Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33
34 #include "nvme.h"
35
36 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
38
39 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40
41 static int use_threaded_interrupts;
42 module_param(use_threaded_interrupts, int, 0);
43
44 static bool use_cmb_sqes = true;
45 module_param(use_cmb_sqes, bool, 0644);
46 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
47
48 static unsigned int max_host_mem_size_mb = 128;
49 module_param(max_host_mem_size_mb, uint, 0444);
50 MODULE_PARM_DESC(max_host_mem_size_mb,
51         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
52
53 static unsigned int sgl_threshold = SZ_32K;
54 module_param(sgl_threshold, uint, 0644);
55 MODULE_PARM_DESC(sgl_threshold,
56                 "Use SGLs when average request segment size is larger or equal to "
57                 "this size. Use 0 to disable SGLs.");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61         .set = io_queue_depth_set,
62         .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
73
74 /*
75  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
76  */
77 struct nvme_dev {
78         struct nvme_queue *queues;
79         struct blk_mq_tag_set tagset;
80         struct blk_mq_tag_set admin_tagset;
81         u32 __iomem *dbs;
82         struct device *dev;
83         struct dma_pool *prp_page_pool;
84         struct dma_pool *prp_small_pool;
85         unsigned online_queues;
86         unsigned max_qid;
87         unsigned int num_vecs;
88         int q_depth;
89         u32 db_stride;
90         void __iomem *bar;
91         unsigned long bar_mapped_size;
92         struct work_struct remove_work;
93         struct mutex shutdown_lock;
94         bool subsystem;
95         void __iomem *cmb;
96         pci_bus_addr_t cmb_bus_addr;
97         u64 cmb_size;
98         u32 cmbsz;
99         u32 cmbloc;
100         struct nvme_ctrl ctrl;
101         struct completion ioq_wait;
102
103         /* shadow doorbell buffer support: */
104         u32 *dbbuf_dbs;
105         dma_addr_t dbbuf_dbs_dma_addr;
106         u32 *dbbuf_eis;
107         dma_addr_t dbbuf_eis_dma_addr;
108
109         /* host memory buffer support: */
110         u64 host_mem_size;
111         u32 nr_host_mem_descs;
112         dma_addr_t host_mem_descs_dma;
113         struct nvme_host_mem_buf_desc *host_mem_descs;
114         void **host_mem_desc_bufs;
115 };
116
117 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 {
119         int n = 0, ret;
120
121         ret = kstrtoint(val, 10, &n);
122         if (ret != 0 || n < 2)
123                 return -EINVAL;
124
125         return param_set_int(val, kp);
126 }
127
128 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 {
130         return qid * 2 * stride;
131 }
132
133 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 {
135         return (qid * 2 + 1) * stride;
136 }
137
138 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 {
140         return container_of(ctrl, struct nvme_dev, ctrl);
141 }
142
143 /*
144  * An NVM Express queue.  Each device has at least two (one for admin
145  * commands and one for I/O commands).
146  */
147 struct nvme_queue {
148         struct device *q_dmadev;
149         struct nvme_dev *dev;
150         spinlock_t sq_lock;
151         struct nvme_command *sq_cmds;
152         struct nvme_command __iomem *sq_cmds_io;
153         spinlock_t cq_lock ____cacheline_aligned_in_smp;
154         volatile struct nvme_completion *cqes;
155         struct blk_mq_tags **tags;
156         dma_addr_t sq_dma_addr;
157         dma_addr_t cq_dma_addr;
158         u32 __iomem *q_db;
159         u16 q_depth;
160         s16 cq_vector;
161         u16 sq_tail;
162         u16 cq_head;
163         u16 last_cq_head;
164         u16 qid;
165         u8 cq_phase;
166         u32 *dbbuf_sq_db;
167         u32 *dbbuf_cq_db;
168         u32 *dbbuf_sq_ei;
169         u32 *dbbuf_cq_ei;
170 };
171
172 /*
173  * The nvme_iod describes the data in an I/O, including the list of PRP
174  * entries.  You can't see it in this data structure because C doesn't let
175  * me express that.  Use nvme_init_iod to ensure there's enough space
176  * allocated to store the PRP list.
177  */
178 struct nvme_iod {
179         struct nvme_request req;
180         struct nvme_queue *nvmeq;
181         bool use_sgl;
182         int aborted;
183         int npages;             /* In the PRP list. 0 means small pool in use */
184         int nents;              /* Used in scatterlist */
185         int length;             /* Of data, in bytes */
186         dma_addr_t first_dma;
187         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
188         struct scatterlist *sg;
189         struct scatterlist inline_sg[0];
190 };
191
192 /*
193  * Check we didin't inadvertently grow the command struct
194  */
195 static inline void _nvme_check_size(void)
196 {
197         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
201         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
202         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
203         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
204         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
205         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
206         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
207         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
208         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
209         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
210 }
211
212 static inline unsigned int nvme_dbbuf_size(u32 stride)
213 {
214         return ((num_possible_cpus() + 1) * 8 * stride);
215 }
216
217 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
218 {
219         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
220
221         if (dev->dbbuf_dbs)
222                 return 0;
223
224         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
225                                             &dev->dbbuf_dbs_dma_addr,
226                                             GFP_KERNEL);
227         if (!dev->dbbuf_dbs)
228                 return -ENOMEM;
229         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
230                                             &dev->dbbuf_eis_dma_addr,
231                                             GFP_KERNEL);
232         if (!dev->dbbuf_eis) {
233                 dma_free_coherent(dev->dev, mem_size,
234                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
235                 dev->dbbuf_dbs = NULL;
236                 return -ENOMEM;
237         }
238
239         return 0;
240 }
241
242 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
243 {
244         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
245
246         if (dev->dbbuf_dbs) {
247                 dma_free_coherent(dev->dev, mem_size,
248                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
249                 dev->dbbuf_dbs = NULL;
250         }
251         if (dev->dbbuf_eis) {
252                 dma_free_coherent(dev->dev, mem_size,
253                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
254                 dev->dbbuf_eis = NULL;
255         }
256 }
257
258 static void nvme_dbbuf_init(struct nvme_dev *dev,
259                             struct nvme_queue *nvmeq, int qid)
260 {
261         if (!dev->dbbuf_dbs || !qid)
262                 return;
263
264         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
265         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
266         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
267         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
268 }
269
270 static void nvme_dbbuf_set(struct nvme_dev *dev)
271 {
272         struct nvme_command c;
273
274         if (!dev->dbbuf_dbs)
275                 return;
276
277         memset(&c, 0, sizeof(c));
278         c.dbbuf.opcode = nvme_admin_dbbuf;
279         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
280         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
281
282         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
283                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
284                 /* Free memory and continue on */
285                 nvme_dbbuf_dma_free(dev);
286         }
287 }
288
289 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
290 {
291         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
292 }
293
294 /* Update dbbuf and return true if an MMIO is required */
295 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
296                                               volatile u32 *dbbuf_ei)
297 {
298         if (dbbuf_db) {
299                 u16 old_value;
300
301                 /*
302                  * Ensure that the queue is written before updating
303                  * the doorbell in memory
304                  */
305                 wmb();
306
307                 old_value = *dbbuf_db;
308                 *dbbuf_db = value;
309
310                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
311                         return false;
312         }
313
314         return true;
315 }
316
317 /*
318  * Max size of iod being embedded in the request payload
319  */
320 #define NVME_INT_PAGES          2
321 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
322
323 /*
324  * Will slightly overestimate the number of pages needed.  This is OK
325  * as it only leads to a small amount of wasted memory for the lifetime of
326  * the I/O.
327  */
328 static int nvme_npages(unsigned size, struct nvme_dev *dev)
329 {
330         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
331                                       dev->ctrl.page_size);
332         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
333 }
334
335 /*
336  * Calculates the number of pages needed for the SGL segments. For example a 4k
337  * page can accommodate 256 SGL descriptors.
