Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31
32 #include "trace.h"
33 #include "nvme.h"
34
35 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE   (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ  8192
45 #define NVME_MAX_SEGS   128
46 #define NVME_MAX_NR_ALLOCATIONS 5
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63                 "Use SGLs when average request segment size is larger or equal to "
64                 "this size. Use 0 to disable SGLs.");
65
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70         .set = io_queue_depth_set,
71         .get = param_get_uint,
72 };
73
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80         unsigned int n;
81         int ret;
82
83         ret = kstrtouint(val, 10, &n);
84         if (ret != 0 || n > num_possible_cpus())
85                 return -EINVAL;
86         return param_set_uint(val, kp);
87 }
88
89 static const struct kernel_param_ops io_queue_count_ops = {
90         .set = io_queue_count_set,
91         .get = param_get_uint,
92 };
93
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97         "Number of queues to use for writes. If not set, reads and writes "
98         "will share a queue set.");
99
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108 struct nvme_dev;
109 struct nvme_queue;
110
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119         struct nvme_queue *queues;
120         struct blk_mq_tag_set tagset;
121         struct blk_mq_tag_set admin_tagset;
122         u32 __iomem *dbs;
123         struct device *dev;
124         struct dma_pool *prp_page_pool;
125         struct dma_pool *prp_small_pool;
126         unsigned online_queues;
127         unsigned max_qid;
128         unsigned io_queues[HCTX_MAX_TYPES];
129         unsigned int num_vecs;
130         u32 q_depth;
131         int io_sqes;
132         u32 db_stride;
133         void __iomem *bar;
134         unsigned long bar_mapped_size;
135         struct mutex shutdown_lock;
136         bool subsystem;
137         u64 cmb_size;
138         bool cmb_use_sqes;
139         u32 cmbsz;
140         u32 cmbloc;
141         struct nvme_ctrl ctrl;
142         u32 last_ps;
143         bool hmb;
144
145         mempool_t *iod_mempool;
146
147         /* shadow doorbell buffer support: */
148         __le32 *dbbuf_dbs;
149         dma_addr_t dbbuf_dbs_dma_addr;
150         __le32 *dbbuf_eis;
151         dma_addr_t dbbuf_eis_dma_addr;
152
153         /* host memory buffer support: */
154         u64 host_mem_size;
155         u32 nr_host_mem_descs;
156         dma_addr_t host_mem_descs_dma;
157         struct nvme_host_mem_buf_desc *host_mem_descs;
158         void **host_mem_desc_bufs;
159         unsigned int nr_allocated_queues;
160         unsigned int nr_write_queues;
161         unsigned int nr_poll_queues;
162 };
163
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166         return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167                         NVME_PCI_MAX_QUEUE_SIZE);
168 }
169
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172         return qid * 2 * stride;
173 }
174
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177         return (qid * 2 + 1) * stride;
178 }
179
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182         return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190         struct nvme_dev *dev;
191         spinlock_t sq_lock;
192         void *sq_cmds;
193          /* only used for poll queues: */
194         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195         struct nvme_completion *cqes;
196         dma_addr_t sq_dma_addr;
197         dma_addr_t cq_dma_addr;
198         u32 __iomem *q_db;
199         u32 q_depth;
200         u16 cq_vector;
201         u16 sq_tail;
202         u16 last_sq_tail;
203         u16 cq_head;
204         u16 qid;
205         u8 cq_phase;
206         u8 sqes;
207         unsigned long flags;
208 #define NVMEQ_ENABLED           0
209 #define NVMEQ_SQ_CMB            1
210 #define NVMEQ_DELETE_ERROR      2
211 #define NVMEQ_POLLED            3
212         __le32 *dbbuf_sq_db;
213         __le32 *dbbuf_cq_db;
214         __le32 *dbbuf_sq_ei;
215         __le32 *dbbuf_cq_ei;
216         struct completion delete_done;
217 };
218
219 union nvme_descriptor {
220         struct nvme_sgl_desc    *sg_list;
221         __le64                  *prp_list;
222 };
223
224 /*
225  * The nvme_iod describes the data in an I/O.
226  *
227  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228  * to the actual struct scatterlist.
229  */
230 struct nvme_iod {
231         struct nvme_request req;
232         struct nvme_command cmd;
233         bool aborted;
234         s8 nr_allocations;      /* PRP list pool allocations. 0 means small
235                                    pool in use */
236         unsigned int dma_len;   /* length of single DMA segment mapping */
237         dma_addr_t first_dma;
238         dma_addr_t meta_dma;
239         struct sg_table sgt;
240         union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241 };
242
243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244 {
245         return dev->nr_allocated_queues * 8 * dev->db_stride;
246 }
247
248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249 {
250         unsigned int mem_size = nvme_dbbuf_size(dev);
251
252         if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253                 return;
254
255         if (dev->dbbuf_dbs) {
256                 /*
257                  * Clear the dbbuf memory so the driver doesn't observe stale
258                  * values from the previous instantiation.
259                  */
260                 memset(dev->dbbuf_dbs, 0, mem_size);
261                 memset(dev->dbbuf_eis, 0, mem_size);
262                 return;
263         }
264
265         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266                                             &dev->dbbuf_dbs_dma_addr,
267                                             GFP_KERNEL);
268         if (!dev->dbbuf_dbs)
269                 goto fail;
270         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271                                             &dev->dbbuf_eis_dma_addr,
272                                             GFP_KERNEL);
273         if (!dev->dbbuf_eis)
274                 goto fail_free_dbbuf_dbs;
275         return;
276
277 fail_free_dbbuf_dbs:
278         dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279                           dev->dbbuf_dbs_dma_addr);
280         dev->dbbuf_dbs = NULL;
281 fail:
282         dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283 }
284
285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286 {
287         unsigned int mem_size = nvme_dbbuf_size(dev);
288
289         if (dev->dbbuf_dbs) {
290                 dma_free_coherent(dev->dev, mem_size,
291                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292                 dev->dbbuf_dbs = NULL;
293         }
294         if (dev->dbbuf_eis) {
295                 dma_free_coherent(dev->dev, mem_size,
296                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297                 dev->dbbuf_eis = NULL;
298         }
299 }
300
301 static void nvme_dbbuf_init(struct nvme_dev *dev,
302                             struct nvme_queue *nvmeq, int qid)
303 {
304         if (!dev->dbbuf_dbs || !qid)
305                 return;
306
307         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311 }
312
313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314 {
315         if (!nvmeq->qid)
316                 return;
317
318         nvmeq->dbbuf_sq_db = NULL;
319         nvmeq->dbbuf_cq_db = NULL;
320         nvmeq->dbbuf_sq_ei = NULL;
321         nvmeq->dbbuf_cq_ei = NULL;
322 }
323
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
325 {
326         struct nvme_command c = { };
327         unsigned int i;
328
329         if (!dev->dbbuf_dbs)
330                 return;
331
332         c.dbbuf.opcode = nvme_admin_dbbuf;
333         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335
336         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338                 /* Free memory and continue on */
339                 nvme_dbbuf_dma_free(dev);
340
341                 for (i = 1; i <= dev->online_queues; i++)
342                         nvme_dbbuf_free(&dev->queues[i]);
343         }
344 }
345
346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347 {
348         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349 }
350
351 /* Update dbbuf and return true if an MMIO is required */
352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353                                               volatile __le32 *dbbuf_ei)
354 {
355         if (dbbuf_db) {
356                 u16 old_value, event_idx;
357
358                 /*
359                  * Ensure that the queue is written before updating
360                  * the doorbell in memory
361                  */
362                 wmb();
363
364                 old_value = le32_to_cpu(*dbbuf_db);
365                 *dbbuf_db = cpu_to_le32(value);
366
367                 /*
368                  * Ensure that the doorbell is updated before reading the event
369                  * index from memory.  The controller needs to provide similar
370                  * ordering to ensure the envent index is updated before reading
371                  * the doorbell.
372                  */
373                 mb();
374
375                 event_idx = le32_to_cpu(*dbbuf_ei);
376                 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
377                         return false;
378         }
379
380         return true;
381 }
382
383 /*
384  * Will slightly overestimate the number of pages needed.  This is OK
385  * as it only leads to a small amount of wasted memory for the lifetime of
386  * the I/O.
387  */
388 static int nvme_pci_npages_prp(void)
389 {
390         unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391         unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392         return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393 }
394
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396                                 unsigned int hctx_idx)
397 {
398         struct nvme_dev *dev = to_nvme_dev(data);
399         struct nvme_queue *nvmeq = &dev->queues[0];
400
401         WARN_ON(hctx_idx != 0);
402         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403
404         hctx->driver_data = nvmeq;
405         return 0;
406 }
407
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409                           unsigned int hctx_idx)
410 {
411         struct nvme_dev *dev = to_nvme_dev(data);
412         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413
414         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415         hctx->driver_data = nvmeq;
416         return 0;
417 }
418
419 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420                 struct request *req, unsigned int hctx_idx,
421                 unsigned int numa_node)
422 {
423         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424
425         nvme_req(req)->ctrl = set->driver_data;
426         nvme_req(req)->cmd = &iod->cmd;
427         return 0;
428 }
429
430 static int queue_irq_offset(struct nvme_dev *dev)
431 {
432         /* if we have more than 1 vec, admin queue offsets us by 1 */
433         if (dev->num_vecs > 1)
434                 return 1;
435
436         return 0;
437 }
438
439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440 {
441         struct nvme_dev *dev = to_nvme_dev(set->driver_data);
442         int i, qoff, offset;
443
444         offset = queue_irq_offset(dev);
445         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446                 struct blk_mq_queue_map *map = &set->map[i];
447
448                 map->nr_queues = dev->io_queues[i];
449                 if (!map->nr_queues) {
450                         BUG_ON(i == HCTX_TYPE_DEFAULT);
451                         continue;
452                 }
453
454                 /*
455                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
456                  * affinity), so use the regular blk-mq cpu mapping
457                  */
458                 map->queue_offset = qoff;
459                 if (i != HCTX_TYPE_POLL && offset)
460                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461                 else
462                         blk_mq_map_queues(map);
463                 qoff += map->nr_queues;
464                 offset += map->nr_queues;
465         }
466 }
467
468 /*
469  * Write sq tail if we are asked to, or if the next command would wrap.
