3df0f2b29427f60e375d6344cba208e2bbc87237
[linux-2.6-microblaze.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/t10-pi.h>
22 #include <linux/types.h>
23 #include <linux/io-64-nonatomic-lo-hi.h>
24 #include <linux/sed-opal.h>
25 #include <linux/pci-p2pdma.h>
26
27 #include "trace.h"
28 #include "nvme.h"
29
30 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
31 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
32
33 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
34
35 /*
36  * These can be higher, but we need to ensure that any command doesn't
37  * require an sg allocation that needs more than a page of data.
38  */
39 #define NVME_MAX_KB_SZ  4096
40 #define NVME_MAX_SEGS   127
41
42 static int use_threaded_interrupts;
43 module_param(use_threaded_interrupts, int, 0);
44
45 static bool use_cmb_sqes = true;
46 module_param(use_cmb_sqes, bool, 0444);
47 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
48
49 static unsigned int max_host_mem_size_mb = 128;
50 module_param(max_host_mem_size_mb, uint, 0444);
51 MODULE_PARM_DESC(max_host_mem_size_mb,
52         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
53
54 static unsigned int sgl_threshold = SZ_32K;
55 module_param(sgl_threshold, uint, 0644);
56 MODULE_PARM_DESC(sgl_threshold,
57                 "Use SGLs when average request segment size is larger or equal to "
58                 "this size. Use 0 to disable SGLs.");
59
60 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
61 static const struct kernel_param_ops io_queue_depth_ops = {
62         .set = io_queue_depth_set,
63         .get = param_get_int,
64 };
65
66 static int io_queue_depth = 1024;
67 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
68 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
69
70 static int queue_count_set(const char *val, const struct kernel_param *kp);
71 static const struct kernel_param_ops queue_count_ops = {
72         .set = queue_count_set,
73         .get = param_get_int,
74 };
75
76 static int write_queues;
77 module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
78 MODULE_PARM_DESC(write_queues,
79         "Number of queues to use for writes. If not set, reads and writes "
80         "will share a queue set.");
81
82 static int poll_queues = 0;
83 module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
84 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
85
86 struct nvme_dev;
87 struct nvme_queue;
88
89 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
90 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
91
92 /*
93  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
94  */
95 struct nvme_dev {
96         struct nvme_queue *queues;
97         struct blk_mq_tag_set tagset;
98         struct blk_mq_tag_set admin_tagset;
99         u32 __iomem *dbs;
100         struct device *dev;
101         struct dma_pool *prp_page_pool;
102         struct dma_pool *prp_small_pool;
103         unsigned online_queues;
104         unsigned max_qid;
105         unsigned io_queues[HCTX_MAX_TYPES];
106         unsigned int num_vecs;
107         int q_depth;
108         u32 db_stride;
109         void __iomem *bar;
110         unsigned long bar_mapped_size;
111         struct work_struct remove_work;
112         struct mutex shutdown_lock;
113         bool subsystem;
114         u64 cmb_size;
115         bool cmb_use_sqes;
116         u32 cmbsz;
117         u32 cmbloc;
118         struct nvme_ctrl ctrl;
119
120         mempool_t *iod_mempool;
121
122         /* shadow doorbell buffer support: */
123         u32 *dbbuf_dbs;
124         dma_addr_t dbbuf_dbs_dma_addr;
125         u32 *dbbuf_eis;
126         dma_addr_t dbbuf_eis_dma_addr;
127
128         /* host memory buffer support: */
129         u64 host_mem_size;
130         u32 nr_host_mem_descs;
131         dma_addr_t host_mem_descs_dma;
132         struct nvme_host_mem_buf_desc *host_mem_descs;
133         void **host_mem_desc_bufs;
134 };
135
136 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
137 {
138         int n = 0, ret;
139
140         ret = kstrtoint(val, 10, &n);
141         if (ret != 0 || n < 2)
142                 return -EINVAL;
143
144         return param_set_int(val, kp);
145 }
146
147 static int queue_count_set(const char *val, const struct kernel_param *kp)
148 {
149         int n = 0, ret;
150
151         ret = kstrtoint(val, 10, &n);
152         if (ret)
153                 return ret;
154         if (n > num_possible_cpus())
155                 n = num_possible_cpus();
156
157         return param_set_int(val, kp);
158 }
159
160 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
161 {
162         return qid * 2 * stride;
163 }
164
165 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
166 {
167         return (qid * 2 + 1) * stride;
168 }
169
170 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
171 {
172         return container_of(ctrl, struct nvme_dev, ctrl);
173 }
174
175 /*
176  * An NVM Express queue.  Each device has at least two (one for admin
177  * commands and one for I/O commands).