338  */
339 static int nvme_pci_npages_sgl(unsigned int num_seg)
340 {
341         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
342 }
343
344 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
345                 unsigned int size, unsigned int nseg, bool use_sgl)
346 {
347         size_t alloc_size;
348
349         if (use_sgl)
350                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
351         else
352                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
353
354         return alloc_size + sizeof(struct scatterlist) * nseg;
355 }
356
357 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
358 {
359         unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
360                                     NVME_INT_BYTES(dev), NVME_INT_PAGES,
361                                     use_sgl);
362
363         return sizeof(struct nvme_iod) + alloc_size;
364 }
365
366 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
367                                 unsigned int hctx_idx)
368 {
369         struct nvme_dev *dev = data;
370         struct nvme_queue *nvmeq = &dev->queues[0];
371
372         WARN_ON(hctx_idx != 0);
373         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
374         WARN_ON(nvmeq->tags);
375
376         hctx->driver_data = nvmeq;
377         nvmeq->tags = &dev->admin_tagset.tags[0];
378         return 0;
379 }
380
381 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
382 {
383         struct nvme_queue *nvmeq = hctx->driver_data;
384
385         nvmeq->tags = NULL;
386 }
387
388 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
389                           unsigned int hctx_idx)
390 {
391         struct nvme_dev *dev = data;
392         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
393
394         if (!nvmeq->tags)
395                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
396
397         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
398         hctx->driver_data = nvmeq;
399         return 0;
400 }
401
402 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
403                 unsigned int hctx_idx, unsigned int numa_node)
404 {
405         struct nvme_dev *dev = set->driver_data;
406         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
407         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
408         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
409
410         BUG_ON(!nvmeq);
411         iod->nvmeq = nvmeq;
412         return 0;
413 }
414
415 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
416 {
417         struct nvme_dev *dev = set->driver_data;
418
419         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
420                         dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
421 }
422
423 /**
424  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
425  * @nvmeq: The queue to use
426  * @cmd: The command to send
427  */
428 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
429 {
430         spin_lock(&nvmeq->sq_lock);
431         if (nvmeq->sq_cmds_io)
432                 memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd,
433                                 sizeof(*cmd));
434         else
435                 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
436
437         if (++nvmeq->sq_tail == nvmeq->q_depth)
438                 nvmeq->sq_tail = 0;
439         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
440                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
441                 writel(nvmeq->sq_tail, nvmeq->q_db);
442         spin_unlock(&nvmeq->sq_lock);
443 }
444
445 static void **nvme_pci_iod_list(struct request *req)
446 {
447         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
448         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
449 }
450
451 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
452 {
453         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
454         int nseg = blk_rq_nr_phys_segments(req);
455         unsigned int avg_seg_size;
456
457         if (nseg == 0)
458                 return false;
459
460         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
461
462         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
463                 return false;
464         if (!iod->nvmeq->qid)
465                 return false;
466         if (!sgl_threshold || avg_seg_size < sgl_threshold)
467                 return false;
468         return true;
469 }
470
471 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
472 {
473         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
474         int nseg = blk_rq_nr_phys_segments(rq);
475         unsigned int size = blk_rq_payload_bytes(rq);
476
477         iod->use_sgl = nvme_pci_use_sgls(dev, rq);
478
479         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
480                 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
481                                 iod->use_sgl);
482
483                 iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
484                 if (!iod->sg)
485                         return BLK_STS_RESOURCE;
486         } else {
487                 iod->sg = iod->inline_sg;
488         }
489
490         iod->aborted = 0;
491         iod->npages = -1;
492         iod->nents = 0;
493         iod->length = size;
494
495         return BLK_STS_OK;
496 }
497
498 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
499 {
500         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
501         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
502         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
503
504         int i;
505
506         if (iod->npages == 0)
507                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
508                         dma_addr);
509
510         for (i = 0; i < iod->npages; i++) {
511                 void *addr = nvme_pci_iod_list(req)[i];
512
513                 if (iod->use_sgl) {
514                         struct nvme_sgl_desc *sg_list = addr;
515
516                         next_dma_addr =
517                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
518                 } else {
519                         __le64 *prp_list = addr;
520
521                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
522                 }
523
524                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
525                 dma_addr = next_dma_addr;
526         }
527
528         if (iod->sg != iod->inline_sg)
529                 kfree(iod->sg);
530 }
531
532 #ifdef CONFIG_BLK_DEV_INTEGRITY
533 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
534 {
535         if (be32_to_cpu(pi->ref_tag) == v)
536                 pi->ref_tag = cpu_to_be32(p);
537 }
538
539 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
540 {
541         if (be32_to_cpu(pi->ref_tag) == p)
542                 pi->ref_tag = cpu_to_be32(v);
543 }
544
545 /**
546  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
547  *
548  * The virtual start sector is the one that was originally submitted by the
549  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
550  * start sector may be different. Remap protection information to match the
551  * physical LBA on writes, and back to the original seed on reads.
552  *
553  * Type 0 and 3 do not have a ref tag, so no remapping required.
554  */
555 static void nvme_dif_remap(struct request *req,
556                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
557 {
558         struct nvme_ns *ns = req->rq_disk->private_data;
559         struct bio_integrity_payload *bip;
560         struct t10_pi_tuple *pi;
561         void *p, *pmap;
562         u32 i, nlb, ts, phys, virt;
563
564         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
565                 return;
566
567         bip = bio_integrity(req->bio);
568         if (!bip)
569                 return;
570
571         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
572
573         p = pmap;
574         virt = bip_get_seed(bip);
575         phys = nvme_block_nr(ns, blk_rq_pos(req));
576         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
577         ts = ns->disk->queue->integrity.tuple_size;
578
579         for (i = 0; i < nlb; i++, virt++, phys++) {
580                 pi = (struct t10_pi_tuple *)p;
581                 dif_swap(phys, virt, pi);
582                 p += ts;
583         }
584         kunmap_atomic(pmap);
585 }
586 #else /* CONFIG_BLK_DEV_INTEGRITY */
587 static void nvme_dif_remap(struct request *req,
588                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
589 {
590 }
591 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
592 {
593 }
594 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
595 {
596 }
597 #endif
598
599 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
600 {
601         int i;
602         struct scatterlist *sg;
603
604         for_each_sg(sgl, sg, nents, i) {
605                 dma_addr_t phys = sg_phys(sg);
606                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
607                         "dma_address:%pad dma_length:%d\n",
608                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
609                         sg_dma_len(sg));
610         }
611 }
612
613 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
614                 struct request *req, struct nvme_rw_command *cmnd)
615 {
616         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
617         struct dma_pool *pool;
618         int length = blk_rq_payload_bytes(req);
619         struct scatterlist *sg = iod->sg;
620         int dma_len = sg_dma_len(sg);
621         u64 dma_addr = sg_dma_address(sg);
622         u32 page_size = dev->ctrl.page_size;
623         int offset = dma_addr & (page_size - 1);
624         __le64 *prp_list;
625         void **list = nvme_pci_iod_list(req);
626         dma_addr_t prp_dma;
627         int nprps, i;
628
629         length -= (page_size - offset);
630         if (length <= 0) {
631                 iod->first_dma = 0;
632                 goto done;
633         }
634
635         dma_len -= (page_size - offset);
636         if (dma_len) {
637                 dma_addr += (page_size - offset);
638         } else {
639                 sg = sg_next(sg);
640                 dma_addr = sg_dma_address(sg);
641                 dma_len = sg_dma_len(sg);
642         }
643
644         if (length <= page_size) {
645                 iod->first_dma = dma_addr;
646                 goto done;
647         }
648
649         nprps = DIV_ROUND_UP(length, page_size);
650         if (nprps <= (256 / 8)) {
651                 pool = dev->prp_small_pool;
652                 iod->npages = 0;
653         } else {
654                 pool = dev->prp_page_pool;
655                 iod->npages = 1;
656         }
657
658         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
659         if (!prp_list) {
660                 iod->first_dma = dma_addr;
661                 iod->npages = -1;
662                 return BLK_STS_RESOURCE;
663         }
664         list[0] = prp_list;
665         iod->first_dma = prp_dma;
666         i = 0;
667         for (;;) {
668                 if (i == page_size >> 3) {
669                         __le64 *old_prp_list = prp_list;
670                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
671                         if (!prp_list)
672                                 return BLK_STS_RESOURCE;
673                         list[iod->npages++] = prp_list;
674                         prp_list[0] = old_prp_list[i - 1];
675                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
676                         i = 1;
677                 }
678                 prp_list[i++] = cpu_to_le64(dma_addr);
679                 dma_len -= page_size;
680                 dma_addr += page_size;
681                 length -= page_size;
682                 if (length <= 0)
683                         break;
684                 if (dma_len > 0)
685                         continue;
686                 if (unlikely(dma_len < 0))
687                         goto bad_sgl;
688                 sg = sg_next(sg);
689                 dma_addr = sg_dma_address(sg);
690                 dma_len = sg_dma_len(sg);
691         }
692
693 done:
694         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
695         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
696
697         return BLK_STS_OK;
698
699  bad_sgl:
700         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
701                         "Invalid SGL for payload:%d nents:%d\n",
702                         blk_rq_payload_bytes(req), iod->nents);
703         return BLK_STS_IOERR;
704 }
705
706 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
707                 struct scatterlist *sg)
708 {
709         sge->addr = cpu_to_le64(sg_dma_address(sg));
710         sge->length = cpu_to_le32(sg_dma_len(sg));
711         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
712 }
713
714 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
715                 dma_addr_t dma_addr, int entries)
716 {
717         sge->addr = cpu_to_le64(dma_addr);
718         if (entries < SGES_PER_PAGE) {
719                 sge->length = cpu_to_le32(entries * sizeof(*sge));
720                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
721         } else {
722                 sge->length = cpu_to_le32(PAGE_SIZE);
723                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
724         }
725 }
726
727 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
728                 struct request *req, struct nvme_rw_command *cmd, int entries)
729 {
730         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
731         struct dma_pool *pool;
732         struct nvme_sgl_desc *sg_list;
733         struct scatterlist *sg = iod->sg;
734         dma_addr_t sgl_dma;
735         int i = 0;
736
737         /* setting the transfer type as SGL */
738         cmd->flags = NVME_CMD_SGL_METABUF;
739
740         if (entries == 1) {
741                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
742                 return BLK_STS_OK;
743         }
744
745         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
746                 pool = dev->prp_small_pool;
747                 iod->npages = 0;
748         } else {
749                 pool = dev->prp_page_pool;
750                 iod->npages = 1;
751         }
752
753         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
754         if (!sg_list) {
755                 iod->npages = -1;
756                 return BLK_STS_RESOURCE;
757         }
758
759         nvme_pci_iod_list(req)[0] = sg_list;
760         iod->first_dma = sgl_dma;
761
762         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
763
764         do {
765                 if (i == SGES_PER_PAGE) {
766                         struct nvme_sgl_desc *old_sg_desc = sg_list;
767                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
768
769                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
770                         if (!sg_list)
771                                 return BLK_STS_RESOURCE;
772
773                         i = 0;
774                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
775                         sg_list[i++] = *link;
776                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
777                 }
778
779                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
780                 sg = sg_next(sg);
781         } while (--entries > 0);
782
783         return BLK_STS_OK;
784 }
785
786 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
787                 struct nvme_command *cmnd)
788 {
789         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790         struct request_queue *q = req->q;
791         enum dma_data_direction dma_dir = rq_data_dir(req) ?
