Merge tag 'devicetree-fixes-for-4.20-2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33 #include <linux/pci-p2pdma.h>
34
35 #include "nvme.h"
36
37 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
38 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
39
40 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
41
42 /*
43  * These can be higher, but we need to ensure that any command doesn't
44  * require an sg allocation that needs more than a page of data.
45  */
46 #define NVME_MAX_KB_SZ  4096
47 #define NVME_MAX_SEGS   127
48
49 static int use_threaded_interrupts;
50 module_param(use_threaded_interrupts, int, 0);
51
52 static bool use_cmb_sqes = true;
53 module_param(use_cmb_sqes, bool, 0444);
54 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55
56 static unsigned int max_host_mem_size_mb = 128;
57 module_param(max_host_mem_size_mb, uint, 0444);
58 MODULE_PARM_DESC(max_host_mem_size_mb,
59         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60
61 static unsigned int sgl_threshold = SZ_32K;
62 module_param(sgl_threshold, uint, 0644);
63 MODULE_PARM_DESC(sgl_threshold,
64                 "Use SGLs when average request segment size is larger or equal to "
65                 "this size. Use 0 to disable SGLs.");
66
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69         .set = io_queue_depth_set,
70         .get = param_get_int,
71 };
72
73 static int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
76
77 struct nvme_dev;
78 struct nvme_queue;
79
80 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
81
82 /*
83  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
84  */
85 struct nvme_dev {
86         struct nvme_queue *queues;
87         struct blk_mq_tag_set tagset;
88         struct blk_mq_tag_set admin_tagset;
89         u32 __iomem *dbs;
90         struct device *dev;
91         struct dma_pool *prp_page_pool;
92         struct dma_pool *prp_small_pool;
93         unsigned online_queues;
94         unsigned max_qid;
95         unsigned int num_vecs;
96         int q_depth;
97         u32 db_stride;
98         void __iomem *bar;
99         unsigned long bar_mapped_size;
100         struct work_struct remove_work;
101         struct mutex shutdown_lock;
102         bool subsystem;
103         u64 cmb_size;
104         bool cmb_use_sqes;
105         u32 cmbsz;
106         u32 cmbloc;
107         struct nvme_ctrl ctrl;
108         struct completion ioq_wait;
109
110         mempool_t *iod_mempool;
111
112         /* shadow doorbell buffer support: */
113         u32 *dbbuf_dbs;
114         dma_addr_t dbbuf_dbs_dma_addr;
115         u32 *dbbuf_eis;
116         dma_addr_t dbbuf_eis_dma_addr;
117
118         /* host memory buffer support: */
119         u64 host_mem_size;
120         u32 nr_host_mem_descs;
121         dma_addr_t host_mem_descs_dma;
122         struct nvme_host_mem_buf_desc *host_mem_descs;
123         void **host_mem_desc_bufs;
124 };
125
126 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
127 {
128         int n = 0, ret;
129
130         ret = kstrtoint(val, 10, &n);
131         if (ret != 0 || n < 2)
132                 return -EINVAL;
133
134         return param_set_int(val, kp);
135 }
136
137 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
138 {
139         return qid * 2 * stride;
140 }
141
142 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
143 {
144         return (qid * 2 + 1) * stride;
145 }
146
147 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
148 {
149         return container_of(ctrl, struct nvme_dev, ctrl);
150 }
151
152 /*
153  * An NVM Express queue.  Each device has at least two (one for admin
154  * commands and one for I/O commands).
155  */
156 struct nvme_queue {
157         struct device *q_dmadev;
158         struct nvme_dev *dev;
159         spinlock_t sq_lock;
160         struct nvme_command *sq_cmds;
161         bool sq_cmds_is_io;
162         spinlock_t cq_lock ____cacheline_aligned_in_smp;
163         volatile struct nvme_completion *cqes;
164         struct blk_mq_tags **tags;
165         dma_addr_t sq_dma_addr;
166         dma_addr_t cq_dma_addr;
167         u32 __iomem *q_db;
168         u16 q_depth;
169         s16 cq_vector;
170         u16 sq_tail;
171         u16 cq_head;
172         u16 last_cq_head;
173         u16 qid;
174         u8 cq_phase;
175         u32 *dbbuf_sq_db;
176         u32 *dbbuf_cq_db;
177         u32 *dbbuf_sq_ei;
178         u32 *dbbuf_cq_ei;
179 };
180
181 /*
182  * The nvme_iod describes the data in an I/O, including the list of PRP
183  * entries.  You can't see it in this data structure because C doesn't let
184  * me express that.  Use nvme_init_iod to ensure there's enough space
185  * allocated to store the PRP list.
186  */
187 struct nvme_iod {
188         struct nvme_request req;
189         struct nvme_queue *nvmeq;
190         bool use_sgl;
191         int aborted;
192         int npages;             /* In the PRP list. 0 means small pool in use */
193         int nents;              /* Used in scatterlist */
194         int length;             /* Of data, in bytes */
195         dma_addr_t first_dma;
196         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
197         struct scatterlist *sg;
198         struct scatterlist inline_sg[0];
199 };
200
201 /*
202  * Check we didin't inadvertently grow the command struct
203  */
204 static inline void _nvme_check_size(void)
205 {
206         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
207         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
208         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
209         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
210         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
211         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
212         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
213         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
214         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
215         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
216         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
217         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
218         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
219 }
220
221 static inline unsigned int nvme_dbbuf_size(u32 stride)
222 {
223         return ((num_possible_cpus() + 1) * 8 * stride);
224 }
225
226 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
227 {
228         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
229
230         if (dev->dbbuf_dbs)
231                 return 0;
232
233         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
234                                             &dev->dbbuf_dbs_dma_addr,
235                                             GFP_KERNEL);
236         if (!dev->dbbuf_dbs)
237                 return -ENOMEM;
238         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
239                                             &dev->dbbuf_eis_dma_addr,
240                                             GFP_KERNEL);
241         if (!dev->dbbuf_eis) {
242                 dma_free_coherent(dev->dev, mem_size,
243                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
244                 dev->dbbuf_dbs = NULL;
245                 return -ENOMEM;
246         }
247
248         return 0;
249 }
250
251 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
252 {
253         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
254
255         if (dev->dbbuf_dbs) {
256                 dma_free_coherent(dev->dev, mem_size,
257                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
258                 dev->dbbuf_dbs = NULL;
259         }
260         if (dev->dbbuf_eis) {
261                 dma_free_coherent(dev->dev, mem_size,
262                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
263                 dev->dbbuf_eis = NULL;
264         }
265 }
266
267 static void nvme_dbbuf_init(struct nvme_dev *dev,
268                             struct nvme_queue *nvmeq, int qid)
269 {
270         if (!dev->dbbuf_dbs || !qid)
271                 return;
272
273         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
274         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
275         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
276         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
277 }
278
279 static void nvme_dbbuf_set(struct nvme_dev *dev)
280 {
281         struct nvme_command c;
282
283         if (!dev->dbbuf_dbs)
284                 return;
285
286         memset(&c, 0, sizeof(c));
287         c.dbbuf.opcode = nvme_admin_dbbuf;
288         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
289         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
290
291         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
292                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
293                 /* Free memory and continue on */
294                 nvme_dbbuf_dma_free(dev);
295         }
296 }
297
298 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
299 {
300         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
301 }
302
303 /* Update dbbuf and return true if an MMIO is required */
304 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
305                                               volatile u32 *dbbuf_ei)
306 {
307         if (dbbuf_db) {
308                 u16 old_value;
309
310                 /*
311                  * Ensure that the queue is written before updating
312                  * the doorbell in memory
313                  */
314                 wmb();
315
316                 old_value = *dbbuf_db;
317                 *dbbuf_db = value;
318
319                 /*
320                  * Ensure that the doorbell is updated before reading the event
321                  * index from memory.  The controller needs to provide similar
322                  * ordering to ensure the envent index is updated before reading
323                  * the doorbell.
324                  */
325                 mb();
326
327                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
328                         return false;
329         }
330
331         return true;
332 }
333
334 /*
335  * Max size of iod being embedded in the request payload
336  */
337 #define NVME_INT_PAGES          2
338 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
339
340 /*
341  * Will slightly overestimate the number of pages needed.  This is OK
342  * as it only leads to a small amount of wasted memory for the lifetime of
343  * the I/O.
344  */
345 static int nvme_npages(unsigned size, struct nvme_dev *dev)
346 {
347         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
348                                       dev->ctrl.page_size);
349         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
350 }
351
352 /*
353  * Calculates the number of pages needed for the SGL segments. For example a 4k
354  * page can accommodate 256 SGL descriptors.
