dt-bindings: soc: bcm: use absolute path to other schema
[linux-2.6-microblaze.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31
32 #include "trace.h"
33 #include "nvme.h"
34
35 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ  4096
45 #define NVME_MAX_SEGS   127
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0444);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62                 "Use SGLs when average request segment size is larger or equal to "
63                 "this size. Use 0 to disable SGLs.");
64
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69         .set = io_queue_depth_set,
70         .get = param_get_uint,
71 };
72
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
76
77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 {
79         unsigned int n;
80         int ret;
81
82         ret = kstrtouint(val, 10, &n);
83         if (ret != 0 || n > num_possible_cpus())
84                 return -EINVAL;
85         return param_set_uint(val, kp);
86 }
87
88 static const struct kernel_param_ops io_queue_count_ops = {
89         .set = io_queue_count_set,
90         .get = param_get_uint,
91 };
92
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96         "Number of queues to use for writes. If not set, reads and writes "
97         "will share a queue set.");
98
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102
103 static bool noacpi;
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106
107 struct nvme_dev;
108 struct nvme_queue;
109
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
112
113 /*
114  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
115  */
116 struct nvme_dev {
117         struct nvme_queue *queues;
118         struct blk_mq_tag_set tagset;
119         struct blk_mq_tag_set admin_tagset;
120         u32 __iomem *dbs;
121         struct device *dev;
122         struct dma_pool *prp_page_pool;
123         struct dma_pool *prp_small_pool;
124         unsigned online_queues;
125         unsigned max_qid;
126         unsigned io_queues[HCTX_MAX_TYPES];
127         unsigned int num_vecs;
128         u32 q_depth;
129         int io_sqes;
130         u32 db_stride;
131         void __iomem *bar;
132         unsigned long bar_mapped_size;
133         struct work_struct remove_work;
134         struct mutex shutdown_lock;
135         bool subsystem;
136         u64 cmb_size;
137         bool cmb_use_sqes;
138         u32 cmbsz;
139         u32 cmbloc;
140         struct nvme_ctrl ctrl;
141         u32 last_ps;
142         bool hmb;
143
144         mempool_t *iod_mempool;
145
146         /* shadow doorbell buffer support: */
147         u32 *dbbuf_dbs;
148         dma_addr_t dbbuf_dbs_dma_addr;
149         u32 *dbbuf_eis;
150         dma_addr_t dbbuf_eis_dma_addr;
151
152         /* host memory buffer support: */
153         u64 host_mem_size;
154         u32 nr_host_mem_descs;
155         dma_addr_t host_mem_descs_dma;
156         struct nvme_host_mem_buf_desc *host_mem_descs;
157         void **host_mem_desc_bufs;
158         unsigned int nr_allocated_queues;
159         unsigned int nr_write_queues;
160         unsigned int nr_poll_queues;
161
162         bool attrs_added;
163 };
164
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167         return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168                         NVME_PCI_MAX_QUEUE_SIZE);
169 }
170
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173         return qid * 2 * stride;
174 }
175
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178         return (qid * 2 + 1) * stride;
179 }
180
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183         return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191         struct nvme_dev *dev;
192         spinlock_t sq_lock;
193         void *sq_cmds;
194          /* only used for poll queues: */
195         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196         struct nvme_completion *cqes;
197         dma_addr_t sq_dma_addr;
198         dma_addr_t cq_dma_addr;
199         u32 __iomem *q_db;
200         u32 q_depth;
201         u16 cq_vector;
202         u16 sq_tail;
203         u16 last_sq_tail;
204         u16 cq_head;
205         u16 qid;
206         u8 cq_phase;
207         u8 sqes;
208         unsigned long flags;
209 #define NVMEQ_ENABLED           0
210 #define NVMEQ_SQ_CMB            1
211 #define NVMEQ_DELETE_ERROR      2
212 #define NVMEQ_POLLED            3
213         u32 *dbbuf_sq_db;
214         u32 *dbbuf_cq_db;
215         u32 *dbbuf_sq_ei;
216         u32 *dbbuf_cq_ei;
217         struct completion delete_done;
218 };
219
220 /*
221  * The nvme_iod describes the data in an I/O.
222  *
223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224  * to the actual struct scatterlist.
225  */
226 struct nvme_iod {
227         struct nvme_request req;
228         struct nvme_command cmd;
229         struct nvme_queue *nvmeq;
230         bool use_sgl;
231         int aborted;
232         int npages;             /* In the PRP list. 0 means small pool in use */
233         int nents;              /* Used in scatterlist */
234         dma_addr_t first_dma;
235         unsigned int dma_len;   /* length of single DMA segment mapping */
236         dma_addr_t meta_dma;
237         struct scatterlist *sg;
238 };
239
240 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
241 {
242         return dev->nr_allocated_queues * 8 * dev->db_stride;
243 }
244
245 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
246 {
247         unsigned int mem_size = nvme_dbbuf_size(dev);
248
249         if (dev->dbbuf_dbs) {
250                 /*
251                  * Clear the dbbuf memory so the driver doesn't observe stale
252                  * values from the previous instantiation.
253                  */
254                 memset(dev->dbbuf_dbs, 0, mem_size);
255                 memset(dev->dbbuf_eis, 0, mem_size);
256                 return 0;
257         }
258
259         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
260                                             &dev->dbbuf_dbs_dma_addr,
261                                             GFP_KERNEL);
262         if (!dev->dbbuf_dbs)
263                 return -ENOMEM;
264         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
265                                             &dev->dbbuf_eis_dma_addr,
266                                             GFP_KERNEL);
267         if (!dev->dbbuf_eis) {
268                 dma_free_coherent(dev->dev, mem_size,
269                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
270                 dev->dbbuf_dbs = NULL;
271                 return -ENOMEM;
272         }
273
274         return 0;
275 }
276
277 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
278 {
279         unsigned int mem_size = nvme_dbbuf_size(dev);
280
281         if (dev->dbbuf_dbs) {
282                 dma_free_coherent(dev->dev, mem_size,
283                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
284                 dev->dbbuf_dbs = NULL;
285         }
286         if (dev->dbbuf_eis) {
287                 dma_free_coherent(dev->dev, mem_size,
288                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
289                 dev->dbbuf_eis = NULL;
290         }
291 }
292
293 static void nvme_dbbuf_init(struct nvme_dev *dev,
294                             struct nvme_queue *nvmeq, int qid)
295 {
296         if (!dev->dbbuf_dbs || !qid)
297                 return;
298
299         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
300         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
301         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
302         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
303 }
304
305 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
306 {
307         if (!nvmeq->qid)
308                 return;
309
310         nvmeq->dbbuf_sq_db = NULL;
311         nvmeq->dbbuf_cq_db = NULL;
312         nvmeq->dbbuf_sq_ei = NULL;
313         nvmeq->dbbuf_cq_ei = NULL;
314 }
315
316 static void nvme_dbbuf_set(struct nvme_dev *dev)
317 {
318         struct nvme_command c = { };
319         unsigned int i;
320
321         if (!dev->dbbuf_dbs)
322                 return;
323
324         c.dbbuf.opcode = nvme_admin_dbbuf;
325         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
326         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
327
328         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
329                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
330                 /* Free memory and continue on */
331                 nvme_dbbuf_dma_free(dev);
332
333                 for (i = 1; i <= dev->online_queues; i++)
334                         nvme_dbbuf_free(&dev->queues[i]);
335         }
336 }
337
338 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
339 {
340         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
341 }
342
343 /* Update dbbuf and return true if an MMIO is required */
344 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
345                                               volatile u32 *dbbuf_ei)
346 {
347         if (dbbuf_db) {
348                 u16 old_value;
349
350                 /*
351                  * Ensure that the queue is written before updating
352                  * the doorbell in memory
353                  */
354                 wmb();
355
356                 old_value = *dbbuf_db;
357                 *dbbuf_db = value;
358
359                 /*
360                  * Ensure that the doorbell is updated before reading the event
361                  * index from memory.  The controller needs to provide similar
362                  * ordering to ensure the envent index is updated before reading
363                  * the doorbell.
364                  */
365                 mb();
366
367                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
368                         return false;
369         }
370
371         return true;
372 }
373
374 /*
375  * Will slightly overestimate the number of pages needed.  This is OK
376  * as it only leads to a small amount of wasted memory for the lifetime of
377  * the I/O.
378  */
379 static int nvme_pci_npages_prp(void)
380 {
381         unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
382                                       NVME_CTRL_PAGE_SIZE);
383         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
384 }
385
386 /*
387  * Calculates the number of pages needed for the SGL segments. For example a 4k
388  * page can accommodate 256 SGL descriptors.
389  */
390 static int nvme_pci_npages_sgl(void)
391 {
392         return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
393                         PAGE_SIZE);
394 }
395
396 static size_t nvme_pci_iod_alloc_size(void)
397 {
398         size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
399
400         return sizeof(__le64 *) * npages +
401                 sizeof(struct scatterlist) * NVME_MAX_SEGS;
402 }
403
404 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
405                                 unsigned int hctx_idx)
406 {
407         struct nvme_dev *dev = data;
408         struct nvme_queue *nvmeq = &dev->queues[0];
409
410         WARN_ON(hctx_idx != 0);
411         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
412
413         hctx->driver_data = nvmeq;
414         return 0;
415 }
416
417 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
418                           unsigned int hctx_idx)
419 {
420         struct nvme_dev *dev = data;
421         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
422
423         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
424         hctx->driver_data = nvmeq;
425         return 0;
426 }
427
428 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
429                 struct request *req, unsigned int hctx_idx,
430                 unsigned int numa_node)
431 {
432         struct nvme_dev *dev = set->driver_data;
433         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
434         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
435         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
436
437         BUG_ON(!nvmeq);
438         iod->nvmeq = nvmeq;
439
440         nvme_req(req)->ctrl = &dev->ctrl;
441         nvme_req(req)->cmd = &iod->cmd;
442         return 0;
443 }
444
445 static int queue_irq_offset(struct nvme_dev *dev)
446 {
447         /* if we have more than 1 vec, admin queue offsets us by 1 */
448         if (dev->num_vecs > 1)
449                 return 1;
450
451         return 0;
452 }
453
454 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
455 {
456         struct nvme_dev *dev = set->driver_data;
457         int i, qoff, offset;
458
459         offset = queue_irq_offset(dev);
460         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
461                 struct blk_mq_queue_map *map = &set->map[i];
462
463                 map->nr_queues = dev->io_queues[i];
464                 if (!map->nr_queues) {
465                         BUG_ON(i == HCTX_TYPE_DEFAULT);
466                         continue;
467                 }
468
469                 /*
470                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
471                  * affinity), so use the regular blk-mq cpu mapping
472                  */
473                 map->queue_offset = qoff;
474                 if (i != HCTX_TYPE_POLL && offset)
475                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
476                 else
477                         blk_mq_map_queues(map);
478                 qoff += map->nr_queues;
479                 offset += map->nr_queues;
480         }
481
482         return 0;
483 }
484
485 /*
486  * Write sq tail if we are asked to, or if the next command would wrap.