792                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
793         blk_status_t ret = BLK_STS_IOERR;
794         int nr_mapped;
795
796         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
797         iod->nents = blk_rq_map_sg(q, req, iod->sg);
798         if (!iod->nents)
799                 goto out;
800
801         ret = BLK_STS_RESOURCE;
802         nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
803                         DMA_ATTR_NO_WARN);
804         if (!nr_mapped)
805                 goto out;
806
807         if (iod->use_sgl)
808                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
809         else
810                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
811
812         if (ret != BLK_STS_OK)
813                 goto out_unmap;
814
815         ret = BLK_STS_IOERR;
816         if (blk_integrity_rq(req)) {
817                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
818                         goto out_unmap;
819
820                 sg_init_table(&iod->meta_sg, 1);
821                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
822                         goto out_unmap;
823
824                 if (req_op(req) == REQ_OP_WRITE)
825                         nvme_dif_remap(req, nvme_dif_prep);
826
827                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
828                         goto out_unmap;
829         }
830
831         if (blk_integrity_rq(req))
832                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
833         return BLK_STS_OK;
834
835 out_unmap:
836         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
837 out:
838         return ret;
839 }
840
841 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
842 {
843         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
844         enum dma_data_direction dma_dir = rq_data_dir(req) ?
845                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
846
847         if (iod->nents) {
848                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
849                 if (blk_integrity_rq(req)) {
850                         if (req_op(req) == REQ_OP_READ)
851                                 nvme_dif_remap(req, nvme_dif_complete);
852                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
853                 }
854         }
855
856         nvme_cleanup_cmd(req);
857         nvme_free_iod(dev, req);
858 }
859
860 /*
861  * NOTE: ns is NULL when called on the admin queue.
862  */
863 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
864                          const struct blk_mq_queue_data *bd)
865 {
866         struct nvme_ns *ns = hctx->queue->queuedata;
867         struct nvme_queue *nvmeq = hctx->driver_data;
868         struct nvme_dev *dev = nvmeq->dev;
869         struct request *req = bd->rq;
870         struct nvme_command cmnd;
871         blk_status_t ret;
872
873         /*
874          * We should not need to do this, but we're still using this to
875          * ensure we can drain requests on a dying queue.
876          */
877         if (unlikely(nvmeq->cq_vector < 0))
878                 return BLK_STS_IOERR;
879
880         ret = nvme_setup_cmd(ns, req, &cmnd);
881         if (ret)
882                 return ret;
883
884         ret = nvme_init_iod(req, dev);
885         if (ret)
886                 goto out_free_cmd;
887
888         if (blk_rq_nr_phys_segments(req)) {
889                 ret = nvme_map_data(dev, req, &cmnd);
890                 if (ret)
891                         goto out_cleanup_iod;
892         }
893
894         blk_mq_start_request(req);
895         nvme_submit_cmd(nvmeq, &cmnd);
896         return BLK_STS_OK;
897 out_cleanup_iod:
898         nvme_free_iod(dev, req);
899 out_free_cmd:
900         nvme_cleanup_cmd(req);
901         return ret;
902 }
903
904 static void nvme_pci_complete_rq(struct request *req)
905 {
906         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
907
908         nvme_unmap_data(iod->nvmeq->dev, req);
909         nvme_complete_rq(req);
910 }
911
912 /* We read the CQE phase first to check if the rest of the entry is valid */
913 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
914 {
915         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
916                         nvmeq->cq_phase;
917 }
918
919 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
920 {
921         u16 head = nvmeq->cq_head;
922
923         if (likely(nvmeq->cq_vector >= 0)) {
924                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
925                                                       nvmeq->dbbuf_cq_ei))
926                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
927         }
928 }
929
930 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
931 {
932         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
933         struct request *req;
934
935         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
936                 dev_warn(nvmeq->dev->ctrl.device,
937                         "invalid id %d completed on queue %d\n",
938                         cqe->command_id, le16_to_cpu(cqe->sq_id));
939                 return;
940         }
941
942         /*
943          * AEN requests are special as they don't time out and can
944          * survive any kind of queue freeze and often don't respond to
945          * aborts.  We don't even bother to allocate a struct request
946          * for them but rather special case them here.
947          */
948         if (unlikely(nvmeq->qid == 0 &&
949                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
950                 nvme_complete_async_event(&nvmeq->dev->ctrl,
951                                 cqe->status, &cqe->result);
952                 return;
953         }
954
955         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
956         nvme_end_request(req, cqe->status, cqe->result);
957 }
958
959 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
960 {
961         while (start != end) {
962                 nvme_handle_cqe(nvmeq, start);
963                 if (++start == nvmeq->q_depth)
964                         start = 0;
965         }
966 }
967
968 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
969 {
970         if (++nvmeq->cq_head == nvmeq->q_depth) {
971                 nvmeq->cq_head = 0;
972                 nvmeq->cq_phase = !nvmeq->cq_phase;
973         }
974 }
975
976 static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
977                 u16 *end, int tag)
978 {
979         bool found = false;
980
981         *start = nvmeq->cq_head;
982         while (!found && nvme_cqe_pending(nvmeq)) {
983                 if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
984                         found = true;
985                 nvme_update_cq_head(nvmeq);
986         }
987         *end = nvmeq->cq_head;
988
989         if (*start != *end)
990                 nvme_ring_cq_doorbell(nvmeq);
991         return found;
992 }
993
994 static irqreturn_t nvme_irq(int irq, void *data)
995 {
996         struct nvme_queue *nvmeq = data;
997         irqreturn_t ret = IRQ_NONE;
998         u16 start, end;
999
1000         spin_lock(&nvmeq->cq_lock);
1001         if (nvmeq->cq_head != nvmeq->last_cq_head)
1002                 ret = IRQ_HANDLED;
1003         nvme_process_cq(nvmeq, &start, &end, -1);
1004         nvmeq->last_cq_head = nvmeq->cq_head;
1005         spin_unlock(&nvmeq->cq_lock);
1006
1007         if (start != end) {
1008                 nvme_complete_cqes(nvmeq, start, end);
1009                 return IRQ_HANDLED;
1010         }
1011
1012         return ret;
1013 }
1014
1015 static irqreturn_t nvme_irq_check(int irq, void *data)
1016 {
1017         struct nvme_queue *nvmeq = data;
1018         if (nvme_cqe_pending(nvmeq))
1019                 return IRQ_WAKE_THREAD;
1020         return IRQ_NONE;
1021 }
1022
1023 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1024 {
1025         u16 start, end;
1026         bool found;
1027
1028         if (!nvme_cqe_pending(nvmeq))
1029                 return 0;
1030
1031         spin_lock_irq(&nvmeq->cq_lock);
1032         found = nvme_process_cq(nvmeq, &start, &end, tag);
1033         spin_unlock_irq(&nvmeq->cq_lock);
1034
1035         nvme_complete_cqes(nvmeq, start, end);
1036         return found;
1037 }
1038
1039 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1040 {
1041         struct nvme_queue *nvmeq = hctx->driver_data;
1042
1043         return __nvme_poll(nvmeq, tag);
1044 }
1045
1046 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1047 {
1048         struct nvme_dev *dev = to_nvme_dev(ctrl);
1049         struct nvme_queue *nvmeq = &dev->queues[0];
1050         struct nvme_command c;
1051
1052         memset(&c, 0, sizeof(c));
1053         c.common.opcode = nvme_admin_async_event;
1054         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1055         nvme_submit_cmd(nvmeq, &c);
1056 }
1057
1058 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1059 {
1060         struct nvme_command c;
1061
1062         memset(&c, 0, sizeof(c));
1063         c.delete_queue.opcode = opcode;
1064         c.delete_queue.qid = cpu_to_le16(id);
1065
1066         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1067 }
1068
1069 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1070                 struct nvme_queue *nvmeq, s16 vector)
1071 {
1072         struct nvme_command c;
1073         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1074
1075         /*
1076          * Note: we (ab)use the fact that the prp fields survive if no data
1077          * is attached to the request.
1078          */
1079         memset(&c, 0, sizeof(c));
1080         c.create_cq.opcode = nvme_admin_create_cq;
1081         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1082         c.create_cq.cqid = cpu_to_le16(qid);
1083         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1084         c.create_cq.cq_flags = cpu_to_le16(flags);
1085         c.create_cq.irq_vector = cpu_to_le16(vector);
1086
1087         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1088 }
1089
1090 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1091                                                 struct nvme_queue *nvmeq)
1092 {
1093         struct nvme_ctrl *ctrl = &dev->ctrl;
1094         struct nvme_command c;
1095         int flags = NVME_QUEUE_PHYS_CONTIG;
1096
1097         /*
1098          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1099          * set. Since URGENT priority is zeroes, it makes all queues
1100          * URGENT.
1101          */
1102         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1103                 flags |= NVME_SQ_PRIO_MEDIUM;
1104
1105         /*
1106          * Note: we (ab)use the fact that the prp fields survive if no data
1107          * is attached to the request.
1108          */
1109         memset(&c, 0, sizeof(c));
1110         c.create_sq.opcode = nvme_admin_create_sq;
1111         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1112         c.create_sq.sqid = cpu_to_le16(qid);
1113         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1114         c.create_sq.sq_flags = cpu_to_le16(flags);
1115         c.create_sq.cqid = cpu_to_le16(qid);
1116
1117         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1118 }
1119
1120 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1121 {
1122         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1123 }
1124
1125 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1126 {
1127         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1128 }
1129
1130 static void abort_endio(struct request *req, blk_status_t error)
1131 {
1132         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1133         struct nvme_queue *nvmeq = iod->nvmeq;
1134
1135         dev_warn(nvmeq->dev->ctrl.device,
1136                  "Abort status: 0x%x", nvme_req(req)->status);
1137         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1138         blk_mq_free_request(req);
1139 }
1140
1141 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1142 {
1143
1144         /* If true, indicates loss of adapter communication, possibly by a
1145          * NVMe Subsystem reset.
