Merge branch 'x86-tsx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / nvme / host / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS          256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
36
37 struct nvme_rdma_device {
38         struct ib_device        *dev;
39         struct ib_pd            *pd;
40         struct kref             ref;
41         struct list_head        entry;
42         unsigned int            num_inline_segments;
43 };
44
45 struct nvme_rdma_qe {
46         struct ib_cqe           cqe;
47         void                    *data;
48         u64                     dma;
49 };
50
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53         struct nvme_request     req;
54         struct ib_mr            *mr;
55         struct nvme_rdma_qe     sqe;
56         union nvme_result       result;
57         __le16                  status;
58         refcount_t              ref;
59         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60         u32                     num_sge;
61         int                     nents;
62         struct ib_reg_wr        reg_wr;
63         struct ib_cqe           reg_cqe;
64         struct nvme_rdma_queue  *queue;
65         struct sg_table         sg_table;
66         struct scatterlist      first_sgl[];
67 };
68
69 enum nvme_rdma_queue_flags {
70         NVME_RDMA_Q_ALLOCATED           = 0,
71         NVME_RDMA_Q_LIVE                = 1,
72         NVME_RDMA_Q_TR_READY            = 2,
73 };
74
75 struct nvme_rdma_queue {
76         struct nvme_rdma_qe     *rsp_ring;
77         int                     queue_size;
78         size_t                  cmnd_capsule_len;
79         struct nvme_rdma_ctrl   *ctrl;
80         struct nvme_rdma_device *device;
81         struct ib_cq            *ib_cq;
82         struct ib_qp            *qp;
83
84         unsigned long           flags;
85         struct rdma_cm_id       *cm_id;
86         int                     cm_error;
87         struct completion       cm_done;
88 };
89
90 struct nvme_rdma_ctrl {
91         /* read only in the hot path */
92         struct nvme_rdma_queue  *queues;
93
94         /* other member variables */
95         struct blk_mq_tag_set   tag_set;
96         struct work_struct      err_work;
97
98         struct nvme_rdma_qe     async_event_sqe;
99
100         struct delayed_work     reconnect_work;
101
102         struct list_head        list;
103
104         struct blk_mq_tag_set   admin_tag_set;
105         struct nvme_rdma_device *device;
106
107         u32                     max_fr_pages;
108
109         struct sockaddr_storage addr;
110         struct sockaddr_storage src_addr;
111
112         struct nvme_ctrl        ctrl;
113         bool                    use_inline_data;
114         u32                     io_queues[HCTX_MAX_TYPES];
115 };
116
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
118 {
119         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
120 }
121
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
124
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
127
128 /*
129  * Disabling this option makes small I/O goes faster, but is fundamentally
130  * unsafe.  With it turned off we will have to register a global rkey that
131  * allows read and write access to all physical memory.
132  */
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136          "Use memory registration even for contiguous memory regions");
137
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139                 struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
144
145 /* XXX: really should move to a generic header sooner or later.. */
146 static inline void put_unaligned_le24(u32 val, u8 *p)
147 {
148         *p++ = val;
149         *p++ = val >> 8;
150         *p++ = val >> 16;
151 }
152
153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
154 {
155         return queue - queue->ctrl->queues;
156 }
157
158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
159 {
160         return nvme_rdma_queue_idx(queue) >
161                 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
162                 queue->ctrl->io_queues[HCTX_TYPE_READ];
163 }
164
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171                 size_t capsule_size, enum dma_data_direction dir)
172 {
173         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174         kfree(qe->data);
175 }
176
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178                 size_t capsule_size, enum dma_data_direction dir)
179 {
180         qe->data = kzalloc(capsule_size, GFP_KERNEL);
181         if (!qe->data)
182                 return -ENOMEM;
183
184         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185         if (ib_dma_mapping_error(ibdev, qe->dma)) {
186                 kfree(qe->data);
187                 qe->data = NULL;
188                 return -ENOMEM;
189         }
190
191         return 0;
192 }
193
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
196                 size_t capsule_size, enum dma_data_direction dir)
197 {
198         int i;
199
200         for (i = 0; i < ib_queue_size; i++)
201                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202         kfree(ring);
203 }
204
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206                 size_t ib_queue_size, size_t capsule_size,
207                 enum dma_data_direction dir)
208 {
209         struct nvme_rdma_qe *ring;
210         int i;
211
212         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213         if (!ring)
214                 return NULL;
215
216         for (i = 0; i < ib_queue_size; i++) {
217                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
218                         goto out_free_ring;
219         }
220
221         return ring;
222
223 out_free_ring:
224         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
225         return NULL;
226 }
227
228 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
229 {
230         pr_debug("QP event %s (%d)\n",
231                  ib_event_msg(event->event), event->event);
232
233 }
234
235 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
236 {
237         int ret;
238
239         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
240                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
241         if (ret < 0)
242                 return ret;
243         if (ret == 0)
244                 return -ETIMEDOUT;
245         WARN_ON_ONCE(queue->cm_error > 0);
246         return queue->cm_error;
247 }
248
249 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
250 {
251         struct nvme_rdma_device *dev = queue->device;
252         struct ib_qp_init_attr init_attr;
253         int ret;
254
255         memset(&init_attr, 0, sizeof(init_attr));
256         init_attr.event_handler = nvme_rdma_qp_event;
257         /* +1 for drain */
258         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
259         /* +1 for drain */
260         init_attr.cap.max_recv_wr = queue->queue_size + 1;
261         init_attr.cap.max_recv_sge = 1;
262         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
263         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
264         init_attr.qp_type = IB_QPT_RC;
265         init_attr.send_cq = queue->ib_cq;
266         init_attr.recv_cq = queue->ib_cq;
267
268         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
269
270         queue->qp = queue->cm_id->qp;
271         return ret;
272 }
273
274 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
275                 struct request *rq, unsigned int hctx_idx)
276 {
277         struct nvme_rdma_ctrl *ctrl = set->driver_data;
278         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
279         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
280         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
281         struct nvme_rdma_device *dev = queue->device;
282
283         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
284                         DMA_TO_DEVICE);
285 }
286
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288                 struct request *rq, unsigned int hctx_idx,
289                 unsigned int numa_node)
290 {
291         struct nvme_rdma_ctrl *ctrl = set->driver_data;
292         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
295         struct nvme_rdma_device *dev = queue->device;
296         struct ib_device *ibdev = dev->dev;
297         int ret;
298
299         nvme_req(rq)->ctrl = &ctrl->ctrl;
300         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
301                         DMA_TO_DEVICE);
302         if (ret)
303                 return ret;
304
305         req->queue = queue;
306
307         return 0;
308 }
309
310 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
311                 unsigned int hctx_idx)
312 {
313         struct nvme_rdma_ctrl *ctrl = data;
314         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
315
316         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
317
318         hctx->driver_data = queue;
319         return 0;
320 }
321
322 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
323                 unsigned int hctx_idx)
324 {
325         struct nvme_rdma_ctrl *ctrl = data;
326         struct nvme_rdma_queue *queue = &ctrl->queues[0];
327
328         BUG_ON(hctx_idx != 0);
329
330         hctx->driver_data = queue;
331         return 0;
332 }
333
334 static void nvme_rdma_free_dev(struct kref *ref)
335 {
336         struct nvme_rdma_device *ndev =
337                 container_of(ref, struct nvme_rdma_device, ref);
338
339         mutex_lock(&device_list_mutex);
340         list_del(&ndev->entry);
341         mutex_unlock(&device_list_mutex);
342
343         ib_dealloc_pd(ndev->pd);
344         kfree(ndev);
345 }
346
347 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
348 {
349         kref_put(&dev->ref, nvme_rdma_free_dev);
350 }
351
352 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
353 {
354         return kref_get_unless_zero(&dev->ref);
355 }
356
357 static struct nvme_rdma_device *
358 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
359 {
360         struct nvme_rdma_device *ndev;
361
362         mutex_lock(&device_list_mutex);
363         list_for_each_entry(ndev, &device_list, entry) {
364                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
365                     nvme_rdma_dev_get(ndev))
366                         goto out_unlock;
367         }
368
369         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
370         if (!ndev)
371                 goto out_err;
372
373         ndev->dev = cm_id->device;
374         kref_init(&ndev->ref);
375
376         ndev->pd = ib_alloc_pd(ndev->dev,
377                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
378         if (IS_ERR(ndev->pd))
379                 goto out_free_dev;
380
381         if (!(ndev->dev->attrs.device_cap_flags &
382               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
383                 dev_err(&ndev->dev->dev,
384                         "Memory registrations not supported.\n");
385                 goto out_free_pd;
386         }
387
388         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
389                                         ndev->dev->attrs.max_send_sge - 1);
390         list_add(&ndev->entry, &device_list);
391 out_unlock:
392         mutex_unlock(&device_list_mutex);
393         return ndev;
394
395 out_free_pd:
396         ib_dealloc_pd(ndev->pd);
397 out_free_dev:
398         kfree(ndev);
399 out_err:
400         mutex_unlock(&device_list_mutex);
401         return NULL;
402 }
403
404 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
405 {
406         struct nvme_rdma_device *dev;
407         struct ib_device *ibdev;
408
409         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
410                 return;
411
412         dev = queue->device;
413         ibdev = dev->dev;
414
415         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
416
417         /*
418          * The cm_id object might have been destroyed during RDMA connection
419          * establishment error flow to avoid getting other cma events, thus
420          * the destruction of the QP shouldn't use rdma_cm API.