470  */
471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472 {
473         if (!write_sq) {
474                 u16 next_tail = nvmeq->sq_tail + 1;
475
476                 if (next_tail == nvmeq->q_depth)
477                         next_tail = 0;
478                 if (next_tail != nvmeq->last_sq_tail)
479                         return;
480         }
481
482         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
483                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
484                 writel(nvmeq->sq_tail, nvmeq->q_db);
485         nvmeq->last_sq_tail = nvmeq->sq_tail;
486 }
487
488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489                                     struct nvme_command *cmd)
490 {
491         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492                 absolute_pointer(cmd), sizeof(*cmd));
493         if (++nvmeq->sq_tail == nvmeq->q_depth)
494                 nvmeq->sq_tail = 0;
495 }
496
497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498 {
499         struct nvme_queue *nvmeq = hctx->driver_data;
500
501         spin_lock(&nvmeq->sq_lock);
502         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503                 nvme_write_sq_db(nvmeq, true);
504         spin_unlock(&nvmeq->sq_lock);
505 }
506
507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508                                      int nseg)
509 {
510         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511         unsigned int avg_seg_size;
512
513         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514
515         if (!nvme_ctrl_sgl_supported(&dev->ctrl))
516                 return false;
517         if (!nvmeq->qid)
518                 return false;
519         if (!sgl_threshold || avg_seg_size < sgl_threshold)
520                 return false;
521         return true;
522 }
523
524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525 {
526         const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528         dma_addr_t dma_addr = iod->first_dma;
529         int i;
530
531         for (i = 0; i < iod->nr_allocations; i++) {
532                 __le64 *prp_list = iod->list[i].prp_list;
533                 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534
535                 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
536                 dma_addr = next_dma_addr;
537         }
538 }
539
540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541 {
542         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543
544         if (iod->dma_len) {
545                 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546                                rq_dma_dir(req));
547                 return;
548         }
549
550         WARN_ON_ONCE(!iod->sgt.nents);
551
552         dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
553
554         if (iod->nr_allocations == 0)
555                 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
556                               iod->first_dma);
557         else if (iod->nr_allocations == 1)
558                 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
559                               iod->first_dma);
560         else
561                 nvme_free_prps(dev, req);
562         mempool_free(iod->sgt.sgl, dev->iod_mempool);
563 }
564
565 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566 {
567         int i;
568         struct scatterlist *sg;
569
570         for_each_sg(sgl, sg, nents, i) {
571                 dma_addr_t phys = sg_phys(sg);
572                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573                         "dma_address:%pad dma_length:%d\n",
574                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575                         sg_dma_len(sg));
576         }
577 }
578
579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580                 struct request *req, struct nvme_rw_command *cmnd)
581 {
582         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583         struct dma_pool *pool;
584         int length = blk_rq_payload_bytes(req);
585         struct scatterlist *sg = iod->sgt.sgl;
586         int dma_len = sg_dma_len(sg);
587         u64 dma_addr = sg_dma_address(sg);
588         int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589         __le64 *prp_list;
590         dma_addr_t prp_dma;
591         int nprps, i;
592
593         length -= (NVME_CTRL_PAGE_SIZE - offset);
594         if (length <= 0) {
595                 iod->first_dma = 0;
596                 goto done;
597         }
598
599         dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600         if (dma_len) {
601                 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602         } else {
603                 sg = sg_next(sg);
604                 dma_addr = sg_dma_address(sg);
605                 dma_len = sg_dma_len(sg);
606         }
607
608         if (length <= NVME_CTRL_PAGE_SIZE) {
609                 iod->first_dma = dma_addr;
610                 goto done;
611         }
612
613         nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614         if (nprps <= (256 / 8)) {
615                 pool = dev->prp_small_pool;
616                 iod->nr_allocations = 0;
617         } else {
618                 pool = dev->prp_page_pool;
619                 iod->nr_allocations = 1;
620         }
621
622         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
623         if (!prp_list) {
624                 iod->nr_allocations = -1;
625                 return BLK_STS_RESOURCE;
626         }
627         iod->list[0].prp_list = prp_list;
628         iod->first_dma = prp_dma;
629         i = 0;
630         for (;;) {
631                 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632                         __le64 *old_prp_list = prp_list;
633                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634                         if (!prp_list)
635                                 goto free_prps;
636                         iod->list[iod->nr_allocations++].prp_list = prp_list;
637                         prp_list[0] = old_prp_list[i - 1];
638                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639                         i = 1;
640                 }
641                 prp_list[i++] = cpu_to_le64(dma_addr);
642                 dma_len -= NVME_CTRL_PAGE_SIZE;
643                 dma_addr += NVME_CTRL_PAGE_SIZE;
644                 length -= NVME_CTRL_PAGE_SIZE;
645                 if (length <= 0)
646                         break;
647                 if (dma_len > 0)
648                         continue;
649                 if (unlikely(dma_len < 0))
650                         goto bad_sgl;
651                 sg = sg_next(sg);
652                 dma_addr = sg_dma_address(sg);
653                 dma_len = sg_dma_len(sg);
654         }
655 done:
656         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658         return BLK_STS_OK;
659 free_prps:
660         nvme_free_prps(dev, req);
661         return BLK_STS_RESOURCE;
662 bad_sgl:
663         WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664                         "Invalid SGL for payload:%d nents:%d\n",
665                         blk_rq_payload_bytes(req), iod->sgt.nents);
666         return BLK_STS_IOERR;
667 }
668
669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670                 struct scatterlist *sg)
671 {
672         sge->addr = cpu_to_le64(sg_dma_address(sg));
673         sge->length = cpu_to_le32(sg_dma_len(sg));
674         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675 }
676
677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678                 dma_addr_t dma_addr, int entries)
679 {
680         sge->addr = cpu_to_le64(dma_addr);
681         sge->length = cpu_to_le32(entries * sizeof(*sge));
682         sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683 }
684
685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686                 struct request *req, struct nvme_rw_command *cmd)
687 {
688         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
689         struct dma_pool *pool;
690         struct nvme_sgl_desc *sg_list;
691         struct scatterlist *sg = iod->sgt.sgl;
692         unsigned int entries = iod->sgt.nents;
693         dma_addr_t sgl_dma;
694         int i = 0;
695
696         /* setting the transfer type as SGL */
697         cmd->flags = NVME_CMD_SGL_METABUF;
698
699         if (entries == 1) {
700                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
701                 return BLK_STS_OK;
702         }
703
704         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705                 pool = dev->prp_small_pool;
706                 iod->nr_allocations = 0;
707         } else {
708                 pool = dev->prp_page_pool;
709                 iod->nr_allocations = 1;
710         }
711
712         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
713         if (!sg_list) {
714                 iod->nr_allocations = -1;
715                 return BLK_STS_RESOURCE;
716         }
717
718         iod->list[0].sg_list = sg_list;
719         iod->first_dma = sgl_dma;
720
721         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
722         do {
723                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
724                 sg = sg_next(sg);
725         } while (--entries > 0);
726
727         return BLK_STS_OK;
728 }
729
730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731                 struct request *req, struct nvme_rw_command *cmnd,
732                 struct bio_vec *bv)
733 {
734         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
735         unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736         unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737
738         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739         if (dma_mapping_error(dev->dev, iod->first_dma))
740                 return BLK_STS_RESOURCE;
741         iod->dma_len = bv->bv_len;
742
743         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744         if (bv->bv_len > first_prp_len)
745                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746         else
747                 cmnd->dptr.prp2 = 0;
748         return BLK_STS_OK;
749 }
750
751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752                 struct request *req, struct nvme_rw_command *cmnd,
753                 struct bio_vec *bv)
754 {
755         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756
757         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758         if (dma_mapping_error(dev->dev, iod->first_dma))
759                 return BLK_STS_RESOURCE;
760         iod->dma_len = bv->bv_len;
761
762         cmnd->flags = NVME_CMD_SGL_METABUF;
763         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766         return BLK_STS_OK;
767 }
768
769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770                 struct nvme_command *cmnd)
771 {
772         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773         blk_status_t ret = BLK_STS_RESOURCE;
774         int rc;
775
776         if (blk_rq_nr_phys_segments(req) == 1) {
777                 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778                 struct bio_vec bv = req_bvec(req);
779
780                 if (!is_pci_p2pdma_page(bv.bv_page)) {
781                         if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
782                                 return nvme_setup_prp_simple(dev, req,
783                                                              &cmnd->rw, &bv);
784
785                         if (nvmeq->qid && sgl_threshold &&
786                             nvme_ctrl_sgl_supported(&dev->ctrl))
787                                 return nvme_setup_sgl_simple(dev, req,
788                                                              &cmnd->rw, &bv);
789                 }
790         }
791
792         iod->dma_len = 0;
793         iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
794         if (!iod->sgt.sgl)
795                 return BLK_STS_RESOURCE;
796         sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
797         iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
798         if (!iod->sgt.orig_nents)
799                 goto out_free_sg;
800
801         rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
802                              DMA_ATTR_NO_WARN);
803         if (rc) {
804                 if (rc == -EREMOTEIO)
805                         ret = BLK_STS_TARGET;
806                 goto out_free_sg;
807         }
808
809         if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
810                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
811         else
812                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
813         if (ret != BLK_STS_OK)
814                 goto out_unmap_sg;
815         return BLK_STS_OK;
816
817 out_unmap_sg:
818         dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
819 out_free_sg:
820         mempool_free(iod->sgt.sgl, dev->iod_mempool);
821         return ret;
822 }
823
824 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
825                 struct nvme_command *cmnd)
826 {
827         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
828
829         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
830                         rq_dma_dir(req), 0);
831         if (dma_mapping_error(dev->dev, iod->meta_dma))
832                 return BLK_STS_IOERR;
833         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
834         return BLK_STS_OK;
835 }
836
837 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
838 {
839         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840         blk_status_t ret;
841
842         iod->aborted = false;
843         iod->nr_allocations = -1;
844         iod->sgt.nents = 0;
845
846         ret = nvme_setup_cmd(req->q->queuedata, req);
847         if (ret)
848                 return ret;
849
850         if (blk_rq_nr_phys_segments(req)) {
851                 ret = nvme_map_data(dev, req, &iod->cmd);
852                 if (ret)
853                         goto out_free_cmd;
854         }
855
856         if (blk_integrity_rq(req)) {
857                 ret = nvme_map_metadata(dev, req, &iod->cmd);
858                 if (ret)
859                         goto out_unmap_data;
860         }
861
862         nvme_start_request(req);
863         return BLK_STS_OK;
864 out_unmap_data:
865         nvme_unmap_data(dev, req);
866 out_free_cmd:
867         nvme_cleanup_cmd(req);
868         return ret;
869 }
870
871 /*
872  * NOTE: ns is NULL when called on the admin queue.
873  */
874 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875                          const struct blk_mq_queue_data *bd)
876 {
877         struct nvme_queue *nvmeq = hctx->driver_data;
878         struct nvme_dev *dev = nvmeq->dev;
879         struct request *req = bd->rq;
880         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
881         blk_status_t ret;
882
883         /*
884          * We should not need to do this, but we're still using this to
885          * ensure we can drain requests on a dying queue.
886          */
887         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
888                 return BLK_STS_IOERR;
889
890         if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
891                 return nvme_fail_nonready_command(&dev->ctrl, req);
892
893         ret = nvme_prep_rq(dev, req);
894         if (unlikely(ret))
895                 return ret;
896         spin_lock(&nvmeq->sq_lock);
897         nvme_sq_copy_cmd(nvmeq, &iod->cmd);
898         nvme_write_sq_db(nvmeq, bd->last);
899         spin_unlock(&nvmeq->sq_lock);
900         return BLK_STS_OK;
901 }
902
903 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
904 {
905         spin_lock(&nvmeq->sq_lock);
906         while (!rq_list_empty(*rqlist)) {
907                 struct request *req = rq_list_pop(rqlist);
908                 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
909
910                 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
911         }
912         nvme_write_sq_db(nvmeq, true);
913         spin_unlock(&nvmeq->sq_lock);
914 }
915
916 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
917 {
918         /*
919          * We should not need to do this, but we're still using this to
920          * ensure we can drain requests on a dying queue.
921          */
922         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
923                 return false;
924         if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
925                 return false;
926
927         return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
928 }
929
930 static void nvme_queue_rqs(struct request **rqlist)
931 {
932         struct request *req, *next, *prev = NULL;
933         struct request *requeue_list = NULL;
934
935         rq_list_for_each_safe(rqlist, req, next) {
936                 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
937
938                 if (!nvme_prep_rq_batch(nvmeq, req)) {
939                         /* detach 'req' and add to remainder list */
940                         rq_list_move(rqlist, &requeue_list, req, prev);
941
942                         req = prev;
943                         if (!req)
944                                 continue;
945                 }
946
947                 if (!next || req->mq_hctx != next->mq_hctx) {
948                         /* detach rest of list, and submit */
949                         req->rq_next = NULL;
950                         nvme_submit_cmds(nvmeq, rqlist);
951                         *rqlist = next;
952                         prev = NULL;
953                 } else
954                         prev = req;
955         }
956
957         *rqlist = requeue_list;
958 }
959
960 static __always_inline void nvme_pci_unmap_rq(struct request *req)
961 {
962         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
963         struct nvme_dev *dev = nvmeq->dev;
964
965         if (blk_integrity_rq(req)) {
966                 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
967
968                 dma_unmap_page(dev->dev, iod->meta_dma,
969                                rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
970         }
971
972         if (blk_rq_nr_phys_segments(req))
973                 nvme_unmap_data(dev, req);
974 }
975
976 static void nvme_pci_complete_rq(struct request *req)
977 {
978         nvme_pci_unmap_rq(req);
979         nvme_complete_rq(req);
980 }
981
982 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
983 {
984         nvme_complete_batch(iob, nvme_pci_unmap_rq);
985 }
986
987 /* We read the CQE phase first to check if the rest of the entry is valid */
988 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
989 {
990         struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
991
992         return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
993 }
994
995 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
996 {
997         u16 head = nvmeq->cq_head;
998
999         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1000                                               nvmeq->dbbuf_cq_ei))
1001                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1002 }
1003
1004 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1005 {
1006         if (!nvmeq->qid)
1007                 return nvmeq->dev->admin_tagset.tags[0];
1008         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1009 }
1010
1011 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1012                                    struct io_comp_batch *iob, u16 idx)
1013 {
1014         struct nvme_completion *cqe = &nvmeq->cqes[idx];
1015         __u16 command_id = READ_ONCE(cqe->command_id);
1016         struct request *req;
1017
1018         /*
1019          * AEN requests are special as they don't time out and can
1020          * survive any kind of queue freeze and often don't respond to
1021          * aborts.  We don't even bother to allocate a struct request
1022          * for them but rather special case them here.
