1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
31 #define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */
33 #define NVME_RDMA_MAX_SEGMENTS 256
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
42 struct nvme_rdma_device {
43 struct ib_device *dev;
46 struct list_head entry;
47 unsigned int num_inline_segments;
56 struct nvme_rdma_sgl {
58 struct sg_table sg_table;
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 struct nvme_request req;
65 struct nvme_rdma_qe sqe;
66 union nvme_result result;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
71 struct ib_reg_wr reg_wr;
72 struct ib_cqe reg_cqe;
73 struct nvme_rdma_queue *queue;
74 struct nvme_rdma_sgl data_sgl;
75 struct nvme_rdma_sgl *metadata_sgl;
79 enum nvme_rdma_queue_flags {
80 NVME_RDMA_Q_ALLOCATED = 0,
82 NVME_RDMA_Q_TR_READY = 2,
85 struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
88 size_t cmnd_capsule_len;
89 struct nvme_rdma_ctrl *ctrl;
90 struct nvme_rdma_device *device;
95 struct rdma_cm_id *cm_id;
97 struct completion cm_done;
100 struct mutex queue_lock;
103 struct nvme_rdma_ctrl {
104 /* read only in the hot path */
105 struct nvme_rdma_queue *queues;
107 /* other member variables */
108 struct blk_mq_tag_set tag_set;
109 struct work_struct err_work;
111 struct nvme_rdma_qe async_event_sqe;
113 struct delayed_work reconnect_work;
115 struct list_head list;
117 struct blk_mq_tag_set admin_tag_set;
118 struct nvme_rdma_device *device;
122 struct sockaddr_storage addr;
123 struct sockaddr_storage src_addr;
125 struct nvme_ctrl ctrl;
126 bool use_inline_data;
127 u32 io_queues[HCTX_MAX_TYPES];
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 "Use memory registration even for contiguous memory regions");
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 return queue - queue->ctrl->queues;
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
166 return nvme_rdma_queue_idx(queue) >
167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 queue->ctrl->io_queues[HCTX_TYPE_READ];
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
186 qe->data = kzalloc(capsule_size, GFP_KERNEL);
190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 if (ib_dma_mapping_error(ibdev, qe->dma)) {
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 size_t capsule_size, enum dma_data_direction dir)
206 for (i = 0; i < ib_queue_size; i++)
207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 size_t ib_queue_size, size_t capsule_size,
213 enum dma_data_direction dir)
215 struct nvme_rdma_qe *ring;
218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 * lifetime. It's safe, since any chage in the underlying RDMA device
225 * will issue error recovery and queue re-creation.
227 for (i = 0; i < ib_queue_size; i++) {
228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
241 pr_debug("QP event %s (%d)\n",
242 ib_event_msg(event->event), event->event);
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
250 ret = wait_for_completion_interruptible(&queue->cm_done);
253 WARN_ON_ONCE(queue->cm_error > 0);
254 return queue->cm_error;
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
259 struct nvme_rdma_device *dev = queue->device;
260 struct ib_qp_init_attr init_attr;
263 memset(&init_attr, 0, sizeof(init_attr));
264 init_attr.event_handler = nvme_rdma_qp_event;
266 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
268 init_attr.cap.max_recv_wr = queue->queue_size + 1;
269 init_attr.cap.max_recv_sge = 1;
270 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272 init_attr.qp_type = IB_QPT_RC;
273 init_attr.send_cq = queue->ib_cq;
274 init_attr.recv_cq = queue->ib_cq;
275 if (queue->pi_support)
276 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277 init_attr.qp_context = queue;
279 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
281 queue->qp = queue->cm_id->qp;
285 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286 struct request *rq, unsigned int hctx_idx)
288 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
290 kfree(req->sqe.data);
293 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294 struct request *rq, unsigned int hctx_idx,
295 unsigned int numa_node)
297 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
298 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
302 nvme_req(rq)->ctrl = &ctrl->ctrl;
303 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
308 if (queue->pi_support)
309 req->metadata_sgl = (void *)nvme_req(rq) +
310 sizeof(struct nvme_rdma_request) +
311 NVME_RDMA_DATA_SGL_SIZE;
314 nvme_req(rq)->cmd = req->sqe.data;
319 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
320 unsigned int hctx_idx)
322 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
323 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
325 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
327 hctx->driver_data = queue;
331 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332 unsigned int hctx_idx)
334 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
335 struct nvme_rdma_queue *queue = &ctrl->queues[0];
337 BUG_ON(hctx_idx != 0);
339 hctx->driver_data = queue;
343 static void nvme_rdma_free_dev(struct kref *ref)
345 struct nvme_rdma_device *ndev =
346 container_of(ref, struct nvme_rdma_device, ref);
348 mutex_lock(&device_list_mutex);
349 list_del(&ndev->entry);
350 mutex_unlock(&device_list_mutex);
352 ib_dealloc_pd(ndev->pd);
356 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
358 kref_put(&dev->ref, nvme_rdma_free_dev);
361 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
363 return kref_get_unless_zero(&dev->ref);
366 static struct nvme_rdma_device *
367 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
369 struct nvme_rdma_device *ndev;
371 mutex_lock(&device_list_mutex);
372 list_for_each_entry(ndev, &device_list, entry) {
373 if (ndev->dev->node_guid == cm_id->device->node_guid &&
374 nvme_rdma_dev_get(ndev))
378 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
382 ndev->dev = cm_id->device;
383 kref_init(&ndev->ref);
385 ndev->pd = ib_alloc_pd(ndev->dev,
386 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387 if (IS_ERR(ndev->pd))
390 if (!(ndev->dev->attrs.device_cap_flags &
391 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
392 dev_err(&ndev->dev->dev,
393 "Memory registrations not supported.\n");
397 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398 ndev->dev->attrs.max_send_sge - 1);
399 list_add(&ndev->entry, &device_list);
401 mutex_unlock(&device_list_mutex);
405 ib_dealloc_pd(ndev->pd);
409 mutex_unlock(&device_list_mutex);
413 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
415 if (nvme_rdma_poll_queue(queue))
416 ib_free_cq(queue->ib_cq);
418 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
421 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
423 struct nvme_rdma_device *dev;
424 struct ib_device *ibdev;
426 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
432 if (queue->pi_support)
433 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
434 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
437 * The cm_id object might have been destroyed during RDMA connection
438 * establishment error flow to avoid getting other cma events, thus
439 * the destruction of the QP shouldn't use rdma_cm API.
