvmet_fc_fcp_iod *fod = queue->fod;
721         struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
722         unsigned long flags;
723         int i, writedataactive;
724         bool disconnect;
725
726         disconnect = atomic_xchg(&queue->connected, 0);
727
728         spin_lock_irqsave(&queue->qlock, flags);
729         /* about outstanding io's */
730         for (i = 0; i < queue->sqsize; fod++, i++) {
731                 if (fod->active) {
732                         spin_lock(&fod->flock);
733                         fod->abort = true;
734                         writedataactive = fod->writedataactive;
735                         spin_unlock(&fod->flock);
736                         /*
737                          * only call lldd abort routine if waiting for
738                          * writedata. other outstanding ops should finish
739                          * on their own.
740                          */
741                         if (writedataactive) {
742                                 spin_lock(&fod->flock);
743                                 fod->aborted = true;
744                                 spin_unlock(&fod->flock);
745                                 tgtport->ops->fcp_abort(
746                                         &tgtport->fc_target_port, fod->fcpreq);
747                         }
748                 }
749         }
750
751         /* Cleanup defer'ed IOs in queue */
752         list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
753                                 req_list) {
754                 list_del(&deferfcp->req_list);
755                 kfree(deferfcp);
756         }
757
758         for (;;) {
759                 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
760                                 struct nvmet_fc_defer_fcp_req, req_list);
761                 if (!deferfcp)
762                         break;
763
764                 list_del(&deferfcp->req_list);
765                 spin_unlock_irqrestore(&queue->qlock, flags);
766
767                 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
768                                 deferfcp->fcp_req);
769
770                 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
771                                 deferfcp->fcp_req);
772
773                 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
774                                 deferfcp->fcp_req);
775
776                 /* release the queue lookup reference */
777                 nvmet_fc_tgt_q_put(queue);
778
779                 kfree(deferfcp);
780
781                 spin_lock_irqsave(&queue->qlock, flags);
782         }
783         spin_unlock_irqrestore(&queue->qlock, flags);
784
785         flush_workqueue(queue->work_q);
786
787         if (disconnect)
788                 nvmet_sq_destroy(&queue->nvme_sq);
789
790         nvmet_fc_tgt_q_put(queue);
791 }
792
793 static struct nvmet_fc_tgt_queue *
794 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
795                                 u64 connection_id)
796 {
797         struct nvmet_fc_tgt_assoc *assoc;
798         struct nvmet_fc_tgt_queue *queue;
799         u64 association_id = nvmet_fc_getassociationid(connection_id);
800         u16 qid = nvmet_fc_getqueueid(connection_id);
801         unsigned long flags;
802
803         if (qid > NVMET_NR_QUEUES)
804                 return NULL;
805
806         spin_lock_irqsave(&tgtport->lock, flags);
807         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
808                 if (association_id == assoc->association_id) {
809                         queue = assoc->queues[qid];
810                         if (queue &&
811                             (!atomic_read(&queue->connected) ||
812                              !nvmet_fc_tgt_q_get(queue)))
813                                 queue = NULL;
814                         spin_unlock_irqrestore(&tgtport->lock, flags);
815                         return queue;
816                 }
817         }
818         spin_unlock_irqrestore(&tgtport->lock, flags);
819         return NULL;
820 }
821
822 static void
823 nvmet_fc_delete_assoc(struct work_struct *work)
824 {
825         struct nvmet_fc_tgt_assoc *assoc =
826                 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
827
828         nvmet_fc_delete_target_assoc(assoc);
829         nvmet_fc_tgt_a_put(assoc);
830 }
831
832 static struct nvmet_fc_tgt_assoc *
833 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
834 {
835         struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
836         unsigned long flags;
837         u64 ran;
838         int idx;
839         bool needrandom = true;
840
841         assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
842         if (!assoc)
843                 return NULL;
844
845         idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
846         if (idx < 0)
847                 goto out_free_assoc;
848
849         if (!nvmet_fc_tgtport_get(tgtport))
850                 goto out_ida_put;
851
852         assoc->tgtport = tgtport;
853         assoc->a_id = idx;
854         INIT_LIST_HEAD(&assoc->a_list);
855         kref_init(&assoc->ref);
856         INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
857
858         while (needrandom) {
859                 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
860                 ran = ran << BYTES_FOR_QID_SHIFT;
861
862                 spin_lock_irqsave(&tgtport->lock, flags);
863                 needrandom = false;
864                 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
865                         if (ran == tmpassoc->association_id) {
866                                 needrandom = true;
867                                 break;
868                         }
869                 if (!needrandom) {
870                         assoc->association_id = ran;
871                         list_add_tail(&assoc->a_list, &tgtport->assoc_list);
872                 }
873                 spin_unlock_irqrestore(&tgtport->lock, flags);
874         }
875
876         return assoc;
877
878 out_ida_put:
879         ida_simple_remove(&tgtport->assoc_cnt, idx);
880 out_free_assoc:
881         kfree(assoc);
882         return NULL;
883 }
884
885 static void
886 nvmet_fc_target_assoc_free(struct kref *ref)
887 {
888         struct nvmet_fc_tgt_assoc *assoc =
889                 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
890         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
891         unsigned long flags;
892
893         spin_lock_irqsave(&tgtport->lock, flags);
894         list_del(&assoc->a_list);
895         spin_unlock_irqrestore(&tgtport->lock, flags);
896         ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
897         kfree(assoc);
898         nvmet_fc_tgtport_put(tgtport);
899 }
900
901 static void
902 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
903 {
904         kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
905 }
906
907 static int
908 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
909 {
910         return kref_get_unless_zero(&assoc->ref);
911 }
912
913 static void
914 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
915 {
916         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
917         struct nvmet_fc_tgt_queue *queue;
918         unsigned long flags;
919         int i;
920
921         spin_lock_irqsave(&tgtport->lock, flags);
922         for (i = NVMET_NR_QUEUES; i >= 0; i--) {
923                 queue = assoc->queues[i];
924                 if (queue) {
925                         if (!nvmet_fc_tgt_q_get(queue))
926                                 continue;
927                         spin_unlock_irqrestore(&tgtport->lock, flags);
928                         nvmet_fc_delete_target_queue(queue);
929                         nvmet_fc_tgt_q_put(queue);
930                         spin_lock_irqsave(&tgtport->lock, flags);
931                 }
932         }
933         spin_unlock_irqrestore(&tgtport->lock, flags);
934
935         nvmet_fc_tgt_a_put(assoc);
936 }
937
938 static struct nvmet_fc_tgt_assoc *
939 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
940                                 u64 association_id)
941 {
942         struct nvmet_fc_tgt_assoc *assoc;
943         struct nvmet_fc_tgt_assoc *ret = NULL;
944         unsigned long flags;
945
946         spin_lock_irqsave(&tgtport->lock, flags);
947         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
948                 if (association_id == assoc->association_id) {
949                         ret = assoc;
950                         nvmet_fc_tgt_a_get(assoc);
951                         break;
952                 }
953         }
954         spin_unlock_irqrestore(&tgtport->lock, flags);
955
956         return ret;
957 }
958
959
960 /**
961  * nvme_fc_register_targetport - transport entry point called by an
962  *                              LLDD to register the existence of a local
963  *                              NVME subystem FC port.