355  */
356 static int nvme_pci_npages_sgl(unsigned int num_seg)
357 {
358         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
359 }
360
361 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
362                 unsigned int size, unsigned int nseg, bool use_sgl)
363 {
364         size_t alloc_size;
365
366         if (use_sgl)
367                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
368         else
369                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
370
371         return alloc_size + sizeof(struct scatterlist) * nseg;
372 }
373
374 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
375 {
376         unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
377                                     NVME_INT_BYTES(dev), NVME_INT_PAGES,
378                                     use_sgl);
379
380         return sizeof(struct nvme_iod) + alloc_size;
381 }
382
383 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384                                 unsigned int hctx_idx)
385 {
386         struct nvme_dev *dev = data;
387         struct nvme_queue *nvmeq = &dev->queues[0];
388
389         WARN_ON(hctx_idx != 0);
390         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
391         WARN_ON(nvmeq->tags);
392
393         hctx->driver_data = nvmeq;
394         nvmeq->tags = &dev->admin_tagset.tags[0];
395         return 0;
396 }
397
398 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
399 {
400         struct nvme_queue *nvmeq = hctx->driver_data;
401
402         nvmeq->tags = NULL;
403 }
404
405 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
406                           unsigned int hctx_idx)
407 {
408         struct nvme_dev *dev = data;
409         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
410
411         if (!nvmeq->tags)
412                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
413
414         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415         hctx->driver_data = nvmeq;
416         return 0;
417 }
418
419 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
420                 unsigned int hctx_idx, unsigned int numa_node)
421 {
422         struct nvme_dev *dev = set->driver_data;
423         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
425         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
426
427         BUG_ON(!nvmeq);
428         iod->nvmeq = nvmeq;
429
430         nvme_req(req)->ctrl = &dev->ctrl;
431         return 0;
432 }
433
434 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
435 {
436         struct nvme_dev *dev = set->driver_data;
437
438         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
439                         dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
440 }
441
442 /**
443  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
444  * @nvmeq: The queue to use
445  * @cmd: The command to send
446  */
447 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
448 {
449         spin_lock(&nvmeq->sq_lock);
450
451         memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
452
453         if (++nvmeq->sq_tail == nvmeq->q_depth)
454                 nvmeq->sq_tail = 0;
455         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
456                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
457                 writel(nvmeq->sq_tail, nvmeq->q_db);
458         spin_unlock(&nvmeq->sq_lock);
459 }
460
461 static void **nvme_pci_iod_list(struct request *req)
462 {
463         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
464         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
465 }
466
467 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
468 {
469         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
470         int nseg = blk_rq_nr_phys_segments(req);
471         unsigned int avg_seg_size;
472
473         if (nseg == 0)
474                 return false;
475
476         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
477
478         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
479                 return false;
480         if (!iod->nvmeq->qid)
481                 return false;
482         if (!sgl_threshold || avg_seg_size < sgl_threshold)
483                 return false;
484         return true;
485 }
486
487 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
488 {
489         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
490         int nseg = blk_rq_nr_phys_segments(rq);
491         unsigned int size = blk_rq_payload_bytes(rq);
492
493         iod->use_sgl = nvme_pci_use_sgls(dev, rq);
494
495         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
496                 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
497                 if (!iod->sg)
498                         return BLK_STS_RESOURCE;
499         } else {
500                 iod->sg = iod->inline_sg;
501         }
502
503         iod->aborted = 0;
504         iod->npages = -1;
505         iod->nents = 0;
506         iod->length = size;
507
508         return BLK_STS_OK;
509 }
510
511 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
512 {
513         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
514         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
515         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
516
517         int i;
518
519         if (iod->npages == 0)
520                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
521                         dma_addr);
522
523         for (i = 0; i < iod->npages; i++) {
524                 void *addr = nvme_pci_iod_list(req)[i];
525
526                 if (iod->use_sgl) {
527                         struct nvme_sgl_desc *sg_list = addr;
528
529                         next_dma_addr =
530                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
531                 } else {
532                         __le64 *prp_list = addr;
533
534                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
535                 }
536
537                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
538                 dma_addr = next_dma_addr;
539         }
540
541         if (iod->sg != iod->inline_sg)
542                 mempool_free(iod->sg, dev->iod_mempool);
543 }
544
545 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
546 {
547         int i;
548         struct scatterlist *sg;
549
550         for_each_sg(sgl, sg, nents, i) {
551                 dma_addr_t phys = sg_phys(sg);
552                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
553                         "dma_address:%pad dma_length:%d\n",
554                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
555                         sg_dma_len(sg));
556         }
557 }
558
559 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
560                 struct request *req, struct nvme_rw_command *cmnd)
561 {
562         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
563         struct dma_pool *pool;
564         int length = blk_rq_payload_bytes(req);
565         struct scatterlist *sg = iod->sg;
566         int dma_len = sg_dma_len(sg);
567         u64 dma_addr = sg_dma_address(sg);
568         u32 page_size = dev->ctrl.page_size;
569         int offset = dma_addr & (page_size - 1);
570         __le64 *prp_list;
571         void **list = nvme_pci_iod_list(req);
572         dma_addr_t prp_dma;
573         int nprps, i;
574
575         length -= (page_size - offset);
576         if (length <= 0) {
577                 iod->first_dma = 0;
578                 goto done;
579         }
580
581         dma_len -= (page_size - offset);
582         if (dma_len) {
583                 dma_addr += (page_size - offset);
584         } else {
585                 sg = sg_next(sg);
586                 dma_addr = sg_dma_address(sg);
587                 dma_len = sg_dma_len(sg);
588         }
589
590         if (length <= page_size) {
591                 iod->first_dma = dma_addr;
592                 goto done;
593         }
594
595         nprps = DIV_ROUND_UP(length, page_size);
596         if (nprps <= (256 / 8)) {
597                 pool = dev->prp_small_pool;
598                 iod->npages = 0;
599         } else {
600                 pool = dev->prp_page_pool;
601                 iod->npages = 1;
602         }
603
604         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
605         if (!prp_list) {
606                 iod->first_dma = dma_addr;
607                 iod->npages = -1;
608                 return BLK_STS_RESOURCE;
609         }
610         list[0] = prp_list;
611         iod->first_dma = prp_dma;
612         i = 0;
613         for (;;) {
614                 if (i == page_size >> 3) {
615                         __le64 *old_prp_list = prp_list;
616                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
617                         if (!prp_list)
618                                 return BLK_STS_RESOURCE;
619                         list[iod->npages++] = prp_list;
620                         prp_list[0] = old_prp_list[i - 1];
621                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
622                         i = 1;
623                 }
624                 prp_list[i++] = cpu_to_le64(dma_addr);
625                 dma_len -= page_size;
626                 dma_addr += page_size;
627                 length -= page_size;
628                 if (length <= 0)
629                         break;
630                 if (dma_len > 0)
631                         continue;
632                 if (unlikely(dma_len < 0))
633                         goto bad_sgl;
634                 sg = sg_next(sg);
635                 dma_addr = sg_dma_address(sg);
636                 dma_len = sg_dma_len(sg);
637         }
638
639 done:
640         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
641         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
642
643         return BLK_STS_OK;
644
645  bad_sgl:
646         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
647                         "Invalid SGL for payload:%d nents:%d\n",
648                         blk_rq_payload_bytes(req), iod->nents);
649         return BLK_STS_IOERR;
650 }
651
652 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
653                 struct scatterlist *sg)
654 {
655         sge->addr = cpu_to_le64(sg_dma_address(sg));
656         sge->length = cpu_to_le32(sg_dma_len(sg));
657         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
658 }
659
660 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
661                 dma_addr_t dma_addr, int entries)
662 {
663         sge->addr = cpu_to_le64(dma_addr);
664         if (entries < SGES_PER_PAGE) {
665                 sge->length = cpu_to_le32(entries * sizeof(*sge));
666                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
667         } else {
668                 sge->length = cpu_to_le32(PAGE_SIZE);
669                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
670         }
671 }
672
673 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
674                 struct request *req, struct nvme_rw_command *cmd, int entries)
675 {
676         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
677         struct dma_pool *pool;
678         struct nvme_sgl_desc *sg_list;
679         struct scatterlist *sg = iod->sg;
680         dma_addr_t sgl_dma;
681         int i = 0;
682
683         /* setting the transfer type as SGL */
684         cmd->flags = NVME_CMD_SGL_METABUF;
685
686         if (entries == 1) {
687                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
688                 return BLK_STS_OK;
689         }
690
691         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
692                 pool = dev->prp_small_pool;
693                 iod->npages = 0;
694         } else {
695                 pool = dev->prp_page_pool;
696                 iod->npages = 1;
697         }
698
699         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
700         if (!sg_list) {
701                 iod->npages = -1;
702                 return BLK_STS_RESOURCE;
703         }
704
705         nvme_pci_iod_list(req)[0] = sg_list;
706         iod->first_dma = sgl_dma;
707
708         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
709
710         do {
711                 if (i == SGES_PER_PAGE) {
712                         struct nvme_sgl_desc *old_sg_desc = sg_list;
713                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
714
715                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
716                         if (!sg_list)
717                                 return BLK_STS_RESOURCE;
718
719                         i = 0;
720                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
721                         sg_list[i++] = *link;
722                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
723                 }
724
725                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
726                 sg = sg_next(sg);
727         } while (--entries > 0);
728
729         return BLK_STS_OK;
730 }
731
732 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
733                 struct nvme_command *cmnd)
734 {
735         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
736         struct request_queue *q = req->q;
737         enum dma_data_direction dma_dir = rq_data_dir(req) ?
738                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
739         blk_status_t ret = BLK_STS_IOERR;
740         int nr_mapped;
741
742         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
743         iod->nents = blk_rq_map_sg(q, req, iod->sg);
744         if (!iod->nents)
745                 goto out;
746
747         ret = BLK_STS_RESOURCE;
748
749         if (is_pci_p2pdma_page(sg_page(iod->sg)))
750                 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
751                                           dma_dir);
752         else
753                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
754                                              dma_dir,  DMA_ATTR_NO_WARN);
755         if (!nr_mapped)
756                 goto out;
757
758         if (iod->use_sgl)
759                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
760         else
761                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
762
763         if (ret != BLK_STS_OK)
764                 goto out_unmap;
765
766         ret = BLK_STS_IOERR;
767         if (blk_integrity_rq(req)) {
768                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
769                         goto out_unmap;
770
771                 sg_init_table(&iod->meta_sg, 1);
772                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
773                         goto out_unmap;
774
775                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
776                         goto out_unmap;
777
778                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
779         }
780
781         return BLK_STS_OK;
782
783 out_unmap:
784         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
785 out:
786         return ret;
787 }
788
789 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
790 {
791         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
792         enum dma_data_direction dma_dir = rq_data_dir(req) ?