441 ib_destroy_qp(queue->qp);
442 nvme_rdma_free_cq(queue);
444 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
447 nvme_rdma_dev_put(dev);
450 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
452 u32 max_page_list_len;
455 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
457 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
459 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
462 static int nvme_rdma_create_cq(struct ib_device *ibdev,
463 struct nvme_rdma_queue *queue)
465 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468 * Spread I/O queues completion vectors according their queue index.
469 * Admin queues can always go on completion vector 0.
471 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
473 /* Polling queues need direct cq polling context */
474 if (nvme_rdma_poll_queue(queue))
475 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
476 comp_vector, IB_POLL_DIRECT);
478 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
479 comp_vector, IB_POLL_SOFTIRQ);
481 if (IS_ERR(queue->ib_cq)) {
482 ret = PTR_ERR(queue->ib_cq);
489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
491 struct ib_device *ibdev;
492 const int send_wr_factor = 3; /* MR, SEND, INV */
493 const int cq_factor = send_wr_factor + 1; /* + RECV */
494 int ret, pages_per_mr;
496 queue->device = nvme_rdma_find_get_device(queue->cm_id);
497 if (!queue->device) {
498 dev_err(queue->cm_id->device->dev.parent,
499 "no client data found!\n");
500 return -ECONNREFUSED;
502 ibdev = queue->device->dev;
504 /* +1 for ib_drain_qp */
505 queue->cq_size = cq_factor * queue->queue_size + 1;
507 ret = nvme_rdma_create_cq(ibdev, queue);
511 ret = nvme_rdma_create_qp(queue, send_wr_factor);
513 goto out_destroy_ib_cq;
515 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
516 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
517 if (!queue->rsp_ring) {
523 * Currently we don't use SG_GAPS MR's so if the first entry is
524 * misaligned we'll end up using two entries for a single data page,
525 * so one additional entry is required.
527 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
528 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
533 dev_err(queue->ctrl->ctrl.device,
534 "failed to initialize MR pool sized %d for QID %d\n",
535 queue->queue_size, nvme_rdma_queue_idx(queue));
536 goto out_destroy_ring;
539 if (queue->pi_support) {
540 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
541 queue->queue_size, IB_MR_TYPE_INTEGRITY,
542 pages_per_mr, pages_per_mr);
544 dev_err(queue->ctrl->ctrl.device,
545 "failed to initialize PI MR pool sized %d for QID %d\n",
546 queue->queue_size, nvme_rdma_queue_idx(queue));
547 goto out_destroy_mr_pool;
551 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
556 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
558 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
559 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
561 rdma_destroy_qp(queue->cm_id);
563 nvme_rdma_free_cq(queue);
565 nvme_rdma_dev_put(queue->device);
569 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570 int idx, size_t queue_size)
572 struct nvme_rdma_queue *queue;
573 struct sockaddr *src_addr = NULL;
576 queue = &ctrl->queues[idx];
577 mutex_init(&queue->queue_lock);
579 if (idx && ctrl->ctrl.max_integrity_segments)
580 queue->pi_support = true;
582 queue->pi_support = false;
583 init_completion(&queue->cm_done);
586 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
588 queue->cmnd_capsule_len = sizeof(struct nvme_command);
590 queue->queue_size = queue_size;
592 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
593 RDMA_PS_TCP, IB_QPT_RC);
594 if (IS_ERR(queue->cm_id)) {
595 dev_info(ctrl->ctrl.device,
596 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597 ret = PTR_ERR(queue->cm_id);
598 goto out_destroy_mutex;
601 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602 src_addr = (struct sockaddr *)&ctrl->src_addr;
604 queue->cm_error = -ETIMEDOUT;
605 ret = rdma_resolve_addr(queue->cm_id, src_addr,
606 (struct sockaddr *)&ctrl->addr,
607 NVME_RDMA_CM_TIMEOUT_MS);
609 dev_info(ctrl->ctrl.device,
610 "rdma_resolve_addr failed (%d).\n", ret);
611 goto out_destroy_cm_id;
614 ret = nvme_rdma_wait_for_cm(queue);
616 dev_info(ctrl->ctrl.device,
617 "rdma connection establishment failed (%d)\n", ret);
618 goto out_destroy_cm_id;
621 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
626 rdma_destroy_id(queue->cm_id);
627 nvme_rdma_destroy_queue_ib(queue);
629 mutex_destroy(&queue->queue_lock);
633 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
635 rdma_disconnect(queue->cm_id);
636 ib_drain_qp(queue->qp);
639 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
641 if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
644 mutex_lock(&queue->queue_lock);
645 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
646 __nvme_rdma_stop_queue(queue);
647 mutex_unlock(&queue->queue_lock);
650 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
652 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
655 rdma_destroy_id(queue->cm_id);
656 nvme_rdma_destroy_queue_ib(queue);
657 mutex_destroy(&queue->queue_lock);
660 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
664 for (i = 1; i < ctrl->ctrl.queue_count; i++)
665 nvme_rdma_free_queue(&ctrl->queues[i]);
668 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
672 for (i = 1; i < ctrl->ctrl.queue_count; i++)
673 nvme_rdma_stop_queue(&ctrl->queues[i]);
676 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
678 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
682 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
684 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
687 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
689 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
690 __nvme_rdma_stop_queue(queue);
691 dev_info(ctrl->ctrl.device,
692 "failed to connect queue: %d ret=%d\n", idx, ret);
697 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
702 for (i = first; i < last; i++) {
703 ret = nvme_rdma_start_queue(ctrl, i);
705 goto out_stop_queues;
711 for (i--; i >= first; i--)
712 nvme_rdma_stop_queue(&ctrl->queues[i]);
716 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
718 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
719 unsigned int nr_io_queues;
722 nr_io_queues = nvmf_nr_io_queues(opts);
723 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
727 if (nr_io_queues == 0) {
728 dev_err(ctrl->ctrl.device,
729 "unable to set any I/O queues\n");
733 ctrl->ctrl.queue_count = nr_io_queues + 1;
734 dev_info(ctrl->ctrl.device,
735 "creating %d I/O queues.\n", nr_io_queues);
737 nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues);
738 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
739 ret = nvme_rdma_alloc_queue(ctrl, i,
740 ctrl->ctrl.sqsize + 1);
742 goto out_free_queues;
748 for (i--; i >= 1; i--)
749 nvme_rdma_free_queue(&ctrl->queues[i]);
754 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
756 unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
757 NVME_RDMA_DATA_SGL_SIZE;
759 if (ctrl->max_integrity_segments)
760 cmd_size += sizeof(struct nvme_rdma_sgl) +
761 NVME_RDMA_METADATA_SGL_SIZE;
763 return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
765 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
769 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
771 if (ctrl->async_event_sqe.data) {
772 cancel_work_sync(&ctrl->ctrl.async_event_work);
773 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
774 sizeof(struct nvme_command), DMA_TO_DEVICE);
775 ctrl->async_event_sqe.data = NULL;
777 nvme_rdma_free_queue(&ctrl->queues[0]);
780 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
783 bool pi_capable = false;
786 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
790 ctrl->device = ctrl->queues[0].device;
791 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
794 if (ctrl->device->dev->attrs.kernel_cap_flags &
795 IBK_INTEGRITY_HANDOVER)
798 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
802 * Bind the async event SQE DMA mapping to the admin queue lifetime.