487  */
488 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
489 {
490         if (!write_sq) {
491                 u16 next_tail = nvmeq->sq_tail + 1;
492
493                 if (next_tail == nvmeq->q_depth)
494                         next_tail = 0;
495                 if (next_tail != nvmeq->last_sq_tail)
496                         return;
497         }
498
499         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
500                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
501                 writel(nvmeq->sq_tail, nvmeq->q_db);
502         nvmeq->last_sq_tail = nvmeq->sq_tail;
503 }
504
505 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
506                                     struct nvme_command *cmd)
507 {
508         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
509                 absolute_pointer(cmd), sizeof(*cmd));
510         if (++nvmeq->sq_tail == nvmeq->q_depth)
511                 nvmeq->sq_tail = 0;
512 }
513
514 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
515 {
516         struct nvme_queue *nvmeq = hctx->driver_data;
517
518         spin_lock(&nvmeq->sq_lock);
519         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
520                 nvme_write_sq_db(nvmeq, true);
521         spin_unlock(&nvmeq->sq_lock);
522 }
523
524 static void **nvme_pci_iod_list(struct request *req)
525 {
526         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
528 }
529
530 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
531 {
532         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
533         int nseg = blk_rq_nr_phys_segments(req);
534         unsigned int avg_seg_size;
535
536         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
537
538         if (!nvme_ctrl_sgl_supported(&dev->ctrl))
539                 return false;
540         if (!iod->nvmeq->qid)
541                 return false;
542         if (!sgl_threshold || avg_seg_size < sgl_threshold)
543                 return false;
544         return true;
545 }
546
547 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
548 {
549         const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
550         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
551         dma_addr_t dma_addr = iod->first_dma;
552         int i;
553
554         for (i = 0; i < iod->npages; i++) {
555                 __le64 *prp_list = nvme_pci_iod_list(req)[i];
556                 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
557
558                 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
559                 dma_addr = next_dma_addr;
560         }
561 }
562
563 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
564 {
565         const int last_sg = SGES_PER_PAGE - 1;
566         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
567         dma_addr_t dma_addr = iod->first_dma;
568         int i;
569
570         for (i = 0; i < iod->npages; i++) {
571                 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
572                 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
573
574                 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
575                 dma_addr = next_dma_addr;
576         }
577 }
578
579 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
580 {
581         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
582
583         if (is_pci_p2pdma_page(sg_page(iod->sg)))
584                 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
585                                     rq_dma_dir(req));
586         else
587                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
588 }
589
590 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
591 {
592         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
593
594         if (iod->dma_len) {
595                 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
596                                rq_dma_dir(req));
597                 return;
598         }
599
600         WARN_ON_ONCE(!iod->nents);
601
602         nvme_unmap_sg(dev, req);
603         if (iod->npages == 0)
604                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
605                               iod->first_dma);
606         else if (iod->use_sgl)
607                 nvme_free_sgls(dev, req);
608         else
609                 nvme_free_prps(dev, req);
610         mempool_free(iod->sg, dev->iod_mempool);
611 }
612
613 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
614 {
615         int i;
616         struct scatterlist *sg;
617
618         for_each_sg(sgl, sg, nents, i) {
619                 dma_addr_t phys = sg_phys(sg);
620                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
621                         "dma_address:%pad dma_length:%d\n",
622                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
623                         sg_dma_len(sg));
624         }
625 }
626
627 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
628                 struct request *req, struct nvme_rw_command *cmnd)
629 {
630         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
631         struct dma_pool *pool;
632         int length = blk_rq_payload_bytes(req);
633         struct scatterlist *sg = iod->sg;
634         int dma_len = sg_dma_len(sg);
635         u64 dma_addr = sg_dma_address(sg);
636         int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
637         __le64 *prp_list;
638         void **list = nvme_pci_iod_list(req);
639         dma_addr_t prp_dma;
640         int nprps, i;
641
642         length -= (NVME_CTRL_PAGE_SIZE - offset);
643         if (length <= 0) {
644                 iod->first_dma = 0;
645                 goto done;
646         }
647
648         dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
649         if (dma_len) {
650                 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
651         } else {
652                 sg = sg_next(sg);
653                 dma_addr = sg_dma_address(sg);
654                 dma_len = sg_dma_len(sg);
655         }
656
657         if (length <= NVME_CTRL_PAGE_SIZE) {
658                 iod->first_dma = dma_addr;
659                 goto done;
660         }
661
662         nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
663         if (nprps <= (256 / 8)) {
664                 pool = dev->prp_small_pool;
665                 iod->npages = 0;
666         } else {
667                 pool = dev->prp_page_pool;
668                 iod->npages = 1;
669         }
670
671         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
672         if (!prp_list) {
673                 iod->first_dma = dma_addr;
674                 iod->npages = -1;
675                 return BLK_STS_RESOURCE;
676         }
677         list[0] = prp_list;
678         iod->first_dma = prp_dma;
679         i = 0;
680         for (;;) {
681                 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
682                         __le64 *old_prp_list = prp_list;
683                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
684                         if (!prp_list)
685                                 goto free_prps;
686                         list[iod->npages++] = prp_list;
687                         prp_list[0] = old_prp_list[i - 1];
688                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
689                         i = 1;
690                 }
691                 prp_list[i++] = cpu_to_le64(dma_addr);
692                 dma_len -= NVME_CTRL_PAGE_SIZE;
693                 dma_addr += NVME_CTRL_PAGE_SIZE;
694                 length -= NVME_CTRL_PAGE_SIZE;
695                 if (length <= 0)
696                         break;
697                 if (dma_len > 0)
698                         continue;
699                 if (unlikely(dma_len < 0))
700                         goto bad_sgl;
701                 sg = sg_next(sg);
702                 dma_addr = sg_dma_address(sg);
703                 dma_len = sg_dma_len(sg);
704         }
705 done:
706         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
707         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
708         return BLK_STS_OK;
709 free_prps:
710         nvme_free_prps(dev, req);
711         return BLK_STS_RESOURCE;
712 bad_sgl:
713         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
714                         "Invalid SGL for payload:%d nents:%d\n",
715                         blk_rq_payload_bytes(req), iod->nents);
716         return BLK_STS_IOERR;
717 }
718
719 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
720                 struct scatterlist *sg)
721 {
722         sge->addr = cpu_to_le64(sg_dma_address(sg));
723         sge->length = cpu_to_le32(sg_dma_len(sg));
724         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
725 }
726
727 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
728                 dma_addr_t dma_addr, int entries)
729 {
730         sge->addr = cpu_to_le64(dma_addr);
731         if (entries < SGES_PER_PAGE) {
732                 sge->length = cpu_to_le32(entries * sizeof(*sge));
733                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
734         } else {
735                 sge->length = cpu_to_le32(PAGE_SIZE);
736                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
737         }
738 }
739
740 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
741                 struct request *req, struct nvme_rw_command *cmd, int entries)
742 {
743         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
744         struct dma_pool *pool;
745         struct nvme_sgl_desc *sg_list;
746         struct scatterlist *sg = iod->sg;
747         dma_addr_t sgl_dma;
748         int i = 0;
749
750         /* setting the transfer type as SGL */
751         cmd->flags = NVME_CMD_SGL_METABUF;
752
753         if (entries == 1) {
754                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
755                 return BLK_STS_OK;
756         }
757
758         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
759                 pool = dev->prp_small_pool;
760                 iod->npages = 0;
761         } else {
762                 pool = dev->prp_page_pool;
763                 iod->npages = 1;
764         }
765
766         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
767         if (!sg_list) {
768                 iod->npages = -1;
769                 return BLK_STS_RESOURCE;
770         }
771
772         nvme_pci_iod_list(req)[0] = sg_list;
773         iod->first_dma = sgl_dma;
774
775         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
776
777         do {
778                 if (i == SGES_PER_PAGE) {
779                         struct nvme_sgl_desc *old_sg_desc = sg_list;
780                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
781
782                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
783                         if (!sg_list)
784                                 goto free_sgls;
785
786                         i = 0;
787                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
788                         sg_list[i++] = *link;
789                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
790                 }
791
792                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
793                 sg = sg_next(sg);
794         } while (--entries > 0);
795
796         return BLK_STS_OK;
797 free_sgls:
798         nvme_free_sgls(dev, req);
799         return BLK_STS_RESOURCE;
800 }
801
802 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
803                 struct request *req, struct nvme_rw_command *cmnd,
804                 struct bio_vec *bv)
805 {
806         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
807         unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
808         unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
809
810         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
811         if (dma_mapping_error(dev->dev, iod->first_dma))
812                 return BLK_STS_RESOURCE;
813         iod->dma_len = bv->bv_len;
814
815         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
816         if (bv->bv_len > first_prp_len)
817                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
818         return BLK_STS_OK;
819 }
820
821 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
822                 struct request *req, struct nvme_rw_command *cmnd,
823                 struct bio_vec *bv)
824 {
825         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
826
827         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
828         if (dma_mapping_error(dev->dev, iod->first_dma))
829                 return BLK_STS_RESOURCE;
830         iod->dma_len = bv->bv_len;
831
832         cmnd->flags = NVME_CMD_SGL_METABUF;
833         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
834         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
835         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
836         return BLK_STS_OK;
837 }
838
839 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
840                 struct nvme_command *cmnd)
841 {
842         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
843         blk_status_t ret = BLK_STS_RESOURCE;
844         int nr_mapped;
845
846         if (blk_rq_nr_phys_segments(req) == 1) {
847                 struct bio_vec bv = req_bvec(req);
848
849                 if (!is_pci_p2pdma_page(bv.bv_page)) {
850                         if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
851                                 return nvme_setup_prp_simple(dev, req,
852                                                              &cmnd->rw, &bv);
853
854                         if (iod->nvmeq->qid && sgl_threshold &&
855                             nvme_ctrl_sgl_supported(&dev->ctrl))
856                                 return nvme_setup_sgl_simple(dev, req,
857                                                              &cmnd->rw, &bv);
858                 }
859         }
860
861         iod->dma_len = 0;
862         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
863         if (!iod->sg)
864                 return BLK_STS_RESOURCE;
865         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
866         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
867         if (!iod->nents)
868                 goto out_free_sg;
869
870         if (is_pci_p2pdma_page(sg_page(iod->sg)))
871                 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
872                                 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
873         else
874                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
875                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
876         if (!nr_mapped)
877                 goto out_free_sg;
878
879         iod->use_sgl = nvme_pci_use_sgls(dev, req);
880         if (iod->use_sgl)
881                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
882         else
883                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
884         if (ret != BLK_STS_OK)
885                 goto out_unmap_sg;
886         return BLK_STS_OK;
887
888 out_unmap_sg:
889         nvme_unmap_sg(dev, req);
890 out_free_sg:
891         mempool_free(iod->sg, dev->iod_mempool);
892         return ret;
893 }
894
895 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
896                 struct nvme_command *cmnd)
897 {
898         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
899
900         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
901                         rq_dma_dir(req), 0);
902         if (dma_mapping_error(dev->dev, iod->meta_dma))
903                 return BLK_STS_IOERR;
904         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
905         return BLK_STS_OK;
906 }
907
908 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
909 {
910         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911         blk_status_t ret;
912
913         iod->aborted = 0;
914         iod->npages = -1;
915         iod->nents = 0;
916
917         ret = nvme_setup_cmd(req->q->queuedata, req);
918         if (ret)
919                 return ret;
920
921         if (blk_rq_nr_phys_segments(req)) {
922                 ret = nvme_map_data(dev, req, &iod->cmd);
923                 if (ret)
924                         goto out_free_cmd;
925         }
926
927         if (blk_integrity_rq(req)) {
928                 ret = nvme_map_metadata(dev, req, &iod->cmd);
929                 if (ret)
930                         goto out_unmap_data;
931         }
932
933         blk_mq_start_request(req);
934         return BLK_STS_OK;
935 out_unmap_data:
936         nvme_unmap_data(dev, req);
937 out_free_cmd:
938         nvme_cleanup_cmd(req);
939         return ret;
940 }
941
942 /*
943  * NOTE: ns is NULL when called on the admin queue.
944  */
945 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
946                          const struct blk_mq_queue_data *bd)
947 {
948         struct nvme_queue *nvmeq = hctx->driver_data;
949         struct nvme_dev *dev = nvmeq->dev;
950         struct request *req = bd->rq;
951         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
952         blk_status_t ret;
953
954         /*
955          * We should not need to do this, but we're still using this to
956          * ensure we can drain requests on a dying queue.
957          */
958         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
959                 return BLK_STS_IOERR;
960
961         if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
962                 return nvme_fail_nonready_command(&dev->ctrl, req);
963
964         ret = nvme_prep_rq(dev, req);
965         if (unlikely(ret))
966                 return ret;
967         spin_lock(&nvmeq->sq_lock);
968         nvme_sq_copy_cmd(nvmeq, &iod->cmd);
969         nvme_write_sq_db(nvmeq, bd->last);
970         spin_unlock(&nvmeq->sq_lock);
971         return BLK_STS_OK;
972 }
973
974 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
975 {
976         spin_lock(&nvmeq->sq_lock);
977         while (!rq_list_empty(*rqlist)) {
978                 struct request *req = rq_list_pop(rqlist);
979                 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
980
981                 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
982         }
983         nvme_write_sq_db(nvmeq, true);
984         spin_unlock(&nvmeq->sq_lock);
985 }
986
987 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
988 {
989         /*
990          * We should not need to do this, but we're still using this to
991          * ensure we can drain requests on a dying queue.