964  * @pinfo:     pointer to information about the port to be registered
965  * @template:  LLDD entrypoints and operational parameters for the port
966  * @dev:       physical hardware device node port corresponds to. Will be
967  *             used for DMA mappings
968  * @portptr:   pointer to a local port pointer. Upon success, the routine
969  *             will allocate a nvme_fc_local_port structure and place its
970  *             address in the local port pointer. Upon failure, local port
971  *             pointer will be set to NULL.
972  *
973  * Returns:
974  * a completion status. Must be 0 upon success; a negative errno
975  * (ex: -ENXIO) upon failure.
976  */
977 int
978 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
979                         struct nvmet_fc_target_template *template,
980                         struct device *dev,
981                         struct nvmet_fc_target_port **portptr)
982 {
983         struct nvmet_fc_tgtport *newrec;
984         unsigned long flags;
985         int ret, idx;
986
987         if (!template->xmt_ls_rsp || !template->fcp_op ||
988             !template->fcp_abort ||
989             !template->fcp_req_release || !template->targetport_delete ||
990             !template->max_hw_queues || !template->max_sgl_segments ||
991             !template->max_dif_sgl_segments || !template->dma_boundary) {
992                 ret = -EINVAL;
993                 goto out_regtgt_failed;
994         }
995
996         newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
997                          GFP_KERNEL);
998         if (!newrec) {
999                 ret = -ENOMEM;
1000                 goto out_regtgt_failed;
1001         }
1002
1003         idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1004         if (idx < 0) {
1005                 ret = -ENOSPC;
1006                 goto out_fail_kfree;
1007         }
1008
1009         if (!get_device(dev) && dev) {
1010                 ret = -ENODEV;
1011                 goto out_ida_put;
1012         }
1013
1014         newrec->fc_target_port.node_name = pinfo->node_name;
1015         newrec->fc_target_port.port_name = pinfo->port_name;
1016         newrec->fc_target_port.private = &newrec[1];
1017         newrec->fc_target_port.port_id = pinfo->port_id;
1018         newrec->fc_target_port.port_num = idx;
1019         INIT_LIST_HEAD(&newrec->tgt_list);
1020         newrec->dev = dev;
1021         newrec->ops = template;
1022         spin_lock_init(&newrec->lock);
1023         INIT_LIST_HEAD(&newrec->ls_list);
1024         INIT_LIST_HEAD(&newrec->ls_busylist);
1025         INIT_LIST_HEAD(&newrec->assoc_list);
1026         kref_init(&newrec->ref);
1027         ida_init(&newrec->assoc_cnt);
1028         newrec->max_sg_cnt = min_t(u32, NVMET_FC_MAX_XFR_SGENTS,
1029                                         template->max_sgl_segments);
1030
1031         ret = nvmet_fc_alloc_ls_iodlist(newrec);
1032         if (ret) {
1033                 ret = -ENOMEM;
1034                 goto out_free_newrec;
1035         }
1036
1037         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1038         list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1039         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1040
1041         *portptr = &newrec->fc_target_port;
1042         return 0;
1043
1044 out_free_newrec:
1045         put_device(dev);
1046 out_ida_put:
1047         ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1048 out_fail_kfree:
1049         kfree(newrec);
1050 out_regtgt_failed:
1051         *portptr = NULL;
1052         return ret;
1053 }
1054 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1055
1056
1057 static void
1058 nvmet_fc_free_tgtport(struct kref *ref)
1059 {
1060         struct nvmet_fc_tgtport *tgtport =
1061                 container_of(ref, struct nvmet_fc_tgtport, ref);
1062         struct device *dev = tgtport->dev;
1063         unsigned long flags;
1064
1065         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1066         list_del(&tgtport->tgt_list);
1067         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1068
1069         nvmet_fc_free_ls_iodlist(tgtport);
1070
1071         /* let the LLDD know we've finished tearing it down */
1072         tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1073
1074         ida_simple_remove(&nvmet_fc_tgtport_cnt,
1075                         tgtport->fc_target_port.port_num);
1076
1077         ida_destroy(&tgtport->assoc_cnt);
1078
1079         kfree(tgtport);
1080
1081         put_device(dev);
1082 }
1083
1084 static void
1085 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1086 {
1087         kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1088 }
1089
1090 static int
1091 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1092 {
1093         return kref_get_unless_zero(&tgtport->ref);
1094 }
1095
1096 static void
1097 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1098 {
1099         struct nvmet_fc_tgt_assoc *assoc, *next;
1100         unsigned long flags;
1101
1102         spin_lock_irqsave(&tgtport->lock, flags);
1103         list_for_each_entry_safe(assoc, next,
1104                                 &tgtport->assoc_list, a_list) {
1105                 if (!nvmet_fc_tgt_a_get(assoc))
1106                         continue;
1107                 spin_unlock_irqrestore(&tgtport->lock, flags);
1108                 nvmet_fc_delete_target_assoc(assoc);
1109                 nvmet_fc_tgt_a_put(assoc);
1110                 spin_lock_irqsave(&tgtport->lock, flags);
1111         }
1112         spin_unlock_irqrestore(&tgtport->lock, flags);
1113 }
1114
1115 /*
1116  * nvmet layer has called to terminate an association
1117  */
1118 static void
1119 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1120 {
1121         struct nvmet_fc_tgtport *tgtport, *next;
1122         struct nvmet_fc_tgt_assoc *assoc;
1123         struct nvmet_fc_tgt_queue *queue;
1124         unsigned long flags;
1125         bool found_ctrl = false;
1126
1127         /* this is a bit ugly, but don't want to make locks layered */
1128         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1129         list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1130                         tgt_list) {
1131                 if (!nvmet_fc_tgtport_get(tgtport))
1132                         continue;
1133                 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1134
1135                 spin_lock_irqsave(&tgtport->lock, flags);
1136                 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1137                         queue = assoc->queues[0];
1138                         if (queue && queue->nvme_sq.ctrl == ctrl) {
1139                                 if (nvmet_fc_tgt_a_get(assoc))
1140                                         found_ctrl = true;
1141                                 break;
1142                         }
1143                 }
1144                 spin_unlock_irqrestore(&tgtport->lock, flags);
1145
1146                 nvmet_fc_tgtport_put(tgtport);
1147
1148                 if (found_ctrl) {
1149                         schedule_work(&assoc->del_work);
1150                         return;
1151                 }
1152
1153                 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1154         }
1155         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1156 }
1157
1158 /**
1159  * nvme_fc_unregister_targetport - transport entry point called by an
1160  *                              LLDD to deregister/remove a previously
1161  *                              registered a local NVME subsystem FC port.
1162  * @tgtport: pointer to the (registered) target port that is to be
1163  *           deregistered.
1164  *
1165  * Returns:
1166  * a completion status. Must be 0 upon success; a negative errno
1167  * (ex: -ENXIO) upon failure.