803 * It's safe, since any chage in the underlying RDMA device will issue
804 * error recovery and queue re-creation.
806 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
807 sizeof(struct nvme_command), DMA_TO_DEVICE);
812 error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
813 &ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
814 sizeof(struct nvme_rdma_request) +
815 NVME_RDMA_DATA_SGL_SIZE);
817 goto out_free_async_qe;
821 error = nvme_rdma_start_queue(ctrl, 0);
823 goto out_remove_admin_tag_set;
825 error = nvme_enable_ctrl(&ctrl->ctrl);
829 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
830 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
832 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
834 ctrl->ctrl.max_integrity_segments = 0;
836 nvme_unquiesce_admin_queue(&ctrl->ctrl);
838 error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
840 goto out_quiesce_queue;
845 nvme_quiesce_admin_queue(&ctrl->ctrl);
846 blk_sync_queue(ctrl->ctrl.admin_q);
848 nvme_rdma_stop_queue(&ctrl->queues[0]);
849 nvme_cancel_admin_tagset(&ctrl->ctrl);
850 out_remove_admin_tag_set:
852 nvme_remove_admin_tag_set(&ctrl->ctrl);
854 if (ctrl->async_event_sqe.data) {
855 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
856 sizeof(struct nvme_command), DMA_TO_DEVICE);
857 ctrl->async_event_sqe.data = NULL;
860 nvme_rdma_free_queue(&ctrl->queues[0]);
864 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
868 ret = nvme_rdma_alloc_io_queues(ctrl);
873 ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
875 goto out_free_io_queues;
879 * Only start IO queues for which we have allocated the tagset
880 * and limitted it to the available queues. On reconnects, the
881 * queue number might have changed.
883 nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
884 ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
886 goto out_cleanup_tagset;
889 nvme_start_freeze(&ctrl->ctrl);
890 nvme_unquiesce_io_queues(&ctrl->ctrl);
891 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
893 * If we timed out waiting for freeze we are likely to
894 * be stuck. Fail the controller initialization just
898 nvme_unfreeze(&ctrl->ctrl);
899 goto out_wait_freeze_timed_out;
901 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
902 ctrl->ctrl.queue_count - 1);
903 nvme_unfreeze(&ctrl->ctrl);
907 * If the number of queues has increased (reconnect case)
908 * start all new queues now.
910 ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
911 ctrl->tag_set.nr_hw_queues + 1);
913 goto out_wait_freeze_timed_out;
917 out_wait_freeze_timed_out:
918 nvme_quiesce_io_queues(&ctrl->ctrl);
919 nvme_sync_io_queues(&ctrl->ctrl);
920 nvme_rdma_stop_io_queues(ctrl);
922 nvme_cancel_tagset(&ctrl->ctrl);
924 nvme_remove_io_tag_set(&ctrl->ctrl);
926 nvme_rdma_free_io_queues(ctrl);
930 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
933 nvme_quiesce_admin_queue(&ctrl->ctrl);
934 blk_sync_queue(ctrl->ctrl.admin_q);
935 nvme_rdma_stop_queue(&ctrl->queues[0]);
936 nvme_cancel_admin_tagset(&ctrl->ctrl);
938 nvme_unquiesce_admin_queue(&ctrl->ctrl);
939 nvme_remove_admin_tag_set(&ctrl->ctrl);
941 nvme_rdma_destroy_admin_queue(ctrl);
944 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
947 if (ctrl->ctrl.queue_count > 1) {
948 nvme_quiesce_io_queues(&ctrl->ctrl);
949 nvme_sync_io_queues(&ctrl->ctrl);
950 nvme_rdma_stop_io_queues(ctrl);
951 nvme_cancel_tagset(&ctrl->ctrl);
953 nvme_unquiesce_io_queues(&ctrl->ctrl);
954 nvme_remove_io_tag_set(&ctrl->ctrl);
956 nvme_rdma_free_io_queues(ctrl);
960 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
962 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
964 flush_work(&ctrl->err_work);
965 cancel_delayed_work_sync(&ctrl->reconnect_work);
968 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
970 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
972 if (list_empty(&ctrl->list))
975 mutex_lock(&nvme_rdma_ctrl_mutex);
976 list_del(&ctrl->list);
977 mutex_unlock(&nvme_rdma_ctrl_mutex);
979 nvmf_free_options(nctrl->opts);
985 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
987 /* If we are resetting/deleting then do nothing */
988 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
989 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
990 ctrl->ctrl.state == NVME_CTRL_LIVE);
994 if (nvmf_should_reconnect(&ctrl->ctrl)) {
995 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
996 ctrl->ctrl.opts->reconnect_delay);
997 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
998 ctrl->ctrl.opts->reconnect_delay * HZ);
1000 nvme_delete_ctrl(&ctrl->ctrl);
1004 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1009 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1013 if (ctrl->ctrl.icdoff) {
1015 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1019 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1021 dev_err(ctrl->ctrl.device,
1022 "Mandatory keyed sgls are not supported!\n");
1026 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1027 dev_warn(ctrl->ctrl.device,
1028 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1029 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1032 if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1033 dev_warn(ctrl->ctrl.device,
1034 "ctrl sqsize %u > max queue size %u, clamping down\n",
1035 ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1036 ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1039 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1040 dev_warn(ctrl->ctrl.device,
1041 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1042 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1043 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1046 if (ctrl->ctrl.sgls & (1 << 20))
1047 ctrl->use_inline_data = true;
1049 if (ctrl->ctrl.queue_count > 1) {
1050 ret = nvme_rdma_configure_io_queues(ctrl, new);
1055 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1058 * state change failure is ok if we started ctrl delete,
1059 * unless we're during creation of a new controller to
1060 * avoid races with teardown flow.
