Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / drivers / nvme / host / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS          256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
36
37 struct nvme_rdma_device {
38         struct ib_device        *dev;
39         struct ib_pd            *pd;
40         struct kref             ref;
41         struct list_head        entry;
42         unsigned int            num_inline_segments;
43 };
44
45 struct nvme_rdma_qe {
46         struct ib_cqe           cqe;
47         void                    *data;
48         u64                     dma;
49 };
50
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53         struct nvme_request     req;
54         struct ib_mr            *mr;
55         struct nvme_rdma_qe     sqe;
56         union nvme_result       result;
57         __le16                  status;
58         refcount_t              ref;
59         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60         u32                     num_sge;
61         int                     nents;
62         struct ib_reg_wr        reg_wr;
63         struct ib_cqe           reg_cqe;
64         struct nvme_rdma_queue  *queue;
65         struct sg_table         sg_table;
66         struct scatterlist      first_sgl[];
67 };
68
69 enum nvme_rdma_queue_flags {
70         NVME_RDMA_Q_ALLOCATED           = 0,
71         NVME_RDMA_Q_LIVE                = 1,
72         NVME_RDMA_Q_TR_READY            = 2,
73 };
74
75 struct nvme_rdma_queue {
76         struct nvme_rdma_qe     *rsp_ring;
77         int                     queue_size;
78         size_t                  cmnd_capsule_len;
79         struct nvme_rdma_ctrl   *ctrl;
80         struct nvme_rdma_device *device;
81         struct ib_cq            *ib_cq;
82         struct ib_qp            *qp;
83
84         unsigned long           flags;
85         struct rdma_cm_id       *cm_id;
86         int                     cm_error;
87         struct completion       cm_done;
88 };
89
90 struct nvme_rdma_ctrl {
91         /* read only in the hot path */
92         struct nvme_rdma_queue  *queues;
93
94         /* other member variables */
95         struct blk_mq_tag_set   tag_set;
96         struct work_struct      err_work;
97
98         struct nvme_rdma_qe     async_event_sqe;
99
100         struct delayed_work     reconnect_work;
101
102         struct list_head        list;
103
104         struct blk_mq_tag_set   admin_tag_set;
105         struct nvme_rdma_device *device;
106
107         u32                     max_fr_pages;
108
109         struct sockaddr_storage addr;
110         struct sockaddr_storage src_addr;
111
112         struct nvme_ctrl        ctrl;
113         bool                    use_inline_data;
114         u32                     io_queues[HCTX_MAX_TYPES];
115 };
116
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
118 {
119         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
120 }
121
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
124
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
127
128 /*
129  * Disabling this option makes small I/O goes faster, but is fundamentally
130  * unsafe.  With it turned off we will have to register a global rkey that
131  * allows read and write access to all physical memory.
132  */
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136          "Use memory registration even for contiguous memory regions");
137
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139                 struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
144
145 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
146 {
147         return queue - queue->ctrl->queues;
148 }
149
150 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
151 {
152         return nvme_rdma_queue_idx(queue) >
153                 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
154                 queue->ctrl->io_queues[HCTX_TYPE_READ];
155 }
156
157 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
158 {
159         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
160 }
161
162 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
163                 size_t capsule_size, enum dma_data_direction dir)
164 {
165         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
166         kfree(qe->data);
167 }
168
169 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
170                 size_t capsule_size, enum dma_data_direction dir)
171 {
172         qe->data = kzalloc(capsule_size, GFP_KERNEL);
173         if (!qe->data)
174                 return -ENOMEM;
175
176         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
177         if (ib_dma_mapping_error(ibdev, qe->dma)) {
178                 kfree(qe->data);
179                 qe->data = NULL;
180                 return -ENOMEM;
181         }
182
183         return 0;
184 }
185
186 static void nvme_rdma_free_ring(struct ib_device *ibdev,
187                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
188                 size_t capsule_size, enum dma_data_direction dir)
189 {
190         int i;
191
192         for (i = 0; i < ib_queue_size; i++)
193                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
194         kfree(ring);
195 }
196
197 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
198                 size_t ib_queue_size, size_t capsule_size,
199                 enum dma_data_direction dir)
200 {
201         struct nvme_rdma_qe *ring;
202         int i;
203
204         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
205         if (!ring)
206                 return NULL;
207
208         /*
209          * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
210          * lifetime. It's safe, since any chage in the underlying RDMA device
211          * will issue error recovery and queue re-creation.
212          */
213         for (i = 0; i < ib_queue_size; i++) {
214                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
215                         goto out_free_ring;
216         }
217
218         return ring;
219
220 out_free_ring:
221         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
222         return NULL;
223 }
224
225 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
226 {
227         pr_debug("QP event %s (%d)\n",
228                  ib_event_msg(event->event), event->event);
229
230 }
231
232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
233 {
234         int ret;
235
236         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
237                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
238         if (ret < 0)
239                 return ret;
240         if (ret == 0)
241                 return -ETIMEDOUT;
242         WARN_ON_ONCE(queue->cm_error > 0);
243         return queue->cm_error;
244 }
245
246 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
247 {
248         struct nvme_rdma_device *dev = queue->device;
249         struct ib_qp_init_attr init_attr;
250         int ret;
251
252         memset(&init_attr, 0, sizeof(init_attr));
253         init_attr.event_handler = nvme_rdma_qp_event;
254         /* +1 for drain */
255         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
256         /* +1 for drain */
257         init_attr.cap.max_recv_wr = queue->queue_size + 1;
258         init_attr.cap.max_recv_sge = 1;
259         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
260         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
261         init_attr.qp_type = IB_QPT_RC;
262         init_attr.send_cq = queue->ib_cq;
263         init_attr.recv_cq = queue->ib_cq;
264
265         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
266
267         queue->qp = queue->cm_id->qp;
268         return ret;
269 }
270
271 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
272                 struct request *rq, unsigned int hctx_idx)
273 {
274         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
275
276         kfree(req->sqe.data);
277 }
278
279 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
280                 struct request *rq, unsigned int hctx_idx,
281                 unsigned int numa_node)
282 {
283         struct nvme_rdma_ctrl *ctrl = set->driver_data;
284         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
285         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
286         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
287
288         nvme_req(rq)->ctrl = &ctrl->ctrl;
289         req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
290         if (!req->sqe.data)
291                 return -ENOMEM;
292
293         req->queue = queue;
294
295         return 0;
296 }
297
298 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
299                 unsigned int hctx_idx)
300 {
301         struct nvme_rdma_ctrl *ctrl = data;
302         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
303
304         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
305
306         hctx->driver_data = queue;
307         return 0;
308 }
309
310 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
311                 unsigned int hctx_idx)
312 {
313         struct nvme_rdma_ctrl *ctrl = data;
314         struct nvme_rdma_queue *queue = &ctrl->queues[0];
315
316         BUG_ON(hctx_idx != 0);
317
318         hctx->driver_data = queue;
319         return 0;
320 }
321
322 static void nvme_rdma_free_dev(struct kref *ref)
323 {
324         struct nvme_rdma_device *ndev =
325                 container_of(ref, struct nvme_rdma_device, ref);
326
327         mutex_lock(&device_list_mutex);
328         list_del(&ndev->entry);
329         mutex_unlock(&device_list_mutex);
330
331         ib_dealloc_pd(ndev->pd);
332         kfree(ndev);
333 }
334
335 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
336 {
337         kref_put(&dev->ref, nvme_rdma_free_dev);
338 }
339
340 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
341 {
342         return kref_get_unless_zero(&dev->ref);
343 }
344
345 static struct nvme_rdma_device *
346 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
347 {
348         struct nvme_rdma_device *ndev;
349
350         mutex_lock(&device_list_mutex);
351         list_for_each_entry(ndev, &device_list, entry) {
352                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
353                     nvme_rdma_dev_get(ndev))
354                         goto out_unlock;
355         }
356
357         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
358         if (!ndev)
359                 goto out_err;
360
361         ndev->dev = cm_id->device;
362         kref_init(&ndev->ref);
363
364         ndev->pd = ib_alloc_pd(ndev->dev,
365                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
366         if (IS_ERR(ndev->pd))
367                 goto out_free_dev;
368
369         if (!(ndev->dev->attrs.device_cap_flags &
370               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
371                 dev_err(&ndev->dev->dev,
372                         "Memory registrations not supported.\n");
373                 goto out_free_pd;
374         }
375
376         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
377                                         ndev->dev->attrs.max_send_sge - 1);
378         list_add(&ndev->entry, &device_list);
379 out_unlock:
380         mutex_unlock(&device_list_mutex);
381         return ndev;
382
383 out_free_pd:
384         ib_dealloc_pd(ndev->pd);
385 out_free_dev:
386         kfree(ndev);
387 out_err:
388         mutex_unlock(&device_list_mutex);
389         return NULL;
390 }
391
392 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
393 {
394         struct nvme_rdma_device *dev;
395         struct ib_device *ibdev;
396
397         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
398                 return;
399
400         dev = queue->device;
401         ibdev = dev->dev;
402
403         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
404
405         /*
406          * The cm_id object might have been destroyed during RDMA connection
407          * establishment error flow to avoid getting other cma events, thus
408          * the destruction of the QP shouldn't use rdma_cm API.
