Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
40
41 #define NVME_RDMA_MAX_SEGMENTS          256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
44
45 struct nvme_rdma_device {
46         struct ib_device        *dev;
47         struct ib_pd            *pd;
48         struct kref             ref;
49         struct list_head        entry;
50 };
51
52 struct nvme_rdma_qe {
53         struct ib_cqe           cqe;
54         void                    *data;
55         u64                     dma;
56 };
57
58 struct nvme_rdma_queue;
59 struct nvme_rdma_request {
60         struct nvme_request     req;
61         struct ib_mr            *mr;
62         struct nvme_rdma_qe     sqe;
63         union nvme_result       result;
64         __le16                  status;
65         refcount_t              ref;
66         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
67         u32                     num_sge;
68         int                     nents;
69         bool                    inline_data;
70         struct ib_reg_wr        reg_wr;
71         struct ib_cqe           reg_cqe;
72         struct nvme_rdma_queue  *queue;
73         struct sg_table         sg_table;
74         struct scatterlist      first_sgl[];
75 };
76
77 enum nvme_rdma_queue_flags {
78         NVME_RDMA_Q_ALLOCATED           = 0,
79         NVME_RDMA_Q_LIVE                = 1,
80         NVME_RDMA_Q_TR_READY            = 2,
81 };
82
83 struct nvme_rdma_queue {
84         struct nvme_rdma_qe     *rsp_ring;
85         int                     queue_size;
86         size_t                  cmnd_capsule_len;
87         struct nvme_rdma_ctrl   *ctrl;
88         struct nvme_rdma_device *device;
89         struct ib_cq            *ib_cq;
90         struct ib_qp            *qp;
91
92         unsigned long           flags;
93         struct rdma_cm_id       *cm_id;
94         int                     cm_error;
95         struct completion       cm_done;
96 };
97
98 struct nvme_rdma_ctrl {
99         /* read only in the hot path */
100         struct nvme_rdma_queue  *queues;
101
102         /* other member variables */
103         struct blk_mq_tag_set   tag_set;
104         struct work_struct      err_work;
105
106         struct nvme_rdma_qe     async_event_sqe;
107
108         struct delayed_work     reconnect_work;
109
110         struct list_head        list;
111
112         struct blk_mq_tag_set   admin_tag_set;
113         struct nvme_rdma_device *device;
114
115         u32                     max_fr_pages;
116
117         struct sockaddr_storage addr;
118         struct sockaddr_storage src_addr;
119
120         struct nvme_ctrl        ctrl;
121 };
122
123 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
124 {
125         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
126 }
127
128 static LIST_HEAD(device_list);
129 static DEFINE_MUTEX(device_list_mutex);
130
131 static LIST_HEAD(nvme_rdma_ctrl_list);
132 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
133
134 /*
135  * Disabling this option makes small I/O goes faster, but is fundamentally
136  * unsafe.  With it turned off we will have to register a global rkey that
137  * allows read and write access to all physical memory.
138  */
139 static bool register_always = true;
140 module_param(register_always, bool, 0444);
141 MODULE_PARM_DESC(register_always,
142          "Use memory registration even for contiguous memory regions");
143
144 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
145                 struct rdma_cm_event *event);
146 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
147
148 static const struct blk_mq_ops nvme_rdma_mq_ops;
149 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
150
151 /* XXX: really should move to a generic header sooner or later.. */
152 static inline void put_unaligned_le24(u32 val, u8 *p)
153 {
154         *p++ = val;
155         *p++ = val >> 8;
156         *p++ = val >> 16;
157 }
158
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161         return queue - queue->ctrl->queues;
162 }
163
164 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
165 {
166         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
167 }
168
169 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
170                 size_t capsule_size, enum dma_data_direction dir)
171 {
172         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
173         kfree(qe->data);
174 }
175
176 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177                 size_t capsule_size, enum dma_data_direction dir)
178 {
179         qe->data = kzalloc(capsule_size, GFP_KERNEL);
180         if (!qe->data)
181                 return -ENOMEM;
182
183         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
184         if (ib_dma_mapping_error(ibdev, qe->dma)) {
185                 kfree(qe->data);
186                 return -ENOMEM;
187         }
188
189         return 0;
190 }
191
192 static void nvme_rdma_free_ring(struct ib_device *ibdev,
193                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
194                 size_t capsule_size, enum dma_data_direction dir)
195 {
196         int i;
197
198         for (i = 0; i < ib_queue_size; i++)
199                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
200         kfree(ring);
201 }
202
203 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
204                 size_t ib_queue_size, size_t capsule_size,
205                 enum dma_data_direction dir)
206 {
207         struct nvme_rdma_qe *ring;
208         int i;
209
210         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
211         if (!ring)
212                 return NULL;
213
214         for (i = 0; i < ib_queue_size; i++) {
215                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
216                         goto out_free_ring;
217         }
218
219         return ring;
220
221 out_free_ring:
222         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
223         return NULL;
224 }
225
226 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
227 {
228         pr_debug("QP event %s (%d)\n",
229                  ib_event_msg(event->event), event->event);
230
231 }
232
233 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
234 {
235         wait_for_completion_interruptible_timeout(&queue->cm_done,
236                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
237         return queue->cm_error;
238 }
239
240 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
241 {
242         struct nvme_rdma_device *dev = queue->device;
243         struct ib_qp_init_attr init_attr;
244         int ret;
245
246         memset(&init_attr, 0, sizeof(init_attr));
247         init_attr.event_handler = nvme_rdma_qp_event;
248         /* +1 for drain */
249         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
250         /* +1 for drain */
251         init_attr.cap.max_recv_wr = queue->queue_size + 1;
252         init_attr.cap.max_recv_sge = 1;
253         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
254         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
255         init_attr.qp_type = IB_QPT_RC;
256         init_attr.send_cq = queue->ib_cq;
257         init_attr.recv_cq = queue->ib_cq;
258
259         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
260
261         queue->qp = queue->cm_id->qp;
262         return ret;
263 }
264
265 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
266                 struct request *rq, unsigned int hctx_idx)
267 {
268         struct nvme_rdma_ctrl *ctrl = set->driver_data;
269         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
270         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
271         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
272         struct nvme_rdma_device *dev = queue->device;
273
274         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
275                         DMA_TO_DEVICE);
276 }
277
278 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
279                 struct request *rq, unsigned int hctx_idx,
280                 unsigned int numa_node)
281 {
282         struct nvme_rdma_ctrl *ctrl = set->driver_data;
283         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
284         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
285         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
286         struct nvme_rdma_device *dev = queue->device;
287         struct ib_device *ibdev = dev->dev;
288         int ret;
289
290         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
291                         DMA_TO_DEVICE);
292         if (ret)
293                 return ret;
294
295         req->queue = queue;
296
297         return 0;
298 }
299
300 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
301                 unsigned int hctx_idx)
302 {
303         struct nvme_rdma_ctrl *ctrl = data;
304         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
305
306         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
307
308         hctx->driver_data = queue;
309         return 0;
310 }
311
312 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
313                 unsigned int hctx_idx)
314 {
315         struct nvme_rdma_ctrl *ctrl = data;
316         struct nvme_rdma_queue *queue = &ctrl->queues[0];
317
318         BUG_ON(hctx_idx != 0);
319
320         hctx->driver_data = queue;
321         return 0;
322 }
323
324 static void nvme_rdma_free_dev(struct kref *ref)
325 {
326         struct nvme_rdma_device *ndev =
327                 container_of(ref, struct nvme_rdma_device, ref);
328
329         mutex_lock(&device_list_mutex);
330         list_del(&ndev->entry);
331         mutex_unlock(&device_list_mutex);
332
333         ib_dealloc_pd(ndev->pd);
334         kfree(ndev);
335 }
336
337 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
338 {
339         kref_put(&dev->ref, nvme_rdma_free_dev);
340 }
341
342 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
343 {
