ARM: multi_v7_defconfig: Enable support for the ADC thermal sensor
[linux-2.6-microblaze.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33 enum nvme_tcp_send_state {
34         NVME_TCP_SEND_CMD_PDU = 0,
35         NVME_TCP_SEND_H2C_PDU,
36         NVME_TCP_SEND_DATA,
37         NVME_TCP_SEND_DDGST,
38 };
39
40 struct nvme_tcp_request {
41         struct nvme_request     req;
42         void                    *pdu;
43         struct nvme_tcp_queue   *queue;
44         u32                     data_len;
45         u32                     pdu_len;
46         u32                     pdu_sent;
47         u16                     ttag;
48         struct list_head        entry;
49         struct llist_node       lentry;
50         __le32                  ddgst;
51
52         struct bio              *curr_bio;
53         struct iov_iter         iter;
54
55         /* send state */
56         size_t                  offset;
57         size_t                  data_sent;
58         enum nvme_tcp_send_state state;
59 };
60
61 enum nvme_tcp_queue_flags {
62         NVME_TCP_Q_ALLOCATED    = 0,
63         NVME_TCP_Q_LIVE         = 1,
64         NVME_TCP_Q_POLLING      = 2,
65 };
66
67 enum nvme_tcp_recv_state {
68         NVME_TCP_RECV_PDU = 0,
69         NVME_TCP_RECV_DATA,
70         NVME_TCP_RECV_DDGST,
71 };
72
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75         struct socket           *sock;
76         struct work_struct      io_work;
77         int                     io_cpu;
78
79         struct mutex            send_mutex;
80         struct llist_head       req_list;
81         struct list_head        send_list;
82         bool                    more_requests;
83
84         /* recv state */
85         void                    *pdu;
86         int                     pdu_remaining;
87         int                     pdu_offset;
88         size_t                  data_remaining;
89         size_t                  ddgst_remaining;
90         unsigned int            nr_cqe;
91
92         /* send state */
93         struct nvme_tcp_request *request;
94
95         int                     queue_size;
96         size_t                  cmnd_capsule_len;
97         struct nvme_tcp_ctrl    *ctrl;
98         unsigned long           flags;
99         bool                    rd_enabled;
100
101         bool                    hdr_digest;
102         bool                    data_digest;
103         struct ahash_request    *rcv_hash;
104         struct ahash_request    *snd_hash;
105         __le32                  exp_ddgst;
106         __le32                  recv_ddgst;
107
108         struct page_frag_cache  pf_cache;
109
110         void (*state_change)(struct sock *);
111         void (*data_ready)(struct sock *);
112         void (*write_space)(struct sock *);
113 };
114
115 struct nvme_tcp_ctrl {
116         /* read only in the hot path */
117         struct nvme_tcp_queue   *queues;
118         struct blk_mq_tag_set   tag_set;
119
120         /* other member variables */
121         struct list_head        list;
122         struct blk_mq_tag_set   admin_tag_set;
123         struct sockaddr_storage addr;
124         struct sockaddr_storage src_addr;
125         struct nvme_ctrl        ctrl;
126
127         struct work_struct      err_work;
128         struct delayed_work     connect_work;
129         struct nvme_tcp_request async_req;
130         u32                     io_queues[HCTX_MAX_TYPES];
131 };
132
133 static LIST_HEAD(nvme_tcp_ctrl_list);
134 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
135 static struct workqueue_struct *nvme_tcp_wq;
136 static const struct blk_mq_ops nvme_tcp_mq_ops;
137 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
138 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
139
140 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
141 {
142         return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
143 }
144
145 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
146 {
147         return queue - queue->ctrl->queues;
148 }
149
150 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
151 {
152         u32 queue_idx = nvme_tcp_queue_id(queue);
153
154         if (queue_idx == 0)
155                 return queue->ctrl->admin_tag_set.tags[queue_idx];
156         return queue->ctrl->tag_set.tags[queue_idx - 1];
157 }
158
159 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
160 {
161         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
162 }
163
164 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
165 {
166         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
167 }
168
169 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
170 {
171         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
172 }
173
174 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
175 {
176         return req == &req->queue->ctrl->async_req;
177 }
178
179 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
180 {
181         struct request *rq;
182
183         if (unlikely(nvme_tcp_async_req(req)))
184                 return false; /* async events don't have a request */
185
186         rq = blk_mq_rq_from_pdu(req);
187
188         return rq_data_dir(rq) == WRITE && req->data_len &&
189                 req->data_len <= nvme_tcp_inline_data_size(req->queue);
190 }
191
192 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
193 {
194         return req->iter.bvec->bv_page;
195 }
196
197 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
198 {
199         return req->iter.bvec->bv_offset + req->iter.iov_offset;
200 }
201
202 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
203 {
204         return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
205                         req->pdu_len - req->pdu_sent);
206 }
207
208 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
209 {
210         return req->iter.iov_offset;
211 }
212
213 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
214 {
215         return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
216                         req->pdu_len - req->pdu_sent : 0;
217 }
218
219 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
220                 int len)
221 {
222         return nvme_tcp_pdu_data_left(req) <= len;
223 }
224
225 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
226                 unsigned int dir)
227 {
228         struct request *rq = blk_mq_rq_from_pdu(req);
229         struct bio_vec *vec;
230         unsigned int size;
231         int nsegs;
232         size_t offset;
233
234         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
235                 vec = &rq->special_vec;
236                 nsegs = 1;
237                 size = blk_rq_payload_bytes(rq);
238                 offset = 0;
239         } else {
240                 struct bio *bio = req->curr_bio;
241
242                 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
243                 nsegs = bio_segments(bio);
244                 size = bio->bi_iter.bi_size;
245                 offset = bio->bi_iter.bi_bvec_done;
246         }
247
248         iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
249         req->iter.iov_offset = offset;
250 }
251
252 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
253                 int len)
254 {
255         req->data_sent += len;
256         req->pdu_sent += len;
257         iov_iter_advance(&req->iter, len);
258         if (!iov_iter_count(&req->iter) &&
259             req->data_sent < req->data_len) {
260                 req->curr_bio = req->curr_bio->bi_next;
261                 nvme_tcp_init_iter(req, WRITE);
262         }
263 }
264
265 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
266                 bool sync, bool last)
267 {
268         struct nvme_tcp_queue *queue = req->queue;
269         bool empty;
270
271         empty = llist_add(&req->lentry, &queue->req_list) &&
272                 list_empty(&queue->send_list) && !queue->request;
273
274         /*
275          * if we're the first on the send_list and we can try to send
276          * directly, otherwise queue io_work. Also, only do that if we
277          * are on the same cpu, so we don't introduce contention.