409          */
410         ib_destroy_qp(queue->qp);
411         ib_free_cq(queue->ib_cq);
412
413         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
414                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
415
416         nvme_rdma_dev_put(dev);
417 }
418
419 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
420 {
421         return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
422                      ibdev->attrs.max_fast_reg_page_list_len - 1);
423 }
424
425 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
426 {
427         struct ib_device *ibdev;
428         const int send_wr_factor = 3;                   /* MR, SEND, INV */
429         const int cq_factor = send_wr_factor + 1;       /* + RECV */
430         int comp_vector, idx = nvme_rdma_queue_idx(queue);
431         enum ib_poll_context poll_ctx;
432         int ret, pages_per_mr;
433
434         queue->device = nvme_rdma_find_get_device(queue->cm_id);
435         if (!queue->device) {
436                 dev_err(queue->cm_id->device->dev.parent,
437                         "no client data found!\n");
438                 return -ECONNREFUSED;
439         }
440         ibdev = queue->device->dev;
441
442         /*
443          * Spread I/O queues completion vectors according their queue index.
444          * Admin queues can always go on completion vector 0.
445          */
446         comp_vector = idx == 0 ? idx : idx - 1;
447
448         /* Polling queues need direct cq polling context */
449         if (nvme_rdma_poll_queue(queue))
450                 poll_ctx = IB_POLL_DIRECT;
451         else
452                 poll_ctx = IB_POLL_SOFTIRQ;
453
454         /* +1 for ib_stop_cq */
455         queue->ib_cq = ib_alloc_cq(ibdev, queue,
456                                 cq_factor * queue->queue_size + 1,
457                                 comp_vector, poll_ctx);
458         if (IS_ERR(queue->ib_cq)) {
459                 ret = PTR_ERR(queue->ib_cq);
460                 goto out_put_dev;
461         }
462
463         ret = nvme_rdma_create_qp(queue, send_wr_factor);
464         if (ret)
465                 goto out_destroy_ib_cq;
466
467         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
468                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
469         if (!queue->rsp_ring) {
470                 ret = -ENOMEM;
471                 goto out_destroy_qp;
472         }
473
474         /*
475          * Currently we don't use SG_GAPS MR's so if the first entry is
476          * misaligned we'll end up using two entries for a single data page,
477          * so one additional entry is required.
478          */
479         pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev) + 1;
480         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
481                               queue->queue_size,
482                               IB_MR_TYPE_MEM_REG,
483                               pages_per_mr, 0);
484         if (ret) {
485                 dev_err(queue->ctrl->ctrl.device,
486                         "failed to initialize MR pool sized %d for QID %d\n",
487                         queue->queue_size, idx);
488                 goto out_destroy_ring;
489         }
490
491         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
492
493         return 0;
494
495 out_destroy_ring:
496         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
497                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
498 out_destroy_qp:
499         rdma_destroy_qp(queue->cm_id);
500 out_destroy_ib_cq:
501         ib_free_cq(queue->ib_cq);
502 out_put_dev:
503         nvme_rdma_dev_put(queue->device);
504         return ret;
505 }
506
507 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
508                 int idx, size_t queue_size)
509 {
510         struct nvme_rdma_queue *queue;
511         struct sockaddr *src_addr = NULL;
512         int ret;
513
514         queue = &ctrl->queues[idx];
515         queue->ctrl = ctrl;
516         init_completion(&queue->cm_done);
517
518         if (idx > 0)
519                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
520         else
521                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
522
523         queue->queue_size = queue_size;
524
525         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
526                         RDMA_PS_TCP, IB_QPT_RC);
527         if (IS_ERR(queue->cm_id)) {
528                 dev_info(ctrl->ctrl.device,
529                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
530                 return PTR_ERR(queue->cm_id);
531         }
532
533         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
534                 src_addr = (struct sockaddr *)&ctrl->src_addr;
535
536         queue->cm_error = -ETIMEDOUT;
537         ret = rdma_resolve_addr(queue->cm_id, src_addr,
538                         (struct sockaddr *)&ctrl->addr,
539                         NVME_RDMA_CONNECT_TIMEOUT_MS);
540         if (ret) {
541                 dev_info(ctrl->ctrl.device,
542                         "rdma_resolve_addr failed (%d).\n", ret);
543                 goto out_destroy_cm_id;
544         }
545
546         ret = nvme_rdma_wait_for_cm(queue);
547         if (ret) {
548                 dev_info(ctrl->ctrl.device,
549                         "rdma connection establishment failed (%d)\n", ret);
550                 goto out_destroy_cm_id;
551         }
552
553         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
554
555         return 0;
556
557 out_destroy_cm_id:
558         rdma_destroy_id(queue->cm_id);
559         nvme_rdma_destroy_queue_ib(queue);
560         return ret;
561 }
562
563 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
564 {
565         rdma_disconnect(queue->cm_id);
566         ib_drain_qp(queue->qp);
567 }
568
569 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
570 {
571         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
572                 return;
573         __nvme_rdma_stop_queue(queue);
574 }
575
576 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
577 {
578         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
579                 return;
580
581         nvme_rdma_destroy_queue_ib(queue);
582         rdma_destroy_id(queue->cm_id);
583 }
584
585 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
586 {
587         int i;
588
589         for (i = 1; i < ctrl->ctrl.queue_count; i++)
590                 nvme_rdma_free_queue(&ctrl->queues[i]);
591 }
592
593 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
594 {
595         int i;
596
597         for (i = 1; i < ctrl->ctrl.queue_count; i++)
598                 nvme_rdma_stop_queue(&ctrl->queues[i]);
599 }
600
601 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
602 {
603         struct nvme_rdma_queue *queue = &ctrl->queues[idx];
604         bool poll = nvme_rdma_poll_queue(queue);
605         int ret;
606
607         if (idx)
608                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
609         else
610                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
611
612         if (!ret) {
613                 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
614         } else {
615                 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
616                         __nvme_rdma_stop_queue(queue);
617                 dev_info(ctrl->ctrl.device,
618                         "failed to connect queue: %d ret=%d\n", idx, ret);
619         }
620         return ret;
621 }
622
623 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
624 {
625         int i, ret = 0;
626
627         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
628                 ret = nvme_rdma_start_queue(ctrl, i);
629                 if (ret)
630                         goto out_stop_queues;
631         }
632
633         return 0;
634
635 out_stop_queues:
636         for (i--; i >= 1; i--)
637                 nvme_rdma_stop_queue(&ctrl->queues[i]);
638         return ret;
639 }
640
641 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
642 {
643         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
644         struct ib_device *ibdev = ctrl->device->dev;
645         unsigned int nr_io_queues, nr_default_queues;
646         unsigned int nr_read_queues, nr_poll_queues;
647         int i, ret;
648
649         nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
650                                 min(opts->nr_io_queues, num_online_cpus()));
651         nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
652                                 min(opts->nr_write_queues, num_online_cpus()));
653         nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
654         nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
655
656         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
657         if (ret)
658                 return ret;
659
660         ctrl->ctrl.queue_count = nr_io_queues + 1;
661         if (ctrl->ctrl.queue_count < 2)
662                 return 0;
663
664         dev_info(ctrl->ctrl.device,
665                 "creating %d I/O queues.\n", nr_io_queues);
666
667         if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
668                 /*
669                  * separate read/write queues
670                  * hand out dedicated default queues only after we have
671                  * sufficient read queues.
