nvme-pci: fix mempool alloc size
[linux-2.6-microblaze.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kstrtox.h>
19 #include <linux/memremap.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/once.h>
24 #include <linux/pci.h>
25 #include <linux/suspend.h>
26 #include <linux/t10-pi.h>
27 #include <linux/types.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/io-64-nonatomic-hi-lo.h>
30 #include <linux/sed-opal.h>
31 #include <linux/pci-p2pdma.h>
32
33 #include "trace.h"
34 #include "nvme.h"
35
36 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
37 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
38
39 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40
41 /*
42  * These can be higher, but we need to ensure that any command doesn't
43  * require an sg allocation that needs more than a page of data.
44  */
45 #define NVME_MAX_KB_SZ  4096
46 #define NVME_MAX_SEGS   127
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63                 "Use SGLs when average request segment size is larger or equal to "
64                 "this size. Use 0 to disable SGLs.");
65
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70         .set = io_queue_depth_set,
71         .get = param_get_uint,
72 };
73
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80         unsigned int n;
81         int ret;
82
83         ret = kstrtouint(val, 10, &n);
84         if (ret != 0 || n > num_possible_cpus())
85                 return -EINVAL;
86         return param_set_uint(val, kp);
87 }
88
89 static const struct kernel_param_ops io_queue_count_ops = {
90         .set = io_queue_count_set,
91         .get = param_get_uint,
92 };
93
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97         "Number of queues to use for writes. If not set, reads and writes "
98         "will share a queue set.");
99
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108 struct nvme_dev;
109 struct nvme_queue;
110
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113
114 /*
115  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
116  */
117 struct nvme_dev {
118         struct nvme_queue *queues;
119         struct blk_mq_tag_set tagset;
120         struct blk_mq_tag_set admin_tagset;
121         u32 __iomem *dbs;
122         struct device *dev;
123         struct dma_pool *prp_page_pool;
124         struct dma_pool *prp_small_pool;
125         unsigned online_queues;
126         unsigned max_qid;
127         unsigned io_queues[HCTX_MAX_TYPES];
128         unsigned int num_vecs;
129         u32 q_depth;
130         int io_sqes;
131         u32 db_stride;
132         void __iomem *bar;
133         unsigned long bar_mapped_size;
134         struct mutex shutdown_lock;
135         bool subsystem;
136         u64 cmb_size;
137         bool cmb_use_sqes;
138         u32 cmbsz;
139         u32 cmbloc;
140         struct nvme_ctrl ctrl;
141         u32 last_ps;
142         bool hmb;
143
144         mempool_t *iod_mempool;
145
146         /* shadow doorbell buffer support: */
147         __le32 *dbbuf_dbs;
148         dma_addr_t dbbuf_dbs_dma_addr;
149         __le32 *dbbuf_eis;
150         dma_addr_t dbbuf_eis_dma_addr;
151
152         /* host memory buffer support: */
153         u64 host_mem_size;
154         u32 nr_host_mem_descs;
155         dma_addr_t host_mem_descs_dma;
156         struct nvme_host_mem_buf_desc *host_mem_descs;
157         void **host_mem_desc_bufs;
158         unsigned int nr_allocated_queues;
159         unsigned int nr_write_queues;
160         unsigned int nr_poll_queues;
161 };
162
163 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
164 {
165         return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
166                         NVME_PCI_MAX_QUEUE_SIZE);
167 }
168
169 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170 {
171         return qid * 2 * stride;
172 }
173
174 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175 {
176         return (qid * 2 + 1) * stride;
177 }
178
179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180 {
181         return container_of(ctrl, struct nvme_dev, ctrl);
182 }
183
184 /*
185  * An NVM Express queue.  Each device has at least two (one for admin
186  * commands and one for I/O commands).
187  */
188 struct nvme_queue {
189         struct nvme_dev *dev;
190         spinlock_t sq_lock;
191         void *sq_cmds;
192          /* only used for poll queues: */
193         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
194         struct nvme_completion *cqes;
195         dma_addr_t sq_dma_addr;
196         dma_addr_t cq_dma_addr;
197         u32 __iomem *q_db;
198         u32 q_depth;
199         u16 cq_vector;
200         u16 sq_tail;
201         u16 last_sq_tail;
202         u16 cq_head;
203         u16 qid;
204         u8 cq_phase;
205         u8 sqes;
206         unsigned long flags;
207 #define NVMEQ_ENABLED           0
208 #define NVMEQ_SQ_CMB            1
209 #define NVMEQ_DELETE_ERROR      2
210 #define NVMEQ_POLLED            3
211         __le32 *dbbuf_sq_db;
212         __le32 *dbbuf_cq_db;
213         __le32 *dbbuf_sq_ei;
214         __le32 *dbbuf_cq_ei;
215         struct completion delete_done;
216 };
217
218 /*
219  * The nvme_iod describes the data in an I/O.
220  *
221  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222  * to the actual struct scatterlist.
223  */
224 struct nvme_iod {
225         struct nvme_request req;
226         struct nvme_command cmd;
227         bool use_sgl;
228         bool aborted;
229         s8 nr_allocations;      /* PRP list pool allocations. 0 means small
230                                    pool in use */
231         unsigned int dma_len;   /* length of single DMA segment mapping */
232         dma_addr_t first_dma;
233         dma_addr_t meta_dma;
234         struct sg_table sgt;
235 };
236
237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
238 {
239         return dev->nr_allocated_queues * 8 * dev->db_stride;
240 }
241
242 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
243 {
244         unsigned int mem_size = nvme_dbbuf_size(dev);
245
246         if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
247                 return;
248
249         if (dev->dbbuf_dbs) {
250                 /*
251                  * Clear the dbbuf memory so the driver doesn't observe stale
252                  * values from the previous instantiation.
253                  */
254                 memset(dev->dbbuf_dbs, 0, mem_size);
255                 memset(dev->dbbuf_eis, 0, mem_size);
256                 return;
257         }
258
259         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
260                                             &dev->dbbuf_dbs_dma_addr,
261                                             GFP_KERNEL);
262         if (!dev->dbbuf_dbs)
263                 goto fail;
264         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
265                                             &dev->dbbuf_eis_dma_addr,
266                                             GFP_KERNEL);
267         if (!dev->dbbuf_eis)
268                 goto fail_free_dbbuf_dbs;
269         return;
270
271 fail_free_dbbuf_dbs:
272         dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
273                           dev->dbbuf_dbs_dma_addr);
274         dev->dbbuf_dbs = NULL;
275 fail:
276         dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
277 }
278
279 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
280 {
281         unsigned int mem_size = nvme_dbbuf_size(dev);
282
283         if (dev->dbbuf_dbs) {
284                 dma_free_coherent(dev->dev, mem_size,
285                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
286                 dev->dbbuf_dbs = NULL;
287         }
288         if (dev->dbbuf_eis) {
289                 dma_free_coherent(dev->dev, mem_size,
290                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
291                 dev->dbbuf_eis = NULL;
292         }
293 }
294
295 static void nvme_dbbuf_init(struct nvme_dev *dev,
296                             struct nvme_queue *nvmeq, int qid)
297 {
298         if (!dev->dbbuf_dbs || !qid)
299                 return;
300
301         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
302         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
303         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
304         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
305 }
306
307 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
308 {
309         if (!nvmeq->qid)
310                 return;
311
312         nvmeq->dbbuf_sq_db = NULL;
313         nvmeq->dbbuf_cq_db = NULL;
314         nvmeq->dbbuf_sq_ei = NULL;
315         nvmeq->dbbuf_cq_ei = NULL;
316 }
317
318 static void nvme_dbbuf_set(struct nvme_dev *dev)
319 {
320         struct nvme_command c = { };
321         unsigned int i;
322
323         if (!dev->dbbuf_dbs)
324                 return;
325
326         c.dbbuf.opcode = nvme_admin_dbbuf;
327         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
328         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
329
330         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
331                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
332                 /* Free memory and continue on */
333                 nvme_dbbuf_dma_free(dev);
334
335                 for (i = 1; i <= dev->online_queues; i++)
336                         nvme_dbbuf_free(&dev->queues[i]);
337         }
338 }
339
340 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
341 {
342         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
343 }
344
345 /* Update dbbuf and return true if an MMIO is required */
346 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
347                                               volatile __le32 *dbbuf_ei)
348 {
349         if (dbbuf_db) {
350                 u16 old_value, event_idx;
351
352                 /*
353                  * Ensure that the queue is written before updating
354                  * the doorbell in memory
355                  */
356                 wmb();
357
358                 old_value = le32_to_cpu(*dbbuf_db);
359                 *dbbuf_db = cpu_to_le32(value);
360
361                 /*
362                  * Ensure that the doorbell is updated before reading the event
363                  * index from memory.  The controller needs to provide similar
364                  * ordering to ensure the envent index is updated before reading
365                  * the doorbell.
366                  */
367                 mb();
368
369                 event_idx = le32_to_cpu(*dbbuf_ei);
370                 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
371                         return false;
372         }
373
374         return true;
375 }
376
377 /*
378  * Will slightly overestimate the number of pages needed.  This is OK
379  * as it only leads to a small amount of wasted memory for the lifetime of
380  * the I/O.
381  */
382 static int nvme_pci_npages_prp(void)
383 {
384         unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
385         unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
386         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
387 }
388
389 /*
390  * Calculates the number of pages needed for the SGL segments. For example a 4k
391  * page can accommodate 256 SGL descriptors.
392  */
393 static int nvme_pci_npages_sgl(void)
394 {
395         return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
396                         PAGE_SIZE);
397 }
398
399 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
400                                 unsigned int hctx_idx)
401 {
402         struct nvme_dev *dev = to_nvme_dev(data);
403         struct nvme_queue *nvmeq = &dev->queues[0];
404
405         WARN_ON(hctx_idx != 0);
406         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
407
408         hctx->driver_data = nvmeq;
409         return 0;
410 }
411
412 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
413                           unsigned int hctx_idx)
414 {
415         struct nvme_dev *dev = to_nvme_dev(data);
416         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
417
418         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
419         hctx->driver_data = nvmeq;
420         return 0;
421 }
422
423 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
424                 struct request *req, unsigned int hctx_idx,
425                 unsigned int numa_node)
426 {
427         struct nvme_dev *dev = to_nvme_dev(set->driver_data);
428         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429
430         nvme_req(req)->ctrl = &dev->ctrl;
431         nvme_req(req)->cmd = &iod->cmd;
432         return 0;
433 }
434
435 static int queue_irq_offset(struct nvme_dev *dev)
436 {
437         /* if we have more than 1 vec, admin queue offsets us by 1 */
438         if (dev->num_vecs > 1)
439                 return 1;
440
441         return 0;
442 }
443
444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
445 {
446         struct nvme_dev *dev = to_nvme_dev(set->driver_data);
447         int i, qoff, offset;
448
449         offset = queue_irq_offset(dev);
450         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
451                 struct blk_mq_queue_map *map = &set->map[i];
452
453                 map->nr_queues = dev->io_queues[i];
454                 if (!map->nr_queues) {
455                         BUG_ON(i == HCTX_TYPE_DEFAULT);
456                         continue;
457                 }
458
459                 /*
460                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
461                  * affinity), so use the regular blk-mq cpu mapping
462                  */
463                 map->queue_offset = qoff;
464                 if (i != HCTX_TYPE_POLL && offset)
465                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
466                 else
467                         blk_mq_map_queues(map);
468                 qoff += map->nr_queues;
469                 offset += map->nr_queues;
470         }
471 }
472
473 /*
474  * Write sq tail if we are asked to, or if the next command would wrap.