1023          */
1024         if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1025                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1026                                 cqe->status, &cqe->result);
1027                 return;
1028         }
1029
1030         req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1031         if (unlikely(!req)) {
1032                 dev_warn(nvmeq->dev->ctrl.device,
1033                         "invalid id %d completed on queue %d\n",
1034                         command_id, le16_to_cpu(cqe->sq_id));
1035                 return;
1036         }
1037
1038         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1039         if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1040             !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1041                                         nvme_pci_complete_batch))
1042                 nvme_pci_complete_rq(req);
1043 }
1044
1045 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1046 {
1047         u32 tmp = nvmeq->cq_head + 1;
1048
1049         if (tmp == nvmeq->q_depth) {
1050                 nvmeq->cq_head = 0;
1051                 nvmeq->cq_phase ^= 1;
1052         } else {
1053                 nvmeq->cq_head = tmp;
1054         }
1055 }
1056
1057 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1058                                struct io_comp_batch *iob)
1059 {
1060         int found = 0;
1061
1062         while (nvme_cqe_pending(nvmeq)) {
1063                 found++;
1064                 /*
1065                  * load-load control dependency between phase and the rest of
1066                  * the cqe requires a full read memory barrier
1067                  */
1068                 dma_rmb();
1069                 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1070                 nvme_update_cq_head(nvmeq);
1071         }
1072
1073         if (found)
1074                 nvme_ring_cq_doorbell(nvmeq);
1075         return found;
1076 }
1077
1078 static irqreturn_t nvme_irq(int irq, void *data)
1079 {
1080         struct nvme_queue *nvmeq = data;
1081         DEFINE_IO_COMP_BATCH(iob);
1082
1083         if (nvme_poll_cq(nvmeq, &iob)) {
1084                 if (!rq_list_empty(iob.req_list))
1085                         nvme_pci_complete_batch(&iob);
1086                 return IRQ_HANDLED;
1087         }
1088         return IRQ_NONE;
1089 }
1090
1091 static irqreturn_t nvme_irq_check(int irq, void *data)
1092 {
1093         struct nvme_queue *nvmeq = data;
1094
1095         if (nvme_cqe_pending(nvmeq))
1096                 return IRQ_WAKE_THREAD;
1097         return IRQ_NONE;
1098 }
1099
1100 /*
1101  * Poll for completions for any interrupt driven queue
1102  * Can be called from any context.
1103  */
1104 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1105 {
1106         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1107
1108         WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1109
1110         disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1111         nvme_poll_cq(nvmeq, NULL);
1112         enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1113 }
1114
1115 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1116 {
1117         struct nvme_queue *nvmeq = hctx->driver_data;
1118         bool found;
1119
1120         if (!nvme_cqe_pending(nvmeq))
1121                 return 0;
1122
1123         spin_lock(&nvmeq->cq_poll_lock);
1124         found = nvme_poll_cq(nvmeq, iob);
1125         spin_unlock(&nvmeq->cq_poll_lock);
1126
1127         return found;
1128 }
1129
1130 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1131 {
1132         struct nvme_dev *dev = to_nvme_dev(ctrl);
1133         struct nvme_queue *nvmeq = &dev->queues[0];
1134         struct nvme_command c = { };
1135
1136         c.common.opcode = nvme_admin_async_event;
1137         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1138
1139         spin_lock(&nvmeq->sq_lock);
1140         nvme_sq_copy_cmd(nvmeq, &c);
1141         nvme_write_sq_db(nvmeq, true);
1142         spin_unlock(&nvmeq->sq_lock);
1143 }
1144
1145 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1146 {
1147         struct nvme_command c = { };
1148
1149         c.delete_queue.opcode = opcode;
1150         c.delete_queue.qid = cpu_to_le16(id);
1151
1152         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1153 }
1154
1155 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1156                 struct nvme_queue *nvmeq, s16 vector)
1157 {
1158         struct nvme_command c = { };
1159         int flags = NVME_QUEUE_PHYS_CONTIG;
1160
1161         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1162                 flags |= NVME_CQ_IRQ_ENABLED;
1163
1164         /*
1165          * Note: we (ab)use the fact that the prp fields survive if no data
1166          * is attached to the request.
1167          */
1168         c.create_cq.opcode = nvme_admin_create_cq;
1169         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1170         c.create_cq.cqid = cpu_to_le16(qid);
1171         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1172         c.create_cq.cq_flags = cpu_to_le16(flags);
1173         c.create_cq.irq_vector = cpu_to_le16(vector);
1174
1175         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1176 }
1177
1178 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1179                                                 struct nvme_queue *nvmeq)
1180 {
1181         struct nvme_ctrl *ctrl = &dev->ctrl;
1182         struct nvme_command c = { };
1183         int flags = NVME_QUEUE_PHYS_CONTIG;
1184
1185         /*
1186          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1187          * set. Since URGENT priority is zeroes, it makes all queues
1188          * URGENT.
1189          */
1190         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1191                 flags |= NVME_SQ_PRIO_MEDIUM;
1192
1193         /*
1194          * Note: we (ab)use the fact that the prp fields survive if no data
1195          * is attached to the request.
1196          */
1197         c.create_sq.opcode = nvme_admin_create_sq;
1198         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1199         c.create_sq.sqid = cpu_to_le16(qid);
1200         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1201         c.create_sq.sq_flags = cpu_to_le16(flags);
1202         c.create_sq.cqid = cpu_to_le16(qid);
1203
1204         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1205 }
1206
1207 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1208 {
1209         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1210 }
1211
1212 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1213 {
1214         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1215 }
1216
1217 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1218 {
1219         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1220
1221         dev_warn(nvmeq->dev->ctrl.device,
1222                  "Abort status: 0x%x", nvme_req(req)->status);
1223         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1224         blk_mq_free_request(req);
1225         return RQ_END_IO_NONE;
1226 }
1227
1228 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1229 {
1230         /* If true, indicates loss of adapter communication, possibly by a
1231          * NVMe Subsystem reset.
1232          */
1233         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1234
1235         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1236         switch (nvme_ctrl_state(&dev->ctrl)) {
1237         case NVME_CTRL_RESETTING:
1238         case NVME_CTRL_CONNECTING:
1239                 return false;
1240         default:
1241                 break;
1242         }
1243
1244         /* We shouldn't reset unless the controller is on fatal error state
1245          * _or_ if we lost the communication with it.
1246          */
1247         if (!(csts & NVME_CSTS_CFS) && !nssro)
1248                 return false;
1249
1250         return true;
1251 }
1252
1253 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1254 {
1255         /* Read a config register to help see what died. */
1256         u16 pci_status;
1257         int result;
1258
1259         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1260                                       &pci_status);
1261         if (result == PCIBIOS_SUCCESSFUL)
1262                 dev_warn(dev->ctrl.device,
1263                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1264                          csts, pci_status);
1265         else
1266                 dev_warn(dev->ctrl.device,
1267                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1268                          csts, result);
1269
1270         if (csts != ~0)
1271                 return;
1272
1273         dev_warn(dev->ctrl.device,
1274                  "Does your device have a faulty power saving mode enabled?\n");
1275         dev_warn(dev->ctrl.device,
1276                  "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1277 }
1278
1279 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1280 {
1281         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1282         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1283         struct nvme_dev *dev = nvmeq->dev;
1284         struct request *abort_req;
1285         struct nvme_command cmd = { };
1286         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1287         u8 opcode;
1288
1289         /* If PCI error recovery process is happening, we cannot reset or
1290          * the recovery mechanism will surely fail.
1291          */
1292         mb();
1293         if (pci_channel_offline(to_pci_dev(dev->dev)))
1294                 return BLK_EH_RESET_TIMER;
1295
1296         /*
1297          * Reset immediately if the controller is failed
1298          */
1299         if (nvme_should_reset(dev, csts)) {
1300                 nvme_warn_reset(dev, csts);
1301                 goto disable;
1302         }
1303
1304         /*
1305          * Did we miss an interrupt?
1306          */
1307         if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1308                 nvme_poll(req->mq_hctx, NULL);
1309         else
1310                 nvme_poll_irqdisable(nvmeq);
1311
1312         if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1313                 dev_warn(dev->ctrl.device,
1314                          "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1315                          req->tag, nvme_cid(req), nvmeq->qid);
1316                 return BLK_EH_DONE;
1317         }
1318
1319         /*
1320          * Shutdown immediately if controller times out while starting. The
1321          * reset work will see the pci device disabled when it gets the forced
1322          * cancellation error. All outstanding requests are completed on
1323          * shutdown, so we return BLK_EH_DONE.
1324          */
1325         switch (nvme_ctrl_state(&dev->ctrl)) {
1326         case NVME_CTRL_CONNECTING:
1327                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1328                 fallthrough;
1329         case NVME_CTRL_DELETING:
1330                 dev_warn_ratelimited(dev->ctrl.device,
1331                          "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1332                          req->tag, nvme_cid(req), nvmeq->qid);
1333                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1334                 nvme_dev_disable(dev, true);
1335                 return BLK_EH_DONE;
1336         case NVME_CTRL_RESETTING:
1337                 return BLK_EH_RESET_TIMER;
1338         default:
1339                 break;
1340         }
1341
1342         /*
1343          * Shutdown the controller immediately and schedule a reset if the
1344          * command was already aborted once before and still hasn't been
1345          * returned to the driver, or if this is the admin queue.
1346          */
1347         opcode = nvme_req(req)->cmd->common.opcode;
1348         if (!nvmeq->qid || iod->aborted) {
1349                 dev_warn(dev->ctrl.device,
1350                          "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1351                          req->tag, nvme_cid(req), opcode,
1352                          nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1353                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1354                 goto disable;
1355         }
1356
1357         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1358                 atomic_inc(&dev->ctrl.abort_limit);
1359                 return BLK_EH_RESET_TIMER;
1360         }
1361         iod->aborted = true;
1362
1363         cmd.abort.opcode = nvme_admin_abort_cmd;
1364         cmd.abort.cid = nvme_cid(req);
1365         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1366
1367         dev_warn(nvmeq->dev->ctrl.device,
1368                  "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1369                  req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1370                  nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1371                  blk_rq_bytes(req));
1372
1373         abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1374                                          BLK_MQ_REQ_NOWAIT);
1375         if (IS_ERR(abort_req)) {
1376                 atomic_inc(&dev->ctrl.abort_limit);
1377                 return BLK_EH_RESET_TIMER;
1378         }
1379         nvme_init_request(abort_req, &cmd);
1380
1381         abort_req->end_io = abort_endio;
1382         abort_req->end_io_data = NULL;
1383         blk_execute_rq_nowait(abort_req, false);
1384
1385         /*
1386          * The aborted req will be completed on receiving the abort req.
1387          * We enable the timer again. If hit twice, it'll cause a device reset,
1388          * as the device then is in a faulty state.