278          */
279         if (queue->io_cpu == smp_processor_id() &&
280             sync && empty && mutex_trylock(&queue->send_mutex)) {
281                 queue->more_requests = !last;
282                 nvme_tcp_try_send(queue);
283                 queue->more_requests = false;
284                 mutex_unlock(&queue->send_mutex);
285         } else if (last) {
286                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
287         }
288 }
289
290 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
291 {
292         struct nvme_tcp_request *req;
293         struct llist_node *node;
294
295         for (node = llist_del_all(&queue->req_list); node; node = node->next) {
296                 req = llist_entry(node, struct nvme_tcp_request, lentry);
297                 list_add(&req->entry, &queue->send_list);
298         }
299 }
300
301 static inline struct nvme_tcp_request *
302 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
303 {
304         struct nvme_tcp_request *req;
305
306         req = list_first_entry_or_null(&queue->send_list,
307                         struct nvme_tcp_request, entry);
308         if (!req) {
309                 nvme_tcp_process_req_list(queue);
310                 req = list_first_entry_or_null(&queue->send_list,
311                                 struct nvme_tcp_request, entry);
312                 if (unlikely(!req))
313                         return NULL;
314         }
315
316         list_del(&req->entry);
317         return req;
318 }
319
320 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
321                 __le32 *dgst)
322 {
323         ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
324         crypto_ahash_final(hash);
325 }
326
327 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
328                 struct page *page, off_t off, size_t len)
329 {
330         struct scatterlist sg;
331
332         sg_init_marker(&sg, 1);
333         sg_set_page(&sg, page, len, off);
334         ahash_request_set_crypt(hash, &sg, NULL, len);
335         crypto_ahash_update(hash);
336 }
337
338 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
339                 void *pdu, size_t len)
340 {
341         struct scatterlist sg;
342
343         sg_init_one(&sg, pdu, len);
344         ahash_request_set_crypt(hash, &sg, pdu + len, len);
345         crypto_ahash_digest(hash);
346 }
347
348 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
349                 void *pdu, size_t pdu_len)
350 {
351         struct nvme_tcp_hdr *hdr = pdu;
352         __le32 recv_digest;
353         __le32 exp_digest;
354
355         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
356                 dev_err(queue->ctrl->ctrl.device,
357                         "queue %d: header digest flag is cleared\n",
358                         nvme_tcp_queue_id(queue));
359                 return -EPROTO;
360         }
361
362         recv_digest = *(__le32 *)(pdu + hdr->hlen);
363         nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
364         exp_digest = *(__le32 *)(pdu + hdr->hlen);
365         if (recv_digest != exp_digest) {
366                 dev_err(queue->ctrl->ctrl.device,
367                         "header digest error: recv %#x expected %#x\n",
368                         le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
369                 return -EIO;
370         }
371
372         return 0;
373 }
374
375 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
376 {
377         struct nvme_tcp_hdr *hdr = pdu;
378         u8 digest_len = nvme_tcp_hdgst_len(queue);
379         u32 len;
380
381         len = le32_to_cpu(hdr->plen) - hdr->hlen -
382                 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
383
384         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
385                 dev_err(queue->ctrl->ctrl.device,
386                         "queue %d: data digest flag is cleared\n",
387                 nvme_tcp_queue_id(queue));
388                 return -EPROTO;
389         }
390         crypto_ahash_init(queue->rcv_hash);
391
392         return 0;
393 }
394
395 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
396                 struct request *rq, unsigned int hctx_idx)
397 {
398         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
399
400         page_frag_free(req->pdu);
401 }
402
403 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
404                 struct request *rq, unsigned int hctx_idx,
405                 unsigned int numa_node)
406 {
407         struct nvme_tcp_ctrl *ctrl = set->driver_data;
408         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
409         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
410         struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
411         u8 hdgst = nvme_tcp_hdgst_len(queue);
412
413         req->pdu = page_frag_alloc(&queue->pf_cache,
414                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
415                 GFP_KERNEL | __GFP_ZERO);
416         if (!req->pdu)
417                 return -ENOMEM;
418
419         req->queue = queue;
420         nvme_req(rq)->ctrl = &ctrl->ctrl;
421
422         return 0;
423 }
424
425 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
426                 unsigned int hctx_idx)
427 {
428         struct nvme_tcp_ctrl *ctrl = data;
429         struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
430
431         hctx->driver_data = queue;
432         return 0;
433 }
434
435 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
436                 unsigned int hctx_idx)
437 {
438         struct nvme_tcp_ctrl *ctrl = data;
439         struct nvme_tcp_queue *queue = &ctrl->queues[0];
440
441         hctx->driver_data = queue;
442         return 0;
443 }
444
445 static enum nvme_tcp_recv_state
446 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
447 {
448         return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
449                 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
450                 NVME_TCP_RECV_DATA;
451 }
452
453 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
454 {
455         queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
456                                 nvme_tcp_hdgst_len(queue);
457         queue->pdu_offset = 0;
458         queue->data_remaining = -1;
459         queue->ddgst_remaining = 0;
460 }
461
462 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
463 {
464         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
465                 return;
466
467         dev_warn(ctrl->device, "starting error recovery\n");
468         queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
469 }
470
471 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
472                 struct nvme_completion *cqe)
473 {
474         struct request *rq;
475
476         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
477         if (!rq) {
478                 dev_err(queue->ctrl->ctrl.device,
479                         "queue %d tag 0x%x not found\n",
480                         nvme_tcp_queue_id(queue), cqe->command_id);
481                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
482                 return -EINVAL;
483         }
484
485         if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
486                 nvme_complete_rq(rq);
487         queue->nr_cqe++;
488
489         return 0;
490 }
491
492 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
493                 struct nvme_tcp_data_pdu *pdu)
494 {
495         struct request *rq;
496
497         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
498         if (!rq) {
499                 dev_err(queue->ctrl->ctrl.device,
500                         "queue %d tag %#x not found\n",
501                         nvme_tcp_queue_id(queue), pdu->command_id);
502                 return -ENOENT;
503         }
504
505         if (!blk_rq_payload_bytes(rq)) {
506                 dev_err(queue->ctrl->ctrl.device,
507                         "queue %d tag %#x unexpected data\n",
508                         nvme_tcp_queue_id(queue), rq->tag);
509                 return -EIO;
510         }
511
512         queue->data_remaining = le32_to_cpu(pdu->data_length);
513
514         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
515             unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
516                 dev_err(queue->ctrl->ctrl.device,
517                         "queue %d tag %#x SUCCESS set but not last PDU\n",
518                         nvme_tcp_queue_id(queue), rq->tag);
519                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
520                 return -EPROTO;
521         }
522
523         return 0;
524 }
525
526 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
527                 struct nvme_tcp_rsp_pdu *pdu)
528 {
529         struct nvme_completion *cqe = &pdu->cqe;
530         int ret = 0;
531
532         /*
533          * AEN requests are special as they don't time out and can
534          * survive any kind of queue freeze and often don't respond to
535          * aborts.  We don't even bother to allocate a struct request
536          * for them but rather special case them here.
537          */
538         if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
539                                      cqe->command_id)))
540                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
541                                 &cqe->result);
542         else
543                 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
544
545         return ret;
546 }
547
548 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
549                 struct nvme_tcp_r2t_pdu *pdu)
550 {
551         struct nvme_tcp_data_pdu *data = req->pdu;
552         struct nvme_tcp_queue *queue = req->queue;
553         struct request *rq = blk_mq_rq_from_pdu(req);
554         u8 hdgst = nvme_tcp_hdgst_len(queue);
555         u8 ddgst = nvme_tcp_ddgst_len(queue);
556
557         req->pdu_len = le32_to_cpu(pdu->r2t_length);
558         req->pdu_sent = 0;
559
560         if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
561                 dev_err(queue->ctrl->ctrl.device,
562                         "req %d r2t len %u exceeded data len %u (%zu sent)\n",
563                         rq->tag, req->pdu_len, req->data_len,
564                         req->data_sent);
565                 return -EPROTO;
566         }
567
568         if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
569                 dev_err(queue->ctrl->ctrl.device,
570                         "req %d unexpected r2t offset %u (expected %zu)\n",
571                         rq->tag, le32_to_cpu(pdu->r2t_offset),
572                         req->data_sent);
573                 return -EPROTO;
574         }
575
576         memset(data, 0, sizeof(*data));
577         data->hdr.type = nvme_tcp_h2c_data;
578         data->hdr.flags = NVME_TCP_F_DATA_LAST;
579         if (queue->hdr_digest)
580                 data->hdr.flags |= NVME_TCP_F_HDGST;
581         if (queue->data_digest)
582                 data->hdr.flags |= NVME_TCP_F_DDGST;
583         data->hdr.hlen = sizeof(*data);
584         data->hdr.pdo = data->hdr.hlen + hdgst;
585         data->hdr.plen =
586                 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
587         data->ttag = pdu->ttag;
588         data->command_id = rq->tag;
589         data->data_offset = cpu_to_le32(req->data_sent);
590         data->data_length = cpu_to_le32(req->pdu_len);
591         return 0;
592 }
593
594 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
595                 struct nvme_tcp_r2t_pdu *pdu)
596 {
597         struct nvme_tcp_request *req;
598         struct request *rq;
599         int ret;
600
601         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
602         if (!rq) {
603                 dev_err(queue->ctrl->ctrl.device,
604                         "queue %d tag %#x not found\n",
605                         nvme_tcp_queue_id(queue), pdu->command_id);
606                 return -ENOENT;
607         }
608         req = blk_mq_rq_to_pdu(rq);
609
610         ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
611         if (unlikely(ret))
612                 return ret;
613
614         req->state = NVME_TCP_SEND_H2C_PDU;
615         req->offset = 0;
616
617         nvme_tcp_queue_request(req, false, true);
618
619         return 0;
620 }
621
622 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
623                 unsigned int *offset, size_t *len)
624 {
625         struct nvme_tcp_hdr *hdr;
626         char *pdu = queue->pdu;
627         size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
628         int ret;
629
630         ret = skb_copy_bits(skb, *offset,
631                 &pdu[queue->pdu_offset], rcv_len);
632         if (unlikely(ret))
633                 return ret;
634
635         queue->pdu_remaining -= rcv_len;
636         queue->pdu_offset += rcv_len;
637         *offset += rcv_len;
638         *len -= rcv_len;
639         if (queue->pdu_remaining)
640                 return 0;
641
642         hdr = queue->pdu;
643         if (queue->hdr_digest) {
644                 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
645                 if (unlikely(ret))
646                         return ret;
647         }
648
649
650         if (queue->data_digest) {
651                 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
652                 if (unlikely(ret))
653                         return ret;
654         }
655
656         switch (hdr->type) {
657         case nvme_tcp_c2h_data:
658                 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
659         case nvme_tcp_rsp:
660                 nvme_tcp_init_recv_ctx(queue);
661                 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
662         case nvme_tcp_r2t:
663                 nvme_tcp_init_recv_ctx(queue);
664                 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