475  */
476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
477 {
478         if (!write_sq) {
479                 u16 next_tail = nvmeq->sq_tail + 1;
480
481                 if (next_tail == nvmeq->q_depth)
482                         next_tail = 0;
483                 if (next_tail != nvmeq->last_sq_tail)
484                         return;
485         }
486
487         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
488                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
489                 writel(nvmeq->sq_tail, nvmeq->q_db);
490         nvmeq->last_sq_tail = nvmeq->sq_tail;
491 }
492
493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
494                                     struct nvme_command *cmd)
495 {
496         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
497                 absolute_pointer(cmd), sizeof(*cmd));
498         if (++nvmeq->sq_tail == nvmeq->q_depth)
499                 nvmeq->sq_tail = 0;
500 }
501
502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
503 {
504         struct nvme_queue *nvmeq = hctx->driver_data;
505
506         spin_lock(&nvmeq->sq_lock);
507         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
508                 nvme_write_sq_db(nvmeq, true);
509         spin_unlock(&nvmeq->sq_lock);
510 }
511
512 static void **nvme_pci_iod_list(struct request *req)
513 {
514         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
515         return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
516 }
517
518 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
519 {
520         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
521         int nseg = blk_rq_nr_phys_segments(req);
522         unsigned int avg_seg_size;
523
524         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
525
526         if (!nvme_ctrl_sgl_supported(&dev->ctrl))
527                 return false;
528         if (!nvmeq->qid)
529                 return false;
530         if (!sgl_threshold || avg_seg_size < sgl_threshold)
531                 return false;
532         return true;
533 }
534
535 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
536 {
537         const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
538         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
539         dma_addr_t dma_addr = iod->first_dma;
540         int i;
541
542         for (i = 0; i < iod->nr_allocations; i++) {
543                 __le64 *prp_list = nvme_pci_iod_list(req)[i];
544                 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
545
546                 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
547                 dma_addr = next_dma_addr;
548         }
549 }
550
551 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
552 {
553         const int last_sg = SGES_PER_PAGE - 1;
554         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
555         dma_addr_t dma_addr = iod->first_dma;
556         int i;
557
558         for (i = 0; i < iod->nr_allocations; i++) {
559                 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
560                 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
561
562                 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
563                 dma_addr = next_dma_addr;
564         }
565 }
566
567 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
568 {
569         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
570
571         if (iod->dma_len) {
572                 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
573                                rq_dma_dir(req));
574                 return;
575         }
576
577         WARN_ON_ONCE(!iod->sgt.nents);
578
579         dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
580
581         if (iod->nr_allocations == 0)
582                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
583                               iod->first_dma);
584         else if (iod->use_sgl)
585                 nvme_free_sgls(dev, req);
586         else
587                 nvme_free_prps(dev, req);
588         mempool_free(iod->sgt.sgl, dev->iod_mempool);
589 }
590
591 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
592 {
593         int i;
594         struct scatterlist *sg;
595
596         for_each_sg(sgl, sg, nents, i) {
597                 dma_addr_t phys = sg_phys(sg);
598                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
599                         "dma_address:%pad dma_length:%d\n",
600                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
601                         sg_dma_len(sg));
602         }
603 }
604
605 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
606                 struct request *req, struct nvme_rw_command *cmnd)
607 {
608         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
609         struct dma_pool *pool;
610         int length = blk_rq_payload_bytes(req);
611         struct scatterlist *sg = iod->sgt.sgl;
612         int dma_len = sg_dma_len(sg);
613         u64 dma_addr = sg_dma_address(sg);
614         int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
615         __le64 *prp_list;
616         void **list = nvme_pci_iod_list(req);
617         dma_addr_t prp_dma;
618         int nprps, i;
619
620         length -= (NVME_CTRL_PAGE_SIZE - offset);
621         if (length <= 0) {
622                 iod->first_dma = 0;
623                 goto done;
624         }
625
626         dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
627         if (dma_len) {
628                 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
629         } else {
630                 sg = sg_next(sg);
631                 dma_addr = sg_dma_address(sg);
632                 dma_len = sg_dma_len(sg);
633         }
634
635         if (length <= NVME_CTRL_PAGE_SIZE) {
636                 iod->first_dma = dma_addr;
637                 goto done;
638         }
639
640         nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
641         if (nprps <= (256 / 8)) {
642                 pool = dev->prp_small_pool;
643                 iod->nr_allocations = 0;
644         } else {
645                 pool = dev->prp_page_pool;
646                 iod->nr_allocations = 1;
647         }
648
649         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
650         if (!prp_list) {
651                 iod->nr_allocations = -1;
652                 return BLK_STS_RESOURCE;
653         }
654         list[0] = prp_list;
655         iod->first_dma = prp_dma;
656         i = 0;
657         for (;;) {
658                 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
659                         __le64 *old_prp_list = prp_list;
660                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
661                         if (!prp_list)
662                                 goto free_prps;
663                         list[iod->nr_allocations++] = prp_list;
664                         prp_list[0] = old_prp_list[i - 1];
665                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
666                         i = 1;
667                 }
668                 prp_list[i++] = cpu_to_le64(dma_addr);
669                 dma_len -= NVME_CTRL_PAGE_SIZE;
670                 dma_addr += NVME_CTRL_PAGE_SIZE;
671                 length -= NVME_CTRL_PAGE_SIZE;
672                 if (length <= 0)
673                         break;
674                 if (dma_len > 0)
675                         continue;
676                 if (unlikely(dma_len < 0))
677                         goto bad_sgl;
678                 sg = sg_next(sg);
679                 dma_addr = sg_dma_address(sg);
680                 dma_len = sg_dma_len(sg);
681         }
682 done:
683         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
684         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
685         return BLK_STS_OK;
686 free_prps:
687         nvme_free_prps(dev, req);
688         return BLK_STS_RESOURCE;
689 bad_sgl:
690         WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
691                         "Invalid SGL for payload:%d nents:%d\n",
692                         blk_rq_payload_bytes(req), iod->sgt.nents);
693         return BLK_STS_IOERR;
694 }
695
696 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
697                 struct scatterlist *sg)
698 {
699         sge->addr = cpu_to_le64(sg_dma_address(sg));
700         sge->length = cpu_to_le32(sg_dma_len(sg));
701         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
702 }
703
704 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
705                 dma_addr_t dma_addr, int entries)
706 {
707         sge->addr = cpu_to_le64(dma_addr);
708         if (entries < SGES_PER_PAGE) {
709                 sge->length = cpu_to_le32(entries * sizeof(*sge));
710                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
711         } else {
712                 sge->length = cpu_to_le32(PAGE_SIZE);
713                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
714         }
715 }
716
717 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
718                 struct request *req, struct nvme_rw_command *cmd)
719 {
720         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
721         struct dma_pool *pool;
722         struct nvme_sgl_desc *sg_list;
723         struct scatterlist *sg = iod->sgt.sgl;
724         unsigned int entries = iod->sgt.nents;
725         dma_addr_t sgl_dma;
726         int i = 0;
727
728         /* setting the transfer type as SGL */
729         cmd->flags = NVME_CMD_SGL_METABUF;
730
731         if (entries == 1) {
732                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
733                 return BLK_STS_OK;
734         }
735
736         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
737                 pool = dev->prp_small_pool;
738                 iod->nr_allocations = 0;
739         } else {
740                 pool = dev->prp_page_pool;
741                 iod->nr_allocations = 1;
742         }
743
744         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
745         if (!sg_list) {
746                 iod->nr_allocations = -1;
747                 return BLK_STS_RESOURCE;
748         }
749
750         nvme_pci_iod_list(req)[0] = sg_list;
751         iod->first_dma = sgl_dma;
752
753         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
754
755         do {
756                 if (i == SGES_PER_PAGE) {
757                         struct nvme_sgl_desc *old_sg_desc = sg_list;
758                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
759
760                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
761                         if (!sg_list)
762                                 goto free_sgls;
763
764                         i = 0;
765                         nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
766                         sg_list[i++] = *link;
767                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
768                 }
769
770                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
771                 sg = sg_next(sg);
772         } while (--entries > 0);
773
774         return BLK_STS_OK;
775 free_sgls:
776         nvme_free_sgls(dev, req);
777         return BLK_STS_RESOURCE;
778 }
779
780 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
781                 struct request *req, struct nvme_rw_command *cmnd,
782                 struct bio_vec *bv)
783 {
784         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
785         unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
786         unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
787
788         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
789         if (dma_mapping_error(dev->dev, iod->first_dma))
790                 return BLK_STS_RESOURCE;
791         iod->dma_len = bv->bv_len;
792
793         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
794         if (bv->bv_len > first_prp_len)
795                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
796         else
797                 cmnd->dptr.prp2 = 0;
798         return BLK_STS_OK;
799 }
800
801 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
802                 struct request *req, struct nvme_rw_command *cmnd,
803                 struct bio_vec *bv)
804 {
805         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
806
807         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
808         if (dma_mapping_error(dev->dev, iod->first_dma))
809                 return BLK_STS_RESOURCE;
810         iod->dma_len = bv->bv_len;
811
812         cmnd->flags = NVME_CMD_SGL_METABUF;
813         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
814         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
815         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
816         return BLK_STS_OK;
817 }
818
819 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
820                 struct nvme_command *cmnd)
821 {
822         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
823         blk_status_t ret = BLK_STS_RESOURCE;
824         int rc;
825
826         if (blk_rq_nr_phys_segments(req) == 1) {
827                 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
828                 struct bio_vec bv = req_bvec(req);
829
830                 if (!is_pci_p2pdma_page(bv.bv_page)) {
831                         if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
832                                 return nvme_setup_prp_simple(dev, req,
833                                                              &cmnd->rw, &bv);
834
835                         if (nvmeq->qid && sgl_threshold &&
836                             nvme_ctrl_sgl_supported(&dev->ctrl))
837                                 return nvme_setup_sgl_simple(dev, req,
838                                                              &cmnd->rw, &bv);
839                 }
840         }
841
842         iod->dma_len = 0;
843         iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
844         if (!iod->sgt.sgl)
845                 return BLK_STS_RESOURCE;
846         sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
847         iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
848         if (!iod->sgt.orig_nents)
849                 goto out_free_sg;
850
851         rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
852                              DMA_ATTR_NO_WARN);
853         if (rc) {
854                 if (rc == -EREMOTEIO)
855                         ret = BLK_STS_TARGET;
856                 goto out_free_sg;
857         }
858
859         iod->use_sgl = nvme_pci_use_sgls(dev, req);
860         if (iod->use_sgl)
861                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
862         else
863                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
864         if (ret != BLK_STS_OK)
865                 goto out_unmap_sg;
866         return BLK_STS_OK;
867
868 out_unmap_sg:
869         dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
870 out_free_sg:
871         mempool_free(iod->sgt.sgl, dev->iod_mempool);
872         return ret;
873 }
874
875 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
876                 struct nvme_command *cmnd)
877 {
878         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
879
880         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
881                         rq_dma_dir(req), 0);
882         if (dma_mapping_error(dev->dev, iod->meta_dma))
883                 return BLK_STS_IOERR;
884         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
885         return BLK_STS_OK;
886 }
887
888 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
889 {
890         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
891         blk_status_t ret;
892
893         iod->aborted = false;
894         iod->nr_allocations = -1;
895         iod->sgt.nents = 0;
896
897         ret = nvme_setup_cmd(req->q->queuedata, req);
898         if (ret)
899                 return ret;
900
901         if (blk_rq_nr_phys_segments(req)) {
902                 ret = nvme_map_data(dev, req, &iod->cmd);
903                 if (ret)
904                         goto out_free_cmd;
905         }
906
907         if (blk_integrity_rq(req)) {
908                 ret = nvme_map_metadata(dev, req, &iod->cmd);
909                 if (ret)
910                         goto out_unmap_data;
911         }
912
913         nvme_start_request(req);
914         return BLK_STS_OK;
915 out_unmap_data:
916         nvme_unmap_data(dev, req);
917 out_free_cmd:
918         nvme_cleanup_cmd(req);
919         return ret;
920 }
921
922 /*
923  * NOTE: ns is NULL when called on the admin queue.
924  */
925 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
926                          const struct blk_mq_queue_data *bd)
927 {
928         struct nvme_queue *nvmeq = hctx->driver_data;
929         struct nvme_dev *dev = nvmeq->dev;
930         struct request *req = bd->rq;
931         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
932         blk_status_t ret;
933
934         /*
935          * We should not need to do this, but we're still using this to
936          * ensure we can drain requests on a dying queue.
