nvme-pci: set min_align_mask
[linux-2.6-microblaze.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29
30 #include "trace.h"
31 #include "nvme.h"
32
33 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
35
36 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ  4096
43 #define NVME_MAX_SEGS   127
44
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60                 "Use SGLs when average request segment size is larger or equal to "
61                 "this size. Use 0 to disable SGLs.");
62
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65         .set = io_queue_depth_set,
66         .get = param_get_uint,
67 };
68
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72
73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75         unsigned int n;
76         int ret;
77
78         ret = kstrtouint(val, 10, &n);
79         if (ret != 0 || n > num_possible_cpus())
80                 return -EINVAL;
81         return param_set_uint(val, kp);
82 }
83
84 static const struct kernel_param_ops io_queue_count_ops = {
85         .set = io_queue_count_set,
86         .get = param_get_uint,
87 };
88
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92         "Number of queues to use for writes. If not set, reads and writes "
93         "will share a queue set.");
94
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102
103 struct nvme_dev;
104 struct nvme_queue;
105
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108
109 /*
110  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
111  */
112 struct nvme_dev {
113         struct nvme_queue *queues;
114         struct blk_mq_tag_set tagset;
115         struct blk_mq_tag_set admin_tagset;
116         u32 __iomem *dbs;
117         struct device *dev;
118         struct dma_pool *prp_page_pool;
119         struct dma_pool *prp_small_pool;
120         unsigned online_queues;
121         unsigned max_qid;
122         unsigned io_queues[HCTX_MAX_TYPES];
123         unsigned int num_vecs;
124         u32 q_depth;
125         int io_sqes;
126         u32 db_stride;
127         void __iomem *bar;
128         unsigned long bar_mapped_size;
129         struct work_struct remove_work;
130         struct mutex shutdown_lock;
131         bool subsystem;
132         u64 cmb_size;
133         bool cmb_use_sqes;
134         u32 cmbsz;
135         u32 cmbloc;
136         struct nvme_ctrl ctrl;
137         u32 last_ps;
138
139         mempool_t *iod_mempool;
140
141         /* shadow doorbell buffer support: */
142         u32 *dbbuf_dbs;
143         dma_addr_t dbbuf_dbs_dma_addr;
144         u32 *dbbuf_eis;
145         dma_addr_t dbbuf_eis_dma_addr;
146
147         /* host memory buffer support: */
148         u64 host_mem_size;
149         u32 nr_host_mem_descs;
150         dma_addr_t host_mem_descs_dma;
151         struct nvme_host_mem_buf_desc *host_mem_descs;
152         void **host_mem_desc_bufs;
153         unsigned int nr_allocated_queues;
154         unsigned int nr_write_queues;
155         unsigned int nr_poll_queues;
156 };
157
158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160         int ret;
161         u32 n;
162
163         ret = kstrtou32(val, 10, &n);
164         if (ret != 0 || n < 2)
165                 return -EINVAL;
166
167         return param_set_uint(val, kp);
168 }
169
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172         return qid * 2 * stride;
173 }
174
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177         return (qid * 2 + 1) * stride;
178 }
179
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182         return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190         struct nvme_dev *dev;
191         spinlock_t sq_lock;
192         void *sq_cmds;
193          /* only used for poll queues: */
194         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195         struct nvme_completion *cqes;
196         dma_addr_t sq_dma_addr;
197         dma_addr_t cq_dma_addr;
198         u32 __iomem *q_db;
199         u32 q_depth;
200         u16 cq_vector;
201         u16 sq_tail;
202         u16 last_sq_tail;
203         u16 cq_head;
204         u16 qid;
205         u8 cq_phase;
206         u8 sqes;
207         unsigned long flags;
208 #define NVMEQ_ENABLED           0
209 #define NVMEQ_SQ_CMB            1
210 #define NVMEQ_DELETE_ERROR      2
211 #define NVMEQ_POLLED            3
212         u32 *dbbuf_sq_db;
213         u32 *dbbuf_cq_db;
214         u32 *dbbuf_sq_ei;
215         u32 *dbbuf_cq_ei;
216         struct completion delete_done;
217 };
218
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226         struct nvme_request req;
227         struct nvme_queue *nvmeq;
228         bool use_sgl;
229         int aborted;
230         int npages;             /* In the PRP list. 0 means small pool in use */
231         int nents;              /* Used in scatterlist */
232         dma_addr_t first_dma;
233         unsigned int dma_len;   /* length of single DMA segment mapping */
234         dma_addr_t meta_dma;
235         struct scatterlist *sg;
236 };
237
238 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
239 {
240         return dev->nr_allocated_queues * 8 * dev->db_stride;
241 }
242
243 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
244 {
245         unsigned int mem_size = nvme_dbbuf_size(dev);
246
247         if (dev->dbbuf_dbs)
248                 return 0;
249
250         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
251                                             &dev->dbbuf_dbs_dma_addr,
252                                             GFP_KERNEL);
253         if (!dev->dbbuf_dbs)
254                 return -ENOMEM;
255         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
256                                             &dev->dbbuf_eis_dma_addr,
257                                             GFP_KERNEL);
258         if (!dev->dbbuf_eis) {
259                 dma_free_coherent(dev->dev, mem_size,
260                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
261                 dev->dbbuf_dbs = NULL;
262                 return -ENOMEM;
263         }
264
265         return 0;
266 }
267
268 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
269 {
270         unsigned int mem_size = nvme_dbbuf_size(dev);
271
272         if (dev->dbbuf_dbs) {
273                 dma_free_coherent(dev->dev, mem_size,
274                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
275                 dev->dbbuf_dbs = NULL;
276         }
277         if (dev->dbbuf_eis) {
278                 dma_free_coherent(dev->dev, mem_size,
279                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
280                 dev->dbbuf_eis = NULL;
281         }
282 }
283
284 static void nvme_dbbuf_init(struct nvme_dev *dev,
285                             struct nvme_queue *nvmeq, int qid)
286 {
287         if (!dev->dbbuf_dbs || !qid)
288                 return;
289
290         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
291         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
292         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
293         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
294 }
295
296 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
297 {
298         if (!nvmeq->qid)
299                 return;
300
301         nvmeq->dbbuf_sq_db = NULL;
302         nvmeq->dbbuf_cq_db = NULL;
303         nvmeq->dbbuf_sq_ei = NULL;
304         nvmeq->dbbuf_cq_ei = NULL;
305 }
306
307 static void nvme_dbbuf_set(struct nvme_dev *dev)
308 {
309         struct nvme_command c;
310         unsigned int i;
311
312         if (!dev->dbbuf_dbs)
313                 return;
314
315         memset(&c, 0, sizeof(c));
316         c.dbbuf.opcode = nvme_admin_dbbuf;
317         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
318         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
319
320         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
321                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
322                 /* Free memory and continue on */
323                 nvme_dbbuf_dma_free(dev);
324
325                 for (i = 1; i <= dev->online_queues; i++)
326                         nvme_dbbuf_free(&dev->queues[i]);
327         }
328 }
329
330 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
331 {
332         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
333 }
334
335 /* Update dbbuf and return true if an MMIO is required */
336 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
337                                               volatile u32 *dbbuf_ei)
338 {
339         if (dbbuf_db) {
340                 u16 old_value;
341
342                 /*
343                  * Ensure that the queue is written before updating
344                  * the doorbell in memory
345                  */
346                 wmb();
347
348                 old_value = *dbbuf_db;
349                 *dbbuf_db = value;
350
351                 /*
352                  * Ensure that the doorbell is updated before reading the event
353                  * index from memory.  The controller needs to provide similar
354                  * ordering to ensure the envent index is updated before reading
355                  * the doorbell.
356                  */
357                 mb();
358
359                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
360                         return false;
361         }
362
363         return true;
364 }
365
366 /*
367  * Will slightly overestimate the number of pages needed.  This is OK
368  * as it only leads to a small amount of wasted memory for the lifetime of
369  * the I/O.
370  */
371 static int nvme_pci_npages_prp(void)
372 {
373         unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
374                                       NVME_CTRL_PAGE_SIZE);
375         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
376 }
377
378 /*
379  * Calculates the number of pages needed for the SGL segments. For example a 4k
380  * page can accommodate 256 SGL descriptors.
381  */
382 static int nvme_pci_npages_sgl(void)
383 {
384         return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
385                         PAGE_SIZE);
386 }
387
388 static size_t nvme_pci_iod_alloc_size(void)
389 {
390         size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
391
392         return sizeof(__le64 *) * npages +
393                 sizeof(struct scatterlist) * NVME_MAX_SEGS;
394 }
395
396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397                                 unsigned int hctx_idx)
398 {
399         struct nvme_dev *dev = data;
400         struct nvme_queue *nvmeq = &dev->queues[0];
401
402         WARN_ON(hctx_idx != 0);
403         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
404
405         hctx->driver_data = nvmeq;
406         return 0;
407 }
408
409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410                           unsigned int hctx_idx)
411 {
412         struct nvme_dev *dev = data;
413         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
414
415         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
416         hctx->driver_data = nvmeq;
417         return 0;
418 }
419
420 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
421                 unsigned int hctx_idx, unsigned int numa_node)
422 {
423         struct nvme_dev *dev = set->driver_data;
424         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
425         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
426         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
427
428         BUG_ON(!nvmeq);
429         iod->nvmeq = nvmeq;
430
431         nvme_req(req)->ctrl = &dev->ctrl;
432         return 0;
433 }
434
435 static int queue_irq_offset(struct nvme_dev *dev)
436 {
437         /* if we have more than 1 vec, admin queue offsets us by 1 */
438         if (dev->num_vecs > 1)
439                 return 1;
440
441         return 0;
442 }
443
444 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
445 {
446         struct nvme_dev *dev = set->driver_data;
447         int i, qoff, offset;
448
449         offset = queue_irq_offset(dev);
450         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
451                 struct blk_mq_queue_map *map = &set->map[i];
452
453                 map->nr_queues = dev->io_queues[i];
454                 if (!map->nr_queues) {
455                         BUG_ON(i == HCTX_TYPE_DEFAULT);
456                         continue;
457                 }
458
459                 /*
460                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
461                  * affinity), so use the regular blk-mq cpu mapping
462                  */
463                 map->queue_offset = qoff;
464                 if (i != HCTX_TYPE_POLL && offset)
465                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
466                 else
467                         blk_mq_map_queues(map);
468                 qoff += map->nr_queues;
469                 offset += map->nr_queues;
470         }
471
472         return 0;
473 }
474
475 /*
476  * Write sq tail if we are asked to, or if the next command would wrap.