1062 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1063 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1069 nvme_start_ctrl(&ctrl->ctrl);
1073 if (ctrl->ctrl.queue_count > 1) {
1074 nvme_quiesce_io_queues(&ctrl->ctrl);
1075 nvme_sync_io_queues(&ctrl->ctrl);
1076 nvme_rdma_stop_io_queues(ctrl);
1077 nvme_cancel_tagset(&ctrl->ctrl);
1079 nvme_remove_io_tag_set(&ctrl->ctrl);
1080 nvme_rdma_free_io_queues(ctrl);
1083 nvme_quiesce_admin_queue(&ctrl->ctrl);
1084 blk_sync_queue(ctrl->ctrl.admin_q);
1085 nvme_rdma_stop_queue(&ctrl->queues[0]);
1086 nvme_cancel_admin_tagset(&ctrl->ctrl);
1088 nvme_remove_admin_tag_set(&ctrl->ctrl);
1089 nvme_rdma_destroy_admin_queue(ctrl);
1093 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1095 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1096 struct nvme_rdma_ctrl, reconnect_work);
1098 ++ctrl->ctrl.nr_reconnects;
1100 if (nvme_rdma_setup_ctrl(ctrl, false))
1103 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1104 ctrl->ctrl.nr_reconnects);
1106 ctrl->ctrl.nr_reconnects = 0;
1111 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1112 ctrl->ctrl.nr_reconnects);
1113 nvme_rdma_reconnect_or_remove(ctrl);
1116 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1118 struct nvme_rdma_ctrl *ctrl = container_of(work,
1119 struct nvme_rdma_ctrl, err_work);
1121 nvme_stop_keep_alive(&ctrl->ctrl);
1122 flush_work(&ctrl->ctrl.async_event_work);
1123 nvme_rdma_teardown_io_queues(ctrl, false);
1124 nvme_unquiesce_io_queues(&ctrl->ctrl);
1125 nvme_rdma_teardown_admin_queue(ctrl, false);
1126 nvme_unquiesce_admin_queue(&ctrl->ctrl);
1127 nvme_auth_stop(&ctrl->ctrl);
1129 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1130 /* state change failure is ok if we started ctrl delete */
1131 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1132 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1136 nvme_rdma_reconnect_or_remove(ctrl);
1139 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1141 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1144 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1145 queue_work(nvme_reset_wq, &ctrl->err_work);
1148 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1150 struct request *rq = blk_mq_rq_from_pdu(req);
1152 if (!refcount_dec_and_test(&req->ref))
1154 if (!nvme_try_complete_req(rq, req->status, req->result))
1155 nvme_rdma_complete_rq(rq);
1158 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1161 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1162 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1164 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1165 dev_info(ctrl->ctrl.device,
1166 "%s for CQE 0x%p failed with status %s (%d)\n",
1168 ib_wc_status_msg(wc->status), wc->status);
1169 nvme_rdma_error_recovery(ctrl);
1172 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1174 if (unlikely(wc->status != IB_WC_SUCCESS))
1175 nvme_rdma_wr_error(cq, wc, "MEMREG");
1178 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1180 struct nvme_rdma_request *req =
1181 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1183 if (unlikely(wc->status != IB_WC_SUCCESS))
1184 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1186 nvme_rdma_end_request(req);
1189 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1190 struct nvme_rdma_request *req)
1192 struct ib_send_wr wr = {
1193 .opcode = IB_WR_LOCAL_INV,
1196 .send_flags = IB_SEND_SIGNALED,
1197 .ex.invalidate_rkey = req->mr->rkey,
1200 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1201 wr.wr_cqe = &req->reg_cqe;
1203 return ib_post_send(queue->qp, &wr, NULL);
1206 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1208 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1210 if (blk_integrity_rq(rq)) {
1211 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1212 req->metadata_sgl->nents, rq_dma_dir(rq));
1213 sg_free_table_chained(&req->metadata_sgl->sg_table,
1214 NVME_INLINE_METADATA_SG_CNT);
1217 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1219 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1222 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1225 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1226 struct nvme_rdma_device *dev = queue->device;
1227 struct ib_device *ibdev = dev->dev;
1228 struct list_head *pool = &queue->qp->rdma_mrs;
1230 if (!blk_rq_nr_phys_segments(rq))
1233 if (req->use_sig_mr)
1234 pool = &queue->qp->sig_mrs;
1237 ib_mr_pool_put(queue->qp, pool, req->mr);
1241 nvme_rdma_dma_unmap_req(ibdev, rq);
1244 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1246 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1249 put_unaligned_le24(0, sg->length);
1250 put_unaligned_le32(0, sg->key);
1251 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1255 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1256 struct nvme_rdma_request *req, struct nvme_command *c,
1259 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1260 struct ib_sge *sge = &req->sge[1];
1261 struct scatterlist *sgl;
1265 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1266 sge->addr = sg_dma_address(sgl);
1267 sge->length = sg_dma_len(sgl);
1268 sge->lkey = queue->device->pd->local_dma_lkey;
1273 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1274 sg->length = cpu_to_le32(len);
1275 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1277 req->num_sge += count;
1281 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1282 struct nvme_rdma_request *req, struct nvme_command *c)
1284 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1286 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1287 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1288 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1289 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1293 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1294 struct nvme_rdma_request *req, struct nvme_command *c,
1297 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1300 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1301 if (WARN_ON_ONCE(!req->mr))
1305 * Align the MR to a 4K page size to match the ctrl page size and
1306 * the block virtual boundary.