665         default:
666                 dev_err(queue->ctrl->ctrl.device,
667                         "unsupported pdu type (%d)\n", hdr->type);
668                 return -EINVAL;
669         }
670 }
671
672 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
673 {
674         union nvme_result res = {};
675
676         if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
677                 nvme_complete_rq(rq);
678 }
679
680 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
681                               unsigned int *offset, size_t *len)
682 {
683         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
684         struct nvme_tcp_request *req;
685         struct request *rq;
686
687         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
688         if (!rq) {
689                 dev_err(queue->ctrl->ctrl.device,
690                         "queue %d tag %#x not found\n",
691                         nvme_tcp_queue_id(queue), pdu->command_id);
692                 return -ENOENT;
693         }
694         req = blk_mq_rq_to_pdu(rq);
695
696         while (true) {
697                 int recv_len, ret;
698
699                 recv_len = min_t(size_t, *len, queue->data_remaining);
700                 if (!recv_len)
701                         break;
702
703                 if (!iov_iter_count(&req->iter)) {
704                         req->curr_bio = req->curr_bio->bi_next;
705
706                         /*
707                          * If we don`t have any bios it means that controller
708                          * sent more data than we requested, hence error
709                          */
710                         if (!req->curr_bio) {
711                                 dev_err(queue->ctrl->ctrl.device,
712                                         "queue %d no space in request %#x",
713                                         nvme_tcp_queue_id(queue), rq->tag);
714                                 nvme_tcp_init_recv_ctx(queue);
715                                 return -EIO;
716                         }
717                         nvme_tcp_init_iter(req, READ);
718                 }
719
720                 /* we can read only from what is left in this bio */
721                 recv_len = min_t(size_t, recv_len,
722                                 iov_iter_count(&req->iter));
723
724                 if (queue->data_digest)
725                         ret = skb_copy_and_hash_datagram_iter(skb, *offset,
726                                 &req->iter, recv_len, queue->rcv_hash);
727                 else
728                         ret = skb_copy_datagram_iter(skb, *offset,
729                                         &req->iter, recv_len);
730                 if (ret) {
731                         dev_err(queue->ctrl->ctrl.device,
732                                 "queue %d failed to copy request %#x data",
733                                 nvme_tcp_queue_id(queue), rq->tag);
734                         return ret;
735                 }
736
737                 *len -= recv_len;
738                 *offset += recv_len;
739                 queue->data_remaining -= recv_len;
740         }
741
742         if (!queue->data_remaining) {
743                 if (queue->data_digest) {
744                         nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
745                         queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
746                 } else {
747                         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
748                                 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
749                                 queue->nr_cqe++;
750                         }
751                         nvme_tcp_init_recv_ctx(queue);
752                 }
753         }
754
755         return 0;
756 }
757
758 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
759                 struct sk_buff *skb, unsigned int *offset, size_t *len)
760 {
761         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
762         char *ddgst = (char *)&queue->recv_ddgst;
763         size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
764         off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
765         int ret;
766
767         ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
768         if (unlikely(ret))
769                 return ret;
770
771         queue->ddgst_remaining -= recv_len;
772         *offset += recv_len;
773         *len -= recv_len;
774         if (queue->ddgst_remaining)
775                 return 0;
776
777         if (queue->recv_ddgst != queue->exp_ddgst) {
778                 dev_err(queue->ctrl->ctrl.device,
779                         "data digest error: recv %#x expected %#x\n",
780                         le32_to_cpu(queue->recv_ddgst),
781                         le32_to_cpu(queue->exp_ddgst));
782                 return -EIO;
783         }
784
785         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
786                 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
787                                                 pdu->command_id);
788
789                 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
790                 queue->nr_cqe++;
791         }
792
793         nvme_tcp_init_recv_ctx(queue);
794         return 0;
795 }
796
797 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
798                              unsigned int offset, size_t len)
799 {
800         struct nvme_tcp_queue *queue = desc->arg.data;
801         size_t consumed = len;
802         int result;
803
804         while (len) {
805                 switch (nvme_tcp_recv_state(queue)) {
806                 case NVME_TCP_RECV_PDU:
807                         result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
808                         break;
809                 case NVME_TCP_RECV_DATA:
810                         result = nvme_tcp_recv_data(queue, skb, &offset, &len);
811                         break;
812                 case NVME_TCP_RECV_DDGST:
813                         result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
814                         break;
815                 default:
816                         result = -EFAULT;
817                 }
818                 if (result) {
819                         dev_err(queue->ctrl->ctrl.device,
820                                 "receive failed:  %d\n", result);
821                         queue->rd_enabled = false;
822                         nvme_tcp_error_recovery(&queue->ctrl->ctrl);
823                         return result;
824                 }
825         }
826
827         return consumed;
828 }
829
830 static void nvme_tcp_data_ready(struct sock *sk)
831 {
832         struct nvme_tcp_queue *queue;
833
834         read_lock_bh(&sk->sk_callback_lock);
835         queue = sk->sk_user_data;
836         if (likely(queue && queue->rd_enabled) &&
837             !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
838                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
839         read_unlock_bh(&sk->sk_callback_lock);
840 }
841
842 static void nvme_tcp_write_space(struct sock *sk)
843 {
844         struct nvme_tcp_queue *queue;
845
846         read_lock_bh(&sk->sk_callback_lock);
847         queue = sk->sk_user_data;
848         if (likely(queue && sk_stream_is_writeable(sk))) {
849                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
850                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
851         }
852         read_unlock_bh(&sk->sk_callback_lock);
853 }
854
855 static void nvme_tcp_state_change(struct sock *sk)
856 {
857         struct nvme_tcp_queue *queue;
858
859         read_lock(&sk->sk_callback_lock);
860         queue = sk->sk_user_data;
861         if (!queue)
862                 goto done;
863
864         switch (sk->sk_state) {
865         case TCP_CLOSE:
866         case TCP_CLOSE_WAIT:
867         case TCP_LAST_ACK:
868         case TCP_FIN_WAIT1:
869         case TCP_FIN_WAIT2:
870                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
871                 break;
872         default:
873                 dev_info(queue->ctrl->ctrl.device,
874                         "queue %d socket state %d\n",
875                         nvme_tcp_queue_id(queue), sk->sk_state);
876         }
877
878         queue->state_change(sk);
879 done:
880         read_unlock(&sk->sk_callback_lock);
881 }
882
883 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
884 {
885         return !list_empty(&queue->send_list) ||
886                 !llist_empty(&queue->req_list) || queue->more_requests;
887 }
888
889 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
890 {
891         queue->request = NULL;
892 }
893
894 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
895 {
896         nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
897 }
898
899 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
900 {
901         struct nvme_tcp_queue *queue = req->queue;
902
903         while (true) {
904                 struct page *page = nvme_tcp_req_cur_page(req);
905                 size_t offset = nvme_tcp_req_cur_offset(req);
906                 size_t len = nvme_tcp_req_cur_length(req);
907                 bool last = nvme_tcp_pdu_last_send(req, len);
908                 int ret, flags = MSG_DONTWAIT;
909
910                 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
911                         flags |= MSG_EOR;
912                 else
913                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
914
915                 if (sendpage_ok(page)) {
916                         ret = kernel_sendpage(queue->sock, page, offset, len,
917                                         flags);
918                 } else {
919                         ret = sock_no_sendpage(queue->sock, page, offset, len,
920                                         flags);
921                 }
922                 if (ret <= 0)
923                         return ret;
924
925                 nvme_tcp_advance_req(req, ret);
926                 if (queue->data_digest)
927                         nvme_tcp_ddgst_update(queue->snd_hash, page,
928                                         offset, ret);
929
930                 /* fully successful last write*/
931                 if (last && ret == len) {
932                         if (queue->data_digest) {
933                                 nvme_tcp_ddgst_final(queue->snd_hash,
934                                         &req->ddgst);
935                                 req->state = NVME_TCP_SEND_DDGST;
936                                 req->offset = 0;
937                         } else {
938                                 nvme_tcp_done_send_req(queue);
939                         }
940                         return 1;
941                 }
942         }
943         return -EAGAIN;
944 }
945
946 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
947 {
948         struct nvme_tcp_queue *queue = req->queue;
949         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
950         bool inline_data = nvme_tcp_has_inline_data(req);
951         u8 hdgst = nvme_tcp_hdgst_len(queue);
952         int len = sizeof(*pdu) + hdgst - req->offset;
953         int flags = MSG_DONTWAIT;
954         int ret;
955
956         if (inline_data || nvme_tcp_queue_more(queue))
957                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
958         else
959                 flags |= MSG_EOR;
960
961         if (queue->hdr_digest && !req->offset)
962                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
963
964         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
965                         offset_in_page(pdu) + req->offset, len,  flags);
966         if (unlikely(ret <= 0))
967                 return ret;
968
969         len -= ret;
970         if (!len) {
971                 if (inline_data) {
972                         req->state = NVME_TCP_SEND_DATA;
973                         if (queue->data_digest)
974                                 crypto_ahash_init(queue->snd_hash);
975                         nvme_tcp_init_iter(req, WRITE);
976                 } else {
977                         nvme_tcp_done_send_req(queue);
978                 }
979                 return 1;
980         }
981         req->offset += ret;
982
983         return -EAGAIN;
984 }
985
986 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
987 {
988         struct nvme_tcp_queue *queue = req->queue;
989         struct nvme_tcp_data_pdu *pdu = req->pdu;
990         u8 hdgst = nvme_tcp_hdgst_len(queue);
991         int len = sizeof(*pdu) - req->offset + hdgst;
992         int ret;
993
994         if (queue->hdr_digest && !req->offset)
995                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
996
997         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
998                         offset_in_page(pdu) + req->offset, len,
999                         MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1000         if (unlikely(ret <= 0))
1001                 return ret;
1002
1003         len -= ret;
1004         if (!len) {
1005                 req->state = NVME_TCP_SEND_DATA;
1006                 if (queue->data_digest)
1007                         crypto_ahash_init(queue->snd_hash);
1008                 if (!req->data_sent)
1009                         nvme_tcp_init_iter(req, WRITE);
1010                 return 1;
1011         }
1012         req->offset += ret;
1013
1014         return -EAGAIN;
1015 }
1016
1017 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1018 {
1019         struct nvme_tcp_queue *queue = req->queue;
1020         int ret;
1021         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1022         struct kvec iov = {
1023                 .iov_base = &req->ddgst + req->offset,
1024                 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1025         };
1026