1389          */
1390         return BLK_EH_RESET_TIMER;
1391
1392 disable:
1393         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1394                 return BLK_EH_DONE;
1395
1396         nvme_dev_disable(dev, false);
1397         if (nvme_try_sched_reset(&dev->ctrl))
1398                 nvme_unquiesce_io_queues(&dev->ctrl);
1399         return BLK_EH_DONE;
1400 }
1401
1402 static void nvme_free_queue(struct nvme_queue *nvmeq)
1403 {
1404         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1405                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1406         if (!nvmeq->sq_cmds)
1407                 return;
1408
1409         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1410                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1411                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1412         } else {
1413                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1414                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1415         }
1416 }
1417
1418 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1419 {
1420         int i;
1421
1422         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1423                 dev->ctrl.queue_count--;
1424                 nvme_free_queue(&dev->queues[i]);
1425         }
1426 }
1427
1428 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1429 {
1430         struct nvme_queue *nvmeq = &dev->queues[qid];
1431
1432         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1433                 return;
1434
1435         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1436         mb();
1437
1438         nvmeq->dev->online_queues--;
1439         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1440                 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1441         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1442                 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1443 }
1444
1445 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1446 {
1447         int i;
1448
1449         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1450                 nvme_suspend_queue(dev, i);
1451 }
1452
1453 /*
1454  * Called only on a device that has been disabled and after all other threads
1455  * that can check this device's completion queues have synced, except
1456  * nvme_poll(). This is the last chance for the driver to see a natural
1457  * completion before nvme_cancel_request() terminates all incomplete requests.
1458  */
1459 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1460 {
1461         int i;
1462
1463         for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1464                 spin_lock(&dev->queues[i].cq_poll_lock);
1465                 nvme_poll_cq(&dev->queues[i], NULL);
1466                 spin_unlock(&dev->queues[i].cq_poll_lock);
1467         }
1468 }
1469
1470 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1471                                 int entry_size)
1472 {
1473         int q_depth = dev->q_depth;
1474         unsigned q_size_aligned = roundup(q_depth * entry_size,
1475                                           NVME_CTRL_PAGE_SIZE);
1476
1477         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1478                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1479
1480                 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1481                 q_depth = div_u64(mem_per_q, entry_size);
1482
1483                 /*
1484                  * Ensure the reduced q_depth is above some threshold where it
1485                  * would be better to map queues in system memory with the
1486                  * original depth
1487                  */
1488                 if (q_depth < 64)
1489                         return -ENOMEM;
1490         }
1491
1492         return q_depth;
1493 }
1494
1495 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1496                                 int qid)
1497 {
1498         struct pci_dev *pdev = to_pci_dev(dev->dev);
1499
1500         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1501                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1502                 if (nvmeq->sq_cmds) {
1503                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1504                                                         nvmeq->sq_cmds);
1505                         if (nvmeq->sq_dma_addr) {
1506                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1507                                 return 0;
1508                         }
1509
1510                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1511                 }
1512         }
1513
1514         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1515                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1516         if (!nvmeq->sq_cmds)
1517                 return -ENOMEM;
1518         return 0;
1519 }
1520
1521 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1522 {
1523         struct nvme_queue *nvmeq = &dev->queues[qid];
1524
1525         if (dev->ctrl.queue_count > qid)
1526                 return 0;
1527
1528         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1529         nvmeq->q_depth = depth;
1530         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1531                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1532         if (!nvmeq->cqes)
1533                 goto free_nvmeq;
1534
1535         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1536                 goto free_cqdma;
1537
1538         nvmeq->dev = dev;
1539         spin_lock_init(&nvmeq->sq_lock);
1540         spin_lock_init(&nvmeq->cq_poll_lock);
1541         nvmeq->cq_head = 0;
1542         nvmeq->cq_phase = 1;
1543         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1544         nvmeq->qid = qid;
1545         dev->ctrl.queue_count++;
1546
1547         return 0;
1548
1549  free_cqdma:
1550         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1551                           nvmeq->cq_dma_addr);
1552  free_nvmeq:
1553         return -ENOMEM;
1554 }
1555
1556 static int queue_request_irq(struct nvme_queue *nvmeq)
1557 {
1558         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1559         int nr = nvmeq->dev->ctrl.instance;
1560
1561         if (use_threaded_interrupts) {
1562                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1563                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1564         } else {
1565                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1566                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1567         }
1568 }
1569
1570 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1571 {
1572         struct nvme_dev *dev = nvmeq->dev;
1573
1574         nvmeq->sq_tail = 0;
1575         nvmeq->last_sq_tail = 0;
1576         nvmeq->cq_head = 0;
1577         nvmeq->cq_phase = 1;
1578         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1579         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1580         nvme_dbbuf_init(dev, nvmeq, qid);
1581         dev->online_queues++;
1582         wmb(); /* ensure the first interrupt sees the initialization */
1583 }
1584
1585 /*
1586  * Try getting shutdown_lock while setting up IO queues.
1587  */
1588 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1589 {
1590         /*
1591          * Give up if the lock is being held by nvme_dev_disable.
1592          */
1593         if (!mutex_trylock(&dev->shutdown_lock))
1594                 return -ENODEV;
1595
1596         /*
1597          * Controller is in wrong state, fail early.
1598          */
1599         if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1600                 mutex_unlock(&dev->shutdown_lock);
1601                 return -ENODEV;
1602         }
1603
1604         return 0;
1605 }
1606
1607 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1608 {
1609         struct nvme_dev *dev = nvmeq->dev;
1610         int result;
1611         u16 vector = 0;
1612
1613         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1614
1615         /*
1616          * A queue's vector matches the queue identifier unless the controller
1617          * has only one vector available.
1618          */
1619         if (!polled)
1620                 vector = dev->num_vecs == 1 ? 0 : qid;
1621         else
1622                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1623
1624         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1625         if (result)
1626                 return result;
1627
1628         result = adapter_alloc_sq(dev, qid, nvmeq);
1629         if (result < 0)
1630                 return result;
1631         if (result)
1632                 goto release_cq;
1633
1634         nvmeq->cq_vector = vector;
1635
1636         result = nvme_setup_io_queues_trylock(dev);
1637         if (result)
1638                 return result;
1639         nvme_init_queue(nvmeq, qid);
1640         if (!polled) {
1641                 result = queue_request_irq(nvmeq);
1642                 if (result < 0)
1643                         goto release_sq;
1644         }
1645
1646         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1647         mutex_unlock(&dev->shutdown_lock);
1648         return result;
1649
1650 release_sq:
1651         dev->online_queues--;
1652         mutex_unlock(&dev->shutdown_lock);
1653         adapter_delete_sq(dev, qid);
1654 release_cq:
1655         adapter_delete_cq(dev, qid);
1656         return result;
1657 }
1658
1659 static const struct blk_mq_ops nvme_mq_admin_ops = {
1660         .queue_rq       = nvme_queue_rq,
1661         .complete       = nvme_pci_complete_rq,
1662         .init_hctx      = nvme_admin_init_hctx,
1663         .init_request   = nvme_pci_init_request,
1664         .timeout        = nvme_timeout,
1665 };
1666
1667 static const struct blk_mq_ops nvme_mq_ops = {
1668         .queue_rq       = nvme_queue_rq,
1669         .queue_rqs      = nvme_queue_rqs,
1670         .complete       = nvme_pci_complete_rq,
1671         .commit_rqs     = nvme_commit_rqs,
1672         .init_hctx      = nvme_init_hctx,
1673         .init_request   = nvme_pci_init_request,
1674         .map_queues     = nvme_pci_map_queues,
1675         .timeout        = nvme_timeout,
1676         .poll           = nvme_poll,
1677 };
1678
1679 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1680 {
1681         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1682                 /*
1683                  * If the controller was reset during removal, it's possible
1684                  * user requests may be waiting on a stopped queue. Start the
1685                  * queue to flush these to completion.
1686                  */
1687                 nvme_unquiesce_admin_queue(&dev->ctrl);
1688                 nvme_remove_admin_tag_set(&dev->ctrl);
1689         }
1690 }
1691
1692 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1693 {
1694         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1695 }
1696
1697 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1698 {
1699         struct pci_dev *pdev = to_pci_dev(dev->dev);
1700
1701         if (size <= dev->bar_mapped_size)
1702                 return 0;
1703         if (size > pci_resource_len(pdev, 0))
1704                 return -ENOMEM;
1705         if (dev->bar)
1706                 iounmap(dev->bar);
1707         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1708         if (!dev->bar) {
1709                 dev->bar_mapped_size = 0;
1710                 return -ENOMEM;
1711         }
1712         dev->bar_mapped_size = size;
1713         dev->dbs = dev->bar + NVME_REG_DBS;
1714
1715         return 0;
1716 }
1717
1718 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1719 {
1720         int result;
1721         u32 aqa;
1722         struct nvme_queue *nvmeq;
1723
1724         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1725         if (result < 0)
1726                 return result;
1727
1728         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1729                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1730
1731         if (dev->subsystem &&
1732             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1733                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1734
1735         /*
1736          * If the device has been passed off to us in an enabled state, just
1737          * clear the enabled bit.  The spec says we should set the 'shutdown
1738          * notification bits', but doing so may cause the device to complete
1739          * commands to the admin queue ... and we don't know what memory that
1740          * might be pointing at!
1741          */
1742         result = nvme_disable_ctrl(&dev->ctrl, false);
1743         if (result < 0)
1744                 return result;
1745
1746         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1747         if (result)
1748                 return result;
1749
1750         dev->ctrl.numa_node = dev_to_node(dev->dev);
1751
1752         nvmeq = &dev->queues[0];
1753         aqa = nvmeq->q_depth - 1;
1754         aqa |= aqa << 16;
1755
1756         writel(aqa, dev->bar + NVME_REG_AQA);
1757         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1758         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1759
1760         result = nvme_enable_ctrl(&dev->ctrl);
1761         if (result)
1762                 return result;
1763
1764         nvmeq->cq_vector = 0;
1765         nvme_init_queue(nvmeq, 0);
1766         result = queue_request_irq(nvmeq);
1767         if (result) {
1768                 dev->online_queues--;
1769                 return result;
1770         }
1771
1772         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1773         return result;
1774 }
1775
1776 static int nvme_create_io_queues(struct nvme_dev *dev)
1777 {
1778         unsigned i, max, rw_queues;
1779         int ret = 0;
1780
1781         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1782                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1783                         ret = -ENOMEM;
1784                         break;
1785                 }
1786         }
1787
1788         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1789         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1790                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1791                                 dev->io_queues[HCTX_TYPE_READ];
1792         } else {
1793                 rw_queues = max;
1794         }
1795
1796         for (i = dev->online_queues; i <= max; i++) {
1797                 bool polled = i > rw_queues;
1798
1799                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1800                 if (ret)
1801                         break;
1802         }
1803
1804         /*
1805          * Ignore failing Create SQ/CQ commands, we can continue with less
1806          * than the desired amount of queues, and even a controller without
1807          * I/O queues can still be used to issue admin commands.  This might
1808          * be useful to upgrade a buggy firmware for example.