672                  */
673                 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
674                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
675                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
676                         min(nr_default_queues, nr_io_queues);
677                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
678         } else {
679                 /*
680                  * shared read/write queues
681                  * either no write queues were requested, or we don't have
682                  * sufficient queue count to have dedicated default queues.
683                  */
684                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
685                         min(nr_read_queues, nr_io_queues);
686                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
687         }
688
689         if (opts->nr_poll_queues && nr_io_queues) {
690                 /* map dedicated poll queues only if we have queues left */
691                 ctrl->io_queues[HCTX_TYPE_POLL] =
692                         min(nr_poll_queues, nr_io_queues);
693         }
694
695         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
696                 ret = nvme_rdma_alloc_queue(ctrl, i,
697                                 ctrl->ctrl.sqsize + 1);
698                 if (ret)
699                         goto out_free_queues;
700         }
701
702         return 0;
703
704 out_free_queues:
705         for (i--; i >= 1; i--)
706                 nvme_rdma_free_queue(&ctrl->queues[i]);
707
708         return ret;
709 }
710
711 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
712                 bool admin)
713 {
714         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
715         struct blk_mq_tag_set *set;
716         int ret;
717
718         if (admin) {
719                 set = &ctrl->admin_tag_set;
720                 memset(set, 0, sizeof(*set));
721                 set->ops = &nvme_rdma_admin_mq_ops;
722                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
723                 set->reserved_tags = 2; /* connect + keep-alive */
724                 set->numa_node = nctrl->numa_node;
725                 set->cmd_size = sizeof(struct nvme_rdma_request) +
726                         NVME_INLINE_SG_CNT * sizeof(struct scatterlist);
727                 set->driver_data = ctrl;
728                 set->nr_hw_queues = 1;
729                 set->timeout = ADMIN_TIMEOUT;
730                 set->flags = BLK_MQ_F_NO_SCHED;
731         } else {
732                 set = &ctrl->tag_set;
733                 memset(set, 0, sizeof(*set));
734                 set->ops = &nvme_rdma_mq_ops;
735                 set->queue_depth = nctrl->sqsize + 1;
736                 set->reserved_tags = 1; /* fabric connect */
737                 set->numa_node = nctrl->numa_node;
738                 set->flags = BLK_MQ_F_SHOULD_MERGE;
739                 set->cmd_size = sizeof(struct nvme_rdma_request) +
740                         NVME_INLINE_SG_CNT * sizeof(struct scatterlist);
741                 set->driver_data = ctrl;
742                 set->nr_hw_queues = nctrl->queue_count - 1;
743                 set->timeout = NVME_IO_TIMEOUT;
744                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
745         }
746
747         ret = blk_mq_alloc_tag_set(set);
748         if (ret)
749                 return ERR_PTR(ret);
750
751         return set;
752 }
753
754 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
755                 bool remove)
756 {
757         if (remove) {
758                 blk_cleanup_queue(ctrl->ctrl.admin_q);
759                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
760                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
761         }
762         if (ctrl->async_event_sqe.data) {
763                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
764                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
765                 ctrl->async_event_sqe.data = NULL;
766         }
767         nvme_rdma_free_queue(&ctrl->queues[0]);
768 }
769
770 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
771                 bool new)
772 {
773         int error;
774
775         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
776         if (error)
777                 return error;
778
779         ctrl->device = ctrl->queues[0].device;
780         ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
781
782         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
783
784         /*
785          * Bind the async event SQE DMA mapping to the admin queue lifetime.
786          * It's safe, since any chage in the underlying RDMA device will issue
787          * error recovery and queue re-creation.
788          */
789         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
790                         sizeof(struct nvme_command), DMA_TO_DEVICE);
791         if (error)
792                 goto out_free_queue;
793
794         if (new) {
795                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
796                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
797                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
798                         goto out_free_async_qe;
799                 }
800
801                 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
802                 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
803                         error = PTR_ERR(ctrl->ctrl.fabrics_q);
804                         goto out_free_tagset;
805                 }
806
807                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
808                 if (IS_ERR(ctrl->ctrl.admin_q)) {
809                         error = PTR_ERR(ctrl->ctrl.admin_q);
810                         goto out_cleanup_fabrics_q;
811                 }
812         }
813
814         error = nvme_rdma_start_queue(ctrl, 0);
815         if (error)
816                 goto out_cleanup_queue;
817
818         error = nvme_enable_ctrl(&ctrl->ctrl);
819         if (error)
820                 goto out_stop_queue;
821
822         ctrl->ctrl.max_segments = ctrl->max_fr_pages;
823         ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
824
825         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
826
827         error = nvme_init_identify(&ctrl->ctrl);
828         if (error)
829                 goto out_stop_queue;
830
831         return 0;
832
833 out_stop_queue:
834         nvme_rdma_stop_queue(&ctrl->queues[0]);
835 out_cleanup_queue:
836         if (new)
837                 blk_cleanup_queue(ctrl->ctrl.admin_q);
838 out_cleanup_fabrics_q:
839         if (new)
840                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
841 out_free_tagset:
842         if (new)
843                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
844 out_free_async_qe:
845         if (ctrl->async_event_sqe.data) {
846                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
847                         sizeof(struct nvme_command), DMA_TO_DEVICE);
848                 ctrl->async_event_sqe.data = NULL;
849         }
850 out_free_queue:
851         nvme_rdma_free_queue(&ctrl->queues[0]);
852         return error;
853 }
854
855 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
856                 bool remove)
857 {
858         if (remove) {
859                 blk_cleanup_queue(ctrl->ctrl.connect_q);
860                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
861         }
862         nvme_rdma_free_io_queues(ctrl);
863 }
864
865 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
866 {
867         int ret;
868
869         ret = nvme_rdma_alloc_io_queues(ctrl);
870         if (ret)
871                 return ret;
872
873         if (new) {
874                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
875                 if (IS_ERR(ctrl->ctrl.tagset)) {
876                         ret = PTR_ERR(ctrl->ctrl.tagset);
877                         goto out_free_io_queues;
878                 }
879
880                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
881                 if (IS_ERR(ctrl->ctrl.connect_q)) {
882                         ret = PTR_ERR(ctrl->ctrl.connect_q);
883                         goto out_free_tag_set;
884                 }
885         } else {
886                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
887                         ctrl->ctrl.queue_count - 1);
888         }
889
890         ret = nvme_rdma_start_io_queues(ctrl);
891         if (ret)
892                 goto out_cleanup_connect_q;
893
894         return 0;
895
896 out_cleanup_connect_q:
897         if (new)
898                 blk_cleanup_queue(ctrl->ctrl.connect_q);
899 out_free_tag_set:
900         if (new)
901                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
902 out_free_io_queues:
903         nvme_rdma_free_io_queues(ctrl);
904         return ret;
905 }
906
907 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
908                 bool remove)
909 {
910         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
911         nvme_rdma_stop_queue(&ctrl->queues[0]);
912         if (ctrl->ctrl.admin_tagset) {
913                 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
914                         nvme_cancel_request, &ctrl->ctrl);
915                 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
916         }
917         if (remove)
918                 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
919         nvme_rdma_destroy_admin_queue(ctrl, remove);
920 }
921
922 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
923                 bool remove)
924 {
925         if (ctrl->ctrl.queue_count > 1) {
926                 nvme_stop_queues(&ctrl->ctrl);
927                 nvme_rdma_stop_io_queues(ctrl);
928                 if (ctrl->ctrl.tagset) {
929                         blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
930                                 nvme_cancel_request, &ctrl->ctrl);
931                         blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
932                 }
933                 if (remove)
934                         nvme_start_queues(&ctrl->ctrl);
935                 nvme_rdma_destroy_io_queues(ctrl, remove);
936         }
937 }
938
939 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
940 {