992          */
993         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
994                 return false;
995         if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
996                 return false;
997
998         req->mq_hctx->tags->rqs[req->tag] = req;
999         return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1000 }
1001
1002 static void nvme_queue_rqs(struct request **rqlist)
1003 {
1004         struct request *req, *next, *prev = NULL;
1005         struct request *requeue_list = NULL;
1006
1007         rq_list_for_each_safe(rqlist, req, next) {
1008                 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1009
1010                 if (!nvme_prep_rq_batch(nvmeq, req)) {
1011                         /* detach 'req' and add to remainder list */
1012                         rq_list_move(rqlist, &requeue_list, req, prev);
1013
1014                         req = prev;
1015                         if (!req)
1016                                 continue;
1017                 }
1018
1019                 if (!next || req->mq_hctx != next->mq_hctx) {
1020                         /* detach rest of list, and submit */
1021                         req->rq_next = NULL;
1022                         nvme_submit_cmds(nvmeq, rqlist);
1023                         *rqlist = next;
1024                         prev = NULL;
1025                 } else
1026                         prev = req;
1027         }
1028
1029         *rqlist = requeue_list;
1030 }
1031
1032 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1033 {
1034         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1035         struct nvme_dev *dev = iod->nvmeq->dev;
1036
1037         if (blk_integrity_rq(req))
1038                 dma_unmap_page(dev->dev, iod->meta_dma,
1039                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1040         if (blk_rq_nr_phys_segments(req))
1041                 nvme_unmap_data(dev, req);
1042 }
1043
1044 static void nvme_pci_complete_rq(struct request *req)
1045 {
1046         nvme_pci_unmap_rq(req);
1047         nvme_complete_rq(req);
1048 }
1049
1050 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1051 {
1052         nvme_complete_batch(iob, nvme_pci_unmap_rq);
1053 }
1054
1055 /* We read the CQE phase first to check if the rest of the entry is valid */
1056 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1057 {
1058         struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1059
1060         return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1061 }
1062
1063 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1064 {
1065         u16 head = nvmeq->cq_head;
1066
1067         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1068                                               nvmeq->dbbuf_cq_ei))
1069                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1070 }
1071
1072 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1073 {
1074         if (!nvmeq->qid)
1075                 return nvmeq->dev->admin_tagset.tags[0];
1076         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1077 }
1078
1079 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1080                                    struct io_comp_batch *iob, u16 idx)
1081 {
1082         struct nvme_completion *cqe = &nvmeq->cqes[idx];
1083         __u16 command_id = READ_ONCE(cqe->command_id);
1084         struct request *req;
1085
1086         /*
1087          * AEN requests are special as they don't time out and can
1088          * survive any kind of queue freeze and often don't respond to
1089          * aborts.  We don't even bother to allocate a struct request
1090          * for them but rather special case them here.
1091          */
1092         if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1093                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1094                                 cqe->status, &cqe->result);
1095                 return;
1096         }
1097
1098         req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1099         if (unlikely(!req)) {
1100                 dev_warn(nvmeq->dev->ctrl.device,
1101                         "invalid id %d completed on queue %d\n",
1102                         command_id, le16_to_cpu(cqe->sq_id));
1103                 return;
1104         }
1105
1106         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1107         if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1108             !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1109                                         nvme_pci_complete_batch))
1110                 nvme_pci_complete_rq(req);
1111 }
1112
1113 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1114 {
1115         u32 tmp = nvmeq->cq_head + 1;
1116
1117         if (tmp == nvmeq->q_depth) {
1118                 nvmeq->cq_head = 0;
1119                 nvmeq->cq_phase ^= 1;
1120         } else {
1121                 nvmeq->cq_head = tmp;
1122         }
1123 }
1124
1125 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1126                                struct io_comp_batch *iob)
1127 {
1128         int found = 0;
1129
1130         while (nvme_cqe_pending(nvmeq)) {
1131                 found++;
1132                 /*
1133                  * load-load control dependency between phase and the rest of
1134                  * the cqe requires a full read memory barrier
1135                  */
1136                 dma_rmb();
1137                 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1138                 nvme_update_cq_head(nvmeq);
1139         }
1140
1141         if (found)
1142                 nvme_ring_cq_doorbell(nvmeq);
1143         return found;
1144 }
1145
1146 static irqreturn_t nvme_irq(int irq, void *data)
1147 {
1148         struct nvme_queue *nvmeq = data;
1149         DEFINE_IO_COMP_BATCH(iob);
1150
1151         if (nvme_poll_cq(nvmeq, &iob)) {
1152                 if (!rq_list_empty(iob.req_list))
1153                         nvme_pci_complete_batch(&iob);
1154                 return IRQ_HANDLED;
1155         }
1156         return IRQ_NONE;
1157 }
1158
1159 static irqreturn_t nvme_irq_check(int irq, void *data)
1160 {
1161         struct nvme_queue *nvmeq = data;
1162
1163         if (nvme_cqe_pending(nvmeq))
1164                 return IRQ_WAKE_THREAD;
1165         return IRQ_NONE;
1166 }
1167
1168 /*
1169  * Poll for completions for any interrupt driven queue
1170  * Can be called from any context.
1171  */
1172 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1173 {
1174         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1175
1176         WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1177
1178         disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1179         nvme_poll_cq(nvmeq, NULL);
1180         enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1181 }
1182
1183 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1184 {
1185         struct nvme_queue *nvmeq = hctx->driver_data;
1186         bool found;
1187
1188         if (!nvme_cqe_pending(nvmeq))
1189                 return 0;
1190
1191         spin_lock(&nvmeq->cq_poll_lock);
1192         found = nvme_poll_cq(nvmeq, iob);
1193         spin_unlock(&nvmeq->cq_poll_lock);
1194
1195         return found;
1196 }
1197
1198 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1199 {
1200         struct nvme_dev *dev = to_nvme_dev(ctrl);
1201         struct nvme_queue *nvmeq = &dev->queues[0];
1202         struct nvme_command c = { };
1203
1204         c.common.opcode = nvme_admin_async_event;
1205         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1206
1207         spin_lock(&nvmeq->sq_lock);
1208         nvme_sq_copy_cmd(nvmeq, &c);
1209         nvme_write_sq_db(nvmeq, true);
1210         spin_unlock(&nvmeq->sq_lock);
1211 }
1212
1213 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1214 {
1215         struct nvme_command c = { };
1216
1217         c.delete_queue.opcode = opcode;
1218         c.delete_queue.qid = cpu_to_le16(id);
1219
1220         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1221 }
1222
1223 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1224                 struct nvme_queue *nvmeq, s16 vector)
1225 {
1226         struct nvme_command c = { };
1227         int flags = NVME_QUEUE_PHYS_CONTIG;
1228
1229         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1230                 flags |= NVME_CQ_IRQ_ENABLED;
1231
1232         /*
1233          * Note: we (ab)use the fact that the prp fields survive if no data
1234          * is attached to the request.
1235          */
1236         c.create_cq.opcode = nvme_admin_create_cq;
1237         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1238         c.create_cq.cqid = cpu_to_le16(qid);
1239         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1240         c.create_cq.cq_flags = cpu_to_le16(flags);
1241         c.create_cq.irq_vector = cpu_to_le16(vector);
1242
1243         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1244 }
1245
1246 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1247                                                 struct nvme_queue *nvmeq)
1248 {
1249         struct nvme_ctrl *ctrl = &dev->ctrl;
1250         struct nvme_command c = { };
1251         int flags = NVME_QUEUE_PHYS_CONTIG;
1252
1253         /*
1254          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1255          * set. Since URGENT priority is zeroes, it makes all queues
1256          * URGENT.
1257          */
1258         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1259                 flags |= NVME_SQ_PRIO_MEDIUM;
1260
1261         /*
1262          * Note: we (ab)use the fact that the prp fields survive if no data
1263          * is attached to the request.
1264          */
1265         c.create_sq.opcode = nvme_admin_create_sq;
1266         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1267         c.create_sq.sqid = cpu_to_le16(qid);
1268         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1269         c.create_sq.sq_flags = cpu_to_le16(flags);
1270         c.create_sq.cqid = cpu_to_le16(qid);
1271
1272         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1273 }
1274
1275 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1276 {
1277         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1278 }
1279
1280 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1281 {
1282         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1283 }
1284
1285 static void abort_endio(struct request *req, blk_status_t error)
1286 {
1287         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1288         struct nvme_queue *nvmeq = iod->nvmeq;
1289
1290         dev_warn(nvmeq->dev->ctrl.device,
1291                  "Abort status: 0x%x", nvme_req(req)->status);
1292         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1293         blk_mq_free_request(req);
1294 }
1295
1296 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1297 {
1298         /* If true, indicates loss of adapter communication, possibly by a
1299          * NVMe Subsystem reset.
1300          */
1301         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1302
1303         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1304         switch (dev->ctrl.state) {
1305         case NVME_CTRL_RESETTING:
1306         case NVME_CTRL_CONNECTING:
1307                 return false;
1308         default:
1309                 break;
1310         }
1311
1312         /* We shouldn't reset unless the controller is on fatal error state
1313          * _or_ if we lost the communication with it.
1314          */
1315         if (!(csts & NVME_CSTS_CFS) && !nssro)
1316                 return false;
1317
1318         return true;
1319 }
1320
1321 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1322 {
1323         /* Read a config register to help see what died. */
1324         u16 pci_status;
1325         int result;
1326
1327         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1328                                       &pci_status);
1329         if (result == PCIBIOS_SUCCESSFUL)
1330                 dev_warn(dev->ctrl.device,
1331                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1332                          csts, pci_status);
1333         else
1334                 dev_warn(dev->ctrl.device,
1335                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1336                          csts, result);
1337
1338         if (csts != ~0)
1339                 return;
1340
1341         dev_warn(dev->ctrl.device,
1342                  "Does your device have a faulty power saving mode enabled?\n");
1343         dev_warn(dev->ctrl.device,
1344                  "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1345 }
1346
1347 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1348 {
1349         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1350         struct nvme_queue *nvmeq = iod->nvmeq;
1351         struct nvme_dev *dev = nvmeq->dev;
1352         struct request *abort_req;
1353         struct nvme_command cmd = { };
1354         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1355
1356         /* If PCI error recovery process is happening, we cannot reset or
1357          * the recovery mechanism will surely fail.
1358          */
1359         mb();
1360         if (pci_channel_offline(to_pci_dev(dev->dev)))
1361                 return BLK_EH_RESET_TIMER;
1362
1363         /*
1364          * Reset immediately if the controller is failed
1365          */
1366         if (nvme_should_reset(dev, csts)) {
1367                 nvme_warn_reset(dev, csts);
1368                 nvme_dev_disable(dev, false);
1369                 nvme_reset_ctrl(&dev->ctrl);
1370                 return BLK_EH_DONE;
1371         }
1372
1373         /*
1374          * Did we miss an interrupt?
1375          */
1376         if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1377                 nvme_poll(req->mq_hctx, NULL);
1378         else
1379                 nvme_poll_irqdisable(nvmeq);
1380
1381         if (blk_mq_request_completed(req)) {
1382                 dev_warn(dev->ctrl.device,
1383                          "I/O %d QID %d timeout, completion polled\n",
1384                          req->tag, nvmeq->qid);
1385                 return BLK_EH_DONE;
1386         }
1387
1388         /*
1389          * Shutdown immediately if controller times out while starting. The
1390          * reset work will see the pci device disabled when it gets the forced
1391          * cancellation error. All outstanding requests are completed on
1392          * shutdown, so we return BLK_EH_DONE.
1393          */
1394         switch (dev->ctrl.state) {
1395         case NVME_CTRL_CONNECTING:
1396                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1397                 fallthrough;
1398         case NVME_CTRL_DELETING:
1399                 dev_warn_ratelimited(dev->ctrl.device,
1400                          "I/O %d QID %d timeout, disable controller\n",
1401                          req->tag, nvmeq->qid);
1402                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1403                 nvme_dev_disable(dev, true);
1404                 return BLK_EH_DONE;
1405         case NVME_CTRL_RESETTING:
1406                 return BLK_EH_RESET_TIMER;
1407         default:
1408                 break;
1409         }
1410
1411         /*
1412          * Shutdown the controller immediately and schedule a reset if the
1413          * command was already aborted once before and still hasn't been
1414          * returned to the driver, or if this is the admin queue.