1168  */
1169 int
1170 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1171 {
1172         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1173
1174         /* terminate any outstanding associations */
1175         __nvmet_fc_free_assocs(tgtport);
1176
1177         nvmet_fc_tgtport_put(tgtport);
1178
1179         return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1182
1183
1184 /* *********************** FC-NVME LS Handling **************************** */
1185
1186
1187 static void
1188 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1189 {
1190         struct fcnvme_ls_acc_hdr *acc = buf;
1191
1192         acc->w0.ls_cmd = ls_cmd;
1193         acc->desc_list_len = desc_len;
1194         acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1195         acc->rqst.desc_len =
1196                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1197         acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1198 }
1199
1200 static int
1201 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1202                         u8 reason, u8 explanation, u8 vendor)
1203 {
1204         struct fcnvme_ls_rjt *rjt = buf;
1205
1206         nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1207                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1208                         ls_cmd);
1209         rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1210         rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1211         rjt->rjt.reason_code = reason;
1212         rjt->rjt.reason_explanation = explanation;
1213         rjt->rjt.vendor = vendor;
1214
1215         return sizeof(struct fcnvme_ls_rjt);
1216 }
1217
1218 /* Validation Error indexes into the string table below */
1219 enum {
1220         VERR_NO_ERROR           = 0,
1221         VERR_CR_ASSOC_LEN       = 1,
1222         VERR_CR_ASSOC_RQST_LEN  = 2,
1223         VERR_CR_ASSOC_CMD       = 3,
1224         VERR_CR_ASSOC_CMD_LEN   = 4,
1225         VERR_ERSP_RATIO         = 5,
1226         VERR_ASSOC_ALLOC_FAIL   = 6,
1227         VERR_QUEUE_ALLOC_FAIL   = 7,
1228         VERR_CR_CONN_LEN        = 8,
1229         VERR_CR_CONN_RQST_LEN   = 9,
1230         VERR_ASSOC_ID           = 10,
1231         VERR_ASSOC_ID_LEN       = 11,
1232         VERR_NO_ASSOC           = 12,
1233         VERR_CONN_ID            = 13,
1234         VERR_CONN_ID_LEN        = 14,
1235         VERR_NO_CONN            = 15,
1236         VERR_CR_CONN_CMD        = 16,
1237         VERR_CR_CONN_CMD_LEN    = 17,
1238         VERR_DISCONN_LEN        = 18,
1239         VERR_DISCONN_RQST_LEN   = 19,
1240         VERR_DISCONN_CMD        = 20,
1241         VERR_DISCONN_CMD_LEN    = 21,
1242         VERR_DISCONN_SCOPE      = 22,
1243         VERR_RS_LEN             = 23,
1244         VERR_RS_RQST_LEN        = 24,
1245         VERR_RS_CMD             = 25,
1246         VERR_RS_CMD_LEN         = 26,
1247         VERR_RS_RCTL            = 27,
1248         VERR_RS_RO              = 28,
1249 };
1250
1251 static char *validation_errors[] = {
1252         "OK",
1253         "Bad CR_ASSOC Length",
1254         "Bad CR_ASSOC Rqst Length",
1255         "Not CR_ASSOC Cmd",
1256         "Bad CR_ASSOC Cmd Length",
1257         "Bad Ersp Ratio",
1258         "Association Allocation Failed",
1259         "Queue Allocation Failed",
1260         "Bad CR_CONN Length",
1261         "Bad CR_CONN Rqst Length",
1262         "Not Association ID",
1263         "Bad Association ID Length",
1264         "No Association",
1265         "Not Connection ID",
1266         "Bad Connection ID Length",
1267         "No Connection",
1268         "Not CR_CONN Cmd",
1269         "Bad CR_CONN Cmd Length",
1270         "Bad DISCONN Length",
1271         "Bad DISCONN Rqst Length",
1272         "Not DISCONN Cmd",
1273         "Bad DISCONN Cmd Length",
1274         "Bad Disconnect Scope",
1275         "Bad RS Length",
1276         "Bad RS Rqst Length",
1277         "Not RS Cmd",
1278         "Bad RS Cmd Length",
1279         "Bad RS R_CTL",
1280         "Bad RS Relative Offset",
1281 };
1282
1283 static void
1284 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1285                         struct nvmet_fc_ls_iod *iod)
1286 {
1287         struct fcnvme_ls_cr_assoc_rqst *rqst =
1288                                 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1289         struct fcnvme_ls_cr_assoc_acc *acc =
1290                                 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1291         struct nvmet_fc_tgt_queue *queue;
1292         int ret = 0;
1293
1294         memset(acc, 0, sizeof(*acc));
1295
1296         /*
1297          * FC-NVME spec changes. There are initiators sending different
1298          * lengths as padding sizes for Create Association Cmd descriptor
1299          * was incorrect.
1300          * Accept anything of "minimum" length. Assume format per 1.15
1301          * spec (with HOSTID reduced to 16 bytes), ignore how long the
1302          * trailing pad length is.
1303          */
1304         if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1305                 ret = VERR_CR_ASSOC_LEN;
1306         else if (be32_to_cpu(rqst->desc_list_len) <
1307                         FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1308                 ret = VERR_CR_ASSOC_RQST_LEN;
1309         else if (rqst->assoc_cmd.desc_tag !=
1310                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1311                 ret = VERR_CR_ASSOC_CMD;
1312         else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1313                         FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1314                 ret = VERR_CR_ASSOC_CMD_LEN;
1315         else if (!rqst->assoc_cmd.ersp_ratio ||
1316                  (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1317                                 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1318                 ret = VERR_ERSP_RATIO;
1319
1320         else {
1321                 /* new association w/ admin queue */
1322                 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1323                 if (!iod->assoc)
1324                         ret = VERR_ASSOC_ALLOC_FAIL;
1325                 else {
1326                         queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1327                                         be16_to_cpu(rqst->assoc_cmd.sqsize));
1328                         if (!queue)
1329                                 ret = VERR_QUEUE_ALLOC_FAIL;
1330                 }
1331         }
1332
1333         if (ret) {
1334                 dev_err(tgtport->dev,
1335                         "Create Association LS failed: %s\n",
1336                         validation_errors[ret]);
1337                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1338                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1339                                 FCNVME_RJT_RC_LOGIC,
1340                                 FCNVME_RJT_EXP_NONE, 0);
1341                 return;
1342         }
1343
1344         queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1345         atomic_set(&queue->connected, 1);
1346         queue->sqhd = 0;        /* best place to init value */
1347
1348         /* format a response */
1349
1350         iod->lsreq->rsplen = sizeof(*acc);
1351
1352         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1353                         fcnvme_lsdesc_len(
1354                                 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1355                         FCNVME_LS_CREATE_ASSOCIATION);
1356         acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1357         acc->associd.desc_len =
1358                         fcnvme_lsdesc_len(
1359                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1360         acc->associd.association_id =
1361                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1362         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1363         acc->connectid.desc_len =
1364                         fcnvme_lsdesc_len(
1365                                 sizeof(struct fcnvme_lsdesc_conn_id));
1366         acc->connectid.connection_id = acc->associd.association_id;
1367 }
1368
1369 static void
1370 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1371                         struct nvmet_fc_ls_iod *iod)
1372 {
1373         struct fcnvme_ls_cr_conn_rqst *rqst =
1374                                 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1375         struct fcnvme_ls_cr_conn_acc *acc =
1376                                 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1377         struct nvmet_fc_tgt_queue *queue;
1378         int ret = 0;
1379
1380         memset(acc, 0, sizeof(*acc));
1381
1382         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1383                 ret = VERR_CR_CONN_LEN;
1384         else if (rqst->desc_list_len !=
1385                         fcnvme_lsdesc_len(
1386                                 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1387                 ret = VERR_CR_CONN_RQST_LEN;
1388         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1389                 ret = VERR_ASSOC_ID;
1390         else if (rqst->associd.desc_len !=
1391                         fcnvme_lsdesc_len(
1392                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1393                 ret = VERR_ASSOC_ID_LEN;
1394         else if (rqst->connect_cmd.desc_tag !=
1395                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1396                 ret = VERR_CR_CONN_CMD;
1397         else if (rqst->connect_cmd.desc_len !=
1398                         fcnvme_lsdesc_len(
1399                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1400                 ret = VERR_CR_CONN_CMD_LEN;
1401         else if (!rqst->connect_cmd.ersp_ratio ||
1402                  (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1403                                 be16_to_cpu(rqst->connect_cmd.sqsize)))
1404                 ret = VERR_ERSP_RATIO;
1405
1406         else {
1407                 /* new io queue */
1408                 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1409                                 be64_to_cpu(rqst->associd.association_id));
1410                 if (!iod->assoc)
1411                         ret = VERR_NO_ASSOC;
1412                 else {
1413                         queue = nvmet_fc_alloc_target_queue(iod->assoc,
1414                                         be16_to_cpu(rqst->connect_cmd.qid),
1415                                         be16_to_cpu(rqst->connect_cmd.sqsize));
1416                         if (!queue)
1417                                 ret = VERR_QUEUE_ALLOC_FAIL;
1418
1419                         /* release get taken in nvmet_fc_find_target_assoc */
1420                         nvmet_fc_tgt_a_put(iod->assoc);
1421                 }
1422         }
1423
1424         if (ret) {
1425                 dev_err(tgtport->dev,
1426                         "Create Connection LS failed: %s\n",
1427                         validation_errors[ret]);
1428                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1429                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1430                                 (ret == VERR_NO_ASSOC) ?