937          */
938         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
939                 return BLK_STS_IOERR;
940
941         if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
942                 return nvme_fail_nonready_command(&dev->ctrl, req);
943
944         ret = nvme_prep_rq(dev, req);
945         if (unlikely(ret))
946                 return ret;
947         spin_lock(&nvmeq->sq_lock);
948         nvme_sq_copy_cmd(nvmeq, &iod->cmd);
949         nvme_write_sq_db(nvmeq, bd->last);
950         spin_unlock(&nvmeq->sq_lock);
951         return BLK_STS_OK;
952 }
953
954 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
955 {
956         spin_lock(&nvmeq->sq_lock);
957         while (!rq_list_empty(*rqlist)) {
958                 struct request *req = rq_list_pop(rqlist);
959                 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
960
961                 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
962         }
963         nvme_write_sq_db(nvmeq, true);
964         spin_unlock(&nvmeq->sq_lock);
965 }
966
967 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
968 {
969         /*
970          * We should not need to do this, but we're still using this to
971          * ensure we can drain requests on a dying queue.
972          */
973         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
974                 return false;
975         if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
976                 return false;
977
978         req->mq_hctx->tags->rqs[req->tag] = req;
979         return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
980 }
981
982 static void nvme_queue_rqs(struct request **rqlist)
983 {
984         struct request *req, *next, *prev = NULL;
985         struct request *requeue_list = NULL;
986
987         rq_list_for_each_safe(rqlist, req, next) {
988                 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
989
990                 if (!nvme_prep_rq_batch(nvmeq, req)) {
991                         /* detach 'req' and add to remainder list */
992                         rq_list_move(rqlist, &requeue_list, req, prev);
993
994                         req = prev;
995                         if (!req)
996                                 continue;
997                 }
998
999                 if (!next || req->mq_hctx != next->mq_hctx) {
1000                         /* detach rest of list, and submit */
1001                         req->rq_next = NULL;
1002                         nvme_submit_cmds(nvmeq, rqlist);
1003                         *rqlist = next;
1004                         prev = NULL;
1005                 } else
1006                         prev = req;
1007         }
1008
1009         *rqlist = requeue_list;
1010 }
1011
1012 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1013 {
1014         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1015         struct nvme_dev *dev = nvmeq->dev;
1016
1017         if (blk_integrity_rq(req)) {
1018                 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1019
1020                 dma_unmap_page(dev->dev, iod->meta_dma,
1021                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1022         }
1023
1024         if (blk_rq_nr_phys_segments(req))
1025                 nvme_unmap_data(dev, req);
1026 }
1027
1028 static void nvme_pci_complete_rq(struct request *req)
1029 {
1030         nvme_pci_unmap_rq(req);
1031         nvme_complete_rq(req);
1032 }
1033
1034 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1035 {
1036         nvme_complete_batch(iob, nvme_pci_unmap_rq);
1037 }
1038
1039 /* We read the CQE phase first to check if the rest of the entry is valid */
1040 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1041 {
1042         struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1043
1044         return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1045 }
1046
1047 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1048 {
1049         u16 head = nvmeq->cq_head;
1050
1051         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1052                                               nvmeq->dbbuf_cq_ei))
1053                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1054 }
1055
1056 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1057 {
1058         if (!nvmeq->qid)
1059                 return nvmeq->dev->admin_tagset.tags[0];
1060         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1061 }
1062
1063 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1064                                    struct io_comp_batch *iob, u16 idx)
1065 {
1066         struct nvme_completion *cqe = &nvmeq->cqes[idx];
1067         __u16 command_id = READ_ONCE(cqe->command_id);
1068         struct request *req;
1069
1070         /*
1071          * AEN requests are special as they don't time out and can
1072          * survive any kind of queue freeze and often don't respond to
1073          * aborts.  We don't even bother to allocate a struct request
1074          * for them but rather special case them here.
1075          */
1076         if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1077                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1078                                 cqe->status, &cqe->result);
1079                 return;
1080         }
1081
1082         req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1083         if (unlikely(!req)) {
1084                 dev_warn(nvmeq->dev->ctrl.device,
1085                         "invalid id %d completed on queue %d\n",
1086                         command_id, le16_to_cpu(cqe->sq_id));
1087                 return;
1088         }
1089
1090         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1091         if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1092             !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1093                                         nvme_pci_complete_batch))
1094                 nvme_pci_complete_rq(req);
1095 }
1096
1097 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1098 {
1099         u32 tmp = nvmeq->cq_head + 1;
1100
1101         if (tmp == nvmeq->q_depth) {
1102                 nvmeq->cq_head = 0;
1103                 nvmeq->cq_phase ^= 1;
1104         } else {
1105                 nvmeq->cq_head = tmp;
1106         }
1107 }
1108
1109 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1110                                struct io_comp_batch *iob)
1111 {
1112         int found = 0;
1113
1114         while (nvme_cqe_pending(nvmeq)) {
1115                 found++;
1116                 /*
1117                  * load-load control dependency between phase and the rest of
1118                  * the cqe requires a full read memory barrier
1119                  */
1120                 dma_rmb();
1121                 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1122                 nvme_update_cq_head(nvmeq);
1123         }
1124
1125         if (found)
1126                 nvme_ring_cq_doorbell(nvmeq);
1127         return found;
1128 }
1129
1130 static irqreturn_t nvme_irq(int irq, void *data)
1131 {
1132         struct nvme_queue *nvmeq = data;
1133         DEFINE_IO_COMP_BATCH(iob);
1134
1135         if (nvme_poll_cq(nvmeq, &iob)) {
1136                 if (!rq_list_empty(iob.req_list))
1137                         nvme_pci_complete_batch(&iob);
1138                 return IRQ_HANDLED;
1139         }
1140         return IRQ_NONE;
1141 }
1142
1143 static irqreturn_t nvme_irq_check(int irq, void *data)
1144 {
1145         struct nvme_queue *nvmeq = data;
1146
1147         if (nvme_cqe_pending(nvmeq))
1148                 return IRQ_WAKE_THREAD;
1149         return IRQ_NONE;
1150 }
1151
1152 /*
1153  * Poll for completions for any interrupt driven queue
1154  * Can be called from any context.
1155  */
1156 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1157 {
1158         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1159
1160         WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1161
1162         disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1163         nvme_poll_cq(nvmeq, NULL);
1164         enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1165 }
1166
1167 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1168 {
1169         struct nvme_queue *nvmeq = hctx->driver_data;
1170         bool found;
1171
1172         if (!nvme_cqe_pending(nvmeq))
1173                 return 0;
1174
1175         spin_lock(&nvmeq->cq_poll_lock);
1176         found = nvme_poll_cq(nvmeq, iob);
1177         spin_unlock(&nvmeq->cq_poll_lock);
1178
1179         return found;
1180 }
1181
1182 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1183 {
1184         struct nvme_dev *dev = to_nvme_dev(ctrl);
1185         struct nvme_queue *nvmeq = &dev->queues[0];
1186         struct nvme_command c = { };
1187
1188         c.common.opcode = nvme_admin_async_event;
1189         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1190
1191         spin_lock(&nvmeq->sq_lock);
1192         nvme_sq_copy_cmd(nvmeq, &c);
1193         nvme_write_sq_db(nvmeq, true);
1194         spin_unlock(&nvmeq->sq_lock);
1195 }
1196
1197 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1198 {
1199         struct nvme_command c = { };
1200
1201         c.delete_queue.opcode = opcode;
1202         c.delete_queue.qid = cpu_to_le16(id);
1203
1204         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1205 }
1206
1207 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1208                 struct nvme_queue *nvmeq, s16 vector)
1209 {
1210         struct nvme_command c = { };
1211         int flags = NVME_QUEUE_PHYS_CONTIG;
1212
1213         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1214                 flags |= NVME_CQ_IRQ_ENABLED;
1215
1216         /*
1217          * Note: we (ab)use the fact that the prp fields survive if no data
1218          * is attached to the request.
1219          */
1220         c.create_cq.opcode = nvme_admin_create_cq;
1221         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1222         c.create_cq.cqid = cpu_to_le16(qid);
1223         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1224         c.create_cq.cq_flags = cpu_to_le16(flags);
1225         c.create_cq.irq_vector = cpu_to_le16(vector);
1226
1227         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1228 }
1229
1230 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1231                                                 struct nvme_queue *nvmeq)
1232 {
1233         struct nvme_ctrl *ctrl = &dev->ctrl;
1234         struct nvme_command c = { };
1235         int flags = NVME_QUEUE_PHYS_CONTIG;
1236
1237         /*
1238          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1239          * set. Since URGENT priority is zeroes, it makes all queues
1240          * URGENT.
1241          */
1242         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1243                 flags |= NVME_SQ_PRIO_MEDIUM;
1244
1245         /*
1246          * Note: we (ab)use the fact that the prp fields survive if no data
1247          * is attached to the request.
1248          */
1249         c.create_sq.opcode = nvme_admin_create_sq;
1250         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1251         c.create_sq.sqid = cpu_to_le16(qid);
1252         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1253         c.create_sq.sq_flags = cpu_to_le16(flags);
1254         c.create_sq.cqid = cpu_to_le16(qid);
1255
1256         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1257 }
1258
1259 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1260 {
1261         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1262 }
1263
1264 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1265 {
1266         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1267 }
1268
1269 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1270 {
1271         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1272
1273         dev_warn(nvmeq->dev->ctrl.device,
1274                  "Abort status: 0x%x", nvme_req(req)->status);
1275         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1276         blk_mq_free_request(req);
1277         return RQ_END_IO_NONE;
1278 }
1279
1280 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1281 {
1282         /* If true, indicates loss of adapter communication, possibly by a
1283          * NVMe Subsystem reset.
1284          */
1285         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1286
1287         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1288         switch (dev->ctrl.state) {
1289         case NVME_CTRL_RESETTING:
1290         case NVME_CTRL_CONNECTING:
1291                 return false;
1292         default:
1293                 break;
1294         }
1295
1296         /* We shouldn't reset unless the controller is on fatal error state
1297          * _or_ if we lost the communication with it.
1298          */
1299         if (!(csts & NVME_CSTS_CFS) && !nssro)
1300                 return false;
1301
1302         return true;
1303 }
1304
1305 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1306 {
1307         /* Read a config register to help see what died. */
1308         u16 pci_status;
1309         int result;
1310
1311         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1312                                       &pci_status);
1313         if (result == PCIBIOS_SUCCESSFUL)
1314                 dev_warn(dev->ctrl.device,
1315                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1316                          csts, pci_status);
1317         else
1318                 dev_warn(dev->ctrl.device,
1319                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1320                          csts, result);
1321
1322         if (csts != ~0)
1323                 return;
1324
1325         dev_warn(dev->ctrl.device,
1326                  "Does your device have a faulty power saving mode enabled?\n");
1327         dev_warn(dev->ctrl.device,
1328                  "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1329 }
1330
1331 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1332 {
1333         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1334         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1335         struct nvme_dev *dev = nvmeq->dev;
1336         struct request *abort_req;
1337         struct nvme_command cmd = { };
1338         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1339
1340         /* If PCI error recovery process is happening, we cannot reset or
1341          * the recovery mechanism will surely fail.
1342          */
1343         mb();
1344         if (pci_channel_offline(to_pci_dev(dev->dev)))
1345                 return BLK_EH_RESET_TIMER;
1346
1347         /*
1348          * Reset immediately if the controller is failed
1349          */
1350         if (nvme_should_reset(dev, csts)) {
1351                 nvme_warn_reset(dev, csts);
1352                 nvme_dev_disable(dev, false);
1353                 nvme_reset_ctrl(&dev->ctrl);
1354                 return BLK_EH_DONE;
1355         }
1356
1357         /*
1358          * Did we miss an interrupt?
1359          */
1360         if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1361                 nvme_poll(req->mq_hctx, NULL);
1362         else
1363                 nvme_poll_irqdisable(nvmeq);
1364
1365         if (blk_mq_request_completed(req)) {
1366                 dev_warn(dev->ctrl.device,
1367                          "I/O %d QID %d timeout, completion polled\n",
1368                          req->tag, nvmeq->qid);
1369                 return BLK_EH_DONE;
1370         }
1371
1372         /*
1373          * Shutdown immediately if controller times out while starting. The
1374          * reset work will see the pci device disabled when it gets the forced
1375          * cancellation error. All outstanding requests are completed on
1376          * shutdown, so we return BLK_EH_DONE.