941         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
942
943         if (list_empty(&ctrl->list))
944                 goto free_ctrl;
945
946         mutex_lock(&nvme_rdma_ctrl_mutex);
947         list_del(&ctrl->list);
948         mutex_unlock(&nvme_rdma_ctrl_mutex);
949
950         nvmf_free_options(nctrl->opts);
951 free_ctrl:
952         kfree(ctrl->queues);
953         kfree(ctrl);
954 }
955
956 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
957 {
958         /* If we are resetting/deleting then do nothing */
959         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
960                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
961                         ctrl->ctrl.state == NVME_CTRL_LIVE);
962                 return;
963         }
964
965         if (nvmf_should_reconnect(&ctrl->ctrl)) {
966                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
967                         ctrl->ctrl.opts->reconnect_delay);
968                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
969                                 ctrl->ctrl.opts->reconnect_delay * HZ);
970         } else {
971                 nvme_delete_ctrl(&ctrl->ctrl);
972         }
973 }
974
975 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
976 {
977         int ret = -EINVAL;
978         bool changed;
979
980         ret = nvme_rdma_configure_admin_queue(ctrl, new);
981         if (ret)
982                 return ret;
983
984         if (ctrl->ctrl.icdoff) {
985                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
986                 goto destroy_admin;
987         }
988
989         if (!(ctrl->ctrl.sgls & (1 << 2))) {
990                 dev_err(ctrl->ctrl.device,
991                         "Mandatory keyed sgls are not supported!\n");
992                 goto destroy_admin;
993         }
994
995         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
996                 dev_warn(ctrl->ctrl.device,
997                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
998                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
999         }
1000
1001         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1002                 dev_warn(ctrl->ctrl.device,
1003                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1004                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1005                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1006         }
1007
1008         if (ctrl->ctrl.sgls & (1 << 20))
1009                 ctrl->use_inline_data = true;
1010
1011         if (ctrl->ctrl.queue_count > 1) {
1012                 ret = nvme_rdma_configure_io_queues(ctrl, new);
1013                 if (ret)
1014                         goto destroy_admin;
1015         }
1016
1017         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1018         if (!changed) {
1019                 /*
1020                  * state change failure is ok if we're in DELETING state,
1021                  * unless we're during creation of a new controller to
1022                  * avoid races with teardown flow.
1023                  */
1024                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1025                 WARN_ON_ONCE(new);
1026                 ret = -EINVAL;
1027                 goto destroy_io;
1028         }
1029
1030         nvme_start_ctrl(&ctrl->ctrl);
1031         return 0;
1032
1033 destroy_io:
1034         if (ctrl->ctrl.queue_count > 1)
1035                 nvme_rdma_destroy_io_queues(ctrl, new);
1036 destroy_admin:
1037         nvme_rdma_stop_queue(&ctrl->queues[0]);
1038         nvme_rdma_destroy_admin_queue(ctrl, new);
1039         return ret;
1040 }
1041
1042 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1043 {
1044         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1045                         struct nvme_rdma_ctrl, reconnect_work);
1046
1047         ++ctrl->ctrl.nr_reconnects;
1048
1049         if (nvme_rdma_setup_ctrl(ctrl, false))
1050                 goto requeue;
1051
1052         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1053                         ctrl->ctrl.nr_reconnects);
1054
1055         ctrl->ctrl.nr_reconnects = 0;
1056
1057         return;
1058
1059 requeue:
1060         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1061                         ctrl->ctrl.nr_reconnects);
1062         nvme_rdma_reconnect_or_remove(ctrl);
1063 }
1064
1065 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1066 {
1067         struct nvme_rdma_ctrl *ctrl = container_of(work,
1068                         struct nvme_rdma_ctrl, err_work);
1069
1070         nvme_stop_keep_alive(&ctrl->ctrl);
1071         nvme_rdma_teardown_io_queues(ctrl, false);
1072         nvme_start_queues(&ctrl->ctrl);
1073         nvme_rdma_teardown_admin_queue(ctrl, false);
1074         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1075
1076         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1077                 /* state change failure is ok if we're in DELETING state */
1078                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1079                 return;
1080         }
1081
1082         nvme_rdma_reconnect_or_remove(ctrl);
1083 }
1084
1085 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1086 {
1087         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1088                 return;
1089
1090         queue_work(nvme_reset_wq, &ctrl->err_work);
1091 }
1092
1093 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1094                 const char *op)
1095 {
1096         struct nvme_rdma_queue *queue = cq->cq_context;
1097         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1098
1099         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1100                 dev_info(ctrl->ctrl.device,
1101                              "%s for CQE 0x%p failed with status %s (%d)\n",
1102                              op, wc->wr_cqe,
1103                              ib_wc_status_msg(wc->status), wc->status);
1104         nvme_rdma_error_recovery(ctrl);
1105 }
1106
1107 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1108 {
1109         if (unlikely(wc->status != IB_WC_SUCCESS))
1110                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1111 }
1112
1113 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1114 {
1115         struct nvme_rdma_request *req =
1116                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1117         struct request *rq = blk_mq_rq_from_pdu(req);
1118
1119         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1120                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1121                 return;
1122         }
1123
1124         if (refcount_dec_and_test(&req->ref))
1125                 nvme_end_request(rq, req->status, req->result);
1126
1127 }
1128
1129 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1130                 struct nvme_rdma_request *req)
1131 {
1132         struct ib_send_wr wr = {
1133                 .opcode             = IB_WR_LOCAL_INV,
1134                 .next               = NULL,
1135                 .num_sge            = 0,
1136                 .send_flags         = IB_SEND_SIGNALED,
1137                 .ex.invalidate_rkey = req->mr->rkey,
1138         };
1139
1140         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1141         wr.wr_cqe = &req->reg_cqe;
1142
1143         return ib_post_send(queue->qp, &wr, NULL);
1144 }
1145
1146 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1147                 struct request *rq)
1148 {
1149         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1150         struct nvme_rdma_device *dev = queue->device;
1151         struct ib_device *ibdev = dev->dev;
1152
1153         if (!blk_rq_nr_phys_segments(rq))
1154                 return;
1155
1156         if (req->mr) {
1157                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1158                 req->mr = NULL;
1159         }
1160
1161         ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1162         sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT);
1163 }
1164
1165 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1166 {
1167         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1168
1169         sg->addr = 0;
1170         put_unaligned_le24(0, sg->length);
1171         put_unaligned_le32(0, sg->key);
1172         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1173         return 0;
1174 }
1175
1176 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1177                 struct nvme_rdma_request *req, struct nvme_command *c,
1178                 int count)
1179 {
1180         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1181         struct scatterlist *sgl = req->sg_table.sgl;
1182         struct ib_sge *sge = &req->sge[1];
1183         u32 len = 0;
1184         int i;
1185
1186         for (i = 0; i < count; i++, sgl++, sge++) {
1187                 sge->addr = sg_dma_address(sgl);
1188                 sge->length = sg_dma_len(sgl);
1189                 sge->lkey = queue->device->pd->local_dma_lkey;
1190                 len += sge->length;
1191         }
1192
1193         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1194         sg->length = cpu_to_le32(len);
1195         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1196
1197         req->num_sge += count;
1198         return 0;
1199 }
1200
1201 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1202                 struct nvme_rdma_request *req, struct nvme_command *c)
1203 {
1204         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1205
1206         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1207         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1208         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1209         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1210         return 0;
1211 }
1212
1213 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1214                 struct nvme_rdma_request *req, struct nvme_command *c,
1215                 int count)
1216 {
1217         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1218         int nr;
1219
1220         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1221         if (WARN_ON_ONCE(!req->mr))
1222                 return -EAGAIN;
1223
1224         /*
1225          * Align the MR to a 4K page size to match the ctrl page size and
1226          * the block virtual boundary.
