9216cbd2fd43458981abe2a7f2ef42b05cc97930
[linux-2.6-microblaze.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
27
28 #include "trace.h"
29 #include "nvme.h"
30
31 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
33
34 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36 /*
37  * These can be higher, but we need to ensure that any command doesn't
38  * require an sg allocation that needs more than a page of data.
39  */
40 #define NVME_MAX_KB_SZ  4096
41 #define NVME_MAX_SEGS   127
42
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
45
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58                 "Use SGLs when average request segment size is larger or equal to "
59                 "this size. Use 0 to disable SGLs.");
60
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63         .set = io_queue_depth_set,
64         .get = param_get_uint,
65 };
66
67 static unsigned int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
72 {
73         unsigned int n;
74         int ret;
75
76         ret = kstrtouint(val, 10, &n);
77         if (ret != 0 || n > num_possible_cpus())
78                 return -EINVAL;
79         return param_set_uint(val, kp);
80 }
81
82 static const struct kernel_param_ops io_queue_count_ops = {
83         .set = io_queue_count_set,
84         .get = param_get_uint,
85 };
86
87 static unsigned int write_queues;
88 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
89 MODULE_PARM_DESC(write_queues,
90         "Number of queues to use for writes. If not set, reads and writes "
91         "will share a queue set.");
92
93 static unsigned int poll_queues;
94 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
95 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
96
97 struct nvme_dev;
98 struct nvme_queue;
99
100 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
101 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
102
103 /*
104  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
105  */
106 struct nvme_dev {
107         struct nvme_queue *queues;
108         struct blk_mq_tag_set tagset;
109         struct blk_mq_tag_set admin_tagset;
110         u32 __iomem *dbs;
111         struct device *dev;
112         struct dma_pool *prp_page_pool;
113         struct dma_pool *prp_small_pool;
114         unsigned online_queues;
115         unsigned max_qid;
116         unsigned io_queues[HCTX_MAX_TYPES];
117         unsigned int num_vecs;
118         u16 q_depth;
119         int io_sqes;
120         u32 db_stride;
121         void __iomem *bar;
122         unsigned long bar_mapped_size;
123         struct work_struct remove_work;
124         struct mutex shutdown_lock;
125         bool subsystem;
126         u64 cmb_size;
127         bool cmb_use_sqes;
128         u32 cmbsz;
129         u32 cmbloc;
130         struct nvme_ctrl ctrl;
131         u32 last_ps;
132
133         mempool_t *iod_mempool;
134
135         /* shadow doorbell buffer support: */
136         u32 *dbbuf_dbs;
137         dma_addr_t dbbuf_dbs_dma_addr;
138         u32 *dbbuf_eis;
139         dma_addr_t dbbuf_eis_dma_addr;
140
141         /* host memory buffer support: */
142         u64 host_mem_size;
143         u32 nr_host_mem_descs;
144         dma_addr_t host_mem_descs_dma;
145         struct nvme_host_mem_buf_desc *host_mem_descs;
146         void **host_mem_desc_bufs;
147         unsigned int nr_allocated_queues;
148         unsigned int nr_write_queues;
149         unsigned int nr_poll_queues;
150 };
151
152 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
153 {
154         int ret;
155         u16 n;
156
157         ret = kstrtou16(val, 10, &n);
158         if (ret != 0 || n < 2)
159                 return -EINVAL;
160
161         return param_set_ushort(val, kp);
162 }
163
164 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
165 {
166         return qid * 2 * stride;
167 }
168
169 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
170 {
171         return (qid * 2 + 1) * stride;
172 }
173
174 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
175 {
176         return container_of(ctrl, struct nvme_dev, ctrl);
177 }
178
179 /*
180  * An NVM Express queue.  Each device has at least two (one for admin
181  * commands and one for I/O commands).
182  */
183 struct nvme_queue {
184         struct nvme_dev *dev;
185         spinlock_t sq_lock;
186         void *sq_cmds;
187          /* only used for poll queues: */
188         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
189         struct nvme_completion *cqes;
190         dma_addr_t sq_dma_addr;
191         dma_addr_t cq_dma_addr;
192         u32 __iomem *q_db;
193         u16 q_depth;
194         u16 cq_vector;
195         u16 sq_tail;
196         u16 cq_head;
197         u16 qid;
198         u8 cq_phase;
199         u8 sqes;
200         unsigned long flags;
201 #define NVMEQ_ENABLED           0
202 #define NVMEQ_SQ_CMB            1
203 #define NVMEQ_DELETE_ERROR      2
204 #define NVMEQ_POLLED            3
205         u32 *dbbuf_sq_db;
206         u32 *dbbuf_cq_db;
207         u32 *dbbuf_sq_ei;
208         u32 *dbbuf_cq_ei;
209         struct completion delete_done;
210 };
211
212 /*
213  * The nvme_iod describes the data in an I/O.
214  *
215  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
216  * to the actual struct scatterlist.
217  */
218 struct nvme_iod {
219         struct nvme_request req;
220         struct nvme_queue *nvmeq;
221         bool use_sgl;
222         int aborted;
223         int npages;             /* In the PRP list. 0 means small pool in use */
224         int nents;              /* Used in scatterlist */
225         dma_addr_t first_dma;
226         unsigned int dma_len;   /* length of single DMA segment mapping */
227         dma_addr_t meta_dma;
228         struct scatterlist *sg;
229 };
230
231 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
232 {
233         return dev->nr_allocated_queues * 8 * dev->db_stride;
234 }
235
236 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
237 {
238         unsigned int mem_size = nvme_dbbuf_size(dev);
239
240         if (dev->dbbuf_dbs)
241                 return 0;
242
243         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
244                                             &dev->dbbuf_dbs_dma_addr,
245                                             GFP_KERNEL);
246         if (!dev->dbbuf_dbs)
247                 return -ENOMEM;
248         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
249                                             &dev->dbbuf_eis_dma_addr,
250                                             GFP_KERNEL);
251         if (!dev->dbbuf_eis) {
252                 dma_free_coherent(dev->dev, mem_size,
253                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
254                 dev->dbbuf_dbs = NULL;
255                 return -ENOMEM;
256         }
257
258         return 0;
259 }
260
261 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
262 {
263         unsigned int mem_size = nvme_dbbuf_size(dev);
264
265         if (dev->dbbuf_dbs) {
266                 dma_free_coherent(dev->dev, mem_size,
267                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
268                 dev->dbbuf_dbs = NULL;
269         }
270         if (dev->dbbuf_eis) {
271                 dma_free_coherent(dev->dev, mem_size,
272                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
273                 dev->dbbuf_eis = NULL;
274         }
275 }
276
277 static void nvme_dbbuf_init(struct nvme_dev *dev,
278                             struct nvme_queue *nvmeq, int qid)
279 {
280         if (!dev->dbbuf_dbs || !qid)
281                 return;
282
283         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
284         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
285         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
286         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
287 }
288
289 static void nvme_dbbuf_set(struct nvme_dev *dev)
290 {
291         struct nvme_command c;
292
293         if (!dev->dbbuf_dbs)
294                 return;
295
296         memset(&c, 0, sizeof(c));
297         c.dbbuf.opcode = nvme_admin_dbbuf;
298         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
299         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
300
301         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
302                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
303                 /* Free memory and continue on */
304                 nvme_dbbuf_dma_free(dev);
305         }
306 }
307
308 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
309 {
310         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
311 }
312
313 /* Update dbbuf and return true if an MMIO is required */
314 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
315                                               volatile u32 *dbbuf_ei)
316 {
317         if (dbbuf_db) {
318                 u16 old_value;
319
320                 /*
321                  * Ensure that the queue is written before updating
322                  * the doorbell in memory
323                  */
324                 wmb();
325
326                 old_value = *dbbuf_db;
327                 *dbbuf_db = value;
328
329                 /*
330                  * Ensure that the doorbell is updated before reading the event
331                  * index from memory.  The controller needs to provide similar
332                  * ordering to ensure the envent index is updated before reading
333                  * the doorbell.
334                  */
335                 mb();
336
337                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
338                         return false;
339         }
340
341         return true;
342 }
343
344 /*
345  * Will slightly overestimate the number of pages needed.  This is OK
346  * as it only leads to a small amount of wasted memory for the lifetime of
347  * the I/O.
348  */
349 static int nvme_npages(unsigned size, struct nvme_dev *dev)
350 {
351         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
352                                       dev->ctrl.page_size);
353         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
354 }
355
356 /*
357  * Calculates the number of pages needed for the SGL segments. For example a 4k
358  * page can accommodate 256 SGL descriptors.