477  */
478 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
479 {
480         if (!write_sq) {
481                 u16 next_tail = nvmeq->sq_tail + 1;
482
483                 if (next_tail == nvmeq->q_depth)
484                         next_tail = 0;
485                 if (next_tail != nvmeq->last_sq_tail)
486                         return;
487         }
488
489         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
490                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
491                 writel(nvmeq->sq_tail, nvmeq->q_db);
492         nvmeq->last_sq_tail = nvmeq->sq_tail;
493 }
494
495 /**
496  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
497  * @nvmeq: The queue to use
498  * @cmd: The command to send
499  * @write_sq: whether to write to the SQ doorbell
500  */
501 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
502                             bool write_sq)
503 {
504         spin_lock(&nvmeq->sq_lock);
505         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
506                cmd, sizeof(*cmd));
507         if (++nvmeq->sq_tail == nvmeq->q_depth)
508                 nvmeq->sq_tail = 0;
509         nvme_write_sq_db(nvmeq, write_sq);
510         spin_unlock(&nvmeq->sq_lock);
511 }
512
513 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
514 {
515         struct nvme_queue *nvmeq = hctx->driver_data;
516
517         spin_lock(&nvmeq->sq_lock);
518         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
519                 nvme_write_sq_db(nvmeq, true);
520         spin_unlock(&nvmeq->sq_lock);
521 }
522
523 static void **nvme_pci_iod_list(struct request *req)
524 {
525         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
527 }
528
529 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
530 {
531         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
532         int nseg = blk_rq_nr_phys_segments(req);
533         unsigned int avg_seg_size;
534
535         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
536
537         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
538                 return false;
539         if (!iod->nvmeq->qid)
540                 return false;
541         if (!sgl_threshold || avg_seg_size < sgl_threshold)
542                 return false;
543         return true;
544 }
545
546 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
547 {
548         const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
549         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
550         dma_addr_t dma_addr = iod->first_dma;
551         int i;
552
553         for (i = 0; i < iod->npages; i++) {
554                 __le64 *prp_list = nvme_pci_iod_list(req)[i];
555                 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
556
557                 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
558                 dma_addr = next_dma_addr;
559         }
560
561 }
562
563 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
564 {
565         const int last_sg = SGES_PER_PAGE - 1;
566         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
567         dma_addr_t dma_addr = iod->first_dma;
568         int i;
569
570         for (i = 0; i < iod->npages; i++) {
571                 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
572                 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
573
574                 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
575                 dma_addr = next_dma_addr;
576         }
577
578 }
579
580 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
581 {
582         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583
584         if (is_pci_p2pdma_page(sg_page(iod->sg)))
585                 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
586                                     rq_dma_dir(req));
587         else
588                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
589 }
590
591 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
592 {
593         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
594
595         if (iod->dma_len) {
596                 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
597                                rq_dma_dir(req));
598                 return;
599         }
600
601         WARN_ON_ONCE(!iod->nents);
602
603         nvme_unmap_sg(dev, req);
604         if (iod->npages == 0)
605                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
606                               iod->first_dma);
607         else if (iod->use_sgl)
608                 nvme_free_sgls(dev, req);
609         else
610                 nvme_free_prps(dev, req);
611         mempool_free(iod->sg, dev->iod_mempool);
612 }
613
614 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
615 {
616         int i;
617         struct scatterlist *sg;
618
619         for_each_sg(sgl, sg, nents, i) {
620                 dma_addr_t phys = sg_phys(sg);
621                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
622                         "dma_address:%pad dma_length:%d\n",
623                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
624                         sg_dma_len(sg));
625         }
626 }
627
628 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
629                 struct request *req, struct nvme_rw_command *cmnd)
630 {
631         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
632         struct dma_pool *pool;
633         int length = blk_rq_payload_bytes(req);
634         struct scatterlist *sg = iod->sg;
635         int dma_len = sg_dma_len(sg);
636         u64 dma_addr = sg_dma_address(sg);
637         int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
638         __le64 *prp_list;
639         void **list = nvme_pci_iod_list(req);
640         dma_addr_t prp_dma;
641         int nprps, i;
642
643         length -= (NVME_CTRL_PAGE_SIZE - offset);
644         if (length <= 0) {
645                 iod->first_dma = 0;
646                 goto done;
647         }
648
649         dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
650         if (dma_len) {
651                 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
652         } else {
653                 sg = sg_next(sg);
654                 dma_addr = sg_dma_address(sg);
655                 dma_len = sg_dma_len(sg);
656         }
657
658         if (length <= NVME_CTRL_PAGE_SIZE) {
659                 iod->first_dma = dma_addr;
660                 goto done;
661         }
662
663         nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
664         if (nprps <= (256 / 8)) {
665                 pool = dev->prp_small_pool;
666                 iod->npages = 0;
667         } else {
668                 pool = dev->prp_page_pool;
669                 iod->npages = 1;
670         }
671
672         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
673         if (!prp_list) {
674                 iod->first_dma = dma_addr;
675                 iod->npages = -1;
676                 return BLK_STS_RESOURCE;
677         }
678         list[0] = prp_list;
679         iod->first_dma = prp_dma;
680         i = 0;
681         for (;;) {
682                 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
683                         __le64 *old_prp_list = prp_list;
684                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
685                         if (!prp_list)
686                                 goto free_prps;
687                         list[iod->npages++] = prp_list;
688                         prp_list[0] = old_prp_list[i - 1];
689                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
690                         i = 1;
691                 }
692                 prp_list[i++] = cpu_to_le64(dma_addr);
693                 dma_len -= NVME_CTRL_PAGE_SIZE;
694                 dma_addr += NVME_CTRL_PAGE_SIZE;
695                 length -= NVME_CTRL_PAGE_SIZE;
696                 if (length <= 0)
697                         break;
698                 if (dma_len > 0)
699                         continue;
700                 if (unlikely(dma_len < 0))
701                         goto bad_sgl;
702                 sg = sg_next(sg);
703                 dma_addr = sg_dma_address(sg);
704                 dma_len = sg_dma_len(sg);
705         }
706 done:
707         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
708         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
709         return BLK_STS_OK;
710 free_prps:
711         nvme_free_prps(dev, req);
712         return BLK_STS_RESOURCE;
713 bad_sgl:
714         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
715                         "Invalid SGL for payload:%d nents:%d\n",
716                         blk_rq_payload_bytes(req), iod->nents);
717         return BLK_STS_IOERR;
718 }
719
720 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
721                 struct scatterlist *sg)
722 {
723         sge->addr = cpu_to_le64(sg_dma_address(sg));
724         sge->length = cpu_to_le32(sg_dma_len(sg));
725         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
726 }
727
728 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
729                 dma_addr_t dma_addr, int entries)
730 {
731         sge->addr = cpu_to_le64(dma_addr);
732         if (entries < SGES_PER_PAGE) {
733                 sge->length = cpu_to_le32(entries * sizeof(*sge));
734                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
735         } else {
736                 sge->length = cpu_to_le32(PAGE_SIZE);
737                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
738         }
739 }
740
741 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
742                 struct request *req, struct nvme_rw_command *cmd, int entries)
743 {
744         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
745         struct dma_pool *pool;
746         struct nvme_sgl_desc *sg_list;
747         struct scatterlist *sg = iod->sg;
748         dma_addr_t sgl_dma;
749         int i = 0;
750
751         /* setting the transfer type as SGL */
752         cmd->flags = NVME_CMD_SGL_METABUF;
753
754         if (entries == 1) {
755                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
756                 return BLK_STS_OK;
757         }
758
759         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
760                 pool = dev->prp_small_pool;
761                 iod->npages = 0;
762         } else {
763                 pool = dev->prp_page_pool;
764                 iod->npages = 1;
765         }
766
767         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
768         if (!sg_list) {
769                 iod->npages = -1;
770                 return BLK_STS_RESOURCE;
771         }
772
773         nvme_pci_iod_list(req)[0] = sg_list;
774         iod->first_dma = sgl_dma;
775
776         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
777
778         do {
779                 if (i == SGES_PER_PAGE) {
780                         struct nvme_sgl_desc *old_sg_desc = sg_list;
781                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
782
783                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
784                         if (!sg_list)
785                                 goto free_sgls;
786
787                         i = 0;
788                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
789                         sg_list[i++] = *link;
790                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
791                 }
792
793                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
794                 sg = sg_next(sg);
795         } while (--entries > 0);
796
797         return BLK_STS_OK;
798 free_sgls:
799         nvme_free_sgls(dev, req);
800         return BLK_STS_RESOURCE;
801 }
802
803 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
804                 struct request *req, struct nvme_rw_command *cmnd,
805                 struct bio_vec *bv)
806 {
807         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
808         unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
809         unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
810
811         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
812         if (dma_mapping_error(dev->dev, iod->first_dma))
813                 return BLK_STS_RESOURCE;
814         iod->dma_len = bv->bv_len;
815
816         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
817         if (bv->bv_len > first_prp_len)
818                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
819         return BLK_STS_OK;
820 }
821
822 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
823                 struct request *req, struct nvme_rw_command *cmnd,
824                 struct bio_vec *bv)
825 {
826         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
827
828         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
829         if (dma_mapping_error(dev->dev, iod->first_dma))
830                 return BLK_STS_RESOURCE;
831         iod->dma_len = bv->bv_len;
832
833         cmnd->flags = NVME_CMD_SGL_METABUF;
834         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
835         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
836         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
837         return BLK_STS_OK;
838 }
839
840 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
841                 struct nvme_command *cmnd)
842 {
843         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
844         blk_status_t ret = BLK_STS_RESOURCE;
845         int nr_mapped;
846
847         if (blk_rq_nr_phys_segments(req) == 1) {
848                 struct bio_vec bv = req_bvec(req);
849
850                 if (!is_pci_p2pdma_page(bv.bv_page)) {
851                         if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
852                                 return nvme_setup_prp_simple(dev, req,
853                                                              &cmnd->rw, &bv);
854
855                         if (iod->nvmeq->qid &&
856                             dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
857                                 return nvme_setup_sgl_simple(dev, req,
858                                                              &cmnd->rw, &bv);
859                 }
860         }
861
862         iod->dma_len = 0;
863         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
864         if (!iod->sg)
865                 return BLK_STS_RESOURCE;
866         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
867         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
868         if (!iod->nents)
869                 goto out_free_sg;
870
871         if (is_pci_p2pdma_page(sg_page(iod->sg)))
872                 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
873                                 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
874         else
875                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
876                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
877         if (!nr_mapped)
878                 goto out_free_sg;
879
880         iod->use_sgl = nvme_pci_use_sgls(dev, req);
881         if (iod->use_sgl)
882                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
883         else
884                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
885         if (ret != BLK_STS_OK)
886                 goto out_unmap_sg;
887         return BLK_STS_OK;
888
889 out_unmap_sg:
890         nvme_unmap_sg(dev, req);
891 out_free_sg:
892         mempool_free(iod->sg, dev->iod_mempool);
893         return ret;
894 }
895
896 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
897                 struct nvme_command *cmnd)
898 {
899         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
900
901         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
902                         rq_dma_dir(req), 0);
903         if (dma_mapping_error(dev->dev, iod->meta_dma))
904                 return BLK_STS_IOERR;
905         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
906         return BLK_STS_OK;
907 }
908
909 /*
910  * NOTE: ns is NULL when called on the admin queue.
911  */
912 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
913                          const struct blk_mq_queue_data *bd)
914 {
915         struct nvme_ns *ns = hctx->queue->queuedata;
916         struct nvme_queue *nvmeq = hctx->driver_data;
917         struct nvme_dev *dev = nvmeq->dev;
918         struct request *req = bd->rq;
919         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
920         struct nvme_command cmnd;
921         blk_status_t ret;
922
923         iod->aborted = 0;
924         iod->npages = -1;
925         iod->nents = 0;
926
927         /*
928          * We should not need to do this, but we're still using this to
929          * ensure we can drain requests on a dying queue.