1227          */
1228         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1229         if (unlikely(nr < count)) {
1230                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1231                 req->mr = NULL;
1232                 if (nr < 0)
1233                         return nr;
1234                 return -EINVAL;
1235         }
1236
1237         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1238
1239         req->reg_cqe.done = nvme_rdma_memreg_done;
1240         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1241         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1242         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1243         req->reg_wr.wr.num_sge = 0;
1244         req->reg_wr.mr = req->mr;
1245         req->reg_wr.key = req->mr->rkey;
1246         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1247                              IB_ACCESS_REMOTE_READ |
1248                              IB_ACCESS_REMOTE_WRITE;
1249
1250         sg->addr = cpu_to_le64(req->mr->iova);
1251         put_unaligned_le24(req->mr->length, sg->length);
1252         put_unaligned_le32(req->mr->rkey, sg->key);
1253         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1254                         NVME_SGL_FMT_INVALIDATE;
1255
1256         return 0;
1257 }
1258
1259 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1260                 struct request *rq, struct nvme_command *c)
1261 {
1262         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1263         struct nvme_rdma_device *dev = queue->device;
1264         struct ib_device *ibdev = dev->dev;
1265         int count, ret;
1266
1267         req->num_sge = 1;
1268         refcount_set(&req->ref, 2); /* send and recv completions */
1269
1270         c->common.flags |= NVME_CMD_SGL_METABUF;
1271
1272         if (!blk_rq_nr_phys_segments(rq))
1273                 return nvme_rdma_set_sg_null(c);
1274
1275         req->sg_table.sgl = req->first_sgl;
1276         ret = sg_alloc_table_chained(&req->sg_table,
1277                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
1278                         NVME_INLINE_SG_CNT);
1279         if (ret)
1280                 return -ENOMEM;
1281
1282         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1283
1284         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1285                               rq_dma_dir(rq));
1286         if (unlikely(count <= 0)) {
1287                 ret = -EIO;
1288                 goto out_free_table;
1289         }
1290
1291         if (count <= dev->num_inline_segments) {
1292                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1293                     queue->ctrl->use_inline_data &&
1294                     blk_rq_payload_bytes(rq) <=
1295                                 nvme_rdma_inline_data_size(queue)) {
1296                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1297                         goto out;
1298                 }
1299
1300                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1301                         ret = nvme_rdma_map_sg_single(queue, req, c);
1302                         goto out;
1303                 }
1304         }
1305
1306         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1307 out:
1308         if (unlikely(ret))
1309                 goto out_unmap_sg;
1310
1311         return 0;
1312
1313 out_unmap_sg:
1314         ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1315 out_free_table:
1316         sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT);
1317         return ret;
1318 }
1319
1320 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1321 {
1322         struct nvme_rdma_qe *qe =
1323                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1324         struct nvme_rdma_request *req =
1325                 container_of(qe, struct nvme_rdma_request, sqe);
1326         struct request *rq = blk_mq_rq_from_pdu(req);
1327
1328         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1329                 nvme_rdma_wr_error(cq, wc, "SEND");
1330                 return;
1331         }
1332
1333         if (refcount_dec_and_test(&req->ref))
1334                 nvme_end_request(rq, req->status, req->result);
1335 }
1336
1337 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1338                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1339                 struct ib_send_wr *first)
1340 {
1341         struct ib_send_wr wr;
1342         int ret;
1343
1344         sge->addr   = qe->dma;
1345         sge->length = sizeof(struct nvme_command);
1346         sge->lkey   = queue->device->pd->local_dma_lkey;
1347
1348         wr.next       = NULL;
1349         wr.wr_cqe     = &qe->cqe;
1350         wr.sg_list    = sge;
1351         wr.num_sge    = num_sge;
1352         wr.opcode     = IB_WR_SEND;
1353         wr.send_flags = IB_SEND_SIGNALED;
1354
1355         if (first)
1356                 first->next = &wr;
1357         else
1358                 first = &wr;
1359
1360         ret = ib_post_send(queue->qp, first, NULL);
1361         if (unlikely(ret)) {
1362                 dev_err(queue->ctrl->ctrl.device,
1363                              "%s failed with error code %d\n", __func__, ret);
1364         }
1365         return ret;
1366 }
1367
1368 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1369                 struct nvme_rdma_qe *qe)
1370 {
1371         struct ib_recv_wr wr;
1372         struct ib_sge list;
1373         int ret;
1374
1375         list.addr   = qe->dma;
1376         list.length = sizeof(struct nvme_completion);
1377         list.lkey   = queue->device->pd->local_dma_lkey;
1378
1379         qe->cqe.done = nvme_rdma_recv_done;
1380
1381         wr.next     = NULL;
1382         wr.wr_cqe   = &qe->cqe;
1383         wr.sg_list  = &list;
1384         wr.num_sge  = 1;
1385
1386         ret = ib_post_recv(queue->qp, &wr, NULL);
1387         if (unlikely(ret)) {
1388                 dev_err(queue->ctrl->ctrl.device,
1389                         "%s failed with error code %d\n", __func__, ret);
1390         }
1391         return ret;
1392 }
1393
1394 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1395 {
1396         u32 queue_idx = nvme_rdma_queue_idx(queue);
1397
1398         if (queue_idx == 0)
1399                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1400         return queue->ctrl->tag_set.tags[queue_idx - 1];
1401 }
1402
1403 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1404 {
1405         if (unlikely(wc->status != IB_WC_SUCCESS))
1406                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1407 }
1408
1409 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1410 {
1411         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1412         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1413         struct ib_device *dev = queue->device->dev;
1414         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1415         struct nvme_command *cmd = sqe->data;
1416         struct ib_sge sge;
1417         int ret;
1418
1419         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1420
1421         memset(cmd, 0, sizeof(*cmd));
1422         cmd->common.opcode = nvme_admin_async_event;
1423         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1424         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1425         nvme_rdma_set_sg_null(cmd);
1426
1427         sqe->cqe.done = nvme_rdma_async_done;
1428
1429         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1430                         DMA_TO_DEVICE);
1431
1432         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1433         WARN_ON_ONCE(ret);
1434 }
1435
1436 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1437                 struct nvme_completion *cqe, struct ib_wc *wc)
1438 {
1439         struct request *rq;
1440         struct nvme_rdma_request *req;
1441
1442         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1443         if (!rq) {
1444                 dev_err(queue->ctrl->ctrl.device,
1445                         "tag 0x%x on QP %#x not found\n",
1446                         cqe->command_id, queue->qp->qp_num);
1447                 nvme_rdma_error_recovery(queue->ctrl);
1448                 return;
1449         }
1450         req = blk_mq_rq_to_pdu(rq);
1451
1452         req->status = cqe->status;
1453         req->result = cqe->result;
1454
1455         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1456                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1457                         dev_err(queue->ctrl->ctrl.device,
1458                                 "Bogus remote invalidation for rkey %#x\n",
1459                                 req->mr->rkey);
1460                         nvme_rdma_error_recovery(queue->ctrl);
1461                 }
1462         } else if (req->mr) {
1463                 int ret;
1464
1465                 ret = nvme_rdma_inv_rkey(queue, req);
1466                 if (unlikely(ret < 0)) {
1467                         dev_err(queue->ctrl->ctrl.device,
1468                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1469                                 req->mr->rkey, ret);