344         return kref_get_unless_zero(&dev->ref);
345 }
346
347 static struct nvme_rdma_device *
348 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
349 {
350         struct nvme_rdma_device *ndev;
351
352         mutex_lock(&device_list_mutex);
353         list_for_each_entry(ndev, &device_list, entry) {
354                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
355                     nvme_rdma_dev_get(ndev))
356                         goto out_unlock;
357         }
358
359         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
360         if (!ndev)
361                 goto out_err;
362
363         ndev->dev = cm_id->device;
364         kref_init(&ndev->ref);
365
366         ndev->pd = ib_alloc_pd(ndev->dev,
367                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
368         if (IS_ERR(ndev->pd))
369                 goto out_free_dev;
370
371         if (!(ndev->dev->attrs.device_cap_flags &
372               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
373                 dev_err(&ndev->dev->dev,
374                         "Memory registrations not supported.\n");
375                 goto out_free_pd;
376         }
377
378         list_add(&ndev->entry, &device_list);
379 out_unlock:
380         mutex_unlock(&device_list_mutex);
381         return ndev;
382
383 out_free_pd:
384         ib_dealloc_pd(ndev->pd);
385 out_free_dev:
386         kfree(ndev);
387 out_err:
388         mutex_unlock(&device_list_mutex);
389         return NULL;
390 }
391
392 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
393 {
394         struct nvme_rdma_device *dev;
395         struct ib_device *ibdev;
396
397         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
398                 return;
399
400         dev = queue->device;
401         ibdev = dev->dev;
402
403         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
404
405         /*
406          * The cm_id object might have been destroyed during RDMA connection
407          * establishment error flow to avoid getting other cma events, thus
408          * the destruction of the QP shouldn't use rdma_cm API.
409          */
410         ib_destroy_qp(queue->qp);
411         ib_free_cq(queue->ib_cq);
412
413         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
414                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
415
416         nvme_rdma_dev_put(dev);
417 }
418
419 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
420 {
421         return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
422                      ibdev->attrs.max_fast_reg_page_list_len);
423 }
424
425 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
426 {
427         struct ib_device *ibdev;
428         const int send_wr_factor = 3;                   /* MR, SEND, INV */
429         const int cq_factor = send_wr_factor + 1;       /* + RECV */
430         int comp_vector, idx = nvme_rdma_queue_idx(queue);
431         int ret;
432
433         queue->device = nvme_rdma_find_get_device(queue->cm_id);
434         if (!queue->device) {
435                 dev_err(queue->cm_id->device->dev.parent,
436                         "no client data found!\n");
437                 return -ECONNREFUSED;
438         }
439         ibdev = queue->device->dev;
440
441         /*
442          * Spread I/O queues completion vectors according their queue index.
443          * Admin queues can always go on completion vector 0.
444          */
445         comp_vector = idx == 0 ? idx : idx - 1;
446
447         /* +1 for ib_stop_cq */
448         queue->ib_cq = ib_alloc_cq(ibdev, queue,
449                                 cq_factor * queue->queue_size + 1,
450                                 comp_vector, IB_POLL_SOFTIRQ);
451         if (IS_ERR(queue->ib_cq)) {
452                 ret = PTR_ERR(queue->ib_cq);
453                 goto out_put_dev;
454         }
455
456         ret = nvme_rdma_create_qp(queue, send_wr_factor);
457         if (ret)
458                 goto out_destroy_ib_cq;
459
460         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
461                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
462         if (!queue->rsp_ring) {
463                 ret = -ENOMEM;
464                 goto out_destroy_qp;
465         }
466
467         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
468                               queue->queue_size,
469                               IB_MR_TYPE_MEM_REG,
470                               nvme_rdma_get_max_fr_pages(ibdev));
471         if (ret) {
472                 dev_err(queue->ctrl->ctrl.device,
473                         "failed to initialize MR pool sized %d for QID %d\n",
474                         queue->queue_size, idx);
475                 goto out_destroy_ring;
476         }
477
478         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
479
480         return 0;
481
482 out_destroy_ring:
483         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
484                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
485 out_destroy_qp:
486         rdma_destroy_qp(queue->cm_id);
487 out_destroy_ib_cq:
488         ib_free_cq(queue->ib_cq);
489 out_put_dev:
490         nvme_rdma_dev_put(queue->device);
491         return ret;
492 }
493
494 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
495                 int idx, size_t queue_size)
496 {
497         struct nvme_rdma_queue *queue;
498         struct sockaddr *src_addr = NULL;
499         int ret;
500
501         queue = &ctrl->queues[idx];
502         queue->ctrl = ctrl;
503         init_completion(&queue->cm_done);
504
505         if (idx > 0)
506                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
507         else
508                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
509
510         queue->queue_size = queue_size;
511
512         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
513                         RDMA_PS_TCP, IB_QPT_RC);
514         if (IS_ERR(queue->cm_id)) {
515                 dev_info(ctrl->ctrl.device,
516                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
517                 return PTR_ERR(queue->cm_id);
518         }
519
520         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
521                 src_addr = (struct sockaddr *)&ctrl->src_addr;
522
523         queue->cm_error = -ETIMEDOUT;
524         ret = rdma_resolve_addr(queue->cm_id, src_addr,
525                         (struct sockaddr *)&ctrl->addr,
526                         NVME_RDMA_CONNECT_TIMEOUT_MS);
527         if (ret) {
528                 dev_info(ctrl->ctrl.device,
529                         "rdma_resolve_addr failed (%d).\n", ret);
530                 goto out_destroy_cm_id;
531         }
532
533         ret = nvme_rdma_wait_for_cm(queue);
534         if (ret) {
535                 dev_info(ctrl->ctrl.device,
536                         "rdma connection establishment failed (%d)\n", ret);
537                 goto out_destroy_cm_id;
538         }
539
540         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
541
542         return 0;
543
544 out_destroy_cm_id:
545         rdma_destroy_id(queue->cm_id);
546         nvme_rdma_destroy_queue_ib(queue);
547         return ret;
548 }
549
550 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
551 {
552         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
553                 return;
554
555         rdma_disconnect(queue->cm_id);
556         ib_drain_qp(queue->qp);
557 }
558
559 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
560 {
561         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
562                 return;
563
564         if (nvme_rdma_queue_idx(queue) == 0) {
565                 nvme_rdma_free_qe(queue->device->dev,
566                         &queue->ctrl->async_event_sqe,
567                         sizeof(struct nvme_command), DMA_TO_DEVICE);
568         }
569
570         nvme_rdma_destroy_queue_ib(queue);
571         rdma_destroy_id(queue->cm_id);
572 }
573
574 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
575 {
576         int i;
577
578         for (i = 1; i < ctrl->ctrl.queue_count; i++)
579                 nvme_rdma_free_queue(&ctrl->queues[i]);
580 }
581
582 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
583 {
584         int i;
585
586         for (i = 1; i < ctrl->ctrl.queue_count; i++)
587                 nvme_rdma_stop_queue(&ctrl->queues[i]);
588 }
589
590 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
591 {
592         int ret;
593
594         if (idx)
595                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
596         else
597                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
598
599         if (!ret)
600                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
601         else
602                 dev_info(ctrl->ctrl.device,
603                         "failed to connect queue: %d ret=%d\n", idx, ret);
604         return ret;
605 }
606
607 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
608 {
609         int i, ret = 0;
610
611         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
612                 ret = nvme_rdma_start_queue(ctrl, i);
613                 if (ret)
614                         goto out_stop_queues;
615         }
616
617         return 0;
618
619 out_stop_queues:
620         for (i--; i >= 1; i--)
621                 nvme_rdma_stop_queue(&ctrl->queues[i]);
622         return ret;
623 }
624
625 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
626 {
627         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
628         struct ib_device *ibdev = ctrl->device->dev;
629         unsigned int nr_io_queues;
630         int i, ret;
631
632         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
633
634         /*
635          * we map queues according to the device irq vectors for
636          * optimal locality so we don't need more queues than
637          * completion vectors.