1415          */
1416         if (!nvmeq->qid || iod->aborted) {
1417                 dev_warn(dev->ctrl.device,
1418                          "I/O %d QID %d timeout, reset controller\n",
1419                          req->tag, nvmeq->qid);
1420                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1421                 nvme_dev_disable(dev, false);
1422                 nvme_reset_ctrl(&dev->ctrl);
1423
1424                 return BLK_EH_DONE;
1425         }
1426
1427         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1428                 atomic_inc(&dev->ctrl.abort_limit);
1429                 return BLK_EH_RESET_TIMER;
1430         }
1431         iod->aborted = 1;
1432
1433         cmd.abort.opcode = nvme_admin_abort_cmd;
1434         cmd.abort.cid = nvme_cid(req);
1435         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1436
1437         dev_warn(nvmeq->dev->ctrl.device,
1438                 "I/O %d QID %d timeout, aborting\n",
1439                  req->tag, nvmeq->qid);
1440
1441         abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1442                                          BLK_MQ_REQ_NOWAIT);
1443         if (IS_ERR(abort_req)) {
1444                 atomic_inc(&dev->ctrl.abort_limit);
1445                 return BLK_EH_RESET_TIMER;
1446         }
1447         nvme_init_request(abort_req, &cmd);
1448
1449         abort_req->end_io = abort_endio;
1450         abort_req->end_io_data = NULL;
1451         abort_req->rq_flags |= RQF_QUIET;
1452         blk_execute_rq_nowait(abort_req, false);
1453
1454         /*
1455          * The aborted req will be completed on receiving the abort req.
1456          * We enable the timer again. If hit twice, it'll cause a device reset,
1457          * as the device then is in a faulty state.
1458          */
1459         return BLK_EH_RESET_TIMER;
1460 }
1461
1462 static void nvme_free_queue(struct nvme_queue *nvmeq)
1463 {
1464         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1465                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1466         if (!nvmeq->sq_cmds)
1467                 return;
1468
1469         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1470                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1471                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1472         } else {
1473                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1474                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1475         }
1476 }
1477
1478 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1479 {
1480         int i;
1481
1482         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1483                 dev->ctrl.queue_count--;
1484                 nvme_free_queue(&dev->queues[i]);
1485         }
1486 }
1487
1488 /**
1489  * nvme_suspend_queue - put queue into suspended state
1490  * @nvmeq: queue to suspend
1491  */
1492 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1493 {
1494         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1495                 return 1;
1496
1497         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1498         mb();
1499
1500         nvmeq->dev->online_queues--;
1501         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1502                 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1503         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1504                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1505         return 0;
1506 }
1507
1508 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1509 {
1510         int i;
1511
1512         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1513                 nvme_suspend_queue(&dev->queues[i]);
1514 }
1515
1516 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1517 {
1518         struct nvme_queue *nvmeq = &dev->queues[0];
1519
1520         if (shutdown)
1521                 nvme_shutdown_ctrl(&dev->ctrl);
1522         else
1523                 nvme_disable_ctrl(&dev->ctrl);
1524
1525         nvme_poll_irqdisable(nvmeq);
1526 }
1527
1528 /*
1529  * Called only on a device that has been disabled and after all other threads
1530  * that can check this device's completion queues have synced, except
1531  * nvme_poll(). This is the last chance for the driver to see a natural
1532  * completion before nvme_cancel_request() terminates all incomplete requests.
1533  */
1534 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1535 {
1536         int i;
1537
1538         for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1539                 spin_lock(&dev->queues[i].cq_poll_lock);
1540                 nvme_poll_cq(&dev->queues[i], NULL);
1541                 spin_unlock(&dev->queues[i].cq_poll_lock);
1542         }
1543 }
1544
1545 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1546                                 int entry_size)
1547 {
1548         int q_depth = dev->q_depth;
1549         unsigned q_size_aligned = roundup(q_depth * entry_size,
1550                                           NVME_CTRL_PAGE_SIZE);
1551
1552         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1553                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1554
1555                 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1556                 q_depth = div_u64(mem_per_q, entry_size);
1557
1558                 /*
1559                  * Ensure the reduced q_depth is above some threshold where it
1560                  * would be better to map queues in system memory with the
1561                  * original depth
1562                  */
1563                 if (q_depth < 64)
1564                         return -ENOMEM;
1565         }
1566
1567         return q_depth;
1568 }
1569
1570 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1571                                 int qid)
1572 {
1573         struct pci_dev *pdev = to_pci_dev(dev->dev);
1574
1575         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1576                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1577                 if (nvmeq->sq_cmds) {
1578                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1579                                                         nvmeq->sq_cmds);
1580                         if (nvmeq->sq_dma_addr) {
1581                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1582                                 return 0;
1583                         }
1584
1585                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1586                 }
1587         }
1588
1589         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1590                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1591         if (!nvmeq->sq_cmds)
1592                 return -ENOMEM;
1593         return 0;
1594 }
1595
1596 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1597 {
1598         struct nvme_queue *nvmeq = &dev->queues[qid];
1599
1600         if (dev->ctrl.queue_count > qid)
1601                 return 0;
1602
1603         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1604         nvmeq->q_depth = depth;
1605         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1606                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1607         if (!nvmeq->cqes)
1608                 goto free_nvmeq;
1609
1610         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1611                 goto free_cqdma;
1612
1613         nvmeq->dev = dev;
1614         spin_lock_init(&nvmeq->sq_lock);
1615         spin_lock_init(&nvmeq->cq_poll_lock);
1616         nvmeq->cq_head = 0;
1617         nvmeq->cq_phase = 1;
1618         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1619         nvmeq->qid = qid;
1620         dev->ctrl.queue_count++;
1621
1622         return 0;
1623
1624  free_cqdma:
1625         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1626                           nvmeq->cq_dma_addr);
1627  free_nvmeq:
1628         return -ENOMEM;
1629 }
1630
1631 static int queue_request_irq(struct nvme_queue *nvmeq)
1632 {
1633         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1634         int nr = nvmeq->dev->ctrl.instance;
1635
1636         if (use_threaded_interrupts) {
1637                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1638                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1639         } else {
1640                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1641                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1642         }
1643 }
1644
1645 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1646 {
1647         struct nvme_dev *dev = nvmeq->dev;
1648
1649         nvmeq->sq_tail = 0;
1650         nvmeq->last_sq_tail = 0;
1651         nvmeq->cq_head = 0;
1652         nvmeq->cq_phase = 1;
1653         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1654         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1655         nvme_dbbuf_init(dev, nvmeq, qid);
1656         dev->online_queues++;
1657         wmb(); /* ensure the first interrupt sees the initialization */
1658 }
1659
1660 /*
1661  * Try getting shutdown_lock while setting up IO queues.
1662  */
1663 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1664 {
1665         /*
1666          * Give up if the lock is being held by nvme_dev_disable.
1667          */
1668         if (!mutex_trylock(&dev->shutdown_lock))
1669                 return -ENODEV;
1670
1671         /*
1672          * Controller is in wrong state, fail early.
1673          */
1674         if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1675                 mutex_unlock(&dev->shutdown_lock);
1676                 return -ENODEV;
1677         }
1678
1679         return 0;
1680 }
1681
1682 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1683 {
1684         struct nvme_dev *dev = nvmeq->dev;
1685         int result;
1686         u16 vector = 0;
1687
1688         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1689
1690         /*
1691          * A queue's vector matches the queue identifier unless the controller
1692          * has only one vector available.
1693          */
1694         if (!polled)
1695                 vector = dev->num_vecs == 1 ? 0 : qid;
1696         else
1697                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1698
1699         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1700         if (result)
1701                 return result;
1702
1703         result = adapter_alloc_sq(dev, qid, nvmeq);
1704         if (result < 0)
1705                 return result;
1706         if (result)
1707                 goto release_cq;
1708
1709         nvmeq->cq_vector = vector;
1710
1711         result = nvme_setup_io_queues_trylock(dev);
1712         if (result)
1713                 return result;
1714         nvme_init_queue(nvmeq, qid);
1715         if (!polled) {
1716                 result = queue_request_irq(nvmeq);
1717                 if (result < 0)
1718                         goto release_sq;
1719         }
1720
1721         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1722         mutex_unlock(&dev->shutdown_lock);
1723         return result;
1724
1725 release_sq:
1726         dev->online_queues--;
1727         mutex_unlock(&dev->shutdown_lock);
1728         adapter_delete_sq(dev, qid);
1729 release_cq:
1730         adapter_delete_cq(dev, qid);
1731         return result;
1732 }
1733
1734 static const struct blk_mq_ops nvme_mq_admin_ops = {
1735         .queue_rq       = nvme_queue_rq,
1736         .complete       = nvme_pci_complete_rq,
1737         .init_hctx      = nvme_admin_init_hctx,
1738         .init_request   = nvme_pci_init_request,
1739         .timeout        = nvme_timeout,
1740 };
1741
1742 static const struct blk_mq_ops nvme_mq_ops = {
1743         .queue_rq       = nvme_queue_rq,
1744         .queue_rqs      = nvme_queue_rqs,
1745         .complete       = nvme_pci_complete_rq,
1746         .commit_rqs     = nvme_commit_rqs,
1747         .init_hctx      = nvme_init_hctx,
1748         .init_request   = nvme_pci_init_request,
1749         .map_queues     = nvme_pci_map_queues,
1750         .timeout        = nvme_timeout,
1751         .poll           = nvme_poll,
1752 };
1753
1754 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1755 {
1756         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1757                 /*
1758                  * If the controller was reset during removal, it's possible
1759                  * user requests may be waiting on a stopped queue. Start the
1760                  * queue to flush these to completion.
1761                  */
1762                 nvme_start_admin_queue(&dev->ctrl);
1763                 blk_cleanup_queue(dev->ctrl.admin_q);
1764                 blk_mq_free_tag_set(&dev->admin_tagset);
1765         }
1766 }
1767
1768 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1769 {
1770         if (!dev->ctrl.admin_q) {
1771                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1772                 dev->admin_tagset.nr_hw_queues = 1;
1773
1774                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1775                 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1776                 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1777                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1778                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1779                 dev->admin_tagset.driver_data = dev;
1780
1781                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1782                         return -ENOMEM;
1783                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1784
1785                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1786                 if (IS_ERR(dev->ctrl.admin_q)) {
1787                         blk_mq_free_tag_set(&dev->admin_tagset);
1788                         dev->ctrl.admin_q = NULL;
1789                         return -ENOMEM;
1790                 }
1791                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1792                         nvme_dev_remove_admin(dev);
1793                         dev->ctrl.admin_q = NULL;
1794                         return -ENODEV;
1795                 }
1796         } else
1797                 nvme_start_admin_queue(&dev->ctrl);
1798
1799         return 0;
1800 }
1801
1802 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1803 {
1804         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1805 }
1806
1807 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1808 {
1809         struct pci_dev *pdev = to_pci_dev(dev->dev);
1810
1811         if (size <= dev->bar_mapped_size)
1812                 return 0;
1813         if (size > pci_resource_len(pdev, 0))
1814                 return -ENOMEM;
1815         if (dev->bar)
1816                 iounmap(dev->bar);
1817         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1818         if (!dev->bar) {
1819                 dev->bar_mapped_size = 0;
1820                 return -ENOMEM;
1821         }
1822         dev->bar_mapped_size = size;
1823         dev->dbs = dev->bar + NVME_REG_DBS;
1824
1825         return 0;
1826 }
1827
1828 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1829 {
1830         int result;
1831         u32 aqa;
1832         struct nvme_queue *nvmeq;
1833
1834         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1835         if (result < 0)
1836                 return result;
1837
1838         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1839                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1840
1841         if (dev->subsystem &&
1842             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1843                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1844
1845         result = nvme_disable_ctrl(&dev->ctrl);
1846         if (result < 0)
1847                 return result;
1848
1849         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1850         if (result)
1851                 return result;
1852
1853         dev->ctrl.numa_node = dev_to_node(dev->dev);
1854
1855         nvmeq = &dev->queues[0];
1856         aqa = nvmeq->q_depth - 1;
1857         aqa |= aqa << 16;
1858
1859         writel(aqa, dev->bar + NVME_REG_AQA);
1860         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1861         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1862
1863         result = nvme_enable_ctrl(&dev->ctrl);
1864         if (result)
1865                 return result;
1866
1867         nvmeq->cq_vector = 0;
1868         nvme_init_queue(nvmeq, 0);
1869         result = queue_request_irq(nvmeq);
1870         if (result) {
1871                 dev->online_queues--;
1872                 return result;
1873         }
1874
1875         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1876         return result;
1877 }
1878
1879 static int nvme_create_io_queues(struct nvme_dev *dev)
1880 {
1881         unsigned i, max, rw_queues;
1882         int ret = 0;
1883
1884         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1885                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1886                         ret = -ENOMEM;
1887                         break;
1888                 }
1889         }
1890
1891         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1892         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1893                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1894                                 dev->io_queues[HCTX_TYPE_READ];
1895         } else {
1896                 rw_queues = max;
1897         }
1898
1899         for (i = dev->online_queues; i <= max; i++) {
1900                 bool polled = i > rw_queues;
1901
1902                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1903                 if (ret)
1904                         break;
1905         }
1906
1907         /*
1908          * Ignore failing Create SQ/CQ commands, we can continue with less
1909          * than the desired amount of queues, and even a controller without
1910          * I/O queues can still be used to issue admin commands.  This might
1911          * be useful to upgrade a buggy firmware for example.