930          */
931         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
932                 return BLK_STS_IOERR;
933
934         ret = nvme_setup_cmd(ns, req, &cmnd);
935         if (ret)
936                 return ret;
937
938         if (blk_rq_nr_phys_segments(req)) {
939                 ret = nvme_map_data(dev, req, &cmnd);
940                 if (ret)
941                         goto out_free_cmd;
942         }
943
944         if (blk_integrity_rq(req)) {
945                 ret = nvme_map_metadata(dev, req, &cmnd);
946                 if (ret)
947                         goto out_unmap_data;
948         }
949
950         blk_mq_start_request(req);
951         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
952         return BLK_STS_OK;
953 out_unmap_data:
954         nvme_unmap_data(dev, req);
955 out_free_cmd:
956         nvme_cleanup_cmd(req);
957         return ret;
958 }
959
960 static void nvme_pci_complete_rq(struct request *req)
961 {
962         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
963         struct nvme_dev *dev = iod->nvmeq->dev;
964
965         if (blk_integrity_rq(req))
966                 dma_unmap_page(dev->dev, iod->meta_dma,
967                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
968         if (blk_rq_nr_phys_segments(req))
969                 nvme_unmap_data(dev, req);
970         nvme_complete_rq(req);
971 }
972
973 /* We read the CQE phase first to check if the rest of the entry is valid */
974 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
975 {
976         struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
977
978         return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
979 }
980
981 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
982 {
983         u16 head = nvmeq->cq_head;
984
985         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
986                                               nvmeq->dbbuf_cq_ei))
987                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
988 }
989
990 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
991 {
992         if (!nvmeq->qid)
993                 return nvmeq->dev->admin_tagset.tags[0];
994         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
995 }
996
997 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
998 {
999         struct nvme_completion *cqe = &nvmeq->cqes[idx];
1000         __u16 command_id = READ_ONCE(cqe->command_id);
1001         struct request *req;
1002
1003         /*
1004          * AEN requests are special as they don't time out and can
1005          * survive any kind of queue freeze and often don't respond to
1006          * aborts.  We don't even bother to allocate a struct request
1007          * for them but rather special case them here.
1008          */
1009         if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1010                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1011                                 cqe->status, &cqe->result);
1012                 return;
1013         }
1014
1015         req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), command_id);
1016         if (unlikely(!req)) {
1017                 dev_warn(nvmeq->dev->ctrl.device,
1018                         "invalid id %d completed on queue %d\n",
1019                         command_id, le16_to_cpu(cqe->sq_id));
1020                 return;
1021         }
1022
1023         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1024         if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1025                 nvme_pci_complete_rq(req);
1026 }
1027
1028 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1029 {
1030         u16 tmp = nvmeq->cq_head + 1;
1031
1032         if (tmp == nvmeq->q_depth) {
1033                 nvmeq->cq_head = 0;
1034                 nvmeq->cq_phase ^= 1;
1035         } else {
1036                 nvmeq->cq_head = tmp;
1037         }
1038 }
1039
1040 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1041 {
1042         int found = 0;
1043
1044         while (nvme_cqe_pending(nvmeq)) {
1045                 found++;
1046                 /*
1047                  * load-load control dependency between phase and the rest of
1048                  * the cqe requires a full read memory barrier
1049                  */
1050                 dma_rmb();
1051                 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1052                 nvme_update_cq_head(nvmeq);
1053         }
1054
1055         if (found)
1056                 nvme_ring_cq_doorbell(nvmeq);
1057         return found;
1058 }
1059
1060 static irqreturn_t nvme_irq(int irq, void *data)
1061 {
1062         struct nvme_queue *nvmeq = data;
1063         irqreturn_t ret = IRQ_NONE;
1064
1065         /*
1066          * The rmb/wmb pair ensures we see all updates from a previous run of
1067          * the irq handler, even if that was on another CPU.
1068          */
1069         rmb();
1070         if (nvme_process_cq(nvmeq))
1071                 ret = IRQ_HANDLED;
1072         wmb();
1073
1074         return ret;
1075 }
1076
1077 static irqreturn_t nvme_irq_check(int irq, void *data)
1078 {
1079         struct nvme_queue *nvmeq = data;
1080
1081         if (nvme_cqe_pending(nvmeq))
1082                 return IRQ_WAKE_THREAD;
1083         return IRQ_NONE;
1084 }
1085
1086 /*
1087  * Poll for completions for any interrupt driven queue
1088  * Can be called from any context.
1089  */
1090 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1091 {
1092         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1093
1094         WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1095
1096         disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1097         nvme_process_cq(nvmeq);
1098         enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1099 }
1100
1101 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1102 {
1103         struct nvme_queue *nvmeq = hctx->driver_data;
1104         bool found;
1105
1106         if (!nvme_cqe_pending(nvmeq))
1107                 return 0;
1108
1109         spin_lock(&nvmeq->cq_poll_lock);
1110         found = nvme_process_cq(nvmeq);
1111         spin_unlock(&nvmeq->cq_poll_lock);
1112
1113         return found;
1114 }
1115
1116 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1117 {
1118         struct nvme_dev *dev = to_nvme_dev(ctrl);
1119         struct nvme_queue *nvmeq = &dev->queues[0];
1120         struct nvme_command c;
1121
1122         memset(&c, 0, sizeof(c));
1123         c.common.opcode = nvme_admin_async_event;
1124         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1125         nvme_submit_cmd(nvmeq, &c, true);
1126 }
1127
1128 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1129 {
1130         struct nvme_command c;
1131
1132         memset(&c, 0, sizeof(c));
1133         c.delete_queue.opcode = opcode;
1134         c.delete_queue.qid = cpu_to_le16(id);
1135
1136         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1137 }
1138
1139 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1140                 struct nvme_queue *nvmeq, s16 vector)
1141 {
1142         struct nvme_command c;
1143         int flags = NVME_QUEUE_PHYS_CONTIG;
1144
1145         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1146                 flags |= NVME_CQ_IRQ_ENABLED;
1147
1148         /*
1149          * Note: we (ab)use the fact that the prp fields survive if no data
1150          * is attached to the request.
1151          */
1152         memset(&c, 0, sizeof(c));
1153         c.create_cq.opcode = nvme_admin_create_cq;
1154         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1155         c.create_cq.cqid = cpu_to_le16(qid);
1156         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1157         c.create_cq.cq_flags = cpu_to_le16(flags);
1158         c.create_cq.irq_vector = cpu_to_le16(vector);
1159
1160         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1161 }
1162
1163 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1164                                                 struct nvme_queue *nvmeq)
1165 {
1166         struct nvme_ctrl *ctrl = &dev->ctrl;
1167         struct nvme_command c;
1168         int flags = NVME_QUEUE_PHYS_CONTIG;
1169
1170         /*
1171          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1172          * set. Since URGENT priority is zeroes, it makes all queues
1173          * URGENT.
1174          */
1175         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1176                 flags |= NVME_SQ_PRIO_MEDIUM;
1177
1178         /*
1179          * Note: we (ab)use the fact that the prp fields survive if no data
1180          * is attached to the request.
1181          */
1182         memset(&c, 0, sizeof(c));
1183         c.create_sq.opcode = nvme_admin_create_sq;
1184         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1185         c.create_sq.sqid = cpu_to_le16(qid);
1186         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1187         c.create_sq.sq_flags = cpu_to_le16(flags);
1188         c.create_sq.cqid = cpu_to_le16(qid);
1189
1190         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1191 }
1192
1193 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1194 {
1195         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1196 }
1197
1198 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1199 {
1200         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1201 }
1202
1203 static void abort_endio(struct request *req, blk_status_t error)
1204 {
1205         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1206         struct nvme_queue *nvmeq = iod->nvmeq;
1207
1208         dev_warn(nvmeq->dev->ctrl.device,
1209                  "Abort status: 0x%x", nvme_req(req)->status);
1210         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1211         blk_mq_free_request(req);
1212 }
1213
1214 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1215 {
1216         /* If true, indicates loss of adapter communication, possibly by a
1217          * NVMe Subsystem reset.
1218          */
1219         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1220
1221         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1222         switch (dev->ctrl.state) {
1223         case NVME_CTRL_RESETTING:
1224         case NVME_CTRL_CONNECTING:
1225                 return false;
1226         default:
1227                 break;
1228         }
1229
1230         /* We shouldn't reset unless the controller is on fatal error state
1231          * _or_ if we lost the communication with it.
1232          */
1233         if (!(csts & NVME_CSTS_CFS) && !nssro)
1234                 return false;
1235
1236         return true;
1237 }
1238
1239 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1240 {
1241         /* Read a config register to help see what died. */
1242         u16 pci_status;
1243         int result;
1244
1245         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1246                                       &pci_status);
1247         if (result == PCIBIOS_SUCCESSFUL)
1248                 dev_warn(dev->ctrl.device,
1249                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1250                          csts, pci_status);
1251         else
1252                 dev_warn(dev->ctrl.device,
1253                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1254                          csts, result);
1255 }
1256
1257 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1258 {
1259         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1260         struct nvme_queue *nvmeq = iod->nvmeq;
1261         struct nvme_dev *dev = nvmeq->dev;
1262         struct request *abort_req;
1263         struct nvme_command cmd;
1264         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1265
1266         /* If PCI error recovery process is happening, we cannot reset or
1267          * the recovery mechanism will surely fail.
1268          */
1269         mb();
1270         if (pci_channel_offline(to_pci_dev(dev->dev)))
1271                 return BLK_EH_RESET_TIMER;
1272
1273         /*
1274          * Reset immediately if the controller is failed
1275          */
1276         if (nvme_should_reset(dev, csts)) {
1277                 nvme_warn_reset(dev, csts);
1278                 nvme_dev_disable(dev, false);
1279                 nvme_reset_ctrl(&dev->ctrl);
1280                 return BLK_EH_DONE;
1281         }
1282
1283         /*
1284          * Did we miss an interrupt?
1285          */
1286         if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1287                 nvme_poll(req->mq_hctx);
1288         else
1289                 nvme_poll_irqdisable(nvmeq);
1290
1291         if (blk_mq_request_completed(req)) {
1292                 dev_warn(dev->ctrl.device,
1293                          "I/O %d QID %d timeout, completion polled\n",
1294                          req->tag, nvmeq->qid);
1295                 return BLK_EH_DONE;
1296         }
1297
1298         /*
1299          * Shutdown immediately if controller times out while starting. The
1300          * reset work will see the pci device disabled when it gets the forced
1301          * cancellation error. All outstanding requests are completed on
1302          * shutdown, so we return BLK_EH_DONE.
1303          */
1304         switch (dev->ctrl.state) {
1305         case NVME_CTRL_CONNECTING:
1306                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1307                 fallthrough;
1308         case NVME_CTRL_DELETING:
1309                 dev_warn_ratelimited(dev->ctrl.device,
1310                          "I/O %d QID %d timeout, disable controller\n",
1311                          req->tag, nvmeq->qid);
1312                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1313                 nvme_dev_disable(dev, true);
1314                 return BLK_EH_DONE;
1315         case NVME_CTRL_RESETTING:
1316                 return BLK_EH_RESET_TIMER;
1317         default:
1318                 break;
1319         }
1320
1321         /*
1322          * Shutdown the controller immediately and schedule a reset if the
1323          * command was already aborted once before and still hasn't been
1324          * returned to the driver, or if this is the admin queue.