1377          */
1378         switch (dev->ctrl.state) {
1379         case NVME_CTRL_CONNECTING:
1380                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1381                 fallthrough;
1382         case NVME_CTRL_DELETING:
1383                 dev_warn_ratelimited(dev->ctrl.device,
1384                          "I/O %d QID %d timeout, disable controller\n",
1385                          req->tag, nvmeq->qid);
1386                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1387                 nvme_dev_disable(dev, true);
1388                 return BLK_EH_DONE;
1389         case NVME_CTRL_RESETTING:
1390                 return BLK_EH_RESET_TIMER;
1391         default:
1392                 break;
1393         }
1394
1395         /*
1396          * Shutdown the controller immediately and schedule a reset if the
1397          * command was already aborted once before and still hasn't been
1398          * returned to the driver, or if this is the admin queue.
1399          */
1400         if (!nvmeq->qid || iod->aborted) {
1401                 dev_warn(dev->ctrl.device,
1402                          "I/O %d QID %d timeout, reset controller\n",
1403                          req->tag, nvmeq->qid);
1404                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1405                 nvme_dev_disable(dev, false);
1406                 nvme_reset_ctrl(&dev->ctrl);
1407
1408                 return BLK_EH_DONE;
1409         }
1410
1411         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1412                 atomic_inc(&dev->ctrl.abort_limit);
1413                 return BLK_EH_RESET_TIMER;
1414         }
1415         iod->aborted = true;
1416
1417         cmd.abort.opcode = nvme_admin_abort_cmd;
1418         cmd.abort.cid = nvme_cid(req);
1419         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1420
1421         dev_warn(nvmeq->dev->ctrl.device,
1422                 "I/O %d (%s) QID %d timeout, aborting\n",
1423                  req->tag,
1424                  nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1425                  nvmeq->qid);
1426
1427         abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1428                                          BLK_MQ_REQ_NOWAIT);
1429         if (IS_ERR(abort_req)) {
1430                 atomic_inc(&dev->ctrl.abort_limit);
1431                 return BLK_EH_RESET_TIMER;
1432         }
1433         nvme_init_request(abort_req, &cmd);
1434
1435         abort_req->end_io = abort_endio;
1436         abort_req->end_io_data = NULL;
1437         blk_execute_rq_nowait(abort_req, false);
1438
1439         /*
1440          * The aborted req will be completed on receiving the abort req.
1441          * We enable the timer again. If hit twice, it'll cause a device reset,
1442          * as the device then is in a faulty state.
1443          */
1444         return BLK_EH_RESET_TIMER;
1445 }
1446
1447 static void nvme_free_queue(struct nvme_queue *nvmeq)
1448 {
1449         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1450                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1451         if (!nvmeq->sq_cmds)
1452                 return;
1453
1454         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1455                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1456                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1457         } else {
1458                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1459                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1460         }
1461 }
1462
1463 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1464 {
1465         int i;
1466
1467         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1468                 dev->ctrl.queue_count--;
1469                 nvme_free_queue(&dev->queues[i]);
1470         }
1471 }
1472
1473 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1474 {
1475         struct nvme_queue *nvmeq = &dev->queues[qid];
1476
1477         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1478                 return;
1479
1480         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1481         mb();
1482
1483         nvmeq->dev->online_queues--;
1484         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1485                 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1486         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1487                 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1488 }
1489
1490 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1491 {
1492         int i;
1493
1494         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1495                 nvme_suspend_queue(dev, i);
1496 }
1497
1498 /*
1499  * Called only on a device that has been disabled and after all other threads
1500  * that can check this device's completion queues have synced, except
1501  * nvme_poll(). This is the last chance for the driver to see a natural
1502  * completion before nvme_cancel_request() terminates all incomplete requests.
1503  */
1504 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1505 {
1506         int i;
1507
1508         for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1509                 spin_lock(&dev->queues[i].cq_poll_lock);
1510                 nvme_poll_cq(&dev->queues[i], NULL);
1511                 spin_unlock(&dev->queues[i].cq_poll_lock);
1512         }
1513 }
1514
1515 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1516                                 int entry_size)
1517 {
1518         int q_depth = dev->q_depth;
1519         unsigned q_size_aligned = roundup(q_depth * entry_size,
1520                                           NVME_CTRL_PAGE_SIZE);
1521
1522         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1523                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1524
1525                 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1526                 q_depth = div_u64(mem_per_q, entry_size);
1527
1528                 /*
1529                  * Ensure the reduced q_depth is above some threshold where it
1530                  * would be better to map queues in system memory with the
1531                  * original depth
1532                  */
1533                 if (q_depth < 64)
1534                         return -ENOMEM;
1535         }
1536
1537         return q_depth;
1538 }
1539
1540 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1541                                 int qid)
1542 {
1543         struct pci_dev *pdev = to_pci_dev(dev->dev);
1544
1545         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1546                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1547                 if (nvmeq->sq_cmds) {
1548                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1549                                                         nvmeq->sq_cmds);
1550                         if (nvmeq->sq_dma_addr) {
1551                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1552                                 return 0;
1553                         }
1554
1555                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1556                 }
1557         }
1558
1559         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1560                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1561         if (!nvmeq->sq_cmds)
1562                 return -ENOMEM;
1563         return 0;
1564 }
1565
1566 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1567 {
1568         struct nvme_queue *nvmeq = &dev->queues[qid];
1569
1570         if (dev->ctrl.queue_count > qid)
1571                 return 0;
1572
1573         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1574         nvmeq->q_depth = depth;
1575         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1576                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1577         if (!nvmeq->cqes)
1578                 goto free_nvmeq;
1579
1580         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1581                 goto free_cqdma;
1582
1583         nvmeq->dev = dev;
1584         spin_lock_init(&nvmeq->sq_lock);
1585         spin_lock_init(&nvmeq->cq_poll_lock);
1586         nvmeq->cq_head = 0;
1587         nvmeq->cq_phase = 1;
1588         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1589         nvmeq->qid = qid;
1590         dev->ctrl.queue_count++;
1591
1592         return 0;
1593
1594  free_cqdma:
1595         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1596                           nvmeq->cq_dma_addr);
1597  free_nvmeq:
1598         return -ENOMEM;
1599 }
1600
1601 static int queue_request_irq(struct nvme_queue *nvmeq)
1602 {
1603         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1604         int nr = nvmeq->dev->ctrl.instance;
1605
1606         if (use_threaded_interrupts) {
1607                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1608                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1609         } else {
1610                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1611                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1612         }
1613 }
1614
1615 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1616 {
1617         struct nvme_dev *dev = nvmeq->dev;
1618
1619         nvmeq->sq_tail = 0;
1620         nvmeq->last_sq_tail = 0;
1621         nvmeq->cq_head = 0;
1622         nvmeq->cq_phase = 1;
1623         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1624         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1625         nvme_dbbuf_init(dev, nvmeq, qid);
1626         dev->online_queues++;
1627         wmb(); /* ensure the first interrupt sees the initialization */
1628 }
1629
1630 /*
1631  * Try getting shutdown_lock while setting up IO queues.
1632  */
1633 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1634 {
1635         /*
1636          * Give up if the lock is being held by nvme_dev_disable.
1637          */
1638         if (!mutex_trylock(&dev->shutdown_lock))
1639                 return -ENODEV;
1640
1641         /*
1642          * Controller is in wrong state, fail early.
1643          */
1644         if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1645                 mutex_unlock(&dev->shutdown_lock);
1646                 return -ENODEV;
1647         }
1648
1649         return 0;
1650 }
1651
1652 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1653 {
1654         struct nvme_dev *dev = nvmeq->dev;
1655         int result;
1656         u16 vector = 0;
1657
1658         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1659
1660         /*
1661          * A queue's vector matches the queue identifier unless the controller
1662          * has only one vector available.
1663          */
1664         if (!polled)
1665                 vector = dev->num_vecs == 1 ? 0 : qid;
1666         else
1667                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1668
1669         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1670         if (result)
1671                 return result;
1672
1673         result = adapter_alloc_sq(dev, qid, nvmeq);
1674         if (result < 0)
1675                 return result;
1676         if (result)
1677                 goto release_cq;
1678
1679         nvmeq->cq_vector = vector;
1680
1681         result = nvme_setup_io_queues_trylock(dev);
1682         if (result)
1683                 return result;
1684         nvme_init_queue(nvmeq, qid);
1685         if (!polled) {
1686                 result = queue_request_irq(nvmeq);
1687                 if (result < 0)
1688                         goto release_sq;
1689         }
1690
1691         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1692         mutex_unlock(&dev->shutdown_lock);
1693         return result;
1694
1695 release_sq:
1696         dev->online_queues--;
1697         mutex_unlock(&dev->shutdown_lock);
1698         adapter_delete_sq(dev, qid);
1699 release_cq:
1700         adapter_delete_cq(dev, qid);
1701         return result;
1702 }
1703
1704 static const struct blk_mq_ops nvme_mq_admin_ops = {
1705         .queue_rq       = nvme_queue_rq,
1706         .complete       = nvme_pci_complete_rq,
1707         .init_hctx      = nvme_admin_init_hctx,
1708         .init_request   = nvme_pci_init_request,
1709         .timeout        = nvme_timeout,
1710 };
1711
1712 static const struct blk_mq_ops nvme_mq_ops = {
1713         .queue_rq       = nvme_queue_rq,
1714         .queue_rqs      = nvme_queue_rqs,
1715         .complete       = nvme_pci_complete_rq,
1716         .commit_rqs     = nvme_commit_rqs,
1717         .init_hctx      = nvme_init_hctx,
1718         .init_request   = nvme_pci_init_request,
1719         .map_queues     = nvme_pci_map_queues,
1720         .timeout        = nvme_timeout,
1721         .poll           = nvme_poll,
1722 };
1723
1724 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1725 {
1726         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1727                 /*
1728                  * If the controller was reset during removal, it's possible
1729                  * user requests may be waiting on a stopped queue. Start the
1730                  * queue to flush these to completion.
1731                  */
1732                 nvme_unquiesce_admin_queue(&dev->ctrl);
1733                 nvme_remove_admin_tag_set(&dev->ctrl);
1734         }
1735 }
1736
1737 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1738 {
1739         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1740 }
1741
1742 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1743 {
1744         struct pci_dev *pdev = to_pci_dev(dev->dev);
1745
1746         if (size <= dev->bar_mapped_size)
1747                 return 0;
1748         if (size > pci_resource_len(pdev, 0))
1749                 return -ENOMEM;
1750         if (dev->bar)
1751                 iounmap(dev->bar);
1752         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1753         if (!dev->bar) {
1754                 dev->bar_mapped_size = 0;
1755                 return -ENOMEM;
1756         }
1757         dev->bar_mapped_size = size;
1758         dev->dbs = dev->bar + NVME_REG_DBS;
1759
1760         return 0;
1761 }
1762
1763 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1764 {
1765         int result;
1766         u32 aqa;
1767         struct nvme_queue *nvmeq;
1768
1769         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1770         if (result < 0)
1771                 return result;
1772
1773         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1774                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1775
1776         if (dev->subsystem &&
1777             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1778                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1779
1780         /*
1781          * If the device has been passed off to us in an enabled state, just
1782          * clear the enabled bit.  The spec says we should set the 'shutdown
1783          * notification bits', but doing so may cause the device to complete
1784          * commands to the admin queue ... and we don't know what memory that
1785          * might be pointing at!
1786          */
1787         result = nvme_disable_ctrl(&dev->ctrl, false);
1788         if (result < 0)
1789                 return result;
1790
1791         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1792         if (result)
1793                 return result;
1794
1795         dev->ctrl.numa_node = dev_to_node(dev->dev);
1796
1797         nvmeq = &dev->queues[0];
1798         aqa = nvmeq->q_depth - 1;
1799         aqa |= aqa << 16;
1800
1801         writel(aqa, dev->bar + NVME_REG_AQA);
1802         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1803         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1804
1805         result = nvme_enable_ctrl(&dev->ctrl);
1806         if (result)
1807                 return result;
1808
1809         nvmeq->cq_vector = 0;
1810         nvme_init_queue(nvmeq, 0);
1811         result = queue_request_irq(nvmeq);
1812         if (result) {
1813                 dev->online_queues--;
1814                 return result;
1815         }
1816
1817         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1818         return result;
1819 }
1820
1821 static int nvme_create_io_queues(struct nvme_dev *dev)
1822 {
1823         unsigned i, max, rw_queues;
1824         int ret = 0;
1825
1826         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1827                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1828                         ret = -ENOMEM;
1829                         break;
1830                 }
1831         }
1832
1833         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1834         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1835                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1836                                 dev->io_queues[HCTX_TYPE_READ];
1837         } else {
1838                 rw_queues = max;
1839         }
1840
1841         for (i = dev->online_queues; i <= max; i++) {
1842                 bool polled = i > rw_queues;
1843
1844                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1845                 if (ret)
1846                         break;
1847         }
1848
1849         /*
1850          * Ignore failing Create SQ/CQ commands, we can continue with less
1851          * than the desired amount of queues, and even a controller without
1852          * I/O queues can still be used to issue admin commands.  This might
1853          * be useful to upgrade a buggy firmware for example.