421          */
422         ib_destroy_qp(queue->qp);
423         ib_free_cq(queue->ib_cq);
424
425         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
426                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
427
428         nvme_rdma_dev_put(dev);
429 }
430
431 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
432 {
433         return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
434                      ibdev->attrs.max_fast_reg_page_list_len);
435 }
436
437 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
438 {
439         struct ib_device *ibdev;
440         const int send_wr_factor = 3;                   /* MR, SEND, INV */
441         const int cq_factor = send_wr_factor + 1;       /* + RECV */
442         int comp_vector, idx = nvme_rdma_queue_idx(queue);
443         enum ib_poll_context poll_ctx;
444         int ret;
445
446         queue->device = nvme_rdma_find_get_device(queue->cm_id);
447         if (!queue->device) {
448                 dev_err(queue->cm_id->device->dev.parent,
449                         "no client data found!\n");
450                 return -ECONNREFUSED;
451         }
452         ibdev = queue->device->dev;
453
454         /*
455          * Spread I/O queues completion vectors according their queue index.
456          * Admin queues can always go on completion vector 0.
457          */
458         comp_vector = idx == 0 ? idx : idx - 1;
459
460         /* Polling queues need direct cq polling context */
461         if (nvme_rdma_poll_queue(queue))
462                 poll_ctx = IB_POLL_DIRECT;
463         else
464                 poll_ctx = IB_POLL_SOFTIRQ;
465
466         /* +1 for ib_stop_cq */
467         queue->ib_cq = ib_alloc_cq(ibdev, queue,
468                                 cq_factor * queue->queue_size + 1,
469                                 comp_vector, poll_ctx);
470         if (IS_ERR(queue->ib_cq)) {
471                 ret = PTR_ERR(queue->ib_cq);
472                 goto out_put_dev;
473         }
474
475         ret = nvme_rdma_create_qp(queue, send_wr_factor);
476         if (ret)
477                 goto out_destroy_ib_cq;
478
479         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
480                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
481         if (!queue->rsp_ring) {
482                 ret = -ENOMEM;
483                 goto out_destroy_qp;
484         }
485
486         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
487                               queue->queue_size,
488                               IB_MR_TYPE_MEM_REG,
489                               nvme_rdma_get_max_fr_pages(ibdev));
490         if (ret) {
491                 dev_err(queue->ctrl->ctrl.device,
492                         "failed to initialize MR pool sized %d for QID %d\n",
493                         queue->queue_size, idx);
494                 goto out_destroy_ring;
495         }
496
497         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
498
499         return 0;
500
501 out_destroy_ring:
502         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
503                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
504 out_destroy_qp:
505         rdma_destroy_qp(queue->cm_id);
506 out_destroy_ib_cq:
507         ib_free_cq(queue->ib_cq);
508 out_put_dev:
509         nvme_rdma_dev_put(queue->device);
510         return ret;
511 }
512
513 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
514                 int idx, size_t queue_size)
515 {
516         struct nvme_rdma_queue *queue;
517         struct sockaddr *src_addr = NULL;
518         int ret;
519
520         queue = &ctrl->queues[idx];
521         queue->ctrl = ctrl;
522         init_completion(&queue->cm_done);
523
524         if (idx > 0)
525                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
526         else
527                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
528
529         queue->queue_size = queue_size;
530
531         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
532                         RDMA_PS_TCP, IB_QPT_RC);
533         if (IS_ERR(queue->cm_id)) {
534                 dev_info(ctrl->ctrl.device,
535                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
536                 return PTR_ERR(queue->cm_id);
537         }
538
539         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
540                 src_addr = (struct sockaddr *)&ctrl->src_addr;
541
542         queue->cm_error = -ETIMEDOUT;
543         ret = rdma_resolve_addr(queue->cm_id, src_addr,
544                         (struct sockaddr *)&ctrl->addr,
545                         NVME_RDMA_CONNECT_TIMEOUT_MS);
546         if (ret) {
547                 dev_info(ctrl->ctrl.device,
548                         "rdma_resolve_addr failed (%d).\n", ret);
549                 goto out_destroy_cm_id;
550         }
551
552         ret = nvme_rdma_wait_for_cm(queue);
553         if (ret) {
554                 dev_info(ctrl->ctrl.device,
555                         "rdma connection establishment failed (%d)\n", ret);
556                 goto out_destroy_cm_id;
557         }
558
559         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
560
561         return 0;
562
563 out_destroy_cm_id:
564         rdma_destroy_id(queue->cm_id);
565         nvme_rdma_destroy_queue_ib(queue);
566         return ret;
567 }
568
569 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
570 {
571         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
572                 return;
573
574         rdma_disconnect(queue->cm_id);
575         ib_drain_qp(queue->qp);
576 }
577
578 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
579 {
580         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
581                 return;
582
583         nvme_rdma_destroy_queue_ib(queue);
584         rdma_destroy_id(queue->cm_id);
585 }
586
587 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
588 {
589         int i;
590
591         for (i = 1; i < ctrl->ctrl.queue_count; i++)
592                 nvme_rdma_free_queue(&ctrl->queues[i]);
593 }
594
595 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
596 {
597         int i;
598
599         for (i = 1; i < ctrl->ctrl.queue_count; i++)
600                 nvme_rdma_stop_queue(&ctrl->queues[i]);
601 }
602
603 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
604 {
605         struct nvme_rdma_queue *queue = &ctrl->queues[idx];
606         bool poll = nvme_rdma_poll_queue(queue);
607         int ret;
608
609         if (idx)
610                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
611         else
612                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
613
614         if (!ret)
615                 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
616         else
617                 dev_info(ctrl->ctrl.device,
618                         "failed to connect queue: %d ret=%d\n", idx, ret);
619         return ret;
620 }
621
622 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
623 {
624         int i, ret = 0;
625
626         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
627                 ret = nvme_rdma_start_queue(ctrl, i);
628                 if (ret)
629                         goto out_stop_queues;
630         }
631
632         return 0;
633
634 out_stop_queues:
635         for (i--; i >= 1; i--)
636                 nvme_rdma_stop_queue(&ctrl->queues[i]);
637         return ret;
638 }
639
640 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
641 {
642         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
643         struct ib_device *ibdev = ctrl->device->dev;
644         unsigned int nr_io_queues;
645         int i, ret;
646
647         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
648
649         /*
650          * we map queues according to the device irq vectors for
651          * optimal locality so we don't need more queues than
652          * completion vectors.