359  */
360 static int nvme_pci_npages_sgl(unsigned int num_seg)
361 {
362         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
363 }
364
365 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
366                 unsigned int size, unsigned int nseg, bool use_sgl)
367 {
368         size_t alloc_size;
369
370         if (use_sgl)
371                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
372         else
373                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
374
375         return alloc_size + sizeof(struct scatterlist) * nseg;
376 }
377
378 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
379                                 unsigned int hctx_idx)
380 {
381         struct nvme_dev *dev = data;
382         struct nvme_queue *nvmeq = &dev->queues[0];
383
384         WARN_ON(hctx_idx != 0);
385         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
386
387         hctx->driver_data = nvmeq;
388         return 0;
389 }
390
391 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
392                           unsigned int hctx_idx)
393 {
394         struct nvme_dev *dev = data;
395         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
396
397         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
398         hctx->driver_data = nvmeq;
399         return 0;
400 }
401
402 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
403                 unsigned int hctx_idx, unsigned int numa_node)
404 {
405         struct nvme_dev *dev = set->driver_data;
406         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
407         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
408         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
409
410         BUG_ON(!nvmeq);
411         iod->nvmeq = nvmeq;
412
413         nvme_req(req)->ctrl = &dev->ctrl;
414         return 0;
415 }
416
417 static int queue_irq_offset(struct nvme_dev *dev)
418 {
419         /* if we have more than 1 vec, admin queue offsets us by 1 */
420         if (dev->num_vecs > 1)
421                 return 1;
422
423         return 0;
424 }
425
426 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
427 {
428         struct nvme_dev *dev = set->driver_data;
429         int i, qoff, offset;
430
431         offset = queue_irq_offset(dev);
432         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
433                 struct blk_mq_queue_map *map = &set->map[i];
434
435                 map->nr_queues = dev->io_queues[i];
436                 if (!map->nr_queues) {
437                         BUG_ON(i == HCTX_TYPE_DEFAULT);
438                         continue;
439                 }
440
441                 /*
442                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
443                  * affinity), so use the regular blk-mq cpu mapping
444                  */
445                 map->queue_offset = qoff;
446                 if (i != HCTX_TYPE_POLL && offset)
447                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
448                 else
449                         blk_mq_map_queues(map);
450                 qoff += map->nr_queues;
451                 offset += map->nr_queues;
452         }
453
454         return 0;
455 }
456
457 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq)
458 {
459         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
460                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
461                 writel(nvmeq->sq_tail, nvmeq->q_db);
462 }
463
464 /**
465  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
466  * @nvmeq: The queue to use
467  * @cmd: The command to send
468  * @write_sq: whether to write to the SQ doorbell
469  */
470 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
471                             bool write_sq)
472 {
473         spin_lock(&nvmeq->sq_lock);
474         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
475                cmd, sizeof(*cmd));
476         if (++nvmeq->sq_tail == nvmeq->q_depth)
477                 nvmeq->sq_tail = 0;
478         if (write_sq)
479                 nvme_write_sq_db(nvmeq);
480         spin_unlock(&nvmeq->sq_lock);
481 }
482
483 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
484 {
485         struct nvme_queue *nvmeq = hctx->driver_data;
486
487         spin_lock(&nvmeq->sq_lock);
488         nvme_write_sq_db(nvmeq);
489         spin_unlock(&nvmeq->sq_lock);
490 }
491
492 static void **nvme_pci_iod_list(struct request *req)
493 {
494         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
495         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
496 }
497
498 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
499 {
500         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
501         int nseg = blk_rq_nr_phys_segments(req);
502         unsigned int avg_seg_size;
503
504         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
505
506         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
507                 return false;
508         if (!iod->nvmeq->qid)
509                 return false;
510         if (!sgl_threshold || avg_seg_size < sgl_threshold)
511                 return false;
512         return true;
513 }
514
515 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
516 {
517         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
518         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
519         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
520         int i;
521
522         if (iod->dma_len) {
523                 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
524                                rq_dma_dir(req));
525                 return;
526         }
527
528         WARN_ON_ONCE(!iod->nents);
529
530         if (is_pci_p2pdma_page(sg_page(iod->sg)))
531                 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
532                                     rq_dma_dir(req));
533         else
534                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
535
536
537         if (iod->npages == 0)
538                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
539                         dma_addr);
540
541         for (i = 0; i < iod->npages; i++) {
542                 void *addr = nvme_pci_iod_list(req)[i];
543
544                 if (iod->use_sgl) {
545                         struct nvme_sgl_desc *sg_list = addr;
546
547                         next_dma_addr =
548                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
549                 } else {
550                         __le64 *prp_list = addr;
551
552                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
553                 }
554
555                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
556                 dma_addr = next_dma_addr;
557         }
558
559         mempool_free(iod->sg, dev->iod_mempool);
560 }
561
562 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
563 {
564         int i;
565         struct scatterlist *sg;
566
567         for_each_sg(sgl, sg, nents, i) {
568                 dma_addr_t phys = sg_phys(sg);
569                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
570                         "dma_address:%pad dma_length:%d\n",
571                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
572                         sg_dma_len(sg));
573         }
574 }
575
576 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
577                 struct request *req, struct nvme_rw_command *cmnd)
578 {
579         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
580         struct dma_pool *pool;
581         int length = blk_rq_payload_bytes(req);
582         struct scatterlist *sg = iod->sg;
583         int dma_len = sg_dma_len(sg);
584         u64 dma_addr = sg_dma_address(sg);
585         u32 page_size = dev->ctrl.page_size;
586         int offset = dma_addr & (page_size - 1);
587         __le64 *prp_list;
588         void **list = nvme_pci_iod_list(req);
589         dma_addr_t prp_dma;
590         int nprps, i;
591
592         length -= (page_size - offset);
593         if (length <= 0) {
594                 iod->first_dma = 0;
595                 goto done;
596         }
597
598         dma_len -= (page_size - offset);
599         if (dma_len) {
600                 dma_addr += (page_size - offset);
601         } else {
602                 sg = sg_next(sg);
603                 dma_addr = sg_dma_address(sg);
604                 dma_len = sg_dma_len(sg);
605         }
606
607         if (length <= page_size) {
608                 iod->first_dma = dma_addr;
609                 goto done;
610         }
611
612         nprps = DIV_ROUND_UP(length, page_size);
613         if (nprps <= (256 / 8)) {
614                 pool = dev->prp_small_pool;
615                 iod->npages = 0;
616         } else {
617                 pool = dev->prp_page_pool;
618                 iod->npages = 1;
619         }
620
621         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
622         if (!prp_list) {
623                 iod->first_dma = dma_addr;
624                 iod->npages = -1;
625                 return BLK_STS_RESOURCE;
626         }
627         list[0] = prp_list;
628         iod->first_dma = prp_dma;
629         i = 0;
630         for (;;) {
631                 if (i == page_size >> 3) {
632                         __le64 *old_prp_list = prp_list;
633                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634                         if (!prp_list)
635                                 return BLK_STS_RESOURCE;
636                         list[iod->npages++] = prp_list;
637                         prp_list[0] = old_prp_list[i - 1];
638                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639                         i = 1;
640                 }
641                 prp_list[i++] = cpu_to_le64(dma_addr);
642                 dma_len -= page_size;
643                 dma_addr += page_size;
644                 length -= page_size;
645                 if (length <= 0)
646                         break;
647                 if (dma_len > 0)
648                         continue;
649                 if (unlikely(dma_len < 0))
650                         goto bad_sgl;
651                 sg = sg_next(sg);
652                 dma_addr = sg_dma_address(sg);
653                 dma_len = sg_dma_len(sg);
654         }
655
656 done:
657         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
658         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
659
660         return BLK_STS_OK;
661
662  bad_sgl:
663         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
664                         "Invalid SGL for payload:%d nents:%d\n",
665                         blk_rq_payload_bytes(req), iod->nents);
666         return BLK_STS_IOERR;
667 }
668
669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670                 struct scatterlist *sg)
671 {
672         sge->addr = cpu_to_le64(sg_dma_address(sg));
673         sge->length = cpu_to_le32(sg_dma_len(sg));
674         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675 }
676
677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678                 dma_addr_t dma_addr, int entries)
679 {
680         sge->addr = cpu_to_le64(dma_addr);
681         if (entries < SGES_PER_PAGE) {
682                 sge->length = cpu_to_le32(entries * sizeof(*sge));
683                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
684         } else {
685                 sge->length = cpu_to_le32(PAGE_SIZE);
686                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
687         }
688 }
689
690 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
691                 struct request *req, struct nvme_rw_command *cmd, int entries)
692 {
693         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
694         struct dma_pool *pool;
695         struct nvme_sgl_desc *sg_list;
696         struct scatterlist *sg = iod->sg;
697         dma_addr_t sgl_dma;
698         int i = 0;
699
700         /* setting the transfer type as SGL */
701         cmd->flags = NVME_CMD_SGL_METABUF;
702
703         if (entries == 1) {
704                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
705                 return BLK_STS_OK;
706         }
707
708         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
709                 pool = dev->prp_small_pool;
710                 iod->npages = 0;
711         } else {
712                 pool = dev->prp_page_pool;
713                 iod->npages = 1;
714         }
715
716         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
717         if (!sg_list) {
718                 iod->npages = -1;
719                 return BLK_STS_RESOURCE;
720         }
721
722         nvme_pci_iod_list(req)[0] = sg_list;
723         iod->first_dma = sgl_dma;
724
725         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
726
727         do {
728                 if (i == SGES_PER_PAGE) {
729                         struct nvme_sgl_desc *old_sg_desc = sg_list;
730                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
731
732                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
733                         if (!sg_list)
734                                 return BLK_STS_RESOURCE;
735
736                         i = 0;
737                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
738                         sg_list[i++] = *link;
739                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
740                 }
741
742                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
743                 sg = sg_next(sg);
744         } while (--entries > 0);
745
746         return BLK_STS_OK;
747 }
748
749 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
750                 struct request *req, struct nvme_rw_command *cmnd,
751                 struct bio_vec *bv)
752 {
753         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
754         unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
755         unsigned int first_prp_len = dev->ctrl.page_size - offset;
756
757         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758         if (dma_mapping_error(dev->dev, iod->first_dma))
759                 return BLK_STS_RESOURCE;
760         iod->dma_len = bv->bv_len;
761
762         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
763         if (bv->bv_len > first_prp_len)
764                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
765         return 0;
766 }
767
768 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
769                 struct request *req, struct nvme_rw_command *cmnd,
770                 struct bio_vec *bv)
771 {
772         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773
774         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
775         if (dma_mapping_error(dev->dev, iod->first_dma))
776                 return BLK_STS_RESOURCE;
777         iod->dma_len = bv->bv_len;
778
779         cmnd->flags = NVME_CMD_SGL_METABUF;
780         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
781         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
782         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
783         return 0;
784 }
785
786 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
787                 struct nvme_command *cmnd)
788 {
789         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790         blk_status_t ret = BLK_STS_RESOURCE;
791         int nr_mapped;
792
793         if (blk_rq_nr_phys_segments(req) == 1) {
794                 struct bio_vec bv = req_bvec(req);
795
796                 if (!is_pci_p2pdma_page(bv.bv_page)) {
797                         if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
798                                 return nvme_setup_prp_simple(dev, req,
799                                                              &cmnd->rw, &bv);
800
801                         if (iod->nvmeq->qid &&
802                             dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
803                                 return nvme_setup_sgl_simple(dev, req,
804                                                              &cmnd->rw, &bv);
805                 }
806         }
807
808         iod->dma_len = 0;
809         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
810         if (!iod->sg)
811                 return BLK_STS_RESOURCE;
812         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
813         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
814         if (!iod->nents)
815                 goto out;
816
817         if (is_pci_p2pdma_page(sg_page(iod->sg)))
818                 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
819                                 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
820         else
821                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
822                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
823         if (!nr_mapped)
824                 goto out;
825
826         iod->use_sgl = nvme_pci_use_sgls(dev, req);
827         if (iod->use_sgl)
828                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
829         else
830                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
831 out:
832         if (ret != BLK_STS_OK)
833                 nvme_unmap_data(dev, req);
834         return ret;
835 }
836
837 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
838                 struct nvme_command *cmnd)
839 {
840         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841
842         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
843                         rq_dma_dir(req), 0);
844         if (dma_mapping_error(dev->dev, iod->meta_dma))
845                 return BLK_STS_IOERR;
846         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
847         return 0;
848 }
849
850 /*
851  * NOTE: ns is NULL when called on the admin queue.
852  */
853 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
854                          const struct blk_mq_queue_data *bd)
855 {
856         struct nvme_ns *ns = hctx->queue->queuedata;
857         struct nvme_queue *nvmeq = hctx->driver_data;
858         struct nvme_dev *dev = nvmeq->dev;
859         struct request *req = bd->rq;
860         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
861         struct nvme_command cmnd;
862         blk_status_t ret;
863
864         iod->aborted = 0;
865         iod->npages = -1;
866         iod->nents = 0;
867
868         /*
869          * We should not need to do this, but we're still using this to
870          * ensure we can drain requests on a dying queue.