1146          */
1147         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1148
1149         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1150         switch (dev->ctrl.state) {
1151         case NVME_CTRL_RESETTING:
1152         case NVME_CTRL_CONNECTING:
1153                 return false;
1154         default:
1155                 break;
1156         }
1157
1158         /* We shouldn't reset unless the controller is on fatal error state
1159          * _or_ if we lost the communication with it.
1160          */
1161         if (!(csts & NVME_CSTS_CFS) && !nssro)
1162                 return false;
1163
1164         return true;
1165 }
1166
1167 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1168 {
1169         /* Read a config register to help see what died. */
1170         u16 pci_status;
1171         int result;
1172
1173         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1174                                       &pci_status);
1175         if (result == PCIBIOS_SUCCESSFUL)
1176                 dev_warn(dev->ctrl.device,
1177                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1178                          csts, pci_status);
1179         else
1180                 dev_warn(dev->ctrl.device,
1181                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1182                          csts, result);
1183 }
1184
1185 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1186 {
1187         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1188         struct nvme_queue *nvmeq = iod->nvmeq;
1189         struct nvme_dev *dev = nvmeq->dev;
1190         struct request *abort_req;
1191         struct nvme_command cmd;
1192         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1193
1194         /* If PCI error recovery process is happening, we cannot reset or
1195          * the recovery mechanism will surely fail.
1196          */
1197         mb();
1198         if (pci_channel_offline(to_pci_dev(dev->dev)))
1199                 return BLK_EH_RESET_TIMER;
1200
1201         /*
1202          * Reset immediately if the controller is failed
1203          */
1204         if (nvme_should_reset(dev, csts)) {
1205                 nvme_warn_reset(dev, csts);
1206                 nvme_dev_disable(dev, false);
1207                 nvme_reset_ctrl(&dev->ctrl);
1208                 return BLK_EH_DONE;
1209         }
1210
1211         /*
1212          * Did we miss an interrupt?
1213          */
1214         if (__nvme_poll(nvmeq, req->tag)) {
1215                 dev_warn(dev->ctrl.device,
1216                          "I/O %d QID %d timeout, completion polled\n",
1217                          req->tag, nvmeq->qid);
1218                 return BLK_EH_DONE;
1219         }
1220
1221         /*
1222          * Shutdown immediately if controller times out while starting. The
1223          * reset work will see the pci device disabled when it gets the forced
1224          * cancellation error. All outstanding requests are completed on
1225          * shutdown, so we return BLK_EH_DONE.
1226          */
1227         switch (dev->ctrl.state) {
1228         case NVME_CTRL_CONNECTING:
1229         case NVME_CTRL_RESETTING:
1230                 dev_warn_ratelimited(dev->ctrl.device,
1231                          "I/O %d QID %d timeout, disable controller\n",
1232                          req->tag, nvmeq->qid);
1233                 nvme_dev_disable(dev, false);
1234                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1235                 return BLK_EH_DONE;
1236         default:
1237                 break;
1238         }
1239
1240         /*
1241          * Shutdown the controller immediately and schedule a reset if the
1242          * command was already aborted once before and still hasn't been
1243          * returned to the driver, or if this is the admin queue.
1244          */
1245         if (!nvmeq->qid || iod->aborted) {
1246                 dev_warn(dev->ctrl.device,
1247                          "I/O %d QID %d timeout, reset controller\n",
1248                          req->tag, nvmeq->qid);
1249                 nvme_dev_disable(dev, false);
1250                 nvme_reset_ctrl(&dev->ctrl);
1251
1252                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1253                 return BLK_EH_DONE;
1254         }
1255
1256         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1257                 atomic_inc(&dev->ctrl.abort_limit);
1258                 return BLK_EH_RESET_TIMER;
1259         }
1260         iod->aborted = 1;
1261
1262         memset(&cmd, 0, sizeof(cmd));
1263         cmd.abort.opcode = nvme_admin_abort_cmd;
1264         cmd.abort.cid = req->tag;
1265         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1266
1267         dev_warn(nvmeq->dev->ctrl.device,
1268                 "I/O %d QID %d timeout, aborting\n",
1269                  req->tag, nvmeq->qid);
1270
1271         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1272                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1273         if (IS_ERR(abort_req)) {
1274                 atomic_inc(&dev->ctrl.abort_limit);
1275                 return BLK_EH_RESET_TIMER;
1276         }
1277
1278         abort_req->timeout = ADMIN_TIMEOUT;
1279         abort_req->end_io_data = NULL;
1280         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1281
1282         /*
1283          * The aborted req will be completed on receiving the abort req.
1284          * We enable the timer again. If hit twice, it'll cause a device reset,
1285          * as the device then is in a faulty state.
1286          */
1287         return BLK_EH_RESET_TIMER;
1288 }
1289
1290 static void nvme_free_queue(struct nvme_queue *nvmeq)
1291 {
1292         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1293                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1294         if (nvmeq->sq_cmds)
1295                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1296                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1297 }
1298
1299 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1300 {
1301         int i;
1302
1303         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1304                 dev->ctrl.queue_count--;
1305                 nvme_free_queue(&dev->queues[i]);
1306         }
1307 }
1308
1309 /**
1310  * nvme_suspend_queue - put queue into suspended state
1311  * @nvmeq - queue to suspend
1312  */
1313 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1314 {
1315         int vector;
1316
1317         spin_lock_irq(&nvmeq->cq_lock);
1318         if (nvmeq->cq_vector == -1) {
1319                 spin_unlock_irq(&nvmeq->cq_lock);
1320                 return 1;
1321         }
1322         vector = nvmeq->cq_vector;
1323         nvmeq->dev->online_queues--;
1324         nvmeq->cq_vector = -1;
1325         spin_unlock_irq(&nvmeq->cq_lock);
1326
1327         /*
1328          * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1329          * having to grab the lock.
1330          */
1331         mb();
1332
1333         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1334                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1335
1336         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1337
1338         return 0;
1339 }
1340
1341 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1342 {
1343         struct nvme_queue *nvmeq = &dev->queues[0];
1344         u16 start, end;
1345
1346         if (shutdown)
1347                 nvme_shutdown_ctrl(&dev->ctrl);
1348         else
1349                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1350
1351         spin_lock_irq(&nvmeq->cq_lock);
1352         nvme_process_cq(nvmeq, &start, &end, -1);
1353         spin_unlock_irq(&nvmeq->cq_lock);
1354
1355         nvme_complete_cqes(nvmeq, start, end);
1356 }
1357
1358 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1359                                 int entry_size)
1360 {
1361         int q_depth = dev->q_depth;
1362         unsigned q_size_aligned = roundup(q_depth * entry_size,
1363                                           dev->ctrl.page_size);
1364
1365         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1366                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1367                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1368                 q_depth = div_u64(mem_per_q, entry_size);
1369
1370                 /*
1371                  * Ensure the reduced q_depth is above some threshold where it
1372                  * would be better to map queues in system memory with the
1373                  * original depth
1374                  */
1375                 if (q_depth < 64)
1376                         return -ENOMEM;
1377         }
1378
1379         return q_depth;
1380 }
1381
1382 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1383                                 int qid, int depth)
1384 {
1385         /* CMB SQEs will be mapped before creation */
1386         if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1387                 return 0;
1388
1389         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1390                                             &nvmeq->sq_dma_addr, GFP_KERNEL);
1391         if (!nvmeq->sq_cmds)
1392                 return -ENOMEM;
1393         return 0;
1394 }
1395
1396 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1397 {
1398         struct nvme_queue *nvmeq = &dev->queues[qid];
1399
1400         if (dev->ctrl.queue_count > qid)
1401                 return 0;
1402
1403         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1404                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1405         if (!nvmeq->cqes)
1406                 goto free_nvmeq;
1407
1408         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1409                 goto free_cqdma;
1410
1411         nvmeq->q_dmadev = dev->dev;
1412         nvmeq->dev = dev;
1413         spin_lock_init(&nvmeq->sq_lock);
1414         spin_lock_init(&nvmeq->cq_lock);
1415         nvmeq->cq_head = 0;
1416         nvmeq->cq_phase = 1;
1417         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1418         nvmeq->q_depth = depth;
1419         nvmeq->qid = qid;
1420         nvmeq->cq_vector = -1;
1421         dev->ctrl.queue_count++;
1422
1423         return 0;
1424
1425  free_cqdma:
1426         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1427                                                         nvmeq->cq_dma_addr);
1428  free_nvmeq:
1429         return -ENOMEM;
1430 }
1431
1432 static int queue_request_irq(struct nvme_queue *nvmeq)
1433 {
1434         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1435         int nr = nvmeq->dev->ctrl.instance;
1436
1437         if (use_threaded_interrupts) {
1438                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1439                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1440         } else {
1441                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1442                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1443         }
1444 }
1445
1446 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1447 {
1448         struct nvme_dev *dev = nvmeq->dev;
1449
1450         spin_lock_irq(&nvmeq->cq_lock);
1451         nvmeq->sq_tail = 0;
1452         nvmeq->cq_head = 0;
1453         nvmeq->cq_phase = 1;
1454         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1455         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1456         nvme_dbbuf_init(dev, nvmeq, qid);
1457         dev->online_queues++;
1458         spin_unlock_irq(&nvmeq->cq_lock);
1459 }
1460
1461 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1462 {
1463         struct nvme_dev *dev = nvmeq->dev;
1464         int result;
1465         s16 vector;
1466
1467         if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1468                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1469                                                       dev->ctrl.page_size);
1470                 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1471                 nvmeq->sq_cmds_io = dev->cmb + offset;
1472         }
1473
1474         /*
1475          * A queue's vector matches the queue identifier unless the controller
1476          * has only one vector available.