653          */
654         nr_io_queues = min_t(unsigned int, nr_io_queues,
655                                 ibdev->num_comp_vectors);
656
657         if (opts->nr_write_queues) {
658                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
659                                 min(opts->nr_write_queues, nr_io_queues);
660                 nr_io_queues += ctrl->io_queues[HCTX_TYPE_DEFAULT];
661         } else {
662                 ctrl->io_queues[HCTX_TYPE_DEFAULT] = nr_io_queues;
663         }
664
665         ctrl->io_queues[HCTX_TYPE_READ] = nr_io_queues;
666
667         if (opts->nr_poll_queues) {
668                 ctrl->io_queues[HCTX_TYPE_POLL] =
669                         min(opts->nr_poll_queues, num_online_cpus());
670                 nr_io_queues += ctrl->io_queues[HCTX_TYPE_POLL];
671         }
672
673         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
674         if (ret)
675                 return ret;
676
677         ctrl->ctrl.queue_count = nr_io_queues + 1;
678         if (ctrl->ctrl.queue_count < 2)
679                 return 0;
680
681         dev_info(ctrl->ctrl.device,
682                 "creating %d I/O queues.\n", nr_io_queues);
683
684         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
685                 ret = nvme_rdma_alloc_queue(ctrl, i,
686                                 ctrl->ctrl.sqsize + 1);
687                 if (ret)
688                         goto out_free_queues;
689         }
690
691         return 0;
692
693 out_free_queues:
694         for (i--; i >= 1; i--)
695                 nvme_rdma_free_queue(&ctrl->queues[i]);
696
697         return ret;
698 }
699
700 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
701                 struct blk_mq_tag_set *set)
702 {
703         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
704
705         blk_mq_free_tag_set(set);
706         nvme_rdma_dev_put(ctrl->device);
707 }
708
709 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
710                 bool admin)
711 {
712         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
713         struct blk_mq_tag_set *set;
714         int ret;
715
716         if (admin) {
717                 set = &ctrl->admin_tag_set;
718                 memset(set, 0, sizeof(*set));
719                 set->ops = &nvme_rdma_admin_mq_ops;
720                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
721                 set->reserved_tags = 2; /* connect + keep-alive */
722                 set->numa_node = nctrl->numa_node;
723                 set->cmd_size = sizeof(struct nvme_rdma_request) +
724                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
725                 set->driver_data = ctrl;
726                 set->nr_hw_queues = 1;
727                 set->timeout = ADMIN_TIMEOUT;
728                 set->flags = BLK_MQ_F_NO_SCHED;
729         } else {
730                 set = &ctrl->tag_set;
731                 memset(set, 0, sizeof(*set));
732                 set->ops = &nvme_rdma_mq_ops;
733                 set->queue_depth = nctrl->sqsize + 1;
734                 set->reserved_tags = 1; /* fabric connect */
735                 set->numa_node = nctrl->numa_node;
736                 set->flags = BLK_MQ_F_SHOULD_MERGE;
737                 set->cmd_size = sizeof(struct nvme_rdma_request) +
738                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
739                 set->driver_data = ctrl;
740                 set->nr_hw_queues = nctrl->queue_count - 1;
741                 set->timeout = NVME_IO_TIMEOUT;
742                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
743         }
744
745         ret = blk_mq_alloc_tag_set(set);
746         if (ret)
747                 goto out;
748
749         /*
750          * We need a reference on the device as long as the tag_set is alive,
751          * as the MRs in the request structures need a valid ib_device.
752          */
753         ret = nvme_rdma_dev_get(ctrl->device);
754         if (!ret) {
755                 ret = -EINVAL;
756                 goto out_free_tagset;
757         }
758
759         return set;
760
761 out_free_tagset:
762         blk_mq_free_tag_set(set);
763 out:
764         return ERR_PTR(ret);
765 }
766
767 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
768                 bool remove)
769 {
770         if (remove) {
771                 blk_cleanup_queue(ctrl->ctrl.admin_q);
772                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
773         }
774         if (ctrl->async_event_sqe.data) {
775                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
776                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
777                 ctrl->async_event_sqe.data = NULL;
778         }
779         nvme_rdma_free_queue(&ctrl->queues[0]);
780 }
781
782 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
783                 bool new)
784 {
785         int error;
786
787         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
788         if (error)
789                 return error;
790
791         ctrl->device = ctrl->queues[0].device;
792         ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
793
794         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
795
796         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
797                         sizeof(struct nvme_command), DMA_TO_DEVICE);
798         if (error)
799                 goto out_free_queue;
800
801         if (new) {
802                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
803                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
804                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
805                         goto out_free_async_qe;
806                 }
807
808                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
809                 if (IS_ERR(ctrl->ctrl.admin_q)) {
810                         error = PTR_ERR(ctrl->ctrl.admin_q);
811                         goto out_free_tagset;
812                 }
813         }
814
815         error = nvme_rdma_start_queue(ctrl, 0);
816         if (error)
817                 goto out_cleanup_queue;
818
819         error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
820                         &ctrl->ctrl.cap);
821         if (error) {
822                 dev_err(ctrl->ctrl.device,
823                         "prop_get NVME_REG_CAP failed\n");
824                 goto out_stop_queue;
825         }
826
827         ctrl->ctrl.sqsize =
828                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
829
830         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
831         if (error)
832                 goto out_stop_queue;
833
834         ctrl->ctrl.max_hw_sectors =
835                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
836
837         error = nvme_init_identify(&ctrl->ctrl);
838         if (error)
839                 goto out_stop_queue;
840
841         return 0;
842
843 out_stop_queue:
844         nvme_rdma_stop_queue(&ctrl->queues[0]);
845 out_cleanup_queue:
846         if (new)
847                 blk_cleanup_queue(ctrl->ctrl.admin_q);
848 out_free_tagset:
849         if (new)
850                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
851 out_free_async_qe:
852         nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
853                 sizeof(struct nvme_command), DMA_TO_DEVICE);
854         ctrl->async_event_sqe.data = NULL;
855 out_free_queue:
856         nvme_rdma_free_queue(&ctrl->queues[0]);
857         return error;
858 }
859
860 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
861                 bool remove)
862 {
863         if (remove) {
864                 blk_cleanup_queue(ctrl->ctrl.connect_q);
865                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
866         }
867         nvme_rdma_free_io_queues(ctrl);
868 }
869
870 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
871 {
872         int ret;
873
874         ret = nvme_rdma_alloc_io_queues(ctrl);
875         if (ret)
876                 return ret;
877
878         if (new) {
879                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
880                 if (IS_ERR(ctrl->ctrl.tagset)) {
881                         ret = PTR_ERR(ctrl->ctrl.tagset);
882                         goto out_free_io_queues;
883                 }
884
885                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
886                 if (IS_ERR(ctrl->ctrl.connect_q)) {
887                         ret = PTR_ERR(ctrl->ctrl.connect_q);
888                         goto out_free_tag_set;
889                 }
890         } else {
891                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
892                         ctrl->ctrl.queue_count - 1);
893         }