871          */
872         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
873                 return BLK_STS_IOERR;
874
875         ret = nvme_setup_cmd(ns, req, &cmnd);
876         if (ret)
877                 return ret;
878
879         if (blk_rq_nr_phys_segments(req)) {
880                 ret = nvme_map_data(dev, req, &cmnd);
881                 if (ret)
882                         goto out_free_cmd;
883         }
884
885         if (blk_integrity_rq(req)) {
886                 ret = nvme_map_metadata(dev, req, &cmnd);
887                 if (ret)
888                         goto out_unmap_data;
889         }
890
891         blk_mq_start_request(req);
892         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
893         return BLK_STS_OK;
894 out_unmap_data:
895         nvme_unmap_data(dev, req);
896 out_free_cmd:
897         nvme_cleanup_cmd(req);
898         return ret;
899 }
900
901 static void nvme_pci_complete_rq(struct request *req)
902 {
903         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
904         struct nvme_dev *dev = iod->nvmeq->dev;
905
906         if (blk_integrity_rq(req))
907                 dma_unmap_page(dev->dev, iod->meta_dma,
908                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
909         if (blk_rq_nr_phys_segments(req))
910                 nvme_unmap_data(dev, req);
911         nvme_complete_rq(req);
912 }
913
914 /* We read the CQE phase first to check if the rest of the entry is valid */
915 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
916 {
917         struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
918
919         return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
920 }
921
922 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
923 {
924         u16 head = nvmeq->cq_head;
925
926         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
927                                               nvmeq->dbbuf_cq_ei))
928                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
929 }
930
931 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
932 {
933         if (!nvmeq->qid)
934                 return nvmeq->dev->admin_tagset.tags[0];
935         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
936 }
937
938 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
939 {
940         struct nvme_completion *cqe = &nvmeq->cqes[idx];
941         struct request *req;
942
943         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
944                 dev_warn(nvmeq->dev->ctrl.device,
945                         "invalid id %d completed on queue %d\n",
946                         cqe->command_id, le16_to_cpu(cqe->sq_id));
947                 return;
948         }
949
950         /*
951          * AEN requests are special as they don't time out and can
952          * survive any kind of queue freeze and often don't respond to
953          * aborts.  We don't even bother to allocate a struct request
954          * for them but rather special case them here.
955          */
956         if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
957                 nvme_complete_async_event(&nvmeq->dev->ctrl,
958                                 cqe->status, &cqe->result);
959                 return;
960         }
961
962         req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
963         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
964         if (!nvme_end_request(req, cqe->status, cqe->result))
965                 nvme_pci_complete_rq(req);
966 }
967
968 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
969 {
970         u16 tmp = nvmeq->cq_head + 1;
971
972         if (tmp == nvmeq->q_depth) {
973                 nvmeq->cq_head = 0;
974                 nvmeq->cq_phase ^= 1;
975         } else {
976                 nvmeq->cq_head = tmp;
977         }
978 }
979
980 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
981 {
982         int found = 0;
983
984         while (nvme_cqe_pending(nvmeq)) {
985                 found++;
986                 /*
987                  * load-load control dependency between phase and the rest of
988                  * the cqe requires a full read memory barrier
989                  */
990                 dma_rmb();
991                 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
992                 nvme_update_cq_head(nvmeq);
993         }
994
995         if (found)
996                 nvme_ring_cq_doorbell(nvmeq);
997         return found;
998 }
999
1000 static irqreturn_t nvme_irq(int irq, void *data)
1001 {
1002         struct nvme_queue *nvmeq = data;
1003         irqreturn_t ret = IRQ_NONE;
1004
1005         /*
1006          * The rmb/wmb pair ensures we see all updates from a previous run of
1007          * the irq handler, even if that was on another CPU.
1008          */
1009         rmb();
1010         if (nvme_process_cq(nvmeq))
1011                 ret = IRQ_HANDLED;
1012         wmb();
1013
1014         return ret;
1015 }
1016
1017 static irqreturn_t nvme_irq_check(int irq, void *data)
1018 {
1019         struct nvme_queue *nvmeq = data;
1020         if (nvme_cqe_pending(nvmeq))
1021                 return IRQ_WAKE_THREAD;
1022         return IRQ_NONE;
1023 }
1024
1025 /*
1026  * Poll for completions for any interrupt driven queue
1027  * Can be called from any context.
1028  */
1029 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1030 {
1031         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1032
1033         WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1034
1035         disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1036         nvme_process_cq(nvmeq);
1037         enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1038 }
1039
1040 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1041 {
1042         struct nvme_queue *nvmeq = hctx->driver_data;
1043         bool found;
1044
1045         if (!nvme_cqe_pending(nvmeq))
1046                 return 0;
1047
1048         spin_lock(&nvmeq->cq_poll_lock);
1049         found = nvme_process_cq(nvmeq);
1050         spin_unlock(&nvmeq->cq_poll_lock);
1051
1052         return found;
1053 }
1054
1055 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1056 {
1057         struct nvme_dev *dev = to_nvme_dev(ctrl);
1058         struct nvme_queue *nvmeq = &dev->queues[0];
1059         struct nvme_command c;
1060
1061         memset(&c, 0, sizeof(c));
1062         c.common.opcode = nvme_admin_async_event;
1063         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1064         nvme_submit_cmd(nvmeq, &c, true);
1065 }
1066
1067 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1068 {
1069         struct nvme_command c;
1070
1071         memset(&c, 0, sizeof(c));
1072         c.delete_queue.opcode = opcode;
1073         c.delete_queue.qid = cpu_to_le16(id);
1074
1075         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1076 }
1077
1078 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1079                 struct nvme_queue *nvmeq, s16 vector)
1080 {
1081         struct nvme_command c;
1082         int flags = NVME_QUEUE_PHYS_CONTIG;
1083
1084         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1085                 flags |= NVME_CQ_IRQ_ENABLED;
1086
1087         /*
1088          * Note: we (ab)use the fact that the prp fields survive if no data
1089          * is attached to the request.
1090          */
1091         memset(&c, 0, sizeof(c));
1092         c.create_cq.opcode = nvme_admin_create_cq;
1093         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1094         c.create_cq.cqid = cpu_to_le16(qid);
1095         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1096         c.create_cq.cq_flags = cpu_to_le16(flags);
1097         c.create_cq.irq_vector = cpu_to_le16(vector);
1098
1099         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1100 }
1101
1102 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1103                                                 struct nvme_queue *nvmeq)
1104 {
1105         struct nvme_ctrl *ctrl = &dev->ctrl;
1106         struct nvme_command c;
1107         int flags = NVME_QUEUE_PHYS_CONTIG;
1108
1109         /*
1110          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1111          * set. Since URGENT priority is zeroes, it makes all queues
1112          * URGENT.
1113          */
1114         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1115                 flags |= NVME_SQ_PRIO_MEDIUM;
1116
1117         /*
1118          * Note: we (ab)use the fact that the prp fields survive if no data
1119          * is attached to the request.
1120          */
1121         memset(&c, 0, sizeof(c));
1122         c.create_sq.opcode = nvme_admin_create_sq;
1123         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1124         c.create_sq.sqid = cpu_to_le16(qid);
1125         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1126         c.create_sq.sq_flags = cpu_to_le16(flags);
1127         c.create_sq.cqid = cpu_to_le16(qid);
1128
1129         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1130 }
1131
1132 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1133 {
1134         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1135 }
1136
1137 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1138 {
1139         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1140 }
1141
1142 static void abort_endio(struct request *req, blk_status_t error)
1143 {
1144         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1145         struct nvme_queue *nvmeq = iod->nvmeq;
1146
1147         dev_warn(nvmeq->dev->ctrl.device,
1148                  "Abort status: 0x%x", nvme_req(req)->status);
1149         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1150         blk_mq_free_request(req);
1151 }
1152
1153 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1154 {
1155         /* If true, indicates loss of adapter communication, possibly by a
1156          * NVMe Subsystem reset.
1157          */
1158         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1159
1160         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1161         switch (dev->ctrl.state) {
1162         case NVME_CTRL_RESETTING:
1163         case NVME_CTRL_CONNECTING:
1164                 return false;
1165         default:
1166                 break;
1167         }
1168
1169         /* We shouldn't reset unless the controller is on fatal error state
1170          * _or_ if we lost the communication with it.
1171          */
1172         if (!(csts & NVME_CSTS_CFS) && !nssro)
1173                 return false;
1174
1175         return true;
1176 }
1177
1178 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1179 {
1180         /* Read a config register to help see what died. */
1181         u16 pci_status;
1182         int result;
1183
1184         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1185                                       &pci_status);
1186         if (result == PCIBIOS_SUCCESSFUL)
1187                 dev_warn(dev->ctrl.device,
1188                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1189                          csts, pci_status);
1190         else
1191                 dev_warn(dev->ctrl.device,
1192                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1193                          csts, result);
1194 }
1195
1196 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1197 {
1198         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1199         struct nvme_queue *nvmeq = iod->nvmeq;
1200         struct nvme_dev *dev = nvmeq->dev;
1201         struct request *abort_req;
1202         struct nvme_command cmd;
1203         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1204
1205         /* If PCI error recovery process is happening, we cannot reset or
1206          * the recovery mechanism will surely fail.
1207          */
1208         mb();
1209         if (pci_channel_offline(to_pci_dev(dev->dev)))
1210                 return BLK_EH_RESET_TIMER;
1211
1212         /*
1213          * Reset immediately if the controller is failed
1214          */
1215         if (nvme_should_reset(dev, csts)) {
1216                 nvme_warn_reset(dev, csts);
1217                 nvme_dev_disable(dev, false);
1218                 nvme_reset_ctrl(&dev->ctrl);
1219                 return BLK_EH_DONE;
1220         }
1221
1222         /*
1223          * Did we miss an interrupt?
1224          */
1225         if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1226                 nvme_poll(req->mq_hctx);
1227         else
1228                 nvme_poll_irqdisable(nvmeq);
1229
1230         if (blk_mq_request_completed(req)) {
1231                 dev_warn(dev->ctrl.device,
1232                          "I/O %d QID %d timeout, completion polled\n",
1233                          req->tag, nvmeq->qid);
1234                 return BLK_EH_DONE;
1235         }
1236
1237         /*
1238          * Shutdown immediately if controller times out while starting. The
1239          * reset work will see the pci device disabled when it gets the forced
1240          * cancellation error. All outstanding requests are completed on
1241          * shutdown, so we return BLK_EH_DONE.
1242          */
1243         switch (dev->ctrl.state) {
1244         case NVME_CTRL_CONNECTING:
1245                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1246                 /* fall through */
1247         case NVME_CTRL_DELETING:
1248                 dev_warn_ratelimited(dev->ctrl.device,
1249                          "I/O %d QID %d timeout, disable controller\n",
1250                          req->tag, nvmeq->qid);
1251                 nvme_dev_disable(dev, true);
1252                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1253                 return BLK_EH_DONE;
1254         case NVME_CTRL_RESETTING:
1255                 return BLK_EH_RESET_TIMER;
1256         default:
1257                 break;
1258         }
1259
1260         /*
1261          * Shutdown the controller immediately and schedule a reset if the
1262          * command was already aborted once before and still hasn't been
1263          * returned to the driver, or if this is the admin queue.