1912          */
1913         return ret >= 0 ? 0 : ret;
1914 }
1915
1916 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1917 {
1918         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1919
1920         return 1ULL << (12 + 4 * szu);
1921 }
1922
1923 static u32 nvme_cmb_size(struct nvme_dev *dev)
1924 {
1925         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1926 }
1927
1928 static void nvme_map_cmb(struct nvme_dev *dev)
1929 {
1930         u64 size, offset;
1931         resource_size_t bar_size;
1932         struct pci_dev *pdev = to_pci_dev(dev->dev);
1933         int bar;
1934
1935         if (dev->cmb_size)
1936                 return;
1937
1938         if (NVME_CAP_CMBS(dev->ctrl.cap))
1939                 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1940
1941         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1942         if (!dev->cmbsz)
1943                 return;
1944         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1945
1946         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1947         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1948         bar = NVME_CMB_BIR(dev->cmbloc);
1949         bar_size = pci_resource_len(pdev, bar);
1950
1951         if (offset > bar_size)
1952                 return;
1953
1954         /*
1955          * Tell the controller about the host side address mapping the CMB,
1956          * and enable CMB decoding for the NVMe 1.4+ scheme:
1957          */
1958         if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1959                 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1960                              (pci_bus_address(pdev, bar) + offset),
1961                              dev->bar + NVME_REG_CMBMSC);
1962         }
1963
1964         /*
1965          * Controllers may support a CMB size larger than their BAR,
1966          * for example, due to being behind a bridge. Reduce the CMB to
1967          * the reported size of the BAR
1968          */
1969         if (size > bar_size - offset)
1970                 size = bar_size - offset;
1971
1972         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1973                 dev_warn(dev->ctrl.device,
1974                          "failed to register the CMB\n");
1975                 return;
1976         }
1977
1978         dev->cmb_size = size;
1979         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1980
1981         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1982                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1983                 pci_p2pmem_publish(pdev, true);
1984 }
1985
1986 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1987 {
1988         u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1989         u64 dma_addr = dev->host_mem_descs_dma;
1990         struct nvme_command c = { };
1991         int ret;
1992
1993         c.features.opcode       = nvme_admin_set_features;
1994         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1995         c.features.dword11      = cpu_to_le32(bits);
1996         c.features.dword12      = cpu_to_le32(host_mem_size);
1997         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1998         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1999         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
2000
2001         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2002         if (ret) {
2003                 dev_warn(dev->ctrl.device,
2004                          "failed to set host mem (err %d, flags %#x).\n",
2005                          ret, bits);
2006         } else
2007                 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2008
2009         return ret;
2010 }
2011
2012 static void nvme_free_host_mem(struct nvme_dev *dev)
2013 {
2014         int i;
2015
2016         for (i = 0; i < dev->nr_host_mem_descs; i++) {
2017                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2018                 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2019
2020                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2021                                le64_to_cpu(desc->addr),
2022                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2023         }
2024
2025         kfree(dev->host_mem_desc_bufs);
2026         dev->host_mem_desc_bufs = NULL;
2027         dma_free_coherent(dev->dev,
2028                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2029                         dev->host_mem_descs, dev->host_mem_descs_dma);
2030         dev->host_mem_descs = NULL;
2031         dev->nr_host_mem_descs = 0;
2032 }
2033
2034 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2035                 u32 chunk_size)
2036 {
2037         struct nvme_host_mem_buf_desc *descs;
2038         u32 max_entries, len;
2039         dma_addr_t descs_dma;
2040         int i = 0;
2041         void **bufs;
2042         u64 size, tmp;
2043
2044         tmp = (preferred + chunk_size - 1);
2045         do_div(tmp, chunk_size);
2046         max_entries = tmp;
2047
2048         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2049                 max_entries = dev->ctrl.hmmaxd;
2050
2051         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2052                                    &descs_dma, GFP_KERNEL);
2053         if (!descs)
2054                 goto out;
2055
2056         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2057         if (!bufs)
2058                 goto out_free_descs;
2059
2060         for (size = 0; size < preferred && i < max_entries; size += len) {
2061                 dma_addr_t dma_addr;
2062
2063                 len = min_t(u64, chunk_size, preferred - size);
2064                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2065                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2066                 if (!bufs[i])
2067                         break;
2068
2069                 descs[i].addr = cpu_to_le64(dma_addr);
2070                 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2071                 i++;
2072         }
2073
2074         if (!size)
2075                 goto out_free_bufs;
2076
2077         dev->nr_host_mem_descs = i;
2078         dev->host_mem_size = size;
2079         dev->host_mem_descs = descs;
2080         dev->host_mem_descs_dma = descs_dma;
2081         dev->host_mem_desc_bufs = bufs;
2082         return 0;
2083
2084 out_free_bufs:
2085         while (--i >= 0) {
2086                 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2087
2088                 dma_free_attrs(dev->dev, size, bufs[i],
2089                                le64_to_cpu(descs[i].addr),
2090                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2091         }
2092
2093         kfree(bufs);
2094 out_free_descs:
2095         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2096                         descs_dma);
2097 out:
2098         dev->host_mem_descs = NULL;
2099         return -ENOMEM;
2100 }
2101
2102 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2103 {
2104         u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2105         u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2106         u64 chunk_size;
2107
2108         /* start big and work our way down */
2109         for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2110                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2111                         if (!min || dev->host_mem_size >= min)
2112                                 return 0;
2113                         nvme_free_host_mem(dev);
2114                 }
2115         }
2116
2117         return -ENOMEM;
2118 }
2119
2120 static int nvme_setup_host_mem(struct nvme_dev *dev)
2121 {
2122         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2123         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2124         u64 min = (u64)dev->ctrl.hmmin * 4096;
2125         u32 enable_bits = NVME_HOST_MEM_ENABLE;
2126         int ret;
2127
2128         preferred = min(preferred, max);
2129         if (min > max) {
2130                 dev_warn(dev->ctrl.device,
2131                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2132                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2133                 nvme_free_host_mem(dev);
2134                 return 0;
2135         }
2136
2137         /*
2138          * If we already have a buffer allocated check if we can reuse it.
2139          */
2140         if (dev->host_mem_descs) {
2141                 if (dev->host_mem_size >= min)
2142                         enable_bits |= NVME_HOST_MEM_RETURN;
2143                 else
2144                         nvme_free_host_mem(dev);
2145         }
2146
2147         if (!dev->host_mem_descs) {
2148                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2149                         dev_warn(dev->ctrl.device,
2150                                 "failed to allocate host memory buffer.\n");
2151                         return 0; /* controller must work without HMB */
2152                 }
2153
2154                 dev_info(dev->ctrl.device,
2155                         "allocated %lld MiB host memory buffer.\n",
2156                         dev->host_mem_size >> ilog2(SZ_1M));
2157         }
2158
2159         ret = nvme_set_host_mem(dev, enable_bits);
2160         if (ret)
2161                 nvme_free_host_mem(dev);
2162         return ret;
2163 }
2164
2165 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2166                 char *buf)
2167 {
2168         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2169
2170         return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2171                        ndev->cmbloc, ndev->cmbsz);
2172 }
2173 static DEVICE_ATTR_RO(cmb);
2174
2175 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2176                 char *buf)
2177 {
2178         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2179
2180         return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2181 }
2182 static DEVICE_ATTR_RO(cmbloc);
2183
2184 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2185                 char *buf)
2186 {
2187         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2188
2189         return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2190 }
2191 static DEVICE_ATTR_RO(cmbsz);
2192
2193 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2194                         char *buf)
2195 {
2196         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2197
2198         return sysfs_emit(buf, "%d\n", ndev->hmb);
2199 }
2200
2201 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2202                          const char *buf, size_t count)
2203 {
2204         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2205         bool new;
2206         int ret;
2207
2208         if (strtobool(buf, &new) < 0)
2209                 return -EINVAL;
2210
2211         if (new == ndev->hmb)
2212                 return count;
2213
2214         if (new) {
2215                 ret = nvme_setup_host_mem(ndev);
2216         } else {
2217                 ret = nvme_set_host_mem(ndev, 0);
2218                 if (!ret)
2219                         nvme_free_host_mem(ndev);
2220         }
2221
2222         if (ret < 0)
2223                 return ret;
2224
2225         return count;
2226 }
2227 static DEVICE_ATTR_RW(hmb);
2228
2229 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2230                 struct attribute *a, int n)
2231 {
2232         struct nvme_ctrl *ctrl =
2233                 dev_get_drvdata(container_of(kobj, struct device, kobj));
2234         struct nvme_dev *dev = to_nvme_dev(ctrl);
2235
2236         if (a == &dev_attr_cmb.attr ||
2237             a == &dev_attr_cmbloc.attr ||
2238             a == &dev_attr_cmbsz.attr) {
2239                 if (!dev->cmbsz)
2240                         return 0;
2241         }
2242         if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2243                 return 0;
2244
2245         return a->mode;
2246 }
2247
2248 static struct attribute *nvme_pci_attrs[] = {
2249         &dev_attr_cmb.attr,
2250         &dev_attr_cmbloc.attr,
2251         &dev_attr_cmbsz.attr,
2252         &dev_attr_hmb.attr,
2253         NULL,
2254 };
2255
2256 static const struct attribute_group nvme_pci_attr_group = {
2257         .attrs          = nvme_pci_attrs,
2258         .is_visible     = nvme_pci_attrs_are_visible,
2259 };
2260
2261 /*
2262  * nirqs is the number of interrupts available for write and read
2263  * queues. The core already reserved an interrupt for the admin queue.
2264  */
2265 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2266 {
2267         struct nvme_dev *dev = affd->priv;
2268         unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2269
2270         /*
2271          * If there is no interrupt available for queues, ensure that
2272          * the default queue is set to 1. The affinity set size is
2273          * also set to one, but the irq core ignores it for this case.
2274          *
2275          * If only one interrupt is available or 'write_queue' == 0, combine
2276          * write and read queues.
2277          *
2278          * If 'write_queues' > 0, ensure it leaves room for at least one read
2279          * queue.
2280          */
2281         if (!nrirqs) {
2282                 nrirqs = 1;
2283                 nr_read_queues = 0;
2284         } else if (nrirqs == 1 || !nr_write_queues) {
2285                 nr_read_queues = 0;
2286         } else if (nr_write_queues >= nrirqs) {
2287                 nr_read_queues = 1;
2288         } else {
2289                 nr_read_queues = nrirqs - nr_write_queues;
2290         }
2291
2292         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2293         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2294         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2295         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2296         affd->nr_sets = nr_read_queues ? 2 : 1;
2297 }
2298
2299 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2300 {
2301         struct pci_dev *pdev = to_pci_dev(dev->dev);
2302         struct irq_affinity affd = {
2303                 .pre_vectors    = 1,
2304                 .calc_sets      = nvme_calc_irq_sets,
2305                 .priv           = dev,
2306         };
2307         unsigned int irq_queues, poll_queues;
2308
2309         /*
2310          * Poll queues don't need interrupts, but we need at least one I/O queue
2311          * left over for non-polled I/O.