894
895         ret = nvme_rdma_start_io_queues(ctrl);
896         if (ret)
897                 goto out_cleanup_connect_q;
898
899         return 0;
900
901 out_cleanup_connect_q:
902         if (new)
903                 blk_cleanup_queue(ctrl->ctrl.connect_q);
904 out_free_tag_set:
905         if (new)
906                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
907 out_free_io_queues:
908         nvme_rdma_free_io_queues(ctrl);
909         return ret;
910 }
911
912 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
913                 bool remove)
914 {
915         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
916         nvme_rdma_stop_queue(&ctrl->queues[0]);
917         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request,
918                         &ctrl->ctrl);
919         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
920         nvme_rdma_destroy_admin_queue(ctrl, remove);
921 }
922
923 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
924                 bool remove)
925 {
926         if (ctrl->ctrl.queue_count > 1) {
927                 nvme_stop_queues(&ctrl->ctrl);
928                 nvme_rdma_stop_io_queues(ctrl);
929                 blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request,
930                                 &ctrl->ctrl);
931                 if (remove)
932                         nvme_start_queues(&ctrl->ctrl);
933                 nvme_rdma_destroy_io_queues(ctrl, remove);
934         }
935 }
936
937 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
938 {
939         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
940
941         if (list_empty(&ctrl->list))
942                 goto free_ctrl;
943
944         mutex_lock(&nvme_rdma_ctrl_mutex);
945         list_del(&ctrl->list);
946         mutex_unlock(&nvme_rdma_ctrl_mutex);
947
948         nvmf_free_options(nctrl->opts);
949 free_ctrl:
950         kfree(ctrl->queues);
951         kfree(ctrl);
952 }
953
954 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
955 {
956         /* If we are resetting/deleting then do nothing */
957         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
958                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
959                         ctrl->ctrl.state == NVME_CTRL_LIVE);
960                 return;
961         }
962
963         if (nvmf_should_reconnect(&ctrl->ctrl)) {
964                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
965                         ctrl->ctrl.opts->reconnect_delay);
966                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
967                                 ctrl->ctrl.opts->reconnect_delay * HZ);
968         } else {
969                 nvme_delete_ctrl(&ctrl->ctrl);
970         }
971 }
972
973 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
974 {
975         int ret = -EINVAL;
976         bool changed;
977
978         ret = nvme_rdma_configure_admin_queue(ctrl, new);
979         if (ret)
980                 return ret;
981
982         if (ctrl->ctrl.icdoff) {
983                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
984                 goto destroy_admin;
985         }
986
987         if (!(ctrl->ctrl.sgls & (1 << 2))) {
988                 dev_err(ctrl->ctrl.device,
989                         "Mandatory keyed sgls are not supported!\n");
990                 goto destroy_admin;
991         }
992
993         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
994                 dev_warn(ctrl->ctrl.device,
995                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
996                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
997         }
998
999         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1000                 dev_warn(ctrl->ctrl.device,
1001                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1002                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1003                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1004         }
1005
1006         if (ctrl->ctrl.sgls & (1 << 20))
1007                 ctrl->use_inline_data = true;
1008
1009         if (ctrl->ctrl.queue_count > 1) {
1010                 ret = nvme_rdma_configure_io_queues(ctrl, new);
1011                 if (ret)
1012                         goto destroy_admin;
1013         }
1014
1015         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1016         if (!changed) {
1017                 /* state change failure is ok if we're in DELETING state */
1018                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1019                 ret = -EINVAL;
1020                 goto destroy_io;
1021         }
1022
1023         nvme_start_ctrl(&ctrl->ctrl);
1024         return 0;
1025
1026 destroy_io:
1027         if (ctrl->ctrl.queue_count > 1)
1028                 nvme_rdma_destroy_io_queues(ctrl, new);
1029 destroy_admin:
1030         nvme_rdma_stop_queue(&ctrl->queues[0]);
1031         nvme_rdma_destroy_admin_queue(ctrl, new);
1032         return ret;
1033 }
1034
1035 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1036 {
1037         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1038                         struct nvme_rdma_ctrl, reconnect_work);
1039
1040         ++ctrl->ctrl.nr_reconnects;
1041
1042         if (nvme_rdma_setup_ctrl(ctrl, false))
1043                 goto requeue;
1044
1045         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1046                         ctrl->ctrl.nr_reconnects);
1047
1048         ctrl->ctrl.nr_reconnects = 0;
1049
1050         return;
1051
1052 requeue:
1053         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1054                         ctrl->ctrl.nr_reconnects);
1055         nvme_rdma_reconnect_or_remove(ctrl);
1056 }
1057
1058 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1059 {
1060         struct nvme_rdma_ctrl *ctrl = container_of(work,
1061                         struct nvme_rdma_ctrl, err_work);
1062
1063         nvme_stop_keep_alive(&ctrl->ctrl);
1064         nvme_rdma_teardown_io_queues(ctrl, false);
1065         nvme_start_queues(&ctrl->ctrl);
1066         nvme_rdma_teardown_admin_queue(ctrl, false);
1067
1068         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1069                 /* state change failure is ok if we're in DELETING state */
1070                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1071                 return;
1072         }
1073
1074         nvme_rdma_reconnect_or_remove(ctrl);
1075 }
1076
1077 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1078 {
1079         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1080                 return;
1081
1082         queue_work(nvme_wq, &ctrl->err_work);
1083 }
1084
1085 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1086                 const char *op)
1087 {
1088         struct nvme_rdma_queue *queue = cq->cq_context;
1089         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1090
1091         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1092                 dev_info(ctrl->ctrl.device,
1093                              "%s for CQE 0x%p failed with status %s (%d)\n",
1094                              op, wc->wr_cqe,
1095                              ib_wc_status_msg(wc->status), wc->status);
1096         nvme_rdma_error_recovery(ctrl);
1097 }
1098
1099 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1100 {
1101         if (unlikely(wc->status != IB_WC_SUCCESS))
1102                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1103 }
1104
1105 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1106 {
1107         struct nvme_rdma_request *req =
1108                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1109         struct request *rq = blk_mq_rq_from_pdu(req);
1110
1111         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1112                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1113                 return;
1114         }
1115
1116         if (refcount_dec_and_test(&req->ref))
1117                 nvme_end_request(rq, req->status, req->result);
1118
1119 }
1120
1121 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1122                 struct nvme_rdma_request *req)
1123 {
1124         struct ib_send_wr wr = {
1125                 .opcode             = IB_WR_LOCAL_INV,
1126                 .next               = NULL,
1127                 .num_sge            = 0,
1128                 .send_flags         = IB_SEND_SIGNALED,
1129                 .ex.invalidate_rkey = req->mr->rkey,
1130         };
1131
1132         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1133         wr.wr_cqe = &req->reg_cqe;
1134
1135         return ib_post_send(queue->qp, &wr, NULL);
1136 }
1137
1138 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1139                 struct request *rq)