1477          */
1478         vector = dev->num_vecs == 1 ? 0 : qid;
1479         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1480         if (result < 0)
1481                 goto out;
1482
1483         result = adapter_alloc_sq(dev, qid, nvmeq);
1484         if (result < 0)
1485                 goto release_cq;
1486
1487         /*
1488          * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1489          * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1490          * xxx' warning if the create CQ/SQ command times out.
1491          */
1492         nvmeq->cq_vector = vector;
1493         nvme_init_queue(nvmeq, qid);
1494         result = queue_request_irq(nvmeq);
1495         if (result < 0)
1496                 goto release_sq;
1497
1498         return result;
1499
1500 release_sq:
1501         nvmeq->cq_vector = -1;
1502         dev->online_queues--;
1503         adapter_delete_sq(dev, qid);
1504 release_cq:
1505         adapter_delete_cq(dev, qid);
1506 out:
1507         return result;
1508 }
1509
1510 static const struct blk_mq_ops nvme_mq_admin_ops = {
1511         .queue_rq       = nvme_queue_rq,
1512         .complete       = nvme_pci_complete_rq,
1513         .init_hctx      = nvme_admin_init_hctx,
1514         .exit_hctx      = nvme_admin_exit_hctx,
1515         .init_request   = nvme_init_request,
1516         .timeout        = nvme_timeout,
1517 };
1518
1519 static const struct blk_mq_ops nvme_mq_ops = {
1520         .queue_rq       = nvme_queue_rq,
1521         .complete       = nvme_pci_complete_rq,
1522         .init_hctx      = nvme_init_hctx,
1523         .init_request   = nvme_init_request,
1524         .map_queues     = nvme_pci_map_queues,
1525         .timeout        = nvme_timeout,
1526         .poll           = nvme_poll,
1527 };
1528
1529 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1530 {
1531         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1532                 /*
1533                  * If the controller was reset during removal, it's possible
1534                  * user requests may be waiting on a stopped queue. Start the
1535                  * queue to flush these to completion.
1536                  */
1537                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1538                 blk_cleanup_queue(dev->ctrl.admin_q);
1539                 blk_mq_free_tag_set(&dev->admin_tagset);
1540         }
1541 }
1542
1543 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1544 {
1545         if (!dev->ctrl.admin_q) {
1546                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1547                 dev->admin_tagset.nr_hw_queues = 1;
1548
1549                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1550                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1551                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1552                 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1553                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1554                 dev->admin_tagset.driver_data = dev;
1555
1556                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1557                         return -ENOMEM;
1558                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1559
1560                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1561                 if (IS_ERR(dev->ctrl.admin_q)) {
1562                         blk_mq_free_tag_set(&dev->admin_tagset);
1563                         return -ENOMEM;
1564                 }
1565                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1566                         nvme_dev_remove_admin(dev);
1567                         dev->ctrl.admin_q = NULL;
1568                         return -ENODEV;
1569                 }
1570         } else
1571                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1572
1573         return 0;
1574 }
1575
1576 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1577 {
1578         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1579 }
1580
1581 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1582 {
1583         struct pci_dev *pdev = to_pci_dev(dev->dev);
1584
1585         if (size <= dev->bar_mapped_size)
1586                 return 0;
1587         if (size > pci_resource_len(pdev, 0))
1588                 return -ENOMEM;
1589         if (dev->bar)
1590                 iounmap(dev->bar);
1591         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1592         if (!dev->bar) {
1593                 dev->bar_mapped_size = 0;
1594                 return -ENOMEM;
1595         }
1596         dev->bar_mapped_size = size;
1597         dev->dbs = dev->bar + NVME_REG_DBS;
1598
1599         return 0;
1600 }
1601
1602 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1603 {
1604         int result;
1605         u32 aqa;
1606         struct nvme_queue *nvmeq;
1607
1608         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1609         if (result < 0)
1610                 return result;
1611
1612         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1613                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1614
1615         if (dev->subsystem &&
1616             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1617                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1618
1619         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1620         if (result < 0)
1621                 return result;
1622
1623         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1624         if (result)
1625                 return result;
1626
1627         nvmeq = &dev->queues[0];
1628         aqa = nvmeq->q_depth - 1;
1629         aqa |= aqa << 16;
1630
1631         writel(aqa, dev->bar + NVME_REG_AQA);
1632         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1633         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1634
1635         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1636         if (result)
1637                 return result;
1638
1639         nvmeq->cq_vector = 0;
1640         nvme_init_queue(nvmeq, 0);
1641         result = queue_request_irq(nvmeq);
1642         if (result) {
1643                 nvmeq->cq_vector = -1;
1644                 return result;
1645         }
1646
1647         return result;
1648 }
1649
1650 static int nvme_create_io_queues(struct nvme_dev *dev)
1651 {
1652         unsigned i, max;
1653         int ret = 0;
1654
1655         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1656                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1657                         ret = -ENOMEM;
1658                         break;
1659                 }
1660         }
1661
1662         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1663         for (i = dev->online_queues; i <= max; i++) {
1664                 ret = nvme_create_queue(&dev->queues[i], i);
1665                 if (ret)
1666                         break;
1667         }
1668
1669         /*
1670          * Ignore failing Create SQ/CQ commands, we can continue with less
1671          * than the desired amount of queues, and even a controller without
1672          * I/O queues can still be used to issue admin commands.  This might
1673          * be useful to upgrade a buggy firmware for example.
1674          */
1675         return ret >= 0 ? 0 : ret;
1676 }
1677
1678 static ssize_t nvme_cmb_show(struct device *dev,
1679                              struct device_attribute *attr,
1680                              char *buf)
1681 {
1682         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1683
1684         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1685                        ndev->cmbloc, ndev->cmbsz);
1686 }
1687 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1688
1689 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1690 {
1691         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1692
1693         return 1ULL << (12 + 4 * szu);
1694 }
1695
1696 static u32 nvme_cmb_size(struct nvme_dev *dev)
1697 {
1698         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1699 }
1700
1701 static void nvme_map_cmb(struct nvme_dev *dev)
1702 {
1703         u64 size, offset;
1704         resource_size_t bar_size;
1705         struct pci_dev *pdev = to_pci_dev(dev->dev);
1706         int bar;
1707
1708         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1709         if (!dev->cmbsz)
1710                 return;
1711         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1712
1713         if (!use_cmb_sqes)
1714                 return;
1715
1716         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1717         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1718         bar = NVME_CMB_BIR(dev->cmbloc);
1719         bar_size = pci_resource_len(pdev, bar);
1720
1721         if (offset > bar_size)
1722                 return;
1723
1724         /*
1725          * Controllers may support a CMB size larger than their BAR,
1726          * for example, due to being behind a bridge. Reduce the CMB to
1727          * the reported size of the BAR
1728          */
1729         if (size > bar_size - offset)
1730                 size = bar_size - offset;
1731
1732         dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1733         if (!dev->cmb)
1734                 return;
1735         dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1736         dev->cmb_size = size;
1737
1738         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1739                                     &dev_attr_cmb.attr, NULL))
1740                 dev_warn(dev->ctrl.device,
1741                          "failed to add sysfs attribute for CMB\n");
1742 }
1743
1744 static inline void nvme_release_cmb(struct nvme_dev *dev)
1745 {
1746         if (dev->cmb) {
1747                 iounmap(dev->cmb);
1748                 dev->cmb = NULL;
1749                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1750                                              &dev_attr_cmb.attr, NULL);
1751                 dev->cmbsz = 0;
1752         }
1753 }
1754
1755 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1756 {
1757         u64 dma_addr = dev->host_mem_descs_dma;
1758         struct nvme_command c;
1759         int ret;
1760
1761         memset(&c, 0, sizeof(c));
1762         c.features.opcode       = nvme_admin_set_features;
1763         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1764         c.features.dword11      = cpu_to_le32(bits);
1765         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1766                                               ilog2(dev->ctrl.page_size));
1767         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1768         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1769         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1770
1771         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1772         if (ret) {
1773                 dev_warn(dev->ctrl.device,
1774                          "failed to set host mem (err %d, flags %#x).\n",
1775                          ret, bits);
1776         }
1777         return ret;
1778 }
1779
1780 static void nvme_free_host_mem(struct nvme_dev *dev)
1781 {
1782         int i;
1783
1784         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1785                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1786                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1787
1788                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1789                                 le64_to_cpu(desc->addr));
1790         }
1791
1792         kfree(dev->host_mem_desc_bufs);
1793         dev->host_mem_desc_bufs = NULL;
1794         dma_free_coherent(dev->dev,
1795                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1796                         dev->host_mem_descs, dev->host_mem_descs_dma);
1797         dev->host_mem_descs = NULL;
1798         dev->nr_host_mem_descs = 0;
1799 }
1800
1801 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1802                 u32 chunk_size)
1803 {
1804         struct nvme_host_mem_buf_desc *descs;
1805         u32 max_entries, len;
1806         dma_addr_t descs_dma;
1807         int i = 0;
1808         void **bufs;
1809         u64 size, tmp;
1810
1811         tmp = (preferred + chunk_size - 1);
1812         do_div(tmp, chunk_size);
1813         max_entries = tmp;
1814
1815         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1816                 max_entries = dev->ctrl.hmmaxd;
1817
1818         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1819                         &descs_dma, GFP_KERNEL);
1820         if (!descs)
1821                 goto out;
1822
1823         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1824         if (!bufs)
1825                 goto out_free_descs;
1826
1827         for (size = 0; size < preferred && i < max_entries; size += len) {
1828                 dma_addr_t dma_addr;
1829
1830                 len = min_t(u64, chunk_size, preferred - size);
1831                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1832                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1833                 if (!bufs[i])
1834                         break;
1835
1836                 descs[i].addr = cpu_to_le64(dma_addr);
1837                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1838                 i++;
1839         }
1840
1841         if (!size)
1842                 goto out_free_bufs;
1843
1844         dev->nr_host_mem_descs = i;
1845         dev->host_mem_size = size;
1846         dev->host_mem_descs = descs;
1847         dev->host_mem_descs_dma = descs_dma;
1848         dev->host_mem_desc_bufs = bufs;
1849         return 0;
1850
1851 out_free_bufs:
1852         while (--i >= 0) {
1853                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1854
1855                 dma_free_coherent(dev->dev, size, bufs[i],
1856                                 le64_to_cpu(descs[i].addr));
1857         }
1858
1859         kfree(bufs);
1860 out_free_descs:
1861         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1862                         descs_dma);
1863 out:
1864         dev->host_mem_descs = NULL;
1865         return -ENOMEM;
1866 }
1867
1868 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1869 {
1870         u32 chunk_size;
1871
1872         /* start big and work our way down */
1873         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1874              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1875              chunk_size /= 2) {
1876                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1877                         if (!min || dev->host_mem_size >= min)
1878                                 return 0;
1879                         nvme_free_host_mem(dev);
1880                 }
1881         }
1882
1883         return -ENOMEM;
1884 }
1885
1886 static int nvme_setup_host_mem(struct nvme_dev *dev)
1887 {
1888         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1889         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1890         u64 min = (u64)dev->ctrl.hmmin * 4096;
1891         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1892         int ret;
1893
1894         preferred = min(preferred, max);
1895         if (min > max) {
1896                 dev_warn(dev->ctrl.device,
1897                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1898                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1899                 nvme_free_host_mem(dev);
1900                 return 0;
1901         }
1902
1903         /*
1904          * If we already have a buffer allocated check if we can reuse it.