1431                                         FCNVME_RJT_RC_INV_ASSOC :
1432                                         FCNVME_RJT_RC_LOGIC,
1433                                 FCNVME_RJT_EXP_NONE, 0);
1434                 return;
1435         }
1436
1437         queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1438         atomic_set(&queue->connected, 1);
1439         queue->sqhd = 0;        /* best place to init value */
1440
1441         /* format a response */
1442
1443         iod->lsreq->rsplen = sizeof(*acc);
1444
1445         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1446                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1447                         FCNVME_LS_CREATE_CONNECTION);
1448         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1449         acc->connectid.desc_len =
1450                         fcnvme_lsdesc_len(
1451                                 sizeof(struct fcnvme_lsdesc_conn_id));
1452         acc->connectid.connection_id =
1453                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1454                                 be16_to_cpu(rqst->connect_cmd.qid)));
1455 }
1456
1457 static void
1458 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1459                         struct nvmet_fc_ls_iod *iod)
1460 {
1461         struct fcnvme_ls_disconnect_rqst *rqst =
1462                         (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1463         struct fcnvme_ls_disconnect_acc *acc =
1464                         (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1465         struct nvmet_fc_tgt_queue *queue = NULL;
1466         struct nvmet_fc_tgt_assoc *assoc;
1467         int ret = 0;
1468         bool del_assoc = false;
1469
1470         memset(acc, 0, sizeof(*acc));
1471
1472         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1473                 ret = VERR_DISCONN_LEN;
1474         else if (rqst->desc_list_len !=
1475                         fcnvme_lsdesc_len(
1476                                 sizeof(struct fcnvme_ls_disconnect_rqst)))
1477                 ret = VERR_DISCONN_RQST_LEN;
1478         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1479                 ret = VERR_ASSOC_ID;
1480         else if (rqst->associd.desc_len !=
1481                         fcnvme_lsdesc_len(
1482                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1483                 ret = VERR_ASSOC_ID_LEN;
1484         else if (rqst->discon_cmd.desc_tag !=
1485                         cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1486                 ret = VERR_DISCONN_CMD;
1487         else if (rqst->discon_cmd.desc_len !=
1488                         fcnvme_lsdesc_len(
1489                                 sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1490                 ret = VERR_DISCONN_CMD_LEN;
1491         else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1492                         (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1493                 ret = VERR_DISCONN_SCOPE;
1494         else {
1495                 /* match an active association */
1496                 assoc = nvmet_fc_find_target_assoc(tgtport,
1497                                 be64_to_cpu(rqst->associd.association_id));
1498                 iod->assoc = assoc;
1499                 if (assoc) {
1500                         if (rqst->discon_cmd.scope ==
1501                                         FCNVME_DISCONN_CONNECTION) {
1502                                 queue = nvmet_fc_find_target_queue(tgtport,
1503                                                 be64_to_cpu(
1504                                                         rqst->discon_cmd.id));
1505                                 if (!queue) {
1506                                         nvmet_fc_tgt_a_put(assoc);
1507                                         ret = VERR_NO_CONN;
1508                                 }
1509                         }
1510                 } else
1511                         ret = VERR_NO_ASSOC;
1512         }
1513
1514         if (ret) {
1515                 dev_err(tgtport->dev,
1516                         "Disconnect LS failed: %s\n",
1517                         validation_errors[ret]);
1518                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1519                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1520                                 (ret == VERR_NO_ASSOC) ?
1521                                         FCNVME_RJT_RC_INV_ASSOC :
1522                                         (ret == VERR_NO_CONN) ?