1140 {
1141         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1142         struct nvme_rdma_device *dev = queue->device;
1143         struct ib_device *ibdev = dev->dev;
1144
1145         if (!blk_rq_nr_phys_segments(rq))
1146                 return;
1147
1148         if (req->mr) {
1149                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1150                 req->mr = NULL;
1151         }
1152
1153         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1154                         req->nents, rq_data_dir(rq) ==
1155                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1156
1157         nvme_cleanup_cmd(rq);
1158         sg_free_table_chained(&req->sg_table, true);
1159 }
1160
1161 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1162 {
1163         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1164
1165         sg->addr = 0;
1166         put_unaligned_le24(0, sg->length);
1167         put_unaligned_le32(0, sg->key);
1168         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1169         return 0;
1170 }
1171
1172 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1173                 struct nvme_rdma_request *req, struct nvme_command *c,
1174                 int count)
1175 {
1176         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1177         struct scatterlist *sgl = req->sg_table.sgl;
1178         struct ib_sge *sge = &req->sge[1];
1179         u32 len = 0;
1180         int i;
1181
1182         for (i = 0; i < count; i++, sgl++, sge++) {
1183                 sge->addr = sg_dma_address(sgl);
1184                 sge->length = sg_dma_len(sgl);
1185                 sge->lkey = queue->device->pd->local_dma_lkey;
1186                 len += sge->length;
1187         }
1188
1189         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1190         sg->length = cpu_to_le32(len);
1191         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1192
1193         req->num_sge += count;
1194         return 0;
1195 }
1196
1197 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1198                 struct nvme_rdma_request *req, struct nvme_command *c)
1199 {
1200         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1201
1202         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1203         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1204         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1205         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1206         return 0;
1207 }
1208
1209 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1210                 struct nvme_rdma_request *req, struct nvme_command *c,
1211                 int count)
1212 {
1213         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1214         int nr;
1215
1216         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1217         if (WARN_ON_ONCE(!req->mr))
1218                 return -EAGAIN;
1219
1220         /*
1221          * Align the MR to a 4K page size to match the ctrl page size and
1222          * the block virtual boundary.
1223          */
1224         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1225         if (unlikely(nr < count)) {
1226                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1227                 req->mr = NULL;
1228                 if (nr < 0)
1229                         return nr;
1230                 return -EINVAL;
1231         }
1232
1233         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1234
1235         req->reg_cqe.done = nvme_rdma_memreg_done;
1236         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1237         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1238         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1239         req->reg_wr.wr.num_sge = 0;
1240         req->reg_wr.mr = req->mr;
1241         req->reg_wr.key = req->mr->rkey;
1242         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1243                              IB_ACCESS_REMOTE_READ |
1244                              IB_ACCESS_REMOTE_WRITE;
1245
1246         sg->addr = cpu_to_le64(req->mr->iova);
1247         put_unaligned_le24(req->mr->length, sg->length);
1248         put_unaligned_le32(req->mr->rkey, sg->key);
1249         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1250                         NVME_SGL_FMT_INVALIDATE;
1251
1252         return 0;
1253 }
1254
1255 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1256                 struct request *rq, struct nvme_command *c)
1257 {
1258         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1259         struct nvme_rdma_device *dev = queue->device;
1260         struct ib_device *ibdev = dev->dev;
1261         int count, ret;
1262
1263         req->num_sge = 1;
1264         refcount_set(&req->ref, 2); /* send and recv completions */
1265
1266         c->common.flags |= NVME_CMD_SGL_METABUF;
1267
1268         if (!blk_rq_nr_phys_segments(rq))
1269                 return nvme_rdma_set_sg_null(c);
1270
1271         req->sg_table.sgl = req->first_sgl;
1272         ret = sg_alloc_table_chained(&req->sg_table,
1273                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1274         if (ret)
1275                 return -ENOMEM;
1276
1277         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1278
1279         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1280                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1281         if (unlikely(count <= 0)) {
1282                 ret = -EIO;
1283                 goto out_free_table;
1284         }
1285
1286         if (count <= dev->num_inline_segments) {
1287                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1288                     queue->ctrl->use_inline_data &&
1289                     blk_rq_payload_bytes(rq) <=
1290                                 nvme_rdma_inline_data_size(queue)) {
1291                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1292                         goto out;
1293                 }
1294
1295                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1296                         ret = nvme_rdma_map_sg_single(queue, req, c);
1297                         goto out;
1298                 }
1299         }
1300
1301         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1302 out:
1303         if (unlikely(ret))
1304                 goto out_unmap_sg;
1305
1306         return 0;
1307
1308 out_unmap_sg:
1309         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1310                         req->nents, rq_data_dir(rq) ==
1311                         WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1312 out_free_table:
1313         sg_free_table_chained(&req->sg_table, true);
1314         return ret;
1315 }
1316
1317 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1318 {
1319         struct nvme_rdma_qe *qe =
1320                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1321         struct nvme_rdma_request *req =
1322                 container_of(qe, struct nvme_rdma_request, sqe);
1323         struct request *rq = blk_mq_rq_from_pdu(req);
1324
1325         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1326                 nvme_rdma_wr_error(cq, wc, "SEND");
1327                 return;
1328         }
1329
1330         if (refcount_dec_and_test(&req->ref))
1331                 nvme_end_request(rq, req->status, req->result);
1332 }
1333
1334 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1335                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1336                 struct ib_send_wr *first)
1337 {
1338         struct ib_send_wr wr;
1339         int ret;
1340
1341         sge->addr   = qe->dma;
1342         sge->length = sizeof(struct nvme_command),
1343         sge->lkey   = queue->device->pd->local_dma_lkey;
1344
1345         wr.next       = NULL;
1346         wr.wr_cqe     = &qe->cqe;
1347         wr.sg_list    = sge;
1348         wr.num_sge    = num_sge;
1349         wr.opcode     = IB_WR_SEND;
1350         wr.send_flags = IB_SEND_SIGNALED;
1351
1352         if (first)
1353                 first->next = &wr;
1354         else
1355                 first = &wr;
1356
1357         ret = ib_post_send(queue->qp, first, NULL);
1358         if (unlikely(ret)) {
1359                 dev_err(queue->ctrl->ctrl.device,
1360                              "%s failed with error code %d\n", __func__, ret);
1361         }
1362         return ret;
1363 }
1364
1365 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1366                 struct nvme_rdma_qe *qe)
1367 {
1368         struct ib_recv_wr wr;
1369         struct ib_sge list;
1370         int ret;
1371
1372         list.addr   = qe->dma;
1373         list.length = sizeof(struct nvme_completion);