1264          */
1265         if (!nvmeq->qid || iod->aborted) {
1266                 dev_warn(dev->ctrl.device,
1267                          "I/O %d QID %d timeout, reset controller\n",
1268                          req->tag, nvmeq->qid);
1269                 nvme_dev_disable(dev, false);
1270                 nvme_reset_ctrl(&dev->ctrl);
1271
1272                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1273                 return BLK_EH_DONE;
1274         }
1275
1276         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1277                 atomic_inc(&dev->ctrl.abort_limit);
1278                 return BLK_EH_RESET_TIMER;
1279         }
1280         iod->aborted = 1;
1281
1282         memset(&cmd, 0, sizeof(cmd));
1283         cmd.abort.opcode = nvme_admin_abort_cmd;
1284         cmd.abort.cid = req->tag;
1285         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1286
1287         dev_warn(nvmeq->dev->ctrl.device,
1288                 "I/O %d QID %d timeout, aborting\n",
1289                  req->tag, nvmeq->qid);
1290
1291         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1292                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1293         if (IS_ERR(abort_req)) {
1294                 atomic_inc(&dev->ctrl.abort_limit);
1295                 return BLK_EH_RESET_TIMER;
1296         }
1297
1298         abort_req->timeout = ADMIN_TIMEOUT;
1299         abort_req->end_io_data = NULL;
1300         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1301
1302         /*
1303          * The aborted req will be completed on receiving the abort req.
1304          * We enable the timer again. If hit twice, it'll cause a device reset,
1305          * as the device then is in a faulty state.
1306          */
1307         return BLK_EH_RESET_TIMER;
1308 }
1309
1310 static void nvme_free_queue(struct nvme_queue *nvmeq)
1311 {
1312         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1313                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1314         if (!nvmeq->sq_cmds)
1315                 return;
1316
1317         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1318                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1319                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1320         } else {
1321                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1322                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1323         }
1324 }
1325
1326 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1327 {
1328         int i;
1329
1330         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1331                 dev->ctrl.queue_count--;
1332                 nvme_free_queue(&dev->queues[i]);
1333         }
1334 }
1335
1336 /**
1337  * nvme_suspend_queue - put queue into suspended state
1338  * @nvmeq: queue to suspend
1339  */
1340 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1341 {
1342         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1343                 return 1;
1344
1345         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1346         mb();
1347
1348         nvmeq->dev->online_queues--;
1349         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1350                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1351         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1352                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1353         return 0;
1354 }
1355
1356 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1357 {
1358         int i;
1359
1360         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1361                 nvme_suspend_queue(&dev->queues[i]);
1362 }
1363
1364 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1365 {
1366         struct nvme_queue *nvmeq = &dev->queues[0];
1367
1368         if (shutdown)
1369                 nvme_shutdown_ctrl(&dev->ctrl);
1370         else
1371                 nvme_disable_ctrl(&dev->ctrl);
1372
1373         nvme_poll_irqdisable(nvmeq);
1374 }
1375
1376 /*
1377  * Called only on a device that has been disabled and after all other threads
1378  * that can check this device's completion queues have synced, except
1379  * nvme_poll(). This is the last chance for the driver to see a natural
1380  * completion before nvme_cancel_request() terminates all incomplete requests.
1381  */
1382 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1383 {
1384         int i;
1385
1386         for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1387                 spin_lock(&dev->queues[i].cq_poll_lock);
1388                 nvme_process_cq(&dev->queues[i]);
1389                 spin_unlock(&dev->queues[i].cq_poll_lock);
1390         }
1391 }
1392
1393 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1394                                 int entry_size)
1395 {
1396         int q_depth = dev->q_depth;
1397         unsigned q_size_aligned = roundup(q_depth * entry_size,
1398                                           dev->ctrl.page_size);
1399
1400         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1401                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1402                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1403                 q_depth = div_u64(mem_per_q, entry_size);
1404
1405                 /*
1406                  * Ensure the reduced q_depth is above some threshold where it
1407                  * would be better to map queues in system memory with the
1408                  * original depth
1409                  */
1410                 if (q_depth < 64)
1411                         return -ENOMEM;
1412         }
1413
1414         return q_depth;
1415 }
1416
1417 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1418                                 int qid)
1419 {
1420         struct pci_dev *pdev = to_pci_dev(dev->dev);
1421
1422         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1423                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1424                 if (nvmeq->sq_cmds) {
1425                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1426                                                         nvmeq->sq_cmds);
1427                         if (nvmeq->sq_dma_addr) {
1428                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1429                                 return 0;
1430                         }
1431
1432                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1433                 }
1434         }
1435
1436         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1437                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1438         if (!nvmeq->sq_cmds)
1439                 return -ENOMEM;
1440         return 0;
1441 }
1442
1443 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1444 {
1445         struct nvme_queue *nvmeq = &dev->queues[qid];
1446
1447         if (dev->ctrl.queue_count > qid)
1448                 return 0;
1449
1450         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1451         nvmeq->q_depth = depth;
1452         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1453                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1454         if (!nvmeq->cqes)
1455                 goto free_nvmeq;
1456
1457         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1458                 goto free_cqdma;
1459
1460         nvmeq->dev = dev;
1461         spin_lock_init(&nvmeq->sq_lock);
1462         spin_lock_init(&nvmeq->cq_poll_lock);
1463         nvmeq->cq_head = 0;
1464         nvmeq->cq_phase = 1;
1465         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1466         nvmeq->qid = qid;
1467         dev->ctrl.queue_count++;
1468
1469         return 0;
1470
1471  free_cqdma:
1472         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1473                           nvmeq->cq_dma_addr);
1474  free_nvmeq:
1475         return -ENOMEM;
1476 }
1477
1478 static int queue_request_irq(struct nvme_queue *nvmeq)
1479 {
1480         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1481         int nr = nvmeq->dev->ctrl.instance;
1482
1483         if (use_threaded_interrupts) {
1484                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1485                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1486         } else {
1487                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1488                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1489         }
1490 }
1491
1492 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1493 {
1494         struct nvme_dev *dev = nvmeq->dev;
1495
1496         nvmeq->sq_tail = 0;
1497         nvmeq->cq_head = 0;
1498         nvmeq->cq_phase = 1;
1499         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1500         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1501         nvme_dbbuf_init(dev, nvmeq, qid);
1502         dev->online_queues++;
1503         wmb(); /* ensure the first interrupt sees the initialization */
1504 }
1505
1506 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1507 {
1508         struct nvme_dev *dev = nvmeq->dev;
1509         int result;
1510         u16 vector = 0;
1511
1512         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1513
1514         /*
1515          * A queue's vector matches the queue identifier unless the controller
1516          * has only one vector available.
1517          */
1518         if (!polled)
1519                 vector = dev->num_vecs == 1 ? 0 : qid;
1520         else
1521                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1522
1523         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1524         if (result)
1525                 return result;
1526
1527         result = adapter_alloc_sq(dev, qid, nvmeq);
1528         if (result < 0)
1529                 return result;
1530         if (result)
1531                 goto release_cq;
1532
1533         nvmeq->cq_vector = vector;
1534         nvme_init_queue(nvmeq, qid);
1535
1536         if (!polled) {
1537                 result = queue_request_irq(nvmeq);
1538                 if (result < 0)
1539                         goto release_sq;
1540         }
1541
1542         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1543         return result;
1544
1545 release_sq:
1546         dev->online_queues--;
1547         adapter_delete_sq(dev, qid);
1548 release_cq:
1549         adapter_delete_cq(dev, qid);
1550         return result;
1551 }
1552
1553 static const struct blk_mq_ops nvme_mq_admin_ops = {
1554         .queue_rq       = nvme_queue_rq,
1555         .complete       = nvme_pci_complete_rq,
1556         .init_hctx      = nvme_admin_init_hctx,
1557         .init_request   = nvme_init_request,
1558         .timeout        = nvme_timeout,
1559 };
1560
1561 static const struct blk_mq_ops nvme_mq_ops = {
1562         .queue_rq       = nvme_queue_rq,
1563         .complete       = nvme_pci_complete_rq,
1564         .commit_rqs     = nvme_commit_rqs,
1565         .init_hctx      = nvme_init_hctx,
1566         .init_request   = nvme_init_request,
1567         .map_queues     = nvme_pci_map_queues,
1568         .timeout        = nvme_timeout,
1569         .poll           = nvme_poll,
1570 };
1571
1572 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1573 {
1574         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1575                 /*
1576                  * If the controller was reset during removal, it's possible
1577                  * user requests may be waiting on a stopped queue. Start the
1578                  * queue to flush these to completion.
1579                  */
1580                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1581                 blk_cleanup_queue(dev->ctrl.admin_q);
1582                 blk_mq_free_tag_set(&dev->admin_tagset);
1583         }
1584 }
1585
1586 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1587 {
1588         if (!dev->ctrl.admin_q) {
1589                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1590                 dev->admin_tagset.nr_hw_queues = 1;
1591
1592                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1593                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1594                 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1595                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1596                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1597                 dev->admin_tagset.driver_data = dev;
1598
1599                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1600                         return -ENOMEM;
1601                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1602
1603                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1604                 if (IS_ERR(dev->ctrl.admin_q)) {
1605                         blk_mq_free_tag_set(&dev->admin_tagset);
1606                         return -ENOMEM;
1607                 }
1608                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1609                         nvme_dev_remove_admin(dev);
1610                         dev->ctrl.admin_q = NULL;
1611                         return -ENODEV;
1612                 }
1613         } else
1614                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1615
1616         return 0;
1617 }
1618
1619 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1620 {
1621         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1622 }
1623
1624 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1625 {
1626         struct pci_dev *pdev = to_pci_dev(dev->dev);
1627
1628         if (size <= dev->bar_mapped_size)
1629                 return 0;
1630         if (size > pci_resource_len(pdev, 0))
1631                 return -ENOMEM;
1632         if (dev->bar)
1633                 iounmap(dev->bar);
1634         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1635         if (!dev->bar) {
1636                 dev->bar_mapped_size = 0;
1637                 return -ENOMEM;
1638         }
1639         dev->bar_mapped_size = size;
1640         dev->dbs = dev->bar + NVME_REG_DBS;
1641
1642         return 0;
1643 }
1644
1645 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1646 {
1647         int result;
1648         u32 aqa;
1649         struct nvme_queue *nvmeq;
1650
1651         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1652         if (result < 0)
1653                 return result;
1654
1655         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1656                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1657
1658         if (dev->subsystem &&
1659             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1660                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1661
1662         result = nvme_disable_ctrl(&dev->ctrl);
1663         if (result < 0)
1664                 return result;
1665
1666         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1667         if (result)
1668                 return result;
1669
1670         dev->ctrl.numa_node = dev_to_node(dev->dev);
1671
1672         nvmeq = &dev->queues[0];
1673         aqa = nvmeq->q_depth - 1;
1674         aqa |= aqa << 16;
1675
1676         writel(aqa, dev->bar + NVME_REG_AQA);
1677         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1678         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1679
1680         result = nvme_enable_ctrl(&dev->ctrl);
1681         if (result)
1682                 return result;
1683
1684         nvmeq->cq_vector = 0;
1685         nvme_init_queue(nvmeq, 0);
1686         result = queue_request_irq(nvmeq);
1687         if (result) {
1688                 dev->online_queues--;
1689                 return result;
1690         }
1691
1692         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1693         return result;
1694 }
1695
1696 static int nvme_create_io_queues(struct nvme_dev *dev)
1697 {
1698         unsigned i, max, rw_queues;
1699         int ret = 0;
1700
1701         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1702                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1703                         ret = -ENOMEM;
1704                         break;
1705                 }
1706         }
1707
1708         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1709         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1710                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1711                                 dev->io_queues[HCTX_TYPE_READ];
1712         } else {
1713                 rw_queues = max;
1714         }
1715
1716         for (i = dev->online_queues; i <= max; i++) {
1717                 bool polled = i > rw_queues;
1718
1719                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1720                 if (ret)
1721                         break;
1722         }
1723
1724         /*
1725          * Ignore failing Create SQ/CQ commands, we can continue with less
1726          * than the desired amount of queues, and even a controller without
1727          * I/O queues can still be used to issue admin commands.  This might
1728          * be useful to upgrade a buggy firmware for example.