1308 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1310 if (unlikely(nr < count)) {
1311 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1318 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1320 req->reg_cqe.done = nvme_rdma_memreg_done;
1321 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1322 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1323 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1324 req->reg_wr.wr.num_sge = 0;
1325 req->reg_wr.mr = req->mr;
1326 req->reg_wr.key = req->mr->rkey;
1327 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1328 IB_ACCESS_REMOTE_READ |
1329 IB_ACCESS_REMOTE_WRITE;
1331 sg->addr = cpu_to_le64(req->mr->iova);
1332 put_unaligned_le24(req->mr->length, sg->length);
1333 put_unaligned_le32(req->mr->rkey, sg->key);
1334 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1335 NVME_SGL_FMT_INVALIDATE;
1340 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1341 struct nvme_command *cmd, struct ib_sig_domain *domain,
1342 u16 control, u8 pi_type)
1344 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1345 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1346 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1347 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1348 if (control & NVME_RW_PRINFO_PRCHK_REF)
1349 domain->sig.dif.ref_remap = true;
1351 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1352 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1353 domain->sig.dif.app_escape = true;
1354 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1355 domain->sig.dif.ref_escape = true;
1358 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1359 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1362 u16 control = le16_to_cpu(cmd->rw.control);
1364 memset(sig_attrs, 0, sizeof(*sig_attrs));
1365 if (control & NVME_RW_PRINFO_PRACT) {
1366 /* for WRITE_INSERT/READ_STRIP no memory domain */
1367 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1368 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1370 /* Clear the PRACT bit since HCA will generate/verify the PI */
1371 control &= ~NVME_RW_PRINFO_PRACT;
1372 cmd->rw.control = cpu_to_le16(control);
1374 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1375 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1377 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1382 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1385 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1386 *mask |= IB_SIG_CHECK_REFTAG;
1387 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1388 *mask |= IB_SIG_CHECK_GUARD;
1391 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1393 if (unlikely(wc->status != IB_WC_SUCCESS))
1394 nvme_rdma_wr_error(cq, wc, "SIG");
1397 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1398 struct nvme_rdma_request *req, struct nvme_command *c,
1399 int count, int pi_count)
1401 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1402 struct ib_reg_wr *wr = &req->reg_wr;
1403 struct request *rq = blk_mq_rq_from_pdu(req);
1404 struct nvme_ns *ns = rq->q->queuedata;
1405 struct bio *bio = rq->bio;
1406 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1409 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1410 if (WARN_ON_ONCE(!req->mr))
1413 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1414 req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1419 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1420 req->mr->sig_attrs, ns->pi_type);
1421 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1423 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1425 req->reg_cqe.done = nvme_rdma_sig_done;
1426 memset(wr, 0, sizeof(*wr));
1427 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1428 wr->wr.wr_cqe = &req->reg_cqe;
1430 wr->wr.send_flags = 0;
1432 wr->key = req->mr->rkey;
1433 wr->access = IB_ACCESS_LOCAL_WRITE |
1434 IB_ACCESS_REMOTE_READ |
1435 IB_ACCESS_REMOTE_WRITE;
1437 sg->addr = cpu_to_le64(req->mr->iova);
1438 put_unaligned_le24(req->mr->length, sg->length);
1439 put_unaligned_le32(req->mr->rkey, sg->key);
1440 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1445 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1452 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1453 int *count, int *pi_count)
1455 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1458 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1459 ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1460 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1461 NVME_INLINE_SG_CNT);
1465 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1466 req->data_sgl.sg_table.sgl);
1468 *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1469 req->data_sgl.nents, rq_dma_dir(rq));
1470 if (unlikely(*count <= 0)) {
1472 goto out_free_table;
1475 if (blk_integrity_rq(rq)) {
1476 req->metadata_sgl->sg_table.sgl =
1477 (struct scatterlist *)(req->metadata_sgl + 1);
1478 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1479 blk_rq_count_integrity_sg(rq->q, rq->bio),
1480 req->metadata_sgl->sg_table.sgl,
1481 NVME_INLINE_METADATA_SG_CNT);
1482 if (unlikely(ret)) {
1487 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1488 rq->bio, req->metadata_sgl->sg_table.sgl);
1489 *pi_count = ib_dma_map_sg(ibdev,
1490 req->metadata_sgl->sg_table.sgl,
1491 req->metadata_sgl->nents,
1493 if (unlikely(*pi_count <= 0)) {
1495 goto out_free_pi_table;
1502 sg_free_table_chained(&req->metadata_sgl->sg_table,
1503 NVME_INLINE_METADATA_SG_CNT);
1505 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1508 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1512 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1513 struct request *rq, struct nvme_command *c)
1515 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1516 struct nvme_rdma_device *dev = queue->device;
1517 struct ib_device *ibdev = dev->dev;
1522 refcount_set(&req->ref, 2); /* send and recv completions */
1524 c->common.flags |= NVME_CMD_SGL_METABUF;
1526 if (!blk_rq_nr_phys_segments(rq))
1527 return nvme_rdma_set_sg_null(c);
1529 ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1533 if (req->use_sig_mr) {
1534 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1538 if (count <= dev->num_inline_segments) {
1539 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1540 queue->ctrl->use_inline_data &&
1541 blk_rq_payload_bytes(rq) <=
1542 nvme_rdma_inline_data_size(queue)) {
1543 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1547 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1548 ret = nvme_rdma_map_sg_single(queue, req, c);
1553 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1556 goto out_dma_unmap_req;
1561 nvme_rdma_dma_unmap_req(ibdev, rq);
1565 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1567 struct nvme_rdma_qe *qe =
1568 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1569 struct nvme_rdma_request *req =
1570 container_of(qe, struct nvme_rdma_request, sqe);
1572 if (unlikely(wc->status != IB_WC_SUCCESS))