1854          */
1855         return ret >= 0 ? 0 : ret;
1856 }
1857
1858 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1859 {
1860         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1861
1862         return 1ULL << (12 + 4 * szu);
1863 }
1864
1865 static u32 nvme_cmb_size(struct nvme_dev *dev)
1866 {
1867         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1868 }
1869
1870 static void nvme_map_cmb(struct nvme_dev *dev)
1871 {
1872         u64 size, offset;
1873         resource_size_t bar_size;
1874         struct pci_dev *pdev = to_pci_dev(dev->dev);
1875         int bar;
1876
1877         if (dev->cmb_size)
1878                 return;
1879
1880         if (NVME_CAP_CMBS(dev->ctrl.cap))
1881                 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1882
1883         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1884         if (!dev->cmbsz)
1885                 return;
1886         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1887
1888         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1889         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1890         bar = NVME_CMB_BIR(dev->cmbloc);
1891         bar_size = pci_resource_len(pdev, bar);
1892
1893         if (offset > bar_size)
1894                 return;
1895
1896         /*
1897          * Tell the controller about the host side address mapping the CMB,
1898          * and enable CMB decoding for the NVMe 1.4+ scheme:
1899          */
1900         if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1901                 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1902                              (pci_bus_address(pdev, bar) + offset),
1903                              dev->bar + NVME_REG_CMBMSC);
1904         }
1905
1906         /*
1907          * Controllers may support a CMB size larger than their BAR,
1908          * for example, due to being behind a bridge. Reduce the CMB to
1909          * the reported size of the BAR
1910          */
1911         if (size > bar_size - offset)
1912                 size = bar_size - offset;
1913
1914         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1915                 dev_warn(dev->ctrl.device,
1916                          "failed to register the CMB\n");
1917                 return;
1918         }
1919
1920         dev->cmb_size = size;
1921         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1922
1923         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1924                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1925                 pci_p2pmem_publish(pdev, true);
1926 }
1927
1928 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1929 {
1930         u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1931         u64 dma_addr = dev->host_mem_descs_dma;
1932         struct nvme_command c = { };
1933         int ret;
1934
1935         c.features.opcode       = nvme_admin_set_features;
1936         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1937         c.features.dword11      = cpu_to_le32(bits);
1938         c.features.dword12      = cpu_to_le32(host_mem_size);
1939         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1940         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1941         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1942
1943         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1944         if (ret) {
1945                 dev_warn(dev->ctrl.device,
1946                          "failed to set host mem (err %d, flags %#x).\n",
1947                          ret, bits);
1948         } else
1949                 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1950
1951         return ret;
1952 }
1953
1954 static void nvme_free_host_mem(struct nvme_dev *dev)
1955 {
1956         int i;
1957
1958         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1959                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1960                 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1961
1962                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1963                                le64_to_cpu(desc->addr),
1964                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1965         }
1966
1967         kfree(dev->host_mem_desc_bufs);
1968         dev->host_mem_desc_bufs = NULL;
1969         dma_free_coherent(dev->dev,
1970                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1971                         dev->host_mem_descs, dev->host_mem_descs_dma);
1972         dev->host_mem_descs = NULL;
1973         dev->nr_host_mem_descs = 0;
1974 }
1975
1976 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1977                 u32 chunk_size)
1978 {
1979         struct nvme_host_mem_buf_desc *descs;
1980         u32 max_entries, len;
1981         dma_addr_t descs_dma;
1982         int i = 0;
1983         void **bufs;
1984         u64 size, tmp;
1985
1986         tmp = (preferred + chunk_size - 1);
1987         do_div(tmp, chunk_size);
1988         max_entries = tmp;
1989
1990         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1991                 max_entries = dev->ctrl.hmmaxd;
1992
1993         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1994                                    &descs_dma, GFP_KERNEL);
1995         if (!descs)
1996                 goto out;
1997
1998         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1999         if (!bufs)
2000                 goto out_free_descs;
2001
2002         for (size = 0; size < preferred && i < max_entries; size += len) {
2003                 dma_addr_t dma_addr;
2004
2005                 len = min_t(u64, chunk_size, preferred - size);
2006                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2007                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2008                 if (!bufs[i])
2009                         break;
2010
2011                 descs[i].addr = cpu_to_le64(dma_addr);
2012                 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2013                 i++;
2014         }
2015
2016         if (!size)
2017                 goto out_free_bufs;
2018
2019         dev->nr_host_mem_descs = i;
2020         dev->host_mem_size = size;
2021         dev->host_mem_descs = descs;
2022         dev->host_mem_descs_dma = descs_dma;
2023         dev->host_mem_desc_bufs = bufs;
2024         return 0;
2025
2026 out_free_bufs:
2027         while (--i >= 0) {
2028                 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2029
2030                 dma_free_attrs(dev->dev, size, bufs[i],
2031                                le64_to_cpu(descs[i].addr),
2032                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2033         }
2034
2035         kfree(bufs);
2036 out_free_descs:
2037         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2038                         descs_dma);
2039 out:
2040         dev->host_mem_descs = NULL;
2041         return -ENOMEM;
2042 }
2043
2044 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2045 {
2046         u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2047         u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2048         u64 chunk_size;
2049
2050         /* start big and work our way down */
2051         for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2052                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2053                         if (!min || dev->host_mem_size >= min)
2054                                 return 0;
2055                         nvme_free_host_mem(dev);
2056                 }
2057         }
2058
2059         return -ENOMEM;
2060 }
2061
2062 static int nvme_setup_host_mem(struct nvme_dev *dev)
2063 {
2064         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2065         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2066         u64 min = (u64)dev->ctrl.hmmin * 4096;
2067         u32 enable_bits = NVME_HOST_MEM_ENABLE;
2068         int ret;
2069
2070         if (!dev->ctrl.hmpre)
2071                 return 0;
2072
2073         preferred = min(preferred, max);
2074         if (min > max) {
2075                 dev_warn(dev->ctrl.device,
2076                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2077                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2078                 nvme_free_host_mem(dev);
2079                 return 0;
2080         }
2081
2082         /*
2083          * If we already have a buffer allocated check if we can reuse it.
2084          */
2085         if (dev->host_mem_descs) {
2086                 if (dev->host_mem_size >= min)
2087                         enable_bits |= NVME_HOST_MEM_RETURN;
2088                 else
2089                         nvme_free_host_mem(dev);
2090         }
2091
2092         if (!dev->host_mem_descs) {
2093                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2094                         dev_warn(dev->ctrl.device,
2095                                 "failed to allocate host memory buffer.\n");
2096                         return 0; /* controller must work without HMB */
2097                 }
2098
2099                 dev_info(dev->ctrl.device,
2100                         "allocated %lld MiB host memory buffer.\n",
2101                         dev->host_mem_size >> ilog2(SZ_1M));
2102         }
2103
2104         ret = nvme_set_host_mem(dev, enable_bits);
2105         if (ret)
2106                 nvme_free_host_mem(dev);
2107         return ret;
2108 }
2109
2110 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2111                 char *buf)
2112 {
2113         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2114
2115         return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2116                        ndev->cmbloc, ndev->cmbsz);
2117 }
2118 static DEVICE_ATTR_RO(cmb);
2119
2120 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2121                 char *buf)
2122 {
2123         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2124
2125         return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2126 }
2127 static DEVICE_ATTR_RO(cmbloc);
2128
2129 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2130                 char *buf)
2131 {
2132         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2133
2134         return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2135 }
2136 static DEVICE_ATTR_RO(cmbsz);
2137
2138 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2139                         char *buf)
2140 {
2141         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2142
2143         return sysfs_emit(buf, "%d\n", ndev->hmb);
2144 }
2145
2146 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2147                          const char *buf, size_t count)
2148 {
2149         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2150         bool new;
2151         int ret;
2152
2153         if (kstrtobool(buf, &new) < 0)
2154                 return -EINVAL;
2155
2156         if (new == ndev->hmb)
2157                 return count;
2158
2159         if (new) {
2160                 ret = nvme_setup_host_mem(ndev);
2161         } else {
2162                 ret = nvme_set_host_mem(ndev, 0);
2163                 if (!ret)
2164                         nvme_free_host_mem(ndev);
2165         }
2166
2167         if (ret < 0)
2168                 return ret;
2169
2170         return count;
2171 }
2172 static DEVICE_ATTR_RW(hmb);
2173
2174 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2175                 struct attribute *a, int n)
2176 {
2177         struct nvme_ctrl *ctrl =
2178                 dev_get_drvdata(container_of(kobj, struct device, kobj));
2179         struct nvme_dev *dev = to_nvme_dev(ctrl);
2180
2181         if (a == &dev_attr_cmb.attr ||
2182             a == &dev_attr_cmbloc.attr ||
2183             a == &dev_attr_cmbsz.attr) {
2184                 if (!dev->cmbsz)
2185                         return 0;
2186         }
2187         if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2188                 return 0;
2189
2190         return a->mode;
2191 }
2192
2193 static struct attribute *nvme_pci_attrs[] = {
2194         &dev_attr_cmb.attr,
2195         &dev_attr_cmbloc.attr,
2196         &dev_attr_cmbsz.attr,
2197         &dev_attr_hmb.attr,
2198         NULL,
2199 };
2200
2201 static const struct attribute_group nvme_pci_dev_attrs_group = {
2202         .attrs          = nvme_pci_attrs,
2203         .is_visible     = nvme_pci_attrs_are_visible,
2204 };
2205
2206 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2207         &nvme_dev_attrs_group,
2208         &nvme_pci_dev_attrs_group,
2209         NULL,
2210 };
2211
2212 /*
2213  * nirqs is the number of interrupts available for write and read
2214  * queues. The core already reserved an interrupt for the admin queue.
2215  */
2216 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2217 {
2218         struct nvme_dev *dev = affd->priv;
2219         unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2220
2221         /*
2222          * If there is no interrupt available for queues, ensure that
2223          * the default queue is set to 1. The affinity set size is
2224          * also set to one, but the irq core ignores it for this case.
2225          *
2226          * If only one interrupt is available or 'write_queue' == 0, combine
2227          * write and read queues.
2228          *
2229          * If 'write_queues' > 0, ensure it leaves room for at least one read
2230          * queue.
2231          */
2232         if (!nrirqs) {
2233                 nrirqs = 1;
2234                 nr_read_queues = 0;
2235         } else if (nrirqs == 1 || !nr_write_queues) {
2236                 nr_read_queues = 0;
2237         } else if (nr_write_queues >= nrirqs) {
2238                 nr_read_queues = 1;
2239         } else {
2240                 nr_read_queues = nrirqs - nr_write_queues;
2241         }
2242
2243         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2244         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2245         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2246         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2247         affd->nr_sets = nr_read_queues ? 2 : 1;
2248 }
2249
2250 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2251 {
2252         struct pci_dev *pdev = to_pci_dev(dev->dev);
2253         struct irq_affinity affd = {
2254                 .pre_vectors    = 1,
2255                 .calc_sets      = nvme_calc_irq_sets,
2256                 .priv           = dev,
2257         };
2258         unsigned int irq_queues, poll_queues;
2259
2260         /*
2261          * Poll queues don't need interrupts, but we need at least one I/O queue
2262          * left over for non-polled I/O.
2263          */
2264         poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2265         dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2266
2267         /*
2268          * Initialize for the single interrupt case, will be updated in
2269          * nvme_calc_irq_sets().
2270          */
2271         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2272         dev->io_queues[HCTX_TYPE_READ] = 0;
2273
2274         /*
2275          * We need interrupts for the admin queue and each non-polled I/O queue,
2276          * but some Apple controllers require all queues to use the first
2277          * vector.