2312          */
2313         poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2314         dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2315
2316         /*
2317          * Initialize for the single interrupt case, will be updated in
2318          * nvme_calc_irq_sets().
2319          */
2320         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2321         dev->io_queues[HCTX_TYPE_READ] = 0;
2322
2323         /*
2324          * We need interrupts for the admin queue and each non-polled I/O queue,
2325          * but some Apple controllers require all queues to use the first
2326          * vector.
2327          */
2328         irq_queues = 1;
2329         if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2330                 irq_queues += (nr_io_queues - poll_queues);
2331         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2332                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2333 }
2334
2335 static void nvme_disable_io_queues(struct nvme_dev *dev)
2336 {
2337         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2338                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2339 }
2340
2341 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2342 {
2343         /*
2344          * If tags are shared with admin queue (Apple bug), then
2345          * make sure we only use one IO queue.
2346          */
2347         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2348                 return 1;
2349         return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2350 }
2351
2352 static int nvme_setup_io_queues(struct nvme_dev *dev)
2353 {
2354         struct nvme_queue *adminq = &dev->queues[0];
2355         struct pci_dev *pdev = to_pci_dev(dev->dev);
2356         unsigned int nr_io_queues;
2357         unsigned long size;
2358         int result;
2359
2360         /*
2361          * Sample the module parameters once at reset time so that we have
2362          * stable values to work with.
2363          */
2364         dev->nr_write_queues = write_queues;
2365         dev->nr_poll_queues = poll_queues;
2366
2367         nr_io_queues = dev->nr_allocated_queues - 1;
2368         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2369         if (result < 0)
2370                 return result;
2371
2372         if (nr_io_queues == 0)
2373                 return 0;
2374
2375         /*
2376          * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2377          * from set to unset. If there is a window to it is truely freed,
2378          * pci_free_irq_vectors() jumping into this window will crash.
2379          * And take lock to avoid racing with pci_free_irq_vectors() in
2380          * nvme_dev_disable() path.
2381          */
2382         result = nvme_setup_io_queues_trylock(dev);
2383         if (result)
2384                 return result;
2385         if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2386                 pci_free_irq(pdev, 0, adminq);
2387
2388         if (dev->cmb_use_sqes) {
2389                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2390                                 sizeof(struct nvme_command));
2391                 if (result > 0)
2392                         dev->q_depth = result;
2393                 else
2394                         dev->cmb_use_sqes = false;
2395         }
2396
2397         do {
2398                 size = db_bar_size(dev, nr_io_queues);
2399                 result = nvme_remap_bar(dev, size);
2400                 if (!result)
2401                         break;
2402                 if (!--nr_io_queues) {
2403                         result = -ENOMEM;
2404                         goto out_unlock;
2405                 }
2406         } while (1);
2407         adminq->q_db = dev->dbs;
2408
2409  retry:
2410         /* Deregister the admin queue's interrupt */
2411         if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2412                 pci_free_irq(pdev, 0, adminq);
2413
2414         /*
2415          * If we enable msix early due to not intx, disable it again before
2416          * setting up the full range we need.
2417          */
2418         pci_free_irq_vectors(pdev);
2419
2420         result = nvme_setup_irqs(dev, nr_io_queues);
2421         if (result <= 0) {
2422                 result = -EIO;
2423                 goto out_unlock;
2424         }
2425
2426         dev->num_vecs = result;
2427         result = max(result - 1, 1);
2428         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2429
2430         /*
2431          * Should investigate if there's a performance win from allocating
2432          * more queues than interrupt vectors; it might allow the submission
2433          * path to scale better, even if the receive path is limited by the
2434          * number of interrupts.
2435          */
2436         result = queue_request_irq(adminq);
2437         if (result)
2438                 goto out_unlock;
2439         set_bit(NVMEQ_ENABLED, &adminq->flags);
2440         mutex_unlock(&dev->shutdown_lock);
2441
2442         result = nvme_create_io_queues(dev);
2443         if (result || dev->online_queues < 2)
2444                 return result;
2445
2446         if (dev->online_queues - 1 < dev->max_qid) {
2447                 nr_io_queues = dev->online_queues - 1;
2448                 nvme_disable_io_queues(dev);
2449                 result = nvme_setup_io_queues_trylock(dev);
2450                 if (result)
2451                         return result;
2452                 nvme_suspend_io_queues(dev);
2453                 goto retry;
2454         }
2455         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2456                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2457                                         dev->io_queues[HCTX_TYPE_READ],
2458                                         dev->io_queues[HCTX_TYPE_POLL]);
2459         return 0;
2460 out_unlock:
2461         mutex_unlock(&dev->shutdown_lock);
2462         return result;
2463 }
2464
2465 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2466 {
2467         struct nvme_queue *nvmeq = req->end_io_data;
2468
2469         blk_mq_free_request(req);
2470         complete(&nvmeq->delete_done);
2471 }
2472
2473 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2474 {
2475         struct nvme_queue *nvmeq = req->end_io_data;
2476
2477         if (error)
2478                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2479
2480         nvme_del_queue_end(req, error);
2481 }
2482
2483 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2484 {
2485         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2486         struct request *req;
2487         struct nvme_command cmd = { };
2488
2489         cmd.delete_queue.opcode = opcode;
2490         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2491
2492         req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2493         if (IS_ERR(req))
2494                 return PTR_ERR(req);
2495         nvme_init_request(req, &cmd);
2496
2497         if (opcode == nvme_admin_delete_cq)
2498                 req->end_io = nvme_del_cq_end;
2499         else
2500                 req->end_io = nvme_del_queue_end;
2501         req->end_io_data = nvmeq;
2502
2503         init_completion(&nvmeq->delete_done);
2504         req->rq_flags |= RQF_QUIET;
2505         blk_execute_rq_nowait(req, false);
2506         return 0;
2507 }
2508
2509 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2510 {
2511         int nr_queues = dev->online_queues - 1, sent = 0;
2512         unsigned long timeout;
2513
2514  retry:
2515         timeout = NVME_ADMIN_TIMEOUT;
2516         while (nr_queues > 0) {
2517                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2518                         break;
2519                 nr_queues--;
2520                 sent++;
2521         }
2522         while (sent) {
2523                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2524
2525                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2526                                 timeout);
2527                 if (timeout == 0)
2528                         return false;
2529
2530                 sent--;
2531                 if (nr_queues)
2532                         goto retry;
2533         }
2534         return true;
2535 }
2536
2537 static void nvme_dev_add(struct nvme_dev *dev)
2538 {
2539         int ret;
2540
2541         if (!dev->ctrl.tagset) {
2542                 dev->tagset.ops = &nvme_mq_ops;
2543                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2544                 dev->tagset.nr_maps = 2; /* default + read */
2545                 if (dev->io_queues[HCTX_TYPE_POLL])
2546                         dev->tagset.nr_maps++;
2547                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2548                 dev->tagset.numa_node = dev->ctrl.numa_node;
2549                 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2550                                                 BLK_MQ_MAX_DEPTH) - 1;
2551                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2552                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2553                 dev->tagset.driver_data = dev;
2554
2555                 /*
2556                  * Some Apple controllers requires tags to be unique
2557                  * across admin and IO queue, so reserve the first 32
2558                  * tags of the IO queue.
2559                  */
2560                 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2561                         dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2562
2563                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2564                 if (ret) {
2565                         dev_warn(dev->ctrl.device,
2566                                 "IO queues tagset allocation failed %d\n", ret);
2567                         return;
2568                 }
2569                 dev->ctrl.tagset = &dev->tagset;
2570         } else {
2571                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2572
2573                 /* Free previously allocated queues that are no longer usable */
2574                 nvme_free_queues(dev, dev->online_queues);
2575         }
2576
2577         nvme_dbbuf_set(dev);
2578 }
2579
2580 static int nvme_pci_enable(struct nvme_dev *dev)
2581 {
2582         int result = -ENOMEM;
2583         struct pci_dev *pdev = to_pci_dev(dev->dev);
2584         int dma_address_bits = 64;
2585
2586         if (pci_enable_device_mem(pdev))
2587                 return result;
2588
2589         pci_set_master(pdev);
2590
2591         if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2592                 dma_address_bits = 48;
2593         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2594                 goto disable;
2595
2596         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2597                 result = -ENODEV;
2598                 goto disable;
2599         }
2600
2601         /*
2602          * Some devices and/or platforms don't advertise or work with INTx
2603          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2604          * adjust this later.
2605          */
2606         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2607         if (result < 0)
2608                 return result;
2609
2610         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2611
2612         dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2613                                 io_queue_depth);
2614         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2615         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2616         dev->dbs = dev->bar + 4096;
2617
2618         /*
2619          * Some Apple controllers require a non-standard SQE size.
2620          * Interestingly they also seem to ignore the CC:IOSQES register
2621          * so we don't bother updating it here.
2622          */
2623         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2624                 dev->io_sqes = 7;
2625         else
2626                 dev->io_sqes = NVME_NVM_IOSQES;
2627
2628         /*
2629          * Temporary fix for the Apple controller found in the MacBook8,1 and
2630          * some MacBook7,1 to avoid controller resets and data loss.
2631          */
2632         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2633                 dev->q_depth = 2;
2634                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2635                         "set queue depth=%u to work around controller resets\n",
2636                         dev->q_depth);
2637         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2638                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2639                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2640                 dev->q_depth = 64;
2641                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2642                         "set queue depth=%u\n", dev->q_depth);
2643         }
2644
2645         /*
2646          * Controllers with the shared tags quirk need the IO queue to be
2647          * big enough so that we get 32 tags for the admin queue
2648          */
2649         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2650             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2651                 dev->q_depth = NVME_AQ_DEPTH + 2;
2652                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2653                          dev->q_depth);
2654         }
2655
2656
2657         nvme_map_cmb(dev);
2658
2659         pci_enable_pcie_error_reporting(pdev);
2660         pci_save_state(pdev);
2661         return 0;
2662
2663  disable:
2664         pci_disable_device(pdev);
2665         return result;
2666 }
2667
2668 static void nvme_dev_unmap(struct nvme_dev *dev)
2669 {
2670         if (dev->bar)
2671                 iounmap(dev->bar);
2672         pci_release_mem_regions(to_pci_dev(dev->dev));
2673 }
2674
2675 static void nvme_pci_disable(struct nvme_dev *dev)
2676 {
2677         struct pci_dev *pdev = to_pci_dev(dev->dev);
2678
2679         pci_free_irq_vectors(pdev);
2680
2681         if (pci_is_enabled(pdev)) {
2682                 pci_disable_pcie_error_reporting(pdev);
2683                 pci_disable_device(pdev);
2684         }
2685 }
2686
2687 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2688 {
2689         bool dead = true, freeze = false;
2690         struct pci_dev *pdev = to_pci_dev(dev->dev);
2691
2692         mutex_lock(&dev->shutdown_lock);
2693         if (pci_device_is_present(pdev) && pci_is_enabled(pdev)) {
2694                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2695
2696                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2697                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2698                         freeze = true;
2699                         nvme_start_freeze(&dev->ctrl);
2700                 }
2701                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2702                         pdev->error_state  != pci_channel_io_normal);
2703         }
2704
2705         /*
2706          * Give the controller a chance to complete all entered requests if
2707          * doing a safe shutdown.
2708          */
2709         if (!dead && shutdown && freeze)
2710                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2711
2712         nvme_stop_queues(&dev->ctrl);
2713
2714         if (!dead && dev->ctrl.queue_count > 0) {
2715                 nvme_disable_io_queues(dev);
2716                 nvme_disable_admin_queue(dev, shutdown);
2717         }
2718         nvme_suspend_io_queues(dev);
2719         nvme_suspend_queue(&dev->queues[0]);
2720         nvme_pci_disable(dev);
2721         nvme_reap_pending_cqes(dev);
2722
2723         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2724         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2725         blk_mq_tagset_wait_completed_request(&dev->tagset);
2726         blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2727
2728         /*
2729          * The driver will not be starting up queues again if shutting down so
2730          * must flush all entered requests to their failed completion to avoid
2731          * deadlocking blk-mq hot-cpu notifier.