793                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
794
795         if (iod->nents) {
796                 /* P2PDMA requests do not need to be unmapped */
797                 if (!is_pci_p2pdma_page(sg_page(iod->sg)))
798                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
799
800                 if (blk_integrity_rq(req))
801                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
802         }
803
804         nvme_cleanup_cmd(req);
805         nvme_free_iod(dev, req);
806 }
807
808 /*
809  * NOTE: ns is NULL when called on the admin queue.
810  */
811 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
812                          const struct blk_mq_queue_data *bd)
813 {
814         struct nvme_ns *ns = hctx->queue->queuedata;
815         struct nvme_queue *nvmeq = hctx->driver_data;
816         struct nvme_dev *dev = nvmeq->dev;
817         struct request *req = bd->rq;
818         struct nvme_command cmnd;
819         blk_status_t ret;
820
821         /*
822          * We should not need to do this, but we're still using this to
823          * ensure we can drain requests on a dying queue.
824          */
825         if (unlikely(nvmeq->cq_vector < 0))
826                 return BLK_STS_IOERR;
827
828         ret = nvme_setup_cmd(ns, req, &cmnd);
829         if (ret)
830                 return ret;
831
832         ret = nvme_init_iod(req, dev);
833         if (ret)
834                 goto out_free_cmd;
835
836         if (blk_rq_nr_phys_segments(req)) {
837                 ret = nvme_map_data(dev, req, &cmnd);
838                 if (ret)
839                         goto out_cleanup_iod;
840         }
841
842         blk_mq_start_request(req);
843         nvme_submit_cmd(nvmeq, &cmnd);
844         return BLK_STS_OK;
845 out_cleanup_iod:
846         nvme_free_iod(dev, req);
847 out_free_cmd:
848         nvme_cleanup_cmd(req);
849         return ret;
850 }
851
852 static void nvme_pci_complete_rq(struct request *req)
853 {
854         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
855
856         nvme_unmap_data(iod->nvmeq->dev, req);
857         nvme_complete_rq(req);
858 }
859
860 /* We read the CQE phase first to check if the rest of the entry is valid */
861 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
862 {
863         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
864                         nvmeq->cq_phase;
865 }
866
867 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
868 {
869         u16 head = nvmeq->cq_head;
870
871         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
872                                               nvmeq->dbbuf_cq_ei))
873                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
874 }
875
876 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
877 {
878         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
879         struct request *req;
880
881         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
882                 dev_warn(nvmeq->dev->ctrl.device,
883                         "invalid id %d completed on queue %d\n",
884                         cqe->command_id, le16_to_cpu(cqe->sq_id));
885                 return;
886         }
887
888         /*
889          * AEN requests are special as they don't time out and can
890          * survive any kind of queue freeze and often don't respond to
891          * aborts.  We don't even bother to allocate a struct request
892          * for them but rather special case them here.
893          */
894         if (unlikely(nvmeq->qid == 0 &&
895                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
896                 nvme_complete_async_event(&nvmeq->dev->ctrl,
897                                 cqe->status, &cqe->result);
898                 return;
899         }
900
901         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
902         nvme_end_request(req, cqe->status, cqe->result);
903 }
904
905 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
906 {
907         while (start != end) {
908                 nvme_handle_cqe(nvmeq, start);
909                 if (++start == nvmeq->q_depth)
910                         start = 0;
911         }
912 }
913
914 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
915 {
916         if (++nvmeq->cq_head == nvmeq->q_depth) {
917                 nvmeq->cq_head = 0;
918                 nvmeq->cq_phase = !nvmeq->cq_phase;
919         }
920 }
921
922 static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
923                 u16 *end, int tag)
924 {
925         bool found = false;
926
927         *start = nvmeq->cq_head;
928         while (!found && nvme_cqe_pending(nvmeq)) {
929                 if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
930                         found = true;
931                 nvme_update_cq_head(nvmeq);
932         }
933         *end = nvmeq->cq_head;
934
935         if (*start != *end)
936                 nvme_ring_cq_doorbell(nvmeq);
937         return found;
938 }
939
940 static irqreturn_t nvme_irq(int irq, void *data)
941 {
942         struct nvme_queue *nvmeq = data;
943         irqreturn_t ret = IRQ_NONE;
944         u16 start, end;
945
946         spin_lock(&nvmeq->cq_lock);
947         if (nvmeq->cq_head != nvmeq->last_cq_head)
948                 ret = IRQ_HANDLED;
949         nvme_process_cq(nvmeq, &start, &end, -1);
950         nvmeq->last_cq_head = nvmeq->cq_head;
951         spin_unlock(&nvmeq->cq_lock);
952
953         if (start != end) {
954                 nvme_complete_cqes(nvmeq, start, end);
955                 return IRQ_HANDLED;
956         }
957
958         return ret;
959 }
960
961 static irqreturn_t nvme_irq_check(int irq, void *data)
962 {
963         struct nvme_queue *nvmeq = data;
964         if (nvme_cqe_pending(nvmeq))
965                 return IRQ_WAKE_THREAD;
966         return IRQ_NONE;
967 }
968
969 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
970 {
971         u16 start, end;
972         bool found;
973
974         if (!nvme_cqe_pending(nvmeq))
975                 return 0;
976
977         spin_lock_irq(&nvmeq->cq_lock);
978         found = nvme_process_cq(nvmeq, &start, &end, tag);
979         spin_unlock_irq(&nvmeq->cq_lock);
980
981         nvme_complete_cqes(nvmeq, start, end);
982         return found;
983 }
984
985 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
986 {
987         struct nvme_queue *nvmeq = hctx->driver_data;
988
989         return __nvme_poll(nvmeq, tag);
990 }
991
992 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
993 {
994         struct nvme_dev *dev = to_nvme_dev(ctrl);
995         struct nvme_queue *nvmeq = &dev->queues[0];
996         struct nvme_command c;
997
998         memset(&c, 0, sizeof(c));
999         c.common.opcode = nvme_admin_async_event;
1000         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1001         nvme_submit_cmd(nvmeq, &c);
1002 }
1003
1004 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1005 {
1006         struct nvme_command c;
1007
1008         memset(&c, 0, sizeof(c));
1009         c.delete_queue.opcode = opcode;
1010         c.delete_queue.qid = cpu_to_le16(id);
1011
1012         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1013 }
1014
1015 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1016                 struct nvme_queue *nvmeq, s16 vector)
1017 {
1018         struct nvme_command c;
1019         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1020
1021         /*
1022          * Note: we (ab)use the fact that the prp fields survive if no data
1023          * is attached to the request.
1024          */
1025         memset(&c, 0, sizeof(c));
1026         c.create_cq.opcode = nvme_admin_create_cq;
1027         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1028         c.create_cq.cqid = cpu_to_le16(qid);
1029         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1030         c.create_cq.cq_flags = cpu_to_le16(flags);
1031         c.create_cq.irq_vector = cpu_to_le16(vector);
1032
1033         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1034 }
1035
1036 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1037                                                 struct nvme_queue *nvmeq)
1038 {
1039         struct nvme_ctrl *ctrl = &dev->ctrl;
1040         struct nvme_command c;
1041         int flags = NVME_QUEUE_PHYS_CONTIG;
1042
1043         /*
1044          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1045          * set. Since URGENT priority is zeroes, it makes all queues
1046          * URGENT.
1047          */
1048         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1049                 flags |= NVME_SQ_PRIO_MEDIUM;
1050
1051         /*
1052          * Note: we (ab)use the fact that the prp fields survive if no data
1053          * is attached to the request.
1054          */
1055         memset(&c, 0, sizeof(c));
1056         c.create_sq.opcode = nvme_admin_create_sq;
1057         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1058         c.create_sq.sqid = cpu_to_le16(qid);
1059         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1060         c.create_sq.sq_flags = cpu_to_le16(flags);
1061         c.create_sq.cqid = cpu_to_le16(qid);
1062
1063         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1064 }
1065
1066 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1067 {
1068         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1069 }
1070
1071 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1072 {
1073         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1074 }
1075
1076 static void abort_endio(struct request *req, blk_status_t error)
1077 {
1078         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1079         struct nvme_queue *nvmeq = iod->nvmeq;
1080
1081         dev_warn(nvmeq->dev->ctrl.device,
1082                  "Abort status: 0x%x", nvme_req(req)->status);
1083         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1084         blk_mq_free_request(req);
1085 }
1086
1087 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1088 {
1089
1090         /* If true, indicates loss of adapter communication, possibly by a
1091          * NVMe Subsystem reset.
1092          */
1093         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1094
1095         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1096         switch (dev->ctrl.state) {
1097         case NVME_CTRL_RESETTING:
1098         case NVME_CTRL_CONNECTING:
1099                 return false;
1100         default:
1101                 break;
1102         }
1103
1104         /* We shouldn't reset unless the controller is on fatal error state
1105          * _or_ if we lost the communication with it.