1523                                                 FCNVME_RJT_RC_INV_CONN :
1524                                                 FCNVME_RJT_RC_LOGIC,
1525                                 FCNVME_RJT_EXP_NONE, 0);
1526                 return;
1527         }
1528
1529         /* format a response */
1530
1531         iod->lsreq->rsplen = sizeof(*acc);
1532
1533         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1534                         fcnvme_lsdesc_len(
1535                                 sizeof(struct fcnvme_ls_disconnect_acc)),
1536                         FCNVME_LS_DISCONNECT);
1537
1538
1539         /* are we to delete a Connection ID (queue) */
1540         if (queue) {
1541                 int qid = queue->qid;
1542
1543                 nvmet_fc_delete_target_queue(queue);
1544
1545                 /* release the get taken by find_target_queue */
1546                 nvmet_fc_tgt_q_put(queue);
1547
1548                 /* tear association down if io queue terminated */
1549                 if (!qid)
1550                         del_assoc = true;
1551         }
1552
1553         /* release get taken in nvmet_fc_find_target_assoc */
1554         nvmet_fc_tgt_a_put(iod->assoc);
1555
1556         if (del_assoc)
1557                 nvmet_fc_delete_target_assoc(iod->assoc);
1558 }
1559
1560
1561 /* *********************** NVME Ctrl Routines **************************** */
1562
1563
1564 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1565
1566 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1567
1568 static void
1569 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1570 {
1571         struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1572         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1573
1574         fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1575                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1576         nvmet_fc_free_ls_iod(tgtport, iod);
1577         nvmet_fc_tgtport_put(tgtport);
1578 }
1579
1580 static void
1581 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1582                                 struct nvmet_fc_ls_iod *iod)
1583 {
1584         int ret;
1585
1586         fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1587                                   NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1588
1589         ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1590         if (ret)
1591                 nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1592 }
1593
1594 /*
1595  * Actual processing routine for received FC-NVME LS Requests from the LLD
1596  */
1597 static void
1598 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1599                         struct nvmet_fc_ls_iod *iod)
1600 {
1601         struct fcnvme_ls_rqst_w0 *w0 =
1602                         (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1603
1604         iod->lsreq->nvmet_fc_private = iod;
1605         iod->lsreq->rspbuf = iod->rspbuf;
1606         iod->lsreq->rspdma = iod->rspdma;
1607         iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1608         /* Be preventative. handlers will later set to valid length */
1609         iod->lsreq->rsplen = 0;
1610
1611         iod->assoc = NULL;
1612
1613         /*
1614          * handlers:
1615          *   parse request input, execute the request, and format the
1616          *   LS response
1617          */
1618         switch (w0->ls_cmd) {
1619         case FCNVME_LS_CREATE_ASSOCIATION:
1620                 /* Creates Association and initial Admin Queue/Connection */
1621                 nvmet_fc_ls_create_association(tgtport, iod);
1622                 break;
1623         case FCNVME_LS_CREATE_CONNECTION:
1624                 /* Creates an IO Queue/Connection */
1625                 nvmet_fc_ls_create_connection(tgtport, iod);
1626                 break;
1627         case FCNVME_LS_DISCONNECT:
1628                 /* Terminate a Queue/Connection or the Association */
1629                 nvmet_fc_ls_disconnect(tgtport, iod);
1630                 break;
1631         default:
1632                 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1633                                 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1634                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1635         }
1636
1637         nvmet_fc_xmt_ls_rsp(tgtport, iod);
1638 }
1639
1640 /*
1641  * Actual processing routine for received FC-NVME LS Requests from the LLD
1642  */
1643 static void
1644 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1645 {
1646         struct nvmet_fc_ls_iod *iod =
1647                 container_of(work, struct nvmet_fc_ls_iod, work);
1648         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1649
1650         nvmet_fc_handle_ls_rqst(tgtport, iod);
1651 }
1652
1653
1654 /**
1655  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1656  *                       upon the reception of a NVME LS request.
1657  *
1658  * The nvmet-fc layer will copy payload to an internal structure for
1659  * processing.  As such, upon completion of the routine, the LLDD may
1660  * immediately free/reuse the LS request buffer passed in the call.
1661  *
1662  * If this routine returns error, the LLDD should abort the exchange.
1663  *
1664  * @tgtport:    pointer to the (registered) target port the LS was
1665  *              received on.
1666  * @lsreq:      pointer to a lsreq request structure to be used to reference
1667  *              the exchange corresponding to the LS.
1668  * @lsreqbuf:   pointer to the buffer containing the LS Request
1669  * @lsreqbuf_len: length, in bytes, of the received LS request
1670  */
1671 int
1672 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1673                         struct nvmefc_tgt_ls_req *lsreq,
1674                         void *lsreqbuf, u32 lsreqbuf_len)
1675 {
1676         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1677         struct nvmet_fc_ls_iod *iod;
1678
1679         if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1680                 return -E2BIG;
1681
1682         if (!nvmet_fc_tgtport_get(tgtport))
1683                 return -ESHUTDOWN;
1684
1685         iod = nvmet_fc_alloc_ls_iod(tgtport);
1686         if (!iod) {
1687                 nvmet_fc_tgtport_put(tgtport);
1688                 return -ENOENT;
1689         }
1690
1691         iod->lsreq = lsreq;
1692         iod->fcpreq = NULL;
1693         memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1694         iod->rqstdatalen = lsreqbuf_len;
1695
1696         schedule_work(&iod->work);
1697
1698         return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1701
1702
1703 /*
1704  * **********************
1705  * Start of FCP handling
1706  * **********************
1707  */
1708
1709 static int
1710 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1711 {
1712         struct scatterlist *sg;
1713         unsigned int nent;
1714
1715         sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1716         if (!sg)
1717                 goto out;
1718
1719         fod->data_sg = sg;
1720         fod->data_sg_cnt = nent;
1721         fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1722                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1723                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1724                                 /* note: write from initiator perspective */
1725
1726         return 0;
1727
1728 out:
1729         return NVME_SC_INTERNAL;
1730 }
1731
1732 static void
1733 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1734 {
1735         if (!fod->data_sg || !fod->data_sg_cnt)
1736                 return;
1737
1738         fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1739                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1740                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1741         sgl_free(fod->data_sg);
1742         fod->data_sg = NULL;
1743         fod->data_sg_cnt = 0;
1744 }
1745
1746
1747 static bool
1748 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1749 {
1750         u32 sqtail, used;
1751
1752         /* egad, this is ugly. And sqtail is just a best guess */
1753         sqtail = atomic_read(&q->sqtail) % q->sqsize;
1754
1755         used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1756         return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1757 }
1758
1759 /*
1760  * Prep RSP payload.
1761  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1762  */
1763 static void
1764 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1765                                 struct nvmet_fc_fcp_iod *fod)
1766 {
1767         struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1768         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1769         struct nvme_completion *cqe = &ersp->cqe;
1770         u32 *cqewd = (u32 *)cqe;
1771         bool send_ersp = false;
1772         u32 rsn, rspcnt, xfr_length;
1773
1774         if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1775                 xfr_length = fod->req.transfer_len;
1776         else
1777                 xfr_length = fod->offset;
1778
1779         /*
1780          * check to see if we can send a 0's rsp.
1781          *   Note: to send a 0's response, the NVME-FC host transport will
1782          *   recreate the CQE. The host transport knows: sq id, SQHD (last
1783          *   seen in an ersp), and command_id. Thus it will create a
1784          *   zero-filled CQE with those known fields filled in. Transport
1785          *   must send an ersp for any condition where the cqe won't match
1786          *   this.
1787          *
1788          * Here are the FC-NVME mandated cases where we must send an ersp:
1789          *  every N responses, where N=ersp_ratio
1790          *  force fabric commands to send ersp's (not in FC-NVME but good
1791          *    practice)
1792          *  normal cmds: any time status is non-zero, or status is zero
1793          *     but words 0 or 1 are non-zero.
1794          *  the SQ is 90% or more full
1795          *  the cmd is a fused command
1796          *  transferred data length not equal to cmd iu length
1797          */
1798         rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1799         if (!(rspcnt % fod->queue->ersp_ratio) ||
1800             sqe->opcode == nvme_fabrics_command ||
1801             xfr_length != fod->req.transfer_len ||
1802             (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1803             (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1804             queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1805                 send_ersp = true;
1806
1807         /* re-set the fields */
1808         fod->fcpreq->rspaddr = ersp;
1809         fod->fcpreq->rspdma = fod->rspdma;
1810
1811         if (!send_ersp) {
1812                 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1813                 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1814         } else {
1815                 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1816                 rsn = atomic_inc_return(&fod->queue->rsn);
1817                 ersp->rsn = cpu_to_be32(rsn);
1818                 ersp->xfrd_len = cpu_to_be32(xfr_length);
1819                 fod->fcpreq->rsplen = sizeof(*ersp);
1820         }
1821
1822         fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1823                                   sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1824 }
1825
1826 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1827
1828 static void
1829 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1830                                 struct nvmet_fc_fcp_iod *fod)
1831 {
1832         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1833
1834         /* data no longer needed */
1835         nvmet_fc_free_tgt_pgs(fod);
1836
1837         /*
1838          * if an ABTS was received or we issued the fcp_abort early
1839          * don't call abort routine again.