1374         list.lkey   = queue->device->pd->local_dma_lkey;
1375
1376         qe->cqe.done = nvme_rdma_recv_done;
1377
1378         wr.next     = NULL;
1379         wr.wr_cqe   = &qe->cqe;
1380         wr.sg_list  = &list;
1381         wr.num_sge  = 1;
1382
1383         ret = ib_post_recv(queue->qp, &wr, NULL);
1384         if (unlikely(ret)) {
1385                 dev_err(queue->ctrl->ctrl.device,
1386                         "%s failed with error code %d\n", __func__, ret);
1387         }
1388         return ret;
1389 }
1390
1391 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1392 {
1393         u32 queue_idx = nvme_rdma_queue_idx(queue);
1394
1395         if (queue_idx == 0)
1396                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1397         return queue->ctrl->tag_set.tags[queue_idx - 1];
1398 }
1399
1400 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1401 {
1402         if (unlikely(wc->status != IB_WC_SUCCESS))
1403                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1404 }
1405
1406 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1407 {
1408         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1409         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1410         struct ib_device *dev = queue->device->dev;
1411         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1412         struct nvme_command *cmd = sqe->data;
1413         struct ib_sge sge;
1414         int ret;
1415
1416         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1417
1418         memset(cmd, 0, sizeof(*cmd));
1419         cmd->common.opcode = nvme_admin_async_event;
1420         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1421         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1422         nvme_rdma_set_sg_null(cmd);
1423
1424         sqe->cqe.done = nvme_rdma_async_done;
1425
1426         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1427                         DMA_TO_DEVICE);
1428
1429         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1430         WARN_ON_ONCE(ret);
1431 }
1432
1433 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1434                 struct nvme_completion *cqe, struct ib_wc *wc)
1435 {
1436         struct request *rq;
1437         struct nvme_rdma_request *req;
1438
1439         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1440         if (!rq) {
1441                 dev_err(queue->ctrl->ctrl.device,
1442                         "tag 0x%x on QP %#x not found\n",
1443                         cqe->command_id, queue->qp->qp_num);
1444                 nvme_rdma_error_recovery(queue->ctrl);
1445                 return;
1446         }
1447         req = blk_mq_rq_to_pdu(rq);
1448
1449         req->status = cqe->status;
1450         req->result = cqe->result;
1451
1452         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1453                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1454                         dev_err(queue->ctrl->ctrl.device,
1455                                 "Bogus remote invalidation for rkey %#x\n",
1456                                 req->mr->rkey);
1457                         nvme_rdma_error_recovery(queue->ctrl);
1458                 }
1459         } else if (req->mr) {
1460                 int ret;
1461
1462                 ret = nvme_rdma_inv_rkey(queue, req);
1463                 if (unlikely(ret < 0)) {
1464                         dev_err(queue->ctrl->ctrl.device,
1465                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1466                                 req->mr->rkey, ret);
1467                         nvme_rdma_error_recovery(queue->ctrl);
1468                 }
1469                 /* the local invalidation completion will end the request */
1470                 return;
1471         }
1472
1473         if (refcount_dec_and_test(&req->ref))
1474                 nvme_end_request(rq, req->status, req->result);
1475 }
1476
1477 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1478 {
1479         struct nvme_rdma_qe *qe =
1480                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1481         struct nvme_rdma_queue *queue = cq->cq_context;
1482         struct ib_device *ibdev = queue->device->dev;
1483         struct nvme_completion *cqe = qe->data;
1484         const size_t len = sizeof(struct nvme_completion);
1485
1486         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1487                 nvme_rdma_wr_error(cq, wc, "RECV");
1488                 return;
1489         }
1490
1491         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1492         /*
1493          * AEN requests are special as they don't time out and can
1494          * survive any kind of queue freeze and often don't respond to
1495          * aborts.  We don't even bother to allocate a struct request
1496          * for them but rather special case them here.
1497          */
1498         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1499                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1500                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1501                                 &cqe->result);
1502         else
1503                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1504         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1505
1506         nvme_rdma_post_recv(queue, qe);
1507 }
1508
1509 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1510 {
1511         int ret, i;
1512
1513         for (i = 0; i < queue->queue_size; i++) {
1514                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1515                 if (ret)
1516                         goto out_destroy_queue_ib;
1517         }
1518
1519         return 0;
1520
1521 out_destroy_queue_ib:
1522         nvme_rdma_destroy_queue_ib(queue);
1523         return ret;
1524 }
1525
1526 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1527                 struct rdma_cm_event *ev)
1528 {
1529         struct rdma_cm_id *cm_id = queue->cm_id;
1530         int status = ev->status;
1531         const char *rej_msg;
1532         const struct nvme_rdma_cm_rej *rej_data;
1533         u8 rej_data_len;
1534
1535         rej_msg = rdma_reject_msg(cm_id, status);
1536         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1537
1538         if (rej_data && rej_data_len >= sizeof(u16)) {
1539                 u16 sts = le16_to_cpu(rej_data->sts);
1540
1541                 dev_err(queue->ctrl->ctrl.device,
1542                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1543                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1544         } else {
1545                 dev_err(queue->ctrl->ctrl.device,
1546                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1547         }
1548
1549         return -ECONNRESET;
1550 }
1551
1552 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1553 {
1554         int ret;
1555
1556         ret = nvme_rdma_create_queue_ib(queue);
1557         if (ret)
1558                 return ret;
1559
1560         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1561         if (ret) {
1562                 dev_err(queue->ctrl->ctrl.device,
1563                         "rdma_resolve_route failed (%d).\n",
1564                         queue->cm_error);
1565                 goto out_destroy_queue;
1566         }
1567
1568         return 0;
1569
1570 out_destroy_queue:
1571         nvme_rdma_destroy_queue_ib(queue);
1572         return ret;
1573 }
1574
1575 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1576 {
1577         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1578         struct rdma_conn_param param = { };
1579         struct nvme_rdma_cm_req priv = { };
1580         int ret;
1581
1582         param.qp_num = queue->qp->qp_num;
1583         param.flow_control = 1;
1584
1585         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1586         /* maximum retry count */
1587         param.retry_count = 7;
1588         param.rnr_retry_count = 7;
1589         param.private_data = &priv;
1590         param.private_data_len = sizeof(priv);
1591
1592         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1593         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1594         /*
1595          * set the admin queue depth to the minimum size
1596          * specified by the Fabrics standard.
1597          */
1598         if (priv.qid == 0) {
1599                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1600                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1601         } else {
1602                 /*
1603                  * current interpretation of the fabrics spec
1604                  * is at minimum you make hrqsize sqsize+1, or a
1605                  * 1's based representation of sqsize.