638          */
639         nr_io_queues = min_t(unsigned int, nr_io_queues,
640                                 ibdev->num_comp_vectors);
641
642         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
643         if (ret)
644                 return ret;
645
646         ctrl->ctrl.queue_count = nr_io_queues + 1;
647         if (ctrl->ctrl.queue_count < 2)
648                 return 0;
649
650         dev_info(ctrl->ctrl.device,
651                 "creating %d I/O queues.\n", nr_io_queues);
652
653         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
654                 ret = nvme_rdma_alloc_queue(ctrl, i,
655                                 ctrl->ctrl.sqsize + 1);
656                 if (ret)
657                         goto out_free_queues;
658         }
659
660         return 0;
661
662 out_free_queues:
663         for (i--; i >= 1; i--)
664                 nvme_rdma_free_queue(&ctrl->queues[i]);
665
666         return ret;
667 }
668
669 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
670                 struct blk_mq_tag_set *set)
671 {
672         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
673
674         blk_mq_free_tag_set(set);
675         nvme_rdma_dev_put(ctrl->device);
676 }
677
678 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
679                 bool admin)
680 {
681         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
682         struct blk_mq_tag_set *set;
683         int ret;
684
685         if (admin) {
686                 set = &ctrl->admin_tag_set;
687                 memset(set, 0, sizeof(*set));
688                 set->ops = &nvme_rdma_admin_mq_ops;
689                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
690                 set->reserved_tags = 2; /* connect + keep-alive */
691                 set->numa_node = NUMA_NO_NODE;
692                 set->cmd_size = sizeof(struct nvme_rdma_request) +
693                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
694                 set->driver_data = ctrl;
695                 set->nr_hw_queues = 1;
696                 set->timeout = ADMIN_TIMEOUT;
697                 set->flags = BLK_MQ_F_NO_SCHED;
698         } else {
699                 set = &ctrl->tag_set;
700                 memset(set, 0, sizeof(*set));
701                 set->ops = &nvme_rdma_mq_ops;
702                 set->queue_depth = nctrl->opts->queue_size;
703                 set->reserved_tags = 1; /* fabric connect */
704                 set->numa_node = NUMA_NO_NODE;
705                 set->flags = BLK_MQ_F_SHOULD_MERGE;
706                 set->cmd_size = sizeof(struct nvme_rdma_request) +
707                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
708                 set->driver_data = ctrl;
709                 set->nr_hw_queues = nctrl->queue_count - 1;
710                 set->timeout = NVME_IO_TIMEOUT;
711         }
712
713         ret = blk_mq_alloc_tag_set(set);
714         if (ret)
715                 goto out;
716
717         /*
718          * We need a reference on the device as long as the tag_set is alive,
719          * as the MRs in the request structures need a valid ib_device.
720          */
721         ret = nvme_rdma_dev_get(ctrl->device);
722         if (!ret) {
723                 ret = -EINVAL;
724                 goto out_free_tagset;
725         }
726
727         return set;
728
729 out_free_tagset:
730         blk_mq_free_tag_set(set);
731 out:
732         return ERR_PTR(ret);
733 }
734
735 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
736                 bool remove)
737 {
738         nvme_rdma_stop_queue(&ctrl->queues[0]);
739         if (remove) {
740                 blk_cleanup_queue(ctrl->ctrl.admin_q);
741                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
742         }
743         nvme_rdma_free_queue(&ctrl->queues[0]);
744 }
745
746 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
747                 bool new)
748 {
749         int error;
750
751         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
752         if (error)
753                 return error;
754
755         ctrl->device = ctrl->queues[0].device;
756
757         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
758
759         if (new) {
760                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
761                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
762                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
763                         goto out_free_queue;
764                 }
765
766                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
767                 if (IS_ERR(ctrl->ctrl.admin_q)) {
768                         error = PTR_ERR(ctrl->ctrl.admin_q);
769                         goto out_free_tagset;
770                 }
771         }
772
773         error = nvme_rdma_start_queue(ctrl, 0);
774         if (error)
775                 goto out_cleanup_queue;
776
777         error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
778                         &ctrl->ctrl.cap);
779         if (error) {
780                 dev_err(ctrl->ctrl.device,
781                         "prop_get NVME_REG_CAP failed\n");
782                 goto out_cleanup_queue;
783         }
784
785         ctrl->ctrl.sqsize =
786                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
787
788         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
789         if (error)
790                 goto out_cleanup_queue;
791
792         ctrl->ctrl.max_hw_sectors =
793                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
794
795         error = nvme_init_identify(&ctrl->ctrl);
796         if (error)
797                 goto out_cleanup_queue;
798
799         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
800                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
801                         DMA_TO_DEVICE);
802         if (error)
803                 goto out_cleanup_queue;
804
805         return 0;
806
807 out_cleanup_queue:
808         if (new)
809                 blk_cleanup_queue(ctrl->ctrl.admin_q);
810 out_free_tagset:
811         if (new)
812                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
813 out_free_queue:
814         nvme_rdma_free_queue(&ctrl->queues[0]);
815         return error;
816 }
817
818 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
819                 bool remove)
820 {
821         nvme_rdma_stop_io_queues(ctrl);
822         if (remove) {
823                 blk_cleanup_queue(ctrl->ctrl.connect_q);
824                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
825         }
826         nvme_rdma_free_io_queues(ctrl);
827 }
828
829 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
830 {
831         int ret;
832
833         ret = nvme_rdma_alloc_io_queues(ctrl);
834         if (ret)
835                 return ret;
836
837         if (new) {
838                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
839                 if (IS_ERR(ctrl->ctrl.tagset)) {
840                         ret = PTR_ERR(ctrl->ctrl.tagset);
841                         goto out_free_io_queues;
842                 }
843
844                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
845                 if (IS_ERR(ctrl->ctrl.connect_q)) {
846                         ret = PTR_ERR(ctrl->ctrl.connect_q);
847                         goto out_free_tag_set;
848                 }
849         } else {
850                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
851                         ctrl->ctrl.queue_count - 1);
852         }
853
854         ret = nvme_rdma_start_io_queues(ctrl);
855         if (ret)
856                 goto out_cleanup_connect_q;
857
858         return 0;
859
860 out_cleanup_connect_q:
861         if (new)
862                 blk_cleanup_queue(ctrl->ctrl.connect_q);
863 out_free_tag_set:
864         if (new)
865                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
866 out_free_io_queues:
867         nvme_rdma_free_io_queues(ctrl);
868         return ret;
869 }
870
871 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
872 {
873         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
874
875         if (list_empty(&ctrl->list))
876                 goto free_ctrl;
877
878         mutex_lock(&nvme_rdma_ctrl_mutex);
879         list_del(&ctrl->list);
880         mutex_unlock(&nvme_rdma_ctrl_mutex);
881
882         kfree(ctrl->queues);
883         nvmf_free_options(nctrl->opts);
884 free_ctrl:
885         kfree(ctrl);
886 }
887
888 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
889 {
890         /* If we are resetting/deleting then do nothing */