1106          */
1107         if (!(csts & NVME_CSTS_CFS) && !nssro)
1108                 return false;
1109
1110         return true;
1111 }
1112
1113 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1114 {
1115         /* Read a config register to help see what died. */
1116         u16 pci_status;
1117         int result;
1118
1119         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1120                                       &pci_status);
1121         if (result == PCIBIOS_SUCCESSFUL)
1122                 dev_warn(dev->ctrl.device,
1123                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1124                          csts, pci_status);
1125         else
1126                 dev_warn(dev->ctrl.device,
1127                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1128                          csts, result);
1129 }
1130
1131 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1132 {
1133         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1134         struct nvme_queue *nvmeq = iod->nvmeq;
1135         struct nvme_dev *dev = nvmeq->dev;
1136         struct request *abort_req;
1137         struct nvme_command cmd;
1138         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1139
1140         /* If PCI error recovery process is happening, we cannot reset or
1141          * the recovery mechanism will surely fail.
1142          */
1143         mb();
1144         if (pci_channel_offline(to_pci_dev(dev->dev)))
1145                 return BLK_EH_RESET_TIMER;
1146
1147         /*
1148          * Reset immediately if the controller is failed
1149          */
1150         if (nvme_should_reset(dev, csts)) {
1151                 nvme_warn_reset(dev, csts);
1152                 nvme_dev_disable(dev, false);
1153                 nvme_reset_ctrl(&dev->ctrl);
1154                 return BLK_EH_DONE;
1155         }
1156
1157         /*
1158          * Did we miss an interrupt?
1159          */
1160         if (__nvme_poll(nvmeq, req->tag)) {
1161                 dev_warn(dev->ctrl.device,
1162                          "I/O %d QID %d timeout, completion polled\n",
1163                          req->tag, nvmeq->qid);
1164                 return BLK_EH_DONE;
1165         }
1166
1167         /*
1168          * Shutdown immediately if controller times out while starting. The
1169          * reset work will see the pci device disabled when it gets the forced
1170          * cancellation error. All outstanding requests are completed on
1171          * shutdown, so we return BLK_EH_DONE.
1172          */
1173         switch (dev->ctrl.state) {
1174         case NVME_CTRL_CONNECTING:
1175         case NVME_CTRL_RESETTING:
1176                 dev_warn_ratelimited(dev->ctrl.device,
1177                          "I/O %d QID %d timeout, disable controller\n",
1178                          req->tag, nvmeq->qid);
1179                 nvme_dev_disable(dev, false);
1180                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1181                 return BLK_EH_DONE;
1182         default:
1183                 break;
1184         }
1185
1186         /*
1187          * Shutdown the controller immediately and schedule a reset if the
1188          * command was already aborted once before and still hasn't been
1189          * returned to the driver, or if this is the admin queue.
1190          */
1191         if (!nvmeq->qid || iod->aborted) {
1192                 dev_warn(dev->ctrl.device,
1193                          "I/O %d QID %d timeout, reset controller\n",
1194                          req->tag, nvmeq->qid);
1195                 nvme_dev_disable(dev, false);
1196                 nvme_reset_ctrl(&dev->ctrl);
1197
1198                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1199                 return BLK_EH_DONE;
1200         }
1201
1202         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1203                 atomic_inc(&dev->ctrl.abort_limit);
1204                 return BLK_EH_RESET_TIMER;
1205         }
1206         iod->aborted = 1;
1207
1208         memset(&cmd, 0, sizeof(cmd));
1209         cmd.abort.opcode = nvme_admin_abort_cmd;
1210         cmd.abort.cid = req->tag;
1211         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1212
1213         dev_warn(nvmeq->dev->ctrl.device,
1214                 "I/O %d QID %d timeout, aborting\n",
1215                  req->tag, nvmeq->qid);
1216
1217         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1218                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1219         if (IS_ERR(abort_req)) {
1220                 atomic_inc(&dev->ctrl.abort_limit);
1221                 return BLK_EH_RESET_TIMER;
1222         }
1223
1224         abort_req->timeout = ADMIN_TIMEOUT;
1225         abort_req->end_io_data = NULL;
1226         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1227
1228         /*
1229          * The aborted req will be completed on receiving the abort req.
1230          * We enable the timer again. If hit twice, it'll cause a device reset,
1231          * as the device then is in a faulty state.
1232          */
1233         return BLK_EH_RESET_TIMER;
1234 }
1235
1236 static void nvme_free_queue(struct nvme_queue *nvmeq)
1237 {
1238         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1239                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1240
1241         if (nvmeq->sq_cmds) {
1242                 if (nvmeq->sq_cmds_is_io)
1243                         pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1244                                         nvmeq->sq_cmds,
1245                                         SQ_SIZE(nvmeq->q_depth));
1246                 else
1247                         dma_free_coherent(nvmeq->q_dmadev,
1248                                           SQ_SIZE(nvmeq->q_depth),
1249                                           nvmeq->sq_cmds,
1250                                           nvmeq->sq_dma_addr);
1251         }
1252 }
1253
1254 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1255 {
1256         int i;
1257
1258         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1259                 dev->ctrl.queue_count--;
1260                 nvme_free_queue(&dev->queues[i]);
1261         }
1262 }
1263
1264 /**
1265  * nvme_suspend_queue - put queue into suspended state
1266  * @nvmeq: queue to suspend
1267  */
1268 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1269 {
1270         int vector;
1271
1272         spin_lock_irq(&nvmeq->cq_lock);
1273         if (nvmeq->cq_vector == -1) {
1274                 spin_unlock_irq(&nvmeq->cq_lock);
1275                 return 1;
1276         }
1277         vector = nvmeq->cq_vector;
1278         nvmeq->dev->online_queues--;
1279         nvmeq->cq_vector = -1;
1280         spin_unlock_irq(&nvmeq->cq_lock);
1281
1282         /*
1283          * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1284          * having to grab the lock.
1285          */
1286         mb();
1287
1288         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1289                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1290
1291         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1292
1293         return 0;
1294 }
1295
1296 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1297 {
1298         struct nvme_queue *nvmeq = &dev->queues[0];
1299         u16 start, end;
1300
1301         if (shutdown)
1302                 nvme_shutdown_ctrl(&dev->ctrl);
1303         else
1304                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1305
1306         spin_lock_irq(&nvmeq->cq_lock);
1307         nvme_process_cq(nvmeq, &start, &end, -1);
1308         spin_unlock_irq(&nvmeq->cq_lock);
1309
1310         nvme_complete_cqes(nvmeq, start, end);
1311 }
1312
1313 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1314                                 int entry_size)
1315 {
1316         int q_depth = dev->q_depth;
1317         unsigned q_size_aligned = roundup(q_depth * entry_size,
1318                                           dev->ctrl.page_size);
1319
1320         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1321                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1322                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1323                 q_depth = div_u64(mem_per_q, entry_size);
1324
1325                 /*
1326                  * Ensure the reduced q_depth is above some threshold where it
1327                  * would be better to map queues in system memory with the
1328                  * original depth
1329                  */
1330                 if (q_depth < 64)
1331                         return -ENOMEM;
1332         }
1333
1334         return q_depth;
1335 }
1336
1337 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1338                                 int qid, int depth)
1339 {
1340         struct pci_dev *pdev = to_pci_dev(dev->dev);
1341
1342         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1343                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1344                 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1345                                                 nvmeq->sq_cmds);
1346                 nvmeq->sq_cmds_is_io = true;
1347         }
1348
1349         if (!nvmeq->sq_cmds) {
1350                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1351                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1352                 nvmeq->sq_cmds_is_io = false;
1353         }
1354
1355         if (!nvmeq->sq_cmds)
1356                 return -ENOMEM;
1357         return 0;
1358 }
1359
1360 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1361 {
1362         struct nvme_queue *nvmeq = &dev->queues[qid];
1363
1364         if (dev->ctrl.queue_count > qid)
1365                 return 0;
1366
1367         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1368                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1369         if (!nvmeq->cqes)
1370                 goto free_nvmeq;
1371
1372         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1373                 goto free_cqdma;
1374
1375         nvmeq->q_dmadev = dev->dev;
1376         nvmeq->dev = dev;
1377         spin_lock_init(&nvmeq->sq_lock);
1378         spin_lock_init(&nvmeq->cq_lock);
1379         nvmeq->cq_head = 0;
1380         nvmeq->cq_phase = 1;
1381         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1382         nvmeq->q_depth = depth;
1383         nvmeq->qid = qid;
1384         nvmeq->cq_vector = -1;
1385         dev->ctrl.queue_count++;
1386
1387         return 0;
1388
1389  free_cqdma:
1390         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1391                                                         nvmeq->cq_dma_addr);
1392  free_nvmeq:
1393         return -ENOMEM;
1394 }
1395
1396 static int queue_request_irq(struct nvme_queue *nvmeq)
1397 {
1398         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1399         int nr = nvmeq->dev->ctrl.instance;
1400
1401         if (use_threaded_interrupts) {
1402                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1403                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1404         } else {
1405                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1406                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1407         }
1408 }
1409
1410 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1411 {
1412         struct nvme_dev *dev = nvmeq->dev;
1413
1414         spin_lock_irq(&nvmeq->cq_lock);
1415         nvmeq->sq_tail = 0;
1416         nvmeq->cq_head = 0;
1417         nvmeq->cq_phase = 1;
1418         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1419         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1420         nvme_dbbuf_init(dev, nvmeq, qid);
1421         dev->online_queues++;
1422         spin_unlock_irq(&nvmeq->cq_lock);
1423 }
1424
1425 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1426 {
1427         struct nvme_dev *dev = nvmeq->dev;
1428         int result;
1429         s16 vector;
1430
1431         /*
1432          * A queue's vector matches the queue identifier unless the controller
1433          * has only one vector available.