1606                  */
1607                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1608                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1609         }
1610
1611         ret = rdma_connect(queue->cm_id, &param);
1612         if (ret) {
1613                 dev_err(ctrl->ctrl.device,
1614                         "rdma_connect failed (%d).\n", ret);
1615                 goto out_destroy_queue_ib;
1616         }
1617
1618         return 0;
1619
1620 out_destroy_queue_ib:
1621         nvme_rdma_destroy_queue_ib(queue);
1622         return ret;
1623 }
1624
1625 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1626                 struct rdma_cm_event *ev)
1627 {
1628         struct nvme_rdma_queue *queue = cm_id->context;
1629         int cm_error = 0;
1630
1631         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1632                 rdma_event_msg(ev->event), ev->event,
1633                 ev->status, cm_id);
1634
1635         switch (ev->event) {
1636         case RDMA_CM_EVENT_ADDR_RESOLVED:
1637                 cm_error = nvme_rdma_addr_resolved(queue);
1638                 break;
1639         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1640                 cm_error = nvme_rdma_route_resolved(queue);
1641                 break;
1642         case RDMA_CM_EVENT_ESTABLISHED:
1643                 queue->cm_error = nvme_rdma_conn_established(queue);
1644                 /* complete cm_done regardless of success/failure */
1645                 complete(&queue->cm_done);
1646                 return 0;
1647         case RDMA_CM_EVENT_REJECTED:
1648                 nvme_rdma_destroy_queue_ib(queue);
1649                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1650                 break;
1651         case RDMA_CM_EVENT_ROUTE_ERROR:
1652         case RDMA_CM_EVENT_CONNECT_ERROR:
1653         case RDMA_CM_EVENT_UNREACHABLE:
1654                 nvme_rdma_destroy_queue_ib(queue);
1655                 /* fall through */
1656         case RDMA_CM_EVENT_ADDR_ERROR:
1657                 dev_dbg(queue->ctrl->ctrl.device,
1658                         "CM error event %d\n", ev->event);
1659                 cm_error = -ECONNRESET;
1660                 break;
1661         case RDMA_CM_EVENT_DISCONNECTED:
1662         case RDMA_CM_EVENT_ADDR_CHANGE:
1663         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1664                 dev_dbg(queue->ctrl->ctrl.device,
1665                         "disconnect received - connection closed\n");
1666                 nvme_rdma_error_recovery(queue->ctrl);
1667                 break;
1668         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1669                 /* device removal is handled via the ib_client API */
1670                 break;
1671         default:
1672                 dev_err(queue->ctrl->ctrl.device,
1673                         "Unexpected RDMA CM event (%d)\n", ev->event);
1674                 nvme_rdma_error_recovery(queue->ctrl);
1675                 break;
1676         }
1677
1678         if (cm_error) {
1679                 queue->cm_error = cm_error;
1680                 complete(&queue->cm_done);
1681         }
1682
1683         return 0;
1684 }
1685
1686 static enum blk_eh_timer_return
1687 nvme_rdma_timeout(struct request *rq, bool reserved)
1688 {
1689         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1690         struct nvme_rdma_queue *queue = req->queue;
1691         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1692
1693         dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1694                  rq->tag, nvme_rdma_queue_idx(queue));
1695
1696         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1697                 /*
1698                  * Teardown immediately if controller times out while starting
1699                  * or we are already started error recovery. all outstanding
1700                  * requests are completed on shutdown, so we return BLK_EH_DONE.
1701                  */
1702                 flush_work(&ctrl->err_work);
1703                 nvme_rdma_teardown_io_queues(ctrl, false);
1704                 nvme_rdma_teardown_admin_queue(ctrl, false);
1705                 return BLK_EH_DONE;
1706         }
1707
1708         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1709         nvme_rdma_error_recovery(ctrl);
1710
1711         return BLK_EH_RESET_TIMER;
1712 }
1713
1714 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1715                 const struct blk_mq_queue_data *bd)
1716 {
1717         struct nvme_ns *ns = hctx->queue->queuedata;
1718         struct nvme_rdma_queue *queue = hctx->driver_data;
1719         struct request *rq = bd->rq;
1720         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1721         struct nvme_rdma_qe *sqe = &req->sqe;
1722         struct nvme_command *c = sqe->data;
1723         struct ib_device *dev;
1724         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1725         blk_status_t ret;
1726         int err;
1727
1728         WARN_ON_ONCE(rq->tag < 0);
1729
1730         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1731                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1732
1733         dev = queue->device->dev;
1734         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1735                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1736
1737         ret = nvme_setup_cmd(ns, rq, c);
1738         if (ret)
1739                 return ret;
1740
1741         blk_mq_start_request(rq);
1742
1743         err = nvme_rdma_map_data(queue, rq, c);
1744         if (unlikely(err < 0)) {
1745                 dev_err(queue->ctrl->ctrl.device,
1746                              "Failed to map data (%d)\n", err);
1747                 nvme_cleanup_cmd(rq);
1748                 goto err;
1749         }
1750
1751         sqe->cqe.done = nvme_rdma_send_done;
1752
1753         ib_dma_sync_single_for_device(dev, sqe->dma,
1754                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1755
1756         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1757                         req->mr ? &req->reg_wr.wr : NULL);
1758         if (unlikely(err)) {
1759                 nvme_rdma_unmap_data(queue, rq);
1760                 goto err;
1761         }
1762
1763         return BLK_STS_OK;
1764 err:
1765         if (err == -ENOMEM || err == -EAGAIN)
1766                 return BLK_STS_RESOURCE;
1767         return BLK_STS_IOERR;
1768 }
1769
1770 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1771 {
1772         struct nvme_rdma_queue *queue = hctx->driver_data;
1773
1774         return ib_process_cq_direct(queue->ib_cq, -1);
1775 }
1776
1777 static void nvme_rdma_complete_rq(struct request *rq)
1778 {
1779         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1780
1781         nvme_rdma_unmap_data(req->queue, rq);
1782         nvme_complete_rq(rq);
1783 }
1784
1785 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1786 {
1787         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1788
1789         set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1790         set->map[HCTX_TYPE_DEFAULT].nr_queues =
1791                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1792         set->map[HCTX_TYPE_READ].nr_queues = ctrl->io_queues[HCTX_TYPE_READ];
1793         if (ctrl->ctrl.opts->nr_write_queues) {
1794                 /* separate read/write queues */
1795                 set->map[HCTX_TYPE_READ].queue_offset =
1796                                 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1797         } else {
1798                 /* mixed read/write queues */
1799                 set->map[HCTX_TYPE_READ].queue_offset = 0;
1800         }
1801         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1802                         ctrl->device->dev, 0);
1803         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1804                         ctrl->device->dev, 0);
1805
1806         if (ctrl->ctrl.opts->nr_poll_queues) {
1807                 set->map[HCTX_TYPE_POLL].nr_queues =
1808                                 ctrl->io_queues[HCTX_TYPE_POLL];
1809                 set->map[HCTX_TYPE_POLL].queue_offset =
1810                                 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1811                 if (ctrl->ctrl.opts->nr_write_queues)
1812                         set->map[HCTX_TYPE_POLL].queue_offset +=
1813                                 ctrl->io_queues[HCTX_TYPE_READ];
1814                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1815         }
1816         return 0;
1817 }
1818
1819 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1820         .queue_rq       = nvme_rdma_queue_rq,
1821         .complete       = nvme_rdma_complete_rq,
1822         .init_request   = nvme_rdma_init_request,
1823         .exit_request   = nvme_rdma_exit_request,
1824         .init_hctx      = nvme_rdma_init_hctx,
1825         .timeout        = nvme_rdma_timeout,
1826         .map_queues     = nvme_rdma_map_queues,
1827         .poll           = nvme_rdma_poll,
1828 };
1829
1830 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1831         .queue_rq       = nvme_rdma_queue_rq,
1832         .complete       = nvme_rdma_complete_rq,
1833         .init_request   = nvme_rdma_init_request,
1834         .exit_request   = nvme_rdma_exit_request,
1835         .init_hctx      = nvme_rdma_init_admin_hctx,
1836         .timeout        = nvme_rdma_timeout,
1837 };
1838
1839 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1840 {
1841         cancel_work_sync(&ctrl->err_work);
1842         cancel_delayed_work_sync(&ctrl->reconnect_work);
1843
1844         nvme_rdma_teardown_io_queues(ctrl, shutdown);
1845         if (shutdown)
1846                 nvme_shutdown_ctrl(&ctrl->ctrl);
1847         else
1848                 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1849         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1850 }
1851
1852 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1853 {
1854         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1855 }
1856
1857 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1858 {
1859         struct nvme_rdma_ctrl *ctrl =
1860                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1861
1862         nvme_stop_ctrl(&ctrl->ctrl);
1863         nvme_rdma_shutdown_ctrl(ctrl, false);
1864
1865         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1866                 /* state change failure should never happen */
1867                 WARN_ON_ONCE(1);
1868                 return;
1869         }
1870
1871         if (nvme_rdma_setup_ctrl(ctrl, false))
1872                 goto out_fail;
1873
1874         return;
1875
1876 out_fail:
1877         ++ctrl->ctrl.nr_reconnects;
1878         nvme_rdma_reconnect_or_remove(ctrl);
1879 }
1880
1881 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1882         .name                   = "rdma",
1883         .module                 = THIS_MODULE,
1884         .flags                  = NVME_F_FABRICS,
1885         .reg_read32             = nvmf_reg_read32,
1886         .reg_read64             = nvmf_reg_read64,
1887         .reg_write32            = nvmf_reg_write32,
1888         .free_ctrl              = nvme_rdma_free_ctrl,
1889         .submit_async_event     = nvme_rdma_submit_async_event,
1890         .delete_ctrl            = nvme_rdma_delete_ctrl,
1891         .get_address            = nvmf_get_address,
1892 };
1893
1894 /*
1895  * Fails a connection request if it matches an existing controller
1896  * (association) with the same tuple:
1897  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1898  *
1899  * if local address is not specified in the request, it will match an
1900  * existing controller with all the other parameters the same and no
1901  * local port address specified as well.