1027         if (nvme_tcp_queue_more(queue))
1028                 msg.msg_flags |= MSG_MORE;
1029         else
1030                 msg.msg_flags |= MSG_EOR;
1031
1032         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1033         if (unlikely(ret <= 0))
1034                 return ret;
1035
1036         if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1037                 nvme_tcp_done_send_req(queue);
1038                 return 1;
1039         }
1040
1041         req->offset += ret;
1042         return -EAGAIN;
1043 }
1044
1045 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1046 {
1047         struct nvme_tcp_request *req;
1048         int ret = 1;
1049
1050         if (!queue->request) {
1051                 queue->request = nvme_tcp_fetch_request(queue);
1052                 if (!queue->request)
1053                         return 0;
1054         }
1055         req = queue->request;
1056
1057         if (req->state == NVME_TCP_SEND_CMD_PDU) {
1058                 ret = nvme_tcp_try_send_cmd_pdu(req);
1059                 if (ret <= 0)
1060                         goto done;
1061                 if (!nvme_tcp_has_inline_data(req))
1062                         return ret;
1063         }
1064
1065         if (req->state == NVME_TCP_SEND_H2C_PDU) {
1066                 ret = nvme_tcp_try_send_data_pdu(req);
1067                 if (ret <= 0)
1068                         goto done;
1069         }
1070
1071         if (req->state == NVME_TCP_SEND_DATA) {
1072                 ret = nvme_tcp_try_send_data(req);
1073                 if (ret <= 0)
1074                         goto done;
1075         }
1076
1077         if (req->state == NVME_TCP_SEND_DDGST)
1078                 ret = nvme_tcp_try_send_ddgst(req);
1079 done:
1080         if (ret == -EAGAIN) {
1081                 ret = 0;
1082         } else if (ret < 0) {
1083                 dev_err(queue->ctrl->ctrl.device,
1084                         "failed to send request %d\n", ret);
1085                 if (ret != -EPIPE && ret != -ECONNRESET)
1086                         nvme_tcp_fail_request(queue->request);
1087                 nvme_tcp_done_send_req(queue);
1088         }
1089         return ret;
1090 }
1091
1092 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1093 {
1094         struct socket *sock = queue->sock;
1095         struct sock *sk = sock->sk;
1096         read_descriptor_t rd_desc;
1097         int consumed;
1098
1099         rd_desc.arg.data = queue;
1100         rd_desc.count = 1;
1101         lock_sock(sk);
1102         queue->nr_cqe = 0;
1103         consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1104         release_sock(sk);
1105         return consumed;
1106 }
1107
1108 static void nvme_tcp_io_work(struct work_struct *w)
1109 {
1110         struct nvme_tcp_queue *queue =
1111                 container_of(w, struct nvme_tcp_queue, io_work);
1112         unsigned long deadline = jiffies + msecs_to_jiffies(1);
1113
1114         do {
1115                 bool pending = false;
1116                 int result;
1117
1118                 if (mutex_trylock(&queue->send_mutex)) {
1119                         result = nvme_tcp_try_send(queue);
1120                         mutex_unlock(&queue->send_mutex);
1121                         if (result > 0)
1122                                 pending = true;
1123                         else if (unlikely(result < 0))
1124                                 break;
1125                 }
1126
1127                 result = nvme_tcp_try_recv(queue);
1128                 if (result > 0)
1129                         pending = true;
1130                 else if (unlikely(result < 0))
1131                         return;
1132
1133                 if (!pending)
1134                         return;
1135
1136         } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1137
1138         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1139 }
1140
1141 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1142 {
1143         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1144
1145         ahash_request_free(queue->rcv_hash);
1146         ahash_request_free(queue->snd_hash);
1147         crypto_free_ahash(tfm);
1148 }
1149
1150 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1151 {
1152         struct crypto_ahash *tfm;
1153
1154         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1155         if (IS_ERR(tfm))
1156                 return PTR_ERR(tfm);
1157
1158         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1159         if (!queue->snd_hash)
1160                 goto free_tfm;
1161         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1162
1163         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1164         if (!queue->rcv_hash)
1165                 goto free_snd_hash;
1166         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1167
1168         return 0;
1169 free_snd_hash:
1170         ahash_request_free(queue->snd_hash);
1171 free_tfm:
1172         crypto_free_ahash(tfm);
1173         return -ENOMEM;
1174 }
1175
1176 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1177 {
1178         struct nvme_tcp_request *async = &ctrl->async_req;
1179
1180         page_frag_free(async->pdu);
1181 }
1182
1183 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1184 {
1185         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1186         struct nvme_tcp_request *async = &ctrl->async_req;
1187         u8 hdgst = nvme_tcp_hdgst_len(queue);
1188
1189         async->pdu = page_frag_alloc(&queue->pf_cache,
1190                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1191                 GFP_KERNEL | __GFP_ZERO);
1192         if (!async->pdu)
1193                 return -ENOMEM;
1194
1195         async->queue = &ctrl->queues[0];
1196         return 0;
1197 }
1198
1199 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1200 {
1201         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1202         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1203
1204         if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1205                 return;
1206
1207         if (queue->hdr_digest || queue->data_digest)
1208                 nvme_tcp_free_crypto(queue);
1209
1210         sock_release(queue->sock);
1211         kfree(queue->pdu);
1212 }
1213
1214 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1215 {
1216         struct nvme_tcp_icreq_pdu *icreq;
1217         struct nvme_tcp_icresp_pdu *icresp;
1218         struct msghdr msg = {};
1219         struct kvec iov;
1220         bool ctrl_hdgst, ctrl_ddgst;
1221         int ret;
1222
1223         icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1224         if (!icreq)
1225                 return -ENOMEM;
1226
1227         icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1228         if (!icresp) {
1229                 ret = -ENOMEM;
1230                 goto free_icreq;
1231         }
1232
1233         icreq->hdr.type = nvme_tcp_icreq;
1234         icreq->hdr.hlen = sizeof(*icreq);
1235         icreq->hdr.pdo = 0;
1236         icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1237         icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1238         icreq->maxr2t = 0; /* single inflight r2t supported */
1239         icreq->hpda = 0; /* no alignment constraint */
1240         if (queue->hdr_digest)
1241                 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1242         if (queue->data_digest)
1243                 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1244
1245         iov.iov_base = icreq;
1246         iov.iov_len = sizeof(*icreq);
1247         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1248         if (ret < 0)
1249                 goto free_icresp;
1250
1251         memset(&msg, 0, sizeof(msg));
1252         iov.iov_base = icresp;
1253         iov.iov_len = sizeof(*icresp);
1254         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1255                         iov.iov_len, msg.msg_flags);
1256         if (ret < 0)
1257                 goto free_icresp;
1258
1259         ret = -EINVAL;
1260         if (icresp->hdr.type != nvme_tcp_icresp) {
1261                 pr_err("queue %d: bad type returned %d\n",
1262                         nvme_tcp_queue_id(queue), icresp->hdr.type);
1263                 goto free_icresp;
1264         }
1265
1266         if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1267                 pr_err("queue %d: bad pdu length returned %d\n",
1268                         nvme_tcp_queue_id(queue), icresp->hdr.plen);
1269                 goto free_icresp;
1270         }
1271
1272         if (icresp->pfv != NVME_TCP_PFV_1_0) {
1273                 pr_err("queue %d: bad pfv returned %d\n",
1274                         nvme_tcp_queue_id(queue), icresp->pfv);
1275                 goto free_icresp;
1276         }
1277
1278         ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1279         if ((queue->data_digest && !ctrl_ddgst) ||
1280             (!queue->data_digest && ctrl_ddgst)) {
1281                 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1282                         nvme_tcp_queue_id(queue),
1283                         queue->data_digest ? "enabled" : "disabled",
1284                         ctrl_ddgst ? "enabled" : "disabled");
1285                 goto free_icresp;
1286         }
1287
1288         ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1289         if ((queue->hdr_digest && !ctrl_hdgst) ||
1290             (!queue->hdr_digest && ctrl_hdgst)) {
1291                 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1292                         nvme_tcp_queue_id(queue),
1293                         queue->hdr_digest ? "enabled" : "disabled",
1294                         ctrl_hdgst ? "enabled" : "disabled");
1295                 goto free_icresp;
1296         }
1297
1298         if (icresp->cpda != 0) {
1299                 pr_err("queue %d: unsupported cpda returned %d\n",
1300                         nvme_tcp_queue_id(queue), icresp->cpda);
1301                 goto free_icresp;
1302         }
1303
1304         ret = 0;
1305 free_icresp:
1306         kfree(icresp);
1307 free_icreq:
1308         kfree(icreq);
1309         return ret;
1310 }
1311
1312 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1313 {
1314         return nvme_tcp_queue_id(queue) == 0;
1315 }
1316
1317 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1318 {
1319         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1320         int qid = nvme_tcp_queue_id(queue);
1321
1322         return !nvme_tcp_admin_queue(queue) &&
1323                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1324 }
1325
1326 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1327 {
1328         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1329         int qid = nvme_tcp_queue_id(queue);
1330
1331         return !nvme_tcp_admin_queue(queue) &&
1332                 !nvme_tcp_default_queue(queue) &&
1333                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1334                           ctrl->io_queues[HCTX_TYPE_READ];
1335 }
1336
1337 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1338 {
1339         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1340         int qid = nvme_tcp_queue_id(queue);
1341
1342         return !nvme_tcp_admin_queue(queue) &&
1343                 !nvme_tcp_default_queue(queue) &&
1344                 !nvme_tcp_read_queue(queue) &&
1345                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1346                           ctrl->io_queues[HCTX_TYPE_READ] +
1347                           ctrl->io_queues[HCTX_TYPE_POLL];
1348 }
1349
1350 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1351 {
1352         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1353         int qid = nvme_tcp_queue_id(queue);
1354         int n = 0;
1355
1356         if (nvme_tcp_default_queue(queue))
1357                 n = qid - 1;
1358         else if (nvme_tcp_read_queue(queue))
1359                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1360         else if (nvme_tcp_poll_queue(queue))
1361                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1362                                 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1363         queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1364 }
1365
1366 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1367                 int qid, size_t queue_size)
1368 {
1369         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1370         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1371         int ret, rcv_pdu_size;
1372
1373         queue->ctrl = ctrl;
1374         init_llist_head(&queue->req_list);
1375         INIT_LIST_HEAD(&queue->send_list);
1376         mutex_init(&queue->send_mutex);
1377         INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1378         queue->queue_size = queue_size;
1379
1380         if (qid > 0)
1381                 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1382         else
1383                 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1384                                                 NVME_TCP_ADMIN_CCSZ;
1385
1386         ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1387                         IPPROTO_TCP, &queue->sock);
1388         if (ret) {
1389                 dev_err(nctrl->device,
1390                         "failed to create socket: %d\n", ret);
1391                 return ret;
1392         }
1393
1394         /* Single syn retry */
1395         tcp_sock_set_syncnt(queue->sock->sk, 1);
1396
1397         /* Set TCP no delay */
1398         tcp_sock_set_nodelay(queue->sock->sk);
1399
1400         /*
1401          * Cleanup whatever is sitting in the TCP transmit queue on socket
1402          * close. This is done to prevent stale data from being sent should
1403          * the network connection be restored before TCP times out.