891         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
892                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
893                         ctrl->ctrl.state == NVME_CTRL_LIVE);
894                 return;
895         }
896
897         if (nvmf_should_reconnect(&ctrl->ctrl)) {
898                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
899                         ctrl->ctrl.opts->reconnect_delay);
900                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
901                                 ctrl->ctrl.opts->reconnect_delay * HZ);
902         } else {
903                 dev_info(ctrl->ctrl.device, "Removing controller...\n");
904                 nvme_delete_ctrl(&ctrl->ctrl);
905         }
906 }
907
908 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
909 {
910         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
911                         struct nvme_rdma_ctrl, reconnect_work);
912         bool changed;
913         int ret;
914
915         ++ctrl->ctrl.nr_reconnects;
916
917         ret = nvme_rdma_configure_admin_queue(ctrl, false);
918         if (ret)
919                 goto requeue;
920
921         if (ctrl->ctrl.queue_count > 1) {
922                 ret = nvme_rdma_configure_io_queues(ctrl, false);
923                 if (ret)
924                         goto destroy_admin;
925         }
926
927         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
928         if (!changed) {
929                 /* state change failure is ok if we're in DELETING state */
930                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
931                 return;
932         }
933
934         nvme_start_ctrl(&ctrl->ctrl);
935
936         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
937                         ctrl->ctrl.nr_reconnects);
938
939         ctrl->ctrl.nr_reconnects = 0;
940
941         return;
942
943 destroy_admin:
944         nvme_rdma_destroy_admin_queue(ctrl, false);
945 requeue:
946         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
947                         ctrl->ctrl.nr_reconnects);
948         nvme_rdma_reconnect_or_remove(ctrl);
949 }
950
951 static void nvme_rdma_error_recovery_work(struct work_struct *work)
952 {
953         struct nvme_rdma_ctrl *ctrl = container_of(work,
954                         struct nvme_rdma_ctrl, err_work);
955
956         nvme_stop_keep_alive(&ctrl->ctrl);
957
958         if (ctrl->ctrl.queue_count > 1) {
959                 nvme_stop_queues(&ctrl->ctrl);
960                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
961                                         nvme_cancel_request, &ctrl->ctrl);
962                 nvme_rdma_destroy_io_queues(ctrl, false);
963         }
964
965         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
966         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
967                                 nvme_cancel_request, &ctrl->ctrl);
968         nvme_rdma_destroy_admin_queue(ctrl, false);
969
970         /*
971          * queues are not a live anymore, so restart the queues to fail fast
972          * new IO
973          */
974         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
975         nvme_start_queues(&ctrl->ctrl);
976
977         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
978                 /* state change failure should never happen */
979                 WARN_ON_ONCE(1);
980                 return;
981         }
982
983         nvme_rdma_reconnect_or_remove(ctrl);
984 }
985
986 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
987 {
988         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
989                 return;
990
991         queue_work(nvme_wq, &ctrl->err_work);
992 }
993
994 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
995                 const char *op)
996 {
997         struct nvme_rdma_queue *queue = cq->cq_context;
998         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
999
1000         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1001                 dev_info(ctrl->ctrl.device,
1002                              "%s for CQE 0x%p failed with status %s (%d)\n",
1003                              op, wc->wr_cqe,
1004                              ib_wc_status_msg(wc->status), wc->status);
1005         nvme_rdma_error_recovery(ctrl);
1006 }
1007
1008 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1009 {
1010         if (unlikely(wc->status != IB_WC_SUCCESS))
1011                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1012 }
1013
1014 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1015 {
1016         struct nvme_rdma_request *req =
1017                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1018         struct request *rq = blk_mq_rq_from_pdu(req);
1019
1020         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1021                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1022                 return;
1023         }
1024
1025         if (refcount_dec_and_test(&req->ref))
1026                 nvme_end_request(rq, req->status, req->result);
1027
1028 }
1029
1030 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1031                 struct nvme_rdma_request *req)
1032 {
1033         struct ib_send_wr *bad_wr;
1034         struct ib_send_wr wr = {
1035                 .opcode             = IB_WR_LOCAL_INV,
1036                 .next               = NULL,
1037                 .num_sge            = 0,
1038                 .send_flags         = IB_SEND_SIGNALED,
1039                 .ex.invalidate_rkey = req->mr->rkey,
1040         };
1041
1042         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1043         wr.wr_cqe = &req->reg_cqe;
1044
1045         return ib_post_send(queue->qp, &wr, &bad_wr);
1046 }
1047
1048 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1049                 struct request *rq)
1050 {
1051         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1052         struct nvme_rdma_device *dev = queue->device;
1053         struct ib_device *ibdev = dev->dev;
1054
1055         if (!blk_rq_bytes(rq))
1056                 return;
1057
1058         if (req->mr) {
1059                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1060                 req->mr = NULL;
1061         }
1062
1063         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1064                         req->nents, rq_data_dir(rq) ==
1065                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1066
1067         nvme_cleanup_cmd(rq);
1068         sg_free_table_chained(&req->sg_table, true);
1069 }
1070
1071 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1072 {
1073         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1074
1075         sg->addr = 0;
1076         put_unaligned_le24(0, sg->length);
1077         put_unaligned_le32(0, sg->key);
1078         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1079         return 0;
1080 }
1081
1082 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1083                 struct nvme_rdma_request *req, struct nvme_command *c)
1084 {
1085         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1086
1087         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1088         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1089         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1090
1091         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1092         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1093         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1094
1095         req->inline_data = true;
1096         req->num_sge++;
1097         return 0;
1098 }
1099
1100 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1101                 struct nvme_rdma_request *req, struct nvme_command *c)
1102 {
1103         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1104
1105         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1106         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1107         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1108         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1109         return 0;
1110 }
1111
1112 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1113                 struct nvme_rdma_request *req, struct nvme_command *c,
1114                 int count)
1115 {
1116         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1117         int nr;
1118
1119         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1120         if (WARN_ON_ONCE(!req->mr))
1121                 return -EAGAIN;
1122
1123         /*
1124          * Align the MR to a 4K page size to match the ctrl page size and
1125          * the block virtual boundary.