1470                         nvme_rdma_error_recovery(queue->ctrl);
1471                 }
1472                 /* the local invalidation completion will end the request */
1473                 return;
1474         }
1475
1476         if (refcount_dec_and_test(&req->ref))
1477                 nvme_end_request(rq, req->status, req->result);
1478 }
1479
1480 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1481 {
1482         struct nvme_rdma_qe *qe =
1483                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1484         struct nvme_rdma_queue *queue = cq->cq_context;
1485         struct ib_device *ibdev = queue->device->dev;
1486         struct nvme_completion *cqe = qe->data;
1487         const size_t len = sizeof(struct nvme_completion);
1488
1489         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1490                 nvme_rdma_wr_error(cq, wc, "RECV");
1491                 return;
1492         }
1493
1494         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1495         /*
1496          * AEN requests are special as they don't time out and can
1497          * survive any kind of queue freeze and often don't respond to
1498          * aborts.  We don't even bother to allocate a struct request
1499          * for them but rather special case them here.
1500          */
1501         if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1502                                      cqe->command_id)))
1503                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1504                                 &cqe->result);
1505         else
1506                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1507         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1508
1509         nvme_rdma_post_recv(queue, qe);
1510 }
1511
1512 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1513 {
1514         int ret, i;
1515
1516         for (i = 0; i < queue->queue_size; i++) {
1517                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1518                 if (ret)
1519                         goto out_destroy_queue_ib;
1520         }
1521
1522         return 0;
1523
1524 out_destroy_queue_ib:
1525         nvme_rdma_destroy_queue_ib(queue);
1526         return ret;
1527 }
1528
1529 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1530                 struct rdma_cm_event *ev)
1531 {
1532         struct rdma_cm_id *cm_id = queue->cm_id;
1533         int status = ev->status;
1534         const char *rej_msg;
1535         const struct nvme_rdma_cm_rej *rej_data;
1536         u8 rej_data_len;
1537
1538         rej_msg = rdma_reject_msg(cm_id, status);
1539         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1540
1541         if (rej_data && rej_data_len >= sizeof(u16)) {
1542                 u16 sts = le16_to_cpu(rej_data->sts);
1543
1544                 dev_err(queue->ctrl->ctrl.device,
1545                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1546                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1547         } else {
1548                 dev_err(queue->ctrl->ctrl.device,
1549                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1550         }
1551
1552         return -ECONNRESET;
1553 }
1554
1555 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1556 {
1557         struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1558         int ret;
1559
1560         ret = nvme_rdma_create_queue_ib(queue);
1561         if (ret)
1562                 return ret;
1563
1564         if (ctrl->opts->tos >= 0)
1565                 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1566         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1567         if (ret) {
1568                 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1569                         queue->cm_error);
1570                 goto out_destroy_queue;
1571         }
1572
1573         return 0;
1574
1575 out_destroy_queue:
1576         nvme_rdma_destroy_queue_ib(queue);
1577         return ret;
1578 }
1579
1580 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1581 {
1582         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1583         struct rdma_conn_param param = { };
1584         struct nvme_rdma_cm_req priv = { };
1585         int ret;
1586
1587         param.qp_num = queue->qp->qp_num;
1588         param.flow_control = 1;
1589
1590         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1591         /* maximum retry count */
1592         param.retry_count = 7;
1593         param.rnr_retry_count = 7;
1594         param.private_data = &priv;
1595         param.private_data_len = sizeof(priv);
1596
1597         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1598         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1599         /*
1600          * set the admin queue depth to the minimum size
1601          * specified by the Fabrics standard.
1602          */
1603         if (priv.qid == 0) {
1604                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1605                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1606         } else {
1607                 /*
1608                  * current interpretation of the fabrics spec
1609                  * is at minimum you make hrqsize sqsize+1, or a
1610                  * 1's based representation of sqsize.
1611                  */
1612                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1613                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1614         }
1615
1616         ret = rdma_connect(queue->cm_id, &param);
1617         if (ret) {
1618                 dev_err(ctrl->ctrl.device,
1619                         "rdma_connect failed (%d).\n", ret);
1620                 goto out_destroy_queue_ib;
1621         }
1622
1623         return 0;
1624
1625 out_destroy_queue_ib:
1626         nvme_rdma_destroy_queue_ib(queue);
1627         return ret;
1628 }
1629
1630 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1631                 struct rdma_cm_event *ev)
1632 {
1633         struct nvme_rdma_queue *queue = cm_id->context;
1634         int cm_error = 0;
1635
1636         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1637                 rdma_event_msg(ev->event), ev->event,
1638                 ev->status, cm_id);
1639
1640         switch (ev->event) {
1641         case RDMA_CM_EVENT_ADDR_RESOLVED:
1642                 cm_error = nvme_rdma_addr_resolved(queue);
1643                 break;
1644         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1645                 cm_error = nvme_rdma_route_resolved(queue);
1646                 break;
1647         case RDMA_CM_EVENT_ESTABLISHED:
1648                 queue->cm_error = nvme_rdma_conn_established(queue);
1649                 /* complete cm_done regardless of success/failure */
1650                 complete(&queue->cm_done);
1651                 return 0;
1652         case RDMA_CM_EVENT_REJECTED:
1653                 nvme_rdma_destroy_queue_ib(queue);
1654                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1655                 break;
1656         case RDMA_CM_EVENT_ROUTE_ERROR:
1657         case RDMA_CM_EVENT_CONNECT_ERROR:
1658         case RDMA_CM_EVENT_UNREACHABLE:
1659                 nvme_rdma_destroy_queue_ib(queue);
1660                 /* fall through */
1661         case RDMA_CM_EVENT_ADDR_ERROR:
1662                 dev_dbg(queue->ctrl->ctrl.device,
1663                         "CM error event %d\n", ev->event);
1664                 cm_error = -ECONNRESET;
1665                 break;
1666         case RDMA_CM_EVENT_DISCONNECTED:
1667         case RDMA_CM_EVENT_ADDR_CHANGE:
1668         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1669                 dev_dbg(queue->ctrl->ctrl.device,
1670                         "disconnect received - connection closed\n");
1671                 nvme_rdma_error_recovery(queue->ctrl);
1672                 break;
1673         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1674                 /* device removal is handled via the ib_client API */
1675                 break;
1676         default:
1677                 dev_err(queue->ctrl->ctrl.device,
1678                         "Unexpected RDMA CM event (%d)\n", ev->event);
1679                 nvme_rdma_error_recovery(queue->ctrl);
1680                 break;
1681         }
1682
1683         if (cm_error) {
1684                 queue->cm_error = cm_error;
1685                 complete(&queue->cm_done);
1686         }
1687
1688         return 0;
1689 }
1690
1691 static enum blk_eh_timer_return
1692 nvme_rdma_timeout(struct request *rq, bool reserved)
1693 {
1694         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1695         struct nvme_rdma_queue *queue = req->queue;
1696         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1697
1698         dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1699                  rq->tag, nvme_rdma_queue_idx(queue));
1700
1701         /*
1702          * Restart the timer if a controller reset is already scheduled. Any
1703          * timed out commands would be handled before entering the connecting
1704          * state.