1325          */
1326         if (!nvmeq->qid || iod->aborted) {
1327                 dev_warn(dev->ctrl.device,
1328                          "I/O %d QID %d timeout, reset controller\n",
1329                          req->tag, nvmeq->qid);
1330                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1331                 nvme_dev_disable(dev, false);
1332                 nvme_reset_ctrl(&dev->ctrl);
1333
1334                 return BLK_EH_DONE;
1335         }
1336
1337         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1338                 atomic_inc(&dev->ctrl.abort_limit);
1339                 return BLK_EH_RESET_TIMER;
1340         }
1341         iod->aborted = 1;
1342
1343         memset(&cmd, 0, sizeof(cmd));
1344         cmd.abort.opcode = nvme_admin_abort_cmd;
1345         cmd.abort.cid = req->tag;
1346         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1347
1348         dev_warn(nvmeq->dev->ctrl.device,
1349                 "I/O %d QID %d timeout, aborting\n",
1350                  req->tag, nvmeq->qid);
1351
1352         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1353                         BLK_MQ_REQ_NOWAIT);
1354         if (IS_ERR(abort_req)) {
1355                 atomic_inc(&dev->ctrl.abort_limit);
1356                 return BLK_EH_RESET_TIMER;
1357         }
1358
1359         abort_req->end_io_data = NULL;
1360         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1361
1362         /*
1363          * The aborted req will be completed on receiving the abort req.
1364          * We enable the timer again. If hit twice, it'll cause a device reset,
1365          * as the device then is in a faulty state.
1366          */
1367         return BLK_EH_RESET_TIMER;
1368 }
1369
1370 static void nvme_free_queue(struct nvme_queue *nvmeq)
1371 {
1372         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1373                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1374         if (!nvmeq->sq_cmds)
1375                 return;
1376
1377         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1378                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1379                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1380         } else {
1381                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1382                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1383         }
1384 }
1385
1386 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1387 {
1388         int i;
1389
1390         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1391                 dev->ctrl.queue_count--;
1392                 nvme_free_queue(&dev->queues[i]);
1393         }
1394 }
1395
1396 /**
1397  * nvme_suspend_queue - put queue into suspended state
1398  * @nvmeq: queue to suspend
1399  */
1400 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1401 {
1402         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1403                 return 1;
1404
1405         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1406         mb();
1407
1408         nvmeq->dev->online_queues--;
1409         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1410                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1411         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1412                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1413         return 0;
1414 }
1415
1416 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1417 {
1418         int i;
1419
1420         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1421                 nvme_suspend_queue(&dev->queues[i]);
1422 }
1423
1424 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1425 {
1426         struct nvme_queue *nvmeq = &dev->queues[0];
1427
1428         if (shutdown)
1429                 nvme_shutdown_ctrl(&dev->ctrl);
1430         else
1431                 nvme_disable_ctrl(&dev->ctrl);
1432
1433         nvme_poll_irqdisable(nvmeq);
1434 }
1435
1436 /*
1437  * Called only on a device that has been disabled and after all other threads
1438  * that can check this device's completion queues have synced, except
1439  * nvme_poll(). This is the last chance for the driver to see a natural
1440  * completion before nvme_cancel_request() terminates all incomplete requests.
1441  */
1442 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1443 {
1444         int i;
1445
1446         for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1447                 spin_lock(&dev->queues[i].cq_poll_lock);
1448                 nvme_process_cq(&dev->queues[i]);
1449                 spin_unlock(&dev->queues[i].cq_poll_lock);
1450         }
1451 }
1452
1453 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1454                                 int entry_size)
1455 {
1456         int q_depth = dev->q_depth;
1457         unsigned q_size_aligned = roundup(q_depth * entry_size,
1458                                           NVME_CTRL_PAGE_SIZE);
1459
1460         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1461                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1462
1463                 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1464                 q_depth = div_u64(mem_per_q, entry_size);
1465
1466                 /*
1467                  * Ensure the reduced q_depth is above some threshold where it
1468                  * would be better to map queues in system memory with the
1469                  * original depth
1470                  */
1471                 if (q_depth < 64)
1472                         return -ENOMEM;
1473         }
1474
1475         return q_depth;
1476 }
1477
1478 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1479                                 int qid)
1480 {
1481         struct pci_dev *pdev = to_pci_dev(dev->dev);
1482
1483         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1484                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1485                 if (nvmeq->sq_cmds) {
1486                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1487                                                         nvmeq->sq_cmds);
1488                         if (nvmeq->sq_dma_addr) {
1489                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1490                                 return 0;
1491                         }
1492
1493                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1494                 }
1495         }
1496
1497         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1498                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1499         if (!nvmeq->sq_cmds)
1500                 return -ENOMEM;
1501         return 0;
1502 }
1503
1504 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1505 {
1506         struct nvme_queue *nvmeq = &dev->queues[qid];
1507
1508         if (dev->ctrl.queue_count > qid)
1509                 return 0;
1510
1511         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1512         nvmeq->q_depth = depth;
1513         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1514                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1515         if (!nvmeq->cqes)
1516                 goto free_nvmeq;
1517
1518         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1519                 goto free_cqdma;
1520
1521         nvmeq->dev = dev;
1522         spin_lock_init(&nvmeq->sq_lock);
1523         spin_lock_init(&nvmeq->cq_poll_lock);
1524         nvmeq->cq_head = 0;
1525         nvmeq->cq_phase = 1;
1526         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1527         nvmeq->qid = qid;
1528         dev->ctrl.queue_count++;
1529
1530         return 0;
1531
1532  free_cqdma:
1533         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1534                           nvmeq->cq_dma_addr);
1535  free_nvmeq:
1536         return -ENOMEM;
1537 }
1538
1539 static int queue_request_irq(struct nvme_queue *nvmeq)
1540 {
1541         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1542         int nr = nvmeq->dev->ctrl.instance;
1543
1544         if (use_threaded_interrupts) {
1545                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1546                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1547         } else {
1548                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1549                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1550         }
1551 }
1552
1553 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1554 {
1555         struct nvme_dev *dev = nvmeq->dev;
1556
1557         nvmeq->sq_tail = 0;
1558         nvmeq->last_sq_tail = 0;
1559         nvmeq->cq_head = 0;
1560         nvmeq->cq_phase = 1;
1561         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1562         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1563         nvme_dbbuf_init(dev, nvmeq, qid);
1564         dev->online_queues++;
1565         wmb(); /* ensure the first interrupt sees the initialization */
1566 }
1567
1568 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1569 {
1570         struct nvme_dev *dev = nvmeq->dev;
1571         int result;
1572         u16 vector = 0;
1573
1574         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1575
1576         /*
1577          * A queue's vector matches the queue identifier unless the controller
1578          * has only one vector available.
1579          */
1580         if (!polled)
1581                 vector = dev->num_vecs == 1 ? 0 : qid;
1582         else
1583                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1584
1585         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1586         if (result)
1587                 return result;
1588
1589         result = adapter_alloc_sq(dev, qid, nvmeq);
1590         if (result < 0)
1591                 return result;
1592         if (result)
1593                 goto release_cq;
1594
1595         nvmeq->cq_vector = vector;
1596         nvme_init_queue(nvmeq, qid);
1597
1598         if (!polled) {
1599                 result = queue_request_irq(nvmeq);
1600                 if (result < 0)
1601                         goto release_sq;
1602         }
1603
1604         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1605         return result;
1606
1607 release_sq:
1608         dev->online_queues--;
1609         adapter_delete_sq(dev, qid);
1610 release_cq:
1611         adapter_delete_cq(dev, qid);
1612         return result;
1613 }
1614
1615 static const struct blk_mq_ops nvme_mq_admin_ops = {
1616         .queue_rq       = nvme_queue_rq,
1617         .complete       = nvme_pci_complete_rq,
1618         .init_hctx      = nvme_admin_init_hctx,
1619         .init_request   = nvme_init_request,
1620         .timeout        = nvme_timeout,
1621 };
1622
1623 static const struct blk_mq_ops nvme_mq_ops = {
1624         .queue_rq       = nvme_queue_rq,
1625         .complete       = nvme_pci_complete_rq,
1626         .commit_rqs     = nvme_commit_rqs,
1627         .init_hctx      = nvme_init_hctx,
1628         .init_request   = nvme_init_request,
1629         .map_queues     = nvme_pci_map_queues,
1630         .timeout        = nvme_timeout,
1631         .poll           = nvme_poll,
1632 };
1633
1634 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1635 {
1636         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1637                 /*
1638                  * If the controller was reset during removal, it's possible
1639                  * user requests may be waiting on a stopped queue. Start the
1640                  * queue to flush these to completion.
1641                  */
1642                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1643                 blk_cleanup_queue(dev->ctrl.admin_q);
1644                 blk_mq_free_tag_set(&dev->admin_tagset);
1645         }
1646 }
1647
1648 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1649 {
1650         if (!dev->ctrl.admin_q) {
1651                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1652                 dev->admin_tagset.nr_hw_queues = 1;
1653
1654                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1655                 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1656                 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1657                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1658                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1659                 dev->admin_tagset.driver_data = dev;
1660
1661                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1662                         return -ENOMEM;
1663                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1664
1665                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1666                 if (IS_ERR(dev->ctrl.admin_q)) {
1667                         blk_mq_free_tag_set(&dev->admin_tagset);
1668                         return -ENOMEM;
1669                 }
1670                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1671                         nvme_dev_remove_admin(dev);
1672                         dev->ctrl.admin_q = NULL;
1673                         return -ENODEV;
1674                 }
1675         } else
1676                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1677
1678         return 0;
1679 }
1680
1681 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1682 {
1683         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1684 }
1685
1686 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1687 {
1688         struct pci_dev *pdev = to_pci_dev(dev->dev);
1689
1690         if (size <= dev->bar_mapped_size)
1691                 return 0;
1692         if (size > pci_resource_len(pdev, 0))
1693                 return -ENOMEM;
1694         if (dev->bar)
1695                 iounmap(dev->bar);
1696         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1697         if (!dev->bar) {
1698                 dev->bar_mapped_size = 0;
1699                 return -ENOMEM;
1700         }
1701         dev->bar_mapped_size = size;
1702         dev->dbs = dev->bar + NVME_REG_DBS;
1703
1704         return 0;
1705 }
1706
1707 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1708 {
1709         int result;
1710         u32 aqa;
1711         struct nvme_queue *nvmeq;
1712
1713         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1714         if (result < 0)
1715                 return result;
1716
1717         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1718                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1719
1720         if (dev->subsystem &&
1721             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1722                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1723
1724         result = nvme_disable_ctrl(&dev->ctrl);
1725         if (result < 0)
1726                 return result;
1727
1728         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1729         if (result)
1730                 return result;
1731
1732         dev->ctrl.numa_node = dev_to_node(dev->dev);
1733
1734         nvmeq = &dev->queues[0];
1735         aqa = nvmeq->q_depth - 1;
1736         aqa |= aqa << 16;
1737
1738         writel(aqa, dev->bar + NVME_REG_AQA);
1739         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1740         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1741
1742         result = nvme_enable_ctrl(&dev->ctrl);
1743         if (result)
1744                 return result;
1745
1746         nvmeq->cq_vector = 0;
1747         nvme_init_queue(nvmeq, 0);
1748         result = queue_request_irq(nvmeq);
1749         if (result) {
1750                 dev->online_queues--;
1751                 return result;
1752         }
1753
1754         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1755         return result;
1756 }
1757
1758 static int nvme_create_io_queues(struct nvme_dev *dev)
1759 {
1760         unsigned i, max, rw_queues;
1761         int ret = 0;
1762
1763         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1764                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1765                         ret = -ENOMEM;
1766                         break;
1767                 }
1768         }
1769
1770         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1771         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1772                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1773                                 dev->io_queues[HCTX_TYPE_READ];
1774         } else {
1775                 rw_queues = max;
1776         }
1777
1778         for (i = dev->online_queues; i <= max; i++) {
1779                 bool polled = i > rw_queues;
1780
1781                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1782                 if (ret)
1783                         break;
1784         }
1785
1786         /*
1787          * Ignore failing Create SQ/CQ commands, we can continue with less
1788          * than the desired amount of queues, and even a controller without
1789          * I/O queues can still be used to issue admin commands.  This might
1790          * be useful to upgrade a buggy firmware for example.