1840          */
1841         /* no need to take lock - lock was taken earlier to get here */
1842         if (!fod->aborted)
1843                 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1844
1845         nvmet_fc_free_fcp_iod(fod->queue, fod);
1846 }
1847
1848 static void
1849 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1850                                 struct nvmet_fc_fcp_iod *fod)
1851 {
1852         int ret;
1853
1854         fod->fcpreq->op = NVMET_FCOP_RSP;
1855         fod->fcpreq->timeout = 0;
1856
1857         nvmet_fc_prep_fcp_rsp(tgtport, fod);
1858
1859         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1860         if (ret)
1861                 nvmet_fc_abort_op(tgtport, fod);
1862 }
1863
1864 static void
1865 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1866                                 struct nvmet_fc_fcp_iod *fod, u8 op)
1867 {
1868         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1869         unsigned long flags;
1870         u32 tlen;
1871         int ret;
1872
1873         fcpreq->op = op;
1874         fcpreq->offset = fod->offset;
1875         fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1876
1877         tlen = min_t(u32, tgtport->max_sg_cnt * PAGE_SIZE,
1878                         (fod->req.transfer_len - fod->offset));
1879         fcpreq->transfer_length = tlen;
1880         fcpreq->transferred_length = 0;
1881         fcpreq->fcp_error = 0;
1882         fcpreq->rsplen = 0;
1883
1884         fcpreq->sg = &fod->data_sg[fod->offset / PAGE_SIZE];
1885         fcpreq->sg_cnt = DIV_ROUND_UP(tlen, PAGE_SIZE);
1886
1887         /*
1888          * If the last READDATA request: check if LLDD supports
1889          * combined xfr with response.
1890          */
1891         if ((op == NVMET_FCOP_READDATA) &&
1892             ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1893             (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1894                 fcpreq->op = NVMET_FCOP_READDATA_RSP;
1895                 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1896         }
1897
1898         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1899         if (ret) {
1900                 /*
1901                  * should be ok to set w/o lock as its in the thread of
1902                  * execution (not an async timer routine) and doesn't
1903                  * contend with any clearing action
1904                  */
1905                 fod->abort = true;
1906
1907                 if (op == NVMET_FCOP_WRITEDATA) {
1908                         spin_lock_irqsave(&fod->flock, flags);
1909                         fod->writedataactive = false;
1910                         spin_unlock_irqrestore(&fod->flock, flags);
1911                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1912                 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1913                         fcpreq->fcp_error = ret;
1914                         fcpreq->transferred_length = 0;
1915                         nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1916                 }
1917         }
1918 }
1919
1920 static inline bool
1921 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1922 {
1923         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1924         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1925
1926         /* if in the middle of an io and we need to tear down */
1927         if (abort) {
1928                 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1929                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1930                         return true;
1931                 }
1932
1933                 nvmet_fc_abort_op(tgtport, fod);
1934                 return true;
1935         }
1936
1937         return false;
1938 }
1939
1940 /*
1941  * actual done handler for FCP operations when completed by the lldd
1942  */
1943 static void
1944 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1945 {
1946         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1947         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1948         unsigned long flags;
1949         bool abort;
1950
1951         spin_lock_irqsave(&fod->flock, flags);
1952         abort = fod->abort;
1953         fod->writedataactive = false;
1954         spin_unlock_irqrestore(&fod->flock, flags);
1955
1956         switch (fcpreq->op) {
1957
1958         case NVMET_FCOP_WRITEDATA:
1959                 if (__nvmet_fc_fod_op_abort(fod, abort))
1960                         return;
1961                 if (fcpreq->fcp_error ||
1962                     fcpreq->transferred_length != fcpreq->transfer_length) {
1963                         spin_lock(&fod->flock);
1964                         fod->abort = true;
1965                         spin_unlock(&fod->flock);
1966
1967                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1968                         return;
1969                 }
1970
1971                 fod->offset += fcpreq->transferred_length;
1972                 if (fod->offset != fod->req.transfer_len) {
1973                         spin_lock_irqsave(&fod->flock, flags);
1974                         fod->writedataactive = true;
1975                         spin_unlock_irqrestore(&fod->flock, flags);
1976
1977                         /* transfer the next chunk */
1978                         nvmet_fc_transfer_fcp_data(tgtport, fod,
1979                                                 NVMET_FCOP_WRITEDATA);
1980                         return;
1981                 }
1982
1983                 /* data transfer complete, resume with nvmet layer */
1984                 nvmet_req_execute(&fod->req);
1985                 break;
1986
1987         case NVMET_FCOP_READDATA:
1988         case NVMET_FCOP_READDATA_RSP:
1989                 if (__nvmet_fc_fod_op_abort(fod, abort))
1990                         return;
1991                 if (fcpreq->fcp_error ||
1992                     fcpreq->transferred_length != fcpreq->transfer_length) {
1993                         nvmet_fc_abort_op(tgtport, fod);
1994                         return;
1995                 }
1996
1997                 /* success */
1998
1999                 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2000                         /* data no longer needed */
2001                         nvmet_fc_free_tgt_pgs(fod);
2002                         nvmet_fc_free_fcp_iod(fod->queue, fod);
2003                         return;
2004                 }
2005
2006                 fod->offset += fcpreq->transferred_length;
2007                 if (fod->offset != fod->req.transfer_len) {
2008                         /* transfer the next chunk */
2009                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2010                                                 NVMET_FCOP_READDATA);
2011                         return;
2012                 }
2013
2014                 /* data transfer complete, send response */
2015
2016                 /* data no longer needed */
2017                 nvmet_fc_free_tgt_pgs(fod);
2018
2019                 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2020
2021                 break;
2022
2023         case NVMET_FCOP_RSP:
2024                 if (__nvmet_fc_fod_op_abort(fod, abort))
2025                         return;
2026                 nvmet_fc_free_fcp_iod(fod->queue, fod);
2027                 break;
2028
2029         default:
2030                 break;
2031         }
2032 }
2033
2034 static void
2035 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work)
2036 {
2037         struct nvmet_fc_fcp_iod *fod =
2038                 container_of(work, struct nvmet_fc_fcp_iod, done_work);
2039
2040         nvmet_fc_fod_op_done(fod);
2041 }
2042
2043 static void
2044 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2045 {
2046         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2047         struct nvmet_fc_tgt_queue *queue = fod->queue;
2048
2049         if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR)
2050                 /* context switch so completion is not in ISR context */
2051                 queue_work_on(queue->cpu, queue->work_q, &fod->done_work);
2052         else
2053                 nvmet_fc_fod_op_done(fod);
2054 }
2055
2056 /*
2057  * actual completion handler after execution by the nvmet layer
2058  */
2059 static void
2060 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2061                         struct nvmet_fc_fcp_iod *fod, int status)
2062 {
2063         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2064         struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2065         unsigned long flags;
2066         bool abort;
2067
2068         spin_lock_irqsave(&fod->flock, flags);
2069         abort = fod->abort;
2070         spin_unlock_irqrestore(&fod->flock, flags);
2071
2072         /* if we have a CQE, snoop the last sq_head value */
2073         if (!status)
2074                 fod->queue->sqhd = cqe->sq_head;
2075
2076         if (abort) {
2077                 nvmet_fc_abort_op(tgtport, fod);
2078                 return;
2079         }
2080
2081         /* if an error handling the cmd post initial parsing */
2082         if (status) {
2083                 /* fudge up a failed CQE status for our transport error */
2084                 memset(cqe, 0, sizeof(*cqe));
2085                 cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2086                 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2087                 cqe->command_id = sqe->command_id;
2088                 cqe->status = cpu_to_le16(status);
2089         } else {
2090
2091                 /*
2092                  * try to push the data even if the SQE status is non-zero.