1705          */
1706         if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
1707                 return BLK_EH_RESET_TIMER;
1708
1709         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1710                 /*
1711                  * Teardown immediately if controller times out while starting
1712                  * or we are already started error recovery. all outstanding
1713                  * requests are completed on shutdown, so we return BLK_EH_DONE.
1714                  */
1715                 flush_work(&ctrl->err_work);
1716                 nvme_rdma_teardown_io_queues(ctrl, false);
1717                 nvme_rdma_teardown_admin_queue(ctrl, false);
1718                 return BLK_EH_DONE;
1719         }
1720
1721         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1722         nvme_rdma_error_recovery(ctrl);
1723
1724         return BLK_EH_RESET_TIMER;
1725 }
1726
1727 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1728                 const struct blk_mq_queue_data *bd)
1729 {
1730         struct nvme_ns *ns = hctx->queue->queuedata;
1731         struct nvme_rdma_queue *queue = hctx->driver_data;
1732         struct request *rq = bd->rq;
1733         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1734         struct nvme_rdma_qe *sqe = &req->sqe;
1735         struct nvme_command *c = sqe->data;
1736         struct ib_device *dev;
1737         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1738         blk_status_t ret;
1739         int err;
1740
1741         WARN_ON_ONCE(rq->tag < 0);
1742
1743         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1744                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1745
1746         dev = queue->device->dev;
1747
1748         req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1749                                          sizeof(struct nvme_command),
1750                                          DMA_TO_DEVICE);
1751         err = ib_dma_mapping_error(dev, req->sqe.dma);
1752         if (unlikely(err))
1753                 return BLK_STS_RESOURCE;
1754
1755         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1756                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1757
1758         ret = nvme_setup_cmd(ns, rq, c);
1759         if (ret)
1760                 goto unmap_qe;
1761
1762         blk_mq_start_request(rq);
1763
1764         err = nvme_rdma_map_data(queue, rq, c);
1765         if (unlikely(err < 0)) {
1766                 dev_err(queue->ctrl->ctrl.device,
1767                              "Failed to map data (%d)\n", err);
1768                 goto err;
1769         }
1770
1771         sqe->cqe.done = nvme_rdma_send_done;
1772
1773         ib_dma_sync_single_for_device(dev, sqe->dma,
1774                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1775
1776         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1777                         req->mr ? &req->reg_wr.wr : NULL);
1778         if (unlikely(err))
1779                 goto err_unmap;
1780
1781         return BLK_STS_OK;
1782
1783 err_unmap:
1784         nvme_rdma_unmap_data(queue, rq);
1785 err:
1786         if (err == -ENOMEM || err == -EAGAIN)
1787                 ret = BLK_STS_RESOURCE;
1788         else
1789                 ret = BLK_STS_IOERR;
1790         nvme_cleanup_cmd(rq);
1791 unmap_qe:
1792         ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
1793                             DMA_TO_DEVICE);
1794         return ret;
1795 }
1796
1797 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1798 {
1799         struct nvme_rdma_queue *queue = hctx->driver_data;
1800
1801         return ib_process_cq_direct(queue->ib_cq, -1);
1802 }
1803
1804 static void nvme_rdma_complete_rq(struct request *rq)
1805 {
1806         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1807         struct nvme_rdma_queue *queue = req->queue;
1808         struct ib_device *ibdev = queue->device->dev;
1809
1810         nvme_rdma_unmap_data(queue, rq);
1811         ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
1812                             DMA_TO_DEVICE);
1813         nvme_complete_rq(rq);
1814 }
1815
1816 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1817 {
1818         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1819         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1820
1821         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
1822                 /* separate read/write queues */
1823                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1824                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1825                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1826                 set->map[HCTX_TYPE_READ].nr_queues =
1827                         ctrl->io_queues[HCTX_TYPE_READ];
1828                 set->map[HCTX_TYPE_READ].queue_offset =
1829                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1830         } else {
1831                 /* shared read/write queues */
1832                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1833                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1834                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1835                 set->map[HCTX_TYPE_READ].nr_queues =
1836                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1837                 set->map[HCTX_TYPE_READ].queue_offset = 0;
1838         }
1839         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1840                         ctrl->device->dev, 0);
1841         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1842                         ctrl->device->dev, 0);
1843
1844         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
1845                 /* map dedicated poll queues only if we have queues left */
1846                 set->map[HCTX_TYPE_POLL].nr_queues =
1847                                 ctrl->io_queues[HCTX_TYPE_POLL];
1848                 set->map[HCTX_TYPE_POLL].queue_offset =
1849                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1850                         ctrl->io_queues[HCTX_TYPE_READ];
1851                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1852         }
1853
1854         dev_info(ctrl->ctrl.device,
1855                 "mapped %d/%d/%d default/read/poll queues.\n",
1856                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
1857                 ctrl->io_queues[HCTX_TYPE_READ],
1858                 ctrl->io_queues[HCTX_TYPE_POLL]);
1859
1860         return 0;
1861 }
1862
1863 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1864         .queue_rq       = nvme_rdma_queue_rq,
1865         .complete       = nvme_rdma_complete_rq,
1866         .init_request   = nvme_rdma_init_request,
1867         .exit_request   = nvme_rdma_exit_request,
1868         .init_hctx      = nvme_rdma_init_hctx,
1869         .timeout        = nvme_rdma_timeout,
1870         .map_queues     = nvme_rdma_map_queues,
1871         .poll           = nvme_rdma_poll,
1872 };
1873
1874 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1875         .queue_rq       = nvme_rdma_queue_rq,
1876         .complete       = nvme_rdma_complete_rq,
1877         .init_request   = nvme_rdma_init_request,
1878         .exit_request   = nvme_rdma_exit_request,
1879         .init_hctx      = nvme_rdma_init_admin_hctx,
1880         .timeout        = nvme_rdma_timeout,
1881 };
1882
1883 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1884 {
1885         cancel_work_sync(&ctrl->err_work);
1886         cancel_delayed_work_sync(&ctrl->reconnect_work);
1887
1888         nvme_rdma_teardown_io_queues(ctrl, shutdown);
1889         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1890         if (shutdown)
1891                 nvme_shutdown_ctrl(&ctrl->ctrl);
1892         else
1893                 nvme_disable_ctrl(&ctrl->ctrl);
1894         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1895 }
1896
1897 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1898 {
1899         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1900 }
1901
1902 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1903 {
1904         struct nvme_rdma_ctrl *ctrl =
1905                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1906
1907         nvme_stop_ctrl(&ctrl->ctrl);
1908         nvme_rdma_shutdown_ctrl(ctrl, false);
1909
1910         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1911                 /* state change failure should never happen */
1912                 WARN_ON_ONCE(1);
1913                 return;
1914         }
1915
1916         if (nvme_rdma_setup_ctrl(ctrl, false))
1917                 goto out_fail;
1918
1919         return;
1920
1921 out_fail:
1922         ++ctrl->ctrl.nr_reconnects;
1923         nvme_rdma_reconnect_or_remove(ctrl);
1924 }
1925
1926 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1927         .name                   = "rdma",
1928         .module                 = THIS_MODULE,
1929         .flags                  = NVME_F_FABRICS,
1930         .reg_read32             = nvmf_reg_read32,
1931         .reg_read64             = nvmf_reg_read64,
1932         .reg_write32            = nvmf_reg_write32,
1933         .free_ctrl              = nvme_rdma_free_ctrl,
1934         .submit_async_event     = nvme_rdma_submit_async_event,
1935         .delete_ctrl            = nvme_rdma_delete_ctrl,
1936         .get_address            = nvmf_get_address,
1937 };
1938
1939 /*
1940  * Fails a connection request if it matches an existing controller
1941  * (association) with the same tuple:
1942  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1943  *
1944  * if local address is not specified in the request, it will match an
1945  * existing controller with all the other parameters the same and no
1946  * local port address specified as well.