1791          */
1792         return ret >= 0 ? 0 : ret;
1793 }
1794
1795 static ssize_t nvme_cmb_show(struct device *dev,
1796                              struct device_attribute *attr,
1797                              char *buf)
1798 {
1799         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1800
1801         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1802                        ndev->cmbloc, ndev->cmbsz);
1803 }
1804 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1805
1806 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1807 {
1808         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1809
1810         return 1ULL << (12 + 4 * szu);
1811 }
1812
1813 static u32 nvme_cmb_size(struct nvme_dev *dev)
1814 {
1815         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1816 }
1817
1818 static void nvme_map_cmb(struct nvme_dev *dev)
1819 {
1820         u64 size, offset;
1821         resource_size_t bar_size;
1822         struct pci_dev *pdev = to_pci_dev(dev->dev);
1823         int bar;
1824
1825         if (dev->cmb_size)
1826                 return;
1827
1828         if (NVME_CAP_CMBS(dev->ctrl.cap))
1829                 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1830
1831         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1832         if (!dev->cmbsz)
1833                 return;
1834         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1835
1836         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1837         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1838         bar = NVME_CMB_BIR(dev->cmbloc);
1839         bar_size = pci_resource_len(pdev, bar);
1840
1841         if (offset > bar_size)
1842                 return;
1843
1844         /*
1845          * Tell the controller about the host side address mapping the CMB,
1846          * and enable CMB decoding for the NVMe 1.4+ scheme:
1847          */
1848         if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1849                 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1850                              (pci_bus_address(pdev, bar) + offset),
1851                              dev->bar + NVME_REG_CMBMSC);
1852         }
1853
1854         /*
1855          * Controllers may support a CMB size larger than their BAR,
1856          * for example, due to being behind a bridge. Reduce the CMB to
1857          * the reported size of the BAR
1858          */
1859         if (size > bar_size - offset)
1860                 size = bar_size - offset;
1861
1862         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1863                 dev_warn(dev->ctrl.device,
1864                          "failed to register the CMB\n");
1865                 return;
1866         }
1867
1868         dev->cmb_size = size;
1869         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1870
1871         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1872                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1873                 pci_p2pmem_publish(pdev, true);
1874
1875         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1876                                     &dev_attr_cmb.attr, NULL))
1877                 dev_warn(dev->ctrl.device,
1878                          "failed to add sysfs attribute for CMB\n");
1879 }
1880
1881 static inline void nvme_release_cmb(struct nvme_dev *dev)
1882 {
1883         if (dev->cmb_size) {
1884                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1885                                              &dev_attr_cmb.attr, NULL);
1886                 dev->cmb_size = 0;
1887         }
1888 }
1889
1890 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1891 {
1892         u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1893         u64 dma_addr = dev->host_mem_descs_dma;
1894         struct nvme_command c;
1895         int ret;
1896
1897         memset(&c, 0, sizeof(c));
1898         c.features.opcode       = nvme_admin_set_features;
1899         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1900         c.features.dword11      = cpu_to_le32(bits);
1901         c.features.dword12      = cpu_to_le32(host_mem_size);
1902         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1903         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1904         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1905
1906         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1907         if (ret) {
1908                 dev_warn(dev->ctrl.device,
1909                          "failed to set host mem (err %d, flags %#x).\n",
1910                          ret, bits);
1911         }
1912         return ret;
1913 }
1914
1915 static void nvme_free_host_mem(struct nvme_dev *dev)
1916 {
1917         int i;
1918
1919         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1920                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1921                 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1922
1923                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1924                                le64_to_cpu(desc->addr),
1925                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1926         }
1927
1928         kfree(dev->host_mem_desc_bufs);
1929         dev->host_mem_desc_bufs = NULL;
1930         dma_free_coherent(dev->dev,
1931                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1932                         dev->host_mem_descs, dev->host_mem_descs_dma);
1933         dev->host_mem_descs = NULL;
1934         dev->nr_host_mem_descs = 0;
1935 }
1936
1937 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1938                 u32 chunk_size)
1939 {
1940         struct nvme_host_mem_buf_desc *descs;
1941         u32 max_entries, len;
1942         dma_addr_t descs_dma;
1943         int i = 0;
1944         void **bufs;
1945         u64 size, tmp;
1946
1947         tmp = (preferred + chunk_size - 1);
1948         do_div(tmp, chunk_size);
1949         max_entries = tmp;
1950
1951         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1952                 max_entries = dev->ctrl.hmmaxd;
1953
1954         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1955                                    &descs_dma, GFP_KERNEL);
1956         if (!descs)
1957                 goto out;
1958
1959         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1960         if (!bufs)
1961                 goto out_free_descs;
1962
1963         for (size = 0; size < preferred && i < max_entries; size += len) {
1964                 dma_addr_t dma_addr;
1965
1966                 len = min_t(u64, chunk_size, preferred - size);
1967                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1968                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1969                 if (!bufs[i])
1970                         break;
1971
1972                 descs[i].addr = cpu_to_le64(dma_addr);
1973                 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1974                 i++;
1975         }
1976
1977         if (!size)
1978                 goto out_free_bufs;
1979
1980         dev->nr_host_mem_descs = i;
1981         dev->host_mem_size = size;
1982         dev->host_mem_descs = descs;
1983         dev->host_mem_descs_dma = descs_dma;
1984         dev->host_mem_desc_bufs = bufs;
1985         return 0;
1986
1987 out_free_bufs:
1988         while (--i >= 0) {
1989                 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1990
1991                 dma_free_attrs(dev->dev, size, bufs[i],
1992                                le64_to_cpu(descs[i].addr),
1993                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1994         }
1995
1996         kfree(bufs);
1997 out_free_descs:
1998         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1999                         descs_dma);
2000 out:
2001         dev->host_mem_descs = NULL;
2002         return -ENOMEM;
2003 }
2004
2005 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2006 {
2007         u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2008         u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2009         u64 chunk_size;
2010
2011         /* start big and work our way down */
2012         for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2013                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2014                         if (!min || dev->host_mem_size >= min)
2015                                 return 0;
2016                         nvme_free_host_mem(dev);
2017                 }
2018         }
2019
2020         return -ENOMEM;
2021 }
2022
2023 static int nvme_setup_host_mem(struct nvme_dev *dev)
2024 {
2025         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2026         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2027         u64 min = (u64)dev->ctrl.hmmin * 4096;
2028         u32 enable_bits = NVME_HOST_MEM_ENABLE;
2029         int ret;
2030
2031         preferred = min(preferred, max);
2032         if (min > max) {
2033                 dev_warn(dev->ctrl.device,
2034                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2035                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2036                 nvme_free_host_mem(dev);
2037                 return 0;
2038         }
2039
2040         /*
2041          * If we already have a buffer allocated check if we can reuse it.
2042          */
2043         if (dev->host_mem_descs) {
2044                 if (dev->host_mem_size >= min)
2045                         enable_bits |= NVME_HOST_MEM_RETURN;
2046                 else
2047                         nvme_free_host_mem(dev);
2048         }
2049
2050         if (!dev->host_mem_descs) {
2051                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2052                         dev_warn(dev->ctrl.device,
2053                                 "failed to allocate host memory buffer.\n");
2054                         return 0; /* controller must work without HMB */
2055                 }
2056
2057                 dev_info(dev->ctrl.device,
2058                         "allocated %lld MiB host memory buffer.\n",
2059                         dev->host_mem_size >> ilog2(SZ_1M));
2060         }
2061
2062         ret = nvme_set_host_mem(dev, enable_bits);
2063         if (ret)
2064                 nvme_free_host_mem(dev);
2065         return ret;
2066 }
2067
2068 /*
2069  * nirqs is the number of interrupts available for write and read
2070  * queues. The core already reserved an interrupt for the admin queue.
2071  */
2072 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2073 {
2074         struct nvme_dev *dev = affd->priv;
2075         unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2076
2077         /*
2078          * If there is no interrupt available for queues, ensure that
2079          * the default queue is set to 1. The affinity set size is
2080          * also set to one, but the irq core ignores it for this case.
2081          *
2082          * If only one interrupt is available or 'write_queue' == 0, combine
2083          * write and read queues.
2084          *
2085          * If 'write_queues' > 0, ensure it leaves room for at least one read
2086          * queue.
2087          */
2088         if (!nrirqs) {
2089                 nrirqs = 1;
2090                 nr_read_queues = 0;
2091         } else if (nrirqs == 1 || !nr_write_queues) {
2092                 nr_read_queues = 0;
2093         } else if (nr_write_queues >= nrirqs) {
2094                 nr_read_queues = 1;
2095         } else {
2096                 nr_read_queues = nrirqs - nr_write_queues;
2097         }
2098
2099         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2100         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2101         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2102         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2103         affd->nr_sets = nr_read_queues ? 2 : 1;
2104 }
2105
2106 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2107 {
2108         struct pci_dev *pdev = to_pci_dev(dev->dev);
2109         struct irq_affinity affd = {
2110                 .pre_vectors    = 1,
2111                 .calc_sets      = nvme_calc_irq_sets,
2112                 .priv           = dev,
2113         };
2114         unsigned int irq_queues, poll_queues;
2115
2116         /*
2117          * Poll queues don't need interrupts, but we need at least one I/O queue
2118          * left over for non-polled I/O.
2119          */
2120         poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2121         dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2122
2123         /*
2124          * Initialize for the single interrupt case, will be updated in
2125          * nvme_calc_irq_sets().
2126          */
2127         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2128         dev->io_queues[HCTX_TYPE_READ] = 0;
2129
2130         /*
2131          * We need interrupts for the admin queue and each non-polled I/O queue,
2132          * but some Apple controllers require all queues to use the first
2133          * vector.
2134          */
2135         irq_queues = 1;
2136         if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2137                 irq_queues += (nr_io_queues - poll_queues);
2138         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2139                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2140 }
2141
2142 static void nvme_disable_io_queues(struct nvme_dev *dev)
2143 {
2144         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2145                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2146 }
2147
2148 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2149 {
2150         /*
2151          * If tags are shared with admin queue (Apple bug), then
2152          * make sure we only use one IO queue.