2278          */
2279         irq_queues = 1;
2280         if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2281                 irq_queues += (nr_io_queues - poll_queues);
2282         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2283                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2284 }
2285
2286 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2287 {
2288         /*
2289          * If tags are shared with admin queue (Apple bug), then
2290          * make sure we only use one IO queue.
2291          */
2292         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2293                 return 1;
2294         return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2295 }
2296
2297 static int nvme_setup_io_queues(struct nvme_dev *dev)
2298 {
2299         struct nvme_queue *adminq = &dev->queues[0];
2300         struct pci_dev *pdev = to_pci_dev(dev->dev);
2301         unsigned int nr_io_queues;
2302         unsigned long size;
2303         int result;
2304
2305         /*
2306          * Sample the module parameters once at reset time so that we have
2307          * stable values to work with.
2308          */
2309         dev->nr_write_queues = write_queues;
2310         dev->nr_poll_queues = poll_queues;
2311
2312         nr_io_queues = dev->nr_allocated_queues - 1;
2313         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2314         if (result < 0)
2315                 return result;
2316
2317         if (nr_io_queues == 0)
2318                 return 0;
2319
2320         /*
2321          * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2322          * from set to unset. If there is a window to it is truely freed,
2323          * pci_free_irq_vectors() jumping into this window will crash.
2324          * And take lock to avoid racing with pci_free_irq_vectors() in
2325          * nvme_dev_disable() path.
2326          */
2327         result = nvme_setup_io_queues_trylock(dev);
2328         if (result)
2329                 return result;
2330         if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2331                 pci_free_irq(pdev, 0, adminq);
2332
2333         if (dev->cmb_use_sqes) {
2334                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2335                                 sizeof(struct nvme_command));
2336                 if (result > 0)
2337                         dev->q_depth = result;
2338                 else
2339                         dev->cmb_use_sqes = false;
2340         }
2341
2342         do {
2343                 size = db_bar_size(dev, nr_io_queues);
2344                 result = nvme_remap_bar(dev, size);
2345                 if (!result)
2346                         break;
2347                 if (!--nr_io_queues) {
2348                         result = -ENOMEM;
2349                         goto out_unlock;
2350                 }
2351         } while (1);
2352         adminq->q_db = dev->dbs;
2353
2354  retry:
2355         /* Deregister the admin queue's interrupt */
2356         if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2357                 pci_free_irq(pdev, 0, adminq);
2358
2359         /*
2360          * If we enable msix early due to not intx, disable it again before
2361          * setting up the full range we need.
2362          */
2363         pci_free_irq_vectors(pdev);
2364
2365         result = nvme_setup_irqs(dev, nr_io_queues);
2366         if (result <= 0) {
2367                 result = -EIO;
2368                 goto out_unlock;
2369         }
2370
2371         dev->num_vecs = result;
2372         result = max(result - 1, 1);
2373         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2374
2375         /*
2376          * Should investigate if there's a performance win from allocating
2377          * more queues than interrupt vectors; it might allow the submission
2378          * path to scale better, even if the receive path is limited by the
2379          * number of interrupts.
2380          */
2381         result = queue_request_irq(adminq);
2382         if (result)
2383                 goto out_unlock;
2384         set_bit(NVMEQ_ENABLED, &adminq->flags);
2385         mutex_unlock(&dev->shutdown_lock);
2386
2387         result = nvme_create_io_queues(dev);
2388         if (result || dev->online_queues < 2)
2389                 return result;
2390
2391         if (dev->online_queues - 1 < dev->max_qid) {
2392                 nr_io_queues = dev->online_queues - 1;
2393                 nvme_delete_io_queues(dev);
2394                 result = nvme_setup_io_queues_trylock(dev);
2395                 if (result)
2396                         return result;
2397                 nvme_suspend_io_queues(dev);
2398                 goto retry;
2399         }
2400         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2401                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2402                                         dev->io_queues[HCTX_TYPE_READ],
2403                                         dev->io_queues[HCTX_TYPE_POLL]);
2404         return 0;
2405 out_unlock:
2406         mutex_unlock(&dev->shutdown_lock);
2407         return result;
2408 }
2409
2410 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2411                                              blk_status_t error)
2412 {
2413         struct nvme_queue *nvmeq = req->end_io_data;
2414
2415         blk_mq_free_request(req);
2416         complete(&nvmeq->delete_done);
2417         return RQ_END_IO_NONE;
2418 }
2419
2420 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2421                                           blk_status_t error)
2422 {
2423         struct nvme_queue *nvmeq = req->end_io_data;
2424
2425         if (error)
2426                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2427
2428         return nvme_del_queue_end(req, error);
2429 }
2430
2431 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2432 {
2433         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2434         struct request *req;
2435         struct nvme_command cmd = { };
2436
2437         cmd.delete_queue.opcode = opcode;
2438         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2439
2440         req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2441         if (IS_ERR(req))
2442                 return PTR_ERR(req);
2443         nvme_init_request(req, &cmd);
2444
2445         if (opcode == nvme_admin_delete_cq)
2446                 req->end_io = nvme_del_cq_end;
2447         else
2448                 req->end_io = nvme_del_queue_end;
2449         req->end_io_data = nvmeq;
2450
2451         init_completion(&nvmeq->delete_done);
2452         blk_execute_rq_nowait(req, false);
2453         return 0;
2454 }
2455
2456 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2457 {
2458         int nr_queues = dev->online_queues - 1, sent = 0;
2459         unsigned long timeout;
2460
2461  retry:
2462         timeout = NVME_ADMIN_TIMEOUT;
2463         while (nr_queues > 0) {
2464                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2465                         break;
2466                 nr_queues--;
2467                 sent++;
2468         }
2469         while (sent) {
2470                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2471
2472                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2473                                 timeout);
2474                 if (timeout == 0)
2475                         return false;
2476
2477                 sent--;
2478                 if (nr_queues)
2479                         goto retry;
2480         }
2481         return true;
2482 }
2483
2484 static void nvme_delete_io_queues(struct nvme_dev *dev)
2485 {
2486         if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2487                 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2488 }
2489
2490 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2491 {
2492         if (dev->io_queues[HCTX_TYPE_POLL])
2493                 return 3;
2494         if (dev->io_queues[HCTX_TYPE_READ])
2495                 return 2;
2496         return 1;
2497 }
2498
2499 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2500 {
2501         blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2502         /* free previously allocated queues that are no longer usable */
2503         nvme_free_queues(dev, dev->online_queues);
2504 }
2505
2506 static int nvme_pci_enable(struct nvme_dev *dev)
2507 {
2508         int result = -ENOMEM;
2509         struct pci_dev *pdev = to_pci_dev(dev->dev);
2510         int dma_address_bits = 64;
2511
2512         if (pci_enable_device_mem(pdev))
2513                 return result;
2514
2515         pci_set_master(pdev);
2516
2517         if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2518                 dma_address_bits = 48;
2519         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2520                 goto disable;
2521
2522         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2523                 result = -ENODEV;
2524                 goto disable;
2525         }
2526
2527         /*
2528          * Some devices and/or platforms don't advertise or work with INTx
2529          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2530          * adjust this later.
2531          */
2532         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2533         if (result < 0)
2534                 return result;
2535
2536         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2537
2538         dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2539                                 io_queue_depth);
2540         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2541         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2542         dev->dbs = dev->bar + 4096;
2543
2544         /*
2545          * Some Apple controllers require a non-standard SQE size.
2546          * Interestingly they also seem to ignore the CC:IOSQES register
2547          * so we don't bother updating it here.
2548          */
2549         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2550                 dev->io_sqes = 7;
2551         else
2552                 dev->io_sqes = NVME_NVM_IOSQES;
2553
2554         /*
2555          * Temporary fix for the Apple controller found in the MacBook8,1 and
2556          * some MacBook7,1 to avoid controller resets and data loss.
2557          */
2558         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2559                 dev->q_depth = 2;
2560                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2561                         "set queue depth=%u to work around controller resets\n",
2562                         dev->q_depth);
2563         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2564                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2565                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2566                 dev->q_depth = 64;
2567                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2568                         "set queue depth=%u\n", dev->q_depth);
2569         }
2570
2571         /*
2572          * Controllers with the shared tags quirk need the IO queue to be
2573          * big enough so that we get 32 tags for the admin queue
2574          */
2575         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2576             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2577                 dev->q_depth = NVME_AQ_DEPTH + 2;
2578                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2579                          dev->q_depth);
2580         }
2581
2582
2583         nvme_map_cmb(dev);
2584
2585         pci_enable_pcie_error_reporting(pdev);
2586         pci_save_state(pdev);
2587
2588         return nvme_pci_configure_admin_queue(dev);
2589
2590  disable:
2591         pci_disable_device(pdev);
2592         return result;
2593 }
2594
2595 static void nvme_dev_unmap(struct nvme_dev *dev)
2596 {
2597         if (dev->bar)
2598                 iounmap(dev->bar);
2599         pci_release_mem_regions(to_pci_dev(dev->dev));
2600 }
2601
2602 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2603 {
2604         struct pci_dev *pdev = to_pci_dev(dev->dev);
2605         u32 csts;
2606
2607         if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2608                 return true;
2609         if (pdev->error_state != pci_channel_io_normal)
2610                 return true;
2611
2612         csts = readl(dev->bar + NVME_REG_CSTS);
2613         return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2614 }
2615
2616 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2617 {
2618         struct pci_dev *pdev = to_pci_dev(dev->dev);
2619         bool dead;
2620
2621         mutex_lock(&dev->shutdown_lock);
2622         dead = nvme_pci_ctrl_is_dead(dev);
2623         if (dev->ctrl.state == NVME_CTRL_LIVE ||
2624             dev->ctrl.state == NVME_CTRL_RESETTING) {
2625                 if (pci_is_enabled(pdev))
2626                         nvme_start_freeze(&dev->ctrl);
2627                 /*
2628                  * Give the controller a chance to complete all entered requests
2629                  * if doing a safe shutdown.
2630                  */
2631                 if (!dead && shutdown)
2632                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2633         }
2634
2635         nvme_quiesce_io_queues(&dev->ctrl);
2636
2637         if (!dead && dev->ctrl.queue_count > 0) {
2638                 nvme_delete_io_queues(dev);
2639                 nvme_disable_ctrl(&dev->ctrl, shutdown);
2640                 nvme_poll_irqdisable(&dev->queues[0]);
2641         }
2642         nvme_suspend_io_queues(dev);
2643         nvme_suspend_queue(dev, 0);
2644         pci_free_irq_vectors(pdev);
2645         if (pci_is_enabled(pdev)) {
2646                 pci_disable_pcie_error_reporting(pdev);
2647                 pci_disable_device(pdev);
2648         }
2649         nvme_reap_pending_cqes(dev);
2650
2651         nvme_cancel_tagset(&dev->ctrl);
2652         nvme_cancel_admin_tagset(&dev->ctrl);
2653
2654         /*
2655          * The driver will not be starting up queues again if shutting down so
2656          * must flush all entered requests to their failed completion to avoid
2657          * deadlocking blk-mq hot-cpu notifier.