1729          */
1730         return ret >= 0 ? 0 : ret;
1731 }
1732
1733 static ssize_t nvme_cmb_show(struct device *dev,
1734                              struct device_attribute *attr,
1735                              char *buf)
1736 {
1737         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1738
1739         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1740                        ndev->cmbloc, ndev->cmbsz);
1741 }
1742 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1743
1744 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1745 {
1746         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1747
1748         return 1ULL << (12 + 4 * szu);
1749 }
1750
1751 static u32 nvme_cmb_size(struct nvme_dev *dev)
1752 {
1753         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1754 }
1755
1756 static void nvme_map_cmb(struct nvme_dev *dev)
1757 {
1758         u64 size, offset;
1759         resource_size_t bar_size;
1760         struct pci_dev *pdev = to_pci_dev(dev->dev);
1761         int bar;
1762
1763         if (dev->cmb_size)
1764                 return;
1765
1766         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1767         if (!dev->cmbsz)
1768                 return;
1769         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1770
1771         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1772         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1773         bar = NVME_CMB_BIR(dev->cmbloc);
1774         bar_size = pci_resource_len(pdev, bar);
1775
1776         if (offset > bar_size)
1777                 return;
1778
1779         /*
1780          * Controllers may support a CMB size larger than their BAR,
1781          * for example, due to being behind a bridge. Reduce the CMB to
1782          * the reported size of the BAR
1783          */
1784         if (size > bar_size - offset)
1785                 size = bar_size - offset;
1786
1787         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1788                 dev_warn(dev->ctrl.device,
1789                          "failed to register the CMB\n");
1790                 return;
1791         }
1792
1793         dev->cmb_size = size;
1794         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1795
1796         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1797                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1798                 pci_p2pmem_publish(pdev, true);
1799
1800         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1801                                     &dev_attr_cmb.attr, NULL))
1802                 dev_warn(dev->ctrl.device,
1803                          "failed to add sysfs attribute for CMB\n");
1804 }
1805
1806 static inline void nvme_release_cmb(struct nvme_dev *dev)
1807 {
1808         if (dev->cmb_size) {
1809                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1810                                              &dev_attr_cmb.attr, NULL);
1811                 dev->cmb_size = 0;
1812         }
1813 }
1814
1815 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1816 {
1817         u64 dma_addr = dev->host_mem_descs_dma;
1818         struct nvme_command c;
1819         int ret;
1820
1821         memset(&c, 0, sizeof(c));
1822         c.features.opcode       = nvme_admin_set_features;
1823         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1824         c.features.dword11      = cpu_to_le32(bits);
1825         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1826                                               ilog2(dev->ctrl.page_size));
1827         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1828         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1829         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1830
1831         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1832         if (ret) {
1833                 dev_warn(dev->ctrl.device,
1834                          "failed to set host mem (err %d, flags %#x).\n",
1835                          ret, bits);
1836         }
1837         return ret;
1838 }
1839
1840 static void nvme_free_host_mem(struct nvme_dev *dev)
1841 {
1842         int i;
1843
1844         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1845                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1846                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1847
1848                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1849                                le64_to_cpu(desc->addr),
1850                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1851         }
1852
1853         kfree(dev->host_mem_desc_bufs);
1854         dev->host_mem_desc_bufs = NULL;
1855         dma_free_coherent(dev->dev,
1856                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1857                         dev->host_mem_descs, dev->host_mem_descs_dma);
1858         dev->host_mem_descs = NULL;
1859         dev->nr_host_mem_descs = 0;
1860 }
1861
1862 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1863                 u32 chunk_size)
1864 {
1865         struct nvme_host_mem_buf_desc *descs;
1866         u32 max_entries, len;
1867         dma_addr_t descs_dma;
1868         int i = 0;
1869         void **bufs;
1870         u64 size, tmp;
1871
1872         tmp = (preferred + chunk_size - 1);
1873         do_div(tmp, chunk_size);
1874         max_entries = tmp;
1875
1876         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1877                 max_entries = dev->ctrl.hmmaxd;
1878
1879         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1880                                    &descs_dma, GFP_KERNEL);
1881         if (!descs)
1882                 goto out;
1883
1884         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1885         if (!bufs)
1886                 goto out_free_descs;
1887
1888         for (size = 0; size < preferred && i < max_entries; size += len) {
1889                 dma_addr_t dma_addr;
1890
1891                 len = min_t(u64, chunk_size, preferred - size);
1892                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1893                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1894                 if (!bufs[i])
1895                         break;
1896
1897                 descs[i].addr = cpu_to_le64(dma_addr);
1898                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1899                 i++;
1900         }
1901
1902         if (!size)
1903                 goto out_free_bufs;
1904
1905         dev->nr_host_mem_descs = i;
1906         dev->host_mem_size = size;
1907         dev->host_mem_descs = descs;
1908         dev->host_mem_descs_dma = descs_dma;
1909         dev->host_mem_desc_bufs = bufs;
1910         return 0;
1911
1912 out_free_bufs:
1913         while (--i >= 0) {
1914                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1915
1916                 dma_free_attrs(dev->dev, size, bufs[i],
1917                                le64_to_cpu(descs[i].addr),
1918                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1919         }
1920
1921         kfree(bufs);
1922 out_free_descs:
1923         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1924                         descs_dma);
1925 out:
1926         dev->host_mem_descs = NULL;
1927         return -ENOMEM;
1928 }
1929
1930 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1931 {
1932         u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1933         u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1934         u64 chunk_size;
1935
1936         /* start big and work our way down */
1937         for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
1938                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1939                         if (!min || dev->host_mem_size >= min)
1940                                 return 0;
1941                         nvme_free_host_mem(dev);
1942                 }
1943         }
1944
1945         return -ENOMEM;
1946 }
1947
1948 static int nvme_setup_host_mem(struct nvme_dev *dev)
1949 {
1950         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1951         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1952         u64 min = (u64)dev->ctrl.hmmin * 4096;
1953         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1954         int ret;
1955
1956         preferred = min(preferred, max);
1957         if (min > max) {
1958                 dev_warn(dev->ctrl.device,
1959                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1960                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1961                 nvme_free_host_mem(dev);
1962                 return 0;
1963         }
1964
1965         /*
1966          * If we already have a buffer allocated check if we can reuse it.
1967          */
1968         if (dev->host_mem_descs) {
1969                 if (dev->host_mem_size >= min)
1970                         enable_bits |= NVME_HOST_MEM_RETURN;
1971                 else
1972                         nvme_free_host_mem(dev);
1973         }
1974
1975         if (!dev->host_mem_descs) {
1976                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1977                         dev_warn(dev->ctrl.device,
1978                                 "failed to allocate host memory buffer.\n");
1979                         return 0; /* controller must work without HMB */
1980                 }
1981
1982                 dev_info(dev->ctrl.device,
1983                         "allocated %lld MiB host memory buffer.\n",
1984                         dev->host_mem_size >> ilog2(SZ_1M));
1985         }
1986
1987         ret = nvme_set_host_mem(dev, enable_bits);
1988         if (ret)
1989                 nvme_free_host_mem(dev);
1990         return ret;
1991 }
1992
1993 /*
1994  * nirqs is the number of interrupts available for write and read
1995  * queues. The core already reserved an interrupt for the admin queue.
1996  */
1997 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
1998 {
1999         struct nvme_dev *dev = affd->priv;
2000         unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2001
2002         /*
2003          * If there is no interupt available for queues, ensure that
2004          * the default queue is set to 1. The affinity set size is
2005          * also set to one, but the irq core ignores it for this case.
2006          *
2007          * If only one interrupt is available or 'write_queue' == 0, combine
2008          * write and read queues.
2009          *
2010          * If 'write_queues' > 0, ensure it leaves room for at least one read
2011          * queue.
2012          */
2013         if (!nrirqs) {
2014                 nrirqs = 1;
2015                 nr_read_queues = 0;
2016         } else if (nrirqs == 1 || !nr_write_queues) {
2017                 nr_read_queues = 0;
2018         } else if (nr_write_queues >= nrirqs) {
2019                 nr_read_queues = 1;
2020         } else {
2021                 nr_read_queues = nrirqs - nr_write_queues;
2022         }
2023
2024         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2025         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2026         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2027         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2028         affd->nr_sets = nr_read_queues ? 2 : 1;
2029 }
2030
2031 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2032 {
2033         struct pci_dev *pdev = to_pci_dev(dev->dev);
2034         struct irq_affinity affd = {
2035                 .pre_vectors    = 1,
2036                 .calc_sets      = nvme_calc_irq_sets,
2037                 .priv           = dev,
2038         };
2039         unsigned int irq_queues, this_p_queues;
2040
2041         /*
2042          * Poll queues don't need interrupts, but we need at least one IO
2043          * queue left over for non-polled IO.
2044          */
2045         this_p_queues = dev->nr_poll_queues;
2046         if (this_p_queues >= nr_io_queues) {
2047                 this_p_queues = nr_io_queues - 1;
2048                 irq_queues = 1;
2049         } else {
2050                 irq_queues = nr_io_queues - this_p_queues + 1;
2051         }
2052         dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2053
2054         /* Initialize for the single interrupt case */
2055         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2056         dev->io_queues[HCTX_TYPE_READ] = 0;
2057
2058         /*
2059          * Some Apple controllers require all queues to use the
2060          * first vector.