2732          */
2733         if (shutdown) {
2734                 nvme_start_queues(&dev->ctrl);
2735                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2736                         nvme_start_admin_queue(&dev->ctrl);
2737         }
2738         mutex_unlock(&dev->shutdown_lock);
2739 }
2740
2741 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2742 {
2743         if (!nvme_wait_reset(&dev->ctrl))
2744                 return -EBUSY;
2745         nvme_dev_disable(dev, shutdown);
2746         return 0;
2747 }
2748
2749 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2750 {
2751         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2752                                                 NVME_CTRL_PAGE_SIZE,
2753                                                 NVME_CTRL_PAGE_SIZE, 0);
2754         if (!dev->prp_page_pool)
2755                 return -ENOMEM;
2756
2757         /* Optimisation for I/Os between 4k and 128k */
2758         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2759                                                 256, 256, 0);
2760         if (!dev->prp_small_pool) {
2761                 dma_pool_destroy(dev->prp_page_pool);
2762                 return -ENOMEM;
2763         }
2764         return 0;
2765 }
2766
2767 static void nvme_release_prp_pools(struct nvme_dev *dev)
2768 {
2769         dma_pool_destroy(dev->prp_page_pool);
2770         dma_pool_destroy(dev->prp_small_pool);
2771 }
2772
2773 static void nvme_free_tagset(struct nvme_dev *dev)
2774 {
2775         if (dev->tagset.tags)
2776                 blk_mq_free_tag_set(&dev->tagset);
2777         dev->ctrl.tagset = NULL;
2778 }
2779
2780 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2781 {
2782         struct nvme_dev *dev = to_nvme_dev(ctrl);
2783
2784         nvme_dbbuf_dma_free(dev);
2785         nvme_free_tagset(dev);
2786         if (dev->ctrl.admin_q)
2787                 blk_put_queue(dev->ctrl.admin_q);
2788         free_opal_dev(dev->ctrl.opal_dev);
2789         mempool_destroy(dev->iod_mempool);
2790         put_device(dev->dev);
2791         kfree(dev->queues);
2792         kfree(dev);
2793 }
2794
2795 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2796 {
2797         /*
2798          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2799          * may be holding this pci_dev's device lock.
2800          */
2801         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2802         nvme_get_ctrl(&dev->ctrl);
2803         nvme_dev_disable(dev, false);
2804         nvme_kill_queues(&dev->ctrl);
2805         if (!queue_work(nvme_wq, &dev->remove_work))
2806                 nvme_put_ctrl(&dev->ctrl);
2807 }
2808
2809 static void nvme_reset_work(struct work_struct *work)
2810 {
2811         struct nvme_dev *dev =
2812                 container_of(work, struct nvme_dev, ctrl.reset_work);
2813         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2814         int result;
2815
2816         if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2817                 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2818                          dev->ctrl.state);
2819                 result = -ENODEV;
2820                 goto out;
2821         }
2822
2823         /*
2824          * If we're called to reset a live controller first shut it down before
2825          * moving on.
2826          */
2827         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2828                 nvme_dev_disable(dev, false);
2829         nvme_sync_queues(&dev->ctrl);
2830
2831         mutex_lock(&dev->shutdown_lock);
2832         result = nvme_pci_enable(dev);
2833         if (result)
2834                 goto out_unlock;
2835
2836         result = nvme_pci_configure_admin_queue(dev);
2837         if (result)
2838                 goto out_unlock;
2839
2840         result = nvme_alloc_admin_tags(dev);
2841         if (result)
2842                 goto out_unlock;
2843
2844         /*
2845          * Limit the max command size to prevent iod->sg allocations going
2846          * over a single page.
2847          */
2848         dev->ctrl.max_hw_sectors = min_t(u32,
2849                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2850         dev->ctrl.max_segments = NVME_MAX_SEGS;
2851
2852         /*
2853          * Don't limit the IOMMU merged segment size.
2854          */
2855         dma_set_max_seg_size(dev->dev, 0xffffffff);
2856         dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2857
2858         mutex_unlock(&dev->shutdown_lock);
2859
2860         /*
2861          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2862          * initializing procedure here.
2863          */
2864         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2865                 dev_warn(dev->ctrl.device,
2866                         "failed to mark controller CONNECTING\n");
2867                 result = -EBUSY;
2868                 goto out;
2869         }
2870
2871         /*
2872          * We do not support an SGL for metadata (yet), so we are limited to a
2873          * single integrity segment for the separate metadata pointer.
2874          */
2875         dev->ctrl.max_integrity_segments = 1;
2876
2877         result = nvme_init_ctrl_finish(&dev->ctrl);
2878         if (result)
2879                 goto out;
2880
2881         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2882                 if (!dev->ctrl.opal_dev)
2883                         dev->ctrl.opal_dev =
2884                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2885                 else if (was_suspend)
2886                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2887         } else {
2888                 free_opal_dev(dev->ctrl.opal_dev);
2889                 dev->ctrl.opal_dev = NULL;
2890         }
2891
2892         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2893                 result = nvme_dbbuf_dma_alloc(dev);
2894                 if (result)
2895                         dev_warn(dev->dev,
2896                                  "unable to allocate dma for dbbuf\n");
2897         }
2898
2899         if (dev->ctrl.hmpre) {
2900                 result = nvme_setup_host_mem(dev);
2901                 if (result < 0)
2902                         goto out;
2903         }
2904
2905         result = nvme_setup_io_queues(dev);
2906         if (result)
2907                 goto out;
2908
2909         /*
2910          * Keep the controller around but remove all namespaces if we don't have
2911          * any working I/O queue.
2912          */
2913         if (dev->online_queues < 2) {
2914                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2915                 nvme_kill_queues(&dev->ctrl);
2916                 nvme_remove_namespaces(&dev->ctrl);
2917                 nvme_free_tagset(dev);
2918         } else {
2919                 nvme_start_queues(&dev->ctrl);
2920                 nvme_wait_freeze(&dev->ctrl);
2921                 nvme_dev_add(dev);
2922                 nvme_unfreeze(&dev->ctrl);
2923         }
2924
2925         /*
2926          * If only admin queue live, keep it to do further investigation or
2927          * recovery.
2928          */
2929         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2930                 dev_warn(dev->ctrl.device,
2931                         "failed to mark controller live state\n");
2932                 result = -ENODEV;
2933                 goto out;
2934         }
2935
2936         if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2937                         &nvme_pci_attr_group))
2938                 dev->attrs_added = true;
2939
2940         nvme_start_ctrl(&dev->ctrl);
2941         return;
2942
2943  out_unlock:
2944         mutex_unlock(&dev->shutdown_lock);
2945  out:
2946         if (result)
2947                 dev_warn(dev->ctrl.device,
2948                          "Removing after probe failure status: %d\n", result);
2949         nvme_remove_dead_ctrl(dev);
2950 }
2951
2952 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2953 {
2954         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2955         struct pci_dev *pdev = to_pci_dev(dev->dev);
2956
2957         if (pci_get_drvdata(pdev))
2958                 device_release_driver(&pdev->dev);
2959         nvme_put_ctrl(&dev->ctrl);
2960 }
2961
2962 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2963 {
2964         *val = readl(to_nvme_dev(ctrl)->bar + off);
2965         return 0;
2966 }
2967
2968 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2969 {
2970         writel(val, to_nvme_dev(ctrl)->bar + off);
2971         return 0;
2972 }
2973
2974 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2975 {
2976         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2977         return 0;
2978 }
2979
2980 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2981 {
2982         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2983
2984         return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2985 }
2986
2987
2988 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2989 {
2990         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2991         struct nvme_subsystem *subsys = ctrl->subsys;
2992
2993         dev_err(ctrl->device,
2994                 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2995                 pdev->vendor, pdev->device,
2996                 nvme_strlen(subsys->model, sizeof(subsys->model)),
2997                 subsys->model, nvme_strlen(subsys->firmware_rev,
2998                                            sizeof(subsys->firmware_rev)),
2999                 subsys->firmware_rev);
3000 }
3001
3002 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3003         .name                   = "pcie",
3004         .module                 = THIS_MODULE,
3005         .flags                  = NVME_F_METADATA_SUPPORTED |
3006                                   NVME_F_PCI_P2PDMA,
3007         .reg_read32             = nvme_pci_reg_read32,
3008         .reg_write32            = nvme_pci_reg_write32,
3009         .reg_read64             = nvme_pci_reg_read64,
3010         .free_ctrl              = nvme_pci_free_ctrl,
3011         .submit_async_event     = nvme_pci_submit_async_event,
3012         .get_address            = nvme_pci_get_address,
3013         .print_device_info      = nvme_pci_print_device_info,
3014 };
3015
3016 static int nvme_dev_map(struct nvme_dev *dev)
3017 {
3018         struct pci_dev *pdev = to_pci_dev(dev->dev);
3019
3020         if (pci_request_mem_regions(pdev, "nvme"))
3021                 return -ENODEV;
3022
3023         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3024                 goto release;
3025
3026         return 0;
3027   release:
3028         pci_release_mem_regions(pdev);
3029         return -ENODEV;
3030 }
3031
3032 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3033 {
3034         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3035                 /*
3036                  * Several Samsung devices seem to drop off the PCIe bus
3037                  * randomly when APST is on and uses the deepest sleep state.
3038                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3039                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3040                  * 950 PRO 256GB", but it seems to be restricted to two Dell
3041                  * laptops.
3042                  */
3043                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3044                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3045                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3046                         return NVME_QUIRK_NO_DEEPEST_PS;
3047         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3048                 /*
3049                  * Samsung SSD 960 EVO drops off the PCIe bus after system
3050                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3051                  * within few minutes after bootup on a Coffee Lake board -
3052                  * ASUS PRIME Z370-A
3053                  */
3054                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3055                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3056                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3057                         return NVME_QUIRK_NO_APST;
3058         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3059                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3060                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3061                 /*
3062                  * Forcing to use host managed nvme power settings for
3063                  * lowest idle power with quick resume latency on
3064                  * Samsung and Toshiba SSDs based on suspend behavior
3065                  * on Coffee Lake board for LENOVO C640
3066                  */
3067                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3068                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3069                         return NVME_QUIRK_SIMPLE_SUSPEND;
3070         }
3071
3072         return 0;
3073 }
3074
3075 static void nvme_async_probe(void *data, async_cookie_t cookie)
3076 {
3077         struct nvme_dev *dev = data;
3078
3079         flush_work(&dev->ctrl.reset_work);
3080         flush_work(&dev->ctrl.scan_work);
3081         nvme_put_ctrl(&dev->ctrl);
3082 }
3083
3084 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3085 {
3086         int node, result = -ENOMEM;
3087         struct nvme_dev *dev;
3088         unsigned long quirks = id->driver_data;
3089         size_t alloc_size;
3090
3091         node = dev_to_node(&pdev->dev);
3092         if (node == NUMA_NO_NODE)
3093                 set_dev_node(&pdev->dev, first_memory_node);
3094
3095         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3096         if (!dev)
3097                 return -ENOMEM;
3098
3099         dev->nr_write_queues = write_queues;
3100         dev->nr_poll_queues = poll_queues;
3101         dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3102         dev->queues = kcalloc_node(dev->nr_allocated_queues,
3103                         sizeof(struct nvme_queue), GFP_KERNEL, node);
3104         if (!dev->queues)
3105                 goto free;
3106
3107         dev->dev = get_device(&pdev->dev);
3108         pci_set_drvdata(pdev, dev);
3109
3110         result = nvme_dev_map(dev);
3111         if (result)
3112                 goto put_pci;
3113
3114         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3115         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3116         mutex_init(&dev->shutdown_lock);
3117
3118         result = nvme_setup_prp_pools(dev);
3119         if (result)
3120                 goto unmap;
3121
3122         quirks |= check_vendor_combination_bug(pdev);
3123
3124         if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3125                 /*
3126                  * Some systems use a bios work around to ask for D3 on
3127                  * platforms that support kernel managed suspend.
3128                  */
3129                 dev_info(&pdev->dev,
3130                          "platform quirk: setting simple suspend\n");
3131                 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3132         }
3133
3134         /*
3135          * Double check that our mempool alloc size will cover the biggest
3136          * command we support.