1434          */
1435         vector = dev->num_vecs == 1 ? 0 : qid;
1436         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1437         if (result)
1438                 return result;
1439
1440         result = adapter_alloc_sq(dev, qid, nvmeq);
1441         if (result < 0)
1442                 return result;
1443         else if (result)
1444                 goto release_cq;
1445
1446         /*
1447          * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1448          * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1449          * xxx' warning if the create CQ/SQ command times out.
1450          */
1451         nvmeq->cq_vector = vector;
1452         nvme_init_queue(nvmeq, qid);
1453         result = queue_request_irq(nvmeq);
1454         if (result < 0)
1455                 goto release_sq;
1456
1457         return result;
1458
1459 release_sq:
1460         nvmeq->cq_vector = -1;
1461         dev->online_queues--;
1462         adapter_delete_sq(dev, qid);
1463 release_cq:
1464         adapter_delete_cq(dev, qid);
1465         return result;
1466 }
1467
1468 static const struct blk_mq_ops nvme_mq_admin_ops = {
1469         .queue_rq       = nvme_queue_rq,
1470         .complete       = nvme_pci_complete_rq,
1471         .init_hctx      = nvme_admin_init_hctx,
1472         .exit_hctx      = nvme_admin_exit_hctx,
1473         .init_request   = nvme_init_request,
1474         .timeout        = nvme_timeout,
1475 };
1476
1477 static const struct blk_mq_ops nvme_mq_ops = {
1478         .queue_rq       = nvme_queue_rq,
1479         .complete       = nvme_pci_complete_rq,
1480         .init_hctx      = nvme_init_hctx,
1481         .init_request   = nvme_init_request,
1482         .map_queues     = nvme_pci_map_queues,
1483         .timeout        = nvme_timeout,
1484         .poll           = nvme_poll,
1485 };
1486
1487 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1488 {
1489         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1490                 /*
1491                  * If the controller was reset during removal, it's possible
1492                  * user requests may be waiting on a stopped queue. Start the
1493                  * queue to flush these to completion.
1494                  */
1495                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1496                 blk_cleanup_queue(dev->ctrl.admin_q);
1497                 blk_mq_free_tag_set(&dev->admin_tagset);
1498         }
1499 }
1500
1501 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1502 {
1503         if (!dev->ctrl.admin_q) {
1504                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1505                 dev->admin_tagset.nr_hw_queues = 1;
1506
1507                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1508                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1509                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1510                 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1511                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1512                 dev->admin_tagset.driver_data = dev;
1513
1514                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1515                         return -ENOMEM;
1516                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1517
1518                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1519                 if (IS_ERR(dev->ctrl.admin_q)) {
1520                         blk_mq_free_tag_set(&dev->admin_tagset);
1521                         return -ENOMEM;
1522                 }
1523                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1524                         nvme_dev_remove_admin(dev);
1525                         dev->ctrl.admin_q = NULL;
1526                         return -ENODEV;
1527                 }
1528         } else
1529                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1530
1531         return 0;
1532 }
1533
1534 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1535 {
1536         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1537 }
1538
1539 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1540 {
1541         struct pci_dev *pdev = to_pci_dev(dev->dev);
1542
1543         if (size <= dev->bar_mapped_size)
1544                 return 0;
1545         if (size > pci_resource_len(pdev, 0))
1546                 return -ENOMEM;
1547         if (dev->bar)
1548                 iounmap(dev->bar);
1549         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1550         if (!dev->bar) {
1551                 dev->bar_mapped_size = 0;
1552                 return -ENOMEM;
1553         }
1554         dev->bar_mapped_size = size;
1555         dev->dbs = dev->bar + NVME_REG_DBS;
1556
1557         return 0;
1558 }
1559
1560 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1561 {
1562         int result;
1563         u32 aqa;
1564         struct nvme_queue *nvmeq;
1565
1566         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1567         if (result < 0)
1568                 return result;
1569
1570         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1571                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1572
1573         if (dev->subsystem &&
1574             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1575                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1576
1577         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1578         if (result < 0)
1579                 return result;
1580
1581         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1582         if (result)
1583                 return result;
1584
1585         nvmeq = &dev->queues[0];
1586         aqa = nvmeq->q_depth - 1;
1587         aqa |= aqa << 16;
1588
1589         writel(aqa, dev->bar + NVME_REG_AQA);
1590         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1591         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1592
1593         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1594         if (result)
1595                 return result;
1596
1597         nvmeq->cq_vector = 0;
1598         nvme_init_queue(nvmeq, 0);
1599         result = queue_request_irq(nvmeq);
1600         if (result) {
1601                 nvmeq->cq_vector = -1;
1602                 return result;
1603         }
1604
1605         return result;
1606 }
1607
1608 static int nvme_create_io_queues(struct nvme_dev *dev)
1609 {
1610         unsigned i, max;
1611         int ret = 0;
1612
1613         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1614                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1615                         ret = -ENOMEM;
1616                         break;
1617                 }
1618         }
1619
1620         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1621         for (i = dev->online_queues; i <= max; i++) {
1622                 ret = nvme_create_queue(&dev->queues[i], i);
1623                 if (ret)
1624                         break;
1625         }
1626
1627         /*
1628          * Ignore failing Create SQ/CQ commands, we can continue with less
1629          * than the desired amount of queues, and even a controller without
1630          * I/O queues can still be used to issue admin commands.  This might
1631          * be useful to upgrade a buggy firmware for example.
1632          */
1633         return ret >= 0 ? 0 : ret;
1634 }
1635
1636 static ssize_t nvme_cmb_show(struct device *dev,
1637                              struct device_attribute *attr,
1638                              char *buf)
1639 {
1640         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1641
1642         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1643                        ndev->cmbloc, ndev->cmbsz);
1644 }
1645 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1646
1647 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1648 {
1649         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1650
1651         return 1ULL << (12 + 4 * szu);
1652 }
1653
1654 static u32 nvme_cmb_size(struct nvme_dev *dev)
1655 {
1656         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1657 }
1658
1659 static void nvme_map_cmb(struct nvme_dev *dev)
1660 {
1661         u64 size, offset;
1662         resource_size_t bar_size;
1663         struct pci_dev *pdev = to_pci_dev(dev->dev);
1664         int bar;
1665
1666         if (dev->cmb_size)
1667                 return;
1668
1669         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1670         if (!dev->cmbsz)
1671                 return;
1672         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1673
1674         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1675         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1676         bar = NVME_CMB_BIR(dev->cmbloc);
1677         bar_size = pci_resource_len(pdev, bar);
1678
1679         if (offset > bar_size)
1680                 return;
1681
1682         /*
1683          * Controllers may support a CMB size larger than their BAR,
1684          * for example, due to being behind a bridge. Reduce the CMB to
1685          * the reported size of the BAR
1686          */
1687         if (size > bar_size - offset)
1688                 size = bar_size - offset;
1689
1690         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1691                 dev_warn(dev->ctrl.device,
1692                          "failed to register the CMB\n");
1693                 return;
1694         }
1695
1696         dev->cmb_size = size;
1697         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1698
1699         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1700                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1701                 pci_p2pmem_publish(pdev, true);
1702
1703         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1704                                     &dev_attr_cmb.attr, NULL))
1705                 dev_warn(dev->ctrl.device,
1706                          "failed to add sysfs attribute for CMB\n");
1707 }
1708
1709 static inline void nvme_release_cmb(struct nvme_dev *dev)
1710 {
1711         if (dev->cmb_size) {
1712                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1713                                              &dev_attr_cmb.attr, NULL);
1714                 dev->cmb_size = 0;
1715         }
1716 }
1717
1718 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1719 {
1720         u64 dma_addr = dev->host_mem_descs_dma;
1721         struct nvme_command c;
1722         int ret;
1723
1724         memset(&c, 0, sizeof(c));
1725         c.features.opcode       = nvme_admin_set_features;
1726         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1727         c.features.dword11      = cpu_to_le32(bits);
1728         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1729                                               ilog2(dev->ctrl.page_size));
1730         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1731         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1732         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1733
1734         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1735         if (ret) {
1736                 dev_warn(dev->ctrl.device,
1737                          "failed to set host mem (err %d, flags %#x).\n",
1738                          ret, bits);
1739         }
1740         return ret;
1741 }
1742
1743 static void nvme_free_host_mem(struct nvme_dev *dev)
1744 {
1745         int i;
1746
1747         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1748                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1749                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1750
1751                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1752                                 le64_to_cpu(desc->addr));
1753         }
1754
1755         kfree(dev->host_mem_desc_bufs);
1756         dev->host_mem_desc_bufs = NULL;
1757         dma_free_coherent(dev->dev,
1758                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1759                         dev->host_mem_descs, dev->host_mem_descs_dma);
1760         dev->host_mem_descs = NULL;
1761         dev->nr_host_mem_descs = 0;
1762 }
1763
1764 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1765                 u32 chunk_size)
1766 {
1767         struct nvme_host_mem_buf_desc *descs;
1768         u32 max_entries, len;
1769         dma_addr_t descs_dma;
1770         int i = 0;
1771         void **bufs;
1772         u64 size, tmp;
1773
1774         tmp = (preferred + chunk_size - 1);
1775         do_div(tmp, chunk_size);
1776         max_entries = tmp;
1777
1778         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1779                 max_entries = dev->ctrl.hmmaxd;
1780
1781         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1782                         &descs_dma, GFP_KERNEL);
1783         if (!descs)
1784                 goto out;
1785
1786         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1787         if (!bufs)
1788                 goto out_free_descs;
1789
1790         for (size = 0; size < preferred && i < max_entries; size += len) {
1791                 dma_addr_t dma_addr;
1792
1793                 len = min_t(u64, chunk_size, preferred - size);
1794                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1795                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1796                 if (!bufs[i])
1797                         break;
1798
1799                 descs[i].addr = cpu_to_le64(dma_addr);
1800                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1801                 i++;
1802         }
1803
1804         if (!size)
1805                 goto out_free_bufs;
1806
1807         dev->nr_host_mem_descs = i;
1808         dev->host_mem_size = size;
1809         dev->host_mem_descs = descs;
1810         dev->host_mem_descs_dma = descs_dma;
1811         dev->host_mem_desc_bufs = bufs;
1812         return 0;
1813
1814 out_free_bufs:
1815         while (--i >= 0) {
1816                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1817
1818                 dma_free_coherent(dev->dev, size, bufs[i],
1819                                 le64_to_cpu(descs[i].addr));
1820         }
1821
1822         kfree(bufs);
1823 out_free_descs:
1824         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1825                         descs_dma);
1826 out:
1827         dev->host_mem_descs = NULL;
1828         return -ENOMEM;
1829 }
1830
1831 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1832 {
1833         u32 chunk_size;
1834
1835         /* start big and work our way down */
1836         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1837              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1838              chunk_size /= 2) {
1839                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1840                         if (!min || dev->host_mem_size >= min)
1841                                 return 0;
1842                         nvme_free_host_mem(dev);
1843                 }
1844         }
1845
1846         return -ENOMEM;
1847 }
1848
1849 static int nvme_setup_host_mem(struct nvme_dev *dev)
1850 {
1851         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1852         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1853         u64 min = (u64)dev->ctrl.hmmin * 4096;
1854         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1855         int ret;
1856
1857         preferred = min(preferred, max);
1858         if (min > max) {
1859                 dev_warn(dev->ctrl.device,
1860                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1861                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1862                 nvme_free_host_mem(dev);
1863                 return 0;
1864         }
1865
1866         /*
1867          * If we already have a buffer allocated check if we can reuse it.