2658          */
2659         if (shutdown) {
2660                 nvme_unquiesce_io_queues(&dev->ctrl);
2661                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2662                         nvme_unquiesce_admin_queue(&dev->ctrl);
2663         }
2664         mutex_unlock(&dev->shutdown_lock);
2665 }
2666
2667 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2668 {
2669         if (!nvme_wait_reset(&dev->ctrl))
2670                 return -EBUSY;
2671         nvme_dev_disable(dev, shutdown);
2672         return 0;
2673 }
2674
2675 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2676 {
2677         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2678                                                 NVME_CTRL_PAGE_SIZE,
2679                                                 NVME_CTRL_PAGE_SIZE, 0);
2680         if (!dev->prp_page_pool)
2681                 return -ENOMEM;
2682
2683         /* Optimisation for I/Os between 4k and 128k */
2684         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2685                                                 256, 256, 0);
2686         if (!dev->prp_small_pool) {
2687                 dma_pool_destroy(dev->prp_page_pool);
2688                 return -ENOMEM;
2689         }
2690         return 0;
2691 }
2692
2693 static void nvme_release_prp_pools(struct nvme_dev *dev)
2694 {
2695         dma_pool_destroy(dev->prp_page_pool);
2696         dma_pool_destroy(dev->prp_small_pool);
2697 }
2698
2699 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2700 {
2701         size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2702         size_t alloc_size = sizeof(__le64 *) * npages +
2703                             sizeof(struct scatterlist) * NVME_MAX_SEGS;
2704
2705         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2706         dev->iod_mempool = mempool_create_node(1,
2707                         mempool_kmalloc, mempool_kfree,
2708                         (void *)alloc_size, GFP_KERNEL,
2709                         dev_to_node(dev->dev));
2710         if (!dev->iod_mempool)
2711                 return -ENOMEM;
2712         return 0;
2713 }
2714
2715 static void nvme_free_tagset(struct nvme_dev *dev)
2716 {
2717         if (dev->tagset.tags)
2718                 nvme_remove_io_tag_set(&dev->ctrl);
2719         dev->ctrl.tagset = NULL;
2720 }
2721
2722 /* pairs with nvme_pci_alloc_dev */
2723 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2724 {
2725         struct nvme_dev *dev = to_nvme_dev(ctrl);
2726
2727         nvme_free_tagset(dev);
2728         put_device(dev->dev);
2729         kfree(dev->queues);
2730         kfree(dev);
2731 }
2732
2733 static void nvme_reset_work(struct work_struct *work)
2734 {
2735         struct nvme_dev *dev =
2736                 container_of(work, struct nvme_dev, ctrl.reset_work);
2737         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2738         int result;
2739
2740         if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2741                 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2742                          dev->ctrl.state);
2743                 return;
2744         }
2745
2746         /*
2747          * If we're called to reset a live controller first shut it down before
2748          * moving on.
2749          */
2750         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2751                 nvme_dev_disable(dev, false);
2752         nvme_sync_queues(&dev->ctrl);
2753
2754         mutex_lock(&dev->shutdown_lock);
2755         result = nvme_pci_enable(dev);
2756         if (result)
2757                 goto out_unlock;
2758         nvme_unquiesce_admin_queue(&dev->ctrl);
2759         mutex_unlock(&dev->shutdown_lock);
2760
2761         /*
2762          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2763          * initializing procedure here.
2764          */
2765         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2766                 dev_warn(dev->ctrl.device,
2767                         "failed to mark controller CONNECTING\n");
2768                 result = -EBUSY;
2769                 goto out;
2770         }
2771
2772         result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2773         if (result)
2774                 goto out;
2775
2776         nvme_dbbuf_dma_alloc(dev);
2777
2778         result = nvme_setup_host_mem(dev);
2779         if (result < 0)
2780                 goto out;
2781
2782         result = nvme_setup_io_queues(dev);
2783         if (result)
2784                 goto out;
2785
2786         /*
2787          * Freeze and update the number of I/O queues as thos might have
2788          * changed.  If there are no I/O queues left after this reset, keep the
2789          * controller around but remove all namespaces.
2790          */
2791         if (dev->online_queues > 1) {
2792                 nvme_unquiesce_io_queues(&dev->ctrl);
2793                 nvme_wait_freeze(&dev->ctrl);
2794                 nvme_pci_update_nr_queues(dev);
2795                 nvme_dbbuf_set(dev);
2796                 nvme_unfreeze(&dev->ctrl);
2797         } else {
2798                 dev_warn(dev->ctrl.device, "IO queues lost\n");
2799                 nvme_mark_namespaces_dead(&dev->ctrl);
2800                 nvme_unquiesce_io_queues(&dev->ctrl);
2801                 nvme_remove_namespaces(&dev->ctrl);
2802                 nvme_free_tagset(dev);
2803         }
2804
2805         /*
2806          * If only admin queue live, keep it to do further investigation or
2807          * recovery.
2808          */
2809         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2810                 dev_warn(dev->ctrl.device,
2811                         "failed to mark controller live state\n");
2812                 result = -ENODEV;
2813                 goto out;
2814         }
2815
2816         nvme_start_ctrl(&dev->ctrl);
2817         return;
2818
2819  out_unlock:
2820         mutex_unlock(&dev->shutdown_lock);
2821  out:
2822         /*
2823          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2824          * may be holding this pci_dev's device lock.
2825          */
2826         dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2827                  result);
2828         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2829         nvme_dev_disable(dev, true);
2830         nvme_mark_namespaces_dead(&dev->ctrl);
2831         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2832 }
2833
2834 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2835 {
2836         *val = readl(to_nvme_dev(ctrl)->bar + off);
2837         return 0;
2838 }
2839
2840 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2841 {
2842         writel(val, to_nvme_dev(ctrl)->bar + off);
2843         return 0;
2844 }
2845
2846 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2847 {
2848         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2849         return 0;
2850 }
2851
2852 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2853 {
2854         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2855
2856         return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2857 }
2858
2859 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2860 {
2861         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2862         struct nvme_subsystem *subsys = ctrl->subsys;
2863
2864         dev_err(ctrl->device,
2865                 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2866                 pdev->vendor, pdev->device,
2867                 nvme_strlen(subsys->model, sizeof(subsys->model)),
2868                 subsys->model, nvme_strlen(subsys->firmware_rev,
2869                                            sizeof(subsys->firmware_rev)),
2870                 subsys->firmware_rev);
2871 }
2872
2873 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2874 {
2875         struct nvme_dev *dev = to_nvme_dev(ctrl);
2876
2877         return dma_pci_p2pdma_supported(dev->dev);
2878 }
2879
2880 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2881         .name                   = "pcie",
2882         .module                 = THIS_MODULE,
2883         .flags                  = NVME_F_METADATA_SUPPORTED,
2884         .dev_attr_groups        = nvme_pci_dev_attr_groups,
2885         .reg_read32             = nvme_pci_reg_read32,
2886         .reg_write32            = nvme_pci_reg_write32,
2887         .reg_read64             = nvme_pci_reg_read64,
2888         .free_ctrl              = nvme_pci_free_ctrl,
2889         .submit_async_event     = nvme_pci_submit_async_event,
2890         .get_address            = nvme_pci_get_address,
2891         .print_device_info      = nvme_pci_print_device_info,
2892         .supports_pci_p2pdma    = nvme_pci_supports_pci_p2pdma,
2893 };
2894
2895 static int nvme_dev_map(struct nvme_dev *dev)
2896 {
2897         struct pci_dev *pdev = to_pci_dev(dev->dev);
2898
2899         if (pci_request_mem_regions(pdev, "nvme"))
2900                 return -ENODEV;
2901
2902         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2903                 goto release;
2904
2905         return 0;
2906   release:
2907         pci_release_mem_regions(pdev);
2908         return -ENODEV;
2909 }
2910
2911 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2912 {
2913         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2914                 /*
2915                  * Several Samsung devices seem to drop off the PCIe bus
2916                  * randomly when APST is on and uses the deepest sleep state.
2917                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2918                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2919                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2920                  * laptops.
2921                  */
2922                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2923                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2924                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2925                         return NVME_QUIRK_NO_DEEPEST_PS;
2926         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2927                 /*
2928                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2929                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2930                  * within few minutes after bootup on a Coffee Lake board -
2931                  * ASUS PRIME Z370-A
2932                  */
2933                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2934                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2935                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2936                         return NVME_QUIRK_NO_APST;
2937         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2938                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2939                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2940                 /*
2941                  * Forcing to use host managed nvme power settings for
2942                  * lowest idle power with quick resume latency on
2943                  * Samsung and Toshiba SSDs based on suspend behavior
2944                  * on Coffee Lake board for LENOVO C640
2945                  */
2946                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2947                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2948                         return NVME_QUIRK_SIMPLE_SUSPEND;
2949         }
2950
2951         return 0;
2952 }
2953
2954 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2955                 const struct pci_device_id *id)
2956 {
2957         unsigned long quirks = id->driver_data;
2958         int node = dev_to_node(&pdev->dev);
2959         struct nvme_dev *dev;
2960         int ret = -ENOMEM;
2961
2962         if (node == NUMA_NO_NODE)
2963                 set_dev_node(&pdev->dev, first_memory_node);
2964
2965         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2966         if (!dev)
2967                 return NULL;
2968         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2969         mutex_init(&dev->shutdown_lock);
2970
2971         dev->nr_write_queues = write_queues;
2972         dev->nr_poll_queues = poll_queues;
2973         dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2974         dev->queues = kcalloc_node(dev->nr_allocated_queues,
2975                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2976         if (!dev->queues)
2977                 goto out_free_dev;
2978
2979         dev->dev = get_device(&pdev->dev);
2980
2981         quirks |= check_vendor_combination_bug(pdev);
2982         if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2983                 /*
2984                  * Some systems use a bios work around to ask for D3 on
2985                  * platforms that support kernel managed suspend.
2986                  */
2987                 dev_info(&pdev->dev,
2988                          "platform quirk: setting simple suspend\n");
2989                 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2990         }
2991         ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2992                              quirks);
2993         if (ret)
2994                 goto out_put_device;
2995         
2996         dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2997         dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2998
2999         /*
3000          * Limit the max command size to prevent iod->sg allocations going
3001          * over a single page.
3002          */
3003         dev->ctrl.max_hw_sectors = min_t(u32,
3004                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9);
3005         dev->ctrl.max_segments = NVME_MAX_SEGS;
3006
3007         /*
3008          * There is no support for SGLs for metadata (yet), so we are limited to
3009          * a single integrity segment for the separate metadata pointer.
3010          */
3011         dev->ctrl.max_integrity_segments = 1;
3012         return dev;
3013
3014 out_put_device:
3015         put_device(dev->dev);
3016         kfree(dev->queues);
3017 out_free_dev:
3018         kfree(dev);
3019         return ERR_PTR(ret);
3020 }
3021
3022 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3023 {
3024         struct nvme_dev *dev;
3025         int result = -ENOMEM;
3026
3027         dev = nvme_pci_alloc_dev(pdev, id);
3028         if (!dev)
3029                 return -ENOMEM;
3030
3031         result = nvme_dev_map(dev);
3032         if (result)
3033                 goto out_uninit_ctrl;
3034
3035         result = nvme_setup_prp_pools(dev);
3036         if (result)
3037                 goto out_dev_unmap;
3038
3039         result = nvme_pci_alloc_iod_mempool(dev);
3040         if (result)
3041                 goto out_release_prp_pools;
3042
3043         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3044
3045         result = nvme_pci_enable(dev);
3046         if (result)
3047                 goto out_release_iod_mempool;
3048
3049         result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3050                                 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3051         if (result)
3052                 goto out_disable;
3053
3054         /*
3055          * Mark the controller as connecting before sending admin commands to
3056          * allow the timeout handler to do the right thing.
3057          */
3058         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3059                 dev_warn(dev->ctrl.device,
3060                         "failed to mark controller CONNECTING\n");
3061                 result = -EBUSY;
3062                 goto out_disable;
3063         }
3064
3065         result = nvme_init_ctrl_finish(&dev->ctrl, false);
3066         if (result)
3067                 goto out_disable;
3068
3069         nvme_dbbuf_dma_alloc(dev);
3070
3071         result = nvme_setup_host_mem(dev);
3072         if (result < 0)
3073                 goto out_disable;
3074
3075         result = nvme_setup_io_queues(dev);
3076         if (result)
3077                 goto out_disable;
3078
3079         if (dev->online_queues > 1) {
3080                 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3081                                 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3082                 nvme_dbbuf_set(dev);
3083         }
3084
3085         if (!dev->ctrl.tagset)
3086                 dev_warn(dev->ctrl.device, "IO queues not created\n");
3087
3088         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3089                 dev_warn(dev->ctrl.device,
3090                         "failed to mark controller live state\n");
3091                 result = -ENODEV;
3092                 goto out_disable;
3093         }
3094
3095         pci_set_drvdata(pdev, dev);
3096
3097         nvme_start_ctrl(&dev->ctrl);
3098         nvme_put_ctrl(&dev->ctrl);
3099         return 0;
3100
3101 out_disable:
3102         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3103         nvme_dev_disable(dev, true);
3104         nvme_free_host_mem(dev);
3105         nvme_dev_remove_admin(dev);
3106         nvme_dbbuf_dma_free(dev);
3107         nvme_free_queues(dev, 0);
3108 out_release_iod_mempool:
3109         mempool_destroy(dev->iod_mempool);
3110 out_release_prp_pools:
3111         nvme_release_prp_pools(dev);
3112 out_dev_unmap:
3113         nvme_dev_unmap(dev);
3114 out_uninit_ctrl:
3115         nvme_uninit_ctrl(&dev->ctrl);
3116         return result;
3117 }
3118
3119 static void nvme_reset_prepare(struct pci_dev *pdev)
3120 {
3121         struct nvme_dev *dev = pci_get_drvdata(pdev);
3122
3123         /*
3124          * We don't need to check the return value from waiting for the reset
3125          * state as pci_dev device lock is held, making it impossible to race
3126          * with ->remove().