1126          */
1127         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1128         if (unlikely(nr < count)) {
1129                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1130                 req->mr = NULL;
1131                 if (nr < 0)
1132                         return nr;
1133                 return -EINVAL;
1134         }
1135
1136         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1137
1138         req->reg_cqe.done = nvme_rdma_memreg_done;
1139         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1140         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1141         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1142         req->reg_wr.wr.num_sge = 0;
1143         req->reg_wr.mr = req->mr;
1144         req->reg_wr.key = req->mr->rkey;
1145         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1146                              IB_ACCESS_REMOTE_READ |
1147                              IB_ACCESS_REMOTE_WRITE;
1148
1149         sg->addr = cpu_to_le64(req->mr->iova);
1150         put_unaligned_le24(req->mr->length, sg->length);
1151         put_unaligned_le32(req->mr->rkey, sg->key);
1152         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1153                         NVME_SGL_FMT_INVALIDATE;
1154
1155         return 0;
1156 }
1157
1158 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1159                 struct request *rq, struct nvme_command *c)
1160 {
1161         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1162         struct nvme_rdma_device *dev = queue->device;
1163         struct ib_device *ibdev = dev->dev;
1164         int count, ret;
1165
1166         req->num_sge = 1;
1167         req->inline_data = false;
1168         refcount_set(&req->ref, 2); /* send and recv completions */
1169
1170         c->common.flags |= NVME_CMD_SGL_METABUF;
1171
1172         if (!blk_rq_bytes(rq))
1173                 return nvme_rdma_set_sg_null(c);
1174
1175         req->sg_table.sgl = req->first_sgl;
1176         ret = sg_alloc_table_chained(&req->sg_table,
1177                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1178         if (ret)
1179                 return -ENOMEM;
1180
1181         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1182
1183         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1184                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1185         if (unlikely(count <= 0)) {
1186                 sg_free_table_chained(&req->sg_table, true);
1187                 return -EIO;
1188         }
1189
1190         if (count == 1) {
1191                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1192                     blk_rq_payload_bytes(rq) <=
1193                                 nvme_rdma_inline_data_size(queue))
1194                         return nvme_rdma_map_sg_inline(queue, req, c);
1195
1196                 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1197                         return nvme_rdma_map_sg_single(queue, req, c);
1198         }
1199
1200         return nvme_rdma_map_sg_fr(queue, req, c, count);
1201 }
1202
1203 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1204 {
1205         struct nvme_rdma_qe *qe =
1206                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1207         struct nvme_rdma_request *req =
1208                 container_of(qe, struct nvme_rdma_request, sqe);
1209         struct request *rq = blk_mq_rq_from_pdu(req);
1210
1211         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1212                 nvme_rdma_wr_error(cq, wc, "SEND");
1213                 return;
1214         }
1215
1216         if (refcount_dec_and_test(&req->ref))
1217                 nvme_end_request(rq, req->status, req->result);
1218 }
1219
1220 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1221                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1222                 struct ib_send_wr *first)
1223 {
1224         struct ib_send_wr wr, *bad_wr;
1225         int ret;
1226
1227         sge->addr   = qe->dma;
1228         sge->length = sizeof(struct nvme_command),
1229         sge->lkey   = queue->device->pd->local_dma_lkey;
1230
1231         wr.next       = NULL;
1232         wr.wr_cqe     = &qe->cqe;
1233         wr.sg_list    = sge;
1234         wr.num_sge    = num_sge;
1235         wr.opcode     = IB_WR_SEND;
1236         wr.send_flags = IB_SEND_SIGNALED;
1237
1238         if (first)
1239                 first->next = &wr;
1240         else
1241                 first = &wr;
1242
1243         ret = ib_post_send(queue->qp, first, &bad_wr);
1244         if (unlikely(ret)) {
1245                 dev_err(queue->ctrl->ctrl.device,
1246                              "%s failed with error code %d\n", __func__, ret);
1247         }
1248         return ret;
1249 }
1250
1251 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1252                 struct nvme_rdma_qe *qe)
1253 {
1254         struct ib_recv_wr wr, *bad_wr;
1255         struct ib_sge list;
1256         int ret;
1257
1258         list.addr   = qe->dma;
1259         list.length = sizeof(struct nvme_completion);
1260         list.lkey   = queue->device->pd->local_dma_lkey;
1261
1262         qe->cqe.done = nvme_rdma_recv_done;
1263
1264         wr.next     = NULL;
1265         wr.wr_cqe   = &qe->cqe;
1266         wr.sg_list  = &list;
1267         wr.num_sge  = 1;
1268
1269         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1270         if (unlikely(ret)) {
1271                 dev_err(queue->ctrl->ctrl.device,
1272                         "%s failed with error code %d\n", __func__, ret);
1273         }
1274         return ret;
1275 }
1276
1277 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1278 {
1279         u32 queue_idx = nvme_rdma_queue_idx(queue);
1280
1281         if (queue_idx == 0)
1282                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1283         return queue->ctrl->tag_set.tags[queue_idx - 1];
1284 }
1285
1286 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1287 {
1288         if (unlikely(wc->status != IB_WC_SUCCESS))
1289                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1290 }
1291
1292 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1293 {
1294         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1295         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1296         struct ib_device *dev = queue->device->dev;
1297         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1298         struct nvme_command *cmd = sqe->data;
1299         struct ib_sge sge;
1300         int ret;
1301
1302         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1303
1304         memset(cmd, 0, sizeof(*cmd));
1305         cmd->common.opcode = nvme_admin_async_event;
1306         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1307         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1308         nvme_rdma_set_sg_null(cmd);
1309
1310         sqe->cqe.done = nvme_rdma_async_done;
1311
1312         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1313                         DMA_TO_DEVICE);
1314
1315         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1316         WARN_ON_ONCE(ret);
1317 }
1318
1319 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1320                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1321 {
1322         struct request *rq;
1323         struct nvme_rdma_request *req;
1324         int ret = 0;
1325
1326         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1327         if (!rq) {
1328                 dev_err(queue->ctrl->ctrl.device,
1329                         "tag 0x%x on QP %#x not found\n",
1330                         cqe->command_id, queue->qp->qp_num);
1331                 nvme_rdma_error_recovery(queue->ctrl);
1332                 return ret;
1333         }
1334         req = blk_mq_rq_to_pdu(rq);
1335
1336         req->status = cqe->status;
1337         req->result = cqe->result;
1338
1339         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1340                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1341                         dev_err(queue->ctrl->ctrl.device,
1342                                 "Bogus remote invalidation for rkey %#x\n",
1343                                 req->mr->rkey);
1344                         nvme_rdma_error_recovery(queue->ctrl);
1345                 }
1346         } else if (req->mr) {
1347                 ret = nvme_rdma_inv_rkey(queue, req);
1348                 if (unlikely(ret < 0)) {
1349                         dev_err(queue->ctrl->ctrl.device,
1350                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1351                                 req->mr->rkey, ret);
1352                         nvme_rdma_error_recovery(queue->ctrl);
1353                 }
1354                 /* the local invalidation completion will end the request */
1355                 return 0;
1356         }
1357
1358         if (refcount_dec_and_test(&req->ref)) {
1359                 if (rq->tag == tag)
1360                         ret = 1;
1361                 nvme_end_request(rq, req->status, req->result);
1362         }
1363
1364         return ret;
1365 }
1366
1367 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1368 {
1369         struct nvme_rdma_qe *qe =
1370                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1371         struct nvme_rdma_queue *queue = cq->cq_context;
1372         struct ib_device *ibdev = queue->device->dev;
1373         struct nvme_completion *cqe = qe->data;
1374         const size_t len = sizeof(struct nvme_completion);
1375         int ret = 0;
1376
1377         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1378                 nvme_rdma_wr_error(cq, wc, "RECV");
1379                 return 0;
1380         }
1381
1382         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1383         /*
1384          * AEN requests are special as they don't time out and can
1385          * survive any kind of queue freeze and often don't respond to
1386          * aborts.  We don't even bother to allocate a struct request
1387          * for them but rather special case them here.