2061          */
2062         if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2063                 irq_queues = 1;
2064
2065         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2066                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2067 }
2068
2069 static void nvme_disable_io_queues(struct nvme_dev *dev)
2070 {
2071         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2072                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2073 }
2074
2075 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2076 {
2077         return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2078 }
2079
2080 static int nvme_setup_io_queues(struct nvme_dev *dev)
2081 {
2082         struct nvme_queue *adminq = &dev->queues[0];
2083         struct pci_dev *pdev = to_pci_dev(dev->dev);
2084         unsigned int nr_io_queues;
2085         unsigned long size;
2086         int result;
2087
2088         /*
2089          * Sample the module parameters once at reset time so that we have
2090          * stable values to work with.
2091          */
2092         dev->nr_write_queues = write_queues;
2093         dev->nr_poll_queues = poll_queues;
2094
2095         /*
2096          * If tags are shared with admin queue (Apple bug), then
2097          * make sure we only use one IO queue.
2098          */
2099         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2100                 nr_io_queues = 1;
2101         else
2102                 nr_io_queues = min(nvme_max_io_queues(dev),
2103                                    dev->nr_allocated_queues - 1);
2104
2105         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2106         if (result < 0)
2107                 return result;
2108
2109         if (nr_io_queues == 0)
2110                 return 0;
2111         
2112         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2113
2114         if (dev->cmb_use_sqes) {
2115                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2116                                 sizeof(struct nvme_command));
2117                 if (result > 0)
2118                         dev->q_depth = result;
2119                 else
2120                         dev->cmb_use_sqes = false;
2121         }
2122
2123         do {
2124                 size = db_bar_size(dev, nr_io_queues);
2125                 result = nvme_remap_bar(dev, size);
2126                 if (!result)
2127                         break;
2128                 if (!--nr_io_queues)
2129                         return -ENOMEM;
2130         } while (1);
2131         adminq->q_db = dev->dbs;
2132
2133  retry:
2134         /* Deregister the admin queue's interrupt */
2135         pci_free_irq(pdev, 0, adminq);
2136
2137         /*
2138          * If we enable msix early due to not intx, disable it again before
2139          * setting up the full range we need.
2140          */
2141         pci_free_irq_vectors(pdev);
2142
2143         result = nvme_setup_irqs(dev, nr_io_queues);
2144         if (result <= 0)
2145                 return -EIO;
2146
2147         dev->num_vecs = result;
2148         result = max(result - 1, 1);
2149         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2150
2151         /*
2152          * Should investigate if there's a performance win from allocating
2153          * more queues than interrupt vectors; it might allow the submission
2154          * path to scale better, even if the receive path is limited by the
2155          * number of interrupts.
2156          */
2157         result = queue_request_irq(adminq);
2158         if (result)
2159                 return result;
2160         set_bit(NVMEQ_ENABLED, &adminq->flags);
2161
2162         result = nvme_create_io_queues(dev);
2163         if (result || dev->online_queues < 2)
2164                 return result;
2165
2166         if (dev->online_queues - 1 < dev->max_qid) {
2167                 nr_io_queues = dev->online_queues - 1;
2168                 nvme_disable_io_queues(dev);
2169                 nvme_suspend_io_queues(dev);
2170                 goto retry;
2171         }
2172         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2173                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2174                                         dev->io_queues[HCTX_TYPE_READ],
2175                                         dev->io_queues[HCTX_TYPE_POLL]);
2176         return 0;
2177 }
2178
2179 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2180 {
2181         struct nvme_queue *nvmeq = req->end_io_data;
2182
2183         blk_mq_free_request(req);
2184         complete(&nvmeq->delete_done);
2185 }
2186
2187 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2188 {
2189         struct nvme_queue *nvmeq = req->end_io_data;
2190
2191         if (error)
2192                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2193
2194         nvme_del_queue_end(req, error);
2195 }
2196
2197 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2198 {
2199         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2200         struct request *req;
2201         struct nvme_command cmd;
2202
2203         memset(&cmd, 0, sizeof(cmd));
2204         cmd.delete_queue.opcode = opcode;
2205         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2206
2207         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2208         if (IS_ERR(req))
2209                 return PTR_ERR(req);
2210
2211         req->timeout = ADMIN_TIMEOUT;
2212         req->end_io_data = nvmeq;
2213
2214         init_completion(&nvmeq->delete_done);
2215         blk_execute_rq_nowait(q, NULL, req, false,
2216                         opcode == nvme_admin_delete_cq ?
2217                                 nvme_del_cq_end : nvme_del_queue_end);
2218         return 0;
2219 }
2220
2221 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2222 {
2223         int nr_queues = dev->online_queues - 1, sent = 0;
2224         unsigned long timeout;
2225
2226  retry:
2227         timeout = ADMIN_TIMEOUT;
2228         while (nr_queues > 0) {
2229                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2230                         break;
2231                 nr_queues--;
2232                 sent++;
2233         }
2234         while (sent) {
2235                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2236
2237                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2238                                 timeout);
2239                 if (timeout == 0)
2240                         return false;
2241
2242                 sent--;
2243                 if (nr_queues)
2244                         goto retry;
2245         }
2246         return true;
2247 }
2248
2249 static void nvme_dev_add(struct nvme_dev *dev)
2250 {
2251         int ret;
2252
2253         if (!dev->ctrl.tagset) {
2254                 dev->tagset.ops = &nvme_mq_ops;
2255                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2256                 dev->tagset.nr_maps = 2; /* default + read */
2257                 if (dev->io_queues[HCTX_TYPE_POLL])
2258                         dev->tagset.nr_maps++;
2259                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2260                 dev->tagset.numa_node = dev->ctrl.numa_node;
2261                 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2262                                                 BLK_MQ_MAX_DEPTH) - 1;
2263                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2264                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2265                 dev->tagset.driver_data = dev;
2266
2267                 /*
2268                  * Some Apple controllers requires tags to be unique
2269                  * across admin and IO queue, so reserve the first 32
2270                  * tags of the IO queue.
2271                  */
2272                 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2273                         dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2274
2275                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2276                 if (ret) {
2277                         dev_warn(dev->ctrl.device,
2278                                 "IO queues tagset allocation failed %d\n", ret);
2279                         return;
2280                 }
2281                 dev->ctrl.tagset = &dev->tagset;
2282         } else {
2283                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2284
2285                 /* Free previously allocated queues that are no longer usable */
2286                 nvme_free_queues(dev, dev->online_queues);
2287         }
2288
2289         nvme_dbbuf_set(dev);
2290 }
2291
2292 static int nvme_pci_enable(struct nvme_dev *dev)
2293 {
2294         int result = -ENOMEM;
2295         struct pci_dev *pdev = to_pci_dev(dev->dev);
2296
2297         if (pci_enable_device_mem(pdev))
2298                 return result;
2299
2300         pci_set_master(pdev);
2301
2302         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2303                 goto disable;
2304
2305         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2306                 result = -ENODEV;
2307                 goto disable;
2308         }
2309
2310         /*
2311          * Some devices and/or platforms don't advertise or work with INTx
2312          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2313          * adjust this later.
2314          */
2315         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2316         if (result < 0)
2317                 return result;
2318
2319         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2320
2321         dev->q_depth = min_t(u16, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2322                                 io_queue_depth);
2323         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2324         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2325         dev->dbs = dev->bar + 4096;
2326
2327         /*
2328          * Some Apple controllers require a non-standard SQE size.
2329          * Interestingly they also seem to ignore the CC:IOSQES register
2330          * so we don't bother updating it here.
2331          */
2332         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2333                 dev->io_sqes = 7;
2334         else
2335                 dev->io_sqes = NVME_NVM_IOSQES;
2336
2337         /*
2338          * Temporary fix for the Apple controller found in the MacBook8,1 and
2339          * some MacBook7,1 to avoid controller resets and data loss.
2340          */
2341         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2342                 dev->q_depth = 2;
2343                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2344                         "set queue depth=%u to work around controller resets\n",
2345                         dev->q_depth);
2346         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2347                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2348                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2349                 dev->q_depth = 64;
2350                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2351                         "set queue depth=%u\n", dev->q_depth);
2352         }
2353
2354         /*
2355          * Controllers with the shared tags quirk need the IO queue to be
2356          * big enough so that we get 32 tags for the admin queue
2357          */
2358         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2359             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2360                 dev->q_depth = NVME_AQ_DEPTH + 2;
2361                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2362                          dev->q_depth);
2363         }
2364
2365
2366         nvme_map_cmb(dev);
2367
2368         pci_enable_pcie_error_reporting(pdev);
2369         pci_save_state(pdev);
2370         return 0;
2371
2372  disable:
2373         pci_disable_device(pdev);
2374         return result;
2375 }
2376
2377 static void nvme_dev_unmap(struct nvme_dev *dev)
2378 {
2379         if (dev->bar)
2380                 iounmap(dev->bar);
2381         pci_release_mem_regions(to_pci_dev(dev->dev));
2382 }
2383
2384 static void nvme_pci_disable(struct nvme_dev *dev)
2385 {
2386         struct pci_dev *pdev = to_pci_dev(dev->dev);
2387
2388         pci_free_irq_vectors(pdev);
2389
2390         if (pci_is_enabled(pdev)) {
2391                 pci_disable_pcie_error_reporting(pdev);
2392                 pci_disable_device(pdev);
2393         }
2394 }
2395
2396 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2397 {
2398         bool dead = true, freeze = false;
2399         struct pci_dev *pdev = to_pci_dev(dev->dev);
2400
2401         mutex_lock(&dev->shutdown_lock);
2402         if (pci_is_enabled(pdev)) {
2403                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2404
2405                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2406                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2407                         freeze = true;
2408                         nvme_start_freeze(&dev->ctrl);
2409                 }
2410                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2411                         pdev->error_state  != pci_channel_io_normal);
2412         }
2413
2414         /*
2415          * Give the controller a chance to complete all entered requests if
2416          * doing a safe shutdown.
2417          */
2418         if (!dead && shutdown && freeze)
2419                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2420
2421         nvme_stop_queues(&dev->ctrl);
2422
2423         if (!dead && dev->ctrl.queue_count > 0) {
2424                 nvme_disable_io_queues(dev);
2425                 nvme_disable_admin_queue(dev, shutdown);
2426         }
2427         nvme_suspend_io_queues(dev);
2428         nvme_suspend_queue(&dev->queues[0]);
2429         nvme_pci_disable(dev);
2430         nvme_reap_pending_cqes(dev);
2431
2432         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2433         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2434         blk_mq_tagset_wait_completed_request(&dev->tagset);
2435         blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2436
2437         /*
2438          * The driver will not be starting up queues again if shutting down so
2439          * must flush all entered requests to their failed completion to avoid
2440          * deadlocking blk-mq hot-cpu notifier.