1404          */
1405         sock_no_linger(queue->sock->sk);
1406
1407         if (so_priority > 0)
1408                 sock_set_priority(queue->sock->sk, so_priority);
1409
1410         /* Set socket type of service */
1411         if (nctrl->opts->tos >= 0)
1412                 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1413
1414         /* Set 10 seconds timeout for icresp recvmsg */
1415         queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1416
1417         queue->sock->sk->sk_allocation = GFP_ATOMIC;
1418         nvme_tcp_set_queue_io_cpu(queue);
1419         queue->request = NULL;
1420         queue->data_remaining = 0;
1421         queue->ddgst_remaining = 0;
1422         queue->pdu_remaining = 0;
1423         queue->pdu_offset = 0;
1424         sk_set_memalloc(queue->sock->sk);
1425
1426         if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1427                 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1428                         sizeof(ctrl->src_addr));
1429                 if (ret) {
1430                         dev_err(nctrl->device,
1431                                 "failed to bind queue %d socket %d\n",
1432                                 qid, ret);
1433                         goto err_sock;
1434                 }
1435         }
1436
1437         queue->hdr_digest = nctrl->opts->hdr_digest;
1438         queue->data_digest = nctrl->opts->data_digest;
1439         if (queue->hdr_digest || queue->data_digest) {
1440                 ret = nvme_tcp_alloc_crypto(queue);
1441                 if (ret) {
1442                         dev_err(nctrl->device,
1443                                 "failed to allocate queue %d crypto\n", qid);
1444                         goto err_sock;
1445                 }
1446         }
1447
1448         rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1449                         nvme_tcp_hdgst_len(queue);
1450         queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1451         if (!queue->pdu) {
1452                 ret = -ENOMEM;
1453                 goto err_crypto;
1454         }
1455
1456         dev_dbg(nctrl->device, "connecting queue %d\n",
1457                         nvme_tcp_queue_id(queue));
1458
1459         ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1460                 sizeof(ctrl->addr), 0);
1461         if (ret) {
1462                 dev_err(nctrl->device,
1463                         "failed to connect socket: %d\n", ret);
1464                 goto err_rcv_pdu;
1465         }
1466
1467         ret = nvme_tcp_init_connection(queue);
1468         if (ret)
1469                 goto err_init_connect;
1470
1471         queue->rd_enabled = true;
1472         set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1473         nvme_tcp_init_recv_ctx(queue);
1474
1475         write_lock_bh(&queue->sock->sk->sk_callback_lock);
1476         queue->sock->sk->sk_user_data = queue;
1477         queue->state_change = queue->sock->sk->sk_state_change;
1478         queue->data_ready = queue->sock->sk->sk_data_ready;
1479         queue->write_space = queue->sock->sk->sk_write_space;
1480         queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1481         queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1482         queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1483 #ifdef CONFIG_NET_RX_BUSY_POLL
1484         queue->sock->sk->sk_ll_usec = 1;
1485 #endif
1486         write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1487
1488         return 0;
1489
1490 err_init_connect:
1491         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1492 err_rcv_pdu:
1493         kfree(queue->pdu);
1494 err_crypto:
1495         if (queue->hdr_digest || queue->data_digest)
1496                 nvme_tcp_free_crypto(queue);
1497 err_sock:
1498         sock_release(queue->sock);
1499         queue->sock = NULL;
1500         return ret;
1501 }
1502
1503 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1504 {
1505         struct socket *sock = queue->sock;
1506
1507         write_lock_bh(&sock->sk->sk_callback_lock);
1508         sock->sk->sk_user_data  = NULL;
1509         sock->sk->sk_data_ready = queue->data_ready;
1510         sock->sk->sk_state_change = queue->state_change;
1511         sock->sk->sk_write_space  = queue->write_space;
1512         write_unlock_bh(&sock->sk->sk_callback_lock);
1513 }
1514
1515 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1516 {
1517         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1518         nvme_tcp_restore_sock_calls(queue);
1519         cancel_work_sync(&queue->io_work);
1520 }
1521
1522 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1523 {
1524         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1525         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1526
1527         if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1528                 return;
1529         __nvme_tcp_stop_queue(queue);
1530 }
1531
1532 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1533 {
1534         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1535         int ret;
1536
1537         if (idx)
1538                 ret = nvmf_connect_io_queue(nctrl, idx, false);
1539         else
1540                 ret = nvmf_connect_admin_queue(nctrl);
1541
1542         if (!ret) {
1543                 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1544         } else {
1545                 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1546                         __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1547                 dev_err(nctrl->device,
1548                         "failed to connect queue: %d ret=%d\n", idx, ret);
1549         }
1550         return ret;
1551 }
1552
1553 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1554                 bool admin)
1555 {
1556         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1557         struct blk_mq_tag_set *set;
1558         int ret;
1559
1560         if (admin) {
1561                 set = &ctrl->admin_tag_set;
1562                 memset(set, 0, sizeof(*set));
1563                 set->ops = &nvme_tcp_admin_mq_ops;
1564                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1565                 set->reserved_tags = 2; /* connect + keep-alive */
1566                 set->numa_node = nctrl->numa_node;
1567                 set->flags = BLK_MQ_F_BLOCKING;
1568                 set->cmd_size = sizeof(struct nvme_tcp_request);
1569                 set->driver_data = ctrl;
1570                 set->nr_hw_queues = 1;
1571                 set->timeout = NVME_ADMIN_TIMEOUT;
1572         } else {
1573                 set = &ctrl->tag_set;
1574                 memset(set, 0, sizeof(*set));
1575                 set->ops = &nvme_tcp_mq_ops;
1576                 set->queue_depth = nctrl->sqsize + 1;
1577                 set->reserved_tags = 1; /* fabric connect */
1578                 set->numa_node = nctrl->numa_node;
1579                 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1580                 set->cmd_size = sizeof(struct nvme_tcp_request);
1581                 set->driver_data = ctrl;
1582                 set->nr_hw_queues = nctrl->queue_count - 1;
1583                 set->timeout = NVME_IO_TIMEOUT;
1584                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1585         }
1586
1587         ret = blk_mq_alloc_tag_set(set);
1588         if (ret)
1589                 return ERR_PTR(ret);
1590
1591         return set;
1592 }
1593
1594 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1595 {
1596         if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1597                 cancel_work_sync(&ctrl->async_event_work);
1598                 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1599                 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1600         }
1601
1602         nvme_tcp_free_queue(ctrl, 0);
1603 }
1604
1605 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1606 {
1607         int i;
1608
1609         for (i = 1; i < ctrl->queue_count; i++)
1610                 nvme_tcp_free_queue(ctrl, i);
1611 }
1612
1613 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1614 {
1615         int i;
1616
1617         for (i = 1; i < ctrl->queue_count; i++)
1618                 nvme_tcp_stop_queue(ctrl, i);
1619 }
1620
1621 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1622 {
1623         int i, ret = 0;
1624
1625         for (i = 1; i < ctrl->queue_count; i++) {
1626                 ret = nvme_tcp_start_queue(ctrl, i);
1627                 if (ret)
1628                         goto out_stop_queues;
1629         }
1630
1631         return 0;
1632
1633 out_stop_queues:
1634         for (i--; i >= 1; i--)
1635                 nvme_tcp_stop_queue(ctrl, i);
1636         return ret;
1637 }
1638
1639 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1640 {
1641         int ret;
1642
1643         ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1644         if (ret)
1645                 return ret;
1646
1647         ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1648         if (ret)
1649                 goto out_free_queue;
1650
1651         return 0;
1652
1653 out_free_queue:
1654         nvme_tcp_free_queue(ctrl, 0);
1655         return ret;
1656 }
1657
1658 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1659 {
1660         int i, ret;
1661
1662         for (i = 1; i < ctrl->queue_count; i++) {
1663                 ret = nvme_tcp_alloc_queue(ctrl, i,
1664                                 ctrl->sqsize + 1);
1665                 if (ret)
1666                         goto out_free_queues;
1667         }
1668
1669         return 0;
1670
1671 out_free_queues:
1672         for (i--; i >= 1; i--)
1673                 nvme_tcp_free_queue(ctrl, i);
1674
1675         return ret;
1676 }
1677
1678 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1679 {
1680         unsigned int nr_io_queues;
1681
1682         nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1683         nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1684         nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1685
1686         return nr_io_queues;
1687 }
1688
1689 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1690                 unsigned int nr_io_queues)
1691 {
1692         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1693         struct nvmf_ctrl_options *opts = nctrl->opts;
1694
1695         if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1696                 /*
1697                  * separate read/write queues
1698                  * hand out dedicated default queues only after we have
1699                  * sufficient read queues.