1809          */
1810         return ret >= 0 ? 0 : ret;
1811 }
1812
1813 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1814 {
1815         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1816
1817         return 1ULL << (12 + 4 * szu);
1818 }
1819
1820 static u32 nvme_cmb_size(struct nvme_dev *dev)
1821 {
1822         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1823 }
1824
1825 static void nvme_map_cmb(struct nvme_dev *dev)
1826 {
1827         u64 size, offset;
1828         resource_size_t bar_size;
1829         struct pci_dev *pdev = to_pci_dev(dev->dev);
1830         int bar;
1831
1832         if (dev->cmb_size)
1833                 return;
1834
1835         if (NVME_CAP_CMBS(dev->ctrl.cap))
1836                 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1837
1838         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1839         if (!dev->cmbsz)
1840                 return;
1841         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1842
1843         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1844         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1845         bar = NVME_CMB_BIR(dev->cmbloc);
1846         bar_size = pci_resource_len(pdev, bar);
1847
1848         if (offset > bar_size)
1849                 return;
1850
1851         /*
1852          * Tell the controller about the host side address mapping the CMB,
1853          * and enable CMB decoding for the NVMe 1.4+ scheme:
1854          */
1855         if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1856                 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1857                              (pci_bus_address(pdev, bar) + offset),
1858                              dev->bar + NVME_REG_CMBMSC);
1859         }
1860
1861         /*
1862          * Controllers may support a CMB size larger than their BAR,
1863          * for example, due to being behind a bridge. Reduce the CMB to
1864          * the reported size of the BAR
1865          */
1866         if (size > bar_size - offset)
1867                 size = bar_size - offset;
1868
1869         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1870                 dev_warn(dev->ctrl.device,
1871                          "failed to register the CMB\n");
1872                 return;
1873         }
1874
1875         dev->cmb_size = size;
1876         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1877
1878         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1879                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1880                 pci_p2pmem_publish(pdev, true);
1881
1882         nvme_update_attrs(dev);
1883 }
1884
1885 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1886 {
1887         u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1888         u64 dma_addr = dev->host_mem_descs_dma;
1889         struct nvme_command c = { };
1890         int ret;
1891
1892         c.features.opcode       = nvme_admin_set_features;
1893         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1894         c.features.dword11      = cpu_to_le32(bits);
1895         c.features.dword12      = cpu_to_le32(host_mem_size);
1896         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1897         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1898         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1899
1900         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1901         if (ret) {
1902                 dev_warn(dev->ctrl.device,
1903                          "failed to set host mem (err %d, flags %#x).\n",
1904                          ret, bits);
1905         } else
1906                 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1907
1908         return ret;
1909 }
1910
1911 static void nvme_free_host_mem(struct nvme_dev *dev)
1912 {
1913         int i;
1914
1915         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1916                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1917                 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1918
1919                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1920                                le64_to_cpu(desc->addr),
1921                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1922         }
1923
1924         kfree(dev->host_mem_desc_bufs);
1925         dev->host_mem_desc_bufs = NULL;
1926         dma_free_coherent(dev->dev,
1927                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1928                         dev->host_mem_descs, dev->host_mem_descs_dma);
1929         dev->host_mem_descs = NULL;
1930         dev->nr_host_mem_descs = 0;
1931 }
1932
1933 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1934                 u32 chunk_size)
1935 {
1936         struct nvme_host_mem_buf_desc *descs;
1937         u32 max_entries, len;
1938         dma_addr_t descs_dma;
1939         int i = 0;
1940         void **bufs;
1941         u64 size, tmp;
1942
1943         tmp = (preferred + chunk_size - 1);
1944         do_div(tmp, chunk_size);
1945         max_entries = tmp;
1946
1947         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1948                 max_entries = dev->ctrl.hmmaxd;
1949
1950         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1951                                    &descs_dma, GFP_KERNEL);
1952         if (!descs)
1953                 goto out;
1954
1955         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1956         if (!bufs)
1957                 goto out_free_descs;
1958
1959         for (size = 0; size < preferred && i < max_entries; size += len) {
1960                 dma_addr_t dma_addr;
1961
1962                 len = min_t(u64, chunk_size, preferred - size);
1963                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1964                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1965                 if (!bufs[i])
1966                         break;
1967
1968                 descs[i].addr = cpu_to_le64(dma_addr);
1969                 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1970                 i++;
1971         }
1972
1973         if (!size)
1974                 goto out_free_bufs;
1975
1976         dev->nr_host_mem_descs = i;
1977         dev->host_mem_size = size;
1978         dev->host_mem_descs = descs;
1979         dev->host_mem_descs_dma = descs_dma;
1980         dev->host_mem_desc_bufs = bufs;
1981         return 0;
1982
1983 out_free_bufs:
1984         while (--i >= 0) {
1985                 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1986
1987                 dma_free_attrs(dev->dev, size, bufs[i],
1988                                le64_to_cpu(descs[i].addr),
1989                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1990         }
1991
1992         kfree(bufs);
1993 out_free_descs:
1994         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1995                         descs_dma);
1996 out:
1997         dev->host_mem_descs = NULL;
1998         return -ENOMEM;
1999 }
2000
2001 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2002 {
2003         u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2004         u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2005         u64 chunk_size;
2006
2007         /* start big and work our way down */
2008         for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2009                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2010                         if (!min || dev->host_mem_size >= min)
2011                                 return 0;
2012                         nvme_free_host_mem(dev);
2013                 }
2014         }
2015
2016         return -ENOMEM;
2017 }
2018
2019 static int nvme_setup_host_mem(struct nvme_dev *dev)
2020 {
2021         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2022         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2023         u64 min = (u64)dev->ctrl.hmmin * 4096;
2024         u32 enable_bits = NVME_HOST_MEM_ENABLE;
2025         int ret;
2026
2027         if (!dev->ctrl.hmpre)
2028                 return 0;
2029
2030         preferred = min(preferred, max);
2031         if (min > max) {
2032                 dev_warn(dev->ctrl.device,
2033                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2034                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2035                 nvme_free_host_mem(dev);
2036                 return 0;
2037         }
2038
2039         /*
2040          * If we already have a buffer allocated check if we can reuse it.
2041          */
2042         if (dev->host_mem_descs) {
2043                 if (dev->host_mem_size >= min)
2044                         enable_bits |= NVME_HOST_MEM_RETURN;
2045                 else
2046                         nvme_free_host_mem(dev);
2047         }
2048
2049         if (!dev->host_mem_descs) {
2050                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2051                         dev_warn(dev->ctrl.device,
2052                                 "failed to allocate host memory buffer.\n");
2053                         return 0; /* controller must work without HMB */
2054                 }
2055
2056                 dev_info(dev->ctrl.device,
2057                         "allocated %lld MiB host memory buffer.\n",
2058                         dev->host_mem_size >> ilog2(SZ_1M));
2059         }
2060
2061         ret = nvme_set_host_mem(dev, enable_bits);
2062         if (ret)
2063                 nvme_free_host_mem(dev);
2064         return ret;
2065 }
2066
2067 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2068                 char *buf)
2069 {
2070         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2071
2072         return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2073                        ndev->cmbloc, ndev->cmbsz);
2074 }
2075 static DEVICE_ATTR_RO(cmb);
2076
2077 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2078                 char *buf)
2079 {
2080         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2081
2082         return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2083 }
2084 static DEVICE_ATTR_RO(cmbloc);
2085
2086 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2087                 char *buf)
2088 {
2089         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2090
2091         return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2092 }
2093 static DEVICE_ATTR_RO(cmbsz);
2094
2095 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2096                         char *buf)
2097 {
2098         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2099
2100         return sysfs_emit(buf, "%d\n", ndev->hmb);
2101 }
2102
2103 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2104                          const char *buf, size_t count)
2105 {
2106         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2107         bool new;
2108         int ret;
2109
2110         if (kstrtobool(buf, &new) < 0)
2111                 return -EINVAL;
2112
2113         if (new == ndev->hmb)
2114                 return count;
2115
2116         if (new) {
2117                 ret = nvme_setup_host_mem(ndev);
2118         } else {
2119                 ret = nvme_set_host_mem(ndev, 0);
2120                 if (!ret)
2121                         nvme_free_host_mem(ndev);
2122         }
2123
2124         if (ret < 0)
2125                 return ret;
2126
2127         return count;
2128 }
2129 static DEVICE_ATTR_RW(hmb);
2130
2131 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2132                 struct attribute *a, int n)
2133 {
2134         struct nvme_ctrl *ctrl =
2135                 dev_get_drvdata(container_of(kobj, struct device, kobj));
2136         struct nvme_dev *dev = to_nvme_dev(ctrl);
2137
2138         if (a == &dev_attr_cmb.attr ||
2139             a == &dev_attr_cmbloc.attr ||
2140             a == &dev_attr_cmbsz.attr) {
2141                 if (!dev->cmbsz)
2142                         return 0;
2143         }
2144         if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2145                 return 0;
2146
2147         return a->mode;
2148 }
2149
2150 static struct attribute *nvme_pci_attrs[] = {
2151         &dev_attr_cmb.attr,
2152         &dev_attr_cmbloc.attr,
2153         &dev_attr_cmbsz.attr,
2154         &dev_attr_hmb.attr,
2155         NULL,
2156 };
2157
2158 static const struct attribute_group nvme_pci_dev_attrs_group = {
2159         .attrs          = nvme_pci_attrs,
2160         .is_visible     = nvme_pci_attrs_are_visible,
2161 };
2162
2163 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2164         &nvme_dev_attrs_group,
2165         &nvme_pci_dev_attrs_group,
2166         NULL,
2167 };
2168
2169 static void nvme_update_attrs(struct nvme_dev *dev)
2170 {
2171         sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2172 }
2173
2174 /*
2175  * nirqs is the number of interrupts available for write and read
2176  * queues. The core already reserved an interrupt for the admin queue.
2177  */
2178 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2179 {
2180         struct nvme_dev *dev = affd->priv;
2181         unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2182
2183         /*
2184          * If there is no interrupt available for queues, ensure that
2185          * the default queue is set to 1. The affinity set size is
2186          * also set to one, but the irq core ignores it for this case.
2187          *
2188          * If only one interrupt is available or 'write_queue' == 0, combine
2189          * write and read queues.
2190          *
2191          * If 'write_queues' > 0, ensure it leaves room for at least one read
2192          * queue.
2193          */
2194         if (!nrirqs) {
2195                 nrirqs = 1;
2196                 nr_read_queues = 0;
2197         } else if (nrirqs == 1 || !nr_write_queues) {
2198                 nr_read_queues = 0;
2199         } else if (nr_write_queues >= nrirqs) {
2200                 nr_read_queues = 1;
2201         } else {
2202                 nr_read_queues = nrirqs - nr_write_queues;
2203         }
2204
2205         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2206         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2207         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2208         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2209         affd->nr_sets = nr_read_queues ? 2 : 1;
2210 }
2211
2212 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2213 {
2214         struct pci_dev *pdev = to_pci_dev(dev->dev);
2215         struct irq_affinity affd = {
2216                 .pre_vectors    = 1,
2217                 .calc_sets      = nvme_calc_irq_sets,
2218                 .priv           = dev,
2219         };
2220         unsigned int irq_queues, poll_queues;
2221
2222         /*
2223          * Poll queues don't need interrupts, but we need at least one I/O queue
2224          * left over for non-polled I/O.
2225          */
2226         poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2227         dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2228
2229         /*
2230          * Initialize for the single interrupt case, will be updated in
2231          * nvme_calc_irq_sets().
2232          */
2233         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2234         dev->io_queues[HCTX_TYPE_READ] = 0;
2235
2236         /*
2237          * We need interrupts for the admin queue and each non-polled I/O queue,
2238          * but some Apple controllers require all queues to use the first
2239          * vector.
2240          */
2241         irq_queues = 1;
2242         if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2243                 irq_queues += (nr_io_queues - poll_queues);
2244         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2245                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2246 }
2247
2248 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2249 {
2250         /*
2251          * If tags are shared with admin queue (Apple bug), then
2252          * make sure we only use one IO queue.
2253          */
2254         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2255                 return 1;
2256         return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2257 }
2258
2259 static int nvme_setup_io_queues(struct nvme_dev *dev)
2260 {
2261         struct nvme_queue *adminq = &dev->queues[0];
2262         struct pci_dev *pdev = to_pci_dev(dev->dev);
2263         unsigned int nr_io_queues;
2264         unsigned long size;
2265         int result;
2266
2267         /*
2268          * Sample the module parameters once at reset time so that we have
2269          * stable values to work with.
2270          */
2271         dev->nr_write_queues = write_queues;
2272         dev->nr_poll_queues = poll_queues;
2273
2274         nr_io_queues = dev->nr_allocated_queues - 1;
2275         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2276         if (result < 0)
2277                 return result;
2278
2279         if (nr_io_queues == 0)
2280                 return 0;
2281
2282         /*
2283          * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2284          * from set to unset. If there is a window to it is truely freed,
2285          * pci_free_irq_vectors() jumping into this window will crash.
2286          * And take lock to avoid racing with pci_free_irq_vectors() in
2287          * nvme_dev_disable() path.