2153          */
2154         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2155                 return 1;
2156         return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2157 }
2158
2159 static int nvme_setup_io_queues(struct nvme_dev *dev)
2160 {
2161         struct nvme_queue *adminq = &dev->queues[0];
2162         struct pci_dev *pdev = to_pci_dev(dev->dev);
2163         unsigned int nr_io_queues;
2164         unsigned long size;
2165         int result;
2166
2167         /*
2168          * Sample the module parameters once at reset time so that we have
2169          * stable values to work with.
2170          */
2171         dev->nr_write_queues = write_queues;
2172         dev->nr_poll_queues = poll_queues;
2173
2174         nr_io_queues = dev->nr_allocated_queues - 1;
2175         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2176         if (result < 0)
2177                 return result;
2178
2179         if (nr_io_queues == 0)
2180                 return 0;
2181         
2182         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2183
2184         if (dev->cmb_use_sqes) {
2185                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2186                                 sizeof(struct nvme_command));
2187                 if (result > 0)
2188                         dev->q_depth = result;
2189                 else
2190                         dev->cmb_use_sqes = false;
2191         }
2192
2193         do {
2194                 size = db_bar_size(dev, nr_io_queues);
2195                 result = nvme_remap_bar(dev, size);
2196                 if (!result)
2197                         break;
2198                 if (!--nr_io_queues)
2199                         return -ENOMEM;
2200         } while (1);
2201         adminq->q_db = dev->dbs;
2202
2203  retry:
2204         /* Deregister the admin queue's interrupt */
2205         pci_free_irq(pdev, 0, adminq);
2206
2207         /*
2208          * If we enable msix early due to not intx, disable it again before
2209          * setting up the full range we need.
2210          */
2211         pci_free_irq_vectors(pdev);
2212
2213         result = nvme_setup_irqs(dev, nr_io_queues);
2214         if (result <= 0)
2215                 return -EIO;
2216
2217         dev->num_vecs = result;
2218         result = max(result - 1, 1);
2219         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2220
2221         /*
2222          * Should investigate if there's a performance win from allocating
2223          * more queues than interrupt vectors; it might allow the submission
2224          * path to scale better, even if the receive path is limited by the
2225          * number of interrupts.
2226          */
2227         result = queue_request_irq(adminq);
2228         if (result)
2229                 return result;
2230         set_bit(NVMEQ_ENABLED, &adminq->flags);
2231
2232         result = nvme_create_io_queues(dev);
2233         if (result || dev->online_queues < 2)
2234                 return result;
2235
2236         if (dev->online_queues - 1 < dev->max_qid) {
2237                 nr_io_queues = dev->online_queues - 1;
2238                 nvme_disable_io_queues(dev);
2239                 nvme_suspend_io_queues(dev);
2240                 goto retry;
2241         }
2242         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2243                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2244                                         dev->io_queues[HCTX_TYPE_READ],
2245                                         dev->io_queues[HCTX_TYPE_POLL]);
2246         return 0;
2247 }
2248
2249 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2250 {
2251         struct nvme_queue *nvmeq = req->end_io_data;
2252
2253         blk_mq_free_request(req);
2254         complete(&nvmeq->delete_done);
2255 }
2256
2257 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2258 {
2259         struct nvme_queue *nvmeq = req->end_io_data;
2260
2261         if (error)
2262                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2263
2264         nvme_del_queue_end(req, error);
2265 }
2266
2267 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2268 {
2269         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2270         struct request *req;
2271         struct nvme_command cmd;
2272
2273         memset(&cmd, 0, sizeof(cmd));
2274         cmd.delete_queue.opcode = opcode;
2275         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2276
2277         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2278         if (IS_ERR(req))
2279                 return PTR_ERR(req);
2280
2281         req->end_io_data = nvmeq;
2282
2283         init_completion(&nvmeq->delete_done);
2284         blk_execute_rq_nowait(q, NULL, req, false,
2285                         opcode == nvme_admin_delete_cq ?
2286                                 nvme_del_cq_end : nvme_del_queue_end);
2287         return 0;
2288 }
2289
2290 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2291 {
2292         int nr_queues = dev->online_queues - 1, sent = 0;
2293         unsigned long timeout;
2294
2295  retry:
2296         timeout = NVME_ADMIN_TIMEOUT;
2297         while (nr_queues > 0) {
2298                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2299                         break;
2300                 nr_queues--;
2301                 sent++;
2302         }
2303         while (sent) {
2304                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2305
2306                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2307                                 timeout);
2308                 if (timeout == 0)
2309                         return false;
2310
2311                 sent--;
2312                 if (nr_queues)
2313                         goto retry;
2314         }
2315         return true;
2316 }
2317
2318 static void nvme_dev_add(struct nvme_dev *dev)
2319 {
2320         int ret;
2321
2322         if (!dev->ctrl.tagset) {
2323                 dev->tagset.ops = &nvme_mq_ops;
2324                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2325                 dev->tagset.nr_maps = 2; /* default + read */
2326                 if (dev->io_queues[HCTX_TYPE_POLL])
2327                         dev->tagset.nr_maps++;
2328                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2329                 dev->tagset.numa_node = dev->ctrl.numa_node;
2330                 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2331                                                 BLK_MQ_MAX_DEPTH) - 1;
2332                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2333                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2334                 dev->tagset.driver_data = dev;
2335
2336                 /*
2337                  * Some Apple controllers requires tags to be unique
2338                  * across admin and IO queue, so reserve the first 32
2339                  * tags of the IO queue.
2340                  */
2341                 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2342                         dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2343
2344                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2345                 if (ret) {
2346                         dev_warn(dev->ctrl.device,
2347                                 "IO queues tagset allocation failed %d\n", ret);
2348                         return;
2349                 }
2350                 dev->ctrl.tagset = &dev->tagset;
2351         } else {
2352                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2353
2354                 /* Free previously allocated queues that are no longer usable */
2355                 nvme_free_queues(dev, dev->online_queues);
2356         }
2357
2358         nvme_dbbuf_set(dev);
2359 }
2360
2361 static int nvme_pci_enable(struct nvme_dev *dev)
2362 {
2363         int result = -ENOMEM;
2364         struct pci_dev *pdev = to_pci_dev(dev->dev);
2365
2366         if (pci_enable_device_mem(pdev))
2367                 return result;
2368
2369         pci_set_master(pdev);
2370
2371         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2372                 goto disable;
2373
2374         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2375                 result = -ENODEV;
2376                 goto disable;
2377         }
2378
2379         /*
2380          * Some devices and/or platforms don't advertise or work with INTx
2381          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2382          * adjust this later.
2383          */
2384         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2385         if (result < 0)
2386                 return result;
2387
2388         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2389
2390         dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2391                                 io_queue_depth);
2392         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2393         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2394         dev->dbs = dev->bar + 4096;
2395
2396         /*
2397          * Some Apple controllers require a non-standard SQE size.
2398          * Interestingly they also seem to ignore the CC:IOSQES register
2399          * so we don't bother updating it here.
2400          */
2401         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2402                 dev->io_sqes = 7;
2403         else
2404                 dev->io_sqes = NVME_NVM_IOSQES;
2405
2406         /*
2407          * Temporary fix for the Apple controller found in the MacBook8,1 and
2408          * some MacBook7,1 to avoid controller resets and data loss.
2409          */
2410         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2411                 dev->q_depth = 2;
2412                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2413                         "set queue depth=%u to work around controller resets\n",
2414                         dev->q_depth);
2415         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2416                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2417                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2418                 dev->q_depth = 64;
2419                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2420                         "set queue depth=%u\n", dev->q_depth);
2421         }
2422
2423         /*
2424          * Controllers with the shared tags quirk need the IO queue to be
2425          * big enough so that we get 32 tags for the admin queue
2426          */
2427         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2428             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2429                 dev->q_depth = NVME_AQ_DEPTH + 2;
2430                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2431                          dev->q_depth);
2432         }
2433
2434
2435         nvme_map_cmb(dev);
2436
2437         pci_enable_pcie_error_reporting(pdev);
2438         pci_save_state(pdev);
2439         return 0;
2440
2441  disable:
2442         pci_disable_device(pdev);
2443         return result;
2444 }
2445
2446 static void nvme_dev_unmap(struct nvme_dev *dev)
2447 {
2448         if (dev->bar)
2449                 iounmap(dev->bar);
2450         pci_release_mem_regions(to_pci_dev(dev->dev));
2451 }
2452
2453 static void nvme_pci_disable(struct nvme_dev *dev)
2454 {
2455         struct pci_dev *pdev = to_pci_dev(dev->dev);
2456
2457         pci_free_irq_vectors(pdev);
2458
2459         if (pci_is_enabled(pdev)) {
2460                 pci_disable_pcie_error_reporting(pdev);
2461                 pci_disable_device(pdev);
2462         }
2463 }
2464
2465 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2466 {
2467         bool dead = true, freeze = false;
2468         struct pci_dev *pdev = to_pci_dev(dev->dev);
2469
2470         mutex_lock(&dev->shutdown_lock);
2471         if (pci_is_enabled(pdev)) {
2472                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2473
2474                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2475                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2476                         freeze = true;
2477                         nvme_start_freeze(&dev->ctrl);
2478                 }
2479                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2480                         pdev->error_state  != pci_channel_io_normal);
2481         }
2482
2483         /*
2484          * Give the controller a chance to complete all entered requests if
2485          * doing a safe shutdown.
2486          */
2487         if (!dead && shutdown && freeze)
2488                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2489
2490         nvme_stop_queues(&dev->ctrl);
2491
2492         if (!dead && dev->ctrl.queue_count > 0) {
2493                 nvme_disable_io_queues(dev);
2494                 nvme_disable_admin_queue(dev, shutdown);
2495         }
2496         nvme_suspend_io_queues(dev);
2497         nvme_suspend_queue(&dev->queues[0]);
2498         nvme_pci_disable(dev);
2499         nvme_reap_pending_cqes(dev);
2500
2501         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2502         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2503         blk_mq_tagset_wait_completed_request(&dev->tagset);
2504         blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2505
2506         /*
2507          * The driver will not be starting up queues again if shutting down so
2508          * must flush all entered requests to their failed completion to avoid
2509          * deadlocking blk-mq hot-cpu notifier.
2510          */
2511         if (shutdown) {
2512                 nvme_start_queues(&dev->ctrl);
2513                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2514                         blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2515         }
2516         mutex_unlock(&dev->shutdown_lock);
2517 }
2518
2519 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2520 {
2521         if (!nvme_wait_reset(&dev->ctrl))
2522                 return -EBUSY;
2523         nvme_dev_disable(dev, shutdown);
2524         return 0;
2525 }
2526
2527 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2528 {
2529         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2530                                                 NVME_CTRL_PAGE_SIZE,
2531                                                 NVME_CTRL_PAGE_SIZE, 0);
2532         if (!dev->prp_page_pool)
2533                 return -ENOMEM;
2534
2535         /* Optimisation for I/Os between 4k and 128k */
2536         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2537                                                 256, 256, 0);
2538         if (!dev->prp_small_pool) {
2539                 dma_pool_destroy(dev->prp_page_pool);
2540                 return -ENOMEM;
2541         }
2542         return 0;
2543 }
2544
2545 static void nvme_release_prp_pools(struct nvme_dev *dev)
2546 {
2547         dma_pool_destroy(dev->prp_page_pool);
2548         dma_pool_destroy(dev->prp_small_pool);
2549 }
2550
2551 static void nvme_free_tagset(struct nvme_dev *dev)
2552 {
2553         if (dev->tagset.tags)
2554                 blk_mq_free_tag_set(&dev->tagset);
2555         dev->ctrl.tagset = NULL;
2556 }
2557
2558 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2559 {
2560         struct nvme_dev *dev = to_nvme_dev(ctrl);
2561
2562         nvme_dbbuf_dma_free(dev);
2563         nvme_free_tagset(dev);
2564         if (dev->ctrl.admin_q)
2565                 blk_put_queue(dev->ctrl.admin_q);
2566         free_opal_dev(dev->ctrl.opal_dev);
2567         mempool_destroy(dev->iod_mempool);
2568         put_device(dev->dev);
2569         kfree(dev->queues);
2570         kfree(dev);
2571 }
2572
2573 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2574 {
2575         /*
2576          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2577          * may be holding this pci_dev's device lock.