1905          */
1906         if (dev->host_mem_descs) {
1907                 if (dev->host_mem_size >= min)
1908                         enable_bits |= NVME_HOST_MEM_RETURN;
1909                 else
1910                         nvme_free_host_mem(dev);
1911         }
1912
1913         if (!dev->host_mem_descs) {
1914                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1915                         dev_warn(dev->ctrl.device,
1916                                 "failed to allocate host memory buffer.\n");
1917                         return 0; /* controller must work without HMB */
1918                 }
1919
1920                 dev_info(dev->ctrl.device,
1921                         "allocated %lld MiB host memory buffer.\n",
1922                         dev->host_mem_size >> ilog2(SZ_1M));
1923         }
1924
1925         ret = nvme_set_host_mem(dev, enable_bits);
1926         if (ret)
1927                 nvme_free_host_mem(dev);
1928         return ret;
1929 }
1930
1931 static int nvme_setup_io_queues(struct nvme_dev *dev)
1932 {
1933         struct nvme_queue *adminq = &dev->queues[0];
1934         struct pci_dev *pdev = to_pci_dev(dev->dev);
1935         int result, nr_io_queues;
1936         unsigned long size;
1937
1938         struct irq_affinity affd = {
1939                 .pre_vectors = 1
1940         };
1941
1942         nr_io_queues = num_possible_cpus();
1943         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1944         if (result < 0)
1945                 return result;
1946
1947         if (nr_io_queues == 0)
1948                 return 0;
1949
1950         if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1951                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1952                                 sizeof(struct nvme_command));
1953                 if (result > 0)
1954                         dev->q_depth = result;
1955                 else
1956                         nvme_release_cmb(dev);
1957         }
1958
1959         do {
1960                 size = db_bar_size(dev, nr_io_queues);
1961                 result = nvme_remap_bar(dev, size);
1962                 if (!result)
1963                         break;
1964                 if (!--nr_io_queues)
1965                         return -ENOMEM;
1966         } while (1);
1967         adminq->q_db = dev->dbs;
1968
1969         /* Deregister the admin queue's interrupt */
1970         pci_free_irq(pdev, 0, adminq);
1971
1972         /*
1973          * If we enable msix early due to not intx, disable it again before
1974          * setting up the full range we need.
1975          */
1976         pci_free_irq_vectors(pdev);
1977         result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1978                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1979         if (result <= 0)
1980                 return -EIO;
1981         dev->num_vecs = result;
1982         dev->max_qid = max(result - 1, 1);
1983
1984         /*
1985          * Should investigate if there's a performance win from allocating
1986          * more queues than interrupt vectors; it might allow the submission
1987          * path to scale better, even if the receive path is limited by the
1988          * number of interrupts.
1989          */
1990
1991         result = queue_request_irq(adminq);
1992         if (result) {
1993                 adminq->cq_vector = -1;
1994                 return result;
1995         }
1996         return nvme_create_io_queues(dev);
1997 }
1998
1999 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2000 {
2001         struct nvme_queue *nvmeq = req->end_io_data;
2002
2003         blk_mq_free_request(req);
2004         complete(&nvmeq->dev->ioq_wait);
2005 }
2006
2007 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2008 {
2009         struct nvme_queue *nvmeq = req->end_io_data;
2010         u16 start, end;
2011
2012         if (!error) {
2013                 unsigned long flags;
2014
2015                 /*
2016                  * We might be called with the AQ cq_lock held
2017                  * and the I/O queue cq_lock should always
2018                  * nest inside the AQ one.
2019                  */
2020                 spin_lock_irqsave_nested(&nvmeq->cq_lock, flags,
2021                                         SINGLE_DEPTH_NESTING);
2022                 nvme_process_cq(nvmeq, &start, &end, -1);
2023                 spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
2024
2025                 nvme_complete_cqes(nvmeq, start, end);
2026         }
2027
2028         nvme_del_queue_end(req, error);
2029 }
2030
2031 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2032 {
2033         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2034         struct request *req;
2035         struct nvme_command cmd;
2036
2037         memset(&cmd, 0, sizeof(cmd));
2038         cmd.delete_queue.opcode = opcode;
2039         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2040
2041         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2042         if (IS_ERR(req))
2043                 return PTR_ERR(req);
2044
2045         req->timeout = ADMIN_TIMEOUT;
2046         req->end_io_data = nvmeq;
2047
2048         blk_execute_rq_nowait(q, NULL, req, false,
2049                         opcode == nvme_admin_delete_cq ?
2050                                 nvme_del_cq_end : nvme_del_queue_end);
2051         return 0;
2052 }
2053
2054 static void nvme_disable_io_queues(struct nvme_dev *dev)
2055 {
2056         int pass, queues = dev->online_queues - 1;
2057         unsigned long timeout;
2058         u8 opcode = nvme_admin_delete_sq;
2059
2060         for (pass = 0; pass < 2; pass++) {
2061                 int sent = 0, i = queues;
2062
2063                 reinit_completion(&dev->ioq_wait);
2064  retry:
2065                 timeout = ADMIN_TIMEOUT;
2066                 for (; i > 0; i--, sent++)
2067                         if (nvme_delete_queue(&dev->queues[i], opcode))
2068                                 break;
2069
2070                 while (sent--) {
2071                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2072                         if (timeout == 0)
2073                                 return;
2074                         if (i)
2075                                 goto retry;
2076                 }
2077                 opcode = nvme_admin_delete_cq;
2078         }
2079 }
2080
2081 /*
2082  * return error value only when tagset allocation failed
2083  */
2084 static int nvme_dev_add(struct nvme_dev *dev)
2085 {
2086         int ret;
2087
2088         if (!dev->ctrl.tagset) {
2089                 dev->tagset.ops = &nvme_mq_ops;
2090                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2091                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2092                 dev->tagset.numa_node = dev_to_node(dev->dev);
2093                 dev->tagset.queue_depth =
2094                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2095                 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2096                 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2097                         dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2098                                         nvme_pci_cmd_size(dev, true));
2099                 }
2100                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2101                 dev->tagset.driver_data = dev;
2102
2103                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2104                 if (ret) {
2105                         dev_warn(dev->ctrl.device,
2106                                 "IO queues tagset allocation failed %d\n", ret);
2107                         return ret;
2108                 }
2109                 dev->ctrl.tagset = &dev->tagset;
2110
2111                 nvme_dbbuf_set(dev);
2112         } else {
2113                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2114
2115                 /* Free previously allocated queues that are no longer usable */
2116                 nvme_free_queues(dev, dev->online_queues);
2117         }
2118
2119         return 0;
2120 }
2121
2122 static int nvme_pci_enable(struct nvme_dev *dev)
2123 {
2124         int result = -ENOMEM;
2125         struct pci_dev *pdev = to_pci_dev(dev->dev);
2126
2127         if (pci_enable_device_mem(pdev))
2128                 return result;
2129
2130         pci_set_master(pdev);
2131
2132         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2133             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2134                 goto disable;
2135
2136         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2137                 result = -ENODEV;
2138                 goto disable;
2139         }
2140
2141         /*
2142          * Some devices and/or platforms don't advertise or work with INTx
2143          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2144          * adjust this later.
2145          */
2146         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2147         if (result < 0)
2148                 return result;
2149
2150         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2151
2152         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2153                                 io_queue_depth);
2154         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2155         dev->dbs = dev->bar + 4096;
2156
2157         /*
2158          * Temporary fix for the Apple controller found in the MacBook8,1 and
2159          * some MacBook7,1 to avoid controller resets and data loss.