2093                  * There may be a status where data still was intended to
2094                  * be moved
2095                  */
2096                 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2097                         /* push the data over before sending rsp */
2098                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2099                                                 NVMET_FCOP_READDATA);
2100                         return;
2101                 }
2102
2103                 /* writes & no data - fall thru */
2104         }
2105
2106         /* data no longer needed */
2107         nvmet_fc_free_tgt_pgs(fod);
2108
2109         nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2110 }
2111
2112
2113 static void
2114 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2115 {
2116         struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2117         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2118
2119         __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2120 }
2121
2122
2123 /*
2124  * Actual processing routine for received FC-NVME LS Requests from the LLD
2125  */
2126 static void
2127 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2128                         struct nvmet_fc_fcp_iod *fod)
2129 {
2130         struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2131         u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2132         int ret;
2133
2134         /*
2135          * Fused commands are currently not supported in the linux
2136          * implementation.
2137          *
2138          * As such, the implementation of the FC transport does not
2139          * look at the fused commands and order delivery to the upper
2140          * layer until we have both based on csn.
2141          */
2142
2143         fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2144
2145         if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2146                 fod->io_dir = NVMET_FCP_WRITE;
2147                 if (!nvme_is_write(&cmdiu->sqe))
2148                         goto transport_error;
2149         } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2150                 fod->io_dir = NVMET_FCP_READ;
2151                 if (nvme_is_write(&cmdiu->sqe))
2152                         goto transport_error;
2153         } else {
2154                 fod->io_dir = NVMET_FCP_NODATA;
2155                 if (xfrlen)
2156                         goto transport_error;
2157         }
2158
2159         fod->req.cmd = &fod->cmdiubuf.sqe;
2160         fod->req.rsp = &fod->rspiubuf.cqe;
2161         fod->req.port = fod->queue->port;
2162
2163         /* clear any response payload */
2164         memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2165
2166         fod->data_sg = NULL;
2167         fod->data_sg_cnt = 0;
2168
2169         ret = nvmet_req_init(&fod->req,
2170                                 &fod->queue->nvme_cq,
2171                                 &fod->queue->nvme_sq,
2172                                 &nvmet_fc_tgt_fcp_ops);
2173         if (!ret) {
2174                 /* bad SQE content or invalid ctrl state */
2175                 /* nvmet layer has already called op done to send rsp. */
2176                 return;
2177         }
2178
2179         fod->req.transfer_len = xfrlen;
2180
2181         /* keep a running counter of tail position */
2182         atomic_inc(&fod->queue->sqtail);
2183
2184         if (fod->req.transfer_len) {
2185                 ret = nvmet_fc_alloc_tgt_pgs(fod);
2186                 if (ret) {
2187                         nvmet_req_complete(&fod->req, ret);
2188                         return;
2189                 }
2190         }
2191         fod->req.sg = fod->data_sg;
2192         fod->req.sg_cnt = fod->data_sg_cnt;
2193         fod->offset = 0;
2194
2195         if (fod->io_dir == NVMET_FCP_WRITE) {
2196                 /* pull the data over before invoking nvmet layer */
2197                 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2198                 return;
2199         }
2200
2201         /*
2202          * Reads or no data:
2203          *
2204          * can invoke the nvmet_layer now. If read data, cmd completion will
2205          * push the data
2206          */
2207         nvmet_req_execute(&fod->req);
2208         return;
2209
2210 transport_error:
2211         nvmet_fc_abort_op(tgtport, fod);
2212 }
2213
2214 /*
2215  * Actual processing routine for received FC-NVME LS Requests from the LLD
2216  */
2217 static void
2218 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2219 {
2220         struct nvmet_fc_fcp_iod *fod =
2221                 container_of(work, struct nvmet_fc_fcp_iod, work);
2222         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2223
2224         nvmet_fc_handle_fcp_rqst(tgtport, fod);
2225 }
2226
2227 /**
2228  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2229  *                       upon the reception of a NVME FCP CMD IU.
2230  *
2231  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2232  * layer for processing.
2233  *
2234  * The nvmet_fc layer allocates a local job structure (struct
2235  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2236  * CMD IU buffer to the job structure. As such, on a successful
2237  * completion (returns 0), the LLDD may immediately free/reuse
2238  * the CMD IU buffer passed in the call.
2239  *
2240  * However, in some circumstances, due to the packetized nature of FC
2241  * and the api of the FC LLDD which may issue a hw command to send the
2242  * response, but the LLDD may not get the hw completion for that command
2243  * and upcall the nvmet_fc layer before a new command may be
2244  * asynchronously received - its possible for a command to be received
2245  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2246  * the appearance of more commands received than fits in the sq.
2247  * To alleviate this scenario, a temporary queue is maintained in the
2248  * transport for pending LLDD requests waiting for a queue job structure.
2249  * In these "overrun" cases, a temporary queue element is allocated
2250  * the LLDD request and CMD iu buffer information remembered, and the
2251  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2252  * structure is freed, it is immediately reallocated for anything on the
2253  * pending request list. The LLDDs defer_rcv() callback is called,
2254  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2255  * is then started normally with the transport.
2256  *
2257  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2258  * the completion as successful but must not reuse the CMD IU buffer
2259  * until the LLDD's defer_rcv() callback has been called for the
2260  * corresponding struct nvmefc_tgt_fcp_req pointer.
2261  *
2262  * If there is any other condition in which an error occurs, the
2263  * transport will return a non-zero status indicating the error.
2264  * In all cases other than -EOVERFLOW, the transport has not accepted the
2265  * request and the LLDD should abort the exchange.
2266  *
2267  * @target_port: pointer to the (registered) target port the FCP CMD IU
2268  *              was received on.
2269  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2270  *              the exchange corresponding to the FCP Exchange.
2271  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2272  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2273  */
2274 int
2275 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2276                         struct nvmefc_tgt_fcp_req *fcpreq,
2277                         void *cmdiubuf, u32 cmdiubuf_len)
2278 {
2279         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2280         struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2281         struct nvmet_fc_tgt_queue *queue;
2282         struct nvmet_fc_fcp_iod *fod;
2283         struct nvmet_fc_defer_fcp_req *deferfcp;
2284         unsigned long flags;
2285
2286         /* validate iu, so the connection id can be used to find the queue */
2287         if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2288                         (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2289                         (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2290                         (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2291                 return -EIO;
2292
2293         queue = nvmet_fc_find_target_queue(tgtport,
2294                                 be64_to_cpu(cmdiu->connection_id));
2295         if (!queue)
2296                 return -ENOTCONN;
2297
2298         /*
2299          * note: reference taken by find_target_queue
2300          * After successful fod allocation, the fod will inherit the
2301          * ownership of that reference and will remove the reference
2302          * when the fod is freed.