2578          */
2579         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2580         nvme_get_ctrl(&dev->ctrl);
2581         nvme_dev_disable(dev, false);
2582         nvme_kill_queues(&dev->ctrl);
2583         if (!queue_work(nvme_wq, &dev->remove_work))
2584                 nvme_put_ctrl(&dev->ctrl);
2585 }
2586
2587 static void nvme_reset_work(struct work_struct *work)
2588 {
2589         struct nvme_dev *dev =
2590                 container_of(work, struct nvme_dev, ctrl.reset_work);
2591         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2592         int result;
2593
2594         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2595                 result = -ENODEV;
2596                 goto out;
2597         }
2598
2599         /*
2600          * If we're called to reset a live controller first shut it down before
2601          * moving on.
2602          */
2603         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2604                 nvme_dev_disable(dev, false);
2605         nvme_sync_queues(&dev->ctrl);
2606
2607         mutex_lock(&dev->shutdown_lock);
2608         result = nvme_pci_enable(dev);
2609         if (result)
2610                 goto out_unlock;
2611
2612         result = nvme_pci_configure_admin_queue(dev);
2613         if (result)
2614                 goto out_unlock;
2615
2616         result = nvme_alloc_admin_tags(dev);
2617         if (result)
2618                 goto out_unlock;
2619
2620         /*
2621          * Limit the max command size to prevent iod->sg allocations going
2622          * over a single page.
2623          */
2624         dev->ctrl.max_hw_sectors = min_t(u32,
2625                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2626         dev->ctrl.max_segments = NVME_MAX_SEGS;
2627
2628         /*
2629          * Don't limit the IOMMU merged segment size.
2630          */
2631         dma_set_max_seg_size(dev->dev, 0xffffffff);
2632         dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2633
2634         mutex_unlock(&dev->shutdown_lock);
2635
2636         /*
2637          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2638          * initializing procedure here.
2639          */
2640         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2641                 dev_warn(dev->ctrl.device,
2642                         "failed to mark controller CONNECTING\n");
2643                 result = -EBUSY;
2644                 goto out;
2645         }
2646
2647         /*
2648          * We do not support an SGL for metadata (yet), so we are limited to a
2649          * single integrity segment for the separate metadata pointer.
2650          */
2651         dev->ctrl.max_integrity_segments = 1;
2652
2653         result = nvme_init_identify(&dev->ctrl);
2654         if (result)
2655                 goto out;
2656
2657         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2658                 if (!dev->ctrl.opal_dev)
2659                         dev->ctrl.opal_dev =
2660                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2661                 else if (was_suspend)
2662                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2663         } else {
2664                 free_opal_dev(dev->ctrl.opal_dev);
2665                 dev->ctrl.opal_dev = NULL;
2666         }
2667
2668         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2669                 result = nvme_dbbuf_dma_alloc(dev);
2670                 if (result)
2671                         dev_warn(dev->dev,
2672                                  "unable to allocate dma for dbbuf\n");
2673         }
2674
2675         if (dev->ctrl.hmpre) {
2676                 result = nvme_setup_host_mem(dev);
2677                 if (result < 0)
2678                         goto out;
2679         }
2680
2681         result = nvme_setup_io_queues(dev);
2682         if (result)
2683                 goto out;
2684
2685         /*
2686          * Keep the controller around but remove all namespaces if we don't have
2687          * any working I/O queue.
2688          */
2689         if (dev->online_queues < 2) {
2690                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2691                 nvme_kill_queues(&dev->ctrl);
2692                 nvme_remove_namespaces(&dev->ctrl);
2693                 nvme_free_tagset(dev);
2694         } else {
2695                 nvme_start_queues(&dev->ctrl);
2696                 nvme_wait_freeze(&dev->ctrl);
2697                 nvme_dev_add(dev);
2698                 nvme_unfreeze(&dev->ctrl);
2699         }
2700
2701         /*
2702          * If only admin queue live, keep it to do further investigation or
2703          * recovery.
2704          */
2705         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2706                 dev_warn(dev->ctrl.device,
2707                         "failed to mark controller live state\n");
2708                 result = -ENODEV;
2709                 goto out;
2710         }
2711
2712         nvme_start_ctrl(&dev->ctrl);
2713         return;
2714
2715  out_unlock:
2716         mutex_unlock(&dev->shutdown_lock);
2717  out:
2718         if (result)
2719                 dev_warn(dev->ctrl.device,
2720                          "Removing after probe failure status: %d\n", result);
2721         nvme_remove_dead_ctrl(dev);
2722 }
2723
2724 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2725 {
2726         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2727         struct pci_dev *pdev = to_pci_dev(dev->dev);
2728
2729         if (pci_get_drvdata(pdev))
2730                 device_release_driver(&pdev->dev);
2731         nvme_put_ctrl(&dev->ctrl);
2732 }
2733
2734 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2735 {
2736         *val = readl(to_nvme_dev(ctrl)->bar + off);
2737         return 0;
2738 }
2739
2740 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2741 {
2742         writel(val, to_nvme_dev(ctrl)->bar + off);
2743         return 0;
2744 }
2745
2746 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2747 {
2748         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2749         return 0;
2750 }
2751
2752 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2753 {
2754         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2755
2756         return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2757 }
2758
2759 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2760         .name                   = "pcie",
2761         .module                 = THIS_MODULE,
2762         .flags                  = NVME_F_METADATA_SUPPORTED |
2763                                   NVME_F_PCI_P2PDMA,
2764         .reg_read32             = nvme_pci_reg_read32,
2765         .reg_write32            = nvme_pci_reg_write32,
2766         .reg_read64             = nvme_pci_reg_read64,
2767         .free_ctrl              = nvme_pci_free_ctrl,
2768         .submit_async_event     = nvme_pci_submit_async_event,
2769         .get_address            = nvme_pci_get_address,
2770 };
2771
2772 static int nvme_dev_map(struct nvme_dev *dev)
2773 {
2774         struct pci_dev *pdev = to_pci_dev(dev->dev);
2775
2776         if (pci_request_mem_regions(pdev, "nvme"))
2777                 return -ENODEV;
2778
2779         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2780                 goto release;
2781
2782         return 0;
2783   release:
2784         pci_release_mem_regions(pdev);
2785         return -ENODEV;
2786 }
2787
2788 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2789 {
2790         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2791                 /*
2792                  * Several Samsung devices seem to drop off the PCIe bus
2793                  * randomly when APST is on and uses the deepest sleep state.
2794                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2795                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2796                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2797                  * laptops.
2798                  */
2799                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2800                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2801                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2802                         return NVME_QUIRK_NO_DEEPEST_PS;
2803         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2804                 /*
2805                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2806                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2807                  * within few minutes after bootup on a Coffee Lake board -
2808                  * ASUS PRIME Z370-A
2809                  */
2810                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2811                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2812                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2813                         return NVME_QUIRK_NO_APST;
2814         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2815                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2816                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2817                 /*
2818                  * Forcing to use host managed nvme power settings for
2819                  * lowest idle power with quick resume latency on
2820                  * Samsung and Toshiba SSDs based on suspend behavior
2821                  * on Coffee Lake board for LENOVO C640
2822                  */
2823                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2824                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2825                         return NVME_QUIRK_SIMPLE_SUSPEND;
2826         }
2827
2828         return 0;
2829 }
2830
2831 #ifdef CONFIG_ACPI
2832 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2833 {
2834         struct acpi_device *adev;
2835         struct pci_dev *root;
2836         acpi_handle handle;
2837         acpi_status status;
2838         u8 val;
2839
2840         /*
2841          * Look for _DSD property specifying that the storage device on the port
2842          * must use D3 to support deep platform power savings during
2843          * suspend-to-idle.
2844          */
2845         root = pcie_find_root_port(dev);
2846         if (!root)
2847                 return false;
2848
2849         adev = ACPI_COMPANION(&root->dev);
2850         if (!adev)
2851                 return false;
2852
2853         /*
2854          * The property is defined in the PXSX device for South complex ports
2855          * and in the PEGP device for North complex ports.
2856          */
2857         status = acpi_get_handle(adev->handle, "PXSX", &handle);
2858         if (ACPI_FAILURE(status)) {
2859                 status = acpi_get_handle(adev->handle, "PEGP", &handle);
2860                 if (ACPI_FAILURE(status))
2861                         return false;
2862         }
2863
2864         if (acpi_bus_get_device(handle, &adev))
2865                 return false;
2866
2867         if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2868                         &val))
2869                 return false;
2870         return val == 1;
2871 }
2872 #else
2873 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2874 {
2875         return false;
2876 }
2877 #endif /* CONFIG_ACPI */
2878
2879 static void nvme_async_probe(void *data, async_cookie_t cookie)
2880 {
2881         struct nvme_dev *dev = data;
2882
2883         flush_work(&dev->ctrl.reset_work);
2884         flush_work(&dev->ctrl.scan_work);
2885         nvme_put_ctrl(&dev->ctrl);
2886 }
2887
2888 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2889 {
2890         int node, result = -ENOMEM;
2891         struct nvme_dev *dev;
2892         unsigned long quirks = id->driver_data;
2893         size_t alloc_size;
2894
2895         node = dev_to_node(&pdev->dev);
2896         if (node == NUMA_NO_NODE)
2897                 set_dev_node(&pdev->dev, first_memory_node);
2898
2899         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2900         if (!dev)
2901                 return -ENOMEM;
2902
2903         dev->nr_write_queues = write_queues;
2904         dev->nr_poll_queues = poll_queues;
2905         dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2906         dev->queues = kcalloc_node(dev->nr_allocated_queues,
2907                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2908         if (!dev->queues)
2909                 goto free;
2910
2911         dev->dev = get_device(&pdev->dev);
2912         pci_set_drvdata(pdev, dev);
2913
2914         result = nvme_dev_map(dev);
2915         if (result)
2916                 goto put_pci;
2917
2918         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2919         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2920         mutex_init(&dev->shutdown_lock);
2921
2922         result = nvme_setup_prp_pools(dev);
2923         if (result)
2924                 goto unmap;
2925
2926         quirks |= check_vendor_combination_bug(pdev);
2927
2928         if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2929                 /*
2930                  * Some systems use a bios work around to ask for D3 on
2931                  * platforms that support kernel managed suspend.