1700                  */
1701                 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1702                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1703                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1704                         min(opts->nr_write_queues, nr_io_queues);
1705                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1706         } else {
1707                 /*
1708                  * shared read/write queues
1709                  * either no write queues were requested, or we don't have
1710                  * sufficient queue count to have dedicated default queues.
1711                  */
1712                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1713                         min(opts->nr_io_queues, nr_io_queues);
1714                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1715         }
1716
1717         if (opts->nr_poll_queues && nr_io_queues) {
1718                 /* map dedicated poll queues only if we have queues left */
1719                 ctrl->io_queues[HCTX_TYPE_POLL] =
1720                         min(opts->nr_poll_queues, nr_io_queues);
1721         }
1722 }
1723
1724 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1725 {
1726         unsigned int nr_io_queues;
1727         int ret;
1728
1729         nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1730         ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1731         if (ret)
1732                 return ret;
1733
1734         ctrl->queue_count = nr_io_queues + 1;
1735         if (ctrl->queue_count < 2)
1736                 return 0;
1737
1738         dev_info(ctrl->device,
1739                 "creating %d I/O queues.\n", nr_io_queues);
1740
1741         nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1742
1743         return __nvme_tcp_alloc_io_queues(ctrl);
1744 }
1745
1746 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1747 {
1748         nvme_tcp_stop_io_queues(ctrl);
1749         if (remove) {
1750                 blk_cleanup_queue(ctrl->connect_q);
1751                 blk_mq_free_tag_set(ctrl->tagset);
1752         }
1753         nvme_tcp_free_io_queues(ctrl);
1754 }
1755
1756 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1757 {
1758         int ret;
1759
1760         ret = nvme_tcp_alloc_io_queues(ctrl);
1761         if (ret)
1762                 return ret;
1763
1764         if (new) {
1765                 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1766                 if (IS_ERR(ctrl->tagset)) {
1767                         ret = PTR_ERR(ctrl->tagset);
1768                         goto out_free_io_queues;
1769                 }
1770
1771                 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1772                 if (IS_ERR(ctrl->connect_q)) {
1773                         ret = PTR_ERR(ctrl->connect_q);
1774                         goto out_free_tag_set;
1775                 }
1776         }
1777
1778         ret = nvme_tcp_start_io_queues(ctrl);
1779         if (ret)
1780                 goto out_cleanup_connect_q;
1781
1782         if (!new) {
1783                 nvme_start_queues(ctrl);
1784                 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1785                         /*
1786                          * If we timed out waiting for freeze we are likely to
1787                          * be stuck.  Fail the controller initialization just
1788                          * to be safe.
1789                          */
1790                         ret = -ENODEV;
1791                         goto out_wait_freeze_timed_out;
1792                 }
1793                 blk_mq_update_nr_hw_queues(ctrl->tagset,
1794                         ctrl->queue_count - 1);
1795                 nvme_unfreeze(ctrl);
1796         }
1797
1798         return 0;
1799
1800 out_wait_freeze_timed_out:
1801         nvme_stop_queues(ctrl);
1802         nvme_tcp_stop_io_queues(ctrl);
1803 out_cleanup_connect_q:
1804         if (new)
1805                 blk_cleanup_queue(ctrl->connect_q);
1806 out_free_tag_set:
1807         if (new)
1808                 blk_mq_free_tag_set(ctrl->tagset);
1809 out_free_io_queues:
1810         nvme_tcp_free_io_queues(ctrl);
1811         return ret;
1812 }
1813
1814 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1815 {
1816         nvme_tcp_stop_queue(ctrl, 0);
1817         if (remove) {
1818                 blk_cleanup_queue(ctrl->admin_q);
1819                 blk_cleanup_queue(ctrl->fabrics_q);
1820                 blk_mq_free_tag_set(ctrl->admin_tagset);
1821         }
1822         nvme_tcp_free_admin_queue(ctrl);
1823 }
1824
1825 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1826 {
1827         int error;
1828
1829         error = nvme_tcp_alloc_admin_queue(ctrl);
1830         if (error)
1831                 return error;
1832
1833         if (new) {
1834                 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1835                 if (IS_ERR(ctrl->admin_tagset)) {
1836                         error = PTR_ERR(ctrl->admin_tagset);
1837                         goto out_free_queue;
1838                 }
1839
1840                 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1841                 if (IS_ERR(ctrl->fabrics_q)) {
1842                         error = PTR_ERR(ctrl->fabrics_q);
1843                         goto out_free_tagset;
1844                 }
1845
1846                 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1847                 if (IS_ERR(ctrl->admin_q)) {
1848                         error = PTR_ERR(ctrl->admin_q);
1849                         goto out_cleanup_fabrics_q;
1850                 }
1851         }
1852
1853         error = nvme_tcp_start_queue(ctrl, 0);
1854         if (error)
1855                 goto out_cleanup_queue;
1856
1857         error = nvme_enable_ctrl(ctrl);
1858         if (error)
1859                 goto out_stop_queue;
1860
1861         blk_mq_unquiesce_queue(ctrl->admin_q);
1862
1863         error = nvme_init_identify(ctrl);
1864         if (error)
1865                 goto out_stop_queue;
1866
1867         return 0;
1868
1869 out_stop_queue:
1870         nvme_tcp_stop_queue(ctrl, 0);
1871 out_cleanup_queue:
1872         if (new)
1873                 blk_cleanup_queue(ctrl->admin_q);
1874 out_cleanup_fabrics_q:
1875         if (new)
1876                 blk_cleanup_queue(ctrl->fabrics_q);
1877 out_free_tagset:
1878         if (new)
1879                 blk_mq_free_tag_set(ctrl->admin_tagset);
1880 out_free_queue:
1881         nvme_tcp_free_admin_queue(ctrl);
1882         return error;
1883 }
1884
1885 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1886                 bool remove)
1887 {
1888         blk_mq_quiesce_queue(ctrl->admin_q);
1889         blk_sync_queue(ctrl->admin_q);
1890         nvme_tcp_stop_queue(ctrl, 0);
1891         if (ctrl->admin_tagset) {
1892                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1893                         nvme_cancel_request, ctrl);
1894                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1895         }
1896         if (remove)
1897                 blk_mq_unquiesce_queue(ctrl->admin_q);
1898         nvme_tcp_destroy_admin_queue(ctrl, remove);
1899 }
1900
1901 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1902                 bool remove)
1903 {
1904         if (ctrl->queue_count <= 1)
1905                 return;
1906         blk_mq_quiesce_queue(ctrl->admin_q);
1907         nvme_start_freeze(ctrl);
1908         nvme_stop_queues(ctrl);
1909         nvme_sync_io_queues(ctrl);
1910         nvme_tcp_stop_io_queues(ctrl);
1911         if (ctrl->tagset) {
1912                 blk_mq_tagset_busy_iter(ctrl->tagset,
1913                         nvme_cancel_request, ctrl);
1914                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
1915         }
1916         if (remove)
1917                 nvme_start_queues(ctrl);
1918         nvme_tcp_destroy_io_queues(ctrl, remove);
1919 }
1920
1921 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1922 {
1923         /* If we are resetting/deleting then do nothing */
1924         if (ctrl->state != NVME_CTRL_CONNECTING) {
1925                 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1926                         ctrl->state == NVME_CTRL_LIVE);
1927                 return;
1928         }
1929
1930         if (nvmf_should_reconnect(ctrl)) {
1931                 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1932                         ctrl->opts->reconnect_delay);
1933                 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1934                                 ctrl->opts->reconnect_delay * HZ);
1935         } else {
1936                 dev_info(ctrl->device, "Removing controller...\n");
1937                 nvme_delete_ctrl(ctrl);
1938         }
1939 }
1940
1941 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1942 {
1943         struct nvmf_ctrl_options *opts = ctrl->opts;
1944         int ret;
1945
1946         ret = nvme_tcp_configure_admin_queue(ctrl, new);
1947         if (ret)
1948                 return ret;
1949
1950         if (ctrl->icdoff) {
1951                 dev_err(ctrl->device, "icdoff is not supported!\n");
1952                 goto destroy_admin;
1953         }
1954
1955         if (opts->queue_size > ctrl->sqsize + 1)
1956                 dev_warn(ctrl->device,
1957                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1958                         opts->queue_size, ctrl->sqsize + 1);
1959
1960         if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1961                 dev_warn(ctrl->device,
1962                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1963                         ctrl->sqsize + 1, ctrl->maxcmd);
1964                 ctrl->sqsize = ctrl->maxcmd - 1;
1965         }
1966
1967         if (ctrl->queue_count > 1) {
1968                 ret = nvme_tcp_configure_io_queues(ctrl, new);
1969                 if (ret)
1970                         goto destroy_admin;
1971         }
1972
1973         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1974                 /*
1975                  * state change failure is ok if we started ctrl delete,
1976                  * unless we're during creation of a new controller to
1977                  * avoid races with teardown flow.