1388          */
1389         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1390                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1391                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1392                                 &cqe->result);
1393         else
1394                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1395         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1396
1397         nvme_rdma_post_recv(queue, qe);
1398         return ret;
1399 }
1400
1401 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1402 {
1403         __nvme_rdma_recv_done(cq, wc, -1);
1404 }
1405
1406 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1407 {
1408         int ret, i;
1409
1410         for (i = 0; i < queue->queue_size; i++) {
1411                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1412                 if (ret)
1413                         goto out_destroy_queue_ib;
1414         }
1415
1416         return 0;
1417
1418 out_destroy_queue_ib:
1419         nvme_rdma_destroy_queue_ib(queue);
1420         return ret;
1421 }
1422
1423 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1424                 struct rdma_cm_event *ev)
1425 {
1426         struct rdma_cm_id *cm_id = queue->cm_id;
1427         int status = ev->status;
1428         const char *rej_msg;
1429         const struct nvme_rdma_cm_rej *rej_data;
1430         u8 rej_data_len;
1431
1432         rej_msg = rdma_reject_msg(cm_id, status);
1433         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1434
1435         if (rej_data && rej_data_len >= sizeof(u16)) {
1436                 u16 sts = le16_to_cpu(rej_data->sts);
1437
1438                 dev_err(queue->ctrl->ctrl.device,
1439                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1440                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1441         } else {
1442                 dev_err(queue->ctrl->ctrl.device,
1443                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1444         }
1445
1446         return -ECONNRESET;
1447 }
1448
1449 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1450 {
1451         int ret;
1452
1453         ret = nvme_rdma_create_queue_ib(queue);
1454         if (ret)
1455                 return ret;
1456
1457         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1458         if (ret) {
1459                 dev_err(queue->ctrl->ctrl.device,
1460                         "rdma_resolve_route failed (%d).\n",
1461                         queue->cm_error);
1462                 goto out_destroy_queue;
1463         }
1464
1465         return 0;
1466
1467 out_destroy_queue:
1468         nvme_rdma_destroy_queue_ib(queue);
1469         return ret;
1470 }
1471
1472 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1473 {
1474         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1475         struct rdma_conn_param param = { };
1476         struct nvme_rdma_cm_req priv = { };
1477         int ret;
1478
1479         param.qp_num = queue->qp->qp_num;
1480         param.flow_control = 1;
1481
1482         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1483         /* maximum retry count */
1484         param.retry_count = 7;
1485         param.rnr_retry_count = 7;
1486         param.private_data = &priv;
1487         param.private_data_len = sizeof(priv);
1488
1489         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1490         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1491         /*
1492          * set the admin queue depth to the minimum size
1493          * specified by the Fabrics standard.
1494          */
1495         if (priv.qid == 0) {
1496                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1497                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1498         } else {
1499                 /*
1500                  * current interpretation of the fabrics spec
1501                  * is at minimum you make hrqsize sqsize+1, or a
1502                  * 1's based representation of sqsize.
1503                  */
1504                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1505                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1506         }
1507
1508         ret = rdma_connect(queue->cm_id, &param);
1509         if (ret) {
1510                 dev_err(ctrl->ctrl.device,
1511                         "rdma_connect failed (%d).\n", ret);
1512                 goto out_destroy_queue_ib;
1513         }
1514
1515         return 0;
1516
1517 out_destroy_queue_ib:
1518         nvme_rdma_destroy_queue_ib(queue);
1519         return ret;
1520 }
1521
1522 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1523                 struct rdma_cm_event *ev)
1524 {
1525         struct nvme_rdma_queue *queue = cm_id->context;
1526         int cm_error = 0;
1527
1528         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1529                 rdma_event_msg(ev->event), ev->event,
1530                 ev->status, cm_id);
1531
1532         switch (ev->event) {
1533         case RDMA_CM_EVENT_ADDR_RESOLVED:
1534                 cm_error = nvme_rdma_addr_resolved(queue);
1535                 break;
1536         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1537                 cm_error = nvme_rdma_route_resolved(queue);
1538                 break;
1539         case RDMA_CM_EVENT_ESTABLISHED:
1540                 queue->cm_error = nvme_rdma_conn_established(queue);
1541                 /* complete cm_done regardless of success/failure */
1542                 complete(&queue->cm_done);
1543                 return 0;
1544         case RDMA_CM_EVENT_REJECTED:
1545                 nvme_rdma_destroy_queue_ib(queue);
1546                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1547                 break;
1548         case RDMA_CM_EVENT_ROUTE_ERROR:
1549         case RDMA_CM_EVENT_CONNECT_ERROR:
1550         case RDMA_CM_EVENT_UNREACHABLE:
1551                 nvme_rdma_destroy_queue_ib(queue);
1552         case RDMA_CM_EVENT_ADDR_ERROR:
1553                 dev_dbg(queue->ctrl->ctrl.device,
1554                         "CM error event %d\n", ev->event);
1555                 cm_error = -ECONNRESET;
1556                 break;
1557         case RDMA_CM_EVENT_DISCONNECTED:
1558         case RDMA_CM_EVENT_ADDR_CHANGE:
1559         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1560                 dev_dbg(queue->ctrl->ctrl.device,
1561                         "disconnect received - connection closed\n");
1562                 nvme_rdma_error_recovery(queue->ctrl);
1563                 break;
1564         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1565                 /* device removal is handled via the ib_client API */
1566                 break;
1567         default:
1568                 dev_err(queue->ctrl->ctrl.device,
1569                         "Unexpected RDMA CM event (%d)\n", ev->event);
1570                 nvme_rdma_error_recovery(queue->ctrl);
1571                 break;
1572         }
1573
1574         if (cm_error) {
1575                 queue->cm_error = cm_error;
1576                 complete(&queue->cm_done);
1577         }
1578
1579         return 0;
1580 }
1581
1582 static enum blk_eh_timer_return
1583 nvme_rdma_timeout(struct request *rq, bool reserved)
1584 {
1585         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1586
1587         dev_warn(req->queue->ctrl->ctrl.device,
1588                  "I/O %d QID %d timeout, reset controller\n",
1589                  rq->tag, nvme_rdma_queue_idx(req->queue));
1590
1591         /* queue error recovery */
1592         nvme_rdma_error_recovery(req->queue->ctrl);
1593
1594         /* fail with DNR on cmd timeout */
1595         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1596
1597         return BLK_EH_HANDLED;
1598 }
1599
1600 /*
1601  * We cannot accept any other command until the Connect command has completed.