2160          */
2161         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2162                 dev->q_depth = 2;
2163                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2164                         "set queue depth=%u to work around controller resets\n",
2165                         dev->q_depth);
2166         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2167                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2168                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2169                 dev->q_depth = 64;
2170                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2171                         "set queue depth=%u\n", dev->q_depth);
2172         }
2173
2174         nvme_map_cmb(dev);
2175
2176         pci_enable_pcie_error_reporting(pdev);
2177         pci_save_state(pdev);
2178         return 0;
2179
2180  disable:
2181         pci_disable_device(pdev);
2182         return result;
2183 }
2184
2185 static void nvme_dev_unmap(struct nvme_dev *dev)
2186 {
2187         if (dev->bar)
2188                 iounmap(dev->bar);
2189         pci_release_mem_regions(to_pci_dev(dev->dev));
2190 }
2191
2192 static void nvme_pci_disable(struct nvme_dev *dev)
2193 {
2194         struct pci_dev *pdev = to_pci_dev(dev->dev);
2195
2196         nvme_release_cmb(dev);
2197         pci_free_irq_vectors(pdev);
2198
2199         if (pci_is_enabled(pdev)) {
2200                 pci_disable_pcie_error_reporting(pdev);
2201                 pci_disable_device(pdev);
2202         }
2203 }
2204
2205 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2206 {
2207         int i;
2208         bool dead = true;
2209         struct pci_dev *pdev = to_pci_dev(dev->dev);
2210
2211         mutex_lock(&dev->shutdown_lock);
2212         if (pci_is_enabled(pdev)) {
2213                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2214
2215                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2216                     dev->ctrl.state == NVME_CTRL_RESETTING)
2217                         nvme_start_freeze(&dev->ctrl);
2218                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2219                         pdev->error_state  != pci_channel_io_normal);
2220         }
2221
2222         /*
2223          * Give the controller a chance to complete all entered requests if
2224          * doing a safe shutdown.
2225          */
2226         if (!dead) {
2227                 if (shutdown)
2228                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2229         }
2230
2231         nvme_stop_queues(&dev->ctrl);
2232
2233         if (!dead && dev->ctrl.queue_count > 0) {
2234                 /*
2235                  * If the controller is still alive tell it to stop using the
2236                  * host memory buffer.  In theory the shutdown / reset should
2237                  * make sure that it doesn't access the host memoery anymore,
2238                  * but I'd rather be safe than sorry..
2239                  */
2240                 if (dev->host_mem_descs)
2241                         nvme_set_host_mem(dev, 0);
2242                 nvme_disable_io_queues(dev);
2243                 nvme_disable_admin_queue(dev, shutdown);
2244         }
2245         for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2246                 nvme_suspend_queue(&dev->queues[i]);
2247
2248         nvme_pci_disable(dev);
2249
2250         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2251         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2252
2253         /*
2254          * The driver will not be starting up queues again if shutting down so
2255          * must flush all entered requests to their failed completion to avoid
2256          * deadlocking blk-mq hot-cpu notifier.
2257          */
2258         if (shutdown)
2259                 nvme_start_queues(&dev->ctrl);
2260         mutex_unlock(&dev->shutdown_lock);
2261 }
2262
2263 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2264 {
2265         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2266                                                 PAGE_SIZE, PAGE_SIZE, 0);
2267         if (!dev->prp_page_pool)
2268                 return -ENOMEM;
2269
2270         /* Optimisation for I/Os between 4k and 128k */
2271         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2272                                                 256, 256, 0);
2273         if (!dev->prp_small_pool) {
2274                 dma_pool_destroy(dev->prp_page_pool);
2275                 return -ENOMEM;
2276         }
2277         return 0;
2278 }
2279
2280 static void nvme_release_prp_pools(struct nvme_dev *dev)
2281 {
2282         dma_pool_destroy(dev->prp_page_pool);
2283         dma_pool_destroy(dev->prp_small_pool);
2284 }
2285
2286 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2287 {
2288         struct nvme_dev *dev = to_nvme_dev(ctrl);
2289
2290         nvme_dbbuf_dma_free(dev);
2291         put_device(dev->dev);
2292         if (dev->tagset.tags)
2293                 blk_mq_free_tag_set(&dev->tagset);
2294         if (dev->ctrl.admin_q)
2295                 blk_put_queue(dev->ctrl.admin_q);
2296         kfree(dev->queues);
2297         free_opal_dev(dev->ctrl.opal_dev);
2298         kfree(dev);
2299 }
2300
2301 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2302 {
2303         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2304
2305         nvme_get_ctrl(&dev->ctrl);
2306         nvme_dev_disable(dev, false);
2307         if (!queue_work(nvme_wq, &dev->remove_work))
2308                 nvme_put_ctrl(&dev->ctrl);
2309 }
2310
2311 static void nvme_reset_work(struct work_struct *work)
2312 {
2313         struct nvme_dev *dev =
2314                 container_of(work, struct nvme_dev, ctrl.reset_work);
2315         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2316         int result = -ENODEV;
2317         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2318
2319         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2320                 goto out;
2321
2322         /*
2323          * If we're called to reset a live controller first shut it down before
2324          * moving on.
2325          */
2326         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2327                 nvme_dev_disable(dev, false);
2328
2329         /*
2330          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2331          * initializing procedure here.
2332          */
2333         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2334                 dev_warn(dev->ctrl.device,
2335                         "failed to mark controller CONNECTING\n");
2336                 goto out;
2337         }
2338
2339         result = nvme_pci_enable(dev);
2340         if (result)
2341                 goto out;
2342
2343         result = nvme_pci_configure_admin_queue(dev);
2344         if (result)
2345                 goto out;
2346
2347         result = nvme_alloc_admin_tags(dev);
2348         if (result)
2349                 goto out;
2350
2351         result = nvme_init_identify(&dev->ctrl);
2352         if (result)
2353                 goto out;
2354
2355         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2356                 if (!dev->ctrl.opal_dev)
2357                         dev->ctrl.opal_dev =
2358                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2359                 else if (was_suspend)
2360                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2361         } else {
2362                 free_opal_dev(dev->ctrl.opal_dev);
2363                 dev->ctrl.opal_dev = NULL;
2364         }
2365
2366         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2367                 result = nvme_dbbuf_dma_alloc(dev);
2368                 if (result)
2369                         dev_warn(dev->dev,
2370                                  "unable to allocate dma for dbbuf\n");
2371         }
2372
2373         if (dev->ctrl.hmpre) {
2374                 result = nvme_setup_host_mem(dev);
2375                 if (result < 0)
2376                         goto out;
2377         }
2378
2379         result = nvme_setup_io_queues(dev);
2380         if (result)
2381                 goto out;
2382
2383         /*
2384          * Keep the controller around but remove all namespaces if we don't have
2385          * any working I/O queue.
2386          */
2387         if (dev->online_queues < 2) {
2388                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2389                 nvme_kill_queues(&dev->ctrl);
2390                 nvme_remove_namespaces(&dev->ctrl);
2391                 new_state = NVME_CTRL_ADMIN_ONLY;
2392         } else {
2393                 nvme_start_queues(&dev->ctrl);
2394                 nvme_wait_freeze(&dev->ctrl);
2395                 /* hit this only when allocate tagset fails */
2396                 if (nvme_dev_add(dev))
2397                         new_state = NVME_CTRL_ADMIN_ONLY;
2398                 nvme_unfreeze(&dev->ctrl);
2399         }
2400
2401         /*
2402          * If only admin queue live, keep it to do further investigation or
2403          * recovery.
2404          */
2405         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2406                 dev_warn(dev->ctrl.device,
2407                         "failed to mark controller state %d\n", new_state);
2408                 goto out;
2409         }
2410
2411         nvme_start_ctrl(&dev->ctrl);
2412         return;
2413
2414  out:
2415         nvme_remove_dead_ctrl(dev, result);
2416 }
2417
2418 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2419 {
2420         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2421         struct pci_dev *pdev = to_pci_dev(dev->dev);
2422
2423         nvme_kill_queues(&dev->ctrl);
2424         if (pci_get_drvdata(pdev))
2425                 device_release_driver(&pdev->dev);
2426         nvme_put_ctrl(&dev->ctrl);
2427 }
2428
2429 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2430 {
2431         *val = readl(to_nvme_dev(ctrl)->bar + off);
2432         return 0;
2433 }
2434
2435 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2436 {
2437         writel(val, to_nvme_dev(ctrl)->bar + off);
2438         return 0;
2439 }
2440
2441 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2442 {
2443         *val = readq(to_nvme_dev(ctrl)->bar + off);
2444         return 0;
2445 }
2446
2447 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2448 {
2449         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2450
2451         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2452 }
2453
2454 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2455         .name                   = "pcie",
2456         .module                 = THIS_MODULE,
2457         .flags                  = NVME_F_METADATA_SUPPORTED,
2458         .reg_read32             = nvme_pci_reg_read32,
2459         .reg_write32            = nvme_pci_reg_write32,
2460         .reg_read64             = nvme_pci_reg_read64,
2461         .free_ctrl              = nvme_pci_free_ctrl,
2462         .submit_async_event     = nvme_pci_submit_async_event,
2463         .get_address            = nvme_pci_get_address,
2464 };
2465
2466 static int nvme_dev_map(struct nvme_dev *dev)
2467 {
2468         struct pci_dev *pdev = to_pci_dev(dev->dev);
2469
2470         if (pci_request_mem_regions(pdev, "nvme"))
2471                 return -ENODEV;
2472
2473         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2474                 goto release;
2475
2476         return 0;
2477   release:
2478         pci_release_mem_regions(pdev);
2479         return -ENODEV;
2480 }
2481
2482 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2483 {
2484         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2485                 /*
2486                  * Several Samsung devices seem to drop off the PCIe bus
2487                  * randomly when APST is on and uses the deepest sleep state.