1868          */
1869         if (dev->host_mem_descs) {
1870                 if (dev->host_mem_size >= min)
1871                         enable_bits |= NVME_HOST_MEM_RETURN;
1872                 else
1873                         nvme_free_host_mem(dev);
1874         }
1875
1876         if (!dev->host_mem_descs) {
1877                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1878                         dev_warn(dev->ctrl.device,
1879                                 "failed to allocate host memory buffer.\n");
1880                         return 0; /* controller must work without HMB */
1881                 }
1882
1883                 dev_info(dev->ctrl.device,
1884                         "allocated %lld MiB host memory buffer.\n",
1885                         dev->host_mem_size >> ilog2(SZ_1M));
1886         }
1887
1888         ret = nvme_set_host_mem(dev, enable_bits);
1889         if (ret)
1890                 nvme_free_host_mem(dev);
1891         return ret;
1892 }
1893
1894 static int nvme_setup_io_queues(struct nvme_dev *dev)
1895 {
1896         struct nvme_queue *adminq = &dev->queues[0];
1897         struct pci_dev *pdev = to_pci_dev(dev->dev);
1898         int result, nr_io_queues;
1899         unsigned long size;
1900
1901         struct irq_affinity affd = {
1902                 .pre_vectors = 1
1903         };
1904
1905         nr_io_queues = num_possible_cpus();
1906         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1907         if (result < 0)
1908                 return result;
1909
1910         if (nr_io_queues == 0)
1911                 return 0;
1912
1913         if (dev->cmb_use_sqes) {
1914                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1915                                 sizeof(struct nvme_command));
1916                 if (result > 0)
1917                         dev->q_depth = result;
1918                 else
1919                         dev->cmb_use_sqes = false;
1920         }
1921
1922         do {
1923                 size = db_bar_size(dev, nr_io_queues);
1924                 result = nvme_remap_bar(dev, size);
1925                 if (!result)
1926                         break;
1927                 if (!--nr_io_queues)
1928                         return -ENOMEM;
1929         } while (1);
1930         adminq->q_db = dev->dbs;
1931
1932         /* Deregister the admin queue's interrupt */
1933         pci_free_irq(pdev, 0, adminq);
1934
1935         /*
1936          * If we enable msix early due to not intx, disable it again before
1937          * setting up the full range we need.
1938          */
1939         pci_free_irq_vectors(pdev);
1940         result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1941                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1942         if (result <= 0)
1943                 return -EIO;
1944         dev->num_vecs = result;
1945         dev->max_qid = max(result - 1, 1);
1946
1947         /*
1948          * Should investigate if there's a performance win from allocating
1949          * more queues than interrupt vectors; it might allow the submission
1950          * path to scale better, even if the receive path is limited by the
1951          * number of interrupts.
1952          */
1953
1954         result = queue_request_irq(adminq);
1955         if (result) {
1956                 adminq->cq_vector = -1;
1957                 return result;
1958         }
1959         return nvme_create_io_queues(dev);
1960 }
1961
1962 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1963 {
1964         struct nvme_queue *nvmeq = req->end_io_data;
1965
1966         blk_mq_free_request(req);
1967         complete(&nvmeq->dev->ioq_wait);
1968 }
1969
1970 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1971 {
1972         struct nvme_queue *nvmeq = req->end_io_data;
1973         u16 start, end;
1974
1975         if (!error) {
1976                 unsigned long flags;
1977
1978                 spin_lock_irqsave(&nvmeq->cq_lock, flags);
1979                 nvme_process_cq(nvmeq, &start, &end, -1);
1980                 spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
1981
1982                 nvme_complete_cqes(nvmeq, start, end);
1983         }
1984
1985         nvme_del_queue_end(req, error);
1986 }
1987
1988 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1989 {
1990         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1991         struct request *req;
1992         struct nvme_command cmd;
1993
1994         memset(&cmd, 0, sizeof(cmd));
1995         cmd.delete_queue.opcode = opcode;
1996         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1997
1998         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1999         if (IS_ERR(req))
2000                 return PTR_ERR(req);
2001
2002         req->timeout = ADMIN_TIMEOUT;
2003         req->end_io_data = nvmeq;
2004
2005         blk_execute_rq_nowait(q, NULL, req, false,
2006                         opcode == nvme_admin_delete_cq ?
2007                                 nvme_del_cq_end : nvme_del_queue_end);
2008         return 0;
2009 }
2010
2011 static void nvme_disable_io_queues(struct nvme_dev *dev)
2012 {
2013         int pass, queues = dev->online_queues - 1;
2014         unsigned long timeout;
2015         u8 opcode = nvme_admin_delete_sq;
2016
2017         for (pass = 0; pass < 2; pass++) {
2018                 int sent = 0, i = queues;
2019
2020                 reinit_completion(&dev->ioq_wait);
2021  retry:
2022                 timeout = ADMIN_TIMEOUT;
2023                 for (; i > 0; i--, sent++)
2024                         if (nvme_delete_queue(&dev->queues[i], opcode))
2025                                 break;
2026
2027                 while (sent--) {
2028                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2029                         if (timeout == 0)
2030                                 return;
2031                         if (i)
2032                                 goto retry;
2033                 }
2034                 opcode = nvme_admin_delete_cq;
2035         }
2036 }
2037
2038 /*
2039  * return error value only when tagset allocation failed
2040  */
2041 static int nvme_dev_add(struct nvme_dev *dev)
2042 {
2043         int ret;
2044
2045         if (!dev->ctrl.tagset) {
2046                 dev->tagset.ops = &nvme_mq_ops;
2047                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2048                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2049                 dev->tagset.numa_node = dev_to_node(dev->dev);
2050                 dev->tagset.queue_depth =
2051                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2052                 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2053                 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2054                         dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2055                                         nvme_pci_cmd_size(dev, true));
2056                 }
2057                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2058                 dev->tagset.driver_data = dev;
2059
2060                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2061                 if (ret) {
2062                         dev_warn(dev->ctrl.device,
2063                                 "IO queues tagset allocation failed %d\n", ret);
2064                         return ret;
2065                 }
2066                 dev->ctrl.tagset = &dev->tagset;
2067
2068                 nvme_dbbuf_set(dev);
2069         } else {
2070                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2071
2072                 /* Free previously allocated queues that are no longer usable */
2073                 nvme_free_queues(dev, dev->online_queues);
2074         }
2075
2076         return 0;
2077 }
2078
2079 static int nvme_pci_enable(struct nvme_dev *dev)
2080 {
2081         int result = -ENOMEM;
2082         struct pci_dev *pdev = to_pci_dev(dev->dev);
2083
2084         if (pci_enable_device_mem(pdev))
2085                 return result;
2086
2087         pci_set_master(pdev);
2088
2089         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2090             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2091                 goto disable;
2092
2093         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2094                 result = -ENODEV;
2095                 goto disable;
2096         }
2097
2098         /*
2099          * Some devices and/or platforms don't advertise or work with INTx
2100          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2101          * adjust this later.
2102          */
2103         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2104         if (result < 0)
2105                 return result;
2106
2107         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2108
2109         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2110                                 io_queue_depth);
2111         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2112         dev->dbs = dev->bar + 4096;
2113
2114         /*
2115          * Temporary fix for the Apple controller found in the MacBook8,1 and
2116          * some MacBook7,1 to avoid controller resets and data loss.