3137          */
3138         alloc_size = nvme_pci_iod_alloc_size();
3139         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3140
3141         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3142                                                 mempool_kfree,
3143                                                 (void *) alloc_size,
3144                                                 GFP_KERNEL, node);
3145         if (!dev->iod_mempool) {
3146                 result = -ENOMEM;
3147                 goto release_pools;
3148         }
3149
3150         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3151                         quirks);
3152         if (result)
3153                 goto release_mempool;
3154
3155         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3156
3157         nvme_reset_ctrl(&dev->ctrl);
3158         async_schedule(nvme_async_probe, dev);
3159
3160         return 0;
3161
3162  release_mempool:
3163         mempool_destroy(dev->iod_mempool);
3164  release_pools:
3165         nvme_release_prp_pools(dev);
3166  unmap:
3167         nvme_dev_unmap(dev);
3168  put_pci:
3169         put_device(dev->dev);
3170  free:
3171         kfree(dev->queues);
3172         kfree(dev);
3173         return result;
3174 }
3175
3176 static void nvme_reset_prepare(struct pci_dev *pdev)
3177 {
3178         struct nvme_dev *dev = pci_get_drvdata(pdev);
3179
3180         /*
3181          * We don't need to check the return value from waiting for the reset
3182          * state as pci_dev device lock is held, making it impossible to race
3183          * with ->remove().
3184          */
3185         nvme_disable_prepare_reset(dev, false);
3186         nvme_sync_queues(&dev->ctrl);
3187 }
3188
3189 static void nvme_reset_done(struct pci_dev *pdev)
3190 {
3191         struct nvme_dev *dev = pci_get_drvdata(pdev);
3192
3193         if (!nvme_try_sched_reset(&dev->ctrl))
3194                 flush_work(&dev->ctrl.reset_work);
3195 }
3196
3197 static void nvme_shutdown(struct pci_dev *pdev)
3198 {
3199         struct nvme_dev *dev = pci_get_drvdata(pdev);
3200
3201         nvme_disable_prepare_reset(dev, true);
3202 }
3203
3204 static void nvme_remove_attrs(struct nvme_dev *dev)
3205 {
3206         if (dev->attrs_added)
3207                 sysfs_remove_group(&dev->ctrl.device->kobj,
3208                                    &nvme_pci_attr_group);
3209 }
3210
3211 /*
3212  * The driver's remove may be called on a device in a partially initialized
3213  * state. This function must not have any dependencies on the device state in
3214  * order to proceed.
3215  */
3216 static void nvme_remove(struct pci_dev *pdev)
3217 {
3218         struct nvme_dev *dev = pci_get_drvdata(pdev);
3219
3220         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3221         pci_set_drvdata(pdev, NULL);
3222
3223         if (!pci_device_is_present(pdev)) {
3224                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3225                 nvme_dev_disable(dev, true);
3226         }
3227
3228         flush_work(&dev->ctrl.reset_work);
3229         nvme_stop_ctrl(&dev->ctrl);
3230         nvme_remove_namespaces(&dev->ctrl);
3231         nvme_dev_disable(dev, true);
3232         nvme_remove_attrs(dev);
3233         nvme_free_host_mem(dev);
3234         nvme_dev_remove_admin(dev);
3235         nvme_free_queues(dev, 0);
3236         nvme_release_prp_pools(dev);
3237         nvme_dev_unmap(dev);
3238         nvme_uninit_ctrl(&dev->ctrl);
3239 }
3240
3241 #ifdef CONFIG_PM_SLEEP
3242 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3243 {
3244         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3245 }
3246
3247 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3248 {
3249         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3250 }
3251
3252 static int nvme_resume(struct device *dev)
3253 {
3254         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3255         struct nvme_ctrl *ctrl = &ndev->ctrl;
3256
3257         if (ndev->last_ps == U32_MAX ||
3258             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3259                 goto reset;
3260         if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3261                 goto reset;
3262
3263         return 0;
3264 reset:
3265         return nvme_try_sched_reset(ctrl);
3266 }
3267
3268 static int nvme_suspend(struct device *dev)
3269 {
3270         struct pci_dev *pdev = to_pci_dev(dev);
3271         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3272         struct nvme_ctrl *ctrl = &ndev->ctrl;
3273         int ret = -EBUSY;
3274
3275         ndev->last_ps = U32_MAX;
3276
3277         /*
3278          * The platform does not remove power for a kernel managed suspend so
3279          * use host managed nvme power settings for lowest idle power if
3280          * possible. This should have quicker resume latency than a full device
3281          * shutdown.  But if the firmware is involved after the suspend or the
3282          * device does not support any non-default power states, shut down the
3283          * device fully.
3284          *
3285          * If ASPM is not enabled for the device, shut down the device and allow
3286          * the PCI bus layer to put it into D3 in order to take the PCIe link
3287          * down, so as to allow the platform to achieve its minimum low-power
3288          * state (which may not be possible if the link is up).
3289          */
3290         if (pm_suspend_via_firmware() || !ctrl->npss ||
3291             !pcie_aspm_enabled(pdev) ||
3292             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3293                 return nvme_disable_prepare_reset(ndev, true);
3294
3295         nvme_start_freeze(ctrl);
3296         nvme_wait_freeze(ctrl);
3297         nvme_sync_queues(ctrl);
3298
3299         if (ctrl->state != NVME_CTRL_LIVE)
3300                 goto unfreeze;
3301
3302         /*
3303          * Host memory access may not be successful in a system suspend state,
3304          * but the specification allows the controller to access memory in a
3305          * non-operational power state.
3306          */
3307         if (ndev->hmb) {
3308                 ret = nvme_set_host_mem(ndev, 0);
3309                 if (ret < 0)
3310                         goto unfreeze;
3311         }
3312
3313         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3314         if (ret < 0)
3315                 goto unfreeze;
3316
3317         /*
3318          * A saved state prevents pci pm from generically controlling the
3319          * device's power. If we're using protocol specific settings, we don't
3320          * want pci interfering.
3321          */
3322         pci_save_state(pdev);
3323
3324         ret = nvme_set_power_state(ctrl, ctrl->npss);
3325         if (ret < 0)
3326                 goto unfreeze;
3327
3328         if (ret) {
3329                 /* discard the saved state */
3330                 pci_load_saved_state(pdev, NULL);
3331
3332                 /*
3333                  * Clearing npss forces a controller reset on resume. The
3334                  * correct value will be rediscovered then.
3335                  */
3336                 ret = nvme_disable_prepare_reset(ndev, true);
3337                 ctrl->npss = 0;
3338         }
3339 unfreeze:
3340         nvme_unfreeze(ctrl);
3341         return ret;
3342 }
3343
3344 static int nvme_simple_suspend(struct device *dev)
3345 {
3346         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3347
3348         return nvme_disable_prepare_reset(ndev, true);
3349 }
3350
3351 static int nvme_simple_resume(struct device *dev)
3352 {
3353         struct pci_dev *pdev = to_pci_dev(dev);
3354         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3355
3356         return nvme_try_sched_reset(&ndev->ctrl);
3357 }
3358
3359 static const struct dev_pm_ops nvme_dev_pm_ops = {
3360         .suspend        = nvme_suspend,
3361         .resume         = nvme_resume,
3362         .freeze         = nvme_simple_suspend,
3363         .thaw           = nvme_simple_resume,
3364         .poweroff       = nvme_simple_suspend,
3365         .restore        = nvme_simple_resume,
3366 };
3367 #endif /* CONFIG_PM_SLEEP */
3368
3369 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3370                                                 pci_channel_state_t state)
3371 {
3372         struct nvme_dev *dev = pci_get_drvdata(pdev);
3373
3374         /*
3375          * A frozen channel requires a reset. When detected, this method will
3376          * shutdown the controller to quiesce. The controller will be restarted
3377          * after the slot reset through driver's slot_reset callback.
3378          */
3379         switch (state) {
3380         case pci_channel_io_normal:
3381                 return PCI_ERS_RESULT_CAN_RECOVER;
3382         case pci_channel_io_frozen:
3383                 dev_warn(dev->ctrl.device,
3384                         "frozen state error detected, reset controller\n");
3385                 nvme_dev_disable(dev, false);
3386                 return PCI_ERS_RESULT_NEED_RESET;
3387         case pci_channel_io_perm_failure:
3388                 dev_warn(dev->ctrl.device,
3389                         "failure state error detected, request disconnect\n");
3390                 return PCI_ERS_RESULT_DISCONNECT;
3391         }
3392         return PCI_ERS_RESULT_NEED_RESET;
3393 }
3394
3395 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3396 {
3397         struct nvme_dev *dev = pci_get_drvdata(pdev);
3398
3399         dev_info(dev->ctrl.device, "restart after slot reset\n");
3400         pci_restore_state(pdev);
3401         nvme_reset_ctrl(&dev->ctrl);
3402         return PCI_ERS_RESULT_RECOVERED;
3403 }
3404
3405 static void nvme_error_resume(struct pci_dev *pdev)
3406 {
3407         struct nvme_dev *dev = pci_get_drvdata(pdev);
3408
3409         flush_work(&dev->ctrl.reset_work);
3410 }
3411
3412 static const struct pci_error_handlers nvme_err_handler = {
3413         .error_detected = nvme_error_detected,
3414         .slot_reset     = nvme_slot_reset,
3415         .resume         = nvme_error_resume,
3416         .reset_prepare  = nvme_reset_prepare,
3417         .reset_done     = nvme_reset_done,
3418 };
3419
3420 static const struct pci_device_id nvme_id_table[] = {
3421         { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3422                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3423                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3424         { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3425                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3426                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3427         { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3428                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3429                                 NVME_QUIRK_DEALLOCATE_ZEROES |
3430                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3431         { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3432                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3433                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3434         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3435                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3436                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3437                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3438                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3439         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3440                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3441         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3442                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3443                                 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3444                                 NVME_QUIRK_BOGUS_NID, },
3445         { PCI_VDEVICE(REDHAT, 0x0010),  /* Qemu emulated controller */
3446                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3447         { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3448                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3449                                 NVME_QUIRK_BOGUS_NID, },
3450         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3451                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3452                                 NVME_QUIRK_NO_NS_DESC_LIST, },
3453         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3454                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3455         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3456                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3457         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3458                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3459         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3460                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3461         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3462                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3463                                 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3464                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3465         { PCI_DEVICE(0x1987, 0x5012),   /* Phison E12 */
3466                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3467         { PCI_DEVICE(0x1987, 0x5016),   /* Phison E16 */
3468                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3469         { PCI_DEVICE(0x1b4b, 0x1092),   /* Lexar 256 GB SSD */
3470                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3471                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3472         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3473                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3474         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3475                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3476                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3477          { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3478                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3479         { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3480                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3481         { PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3482                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3483         { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3484                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3485         { PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3486                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3487         { PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3488                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3489         { PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3490                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3491         { PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3492                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3493         { PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3494                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3495         { PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3496                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3497         { PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3498                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3499         { PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3500                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3501         { PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3502                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3503         { PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3504                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3505         { PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3506                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3507         { PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3508                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3509         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3510                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3511         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3512                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3513         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3514                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3515         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3516                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3517         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3518                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3519         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3520                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3521         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3522                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3523         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3524         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3525                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3526                                 NVME_QUIRK_128_BYTES_SQES |
3527                                 NVME_QUIRK_SHARED_TAGS |
3528                                 NVME_QUIRK_SKIP_CID_GEN },
3529         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3530         { 0, }
3531 };
3532 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3533
3534 static struct pci_driver nvme_driver = {
3535         .name           = "nvme",
3536         .id_table       = nvme_id_table,
3537         .probe          = nvme_probe,
3538         .remove         = nvme_remove,
3539         .shutdown       = nvme_shutdown,
3540 #ifdef CONFIG_PM_SLEEP
3541         .driver         = {
3542                 .pm     = &nvme_dev_pm_ops,
3543         },
3544 #endif
3545         .sriov_configure = pci_sriov_configure_simple,
3546         .err_handler    = &nvme_err_handler,
3547 };
3548
3549 static int __init nvme_init(void)
3550 {
3551         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3552         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3553         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3554         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3555
3556         return pci_register_driver(&nvme_driver);
3557 }
3558
3559 static void __exit nvme_exit(void)
3560 {
3561         pci_unregister_driver(&nvme_driver);
3562         flush_workqueue(nvme_wq);
3563 }
3564
3565 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3566 MODULE_LICENSE("GPL");
3567 MODULE_VERSION("1.0");
3568 module_init(nvme_init);
3569 module_exit(nvme_exit);