2288          */
2289         result = nvme_setup_io_queues_trylock(dev);
2290         if (result)
2291                 return result;
2292         if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2293                 pci_free_irq(pdev, 0, adminq);
2294
2295         if (dev->cmb_use_sqes) {
2296                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2297                                 sizeof(struct nvme_command));
2298                 if (result > 0) {
2299                         dev->q_depth = result;
2300                         dev->ctrl.sqsize = result - 1;
2301                 } else {
2302                         dev->cmb_use_sqes = false;
2303                 }
2304         }
2305
2306         do {
2307                 size = db_bar_size(dev, nr_io_queues);
2308                 result = nvme_remap_bar(dev, size);
2309                 if (!result)
2310                         break;
2311                 if (!--nr_io_queues) {
2312                         result = -ENOMEM;
2313                         goto out_unlock;
2314                 }
2315         } while (1);
2316         adminq->q_db = dev->dbs;
2317
2318  retry:
2319         /* Deregister the admin queue's interrupt */
2320         if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2321                 pci_free_irq(pdev, 0, adminq);
2322
2323         /*
2324          * If we enable msix early due to not intx, disable it again before
2325          * setting up the full range we need.
2326          */
2327         pci_free_irq_vectors(pdev);
2328
2329         result = nvme_setup_irqs(dev, nr_io_queues);
2330         if (result <= 0) {
2331                 result = -EIO;
2332                 goto out_unlock;
2333         }
2334
2335         dev->num_vecs = result;
2336         result = max(result - 1, 1);
2337         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2338
2339         /*
2340          * Should investigate if there's a performance win from allocating
2341          * more queues than interrupt vectors; it might allow the submission
2342          * path to scale better, even if the receive path is limited by the
2343          * number of interrupts.
2344          */
2345         result = queue_request_irq(adminq);
2346         if (result)
2347                 goto out_unlock;
2348         set_bit(NVMEQ_ENABLED, &adminq->flags);
2349         mutex_unlock(&dev->shutdown_lock);
2350
2351         result = nvme_create_io_queues(dev);
2352         if (result || dev->online_queues < 2)
2353                 return result;
2354
2355         if (dev->online_queues - 1 < dev->max_qid) {
2356                 nr_io_queues = dev->online_queues - 1;
2357                 nvme_delete_io_queues(dev);
2358                 result = nvme_setup_io_queues_trylock(dev);
2359                 if (result)
2360                         return result;
2361                 nvme_suspend_io_queues(dev);
2362                 goto retry;
2363         }
2364         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2365                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2366                                         dev->io_queues[HCTX_TYPE_READ],
2367                                         dev->io_queues[HCTX_TYPE_POLL]);
2368         return 0;
2369 out_unlock:
2370         mutex_unlock(&dev->shutdown_lock);
2371         return result;
2372 }
2373
2374 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2375                                              blk_status_t error)
2376 {
2377         struct nvme_queue *nvmeq = req->end_io_data;
2378
2379         blk_mq_free_request(req);
2380         complete(&nvmeq->delete_done);
2381         return RQ_END_IO_NONE;
2382 }
2383
2384 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2385                                           blk_status_t error)
2386 {
2387         struct nvme_queue *nvmeq = req->end_io_data;
2388
2389         if (error)
2390                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2391
2392         return nvme_del_queue_end(req, error);
2393 }
2394
2395 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2396 {
2397         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2398         struct request *req;
2399         struct nvme_command cmd = { };
2400
2401         cmd.delete_queue.opcode = opcode;
2402         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2403
2404         req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2405         if (IS_ERR(req))
2406                 return PTR_ERR(req);
2407         nvme_init_request(req, &cmd);
2408
2409         if (opcode == nvme_admin_delete_cq)
2410                 req->end_io = nvme_del_cq_end;
2411         else
2412                 req->end_io = nvme_del_queue_end;
2413         req->end_io_data = nvmeq;
2414
2415         init_completion(&nvmeq->delete_done);
2416         blk_execute_rq_nowait(req, false);
2417         return 0;
2418 }
2419
2420 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2421 {
2422         int nr_queues = dev->online_queues - 1, sent = 0;
2423         unsigned long timeout;
2424
2425  retry:
2426         timeout = NVME_ADMIN_TIMEOUT;
2427         while (nr_queues > 0) {
2428                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2429                         break;
2430                 nr_queues--;
2431                 sent++;
2432         }
2433         while (sent) {
2434                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2435
2436                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2437                                 timeout);
2438                 if (timeout == 0)
2439                         return false;
2440
2441                 sent--;
2442                 if (nr_queues)
2443                         goto retry;
2444         }
2445         return true;
2446 }
2447
2448 static void nvme_delete_io_queues(struct nvme_dev *dev)
2449 {
2450         if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2451                 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2452 }
2453
2454 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2455 {
2456         if (dev->io_queues[HCTX_TYPE_POLL])
2457                 return 3;
2458         if (dev->io_queues[HCTX_TYPE_READ])
2459                 return 2;
2460         return 1;
2461 }
2462
2463 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2464 {
2465         blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2466         /* free previously allocated queues that are no longer usable */
2467         nvme_free_queues(dev, dev->online_queues);
2468 }
2469
2470 static int nvme_pci_enable(struct nvme_dev *dev)
2471 {
2472         int result = -ENOMEM;
2473         struct pci_dev *pdev = to_pci_dev(dev->dev);
2474
2475         if (pci_enable_device_mem(pdev))
2476                 return result;
2477
2478         pci_set_master(pdev);
2479
2480         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2481                 result = -ENODEV;
2482                 goto disable;
2483         }
2484
2485         /*
2486          * Some devices and/or platforms don't advertise or work with INTx
2487          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2488          * adjust this later.
2489          */
2490         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2491         if (result < 0)
2492                 goto disable;
2493
2494         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2495
2496         dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2497                                 io_queue_depth);
2498         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2499         dev->dbs = dev->bar + 4096;
2500
2501         /*
2502          * Some Apple controllers require a non-standard SQE size.
2503          * Interestingly they also seem to ignore the CC:IOSQES register
2504          * so we don't bother updating it here.
2505          */
2506         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2507                 dev->io_sqes = 7;
2508         else
2509                 dev->io_sqes = NVME_NVM_IOSQES;
2510
2511         /*
2512          * Temporary fix for the Apple controller found in the MacBook8,1 and
2513          * some MacBook7,1 to avoid controller resets and data loss.
2514          */
2515         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2516                 dev->q_depth = 2;
2517                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2518                         "set queue depth=%u to work around controller resets\n",
2519                         dev->q_depth);
2520         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2521                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2522                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2523                 dev->q_depth = 64;
2524                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2525                         "set queue depth=%u\n", dev->q_depth);
2526         }
2527
2528         /*
2529          * Controllers with the shared tags quirk need the IO queue to be
2530          * big enough so that we get 32 tags for the admin queue
2531          */
2532         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2533             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2534                 dev->q_depth = NVME_AQ_DEPTH + 2;
2535                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2536                          dev->q_depth);
2537         }
2538         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2539
2540         nvme_map_cmb(dev);
2541
2542         pci_save_state(pdev);
2543
2544         result = nvme_pci_configure_admin_queue(dev);
2545         if (result)
2546                 goto free_irq;
2547         return result;
2548
2549  free_irq:
2550         pci_free_irq_vectors(pdev);
2551  disable:
2552         pci_disable_device(pdev);
2553         return result;
2554 }
2555
2556 static void nvme_dev_unmap(struct nvme_dev *dev)
2557 {
2558         if (dev->bar)
2559                 iounmap(dev->bar);
2560         pci_release_mem_regions(to_pci_dev(dev->dev));
2561 }
2562
2563 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2564 {
2565         struct pci_dev *pdev = to_pci_dev(dev->dev);
2566         u32 csts;
2567
2568         if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2569                 return true;
2570         if (pdev->error_state != pci_channel_io_normal)
2571                 return true;
2572
2573         csts = readl(dev->bar + NVME_REG_CSTS);
2574         return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2575 }
2576
2577 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2578 {
2579         enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2580         struct pci_dev *pdev = to_pci_dev(dev->dev);
2581         bool dead;
2582
2583         mutex_lock(&dev->shutdown_lock);
2584         dead = nvme_pci_ctrl_is_dead(dev);
2585         if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2586                 if (pci_is_enabled(pdev))
2587                         nvme_start_freeze(&dev->ctrl);
2588                 /*
2589                  * Give the controller a chance to complete all entered requests
2590                  * if doing a safe shutdown.
2591                  */
2592                 if (!dead && shutdown)
2593                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2594         }
2595
2596         nvme_quiesce_io_queues(&dev->ctrl);
2597
2598         if (!dead && dev->ctrl.queue_count > 0) {
2599                 nvme_delete_io_queues(dev);
2600                 nvme_disable_ctrl(&dev->ctrl, shutdown);
2601                 nvme_poll_irqdisable(&dev->queues[0]);
2602         }
2603         nvme_suspend_io_queues(dev);
2604         nvme_suspend_queue(dev, 0);
2605         pci_free_irq_vectors(pdev);
2606         if (pci_is_enabled(pdev))
2607                 pci_disable_device(pdev);
2608         nvme_reap_pending_cqes(dev);
2609
2610         nvme_cancel_tagset(&dev->ctrl);
2611         nvme_cancel_admin_tagset(&dev->ctrl);
2612
2613         /*
2614          * The driver will not be starting up queues again if shutting down so
2615          * must flush all entered requests to their failed completion to avoid
2616          * deadlocking blk-mq hot-cpu notifier.
2617          */
2618         if (shutdown) {
2619                 nvme_unquiesce_io_queues(&dev->ctrl);
2620                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2621                         nvme_unquiesce_admin_queue(&dev->ctrl);
2622         }
2623         mutex_unlock(&dev->shutdown_lock);
2624 }
2625
2626 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2627 {
2628         if (!nvme_wait_reset(&dev->ctrl))
2629                 return -EBUSY;
2630         nvme_dev_disable(dev, shutdown);
2631         return 0;
2632 }
2633
2634 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2635 {
2636         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2637                                                 NVME_CTRL_PAGE_SIZE,
2638                                                 NVME_CTRL_PAGE_SIZE, 0);
2639         if (!dev->prp_page_pool)
2640                 return -ENOMEM;
2641
2642         /* Optimisation for I/Os between 4k and 128k */
2643         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2644                                                 256, 256, 0);
2645         if (!dev->prp_small_pool) {
2646                 dma_pool_destroy(dev->prp_page_pool);
2647                 return -ENOMEM;
2648         }
2649         return 0;
2650 }
2651
2652 static void nvme_release_prp_pools(struct nvme_dev *dev)
2653 {
2654         dma_pool_destroy(dev->prp_page_pool);
2655         dma_pool_destroy(dev->prp_small_pool);
2656 }
2657
2658 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2659 {
2660         size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2661
2662         dev->iod_mempool = mempool_create_node(1,
2663                         mempool_kmalloc, mempool_kfree,
2664                         (void *)alloc_size, GFP_KERNEL,
2665                         dev_to_node(dev->dev));
2666         if (!dev->iod_mempool)
2667                 return -ENOMEM;
2668         return 0;
2669 }
2670
2671 static void nvme_free_tagset(struct nvme_dev *dev)
2672 {
2673         if (dev->tagset.tags)
2674                 nvme_remove_io_tag_set(&dev->ctrl);
2675         dev->ctrl.tagset = NULL;
2676 }
2677
2678 /* pairs with nvme_pci_alloc_dev */
2679 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2680 {
2681         struct nvme_dev *dev = to_nvme_dev(ctrl);
2682
2683         nvme_free_tagset(dev);
2684         put_device(dev->dev);
2685         kfree(dev->queues);
2686         kfree(dev);
2687 }
2688
2689 static void nvme_reset_work(struct work_struct *work)
2690 {
2691         struct nvme_dev *dev =
2692                 container_of(work, struct nvme_dev, ctrl.reset_work);
2693         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2694         int result;
2695
2696         if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2697                 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2698                          dev->ctrl.state);
2699                 result = -ENODEV;
2700                 goto out;
2701         }
2702
2703         /*
2704          * If we're called to reset a live controller first shut it down before
2705          * moving on.