2932                  */
2933                 dev_info(&pdev->dev,
2934                          "platform quirk: setting simple suspend\n");
2935                 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2936         }
2937
2938         /*
2939          * Double check that our mempool alloc size will cover the biggest
2940          * command we support.
2941          */
2942         alloc_size = nvme_pci_iod_alloc_size();
2943         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2944
2945         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2946                                                 mempool_kfree,
2947                                                 (void *) alloc_size,
2948                                                 GFP_KERNEL, node);
2949         if (!dev->iod_mempool) {
2950                 result = -ENOMEM;
2951                 goto release_pools;
2952         }
2953
2954         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2955                         quirks);
2956         if (result)
2957                 goto release_mempool;
2958
2959         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2960
2961         nvme_reset_ctrl(&dev->ctrl);
2962         async_schedule(nvme_async_probe, dev);
2963
2964         return 0;
2965
2966  release_mempool:
2967         mempool_destroy(dev->iod_mempool);
2968  release_pools:
2969         nvme_release_prp_pools(dev);
2970  unmap:
2971         nvme_dev_unmap(dev);
2972  put_pci:
2973         put_device(dev->dev);
2974  free:
2975         kfree(dev->queues);
2976         kfree(dev);
2977         return result;
2978 }
2979
2980 static void nvme_reset_prepare(struct pci_dev *pdev)
2981 {
2982         struct nvme_dev *dev = pci_get_drvdata(pdev);
2983
2984         /*
2985          * We don't need to check the return value from waiting for the reset
2986          * state as pci_dev device lock is held, making it impossible to race
2987          * with ->remove().
2988          */
2989         nvme_disable_prepare_reset(dev, false);
2990         nvme_sync_queues(&dev->ctrl);
2991 }
2992
2993 static void nvme_reset_done(struct pci_dev *pdev)
2994 {
2995         struct nvme_dev *dev = pci_get_drvdata(pdev);
2996
2997         if (!nvme_try_sched_reset(&dev->ctrl))
2998                 flush_work(&dev->ctrl.reset_work);
2999 }
3000
3001 static void nvme_shutdown(struct pci_dev *pdev)
3002 {
3003         struct nvme_dev *dev = pci_get_drvdata(pdev);
3004
3005         nvme_disable_prepare_reset(dev, true);
3006 }
3007
3008 /*
3009  * The driver's remove may be called on a device in a partially initialized
3010  * state. This function must not have any dependencies on the device state in
3011  * order to proceed.
3012  */
3013 static void nvme_remove(struct pci_dev *pdev)
3014 {
3015         struct nvme_dev *dev = pci_get_drvdata(pdev);
3016
3017         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3018         pci_set_drvdata(pdev, NULL);
3019
3020         if (!pci_device_is_present(pdev)) {
3021                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3022                 nvme_dev_disable(dev, true);
3023                 nvme_dev_remove_admin(dev);
3024         }
3025
3026         flush_work(&dev->ctrl.reset_work);
3027         nvme_stop_ctrl(&dev->ctrl);
3028         nvme_remove_namespaces(&dev->ctrl);
3029         nvme_dev_disable(dev, true);
3030         nvme_release_cmb(dev);
3031         nvme_free_host_mem(dev);
3032         nvme_dev_remove_admin(dev);
3033         nvme_free_queues(dev, 0);
3034         nvme_release_prp_pools(dev);
3035         nvme_dev_unmap(dev);
3036         nvme_uninit_ctrl(&dev->ctrl);
3037 }
3038
3039 #ifdef CONFIG_PM_SLEEP
3040 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3041 {
3042         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3043 }
3044
3045 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3046 {
3047         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3048 }
3049
3050 static int nvme_resume(struct device *dev)
3051 {
3052         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3053         struct nvme_ctrl *ctrl = &ndev->ctrl;
3054
3055         if (ndev->last_ps == U32_MAX ||
3056             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3057                 return nvme_try_sched_reset(&ndev->ctrl);
3058         return 0;
3059 }
3060
3061 static int nvme_suspend(struct device *dev)
3062 {
3063         struct pci_dev *pdev = to_pci_dev(dev);
3064         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3065         struct nvme_ctrl *ctrl = &ndev->ctrl;
3066         int ret = -EBUSY;
3067
3068         ndev->last_ps = U32_MAX;
3069
3070         /*
3071          * The platform does not remove power for a kernel managed suspend so
3072          * use host managed nvme power settings for lowest idle power if
3073          * possible. This should have quicker resume latency than a full device
3074          * shutdown.  But if the firmware is involved after the suspend or the
3075          * device does not support any non-default power states, shut down the
3076          * device fully.
3077          *
3078          * If ASPM is not enabled for the device, shut down the device and allow
3079          * the PCI bus layer to put it into D3 in order to take the PCIe link
3080          * down, so as to allow the platform to achieve its minimum low-power
3081          * state (which may not be possible if the link is up).
3082          *
3083          * If a host memory buffer is enabled, shut down the device as the NVMe
3084          * specification allows the device to access the host memory buffer in
3085          * host DRAM from all power states, but hosts will fail access to DRAM
3086          * during S3.
3087          */
3088         if (pm_suspend_via_firmware() || !ctrl->npss ||
3089             !pcie_aspm_enabled(pdev) ||
3090             ndev->nr_host_mem_descs ||
3091             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3092                 return nvme_disable_prepare_reset(ndev, true);
3093
3094         nvme_start_freeze(ctrl);
3095         nvme_wait_freeze(ctrl);
3096         nvme_sync_queues(ctrl);
3097
3098         if (ctrl->state != NVME_CTRL_LIVE)
3099                 goto unfreeze;
3100
3101         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3102         if (ret < 0)
3103                 goto unfreeze;
3104
3105         /*
3106          * A saved state prevents pci pm from generically controlling the
3107          * device's power. If we're using protocol specific settings, we don't
3108          * want pci interfering.
3109          */
3110         pci_save_state(pdev);
3111
3112         ret = nvme_set_power_state(ctrl, ctrl->npss);
3113         if (ret < 0)
3114                 goto unfreeze;
3115
3116         if (ret) {
3117                 /* discard the saved state */
3118                 pci_load_saved_state(pdev, NULL);
3119
3120                 /*
3121                  * Clearing npss forces a controller reset on resume. The
3122                  * correct value will be rediscovered then.
3123                  */
3124                 ret = nvme_disable_prepare_reset(ndev, true);
3125                 ctrl->npss = 0;
3126         }
3127 unfreeze:
3128         nvme_unfreeze(ctrl);
3129         return ret;
3130 }
3131
3132 static int nvme_simple_suspend(struct device *dev)
3133 {
3134         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3135
3136         return nvme_disable_prepare_reset(ndev, true);
3137 }
3138
3139 static int nvme_simple_resume(struct device *dev)
3140 {
3141         struct pci_dev *pdev = to_pci_dev(dev);
3142         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3143
3144         return nvme_try_sched_reset(&ndev->ctrl);
3145 }
3146
3147 static const struct dev_pm_ops nvme_dev_pm_ops = {
3148         .suspend        = nvme_suspend,
3149         .resume         = nvme_resume,
3150         .freeze         = nvme_simple_suspend,
3151         .thaw           = nvme_simple_resume,
3152         .poweroff       = nvme_simple_suspend,
3153         .restore        = nvme_simple_resume,
3154 };
3155 #endif /* CONFIG_PM_SLEEP */
3156
3157 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3158                                                 pci_channel_state_t state)
3159 {
3160         struct nvme_dev *dev = pci_get_drvdata(pdev);
3161
3162         /*
3163          * A frozen channel requires a reset. When detected, this method will
3164          * shutdown the controller to quiesce. The controller will be restarted
3165          * after the slot reset through driver's slot_reset callback.
3166          */
3167         switch (state) {
3168         case pci_channel_io_normal:
3169                 return PCI_ERS_RESULT_CAN_RECOVER;
3170         case pci_channel_io_frozen:
3171                 dev_warn(dev->ctrl.device,
3172                         "frozen state error detected, reset controller\n");
3173                 nvme_dev_disable(dev, false);
3174                 return PCI_ERS_RESULT_NEED_RESET;
3175         case pci_channel_io_perm_failure:
3176                 dev_warn(dev->ctrl.device,
3177                         "failure state error detected, request disconnect\n");
3178                 return PCI_ERS_RESULT_DISCONNECT;
3179         }
3180         return PCI_ERS_RESULT_NEED_RESET;
3181 }
3182
3183 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3184 {
3185         struct nvme_dev *dev = pci_get_drvdata(pdev);
3186
3187         dev_info(dev->ctrl.device, "restart after slot reset\n");
3188         pci_restore_state(pdev);
3189         nvme_reset_ctrl(&dev->ctrl);
3190         return PCI_ERS_RESULT_RECOVERED;
3191 }
3192
3193 static void nvme_error_resume(struct pci_dev *pdev)
3194 {
3195         struct nvme_dev *dev = pci_get_drvdata(pdev);
3196
3197         flush_work(&dev->ctrl.reset_work);
3198 }
3199
3200 static const struct pci_error_handlers nvme_err_handler = {
3201         .error_detected = nvme_error_detected,
3202         .slot_reset     = nvme_slot_reset,
3203         .resume         = nvme_error_resume,
3204         .reset_prepare  = nvme_reset_prepare,
3205         .reset_done     = nvme_reset_done,
3206 };
3207
3208 static const struct pci_device_id nvme_id_table[] = {
3209         { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3210                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3211                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3212         { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3213                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3214                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3215         { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3216                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3217                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3218         { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3219                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3220                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3221         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3222                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3223                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3224                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3225                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3226         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3227                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3228         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3229                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3230                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3231         { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3232                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3233         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3234                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3235         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3236                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3237         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3238                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3239         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3240                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3241         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3242                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3243         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3244                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3245                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3246         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3247                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3248         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3249                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3250         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3251                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3252         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3253                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3254         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3255                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3256                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3257         { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3258                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3259         { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3260                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3261         { PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3262                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3263         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3264                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3265         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3266         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3267                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3268                                 NVME_QUIRK_128_BYTES_SQES |
3269                                 NVME_QUIRK_SHARED_TAGS },
3270
3271         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3272         { 0, }
3273 };
3274 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3275
3276 static struct pci_driver nvme_driver = {
3277         .name           = "nvme",
3278         .id_table       = nvme_id_table,
3279         .probe          = nvme_probe,
3280         .remove         = nvme_remove,
3281         .shutdown       = nvme_shutdown,
3282 #ifdef CONFIG_PM_SLEEP
3283         .driver         = {
3284                 .pm     = &nvme_dev_pm_ops,
3285         },
3286 #endif
3287         .sriov_configure = pci_sriov_configure_simple,
3288         .err_handler    = &nvme_err_handler,
3289 };
3290
3291 static int __init nvme_init(void)
3292 {
3293         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3294         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3295         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3296         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3297
3298         return pci_register_driver(&nvme_driver);
3299 }
3300
3301 static void __exit nvme_exit(void)
3302 {
3303         pci_unregister_driver(&nvme_driver);
3304         flush_workqueue(nvme_wq);
3305 }
3306
3307 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3308 MODULE_LICENSE("GPL");
3309 MODULE_VERSION("1.0");
3310 module_init(nvme_init);
3311 module_exit(nvme_exit);