1573 nvme_rdma_wr_error(cq, wc, "SEND");
1575 nvme_rdma_end_request(req);
1578 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1579 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1580 struct ib_send_wr *first)
1582 struct ib_send_wr wr;
1585 sge->addr = qe->dma;
1586 sge->length = sizeof(struct nvme_command);
1587 sge->lkey = queue->device->pd->local_dma_lkey;
1590 wr.wr_cqe = &qe->cqe;
1592 wr.num_sge = num_sge;
1593 wr.opcode = IB_WR_SEND;
1594 wr.send_flags = IB_SEND_SIGNALED;
1601 ret = ib_post_send(queue->qp, first, NULL);
1602 if (unlikely(ret)) {
1603 dev_err(queue->ctrl->ctrl.device,
1604 "%s failed with error code %d\n", __func__, ret);
1609 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1610 struct nvme_rdma_qe *qe)
1612 struct ib_recv_wr wr;
1616 list.addr = qe->dma;
1617 list.length = sizeof(struct nvme_completion);
1618 list.lkey = queue->device->pd->local_dma_lkey;
1620 qe->cqe.done = nvme_rdma_recv_done;
1623 wr.wr_cqe = &qe->cqe;
1627 ret = ib_post_recv(queue->qp, &wr, NULL);
1628 if (unlikely(ret)) {
1629 dev_err(queue->ctrl->ctrl.device,
1630 "%s failed with error code %d\n", __func__, ret);
1635 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1637 u32 queue_idx = nvme_rdma_queue_idx(queue);
1640 return queue->ctrl->admin_tag_set.tags[queue_idx];
1641 return queue->ctrl->tag_set.tags[queue_idx - 1];
1644 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1646 if (unlikely(wc->status != IB_WC_SUCCESS))
1647 nvme_rdma_wr_error(cq, wc, "ASYNC");
1650 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1652 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1653 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1654 struct ib_device *dev = queue->device->dev;
1655 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1656 struct nvme_command *cmd = sqe->data;
1660 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1662 memset(cmd, 0, sizeof(*cmd));
1663 cmd->common.opcode = nvme_admin_async_event;
1664 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1665 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1666 nvme_rdma_set_sg_null(cmd);
1668 sqe->cqe.done = nvme_rdma_async_done;
1670 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1673 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1677 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1678 struct nvme_completion *cqe, struct ib_wc *wc)
1681 struct nvme_rdma_request *req;
1683 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1685 dev_err(queue->ctrl->ctrl.device,
1686 "got bad command_id %#x on QP %#x\n",
1687 cqe->command_id, queue->qp->qp_num);
1688 nvme_rdma_error_recovery(queue->ctrl);
1691 req = blk_mq_rq_to_pdu(rq);
1693 req->status = cqe->status;
1694 req->result = cqe->result;
1696 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1697 if (unlikely(!req->mr ||
1698 wc->ex.invalidate_rkey != req->mr->rkey)) {
1699 dev_err(queue->ctrl->ctrl.device,
1700 "Bogus remote invalidation for rkey %#x\n",
1701 req->mr ? req->mr->rkey : 0);
1702 nvme_rdma_error_recovery(queue->ctrl);
1704 } else if (req->mr) {
1707 ret = nvme_rdma_inv_rkey(queue, req);
1708 if (unlikely(ret < 0)) {
1709 dev_err(queue->ctrl->ctrl.device,
1710 "Queueing INV WR for rkey %#x failed (%d)\n",
1711 req->mr->rkey, ret);
1712 nvme_rdma_error_recovery(queue->ctrl);
1714 /* the local invalidation completion will end the request */
1718 nvme_rdma_end_request(req);
1721 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1723 struct nvme_rdma_qe *qe =
1724 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1725 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1726 struct ib_device *ibdev = queue->device->dev;
1727 struct nvme_completion *cqe = qe->data;
1728 const size_t len = sizeof(struct nvme_completion);
1730 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1731 nvme_rdma_wr_error(cq, wc, "RECV");
1735 /* sanity checking for received data length */
1736 if (unlikely(wc->byte_len < len)) {
1737 dev_err(queue->ctrl->ctrl.device,
1738 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1739 nvme_rdma_error_recovery(queue->ctrl);
1743 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1745 * AEN requests are special as they don't time out and can
1746 * survive any kind of queue freeze and often don't respond to
1747 * aborts. We don't even bother to allocate a struct request
1748 * for them but rather special case them here.
1750 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1752 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1755 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1756 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1758 nvme_rdma_post_recv(queue, qe);
1761 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1765 for (i = 0; i < queue->queue_size; i++) {
1766 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1774 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1775 struct rdma_cm_event *ev)
1777 struct rdma_cm_id *cm_id = queue->cm_id;
1778 int status = ev->status;
1779 const char *rej_msg;
1780 const struct nvme_rdma_cm_rej *rej_data;
1783 rej_msg = rdma_reject_msg(cm_id, status);
1784 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1786 if (rej_data && rej_data_len >= sizeof(u16)) {
1787 u16 sts = le16_to_cpu(rej_data->sts);
1789 dev_err(queue->ctrl->ctrl.device,
1790 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1791 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1793 dev_err(queue->ctrl->ctrl.device,
1794 "Connect rejected: status %d (%s).\n", status, rej_msg);
1800 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1802 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1805 ret = nvme_rdma_create_queue_ib(queue);
1809 if (ctrl->opts->tos >= 0)
1810 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1811 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1813 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1815 goto out_destroy_queue;
1821 nvme_rdma_destroy_queue_ib(queue);
1825 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1827 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1828 struct rdma_conn_param param = { };
1829 struct nvme_rdma_cm_req priv = { };
1832 param.qp_num = queue->qp->qp_num;
1833 param.flow_control = 1;
1835 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1836 /* maximum retry count */
1837 param.retry_count = 7;
1838 param.rnr_retry_count = 7;
1839 param.private_data = &priv;
1840 param.private_data_len = sizeof(priv);
1842 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1843 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1845 * set the admin queue depth to the minimum size
1846 * specified by the Fabrics standard.
1848 if (priv.qid == 0) {
1849 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1850 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1853 * current interpretation of the fabrics spec
1854 * is at minimum you make hrqsize sqsize+1, or a
1855 * 1's based representation of sqsize.