1602  */
1603 static inline blk_status_t
1604 nvme_rdma_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1605 {
1606         if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags)))
1607                 return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
1608         return BLK_STS_OK;
1609 }
1610
1611 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1612                 const struct blk_mq_queue_data *bd)
1613 {
1614         struct nvme_ns *ns = hctx->queue->queuedata;
1615         struct nvme_rdma_queue *queue = hctx->driver_data;
1616         struct request *rq = bd->rq;
1617         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1618         struct nvme_rdma_qe *sqe = &req->sqe;
1619         struct nvme_command *c = sqe->data;
1620         struct ib_device *dev;
1621         blk_status_t ret;
1622         int err;
1623
1624         WARN_ON_ONCE(rq->tag < 0);
1625
1626         ret = nvme_rdma_is_ready(queue, rq);
1627         if (unlikely(ret))
1628                 return ret;
1629
1630         dev = queue->device->dev;
1631         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1632                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1633
1634         ret = nvme_setup_cmd(ns, rq, c);
1635         if (ret)
1636                 return ret;
1637
1638         blk_mq_start_request(rq);
1639
1640         err = nvme_rdma_map_data(queue, rq, c);
1641         if (unlikely(err < 0)) {
1642                 dev_err(queue->ctrl->ctrl.device,
1643                              "Failed to map data (%d)\n", err);
1644                 nvme_cleanup_cmd(rq);
1645                 goto err;
1646         }
1647
1648         sqe->cqe.done = nvme_rdma_send_done;
1649
1650         ib_dma_sync_single_for_device(dev, sqe->dma,
1651                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1652
1653         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1654                         req->mr ? &req->reg_wr.wr : NULL);
1655         if (unlikely(err)) {
1656                 nvme_rdma_unmap_data(queue, rq);
1657                 goto err;
1658         }
1659
1660         return BLK_STS_OK;
1661 err:
1662         if (err == -ENOMEM || err == -EAGAIN)
1663                 return BLK_STS_RESOURCE;
1664         return BLK_STS_IOERR;
1665 }
1666
1667 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1668 {
1669         struct nvme_rdma_queue *queue = hctx->driver_data;
1670         struct ib_cq *cq = queue->ib_cq;
1671         struct ib_wc wc;
1672         int found = 0;
1673
1674         while (ib_poll_cq(cq, 1, &wc) > 0) {
1675                 struct ib_cqe *cqe = wc.wr_cqe;
1676
1677                 if (cqe) {
1678                         if (cqe->done == nvme_rdma_recv_done)
1679                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1680                         else
1681                                 cqe->done(cq, &wc);
1682                 }
1683         }
1684
1685         return found;
1686 }
1687
1688 static void nvme_rdma_complete_rq(struct request *rq)
1689 {
1690         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1691
1692         nvme_rdma_unmap_data(req->queue, rq);
1693         nvme_complete_rq(rq);
1694 }
1695
1696 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1697 {
1698         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1699
1700         return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1701 }
1702
1703 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1704         .queue_rq       = nvme_rdma_queue_rq,
1705         .complete       = nvme_rdma_complete_rq,
1706         .init_request   = nvme_rdma_init_request,
1707         .exit_request   = nvme_rdma_exit_request,
1708         .init_hctx      = nvme_rdma_init_hctx,
1709         .poll           = nvme_rdma_poll,
1710         .timeout        = nvme_rdma_timeout,
1711         .map_queues     = nvme_rdma_map_queues,
1712 };
1713
1714 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1715         .queue_rq       = nvme_rdma_queue_rq,
1716         .complete       = nvme_rdma_complete_rq,
1717         .init_request   = nvme_rdma_init_request,
1718         .exit_request   = nvme_rdma_exit_request,
1719         .init_hctx      = nvme_rdma_init_admin_hctx,
1720         .timeout        = nvme_rdma_timeout,
1721 };
1722
1723 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1724 {
1725         cancel_work_sync(&ctrl->err_work);
1726         cancel_delayed_work_sync(&ctrl->reconnect_work);
1727
1728         if (ctrl->ctrl.queue_count > 1) {
1729                 nvme_stop_queues(&ctrl->ctrl);
1730                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1731                                         nvme_cancel_request, &ctrl->ctrl);
1732                 nvme_rdma_destroy_io_queues(ctrl, shutdown);
1733         }
1734
1735         if (shutdown)
1736                 nvme_shutdown_ctrl(&ctrl->ctrl);
1737         else
1738                 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1739
1740         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1741         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1742                                 nvme_cancel_request, &ctrl->ctrl);
1743         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1744         nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1745 }
1746
1747 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1748 {
1749         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1750 }
1751
1752 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1753 {
1754         struct nvme_rdma_ctrl *ctrl =
1755                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1756         int ret;
1757         bool changed;
1758
1759         nvme_stop_ctrl(&ctrl->ctrl);
1760         nvme_rdma_shutdown_ctrl(ctrl, false);
1761
1762         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1763                 /* state change failure should never happen */
1764                 WARN_ON_ONCE(1);
1765                 return;
1766         }
1767
1768         ret = nvme_rdma_configure_admin_queue(ctrl, false);
1769         if (ret)
1770                 goto out_fail;
1771
1772         if (ctrl->ctrl.queue_count > 1) {
1773                 ret = nvme_rdma_configure_io_queues(ctrl, false);
1774                 if (ret)
1775                         goto out_fail;
1776         }
1777
1778         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1779         if (!changed) {
1780                 /* state change failure is ok if we're in DELETING state */
1781                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1782                 return;
1783         }
1784
1785         nvme_start_ctrl(&ctrl->ctrl);
1786
1787         return;
1788
1789 out_fail:
1790         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1791         nvme_remove_namespaces(&ctrl->ctrl);
1792         nvme_rdma_shutdown_ctrl(ctrl, true);
1793         nvme_uninit_ctrl(&ctrl->ctrl);
1794         nvme_put_ctrl(&ctrl->ctrl);
1795 }
1796
1797 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1798         .name                   = "rdma",
1799         .module                 = THIS_MODULE,
1800         .flags                  = NVME_F_FABRICS,
1801         .reg_read32             = nvmf_reg_read32,
1802         .reg_read64             = nvmf_reg_read64,
1803         .reg_write32            = nvmf_reg_write32,
1804         .free_ctrl              = nvme_rdma_free_ctrl,
1805         .submit_async_event     = nvme_rdma_submit_async_event,
1806         .delete_ctrl            = nvme_rdma_delete_ctrl,
1807         .get_address            = nvmf_get_address,
1808 };
1809
1810 static inline bool
1811 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1812         struct nvmf_ctrl_options *opts)
1813 {
1814         char *stdport = __stringify(NVME_RDMA_IP_PORT);
1815
1816
1817         if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1818             strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1819                 return false;
1820
1821         if (opts->mask & NVMF_OPT_TRSVCID &&
1822             ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1823                 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1824                         return false;
1825         } else if (opts->mask & NVMF_OPT_TRSVCID) {
1826                 if (strcmp(opts->trsvcid, stdport))
1827                         return false;
1828         } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1829                 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1830                         return false;
1831         }
1832         /* else, it's a match as both have stdport. Fall to next checks */
1833
1834         /*
1835          * checking the local address is rough. In most cases, one
1836          * is not specified and the host port is selected by the stack.
1837          *
1838          * Assume no match if:
1839          *  local address is specified and address is not the same
1840          *  local address is not specified but remote is, or vice versa
1841          *    (admin using specific host_traddr when it matters).