2706          */
2707         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2708                 nvme_dev_disable(dev, false);
2709         nvme_sync_queues(&dev->ctrl);
2710
2711         mutex_lock(&dev->shutdown_lock);
2712         result = nvme_pci_enable(dev);
2713         if (result)
2714                 goto out_unlock;
2715         nvme_unquiesce_admin_queue(&dev->ctrl);
2716         mutex_unlock(&dev->shutdown_lock);
2717
2718         /*
2719          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2720          * initializing procedure here.
2721          */
2722         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2723                 dev_warn(dev->ctrl.device,
2724                         "failed to mark controller CONNECTING\n");
2725                 result = -EBUSY;
2726                 goto out;
2727         }
2728
2729         result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2730         if (result)
2731                 goto out;
2732
2733         nvme_dbbuf_dma_alloc(dev);
2734
2735         result = nvme_setup_host_mem(dev);
2736         if (result < 0)
2737                 goto out;
2738
2739         result = nvme_setup_io_queues(dev);
2740         if (result)
2741                 goto out;
2742
2743         /*
2744          * Freeze and update the number of I/O queues as thos might have
2745          * changed.  If there are no I/O queues left after this reset, keep the
2746          * controller around but remove all namespaces.
2747          */
2748         if (dev->online_queues > 1) {
2749                 nvme_dbbuf_set(dev);
2750                 nvme_unquiesce_io_queues(&dev->ctrl);
2751                 nvme_wait_freeze(&dev->ctrl);
2752                 nvme_pci_update_nr_queues(dev);
2753                 nvme_unfreeze(&dev->ctrl);
2754         } else {
2755                 dev_warn(dev->ctrl.device, "IO queues lost\n");
2756                 nvme_mark_namespaces_dead(&dev->ctrl);
2757                 nvme_unquiesce_io_queues(&dev->ctrl);
2758                 nvme_remove_namespaces(&dev->ctrl);
2759                 nvme_free_tagset(dev);
2760         }
2761
2762         /*
2763          * If only admin queue live, keep it to do further investigation or
2764          * recovery.
2765          */
2766         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2767                 dev_warn(dev->ctrl.device,
2768                         "failed to mark controller live state\n");
2769                 result = -ENODEV;
2770                 goto out;
2771         }
2772
2773         nvme_start_ctrl(&dev->ctrl);
2774         return;
2775
2776  out_unlock:
2777         mutex_unlock(&dev->shutdown_lock);
2778  out:
2779         /*
2780          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2781          * may be holding this pci_dev's device lock.
2782          */
2783         dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2784                  result);
2785         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2786         nvme_dev_disable(dev, true);
2787         nvme_sync_queues(&dev->ctrl);
2788         nvme_mark_namespaces_dead(&dev->ctrl);
2789         nvme_unquiesce_io_queues(&dev->ctrl);
2790         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2791 }
2792
2793 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2794 {
2795         *val = readl(to_nvme_dev(ctrl)->bar + off);
2796         return 0;
2797 }
2798
2799 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2800 {
2801         writel(val, to_nvme_dev(ctrl)->bar + off);
2802         return 0;
2803 }
2804
2805 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2806 {
2807         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2808         return 0;
2809 }
2810
2811 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2812 {
2813         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2814
2815         return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2816 }
2817
2818 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2819 {
2820         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2821         struct nvme_subsystem *subsys = ctrl->subsys;
2822
2823         dev_err(ctrl->device,
2824                 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2825                 pdev->vendor, pdev->device,
2826                 nvme_strlen(subsys->model, sizeof(subsys->model)),
2827                 subsys->model, nvme_strlen(subsys->firmware_rev,
2828                                            sizeof(subsys->firmware_rev)),
2829                 subsys->firmware_rev);
2830 }
2831
2832 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2833 {
2834         struct nvme_dev *dev = to_nvme_dev(ctrl);
2835
2836         return dma_pci_p2pdma_supported(dev->dev);
2837 }
2838
2839 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2840         .name                   = "pcie",
2841         .module                 = THIS_MODULE,
2842         .flags                  = NVME_F_METADATA_SUPPORTED,
2843         .dev_attr_groups        = nvme_pci_dev_attr_groups,
2844         .reg_read32             = nvme_pci_reg_read32,
2845         .reg_write32            = nvme_pci_reg_write32,
2846         .reg_read64             = nvme_pci_reg_read64,
2847         .free_ctrl              = nvme_pci_free_ctrl,
2848         .submit_async_event     = nvme_pci_submit_async_event,
2849         .get_address            = nvme_pci_get_address,
2850         .print_device_info      = nvme_pci_print_device_info,
2851         .supports_pci_p2pdma    = nvme_pci_supports_pci_p2pdma,
2852 };
2853
2854 static int nvme_dev_map(struct nvme_dev *dev)
2855 {
2856         struct pci_dev *pdev = to_pci_dev(dev->dev);
2857
2858         if (pci_request_mem_regions(pdev, "nvme"))
2859                 return -ENODEV;
2860
2861         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2862                 goto release;
2863
2864         return 0;
2865   release:
2866         pci_release_mem_regions(pdev);
2867         return -ENODEV;
2868 }
2869
2870 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2871 {
2872         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2873                 /*
2874                  * Several Samsung devices seem to drop off the PCIe bus
2875                  * randomly when APST is on and uses the deepest sleep state.
2876                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2877                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2878                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2879                  * laptops.
2880                  */
2881                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2882                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2883                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2884                         return NVME_QUIRK_NO_DEEPEST_PS;
2885         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2886                 /*
2887                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2888                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2889                  * within few minutes after bootup on a Coffee Lake board -
2890                  * ASUS PRIME Z370-A
2891                  */
2892                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2893                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2894                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2895                         return NVME_QUIRK_NO_APST;
2896         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2897                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2898                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2899                 /*
2900                  * Forcing to use host managed nvme power settings for
2901                  * lowest idle power with quick resume latency on
2902                  * Samsung and Toshiba SSDs based on suspend behavior
2903                  * on Coffee Lake board for LENOVO C640
2904                  */
2905                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2906                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2907                         return NVME_QUIRK_SIMPLE_SUSPEND;
2908         } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2909                    pdev->device == 0x500f)) {
2910                 /*
2911                  * Exclude some Kingston NV1 and A2000 devices from
2912                  * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2913                  * lot fo energy with s2idle sleep on some TUXEDO platforms.
2914                  */
2915                 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2916                     dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2917                     dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2918                     dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2919                         return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2920         }
2921
2922         return 0;
2923 }
2924
2925 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2926                 const struct pci_device_id *id)
2927 {
2928         unsigned long quirks = id->driver_data;
2929         int node = dev_to_node(&pdev->dev);
2930         struct nvme_dev *dev;
2931         int ret = -ENOMEM;
2932
2933         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2934         if (!dev)
2935                 return ERR_PTR(-ENOMEM);
2936         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2937         mutex_init(&dev->shutdown_lock);
2938
2939         dev->nr_write_queues = write_queues;
2940         dev->nr_poll_queues = poll_queues;
2941         dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2942         dev->queues = kcalloc_node(dev->nr_allocated_queues,
2943                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2944         if (!dev->queues)
2945                 goto out_free_dev;
2946
2947         dev->dev = get_device(&pdev->dev);
2948
2949         quirks |= check_vendor_combination_bug(pdev);
2950         if (!noacpi &&
2951             !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
2952             acpi_storage_d3(&pdev->dev)) {
2953                 /*
2954                  * Some systems use a bios work around to ask for D3 on
2955                  * platforms that support kernel managed suspend.
2956                  */
2957                 dev_info(&pdev->dev,
2958                          "platform quirk: setting simple suspend\n");
2959                 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2960         }
2961         ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2962                              quirks);
2963         if (ret)
2964                 goto out_put_device;
2965
2966         if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2967                 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2968         else
2969                 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2970         dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2971         dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2972
2973         /*
2974          * Limit the max command size to prevent iod->sg allocations going
2975          * over a single page.
2976          */
2977         dev->ctrl.max_hw_sectors = min_t(u32,
2978                 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2979         dev->ctrl.max_segments = NVME_MAX_SEGS;
2980
2981         /*
2982          * There is no support for SGLs for metadata (yet), so we are limited to
2983          * a single integrity segment for the separate metadata pointer.
2984          */
2985         dev->ctrl.max_integrity_segments = 1;
2986         return dev;
2987
2988 out_put_device:
2989         put_device(dev->dev);
2990         kfree(dev->queues);
2991 out_free_dev:
2992         kfree(dev);
2993         return ERR_PTR(ret);
2994 }
2995
2996 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2997 {
2998         struct nvme_dev *dev;
2999         int result = -ENOMEM;
3000
3001         dev = nvme_pci_alloc_dev(pdev, id);
3002         if (IS_ERR(dev))
3003                 return PTR_ERR(dev);
3004
3005         result = nvme_dev_map(dev);
3006         if (result)
3007                 goto out_uninit_ctrl;
3008
3009         result = nvme_setup_prp_pools(dev);
3010         if (result)
3011                 goto out_dev_unmap;
3012
3013         result = nvme_pci_alloc_iod_mempool(dev);
3014         if (result)
3015                 goto out_release_prp_pools;
3016
3017         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3018
3019         result = nvme_pci_enable(dev);
3020         if (result)
3021                 goto out_release_iod_mempool;
3022
3023         result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3024                                 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3025         if (result)
3026                 goto out_disable;
3027
3028         /*
3029          * Mark the controller as connecting before sending admin commands to
3030          * allow the timeout handler to do the right thing.
3031          */
3032         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3033                 dev_warn(dev->ctrl.device,
3034                         "failed to mark controller CONNECTING\n");
3035                 result = -EBUSY;
3036                 goto out_disable;
3037         }
3038
3039         result = nvme_init_ctrl_finish(&dev->ctrl, false);
3040         if (result)
3041                 goto out_disable;
3042
3043         nvme_dbbuf_dma_alloc(dev);
3044
3045         result = nvme_setup_host_mem(dev);
3046         if (result < 0)
3047                 goto out_disable;
3048
3049         result = nvme_setup_io_queues(dev);
3050         if (result)
3051                 goto out_disable;
3052
3053         if (dev->online_queues > 1) {
3054                 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3055                                 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3056                 nvme_dbbuf_set(dev);
3057         }
3058
3059         if (!dev->ctrl.tagset)
3060                 dev_warn(dev->ctrl.device, "IO queues not created\n");
3061
3062         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3063                 dev_warn(dev->ctrl.device,
3064                         "failed to mark controller live state\n");
3065                 result = -ENODEV;
3066                 goto out_disable;
3067         }
3068
3069         pci_set_drvdata(pdev, dev);
3070
3071         nvme_start_ctrl(&dev->ctrl);
3072         nvme_put_ctrl(&dev->ctrl);
3073         flush_work(&dev->ctrl.scan_work);
3074         return 0;
3075
3076 out_disable:
3077         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3078         nvme_dev_disable(dev, true);
3079         nvme_free_host_mem(dev);
3080         nvme_dev_remove_admin(dev);
3081         nvme_dbbuf_dma_free(dev);
3082         nvme_free_queues(dev, 0);
3083 out_release_iod_mempool:
3084         mempool_destroy(dev->iod_mempool);
3085 out_release_prp_pools:
3086         nvme_release_prp_pools(dev);
3087 out_dev_unmap:
3088         nvme_dev_unmap(dev);
3089 out_uninit_ctrl:
3090         nvme_uninit_ctrl(&dev->ctrl);
3091         nvme_put_ctrl(&dev->ctrl);
3092         return result;
3093 }
3094
3095 static void nvme_reset_prepare(struct pci_dev *pdev)
3096 {
3097         struct nvme_dev *dev = pci_get_drvdata(pdev);
3098
3099         /*
3100          * We don't need to check the return value from waiting for the reset
3101          * state as pci_dev device lock is held, making it impossible to race
3102          * with ->remove().