1857 priv.hrqsize = cpu_to_le16(queue->queue_size);
1858 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1861 ret = rdma_connect_locked(queue->cm_id, ¶m);
1863 dev_err(ctrl->ctrl.device,
1864 "rdma_connect_locked failed (%d).\n", ret);
1871 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1872 struct rdma_cm_event *ev)
1874 struct nvme_rdma_queue *queue = cm_id->context;
1877 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1878 rdma_event_msg(ev->event), ev->event,
1881 switch (ev->event) {
1882 case RDMA_CM_EVENT_ADDR_RESOLVED:
1883 cm_error = nvme_rdma_addr_resolved(queue);
1885 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1886 cm_error = nvme_rdma_route_resolved(queue);
1888 case RDMA_CM_EVENT_ESTABLISHED:
1889 queue->cm_error = nvme_rdma_conn_established(queue);
1890 /* complete cm_done regardless of success/failure */
1891 complete(&queue->cm_done);
1893 case RDMA_CM_EVENT_REJECTED:
1894 cm_error = nvme_rdma_conn_rejected(queue, ev);
1896 case RDMA_CM_EVENT_ROUTE_ERROR:
1897 case RDMA_CM_EVENT_CONNECT_ERROR:
1898 case RDMA_CM_EVENT_UNREACHABLE:
1899 case RDMA_CM_EVENT_ADDR_ERROR:
1900 dev_dbg(queue->ctrl->ctrl.device,
1901 "CM error event %d\n", ev->event);
1902 cm_error = -ECONNRESET;
1904 case RDMA_CM_EVENT_DISCONNECTED:
1905 case RDMA_CM_EVENT_ADDR_CHANGE:
1906 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1907 dev_dbg(queue->ctrl->ctrl.device,
1908 "disconnect received - connection closed\n");
1909 nvme_rdma_error_recovery(queue->ctrl);
1911 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1912 /* device removal is handled via the ib_client API */
1915 dev_err(queue->ctrl->ctrl.device,
1916 "Unexpected RDMA CM event (%d)\n", ev->event);
1917 nvme_rdma_error_recovery(queue->ctrl);
1922 queue->cm_error = cm_error;
1923 complete(&queue->cm_done);
1929 static void nvme_rdma_complete_timed_out(struct request *rq)
1931 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1932 struct nvme_rdma_queue *queue = req->queue;
1934 nvme_rdma_stop_queue(queue);
1935 nvmf_complete_timed_out_request(rq);
1938 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1940 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1941 struct nvme_rdma_queue *queue = req->queue;
1942 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1944 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1945 rq->tag, nvme_rdma_queue_idx(queue));
1947 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1949 * If we are resetting, connecting or deleting we should
1950 * complete immediately because we may block controller
1951 * teardown or setup sequence
1952 * - ctrl disable/shutdown fabrics requests
1953 * - connect requests
1954 * - initialization admin requests
1955 * - I/O requests that entered after unquiescing and
1956 * the controller stopped responding
1958 * All other requests should be cancelled by the error
1959 * recovery work, so it's fine that we fail it here.
1961 nvme_rdma_complete_timed_out(rq);
1966 * LIVE state should trigger the normal error recovery which will
1967 * handle completing this request.
1969 nvme_rdma_error_recovery(ctrl);
1970 return BLK_EH_RESET_TIMER;
1973 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1974 const struct blk_mq_queue_data *bd)
1976 struct nvme_ns *ns = hctx->queue->queuedata;
1977 struct nvme_rdma_queue *queue = hctx->driver_data;
1978 struct request *rq = bd->rq;
1979 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1980 struct nvme_rdma_qe *sqe = &req->sqe;
1981 struct nvme_command *c = nvme_req(rq)->cmd;
1982 struct ib_device *dev;
1983 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1987 WARN_ON_ONCE(rq->tag < 0);
1989 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1990 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
1992 dev = queue->device->dev;
1994 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1995 sizeof(struct nvme_command),
1997 err = ib_dma_mapping_error(dev, req->sqe.dma);
1999 return BLK_STS_RESOURCE;
2001 ib_dma_sync_single_for_cpu(dev, sqe->dma,
2002 sizeof(struct nvme_command), DMA_TO_DEVICE);
2004 ret = nvme_setup_cmd(ns, rq);
2008 nvme_start_request(rq);
2010 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2011 queue->pi_support &&
2012 (c->common.opcode == nvme_cmd_write ||
2013 c->common.opcode == nvme_cmd_read) &&
2015 req->use_sig_mr = true;
2017 req->use_sig_mr = false;
2019 err = nvme_rdma_map_data(queue, rq, c);
2020 if (unlikely(err < 0)) {
2021 dev_err(queue->ctrl->ctrl.device,
2022 "Failed to map data (%d)\n", err);
2026 sqe->cqe.done = nvme_rdma_send_done;
2028 ib_dma_sync_single_for_device(dev, sqe->dma,
2029 sizeof(struct nvme_command), DMA_TO_DEVICE);
2031 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2032 req->mr ? &req->reg_wr.wr : NULL);
2039 nvme_rdma_unmap_data(queue, rq);
2042 ret = nvme_host_path_error(rq);
2043 else if (err == -ENOMEM || err == -EAGAIN)
2044 ret = BLK_STS_RESOURCE;
2046 ret = BLK_STS_IOERR;
2047 nvme_cleanup_cmd(rq);
2049 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2054 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2056 struct nvme_rdma_queue *queue = hctx->driver_data;
2058 return ib_process_cq_direct(queue->ib_cq, -1);
2061 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2063 struct request *rq = blk_mq_rq_from_pdu(req);
2064 struct ib_mr_status mr_status;
2067 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2069 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2070 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2074 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2075 switch (mr_status.sig_err.err_type) {
2076 case IB_SIG_BAD_GUARD:
2077 nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2079 case IB_SIG_BAD_REFTAG:
2080 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2082 case IB_SIG_BAD_APPTAG:
2083 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2086 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2087 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2088 mr_status.sig_err.actual);
2092 static void nvme_rdma_complete_rq(struct request *rq)
2094 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2095 struct nvme_rdma_queue *queue = req->queue;
2096 struct ib_device *ibdev = queue->device->dev;
2098 if (req->use_sig_mr)
2099 nvme_rdma_check_pi_status(req);
2101 nvme_rdma_unmap_data(queue, rq);
2102 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2104 nvme_complete_rq(rq);
2107 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2109 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2111 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2114 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2115 .queue_rq = nvme_rdma_queue_rq,