2441          */
2442         if (shutdown) {
2443                 nvme_start_queues(&dev->ctrl);
2444                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2445                         blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2446         }
2447         mutex_unlock(&dev->shutdown_lock);
2448 }
2449
2450 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2451 {
2452         if (!nvme_wait_reset(&dev->ctrl))
2453                 return -EBUSY;
2454         nvme_dev_disable(dev, shutdown);
2455         return 0;
2456 }
2457
2458 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2459 {
2460         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2461                                                 PAGE_SIZE, PAGE_SIZE, 0);
2462         if (!dev->prp_page_pool)
2463                 return -ENOMEM;
2464
2465         /* Optimisation for I/Os between 4k and 128k */
2466         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2467                                                 256, 256, 0);
2468         if (!dev->prp_small_pool) {
2469                 dma_pool_destroy(dev->prp_page_pool);
2470                 return -ENOMEM;
2471         }
2472         return 0;
2473 }
2474
2475 static void nvme_release_prp_pools(struct nvme_dev *dev)
2476 {
2477         dma_pool_destroy(dev->prp_page_pool);
2478         dma_pool_destroy(dev->prp_small_pool);
2479 }
2480
2481 static void nvme_free_tagset(struct nvme_dev *dev)
2482 {
2483         if (dev->tagset.tags)
2484                 blk_mq_free_tag_set(&dev->tagset);
2485         dev->ctrl.tagset = NULL;
2486 }
2487
2488 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2489 {
2490         struct nvme_dev *dev = to_nvme_dev(ctrl);
2491
2492         nvme_dbbuf_dma_free(dev);
2493         nvme_free_tagset(dev);
2494         if (dev->ctrl.admin_q)
2495                 blk_put_queue(dev->ctrl.admin_q);
2496         free_opal_dev(dev->ctrl.opal_dev);
2497         mempool_destroy(dev->iod_mempool);
2498         put_device(dev->dev);
2499         kfree(dev->queues);
2500         kfree(dev);
2501 }
2502
2503 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2504 {
2505         /*
2506          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2507          * may be holding this pci_dev's device lock.
2508          */
2509         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2510         nvme_get_ctrl(&dev->ctrl);
2511         nvme_dev_disable(dev, false);
2512         nvme_kill_queues(&dev->ctrl);
2513         if (!queue_work(nvme_wq, &dev->remove_work))
2514                 nvme_put_ctrl(&dev->ctrl);
2515 }
2516
2517 static void nvme_reset_work(struct work_struct *work)
2518 {
2519         struct nvme_dev *dev =
2520                 container_of(work, struct nvme_dev, ctrl.reset_work);
2521         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2522         int result;
2523
2524         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2525                 result = -ENODEV;
2526                 goto out;
2527         }
2528
2529         /*
2530          * If we're called to reset a live controller first shut it down before
2531          * moving on.
2532          */
2533         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2534                 nvme_dev_disable(dev, false);
2535         nvme_sync_queues(&dev->ctrl);
2536
2537         mutex_lock(&dev->shutdown_lock);
2538         result = nvme_pci_enable(dev);
2539         if (result)
2540                 goto out_unlock;
2541
2542         result = nvme_pci_configure_admin_queue(dev);
2543         if (result)
2544                 goto out_unlock;
2545
2546         result = nvme_alloc_admin_tags(dev);
2547         if (result)
2548                 goto out_unlock;
2549
2550         /*
2551          * Limit the max command size to prevent iod->sg allocations going
2552          * over a single page.
2553          */
2554         dev->ctrl.max_hw_sectors = min_t(u32,
2555                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2556         dev->ctrl.max_segments = NVME_MAX_SEGS;
2557
2558         /*
2559          * Don't limit the IOMMU merged segment size.
2560          */
2561         dma_set_max_seg_size(dev->dev, 0xffffffff);
2562
2563         mutex_unlock(&dev->shutdown_lock);
2564
2565         /*
2566          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2567          * initializing procedure here.
2568          */
2569         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2570                 dev_warn(dev->ctrl.device,
2571                         "failed to mark controller CONNECTING\n");
2572                 result = -EBUSY;
2573                 goto out;
2574         }
2575
2576         /*
2577          * We do not support an SGL for metadata (yet), so we are limited to a
2578          * single integrity segment for the separate metadata pointer.
2579          */
2580         dev->ctrl.max_integrity_segments = 1;
2581
2582         result = nvme_init_identify(&dev->ctrl);
2583         if (result)
2584                 goto out;
2585
2586         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2587                 if (!dev->ctrl.opal_dev)
2588                         dev->ctrl.opal_dev =
2589                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2590                 else if (was_suspend)
2591                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2592         } else {
2593                 free_opal_dev(dev->ctrl.opal_dev);
2594                 dev->ctrl.opal_dev = NULL;
2595         }
2596
2597         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2598                 result = nvme_dbbuf_dma_alloc(dev);
2599                 if (result)
2600                         dev_warn(dev->dev,
2601                                  "unable to allocate dma for dbbuf\n");
2602         }
2603
2604         if (dev->ctrl.hmpre) {
2605                 result = nvme_setup_host_mem(dev);
2606                 if (result < 0)
2607                         goto out;
2608         }
2609
2610         result = nvme_setup_io_queues(dev);
2611         if (result)
2612                 goto out;
2613
2614         /*
2615          * Keep the controller around but remove all namespaces if we don't have
2616          * any working I/O queue.
2617          */
2618         if (dev->online_queues < 2) {
2619                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2620                 nvme_kill_queues(&dev->ctrl);
2621                 nvme_remove_namespaces(&dev->ctrl);
2622                 nvme_free_tagset(dev);
2623         } else {
2624                 nvme_start_queues(&dev->ctrl);
2625                 nvme_wait_freeze(&dev->ctrl);
2626                 nvme_dev_add(dev);
2627                 nvme_unfreeze(&dev->ctrl);
2628         }
2629
2630         /*
2631          * If only admin queue live, keep it to do further investigation or
2632          * recovery.
2633          */
2634         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2635                 dev_warn(dev->ctrl.device,
2636                         "failed to mark controller live state\n");
2637                 result = -ENODEV;
2638                 goto out;
2639         }
2640
2641         nvme_start_ctrl(&dev->ctrl);
2642         return;
2643
2644  out_unlock:
2645         mutex_unlock(&dev->shutdown_lock);
2646  out:
2647         if (result)
2648                 dev_warn(dev->ctrl.device,
2649                          "Removing after probe failure status: %d\n", result);
2650         nvme_remove_dead_ctrl(dev);
2651 }
2652
2653 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2654 {
2655         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2656         struct pci_dev *pdev = to_pci_dev(dev->dev);
2657
2658         if (pci_get_drvdata(pdev))
2659                 device_release_driver(&pdev->dev);
2660         nvme_put_ctrl(&dev->ctrl);
2661 }
2662
2663 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2664 {
2665         *val = readl(to_nvme_dev(ctrl)->bar + off);
2666         return 0;
2667 }
2668
2669 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2670 {
2671         writel(val, to_nvme_dev(ctrl)->bar + off);
2672         return 0;
2673 }
2674
2675 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2676 {
2677         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2678         return 0;
2679 }
2680
2681 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2682 {
2683         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2684
2685         return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2686 }
2687
2688 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2689         .name                   = "pcie",
2690         .module                 = THIS_MODULE,
2691         .flags                  = NVME_F_METADATA_SUPPORTED |
2692                                   NVME_F_PCI_P2PDMA,
2693         .reg_read32             = nvme_pci_reg_read32,
2694         .reg_write32            = nvme_pci_reg_write32,
2695         .reg_read64             = nvme_pci_reg_read64,
2696         .free_ctrl              = nvme_pci_free_ctrl,
2697         .submit_async_event     = nvme_pci_submit_async_event,
2698         .get_address            = nvme_pci_get_address,
2699 };
2700
2701 static int nvme_dev_map(struct nvme_dev *dev)
2702 {
2703         struct pci_dev *pdev = to_pci_dev(dev->dev);
2704
2705         if (pci_request_mem_regions(pdev, "nvme"))
2706                 return -ENODEV;
2707
2708         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2709                 goto release;
2710
2711         return 0;
2712   release:
2713         pci_release_mem_regions(pdev);
2714         return -ENODEV;
2715 }
2716
2717 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2718 {
2719         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2720                 /*
2721                  * Several Samsung devices seem to drop off the PCIe bus
2722                  * randomly when APST is on and uses the deepest sleep state.
2723                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2724                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2725                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2726                  * laptops.
2727                  */
2728                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2729                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2730                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2731                         return NVME_QUIRK_NO_DEEPEST_PS;
2732         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2733                 /*
2734                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2735                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2736                  * within few minutes after bootup on a Coffee Lake board -
2737                  * ASUS PRIME Z370-A
2738                  */
2739                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2740                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2741                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2742                         return NVME_QUIRK_NO_APST;
2743         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2744                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2745                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2746                 /*
2747                  * Forcing to use host managed nvme power settings for
2748                  * lowest idle power with quick resume latency on
2749                  * Samsung and Toshiba SSDs based on suspend behavior
2750                  * on Coffee Lake board for LENOVO C640
2751                  */
2752                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2753                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2754                         return NVME_QUIRK_SIMPLE_SUSPEND;
2755         }
2756
2757         return 0;
2758 }
2759
2760 static void nvme_async_probe(void *data, async_cookie_t cookie)
2761 {
2762         struct nvme_dev *dev = data;
2763
2764         flush_work(&dev->ctrl.reset_work);
2765         flush_work(&dev->ctrl.scan_work);
2766         nvme_put_ctrl(&dev->ctrl);
2767 }
2768
2769 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2770 {
2771         int node, result = -ENOMEM;
2772         struct nvme_dev *dev;
2773         unsigned long quirks = id->driver_data;
2774         size_t alloc_size;
2775
2776         node = dev_to_node(&pdev->dev);
2777         if (node == NUMA_NO_NODE)
2778                 set_dev_node(&pdev->dev, first_memory_node);
2779
2780         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2781         if (!dev)
2782                 return -ENOMEM;
2783
2784         dev->nr_write_queues = write_queues;
2785         dev->nr_poll_queues = poll_queues;
2786         dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2787         dev->queues = kcalloc_node(dev->nr_allocated_queues,
2788                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2789         if (!dev->queues)
2790                 goto free;
2791
2792         dev->dev = get_device(&pdev->dev);
2793         pci_set_drvdata(pdev, dev);
2794
2795         result = nvme_dev_map(dev);
2796         if (result)
2797                 goto put_pci;
2798
2799         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2800         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2801         mutex_init(&dev->shutdown_lock);
2802
2803         result = nvme_setup_prp_pools(dev);
2804         if (result)
2805                 goto unmap;
2806
2807         quirks |= check_vendor_combination_bug(pdev);
2808
2809         /*
2810          * Double check that our mempool alloc size will cover the biggest
2811          * command we support.