1842          */
1843         if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1844             ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1845                 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1846                         return false;
1847         } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1848                    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1849                 return false;
1850         /*
1851          * if neither controller had an host port specified, assume it's
1852          * a match as everything else matched.
1853          */
1854
1855         return true;
1856 }
1857
1858 /*
1859  * Fails a connection request if it matches an existing controller
1860  * (association) with the same tuple:
1861  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1862  *
1863  * if local address is not specified in the request, it will match an
1864  * existing controller with all the other parameters the same and no
1865  * local port address specified as well.
1866  *
1867  * The ports don't need to be compared as they are intrinsically
1868  * already matched by the port pointers supplied.
1869  */
1870 static bool
1871 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1872 {
1873         struct nvme_rdma_ctrl *ctrl;
1874         bool found = false;
1875
1876         mutex_lock(&nvme_rdma_ctrl_mutex);
1877         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1878                 found = __nvme_rdma_options_match(ctrl, opts);
1879                 if (found)
1880                         break;
1881         }
1882         mutex_unlock(&nvme_rdma_ctrl_mutex);
1883
1884         return found;
1885 }
1886
1887 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1888                 struct nvmf_ctrl_options *opts)
1889 {
1890         struct nvme_rdma_ctrl *ctrl;
1891         int ret;
1892         bool changed;
1893         char *port;
1894
1895         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1896         if (!ctrl)
1897                 return ERR_PTR(-ENOMEM);
1898         ctrl->ctrl.opts = opts;
1899         INIT_LIST_HEAD(&ctrl->list);
1900
1901         if (opts->mask & NVMF_OPT_TRSVCID)
1902                 port = opts->trsvcid;
1903         else
1904                 port = __stringify(NVME_RDMA_IP_PORT);
1905
1906         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1907                         opts->traddr, port, &ctrl->addr);
1908         if (ret) {
1909                 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1910                 goto out_free_ctrl;
1911         }
1912
1913         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1914                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1915                         opts->host_traddr, NULL, &ctrl->src_addr);
1916                 if (ret) {
1917                         pr_err("malformed src address passed: %s\n",
1918                                opts->host_traddr);
1919                         goto out_free_ctrl;
1920                 }
1921         }
1922
1923         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1924                 ret = -EALREADY;
1925                 goto out_free_ctrl;
1926         }
1927
1928         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1929                                 0 /* no quirks, we're perfect! */);
1930         if (ret)
1931                 goto out_free_ctrl;
1932
1933         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1934                         nvme_rdma_reconnect_ctrl_work);
1935         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1936         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1937
1938         ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1939         ctrl->ctrl.sqsize = opts->queue_size - 1;
1940         ctrl->ctrl.kato = opts->kato;
1941
1942         ret = -ENOMEM;
1943         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1944                                 GFP_KERNEL);
1945         if (!ctrl->queues)
1946                 goto out_uninit_ctrl;
1947
1948         ret = nvme_rdma_configure_admin_queue(ctrl, true);
1949         if (ret)
1950                 goto out_kfree_queues;
1951
1952         /* sanity check icdoff */
1953         if (ctrl->ctrl.icdoff) {
1954                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1955                 ret = -EINVAL;
1956                 goto out_remove_admin_queue;
1957         }
1958
1959         /* sanity check keyed sgls */
1960         if (!(ctrl->ctrl.sgls & (1 << 20))) {
1961                 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1962                 ret = -EINVAL;
1963                 goto out_remove_admin_queue;
1964         }
1965
1966         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1967                 /* warn if maxcmd is lower than queue_size */
1968                 dev_warn(ctrl->ctrl.device,
1969                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1970                         opts->queue_size, ctrl->ctrl.maxcmd);
1971                 opts->queue_size = ctrl->ctrl.maxcmd;
1972         }
1973
1974         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1975                 /* warn if sqsize is lower than queue_size */
1976                 dev_warn(ctrl->ctrl.device,
1977                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1978                         opts->queue_size, ctrl->ctrl.sqsize + 1);
1979                 opts->queue_size = ctrl->ctrl.sqsize + 1;
1980         }
1981
1982         if (opts->nr_io_queues) {
1983                 ret = nvme_rdma_configure_io_queues(ctrl, true);
1984                 if (ret)
1985                         goto out_remove_admin_queue;
1986         }
1987
1988         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1989         WARN_ON_ONCE(!changed);
1990
1991         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1992                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1993
1994         nvme_get_ctrl(&ctrl->ctrl);
1995
1996         mutex_lock(&nvme_rdma_ctrl_mutex);
1997         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1998         mutex_unlock(&nvme_rdma_ctrl_mutex);
1999
2000         nvme_start_ctrl(&ctrl->ctrl);
2001
2002         return &ctrl->ctrl;
2003
2004 out_remove_admin_queue:
2005         nvme_rdma_destroy_admin_queue(ctrl, true);
2006 out_kfree_queues:
2007         kfree(ctrl->queues);
2008 out_uninit_ctrl:
2009         nvme_uninit_ctrl(&ctrl->ctrl);
2010         nvme_put_ctrl(&ctrl->ctrl);
2011         if (ret > 0)
2012                 ret = -EIO;
2013         return ERR_PTR(ret);
2014 out_free_ctrl:
2015         kfree(ctrl);
2016         return ERR_PTR(ret);
2017 }
2018
2019 static struct nvmf_transport_ops nvme_rdma_transport = {
2020         .name           = "rdma",
2021         .required_opts  = NVMF_OPT_TRADDR,
2022         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2023                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2024         .create_ctrl    = nvme_rdma_create_ctrl,
2025 };
2026
2027 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2028 {
2029         struct nvme_rdma_ctrl *ctrl;
2030
2031         /* Delete all controllers using this device */
2032         mutex_lock(&nvme_rdma_ctrl_mutex);
2033         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2034                 if (ctrl->device->dev != ib_device)
2035                         continue;
2036                 dev_info(ctrl->ctrl.device,
2037                         "Removing ctrl: NQN \"%s\", addr %pISp\n",
2038                         ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2039                 nvme_delete_ctrl(&ctrl->ctrl);
2040         }
2041         mutex_unlock(&nvme_rdma_ctrl_mutex);
2042
2043         flush_workqueue(nvme_wq);
2044 }
2045
2046 static struct ib_client nvme_rdma_ib_client = {
2047         .name   = "nvme_rdma",
2048         .remove = nvme_rdma_remove_one
2049 };
2050
2051 static int __init nvme_rdma_init_module(void)
2052 {
2053         int ret;
2054
2055         ret = ib_register_client(&nvme_rdma_ib_client);
2056         if (ret)
2057                 return ret;
2058
2059         ret = nvmf_register_transport(&nvme_rdma_transport);
2060         if (ret)
2061                 goto err_unreg_client;
2062
2063         return 0;
2064
2065 err_unreg_client:
2066         ib_unregister_client(&nvme_rdma_ib_client);
2067         return ret;
2068 }
2069
2070 static void __exit nvme_rdma_cleanup_module(void)
2071 {
2072         nvmf_unregister_transport(&nvme_rdma_transport);
2073         ib_unregister_client(&nvme_rdma_ib_client);
2074 }
2075
2076 module_init(nvme_rdma_init_module);
2077 module_exit(nvme_rdma_cleanup_module);
2078
2079 MODULE_LICENSE("GPL v2");