2116 .complete = nvme_rdma_complete_rq,
2117 .init_request = nvme_rdma_init_request,
2118 .exit_request = nvme_rdma_exit_request,
2119 .init_hctx = nvme_rdma_init_hctx,
2120 .timeout = nvme_rdma_timeout,
2121 .map_queues = nvme_rdma_map_queues,
2122 .poll = nvme_rdma_poll,
2125 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2126 .queue_rq = nvme_rdma_queue_rq,
2127 .complete = nvme_rdma_complete_rq,
2128 .init_request = nvme_rdma_init_request,
2129 .exit_request = nvme_rdma_exit_request,
2130 .init_hctx = nvme_rdma_init_admin_hctx,
2131 .timeout = nvme_rdma_timeout,
2134 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2136 nvme_rdma_teardown_io_queues(ctrl, shutdown);
2137 nvme_quiesce_admin_queue(&ctrl->ctrl);
2138 nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2139 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2142 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2144 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2147 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2149 struct nvme_rdma_ctrl *ctrl =
2150 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2152 nvme_stop_ctrl(&ctrl->ctrl);
2153 nvme_rdma_shutdown_ctrl(ctrl, false);
2155 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2156 /* state change failure should never happen */
2161 if (nvme_rdma_setup_ctrl(ctrl, false))
2167 ++ctrl->ctrl.nr_reconnects;
2168 nvme_rdma_reconnect_or_remove(ctrl);
2171 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2173 .module = THIS_MODULE,
2174 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2175 .reg_read32 = nvmf_reg_read32,
2176 .reg_read64 = nvmf_reg_read64,
2177 .reg_write32 = nvmf_reg_write32,
2178 .free_ctrl = nvme_rdma_free_ctrl,
2179 .submit_async_event = nvme_rdma_submit_async_event,
2180 .delete_ctrl = nvme_rdma_delete_ctrl,
2181 .get_address = nvmf_get_address,
2182 .stop_ctrl = nvme_rdma_stop_ctrl,
2186 * Fails a connection request if it matches an existing controller
2187 * (association) with the same tuple:
2188 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2190 * if local address is not specified in the request, it will match an
2191 * existing controller with all the other parameters the same and no
2192 * local port address specified as well.
2194 * The ports don't need to be compared as they are intrinsically
2195 * already matched by the port pointers supplied.
2198 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2200 struct nvme_rdma_ctrl *ctrl;
2203 mutex_lock(&nvme_rdma_ctrl_mutex);
2204 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2205 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2209 mutex_unlock(&nvme_rdma_ctrl_mutex);
2214 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2215 struct nvmf_ctrl_options *opts)
2217 struct nvme_rdma_ctrl *ctrl;
2221 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2223 return ERR_PTR(-ENOMEM);
2224 ctrl->ctrl.opts = opts;
2225 INIT_LIST_HEAD(&ctrl->list);
2227 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2229 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2230 if (!opts->trsvcid) {
2234 opts->mask |= NVMF_OPT_TRSVCID;
2237 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2238 opts->traddr, opts->trsvcid, &ctrl->addr);
2240 pr_err("malformed address passed: %s:%s\n",
2241 opts->traddr, opts->trsvcid);
2245 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2246 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2247 opts->host_traddr, NULL, &ctrl->src_addr);
2249 pr_err("malformed src address passed: %s\n",
2255 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2260 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2261 nvme_rdma_reconnect_ctrl_work);
2262 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2263 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2265 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2266 opts->nr_poll_queues + 1;
2267 ctrl->ctrl.sqsize = opts->queue_size - 1;
2268 ctrl->ctrl.kato = opts->kato;
2271 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2276 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2277 0 /* no quirks, we're perfect! */);
2279 goto out_kfree_queues;
2281 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2282 WARN_ON_ONCE(!changed);
2284 ret = nvme_rdma_setup_ctrl(ctrl, true);
2286 goto out_uninit_ctrl;
2288 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2289 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2291 mutex_lock(&nvme_rdma_ctrl_mutex);
2292 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2293 mutex_unlock(&nvme_rdma_ctrl_mutex);
2298 nvme_uninit_ctrl(&ctrl->ctrl);
2299 nvme_put_ctrl(&ctrl->ctrl);
2302 return ERR_PTR(ret);
2304 kfree(ctrl->queues);
2307 return ERR_PTR(ret);
2310 static struct nvmf_transport_ops nvme_rdma_transport = {
2312 .module = THIS_MODULE,
2313 .required_opts = NVMF_OPT_TRADDR,
2314 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2315 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2316 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2318 .create_ctrl = nvme_rdma_create_ctrl,
2321 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2323 struct nvme_rdma_ctrl *ctrl;
2324 struct nvme_rdma_device *ndev;
2327 mutex_lock(&device_list_mutex);
2328 list_for_each_entry(ndev, &device_list, entry) {
2329 if (ndev->dev == ib_device) {
2334 mutex_unlock(&device_list_mutex);
2339 /* Delete all controllers using this device */
2340 mutex_lock(&nvme_rdma_ctrl_mutex);
2341 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2342 if (ctrl->device->dev != ib_device)
2344 nvme_delete_ctrl(&ctrl->ctrl);
2346 mutex_unlock(&nvme_rdma_ctrl_mutex);
2348 flush_workqueue(nvme_delete_wq);
2351 static struct ib_client nvme_rdma_ib_client = {
2352 .name = "nvme_rdma",
2353 .remove = nvme_rdma_remove_one
2356 static int __init nvme_rdma_init_module(void)
2360 ret = ib_register_client(&nvme_rdma_ib_client);
2364 ret = nvmf_register_transport(&nvme_rdma_transport);
2366 goto err_unreg_client;
2371 ib_unregister_client(&nvme_rdma_ib_client);
2375 static void __exit nvme_rdma_cleanup_module(void)
2377 struct nvme_rdma_ctrl *ctrl;
2379 nvmf_unregister_transport(&nvme_rdma_transport);
2380 ib_unregister_client(&nvme_rdma_ib_client);
2382 mutex_lock(&nvme_rdma_ctrl_mutex);
2383 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2384 nvme_delete_ctrl(&ctrl->ctrl);
2385 mutex_unlock(&nvme_rdma_ctrl_mutex);
2386 flush_workqueue(nvme_delete_wq);
2389 module_init(nvme_rdma_init_module);
2390 module_exit(nvme_rdma_cleanup_module);
2392 MODULE_LICENSE("GPL v2");