178  */
179 struct nvme_queue {
180         struct nvme_dev *dev;
181         spinlock_t sq_lock;
182         struct nvme_command *sq_cmds;
183          /* only used for poll queues: */
184         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
185         volatile struct nvme_completion *cqes;
186         struct blk_mq_tags **tags;
187         dma_addr_t sq_dma_addr;
188         dma_addr_t cq_dma_addr;
189         u32 __iomem *q_db;
190         u16 q_depth;
191         u16 cq_vector;
192         u16 sq_tail;
193         u16 last_sq_tail;
194         u16 cq_head;
195         u16 last_cq_head;
196         u16 qid;
197         u8 cq_phase;
198         unsigned long flags;
199 #define NVMEQ_ENABLED           0
200 #define NVMEQ_SQ_CMB            1
201 #define NVMEQ_DELETE_ERROR      2
202 #define NVMEQ_POLLED            3
203         u32 *dbbuf_sq_db;
204         u32 *dbbuf_cq_db;
205         u32 *dbbuf_sq_ei;
206         u32 *dbbuf_cq_ei;
207         struct completion delete_done;
208 };
209
210 /*
211  * The nvme_iod describes the data in an I/O.
212  *
213  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
214  * to the actual struct scatterlist.
215  */
216 struct nvme_iod {
217         struct nvme_request req;
218         struct nvme_queue *nvmeq;
219         bool use_sgl;
220         int aborted;
221         int npages;             /* In the PRP list. 0 means small pool in use */
222         int nents;              /* Used in scatterlist */
223         dma_addr_t first_dma;
224         unsigned int dma_len;   /* length of single DMA segment mapping */
225         dma_addr_t meta_dma;
226         struct scatterlist *sg;
227 };
228
229 /*
230  * Check we didin't inadvertently grow the command struct
231  */
232 static inline void _nvme_check_size(void)
233 {
234         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
235         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
236         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
237         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
238         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
239         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
240         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
241         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
242         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
243         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
244         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
245         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
246         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
247 }
248
249 static unsigned int max_io_queues(void)
250 {
251         return num_possible_cpus() + write_queues + poll_queues;
252 }
253
254 static unsigned int max_queue_count(void)
255 {
256         /* IO queues + admin queue */
257         return 1 + max_io_queues();
258 }
259
260 static inline unsigned int nvme_dbbuf_size(u32 stride)
261 {
262         return (max_queue_count() * 8 * stride);
263 }
264
265 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
266 {
267         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
268
269         if (dev->dbbuf_dbs)
270                 return 0;
271
272         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
273                                             &dev->dbbuf_dbs_dma_addr,
274                                             GFP_KERNEL);
275         if (!dev->dbbuf_dbs)
276                 return -ENOMEM;
277         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
278                                             &dev->dbbuf_eis_dma_addr,
279                                             GFP_KERNEL);
280         if (!dev->dbbuf_eis) {
281                 dma_free_coherent(dev->dev, mem_size,
282                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283                 dev->dbbuf_dbs = NULL;
284                 return -ENOMEM;
285         }
286
287         return 0;
288 }
289
290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
291 {
292         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
293
294         if (dev->dbbuf_dbs) {
295                 dma_free_coherent(dev->dev, mem_size,
296                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
297                 dev->dbbuf_dbs = NULL;
298         }
299         if (dev->dbbuf_eis) {
300                 dma_free_coherent(dev->dev, mem_size,
301                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
302                 dev->dbbuf_eis = NULL;
303         }
304 }
305
306 static void nvme_dbbuf_init(struct nvme_dev *dev,
307                             struct nvme_queue *nvmeq, int qid)
308 {
309         if (!dev->dbbuf_dbs || !qid)
310                 return;
311
312         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