2117          */
2118         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2119                 dev->q_depth = 2;
2120                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2121                         "set queue depth=%u to work around controller resets\n",
2122                         dev->q_depth);
2123         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2124                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2125                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2126                 dev->q_depth = 64;
2127                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2128                         "set queue depth=%u\n", dev->q_depth);
2129         }
2130
2131         nvme_map_cmb(dev);
2132
2133         pci_enable_pcie_error_reporting(pdev);
2134         pci_save_state(pdev);
2135         return 0;
2136
2137  disable:
2138         pci_disable_device(pdev);
2139         return result;
2140 }
2141
2142 static void nvme_dev_unmap(struct nvme_dev *dev)
2143 {
2144         if (dev->bar)
2145                 iounmap(dev->bar);
2146         pci_release_mem_regions(to_pci_dev(dev->dev));
2147 }
2148
2149 static void nvme_pci_disable(struct nvme_dev *dev)
2150 {
2151         struct pci_dev *pdev = to_pci_dev(dev->dev);
2152
2153         pci_free_irq_vectors(pdev);
2154
2155         if (pci_is_enabled(pdev)) {
2156                 pci_disable_pcie_error_reporting(pdev);
2157                 pci_disable_device(pdev);
2158         }
2159 }
2160
2161 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2162 {
2163         int i;
2164         bool dead = true;
2165         struct pci_dev *pdev = to_pci_dev(dev->dev);
2166
2167         mutex_lock(&dev->shutdown_lock);
2168         if (pci_is_enabled(pdev)) {
2169                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2170
2171                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2172                     dev->ctrl.state == NVME_CTRL_RESETTING)
2173                         nvme_start_freeze(&dev->ctrl);
2174                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2175                         pdev->error_state  != pci_channel_io_normal);
2176         }
2177
2178         /*
2179          * Give the controller a chance to complete all entered requests if
2180          * doing a safe shutdown.
2181          */
2182         if (!dead) {
2183                 if (shutdown)
2184                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2185         }
2186
2187         nvme_stop_queues(&dev->ctrl);
2188
2189         if (!dead && dev->ctrl.queue_count > 0) {
2190                 nvme_disable_io_queues(dev);
2191                 nvme_disable_admin_queue(dev, shutdown);
2192         }
2193         for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2194                 nvme_suspend_queue(&dev->queues[i]);
2195
2196         nvme_pci_disable(dev);
2197
2198         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2199         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2200
2201         /*
2202          * The driver will not be starting up queues again if shutting down so
2203          * must flush all entered requests to their failed completion to avoid
2204          * deadlocking blk-mq hot-cpu notifier.
2205          */
2206         if (shutdown)
2207                 nvme_start_queues(&dev->ctrl);
2208         mutex_unlock(&dev->shutdown_lock);
2209 }
2210
2211 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2212 {
2213         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2214                                                 PAGE_SIZE, PAGE_SIZE, 0);
2215         if (!dev->prp_page_pool)
2216                 return -ENOMEM;
2217
2218         /* Optimisation for I/Os between 4k and 128k */
2219         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2220                                                 256, 256, 0);
2221         if (!dev->prp_small_pool) {
2222                 dma_pool_destroy(dev->prp_page_pool);
2223                 return -ENOMEM;
2224         }
2225         return 0;
2226 }
2227
2228 static void nvme_release_prp_pools(struct nvme_dev *dev)
2229 {
2230         dma_pool_destroy(dev->prp_page_pool);
2231         dma_pool_destroy(dev->prp_small_pool);
2232 }
2233
2234 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2235 {
2236         struct nvme_dev *dev = to_nvme_dev(ctrl);
2237
2238         nvme_dbbuf_dma_free(dev);
2239         put_device(dev->dev);
2240         if (dev->tagset.tags)
2241                 blk_mq_free_tag_set(&dev->tagset);
2242         if (dev->ctrl.admin_q)
2243                 blk_put_queue(dev->ctrl.admin_q);
2244         kfree(dev->queues);
2245         free_opal_dev(dev->ctrl.opal_dev);
2246         mempool_destroy(dev->iod_mempool);
2247         kfree(dev);
2248 }
2249
2250 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2251 {
2252         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2253
2254         nvme_get_ctrl(&dev->ctrl);
2255         nvme_dev_disable(dev, false);
2256         nvme_kill_queues(&dev->ctrl);
2257         if (!queue_work(nvme_wq, &dev->remove_work))
2258                 nvme_put_ctrl(&dev->ctrl);
2259 }
2260
2261 static void nvme_reset_work(struct work_struct *work)
2262 {
2263         struct nvme_dev *dev =
2264                 container_of(work, struct nvme_dev, ctrl.reset_work);
2265         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2266         int result = -ENODEV;
2267         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2268
2269         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2270                 goto out;
2271
2272         /*
2273          * If we're called to reset a live controller first shut it down before
2274          * moving on.
2275          */
2276         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2277                 nvme_dev_disable(dev, false);
2278
2279         /*
2280          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2281          * initializing procedure here.
2282          */
2283         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2284                 dev_warn(dev->ctrl.device,
2285                         "failed to mark controller CONNECTING\n");
2286                 goto out;
2287         }
2288
2289         result = nvme_pci_enable(dev);
2290         if (result)
2291                 goto out;
2292
2293         result = nvme_pci_configure_admin_queue(dev);
2294         if (result)
2295                 goto out;
2296
2297         result = nvme_alloc_admin_tags(dev);
2298         if (result)
2299                 goto out;
2300
2301         /*
2302          * Limit the max command size to prevent iod->sg allocations going
2303          * over a single page.
2304          */
2305         dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2306         dev->ctrl.max_segments = NVME_MAX_SEGS;
2307
2308         result = nvme_init_identify(&dev->ctrl);
2309         if (result)
2310                 goto out;
2311
2312         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2313                 if (!dev->ctrl.opal_dev)
2314                         dev->ctrl.opal_dev =
2315                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2316                 else if (was_suspend)
2317                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2318         } else {
2319                 free_opal_dev(dev->ctrl.opal_dev);
2320                 dev->ctrl.opal_dev = NULL;
2321         }
2322
2323         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2324                 result = nvme_dbbuf_dma_alloc(dev);
2325                 if (result)
2326                         dev_warn(dev->dev,
2327                                  "unable to allocate dma for dbbuf\n");
2328         }
2329
2330         if (dev->ctrl.hmpre) {
2331                 result = nvme_setup_host_mem(dev);
2332                 if (result < 0)
2333                         goto out;
2334         }
2335
2336         result = nvme_setup_io_queues(dev);
2337         if (result)
2338                 goto out;
2339
2340         /*
2341          * Keep the controller around but remove all namespaces if we don't have
2342          * any working I/O queue.
2343          */
2344         if (dev->online_queues < 2) {
2345                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2346                 nvme_kill_queues(&dev->ctrl);
2347                 nvme_remove_namespaces(&dev->ctrl);
2348                 new_state = NVME_CTRL_ADMIN_ONLY;
2349         } else {
2350                 nvme_start_queues(&dev->ctrl);
2351                 nvme_wait_freeze(&dev->ctrl);
2352                 /* hit this only when allocate tagset fails */
2353                 if (nvme_dev_add(dev))
2354                         new_state = NVME_CTRL_ADMIN_ONLY;
2355                 nvme_unfreeze(&dev->ctrl);
2356         }
2357
2358         /*
2359          * If only admin queue live, keep it to do further investigation or
2360          * recovery.
2361          */
2362         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2363                 dev_warn(dev->ctrl.device,
2364                         "failed to mark controller state %d\n", new_state);
2365                 goto out;
2366         }
2367
2368         nvme_start_ctrl(&dev->ctrl);
2369         return;
2370
2371  out:
2372         nvme_remove_dead_ctrl(dev, result);
2373 }
2374
2375 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2376 {
2377         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2378         struct pci_dev *pdev = to_pci_dev(dev->dev);
2379
2380         if (pci_get_drvdata(pdev))
2381                 device_release_driver(&pdev->dev);
2382         nvme_put_ctrl(&dev->ctrl);
2383 }
2384
2385 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2386 {
2387         *val = readl(to_nvme_dev(ctrl)->bar + off);
2388         return 0;
2389 }
2390
2391 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2392 {
2393         writel(val, to_nvme_dev(ctrl)->bar + off);
2394         return 0;
2395 }
2396
2397 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2398 {
2399         *val = readq(to_nvme_dev(ctrl)->bar + off);
2400         return 0;
2401 }
2402
2403 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2404 {
2405         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2406
2407         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2408 }
2409
2410 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2411         .name                   = "pcie",
2412         .module                 = THIS_MODULE,
2413         .flags                  = NVME_F_METADATA_SUPPORTED |
2414                                   NVME_F_PCI_P2PDMA,
2415         .reg_read32             = nvme_pci_reg_read32,
2416         .reg_write32            = nvme_pci_reg_write32,
2417         .reg_read64             = nvme_pci_reg_read64,
2418         .free_ctrl              = nvme_pci_free_ctrl,
2419         .submit_async_event     = nvme_pci_submit_async_event,
2420         .get_address            = nvme_pci_get_address,
2421 };
2422
2423 static int nvme_dev_map(struct nvme_dev *dev)
2424 {
2425         struct pci_dev *pdev = to_pci_dev(dev->dev);
2426
2427         if (pci_request_mem_regions(pdev, "nvme"))
2428                 return -ENODEV;
2429
2430         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2431                 goto release;
2432
2433         return 0;
2434   release:
2435         pci_release_mem_regions(pdev);
2436         return -ENODEV;
2437 }
2438
2439 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2440 {
2441         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2442                 /*
2443                  * Several Samsung devices seem to drop off the PCIe bus
2444                  * randomly when APST is on and uses the deepest sleep state.