2812          */
2813         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2814                                                 NVME_MAX_SEGS, true);
2815         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2816
2817         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2818                                                 mempool_kfree,
2819                                                 (void *) alloc_size,
2820                                                 GFP_KERNEL, node);
2821         if (!dev->iod_mempool) {
2822                 result = -ENOMEM;
2823                 goto release_pools;
2824         }
2825
2826         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2827                         quirks);
2828         if (result)
2829                 goto release_mempool;
2830
2831         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2832
2833         nvme_reset_ctrl(&dev->ctrl);
2834         async_schedule(nvme_async_probe, dev);
2835
2836         return 0;
2837
2838  release_mempool:
2839         mempool_destroy(dev->iod_mempool);
2840  release_pools:
2841         nvme_release_prp_pools(dev);
2842  unmap:
2843         nvme_dev_unmap(dev);
2844  put_pci:
2845         put_device(dev->dev);
2846  free:
2847         kfree(dev->queues);
2848         kfree(dev);
2849         return result;
2850 }
2851
2852 static void nvme_reset_prepare(struct pci_dev *pdev)
2853 {
2854         struct nvme_dev *dev = pci_get_drvdata(pdev);
2855
2856         /*
2857          * We don't need to check the return value from waiting for the reset
2858          * state as pci_dev device lock is held, making it impossible to race
2859          * with ->remove().
2860          */
2861         nvme_disable_prepare_reset(dev, false);
2862         nvme_sync_queues(&dev->ctrl);
2863 }
2864
2865 static void nvme_reset_done(struct pci_dev *pdev)
2866 {
2867         struct nvme_dev *dev = pci_get_drvdata(pdev);
2868
2869         if (!nvme_try_sched_reset(&dev->ctrl))
2870                 flush_work(&dev->ctrl.reset_work);
2871 }
2872
2873 static void nvme_shutdown(struct pci_dev *pdev)
2874 {
2875         struct nvme_dev *dev = pci_get_drvdata(pdev);
2876         nvme_disable_prepare_reset(dev, true);
2877 }
2878
2879 /*
2880  * The driver's remove may be called on a device in a partially initialized
2881  * state. This function must not have any dependencies on the device state in
2882  * order to proceed.
2883  */
2884 static void nvme_remove(struct pci_dev *pdev)
2885 {
2886         struct nvme_dev *dev = pci_get_drvdata(pdev);
2887
2888         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2889         pci_set_drvdata(pdev, NULL);
2890
2891         if (!pci_device_is_present(pdev)) {
2892                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2893                 nvme_dev_disable(dev, true);
2894                 nvme_dev_remove_admin(dev);
2895         }
2896
2897         flush_work(&dev->ctrl.reset_work);
2898         nvme_stop_ctrl(&dev->ctrl);
2899         nvme_remove_namespaces(&dev->ctrl);
2900         nvme_dev_disable(dev, true);
2901         nvme_release_cmb(dev);
2902         nvme_free_host_mem(dev);
2903         nvme_dev_remove_admin(dev);
2904         nvme_free_queues(dev, 0);
2905         nvme_release_prp_pools(dev);
2906         nvme_dev_unmap(dev);
2907         nvme_uninit_ctrl(&dev->ctrl);
2908 }
2909
2910 #ifdef CONFIG_PM_SLEEP
2911 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2912 {
2913         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2914 }
2915
2916 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2917 {
2918         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2919 }
2920
2921 static int nvme_resume(struct device *dev)
2922 {
2923         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2924         struct nvme_ctrl *ctrl = &ndev->ctrl;
2925
2926         if (ndev->last_ps == U32_MAX ||
2927             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2928                 return nvme_try_sched_reset(&ndev->ctrl);
2929         return 0;
2930 }
2931
2932 static int nvme_suspend(struct device *dev)
2933 {
2934         struct pci_dev *pdev = to_pci_dev(dev);
2935         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2936         struct nvme_ctrl *ctrl = &ndev->ctrl;
2937         int ret = -EBUSY;
2938
2939         ndev->last_ps = U32_MAX;
2940
2941         /*
2942          * The platform does not remove power for a kernel managed suspend so
2943          * use host managed nvme power settings for lowest idle power if
2944          * possible. This should have quicker resume latency than a full device
2945          * shutdown.  But if the firmware is involved after the suspend or the
2946          * device does not support any non-default power states, shut down the
2947          * device fully.
2948          *
2949          * If ASPM is not enabled for the device, shut down the device and allow
2950          * the PCI bus layer to put it into D3 in order to take the PCIe link
2951          * down, so as to allow the platform to achieve its minimum low-power
2952          * state (which may not be possible if the link is up).
2953          *
2954          * If a host memory buffer is enabled, shut down the device as the NVMe
2955          * specification allows the device to access the host memory buffer in
2956          * host DRAM from all power states, but hosts will fail access to DRAM
2957          * during S3.
2958          */
2959         if (pm_suspend_via_firmware() || !ctrl->npss ||
2960             !pcie_aspm_enabled(pdev) ||
2961             ndev->nr_host_mem_descs ||
2962             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2963                 return nvme_disable_prepare_reset(ndev, true);
2964
2965         nvme_start_freeze(ctrl);
2966         nvme_wait_freeze(ctrl);
2967         nvme_sync_queues(ctrl);
2968
2969         if (ctrl->state != NVME_CTRL_LIVE)
2970                 goto unfreeze;
2971
2972         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2973         if (ret < 0)
2974                 goto unfreeze;
2975
2976         /*
2977          * A saved state prevents pci pm from generically controlling the
2978          * device's power. If we're using protocol specific settings, we don't
2979          * want pci interfering.
2980          */
2981         pci_save_state(pdev);
2982
2983         ret = nvme_set_power_state(ctrl, ctrl->npss);
2984         if (ret < 0)
2985                 goto unfreeze;
2986
2987         if (ret) {
2988                 /* discard the saved state */
2989                 pci_load_saved_state(pdev, NULL);
2990
2991                 /*
2992                  * Clearing npss forces a controller reset on resume. The
2993                  * correct value will be rediscovered then.
2994                  */
2995                 ret = nvme_disable_prepare_reset(ndev, true);
2996                 ctrl->npss = 0;
2997         }
2998 unfreeze:
2999         nvme_unfreeze(ctrl);
3000         return ret;
3001 }
3002
3003 static int nvme_simple_suspend(struct device *dev)
3004 {
3005         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3006         return nvme_disable_prepare_reset(ndev, true);
3007 }
3008
3009 static int nvme_simple_resume(struct device *dev)
3010 {
3011         struct pci_dev *pdev = to_pci_dev(dev);
3012         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3013
3014         return nvme_try_sched_reset(&ndev->ctrl);
3015 }
3016
3017 static const struct dev_pm_ops nvme_dev_pm_ops = {
3018         .suspend        = nvme_suspend,
3019         .resume         = nvme_resume,
3020         .freeze         = nvme_simple_suspend,
3021         .thaw           = nvme_simple_resume,
3022         .poweroff       = nvme_simple_suspend,
3023         .restore        = nvme_simple_resume,
3024 };
3025 #endif /* CONFIG_PM_SLEEP */
3026
3027 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3028                                                 pci_channel_state_t state)
3029 {
3030         struct nvme_dev *dev = pci_get_drvdata(pdev);
3031
3032         /*
3033          * A frozen channel requires a reset. When detected, this method will
3034          * shutdown the controller to quiesce. The controller will be restarted
3035          * after the slot reset through driver's slot_reset callback.
3036          */
3037         switch (state) {
3038         case pci_channel_io_normal:
3039                 return PCI_ERS_RESULT_CAN_RECOVER;
3040         case pci_channel_io_frozen:
3041                 dev_warn(dev->ctrl.device,
3042                         "frozen state error detected, reset controller\n");
3043                 nvme_dev_disable(dev, false);
3044                 return PCI_ERS_RESULT_NEED_RESET;
3045         case pci_channel_io_perm_failure:
3046                 dev_warn(dev->ctrl.device,
3047                         "failure state error detected, request disconnect\n");
3048                 return PCI_ERS_RESULT_DISCONNECT;
3049         }
3050         return PCI_ERS_RESULT_NEED_RESET;
3051 }
3052
3053 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3054 {
3055         struct nvme_dev *dev = pci_get_drvdata(pdev);
3056
3057         dev_info(dev->ctrl.device, "restart after slot reset\n");
3058         pci_restore_state(pdev);
3059         nvme_reset_ctrl(&dev->ctrl);
3060         return PCI_ERS_RESULT_RECOVERED;
3061 }
3062
3063 static void nvme_error_resume(struct pci_dev *pdev)
3064 {
3065         struct nvme_dev *dev = pci_get_drvdata(pdev);
3066
3067         flush_work(&dev->ctrl.reset_work);
3068 }
3069
3070 static const struct pci_error_handlers nvme_err_handler = {
3071         .error_detected = nvme_error_detected,
3072         .slot_reset     = nvme_slot_reset,
3073         .resume         = nvme_error_resume,
3074         .reset_prepare  = nvme_reset_prepare,
3075         .reset_done     = nvme_reset_done,
3076 };
3077
3078 static const struct pci_device_id nvme_id_table[] = {
3079         { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3080                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3081                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3082         { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3083                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3084                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3085         { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3086                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3087                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3088         { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3089                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3090                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3091         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3092                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3093                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3094                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
3095         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3096                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3097         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3098                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3099                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3100         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3101                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3102         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3103                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3104         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3105                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3106         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3107                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3108         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3109                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3110         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3111                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3112         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3113                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3114         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3115                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3116         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3117                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3118         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3119                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3120         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3121                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3122                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3123         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3124         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3125                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3126         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3127         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3128                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3129                                 NVME_QUIRK_128_BYTES_SQES |
3130                                 NVME_QUIRK_SHARED_TAGS },
3131         { 0, }
3132 };
3133 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3134
3135 static struct pci_driver nvme_driver = {
3136         .name           = "nvme",
3137         .id_table       = nvme_id_table,
3138         .probe          = nvme_probe,
3139         .remove         = nvme_remove,
3140         .shutdown       = nvme_shutdown,
3141 #ifdef CONFIG_PM_SLEEP
3142         .driver         = {
3143                 .pm     = &nvme_dev_pm_ops,
3144         },
3145 #endif
3146         .sriov_configure = pci_sriov_configure_simple,
3147         .err_handler    = &nvme_err_handler,
3148 };
3149
3150 static int __init nvme_init(void)
3151 {
3152         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3153         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3154         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3155         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3156
3157         return pci_register_driver(&nvme_driver);
3158 }
3159
3160 static void __exit nvme_exit(void)
3161 {
3162         pci_unregister_driver(&nvme_driver);
3163         flush_workqueue(nvme_wq);
3164 }
3165
3166 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3167 MODULE_LICENSE("GPL");
3168 MODULE_VERSION("1.0");
3169 module_init(nvme_init);
3170 module_exit(nvme_exit);