1947  *
1948  * The ports don't need to be compared as they are intrinsically
1949  * already matched by the port pointers supplied.
1950  */
1951 static bool
1952 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1953 {
1954         struct nvme_rdma_ctrl *ctrl;
1955         bool found = false;
1956
1957         mutex_lock(&nvme_rdma_ctrl_mutex);
1958         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1959                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1960                 if (found)
1961                         break;
1962         }
1963         mutex_unlock(&nvme_rdma_ctrl_mutex);
1964
1965         return found;
1966 }
1967
1968 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1969                 struct nvmf_ctrl_options *opts)
1970 {
1971         struct nvme_rdma_ctrl *ctrl;
1972         int ret;
1973         bool changed;
1974
1975         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1976         if (!ctrl)
1977                 return ERR_PTR(-ENOMEM);
1978         ctrl->ctrl.opts = opts;
1979         INIT_LIST_HEAD(&ctrl->list);
1980
1981         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1982                 opts->trsvcid =
1983                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1984                 if (!opts->trsvcid) {
1985                         ret = -ENOMEM;
1986                         goto out_free_ctrl;
1987                 }
1988                 opts->mask |= NVMF_OPT_TRSVCID;
1989         }
1990
1991         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1992                         opts->traddr, opts->trsvcid, &ctrl->addr);
1993         if (ret) {
1994                 pr_err("malformed address passed: %s:%s\n",
1995                         opts->traddr, opts->trsvcid);
1996                 goto out_free_ctrl;
1997         }
1998
1999         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2000                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2001                         opts->host_traddr, NULL, &ctrl->src_addr);
2002                 if (ret) {
2003                         pr_err("malformed src address passed: %s\n",
2004                                opts->host_traddr);
2005                         goto out_free_ctrl;
2006                 }
2007         }
2008
2009         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2010                 ret = -EALREADY;
2011                 goto out_free_ctrl;
2012         }
2013
2014         INIT_DELAYED_WORK(&ctrl->reconnect_work,
2015                         nvme_rdma_reconnect_ctrl_work);
2016         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2017         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2018
2019         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2020                                 opts->nr_poll_queues + 1;
2021         ctrl->ctrl.sqsize = opts->queue_size - 1;
2022         ctrl->ctrl.kato = opts->kato;
2023
2024         ret = -ENOMEM;
2025         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2026                                 GFP_KERNEL);
2027         if (!ctrl->queues)
2028                 goto out_free_ctrl;
2029
2030         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2031                                 0 /* no quirks, we're perfect! */);
2032         if (ret)
2033                 goto out_kfree_queues;
2034
2035         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2036         WARN_ON_ONCE(!changed);
2037
2038         ret = nvme_rdma_setup_ctrl(ctrl, true);
2039         if (ret)
2040                 goto out_uninit_ctrl;
2041
2042         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2043                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2044
2045         mutex_lock(&nvme_rdma_ctrl_mutex);
2046         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2047         mutex_unlock(&nvme_rdma_ctrl_mutex);
2048
2049         return &ctrl->ctrl;
2050
2051 out_uninit_ctrl:
2052         nvme_uninit_ctrl(&ctrl->ctrl);
2053         nvme_put_ctrl(&ctrl->ctrl);
2054         if (ret > 0)
2055                 ret = -EIO;
2056         return ERR_PTR(ret);
2057 out_kfree_queues:
2058         kfree(ctrl->queues);
2059 out_free_ctrl:
2060         kfree(ctrl);
2061         return ERR_PTR(ret);
2062 }
2063
2064 static struct nvmf_transport_ops nvme_rdma_transport = {
2065         .name           = "rdma",
2066         .module         = THIS_MODULE,
2067         .required_opts  = NVMF_OPT_TRADDR,
2068         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2069                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2070                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2071                           NVMF_OPT_TOS,
2072         .create_ctrl    = nvme_rdma_create_ctrl,
2073 };
2074
2075 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2076 {
2077         struct nvme_rdma_ctrl *ctrl;
2078         struct nvme_rdma_device *ndev;
2079         bool found = false;
2080
2081         mutex_lock(&device_list_mutex);
2082         list_for_each_entry(ndev, &device_list, entry) {
2083                 if (ndev->dev == ib_device) {
2084                         found = true;
2085                         break;
2086                 }
2087         }
2088         mutex_unlock(&device_list_mutex);
2089
2090         if (!found)
2091                 return;
2092
2093         /* Delete all controllers using this device */
2094         mutex_lock(&nvme_rdma_ctrl_mutex);
2095         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2096                 if (ctrl->device->dev != ib_device)
2097                         continue;
2098                 nvme_delete_ctrl(&ctrl->ctrl);
2099         }
2100         mutex_unlock(&nvme_rdma_ctrl_mutex);
2101
2102         flush_workqueue(nvme_delete_wq);
2103 }
2104
2105 static struct ib_client nvme_rdma_ib_client = {
2106         .name   = "nvme_rdma",
2107         .remove = nvme_rdma_remove_one
2108 };
2109
2110 static int __init nvme_rdma_init_module(void)
2111 {
2112         int ret;
2113
2114         ret = ib_register_client(&nvme_rdma_ib_client);
2115         if (ret)
2116                 return ret;
2117
2118         ret = nvmf_register_transport(&nvme_rdma_transport);
2119         if (ret)
2120                 goto err_unreg_client;
2121
2122         return 0;
2123
2124 err_unreg_client:
2125         ib_unregister_client(&nvme_rdma_ib_client);
2126         return ret;
2127 }
2128
2129 static void __exit nvme_rdma_cleanup_module(void)
2130 {
2131         struct nvme_rdma_ctrl *ctrl;
2132
2133         nvmf_unregister_transport(&nvme_rdma_transport);
2134         ib_unregister_client(&nvme_rdma_ib_client);
2135
2136         mutex_lock(&nvme_rdma_ctrl_mutex);
2137         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2138                 nvme_delete_ctrl(&ctrl->ctrl);
2139         mutex_unlock(&nvme_rdma_ctrl_mutex);
2140         flush_workqueue(nvme_delete_wq);
2141 }
2142
2143 module_init(nvme_rdma_init_module);
2144 module_exit(nvme_rdma_cleanup_module);
2145
2146 MODULE_LICENSE("GPL v2");