2488                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2489                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2490                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2491                  * laptops.
2492                  */
2493                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2494                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2495                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2496                         return NVME_QUIRK_NO_DEEPEST_PS;
2497         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2498                 /*
2499                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2500                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2501                  * within few minutes after bootup on a Coffee Lake board -
2502                  * ASUS PRIME Z370-A
2503                  */
2504                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2505                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2506                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2507                         return NVME_QUIRK_NO_APST;
2508         }
2509
2510         return 0;
2511 }
2512
2513 static void nvme_async_probe(void *data, async_cookie_t cookie)
2514 {
2515         struct nvme_dev *dev = data;
2516
2517         nvme_reset_ctrl_sync(&dev->ctrl);
2518         flush_work(&dev->ctrl.scan_work);
2519         nvme_put_ctrl(&dev->ctrl);
2520 }
2521
2522 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2523 {
2524         int node, result = -ENOMEM;
2525         struct nvme_dev *dev;
2526         unsigned long quirks = id->driver_data;
2527
2528         node = dev_to_node(&pdev->dev);
2529         if (node == NUMA_NO_NODE)
2530                 set_dev_node(&pdev->dev, first_memory_node);
2531
2532         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2533         if (!dev)
2534                 return -ENOMEM;
2535
2536         dev->queues = kcalloc_node(num_possible_cpus() + 1,
2537                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2538         if (!dev->queues)
2539                 goto free;
2540
2541         dev->dev = get_device(&pdev->dev);
2542         pci_set_drvdata(pdev, dev);
2543
2544         result = nvme_dev_map(dev);
2545         if (result)
2546                 goto put_pci;
2547
2548         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2549         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2550         mutex_init(&dev->shutdown_lock);
2551         init_completion(&dev->ioq_wait);
2552
2553         result = nvme_setup_prp_pools(dev);
2554         if (result)
2555                 goto unmap;
2556
2557         quirks |= check_vendor_combination_bug(pdev);
2558
2559         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2560                         quirks);
2561         if (result)
2562                 goto release_pools;
2563
2564         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2565
2566         nvme_get_ctrl(&dev->ctrl);
2567         async_schedule(nvme_async_probe, dev);
2568
2569         return 0;
2570
2571  release_pools:
2572         nvme_release_prp_pools(dev);
2573  unmap:
2574         nvme_dev_unmap(dev);
2575  put_pci:
2576         put_device(dev->dev);
2577  free:
2578         kfree(dev->queues);
2579         kfree(dev);
2580         return result;
2581 }
2582
2583 static void nvme_reset_prepare(struct pci_dev *pdev)
2584 {
2585         struct nvme_dev *dev = pci_get_drvdata(pdev);
2586         nvme_dev_disable(dev, false);
2587 }
2588
2589 static void nvme_reset_done(struct pci_dev *pdev)
2590 {
2591         struct nvme_dev *dev = pci_get_drvdata(pdev);
2592         nvme_reset_ctrl_sync(&dev->ctrl);
2593 }
2594
2595 static void nvme_shutdown(struct pci_dev *pdev)
2596 {
2597         struct nvme_dev *dev = pci_get_drvdata(pdev);
2598         nvme_dev_disable(dev, true);
2599 }
2600
2601 /*
2602  * The driver's remove may be called on a device in a partially initialized
2603  * state. This function must not have any dependencies on the device state in
2604  * order to proceed.
2605  */
2606 static void nvme_remove(struct pci_dev *pdev)
2607 {
2608         struct nvme_dev *dev = pci_get_drvdata(pdev);
2609
2610         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2611
2612         cancel_work_sync(&dev->ctrl.reset_work);
2613         pci_set_drvdata(pdev, NULL);
2614
2615         if (!pci_device_is_present(pdev)) {
2616                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2617                 nvme_dev_disable(dev, false);
2618         }
2619
2620         flush_work(&dev->ctrl.reset_work);
2621         nvme_stop_ctrl(&dev->ctrl);
2622         nvme_remove_namespaces(&dev->ctrl);
2623         nvme_dev_disable(dev, true);
2624         nvme_free_host_mem(dev);
2625         nvme_dev_remove_admin(dev);
2626         nvme_free_queues(dev, 0);
2627         nvme_uninit_ctrl(&dev->ctrl);
2628         nvme_release_prp_pools(dev);
2629         nvme_dev_unmap(dev);
2630         nvme_put_ctrl(&dev->ctrl);
2631 }
2632
2633 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2634 {
2635         int ret = 0;
2636
2637         if (numvfs == 0) {
2638                 if (pci_vfs_assigned(pdev)) {
2639                         dev_warn(&pdev->dev,
2640                                 "Cannot disable SR-IOV VFs while assigned\n");
2641                         return -EPERM;
2642                 }
2643                 pci_disable_sriov(pdev);
2644                 return 0;
2645         }
2646
2647         ret = pci_enable_sriov(pdev, numvfs);
2648         return ret ? ret : numvfs;
2649 }
2650
2651 #ifdef CONFIG_PM_SLEEP
2652 static int nvme_suspend(struct device *dev)
2653 {
2654         struct pci_dev *pdev = to_pci_dev(dev);
2655         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2656
2657         nvme_dev_disable(ndev, true);
2658         return 0;
2659 }
2660
2661 static int nvme_resume(struct device *dev)
2662 {
2663         struct pci_dev *pdev = to_pci_dev(dev);
2664         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2665
2666         nvme_reset_ctrl(&ndev->ctrl);
2667         return 0;
2668 }
2669 #endif
2670
2671 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2672
2673 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2674                                                 pci_channel_state_t state)
2675 {
2676         struct nvme_dev *dev = pci_get_drvdata(pdev);
2677
2678         /*
2679          * A frozen channel requires a reset. When detected, this method will
2680          * shutdown the controller to quiesce. The controller will be restarted
2681          * after the slot reset through driver's slot_reset callback.
2682          */
2683         switch (state) {
2684         case pci_channel_io_normal:
2685                 return PCI_ERS_RESULT_CAN_RECOVER;
2686         case pci_channel_io_frozen:
2687                 dev_warn(dev->ctrl.device,
2688                         "frozen state error detected, reset controller\n");
2689                 nvme_dev_disable(dev, false);
2690                 return PCI_ERS_RESULT_NEED_RESET;
2691         case pci_channel_io_perm_failure:
2692                 dev_warn(dev->ctrl.device,
2693                         "failure state error detected, request disconnect\n");
2694                 return PCI_ERS_RESULT_DISCONNECT;
2695         }
2696         return PCI_ERS_RESULT_NEED_RESET;
2697 }
2698
2699 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2700 {
2701         struct nvme_dev *dev = pci_get_drvdata(pdev);
2702
2703         dev_info(dev->ctrl.device, "restart after slot reset\n");
2704         pci_restore_state(pdev);
2705         nvme_reset_ctrl(&dev->ctrl);
2706         return PCI_ERS_RESULT_RECOVERED;
2707 }
2708
2709 static void nvme_error_resume(struct pci_dev *pdev)
2710 {
2711         struct nvme_dev *dev = pci_get_drvdata(pdev);
2712
2713         flush_work(&dev->ctrl.reset_work);
2714         pci_cleanup_aer_uncorrect_error_status(pdev);
2715 }
2716
2717 static const struct pci_error_handlers nvme_err_handler = {
2718         .error_detected = nvme_error_detected,
2719         .slot_reset     = nvme_slot_reset,
2720         .resume         = nvme_error_resume,
2721         .reset_prepare  = nvme_reset_prepare,
2722         .reset_done     = nvme_reset_done,
2723 };
2724
2725 static const struct pci_device_id nvme_id_table[] = {
2726         { PCI_VDEVICE(INTEL, 0x0953),
2727                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2728                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2729         { PCI_VDEVICE(INTEL, 0x0a53),
2730                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2731                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2732         { PCI_VDEVICE(INTEL, 0x0a54),
2733                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2734                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2735         { PCI_VDEVICE(INTEL, 0x0a55),
2736                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2737                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2738         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2739                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2740                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
2741         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2742                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2743         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2744                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2745         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2746                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2747         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2748                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2749         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2750                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2751         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2752                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2753         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2754                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2755         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2756                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2757         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2758                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2759         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2760                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2761         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2762         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2763         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2764         { 0, }
2765 };
2766 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2767
2768 static struct pci_driver nvme_driver = {
2769         .name           = "nvme",
2770         .id_table       = nvme_id_table,
2771         .probe          = nvme_probe,
2772         .remove         = nvme_remove,
2773         .shutdown       = nvme_shutdown,
2774         .driver         = {
2775                 .pm     = &nvme_dev_pm_ops,
2776         },
2777         .sriov_configure = nvme_pci_sriov_configure,
2778         .err_handler    = &nvme_err_handler,
2779 };
2780
2781 static int __init nvme_init(void)
2782 {
2783         return pci_register_driver(&nvme_driver);
2784 }
2785
2786 static void __exit nvme_exit(void)
2787 {
2788         pci_unregister_driver(&nvme_driver);
2789         flush_workqueue(nvme_wq);
2790         _nvme_check_size();
2791 }
2792
2793 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2794 MODULE_LICENSE("GPL");
2795 MODULE_VERSION("1.0");
2796 module_init(nvme_init);
2797 module_exit(nvme_exit);