3127          */
3128         nvme_disable_prepare_reset(dev, false);
3129         nvme_sync_queues(&dev->ctrl);
3130 }
3131
3132 static void nvme_reset_done(struct pci_dev *pdev)
3133 {
3134         struct nvme_dev *dev = pci_get_drvdata(pdev);
3135
3136         if (!nvme_try_sched_reset(&dev->ctrl))
3137                 flush_work(&dev->ctrl.reset_work);
3138 }
3139
3140 static void nvme_shutdown(struct pci_dev *pdev)
3141 {
3142         struct nvme_dev *dev = pci_get_drvdata(pdev);
3143
3144         nvme_disable_prepare_reset(dev, true);
3145 }
3146
3147 /*
3148  * The driver's remove may be called on a device in a partially initialized
3149  * state. This function must not have any dependencies on the device state in
3150  * order to proceed.
3151  */
3152 static void nvme_remove(struct pci_dev *pdev)
3153 {
3154         struct nvme_dev *dev = pci_get_drvdata(pdev);
3155
3156         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3157         pci_set_drvdata(pdev, NULL);
3158
3159         if (!pci_device_is_present(pdev)) {
3160                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3161                 nvme_dev_disable(dev, true);
3162         }
3163
3164         flush_work(&dev->ctrl.reset_work);
3165         nvme_stop_ctrl(&dev->ctrl);
3166         nvme_remove_namespaces(&dev->ctrl);
3167         nvme_dev_disable(dev, true);
3168         nvme_free_host_mem(dev);
3169         nvme_dev_remove_admin(dev);
3170         nvme_dbbuf_dma_free(dev);
3171         nvme_free_queues(dev, 0);
3172         mempool_destroy(dev->iod_mempool);
3173         nvme_release_prp_pools(dev);
3174         nvme_dev_unmap(dev);
3175         nvme_uninit_ctrl(&dev->ctrl);
3176 }
3177
3178 #ifdef CONFIG_PM_SLEEP
3179 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3180 {
3181         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3182 }
3183
3184 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3185 {
3186         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3187 }
3188
3189 static int nvme_resume(struct device *dev)
3190 {
3191         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3192         struct nvme_ctrl *ctrl = &ndev->ctrl;
3193
3194         if (ndev->last_ps == U32_MAX ||
3195             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3196                 goto reset;
3197         if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3198                 goto reset;
3199
3200         return 0;
3201 reset:
3202         return nvme_try_sched_reset(ctrl);
3203 }
3204
3205 static int nvme_suspend(struct device *dev)
3206 {
3207         struct pci_dev *pdev = to_pci_dev(dev);
3208         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3209         struct nvme_ctrl *ctrl = &ndev->ctrl;
3210         int ret = -EBUSY;
3211
3212         ndev->last_ps = U32_MAX;
3213
3214         /*
3215          * The platform does not remove power for a kernel managed suspend so
3216          * use host managed nvme power settings for lowest idle power if
3217          * possible. This should have quicker resume latency than a full device
3218          * shutdown.  But if the firmware is involved after the suspend or the
3219          * device does not support any non-default power states, shut down the
3220          * device fully.
3221          *
3222          * If ASPM is not enabled for the device, shut down the device and allow
3223          * the PCI bus layer to put it into D3 in order to take the PCIe link
3224          * down, so as to allow the platform to achieve its minimum low-power
3225          * state (which may not be possible if the link is up).
3226          */
3227         if (pm_suspend_via_firmware() || !ctrl->npss ||
3228             !pcie_aspm_enabled(pdev) ||
3229             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3230                 return nvme_disable_prepare_reset(ndev, true);
3231
3232         nvme_start_freeze(ctrl);
3233         nvme_wait_freeze(ctrl);
3234         nvme_sync_queues(ctrl);
3235
3236         if (ctrl->state != NVME_CTRL_LIVE)
3237                 goto unfreeze;
3238
3239         /*
3240          * Host memory access may not be successful in a system suspend state,
3241          * but the specification allows the controller to access memory in a
3242          * non-operational power state.
3243          */
3244         if (ndev->hmb) {
3245                 ret = nvme_set_host_mem(ndev, 0);
3246                 if (ret < 0)
3247                         goto unfreeze;
3248         }
3249
3250         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3251         if (ret < 0)
3252                 goto unfreeze;
3253
3254         /*
3255          * A saved state prevents pci pm from generically controlling the
3256          * device's power. If we're using protocol specific settings, we don't
3257          * want pci interfering.
3258          */
3259         pci_save_state(pdev);
3260
3261         ret = nvme_set_power_state(ctrl, ctrl->npss);
3262         if (ret < 0)
3263                 goto unfreeze;
3264
3265         if (ret) {
3266                 /* discard the saved state */
3267                 pci_load_saved_state(pdev, NULL);
3268
3269                 /*
3270                  * Clearing npss forces a controller reset on resume. The
3271                  * correct value will be rediscovered then.
3272                  */
3273                 ret = nvme_disable_prepare_reset(ndev, true);
3274                 ctrl->npss = 0;
3275         }
3276 unfreeze:
3277         nvme_unfreeze(ctrl);
3278         return ret;
3279 }
3280
3281 static int nvme_simple_suspend(struct device *dev)
3282 {
3283         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3284
3285         return nvme_disable_prepare_reset(ndev, true);
3286 }
3287
3288 static int nvme_simple_resume(struct device *dev)
3289 {
3290         struct pci_dev *pdev = to_pci_dev(dev);
3291         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3292
3293         return nvme_try_sched_reset(&ndev->ctrl);
3294 }
3295
3296 static const struct dev_pm_ops nvme_dev_pm_ops = {
3297         .suspend        = nvme_suspend,
3298         .resume         = nvme_resume,
3299         .freeze         = nvme_simple_suspend,
3300         .thaw           = nvme_simple_resume,
3301         .poweroff       = nvme_simple_suspend,
3302         .restore        = nvme_simple_resume,
3303 };
3304 #endif /* CONFIG_PM_SLEEP */
3305
3306 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3307                                                 pci_channel_state_t state)
3308 {
3309         struct nvme_dev *dev = pci_get_drvdata(pdev);
3310
3311         /*
3312          * A frozen channel requires a reset. When detected, this method will
3313          * shutdown the controller to quiesce. The controller will be restarted
3314          * after the slot reset through driver's slot_reset callback.
3315          */
3316         switch (state) {
3317         case pci_channel_io_normal:
3318                 return PCI_ERS_RESULT_CAN_RECOVER;
3319         case pci_channel_io_frozen:
3320                 dev_warn(dev->ctrl.device,
3321                         "frozen state error detected, reset controller\n");
3322                 nvme_dev_disable(dev, false);
3323                 return PCI_ERS_RESULT_NEED_RESET;
3324         case pci_channel_io_perm_failure:
3325                 dev_warn(dev->ctrl.device,
3326                         "failure state error detected, request disconnect\n");
3327                 return PCI_ERS_RESULT_DISCONNECT;
3328         }
3329         return PCI_ERS_RESULT_NEED_RESET;
3330 }
3331
3332 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3333 {
3334         struct nvme_dev *dev = pci_get_drvdata(pdev);
3335
3336         dev_info(dev->ctrl.device, "restart after slot reset\n");
3337         pci_restore_state(pdev);
3338         nvme_reset_ctrl(&dev->ctrl);
3339         return PCI_ERS_RESULT_RECOVERED;
3340 }
3341
3342 static void nvme_error_resume(struct pci_dev *pdev)
3343 {
3344         struct nvme_dev *dev = pci_get_drvdata(pdev);
3345
3346         flush_work(&dev->ctrl.reset_work);
3347 }
3348
3349 static const struct pci_error_handlers nvme_err_handler = {
3350         .error_detected = nvme_error_detected,
3351         .slot_reset     = nvme_slot_reset,
3352         .resume         = nvme_error_resume,
3353         .reset_prepare  = nvme_reset_prepare,
3354         .reset_done     = nvme_reset_done,
3355 };
3356
3357 static const struct pci_device_id nvme_id_table[] = {
3358         { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3359                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3360                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3361         { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3362                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3363                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3364         { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3365                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3366                                 NVME_QUIRK_DEALLOCATE_ZEROES |
3367                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3368         { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3369                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3370                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3371         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3372                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3373                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3374                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3375                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3376         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3377                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3378         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3379                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3380                                 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3381                                 NVME_QUIRK_BOGUS_NID, },
3382         { PCI_VDEVICE(REDHAT, 0x0010),  /* Qemu emulated controller */
3383                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3384         { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3385                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3386                                 NVME_QUIRK_BOGUS_NID, },
3387         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3388                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3389                                 NVME_QUIRK_NO_NS_DESC_LIST, },
3390         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3391                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3392         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3393                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3394         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3395                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3396         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3397                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3398         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3399                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3400                                 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3401                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3402         { PCI_DEVICE(0x1987, 0x5012),   /* Phison E12 */
3403                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3404         { PCI_DEVICE(0x1987, 0x5016),   /* Phison E16 */
3405                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3406                                 NVME_QUIRK_BOGUS_NID, },
3407         { PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3408                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3409         { PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3410                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3411         { PCI_DEVICE(0x1b4b, 0x1092),   /* Lexar 256 GB SSD */
3412                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3413                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3414         { PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3415                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3416         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3417                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3418                                 NVME_QUIRK_BOGUS_NID, },
3419         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3420                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3421                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3422          { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3423                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3424          { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3425                  .driver_data = NVME_QUIRK_BOGUS_NID, },
3426         { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3427                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3428         { PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3429                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3430         { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3431                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3432         { PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3433                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3434         { PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3435                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3436         { PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3437                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3438         { PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3439                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3440         { PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3441                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442         { PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3443                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3444         { PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3445                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3446         { PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3447                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3448         { PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3449                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3450         { PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3451                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3452         { PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3453                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3454         { PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3455                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3456         { PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3457                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3458         { PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3459                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3460         { PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3461                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3462         { PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3463                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3464         { PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3465                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3466         { PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3467                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3468         { PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3469                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3470         { PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3471                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3472         { PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3473                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3474         { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3475                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3476         { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3477                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3478         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3479                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3480         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3481                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3482         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3483                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3484         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3485                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3486         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3487                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3488         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3489                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3490         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3491                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3492         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3493         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3494                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3495                                 NVME_QUIRK_128_BYTES_SQES |
3496                                 NVME_QUIRK_SHARED_TAGS |
3497                                 NVME_QUIRK_SKIP_CID_GEN },
3498         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3499         { 0, }
3500 };
3501 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3502
3503 static struct pci_driver nvme_driver = {
3504         .name           = "nvme",
3505         .id_table       = nvme_id_table,
3506         .probe          = nvme_probe,
3507         .remove         = nvme_remove,
3508         .shutdown       = nvme_shutdown,
3509         .driver         = {
3510                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
3511 #ifdef CONFIG_PM_SLEEP
3512                 .pm             = &nvme_dev_pm_ops,
3513 #endif
3514         },
3515         .sriov_configure = pci_sriov_configure_simple,
3516         .err_handler    = &nvme_err_handler,
3517 };
3518
3519 static int __init nvme_init(void)
3520 {
3521         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3522         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3523         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3524         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3525         BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
3526                      S8_MAX);
3527
3528         return pci_register_driver(&nvme_driver);
3529 }
3530
3531 static void __exit nvme_exit(void)
3532 {
3533         pci_unregister_driver(&nvme_driver);
3534         flush_workqueue(nvme_wq);
3535 }
3536
3537 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3538 MODULE_LICENSE("GPL");
3539 MODULE_VERSION("1.0");
3540 module_init(nvme_init);
3541 module_exit(nvme_exit);