1902  *
1903  * The ports don't need to be compared as they are intrinsically
1904  * already matched by the port pointers supplied.
1905  */
1906 static bool
1907 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1908 {
1909         struct nvme_rdma_ctrl *ctrl;
1910         bool found = false;
1911
1912         mutex_lock(&nvme_rdma_ctrl_mutex);
1913         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1914                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1915                 if (found)
1916                         break;
1917         }
1918         mutex_unlock(&nvme_rdma_ctrl_mutex);
1919
1920         return found;
1921 }
1922
1923 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1924                 struct nvmf_ctrl_options *opts)
1925 {
1926         struct nvme_rdma_ctrl *ctrl;
1927         int ret;
1928         bool changed;
1929
1930         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1931         if (!ctrl)
1932                 return ERR_PTR(-ENOMEM);
1933         ctrl->ctrl.opts = opts;
1934         INIT_LIST_HEAD(&ctrl->list);
1935
1936         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1937                 opts->trsvcid =
1938                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1939                 if (!opts->trsvcid) {
1940                         ret = -ENOMEM;
1941                         goto out_free_ctrl;
1942                 }
1943                 opts->mask |= NVMF_OPT_TRSVCID;
1944         }
1945
1946         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1947                         opts->traddr, opts->trsvcid, &ctrl->addr);
1948         if (ret) {
1949                 pr_err("malformed address passed: %s:%s\n",
1950                         opts->traddr, opts->trsvcid);
1951                 goto out_free_ctrl;
1952         }
1953
1954         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1955                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1956                         opts->host_traddr, NULL, &ctrl->src_addr);
1957                 if (ret) {
1958                         pr_err("malformed src address passed: %s\n",
1959                                opts->host_traddr);
1960                         goto out_free_ctrl;
1961                 }
1962         }
1963
1964         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1965                 ret = -EALREADY;
1966                 goto out_free_ctrl;
1967         }
1968
1969         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1970                         nvme_rdma_reconnect_ctrl_work);
1971         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1972         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1973
1974         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
1975                                 opts->nr_poll_queues + 1;
1976         ctrl->ctrl.sqsize = opts->queue_size - 1;
1977         ctrl->ctrl.kato = opts->kato;
1978
1979         ret = -ENOMEM;
1980         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1981                                 GFP_KERNEL);
1982         if (!ctrl->queues)
1983                 goto out_free_ctrl;
1984
1985         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1986                                 0 /* no quirks, we're perfect! */);
1987         if (ret)
1988                 goto out_kfree_queues;
1989
1990         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1991         WARN_ON_ONCE(!changed);
1992
1993         ret = nvme_rdma_setup_ctrl(ctrl, true);
1994         if (ret)
1995                 goto out_uninit_ctrl;
1996
1997         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1998                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1999
2000         nvme_get_ctrl(&ctrl->ctrl);
2001
2002         mutex_lock(&nvme_rdma_ctrl_mutex);
2003         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2004         mutex_unlock(&nvme_rdma_ctrl_mutex);
2005
2006         return &ctrl->ctrl;
2007
2008 out_uninit_ctrl:
2009         nvme_uninit_ctrl(&ctrl->ctrl);
2010         nvme_put_ctrl(&ctrl->ctrl);
2011         if (ret > 0)
2012                 ret = -EIO;
2013         return ERR_PTR(ret);
2014 out_kfree_queues:
2015         kfree(ctrl->queues);
2016 out_free_ctrl:
2017         kfree(ctrl);
2018         return ERR_PTR(ret);
2019 }
2020
2021 static struct nvmf_transport_ops nvme_rdma_transport = {
2022         .name           = "rdma",
2023         .module         = THIS_MODULE,
2024         .required_opts  = NVMF_OPT_TRADDR,
2025         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2026                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2027                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES,
2028         .create_ctrl    = nvme_rdma_create_ctrl,
2029 };
2030
2031 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2032 {
2033         struct nvme_rdma_ctrl *ctrl;
2034         struct nvme_rdma_device *ndev;
2035         bool found = false;
2036
2037         mutex_lock(&device_list_mutex);
2038         list_for_each_entry(ndev, &device_list, entry) {
2039                 if (ndev->dev == ib_device) {
2040                         found = true;
2041                         break;
2042                 }
2043         }
2044         mutex_unlock(&device_list_mutex);
2045
2046         if (!found)
2047                 return;
2048
2049         /* Delete all controllers using this device */
2050         mutex_lock(&nvme_rdma_ctrl_mutex);
2051         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2052                 if (ctrl->device->dev != ib_device)
2053                         continue;
2054                 nvme_delete_ctrl(&ctrl->ctrl);
2055         }
2056         mutex_unlock(&nvme_rdma_ctrl_mutex);
2057
2058         flush_workqueue(nvme_delete_wq);
2059 }
2060
2061 static struct ib_client nvme_rdma_ib_client = {
2062         .name   = "nvme_rdma",
2063         .remove = nvme_rdma_remove_one
2064 };
2065
2066 static int __init nvme_rdma_init_module(void)
2067 {
2068         int ret;
2069
2070         ret = ib_register_client(&nvme_rdma_ib_client);
2071         if (ret)
2072                 return ret;
2073
2074         ret = nvmf_register_transport(&nvme_rdma_transport);
2075         if (ret)
2076                 goto err_unreg_client;
2077
2078         return 0;
2079
2080 err_unreg_client:
2081         ib_unregister_client(&nvme_rdma_ib_client);
2082         return ret;
2083 }
2084
2085 static void __exit nvme_rdma_cleanup_module(void)
2086 {
2087         nvmf_unregister_transport(&nvme_rdma_transport);
2088         ib_unregister_client(&nvme_rdma_ib_client);
2089 }
2090
2091 module_init(nvme_rdma_init_module);
2092 module_exit(nvme_rdma_cleanup_module);
2093
2094 MODULE_LICENSE("GPL v2");