2303          */
2304
2305         spin_lock_irqsave(&queue->qlock, flags);
2306
2307         fod = nvmet_fc_alloc_fcp_iod(queue);
2308         if (fod) {
2309                 spin_unlock_irqrestore(&queue->qlock, flags);
2310
2311                 fcpreq->nvmet_fc_private = fod;
2312                 fod->fcpreq = fcpreq;
2313
2314                 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2315
2316                 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2317
2318                 return 0;
2319         }
2320
2321         if (!tgtport->ops->defer_rcv) {
2322                 spin_unlock_irqrestore(&queue->qlock, flags);
2323                 /* release the queue lookup reference */
2324                 nvmet_fc_tgt_q_put(queue);
2325                 return -ENOENT;
2326         }
2327
2328         deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2329                         struct nvmet_fc_defer_fcp_req, req_list);
2330         if (deferfcp) {
2331                 /* Just re-use one that was previously allocated */
2332                 list_del(&deferfcp->req_list);
2333         } else {
2334                 spin_unlock_irqrestore(&queue->qlock, flags);
2335
2336                 /* Now we need to dynamically allocate one */
2337                 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2338                 if (!deferfcp) {
2339                         /* release the queue lookup reference */
2340                         nvmet_fc_tgt_q_put(queue);
2341                         return -ENOMEM;
2342                 }
2343                 spin_lock_irqsave(&queue->qlock, flags);
2344         }
2345
2346         /* For now, use rspaddr / rsplen to save payload information */
2347         fcpreq->rspaddr = cmdiubuf;
2348         fcpreq->rsplen  = cmdiubuf_len;
2349         deferfcp->fcp_req = fcpreq;
2350
2351         /* defer processing till a fod becomes available */
2352         list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2353
2354         /* NOTE: the queue lookup reference is still valid */
2355
2356         spin_unlock_irqrestore(&queue->qlock, flags);
2357
2358         return -EOVERFLOW;
2359 }
2360 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2361
2362 /**
2363  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2364  *                       upon the reception of an ABTS for a FCP command
2365  *
2366  * Notify the transport that an ABTS has been received for a FCP command
2367  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2368  * LLDD believes the command is still being worked on
2369  * (template_ops->fcp_req_release() has not been called).
2370  *
2371  * The transport will wait for any outstanding work (an op to the LLDD,
2372  * which the lldd should complete with error due to the ABTS; or the
2373  * completion from the nvmet layer of the nvme command), then will
2374  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2375  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2376  * to the ABTS either after return from this function (assuming any
2377  * outstanding op work has been terminated) or upon the callback being
2378  * called.
2379  *
2380  * @target_port: pointer to the (registered) target port the FCP CMD IU
2381  *              was received on.
2382  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2383  *              to the exchange that received the ABTS.
2384  */
2385 void
2386 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2387                         struct nvmefc_tgt_fcp_req *fcpreq)
2388 {
2389         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2390         struct nvmet_fc_tgt_queue *queue;
2391         unsigned long flags;
2392
2393         if (!fod || fod->fcpreq != fcpreq)
2394                 /* job appears to have already completed, ignore abort */
2395                 return;
2396
2397         queue = fod->queue;
2398
2399         spin_lock_irqsave(&queue->qlock, flags);
2400         if (fod->active) {
2401                 /*
2402                  * mark as abort. The abort handler, invoked upon completion
2403                  * of any work, will detect the aborted status and do the
2404                  * callback.
2405                  */
2406                 spin_lock(&fod->flock);
2407                 fod->abort = true;
2408                 fod->aborted = true;
2409                 spin_unlock(&fod->flock);
2410         }
2411         spin_unlock_irqrestore(&queue->qlock, flags);
2412 }
2413 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2414
2415
2416 struct nvmet_fc_traddr {
2417         u64     nn;
2418         u64     pn;
2419 };
2420
2421 static int
2422 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2423 {
2424         u64 token64;
2425
2426         if (match_u64(sstr, &token64))
2427                 return -EINVAL;
2428         *val = token64;
2429
2430         return 0;
2431 }
2432
2433 /*
2434  * This routine validates and extracts the WWN's from the TRADDR string.
2435  * As kernel parsers need the 0x to determine number base, universally
2436  * build string to parse with 0x prefix before parsing name strings.
2437  */
2438 static int
2439 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2440 {
2441         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2442         substring_t wwn = { name, &name[sizeof(name)-1] };
2443         int nnoffset, pnoffset;
2444
2445         /* validate it string one of the 2 allowed formats */
2446         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2447                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2448                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2449                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2450                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2451                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2452                                                 NVME_FC_TRADDR_OXNNLEN;
2453         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2454                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2455                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2456                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2457                 nnoffset = NVME_FC_TRADDR_NNLEN;
2458                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2459         } else
2460                 goto out_einval;
2461
2462         name[0] = '0';
2463         name[1] = 'x';
2464         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2465
2466         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2467         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2468                 goto out_einval;
2469
2470         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2471         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2472                 goto out_einval;
2473
2474         return 0;
2475
2476 out_einval:
2477         pr_warn("%s: bad traddr string\n", __func__);
2478         return -EINVAL;
2479 }
2480
2481 static int
2482 nvmet_fc_add_port(struct nvmet_port *port)
2483 {
2484         struct nvmet_fc_tgtport *tgtport;
2485         struct nvmet_fc_traddr traddr = { 0L, 0L };
2486         unsigned long flags;
2487         int ret;
2488
2489         /* validate the address info */
2490         if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2491             (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2492                 return -EINVAL;
2493
2494         /* map the traddr address info to a target port */
2495
2496         ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2497                         sizeof(port->disc_addr.traddr));
2498         if (ret)
2499                 return ret;
2500
2501         ret = -ENXIO;
2502         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2503         list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2504                 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2505                     (tgtport->fc_target_port.port_name == traddr.pn)) {
2506                         tgtport->port = port;
2507                         ret = 0;
2508                         break;
2509                 }
2510         }
2511         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2512         return ret;
2513 }
2514
2515 static void
2516 nvmet_fc_remove_port(struct nvmet_port *port)
2517 {
2518         /* nothing to do */
2519 }
2520
2521 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2522         .owner                  = THIS_MODULE,
2523         .type                   = NVMF_TRTYPE_FC,
2524         .msdbd                  = 1,
2525         .add_port               = nvmet_fc_add_port,
2526         .remove_port            = nvmet_fc_remove_port,
2527         .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2528         .delete_ctrl            = nvmet_fc_delete_ctrl,
2529 };
2530
2531 static int __init nvmet_fc_init_module(void)
2532 {
2533         return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2534 }
2535
2536 static void __exit nvmet_fc_exit_module(void)
2537 {
2538         /* sanity check - all lports should be removed */
2539         if (!list_empty(&nvmet_fc_target_list))
2540                 pr_warn("%s: targetport list not empty\n", __func__);
2541
2542         nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2543
2544         ida_destroy(&nvmet_fc_tgtport_cnt);
2545 }
2546
2547 module_init(nvmet_fc_init_module);
2548 module_exit(nvmet_fc_exit_module);
2549
2550 MODULE_LICENSE("GPL v2");