1978                  */
1979                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
1980                              ctrl->state != NVME_CTRL_DELETING_NOIO);
1981                 WARN_ON_ONCE(new);
1982                 ret = -EINVAL;
1983                 goto destroy_io;
1984         }
1985
1986         nvme_start_ctrl(ctrl);
1987         return 0;
1988
1989 destroy_io:
1990         if (ctrl->queue_count > 1)
1991                 nvme_tcp_destroy_io_queues(ctrl, new);
1992 destroy_admin:
1993         nvme_tcp_stop_queue(ctrl, 0);
1994         nvme_tcp_destroy_admin_queue(ctrl, new);
1995         return ret;
1996 }
1997
1998 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1999 {
2000         struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2001                         struct nvme_tcp_ctrl, connect_work);
2002         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2003
2004         ++ctrl->nr_reconnects;
2005
2006         if (nvme_tcp_setup_ctrl(ctrl, false))
2007                 goto requeue;
2008
2009         dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2010                         ctrl->nr_reconnects);
2011
2012         ctrl->nr_reconnects = 0;
2013
2014         return;
2015
2016 requeue:
2017         dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2018                         ctrl->nr_reconnects);
2019         nvme_tcp_reconnect_or_remove(ctrl);
2020 }
2021
2022 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2023 {
2024         struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2025                                 struct nvme_tcp_ctrl, err_work);
2026         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2027
2028         nvme_stop_keep_alive(ctrl);
2029         nvme_tcp_teardown_io_queues(ctrl, false);
2030         /* unquiesce to fail fast pending requests */
2031         nvme_start_queues(ctrl);
2032         nvme_tcp_teardown_admin_queue(ctrl, false);
2033         blk_mq_unquiesce_queue(ctrl->admin_q);
2034
2035         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2036                 /* state change failure is ok if we started ctrl delete */
2037                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2038                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2039                 return;
2040         }
2041
2042         nvme_tcp_reconnect_or_remove(ctrl);
2043 }
2044
2045 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2046 {
2047         cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2048         cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2049
2050         nvme_tcp_teardown_io_queues(ctrl, shutdown);
2051         blk_mq_quiesce_queue(ctrl->admin_q);
2052         if (shutdown)
2053                 nvme_shutdown_ctrl(ctrl);
2054         else
2055                 nvme_disable_ctrl(ctrl);
2056         nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2057 }
2058
2059 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2060 {
2061         nvme_tcp_teardown_ctrl(ctrl, true);
2062 }
2063
2064 static void nvme_reset_ctrl_work(struct work_struct *work)
2065 {
2066         struct nvme_ctrl *ctrl =
2067                 container_of(work, struct nvme_ctrl, reset_work);
2068
2069         nvme_stop_ctrl(ctrl);
2070         nvme_tcp_teardown_ctrl(ctrl, false);
2071
2072         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2073                 /* state change failure is ok if we started ctrl delete */
2074                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2075                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2076                 return;
2077         }
2078
2079         if (nvme_tcp_setup_ctrl(ctrl, false))
2080                 goto out_fail;
2081
2082         return;
2083
2084 out_fail:
2085         ++ctrl->nr_reconnects;
2086         nvme_tcp_reconnect_or_remove(ctrl);
2087 }
2088
2089 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2090 {
2091         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2092
2093         if (list_empty(&ctrl->list))
2094                 goto free_ctrl;
2095
2096         mutex_lock(&nvme_tcp_ctrl_mutex);
2097         list_del(&ctrl->list);
2098         mutex_unlock(&nvme_tcp_ctrl_mutex);
2099
2100         nvmf_free_options(nctrl->opts);
2101 free_ctrl:
2102         kfree(ctrl->queues);
2103         kfree(ctrl);
2104 }
2105
2106 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2107 {
2108         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2109
2110         sg->addr = 0;
2111         sg->length = 0;
2112         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2113                         NVME_SGL_FMT_TRANSPORT_A;
2114 }
2115
2116 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2117                 struct nvme_command *c, u32 data_len)
2118 {
2119         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2120
2121         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2122         sg->length = cpu_to_le32(data_len);
2123         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2124 }
2125
2126 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2127                 u32 data_len)
2128 {
2129         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2130
2131         sg->addr = 0;
2132         sg->length = cpu_to_le32(data_len);
2133         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2134                         NVME_SGL_FMT_TRANSPORT_A;
2135 }
2136
2137 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2138 {
2139         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2140         struct nvme_tcp_queue *queue = &ctrl->queues[0];
2141         struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2142         struct nvme_command *cmd = &pdu->cmd;
2143         u8 hdgst = nvme_tcp_hdgst_len(queue);
2144
2145         memset(pdu, 0, sizeof(*pdu));
2146         pdu->hdr.type = nvme_tcp_cmd;
2147         if (queue->hdr_digest)
2148                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2149         pdu->hdr.hlen = sizeof(*pdu);
2150         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2151
2152         cmd->common.opcode = nvme_admin_async_event;
2153         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2154         cmd->common.flags |= NVME_CMD_SGL_METABUF;
2155         nvme_tcp_set_sg_null(cmd);
2156
2157         ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2158         ctrl->async_req.offset = 0;
2159         ctrl->async_req.curr_bio = NULL;
2160         ctrl->async_req.data_len = 0;
2161
2162         nvme_tcp_queue_request(&ctrl->async_req, true, true);
2163 }
2164
2165 static void nvme_tcp_complete_timed_out(struct request *rq)
2166 {
2167         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2168         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2169
2170         nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2171         if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2172                 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2173                 blk_mq_complete_request(rq);
2174         }
2175 }
2176
2177 static enum blk_eh_timer_return
2178 nvme_tcp_timeout(struct request *rq, bool reserved)
2179 {
2180         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2181         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2182         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2183
2184         dev_warn(ctrl->device,
2185                 "queue %d: timeout request %#x type %d\n",
2186                 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2187
2188         if (ctrl->state != NVME_CTRL_LIVE) {
2189                 /*
2190                  * If we are resetting, connecting or deleting we should
2191                  * complete immediately because we may block controller
2192                  * teardown or setup sequence
2193                  * - ctrl disable/shutdown fabrics requests
2194                  * - connect requests
2195                  * - initialization admin requests
2196                  * - I/O requests that entered after unquiescing and
2197                  *   the controller stopped responding
2198                  *
2199                  * All other requests should be cancelled by the error
2200                  * recovery work, so it's fine that we fail it here.
2201                  */
2202                 nvme_tcp_complete_timed_out(rq);
2203                 return BLK_EH_DONE;
2204         }
2205
2206         /*
2207          * LIVE state should trigger the normal error recovery which will
2208          * handle completing this request.
2209          */
2210         nvme_tcp_error_recovery(ctrl);
2211         return BLK_EH_RESET_TIMER;
2212 }
2213
2214 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2215                         struct request *rq)
2216 {
2217         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2218         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2219         struct nvme_command *c = &pdu->cmd;
2220
2221         c->common.flags |= NVME_CMD_SGL_METABUF;
2222
2223         if (!blk_rq_nr_phys_segments(rq))
2224                 nvme_tcp_set_sg_null(c);
2225         else if (rq_data_dir(rq) == WRITE &&
2226             req->data_len <= nvme_tcp_inline_data_size(queue))
2227                 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2228         else
2229                 nvme_tcp_set_sg_host_data(c, req->data_len);
2230
2231         return 0;
2232 }
2233
2234 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2235                 struct request *rq)
2236 {
2237         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2238         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2239         struct nvme_tcp_queue *queue = req->queue;
2240         u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2241         blk_status_t ret;
2242
2243         ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2244         if (ret)
2245                 return ret;
2246
2247         req->state = NVME_TCP_SEND_CMD_PDU;
2248         req->offset = 0;
2249         req->data_sent = 0;
2250         req->pdu_len = 0;
2251         req->pdu_sent = 0;
2252         req->data_len = blk_rq_nr_phys_segments(rq) ?