2445                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2446                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2447                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2448                  * laptops.
2449                  */
2450                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2451                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2452                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2453                         return NVME_QUIRK_NO_DEEPEST_PS;
2454         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2455                 /*
2456                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2457                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2458                  * within few minutes after bootup on a Coffee Lake board -
2459                  * ASUS PRIME Z370-A
2460                  */
2461                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2462                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2463                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2464                         return NVME_QUIRK_NO_APST;
2465         }
2466
2467         return 0;
2468 }
2469
2470 static void nvme_async_probe(void *data, async_cookie_t cookie)
2471 {
2472         struct nvme_dev *dev = data;
2473
2474         nvme_reset_ctrl_sync(&dev->ctrl);
2475         flush_work(&dev->ctrl.scan_work);
2476         nvme_put_ctrl(&dev->ctrl);
2477 }
2478
2479 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2480 {
2481         int node, result = -ENOMEM;
2482         struct nvme_dev *dev;
2483         unsigned long quirks = id->driver_data;
2484         size_t alloc_size;
2485
2486         node = dev_to_node(&pdev->dev);
2487         if (node == NUMA_NO_NODE)
2488                 set_dev_node(&pdev->dev, first_memory_node);
2489
2490         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2491         if (!dev)
2492                 return -ENOMEM;
2493
2494         dev->queues = kcalloc_node(num_possible_cpus() + 1,
2495                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2496         if (!dev->queues)
2497                 goto free;
2498
2499         dev->dev = get_device(&pdev->dev);
2500         pci_set_drvdata(pdev, dev);
2501
2502         result = nvme_dev_map(dev);
2503         if (result)
2504                 goto put_pci;
2505
2506         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2507         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2508         mutex_init(&dev->shutdown_lock);
2509         init_completion(&dev->ioq_wait);
2510
2511         result = nvme_setup_prp_pools(dev);
2512         if (result)
2513                 goto unmap;
2514
2515         quirks |= check_vendor_combination_bug(pdev);
2516
2517         /*
2518          * Double check that our mempool alloc size will cover the biggest
2519          * command we support.
2520          */
2521         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2522                                                 NVME_MAX_SEGS, true);
2523         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2524
2525         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2526                                                 mempool_kfree,
2527                                                 (void *) alloc_size,
2528                                                 GFP_KERNEL, node);
2529         if (!dev->iod_mempool) {
2530                 result = -ENOMEM;
2531                 goto release_pools;
2532         }
2533
2534         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2535                         quirks);
2536         if (result)
2537                 goto release_mempool;
2538
2539         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2540
2541         nvme_get_ctrl(&dev->ctrl);
2542         async_schedule(nvme_async_probe, dev);
2543
2544         return 0;
2545
2546  release_mempool:
2547         mempool_destroy(dev->iod_mempool);
2548  release_pools:
2549         nvme_release_prp_pools(dev);
2550  unmap:
2551         nvme_dev_unmap(dev);
2552  put_pci:
2553         put_device(dev->dev);
2554  free:
2555         kfree(dev->queues);
2556         kfree(dev);
2557         return result;
2558 }
2559
2560 static void nvme_reset_prepare(struct pci_dev *pdev)
2561 {
2562         struct nvme_dev *dev = pci_get_drvdata(pdev);
2563         nvme_dev_disable(dev, false);
2564 }
2565
2566 static void nvme_reset_done(struct pci_dev *pdev)
2567 {
2568         struct nvme_dev *dev = pci_get_drvdata(pdev);
2569         nvme_reset_ctrl_sync(&dev->ctrl);
2570 }
2571
2572 static void nvme_shutdown(struct pci_dev *pdev)
2573 {
2574         struct nvme_dev *dev = pci_get_drvdata(pdev);
2575         nvme_dev_disable(dev, true);
2576 }
2577
2578 /*
2579  * The driver's remove may be called on a device in a partially initialized
2580  * state. This function must not have any dependencies on the device state in
2581  * order to proceed.
2582  */
2583 static void nvme_remove(struct pci_dev *pdev)
2584 {
2585         struct nvme_dev *dev = pci_get_drvdata(pdev);
2586
2587         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2588         pci_set_drvdata(pdev, NULL);
2589
2590         if (!pci_device_is_present(pdev)) {
2591                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2592                 nvme_dev_disable(dev, true);
2593                 nvme_dev_remove_admin(dev);
2594         }
2595
2596         flush_work(&dev->ctrl.reset_work);
2597         nvme_stop_ctrl(&dev->ctrl);
2598         nvme_remove_namespaces(&dev->ctrl);
2599         nvme_dev_disable(dev, true);
2600         nvme_release_cmb(dev);
2601         nvme_free_host_mem(dev);
2602         nvme_dev_remove_admin(dev);
2603         nvme_free_queues(dev, 0);
2604         nvme_uninit_ctrl(&dev->ctrl);
2605         nvme_release_prp_pools(dev);
2606         nvme_dev_unmap(dev);
2607         nvme_put_ctrl(&dev->ctrl);
2608 }
2609
2610 #ifdef CONFIG_PM_SLEEP
2611 static int nvme_suspend(struct device *dev)
2612 {
2613         struct pci_dev *pdev = to_pci_dev(dev);
2614         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2615
2616         nvme_dev_disable(ndev, true);
2617         return 0;
2618 }
2619
2620 static int nvme_resume(struct device *dev)
2621 {
2622         struct pci_dev *pdev = to_pci_dev(dev);
2623         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2624
2625         nvme_reset_ctrl(&ndev->ctrl);
2626         return 0;
2627 }
2628 #endif
2629
2630 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2631
2632 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2633                                                 pci_channel_state_t state)
2634 {
2635         struct nvme_dev *dev = pci_get_drvdata(pdev);
2636
2637         /*
2638          * A frozen channel requires a reset. When detected, this method will
2639          * shutdown the controller to quiesce. The controller will be restarted
2640          * after the slot reset through driver's slot_reset callback.
2641          */
2642         switch (state) {
2643         case pci_channel_io_normal:
2644                 return PCI_ERS_RESULT_CAN_RECOVER;
2645         case pci_channel_io_frozen:
2646                 dev_warn(dev->ctrl.device,
2647                         "frozen state error detected, reset controller\n");
2648                 nvme_dev_disable(dev, false);
2649                 return PCI_ERS_RESULT_NEED_RESET;
2650         case pci_channel_io_perm_failure:
2651                 dev_warn(dev->ctrl.device,
2652                         "failure state error detected, request disconnect\n");
2653                 return PCI_ERS_RESULT_DISCONNECT;
2654         }
2655         return PCI_ERS_RESULT_NEED_RESET;
2656 }
2657
2658 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2659 {
2660         struct nvme_dev *dev = pci_get_drvdata(pdev);
2661
2662         dev_info(dev->ctrl.device, "restart after slot reset\n");
2663         pci_restore_state(pdev);
2664         nvme_reset_ctrl(&dev->ctrl);
2665         return PCI_ERS_RESULT_RECOVERED;
2666 }
2667
2668 static void nvme_error_resume(struct pci_dev *pdev)
2669 {
2670         struct nvme_dev *dev = pci_get_drvdata(pdev);
2671
2672         flush_work(&dev->ctrl.reset_work);
2673 }
2674
2675 static const struct pci_error_handlers nvme_err_handler = {
2676         .error_detected = nvme_error_detected,
2677         .slot_reset     = nvme_slot_reset,
2678         .resume         = nvme_error_resume,
2679         .reset_prepare  = nvme_reset_prepare,
2680         .reset_done     = nvme_reset_done,
2681 };
2682
2683 static const struct pci_device_id nvme_id_table[] = {
2684         { PCI_VDEVICE(INTEL, 0x0953),
2685                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2686                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2687         { PCI_VDEVICE(INTEL, 0x0a53),
2688                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2689                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2690         { PCI_VDEVICE(INTEL, 0x0a54),
2691                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2692                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2693         { PCI_VDEVICE(INTEL, 0x0a55),
2694                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2695                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2696         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2697                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2698                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
2699         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2700                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2701         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2702                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2703         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2704                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2705         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2706                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2707         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2708                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2709         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2710                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2711         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2712                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2713         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2714                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2715         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2716                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2717         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2718                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2719         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2720         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2721         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2722         { 0, }
2723 };
2724 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2725
2726 static struct pci_driver nvme_driver = {
2727         .name           = "nvme",
2728         .id_table       = nvme_id_table,
2729         .probe          = nvme_probe,
2730         .remove         = nvme_remove,
2731         .shutdown       = nvme_shutdown,
2732         .driver         = {
2733                 .pm     = &nvme_dev_pm_ops,
2734         },
2735         .sriov_configure = pci_sriov_configure_simple,
2736         .err_handler    = &nvme_err_handler,
2737 };
2738
2739 static int __init nvme_init(void)
2740 {
2741         return pci_register_driver(&nvme_driver);
2742 }
2743
2744 static void __exit nvme_exit(void)
2745 {
2746         pci_unregister_driver(&nvme_driver);
2747         flush_workqueue(nvme_wq);
2748         _nvme_check_size();
2749 }
2750
2751 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2752 MODULE_LICENSE("GPL");
2753 MODULE_VERSION("1.0");
2754 module_init(nvme_init);
2755 module_exit(nvme_exit);