3103          */
3104         nvme_disable_prepare_reset(dev, false);
3105         nvme_sync_queues(&dev->ctrl);
3106 }
3107
3108 static void nvme_reset_done(struct pci_dev *pdev)
3109 {
3110         struct nvme_dev *dev = pci_get_drvdata(pdev);
3111
3112         if (!nvme_try_sched_reset(&dev->ctrl))
3113                 flush_work(&dev->ctrl.reset_work);
3114 }
3115
3116 static void nvme_shutdown(struct pci_dev *pdev)
3117 {
3118         struct nvme_dev *dev = pci_get_drvdata(pdev);
3119
3120         nvme_disable_prepare_reset(dev, true);
3121 }
3122
3123 /*
3124  * The driver's remove may be called on a device in a partially initialized
3125  * state. This function must not have any dependencies on the device state in
3126  * order to proceed.
3127  */
3128 static void nvme_remove(struct pci_dev *pdev)
3129 {
3130         struct nvme_dev *dev = pci_get_drvdata(pdev);
3131
3132         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3133         pci_set_drvdata(pdev, NULL);
3134
3135         if (!pci_device_is_present(pdev)) {
3136                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3137                 nvme_dev_disable(dev, true);
3138         }
3139
3140         flush_work(&dev->ctrl.reset_work);
3141         nvme_stop_ctrl(&dev->ctrl);
3142         nvme_remove_namespaces(&dev->ctrl);
3143         nvme_dev_disable(dev, true);
3144         nvme_free_host_mem(dev);
3145         nvme_dev_remove_admin(dev);
3146         nvme_dbbuf_dma_free(dev);
3147         nvme_free_queues(dev, 0);
3148         mempool_destroy(dev->iod_mempool);
3149         nvme_release_prp_pools(dev);
3150         nvme_dev_unmap(dev);
3151         nvme_uninit_ctrl(&dev->ctrl);
3152 }
3153
3154 #ifdef CONFIG_PM_SLEEP
3155 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3156 {
3157         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3158 }
3159
3160 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3161 {
3162         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3163 }
3164
3165 static int nvme_resume(struct device *dev)
3166 {
3167         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3168         struct nvme_ctrl *ctrl = &ndev->ctrl;
3169
3170         if (ndev->last_ps == U32_MAX ||
3171             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3172                 goto reset;
3173         if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3174                 goto reset;
3175
3176         return 0;
3177 reset:
3178         return nvme_try_sched_reset(ctrl);
3179 }
3180
3181 static int nvme_suspend(struct device *dev)
3182 {
3183         struct pci_dev *pdev = to_pci_dev(dev);
3184         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3185         struct nvme_ctrl *ctrl = &ndev->ctrl;
3186         int ret = -EBUSY;
3187
3188         ndev->last_ps = U32_MAX;
3189
3190         /*
3191          * The platform does not remove power for a kernel managed suspend so
3192          * use host managed nvme power settings for lowest idle power if
3193          * possible. This should have quicker resume latency than a full device
3194          * shutdown.  But if the firmware is involved after the suspend or the
3195          * device does not support any non-default power states, shut down the
3196          * device fully.
3197          *
3198          * If ASPM is not enabled for the device, shut down the device and allow
3199          * the PCI bus layer to put it into D3 in order to take the PCIe link
3200          * down, so as to allow the platform to achieve its minimum low-power
3201          * state (which may not be possible if the link is up).
3202          */
3203         if (pm_suspend_via_firmware() || !ctrl->npss ||
3204             !pcie_aspm_enabled(pdev) ||
3205             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3206                 return nvme_disable_prepare_reset(ndev, true);
3207
3208         nvme_start_freeze(ctrl);
3209         nvme_wait_freeze(ctrl);
3210         nvme_sync_queues(ctrl);
3211
3212         if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3213                 goto unfreeze;
3214
3215         /*
3216          * Host memory access may not be successful in a system suspend state,
3217          * but the specification allows the controller to access memory in a
3218          * non-operational power state.
3219          */
3220         if (ndev->hmb) {
3221                 ret = nvme_set_host_mem(ndev, 0);
3222                 if (ret < 0)
3223                         goto unfreeze;
3224         }
3225
3226         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3227         if (ret < 0)
3228                 goto unfreeze;
3229
3230         /*
3231          * A saved state prevents pci pm from generically controlling the
3232          * device's power. If we're using protocol specific settings, we don't
3233          * want pci interfering.
3234          */
3235         pci_save_state(pdev);
3236
3237         ret = nvme_set_power_state(ctrl, ctrl->npss);
3238         if (ret < 0)
3239                 goto unfreeze;
3240
3241         if (ret) {
3242                 /* discard the saved state */
3243                 pci_load_saved_state(pdev, NULL);
3244
3245                 /*
3246                  * Clearing npss forces a controller reset on resume. The
3247                  * correct value will be rediscovered then.
3248                  */
3249                 ret = nvme_disable_prepare_reset(ndev, true);
3250                 ctrl->npss = 0;
3251         }
3252 unfreeze:
3253         nvme_unfreeze(ctrl);
3254         return ret;
3255 }
3256
3257 static int nvme_simple_suspend(struct device *dev)
3258 {
3259         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3260
3261         return nvme_disable_prepare_reset(ndev, true);
3262 }
3263
3264 static int nvme_simple_resume(struct device *dev)
3265 {
3266         struct pci_dev *pdev = to_pci_dev(dev);
3267         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3268
3269         return nvme_try_sched_reset(&ndev->ctrl);
3270 }
3271
3272 static const struct dev_pm_ops nvme_dev_pm_ops = {
3273         .suspend        = nvme_suspend,
3274         .resume         = nvme_resume,
3275         .freeze         = nvme_simple_suspend,
3276         .thaw           = nvme_simple_resume,
3277         .poweroff       = nvme_simple_suspend,
3278         .restore        = nvme_simple_resume,
3279 };
3280 #endif /* CONFIG_PM_SLEEP */
3281
3282 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3283                                                 pci_channel_state_t state)
3284 {
3285         struct nvme_dev *dev = pci_get_drvdata(pdev);
3286
3287         /*
3288          * A frozen channel requires a reset. When detected, this method will
3289          * shutdown the controller to quiesce. The controller will be restarted
3290          * after the slot reset through driver's slot_reset callback.
3291          */
3292         switch (state) {
3293         case pci_channel_io_normal:
3294                 return PCI_ERS_RESULT_CAN_RECOVER;
3295         case pci_channel_io_frozen:
3296                 dev_warn(dev->ctrl.device,
3297                         "frozen state error detected, reset controller\n");
3298                 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3299                         nvme_dev_disable(dev, true);
3300                         return PCI_ERS_RESULT_DISCONNECT;
3301                 }
3302                 nvme_dev_disable(dev, false);
3303                 return PCI_ERS_RESULT_NEED_RESET;
3304         case pci_channel_io_perm_failure:
3305                 dev_warn(dev->ctrl.device,
3306                         "failure state error detected, request disconnect\n");
3307                 return PCI_ERS_RESULT_DISCONNECT;
3308         }
3309         return PCI_ERS_RESULT_NEED_RESET;
3310 }
3311
3312 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3313 {
3314         struct nvme_dev *dev = pci_get_drvdata(pdev);
3315
3316         dev_info(dev->ctrl.device, "restart after slot reset\n");
3317         pci_restore_state(pdev);
3318         if (!nvme_try_sched_reset(&dev->ctrl))
3319                 nvme_unquiesce_io_queues(&dev->ctrl);
3320         return PCI_ERS_RESULT_RECOVERED;
3321 }
3322
3323 static void nvme_error_resume(struct pci_dev *pdev)
3324 {
3325         struct nvme_dev *dev = pci_get_drvdata(pdev);
3326
3327         flush_work(&dev->ctrl.reset_work);
3328 }
3329
3330 static const struct pci_error_handlers nvme_err_handler = {
3331         .error_detected = nvme_error_detected,
3332         .slot_reset     = nvme_slot_reset,
3333         .resume         = nvme_error_resume,
3334         .reset_prepare  = nvme_reset_prepare,
3335         .reset_done     = nvme_reset_done,
3336 };
3337
3338 static const struct pci_device_id nvme_id_table[] = {
3339         { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3340                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3341                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3342         { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3343                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3344                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3345         { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3346                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3347                                 NVME_QUIRK_DEALLOCATE_ZEROES |
3348                                 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3349                                 NVME_QUIRK_BOGUS_NID, },
3350         { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3351                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3352                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3353         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3354                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3355                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3356                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3357                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3358         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3359                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3360         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3361                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3362                                 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3363                                 NVME_QUIRK_BOGUS_NID, },
3364         { PCI_VDEVICE(REDHAT, 0x0010),  /* Qemu emulated controller */
3365                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3366         { PCI_DEVICE(0x126f, 0x2262),   /* Silicon Motion generic */
3367                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3368                                 NVME_QUIRK_BOGUS_NID, },
3369         { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3370                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3371                                 NVME_QUIRK_BOGUS_NID, },
3372         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3373                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3374                                 NVME_QUIRK_NO_NS_DESC_LIST, },
3375         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3376                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3377         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3378                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3379         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3380                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3381         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3382                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3383         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3384                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3385                                 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3386                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3387         { PCI_DEVICE(0x1987, 0x5012),   /* Phison E12 */
3388                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3389         { PCI_DEVICE(0x1987, 0x5016),   /* Phison E16 */
3390                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3391                                 NVME_QUIRK_BOGUS_NID, },
3392         { PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3393                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3394         { PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3395                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3396         { PCI_DEVICE(0x1b4b, 0x1092),   /* Lexar 256 GB SSD */
3397                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3398                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3399         { PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3400                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3401         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3402                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3403                                 NVME_QUIRK_BOGUS_NID, },
3404         { PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3405                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3406         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3407                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3408                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3409          { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3410                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3411          { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3412                  .driver_data = NVME_QUIRK_BOGUS_NID, },
3413         { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3414                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3415         { PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3416                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3417         { PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3418                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3419         { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3420                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3421         { PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3422                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3423         { PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3424                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3425                                 NVME_QUIRK_BOGUS_NID, },
3426         { PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3427                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3428         { PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3429                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3430         { PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3431                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3432         { PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3433                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3434         { PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3435                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3436         { PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3437                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3438         { PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3439                 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3440         { PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3441                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442         { PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3443                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3444         { PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3445                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3446         { PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3447                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3448         { PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3449                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3450         { PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3451                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3452         { PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3453                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3454         { PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3455                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3456         { PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3457                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3458         { PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3459                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3460         { PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3461                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3462         { PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3463                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3464         { PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3465                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3466         { PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3467                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3468         { PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3469                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3470         { PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3471                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3472         { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3473                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3474         { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3475                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3476         { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3477                 .driver_data = NVME_QUIRK_BOGUS_NID |
3478                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3479         { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3480                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3481         { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3482                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3483         { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3484                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3485         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3486                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3487         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3488                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3489         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3490                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3491         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3492                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3493         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3494                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3495         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3496                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3497         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3498                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3499         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3500         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3501                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3502                                 NVME_QUIRK_128_BYTES_SQES |
3503                                 NVME_QUIRK_SHARED_TAGS |
3504                                 NVME_QUIRK_SKIP_CID_GEN |
3505                                 NVME_QUIRK_IDENTIFY_CNS },
3506         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3507         { 0, }
3508 };
3509 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3510
3511 static struct pci_driver nvme_driver = {
3512         .name           = "nvme",
3513         .id_table       = nvme_id_table,
3514         .probe          = nvme_probe,
3515         .remove         = nvme_remove,
3516         .shutdown       = nvme_shutdown,
3517         .driver         = {
3518                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
3519 #ifdef CONFIG_PM_SLEEP
3520                 .pm             = &nvme_dev_pm_ops,
3521 #endif
3522         },
3523         .sriov_configure = pci_sriov_configure_simple,
3524         .err_handler    = &nvme_err_handler,
3525 };
3526
3527 static int __init nvme_init(void)
3528 {
3529         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3530         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3531         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3532         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3533         BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3534         BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3535         BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3536
3537         return pci_register_driver(&nvme_driver);
3538 }
3539
3540 static void __exit nvme_exit(void)
3541 {
3542         pci_unregister_driver(&nvme_driver);
3543         flush_workqueue(nvme_wq);
3544 }
3545
3546 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3547 MODULE_LICENSE("GPL");
3548 MODULE_VERSION("1.0");
3549 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3550 module_init(nvme_init);
3551 module_exit(nvme_exit);