2253                                 blk_rq_payload_bytes(rq) : 0;
2254         req->curr_bio = rq->bio;
2255
2256         if (rq_data_dir(rq) == WRITE &&
2257             req->data_len <= nvme_tcp_inline_data_size(queue))
2258                 req->pdu_len = req->data_len;
2259         else if (req->curr_bio)
2260                 nvme_tcp_init_iter(req, READ);
2261
2262         pdu->hdr.type = nvme_tcp_cmd;
2263         pdu->hdr.flags = 0;
2264         if (queue->hdr_digest)
2265                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2266         if (queue->data_digest && req->pdu_len) {
2267                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2268                 ddgst = nvme_tcp_ddgst_len(queue);
2269         }
2270         pdu->hdr.hlen = sizeof(*pdu);
2271         pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2272         pdu->hdr.plen =
2273                 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2274
2275         ret = nvme_tcp_map_data(queue, rq);
2276         if (unlikely(ret)) {
2277                 nvme_cleanup_cmd(rq);
2278                 dev_err(queue->ctrl->ctrl.device,
2279                         "Failed to map data (%d)\n", ret);
2280                 return ret;
2281         }
2282
2283         return 0;
2284 }
2285
2286 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2287 {
2288         struct nvme_tcp_queue *queue = hctx->driver_data;
2289
2290         if (!llist_empty(&queue->req_list))
2291                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2292 }
2293
2294 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2295                 const struct blk_mq_queue_data *bd)
2296 {
2297         struct nvme_ns *ns = hctx->queue->queuedata;
2298         struct nvme_tcp_queue *queue = hctx->driver_data;
2299         struct request *rq = bd->rq;
2300         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2301         bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2302         blk_status_t ret;
2303
2304         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2305                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2306
2307         ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2308         if (unlikely(ret))
2309                 return ret;
2310
2311         blk_mq_start_request(rq);
2312
2313         nvme_tcp_queue_request(req, true, bd->last);
2314
2315         return BLK_STS_OK;
2316 }
2317
2318 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2319 {
2320         struct nvme_tcp_ctrl *ctrl = set->driver_data;
2321         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2322
2323         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2324                 /* separate read/write queues */
2325                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2326                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2327                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2328                 set->map[HCTX_TYPE_READ].nr_queues =
2329                         ctrl->io_queues[HCTX_TYPE_READ];
2330                 set->map[HCTX_TYPE_READ].queue_offset =
2331                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2332         } else {
2333                 /* shared read/write queues */
2334                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2335                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2336                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2337                 set->map[HCTX_TYPE_READ].nr_queues =
2338                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2339                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2340         }
2341         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2342         blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2343
2344         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2345                 /* map dedicated poll queues only if we have queues left */
2346                 set->map[HCTX_TYPE_POLL].nr_queues =
2347                                 ctrl->io_queues[HCTX_TYPE_POLL];
2348                 set->map[HCTX_TYPE_POLL].queue_offset =
2349                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2350                         ctrl->io_queues[HCTX_TYPE_READ];
2351                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2352         }
2353
2354         dev_info(ctrl->ctrl.device,
2355                 "mapped %d/%d/%d default/read/poll queues.\n",
2356                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2357                 ctrl->io_queues[HCTX_TYPE_READ],
2358                 ctrl->io_queues[HCTX_TYPE_POLL]);
2359
2360         return 0;
2361 }
2362
2363 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2364 {
2365         struct nvme_tcp_queue *queue = hctx->driver_data;
2366         struct sock *sk = queue->sock->sk;
2367
2368         if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2369                 return 0;
2370
2371         set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2372         if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2373                 sk_busy_loop(sk, true);
2374         nvme_tcp_try_recv(queue);
2375         clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2376         return queue->nr_cqe;
2377 }
2378
2379 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2380         .queue_rq       = nvme_tcp_queue_rq,
2381         .commit_rqs     = nvme_tcp_commit_rqs,
2382         .complete       = nvme_complete_rq,
2383         .init_request   = nvme_tcp_init_request,
2384         .exit_request   = nvme_tcp_exit_request,
2385         .init_hctx      = nvme_tcp_init_hctx,
2386         .timeout        = nvme_tcp_timeout,
2387         .map_queues     = nvme_tcp_map_queues,
2388         .poll           = nvme_tcp_poll,
2389 };
2390
2391 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2392         .queue_rq       = nvme_tcp_queue_rq,
2393         .complete       = nvme_complete_rq,
2394         .init_request   = nvme_tcp_init_request,
2395         .exit_request   = nvme_tcp_exit_request,
2396         .init_hctx      = nvme_tcp_init_admin_hctx,
2397         .timeout        = nvme_tcp_timeout,
2398 };
2399
2400 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2401         .name                   = "tcp",
2402         .module                 = THIS_MODULE,
2403         .flags                  = NVME_F_FABRICS,
2404         .reg_read32             = nvmf_reg_read32,
2405         .reg_read64             = nvmf_reg_read64,
2406         .reg_write32            = nvmf_reg_write32,
2407         .free_ctrl              = nvme_tcp_free_ctrl,
2408         .submit_async_event     = nvme_tcp_submit_async_event,
2409         .delete_ctrl            = nvme_tcp_delete_ctrl,
2410         .get_address            = nvmf_get_address,
2411 };
2412
2413 static bool
2414 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2415 {
2416         struct nvme_tcp_ctrl *ctrl;
2417         bool found = false;
2418
2419         mutex_lock(&nvme_tcp_ctrl_mutex);
2420         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2421                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2422                 if (found)
2423                         break;
2424         }
2425         mutex_unlock(&nvme_tcp_ctrl_mutex);
2426
2427         return found;
2428 }
2429
2430 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2431                 struct nvmf_ctrl_options *opts)
2432 {
2433         struct nvme_tcp_ctrl *ctrl;
2434         int ret;
2435
2436         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2437         if (!ctrl)
2438                 return ERR_PTR(-ENOMEM);
2439
2440         INIT_LIST_HEAD(&ctrl->list);
2441         ctrl->ctrl.opts = opts;
2442         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2443                                 opts->nr_poll_queues + 1;
2444         ctrl->ctrl.sqsize = opts->queue_size - 1;
2445         ctrl->ctrl.kato = opts->kato;
2446
2447         INIT_DELAYED_WORK(&ctrl->connect_work,
2448                         nvme_tcp_reconnect_ctrl_work);
2449         INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2450         INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2451
2452         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2453                 opts->trsvcid =
2454                         kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2455                 if (!opts->trsvcid) {
2456                         ret = -ENOMEM;
2457                         goto out_free_ctrl;
2458                 }
2459                 opts->mask |= NVMF_OPT_TRSVCID;
2460         }
2461
2462         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2463                         opts->traddr, opts->trsvcid, &ctrl->addr);
2464         if (ret) {
2465                 pr_err("malformed address passed: %s:%s\n",
2466                         opts->traddr, opts->trsvcid);
2467                 goto out_free_ctrl;
2468         }
2469
2470         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2471                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2472                         opts->host_traddr, NULL, &ctrl->src_addr);
2473                 if (ret) {
2474                         pr_err("malformed src address passed: %s\n",
2475                                opts->host_traddr);
2476                         goto out_free_ctrl;
2477                 }
2478         }
2479
2480         if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2481                 ret = -EALREADY;
2482                 goto out_free_ctrl;
2483         }
2484
2485         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2486                                 GFP_KERNEL);
2487         if (!ctrl->queues) {
2488                 ret = -ENOMEM;
2489                 goto out_free_ctrl;
2490         }
2491
2492         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2493         if (ret)
2494                 goto out_kfree_queues;
2495
2496         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2497                 WARN_ON_ONCE(1);
2498                 ret = -EINTR;
2499                 goto out_uninit_ctrl;
2500         }
2501
2502         ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2503         if (ret)
2504                 goto out_uninit_ctrl;
2505
2506         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2507                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2508
2509         mutex_lock(&nvme_tcp_ctrl_mutex);
2510         list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2511         mutex_unlock(&nvme_tcp_ctrl_mutex);
2512
2513         return &ctrl->ctrl;
2514
2515 out_uninit_ctrl:
2516         nvme_uninit_ctrl(&ctrl->ctrl);
2517         nvme_put_ctrl(&ctrl->ctrl);
2518         if (ret > 0)
2519                 ret = -EIO;
2520         return ERR_PTR(ret);
2521 out_kfree_queues:
2522         kfree(ctrl->queues);
2523 out_free_ctrl:
2524         kfree(ctrl);
2525         return ERR_PTR(ret);
2526 }
2527
2528 static struct nvmf_transport_ops nvme_tcp_transport = {
2529         .name           = "tcp",
2530         .module         = THIS_MODULE,
2531         .required_opts  = NVMF_OPT_TRADDR,
2532         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2533                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2534                           NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2535                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2536                           NVMF_OPT_TOS,
2537         .create_ctrl    = nvme_tcp_create_ctrl,
2538 };
2539
2540 static int __init nvme_tcp_init_module(void)
2541 {
2542         nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2543                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2544         if (!nvme_tcp_wq)
2545                 return -ENOMEM;
2546
2547         nvmf_register_transport(&nvme_tcp_transport);
2548         return 0;
2549 }
2550
2551 static void __exit nvme_tcp_cleanup_module(void)
2552 {
2553         struct nvme_tcp_ctrl *ctrl;
2554
2555         nvmf_unregister_transport(&nvme_tcp_transport);
2556
2557         mutex_lock(&nvme_tcp_ctrl_mutex);
2558         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2559                 nvme_delete_ctrl(&ctrl->ctrl);
2560         mutex_unlock(&nvme_tcp_ctrl_mutex);
2561         flush_workqueue(nvme_delete_wq);
2562
2563         destroy_workqueue(nvme_tcp_wq);
2564 }
2565
2566 module_init(nvme_tcp_init_module);
2567 module_exit(nvme_tcp_cleanup_module);
2568
2569 MODULE_LICENSE("GPL v2");