313         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
314         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
315         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
316 }
317
318 static void nvme_dbbuf_set(struct nvme_dev *dev)
319 {
320         struct nvme_command c;
321
322         if (!dev->dbbuf_dbs)
323                 return;
324
325         memset(&c, 0, sizeof(c));
326         c.dbbuf.opcode = nvme_admin_dbbuf;
327         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
328         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
329
330         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
331                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
332                 /* Free memory and continue on */
333                 nvme_dbbuf_dma_free(dev);
334         }
335 }
336
337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341
342 /* Update dbbuf and return true if an MMIO is required */
343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344                                               volatile u32 *dbbuf_ei)
345 {
346         if (dbbuf_db) {
347                 u16 old_value;
348
349                 /*
350                  * Ensure that the queue is written before updating
351                  * the doorbell in memory
352                  */
353                 wmb();
354
355                 old_value = *dbbuf_db;
356                 *dbbuf_db = value;
357
358                 /*
359                  * Ensure that the doorbell is updated before reading the event
360                  * index from memory.  The controller needs to provide similar
361                  * ordering to ensure the envent index is updated before reading
362                  * the doorbell.
363                  */
364                 mb();
365
366                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367                         return false;
368         }
369
370         return true;
371 }
372
373 /*
374  * Will slightly overestimate the number of pages needed.  This is OK
375  * as it only leads to a small amount of wasted memory for the lifetime of
376  * the I/O.
377  */
378 static int nvme_npages(unsigned size, struct nvme_dev *dev)
379 {
380         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
381                                       dev->ctrl.page_size);
382         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
383 }
384
385 /*
386  * Calculates the number of pages needed for the SGL segments. For example a 4k
387  * page can accommodate 256 SGL descriptors.
388  */
389 static int nvme_pci_npages_sgl(unsigned int num_seg)
390 {
391         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
392 }
393
394 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
395                 unsigned int size, unsigned int nseg, bool use_sgl)
396 {
397         size_t alloc_size;
398
399         if (use_sgl)
400                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
401         else
402                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
403
404         return alloc_size + sizeof(struct scatterlist) * nseg;
405 }
406
407 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
408                                 unsigned int hctx_idx)
409 {
410         struct nvme_dev *dev = data;
411         struct nvme_queue *nvmeq = &dev->queues[0];
412
413         WARN_ON(hctx_idx != 0);
414         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
415         WARN_ON(nvmeq->tags);
416
417         hctx->driver_data = nvmeq;
418         nvmeq->tags = &dev->admin_tagset.tags[0];
419         return 0;
420 }
421
422 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
423 {
424         struct nvme_queue *nvmeq = hctx->driver_data;
425
426         nvmeq->tags = NULL;
427 }
428
429 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
430                           unsigned int hctx_idx)
431 {
432         struct nvme_dev *dev = data;
433         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
434
435         if (!nvmeq->tags)
436                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
437
438         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
439         hctx->driver_data = nvmeq;
440         return 0;
441 }
442
443 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
444                 unsigned int hctx_idx, unsigned int numa_node)
445 {
446         struct nvme_dev *dev = set->driver_data;
447         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
448         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
449         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
450
451         BUG_ON(!nvmeq);
452         iod->nvmeq = nvmeq;
453
454         nvme_req(req)->ctrl = &dev->ctrl;
455         return 0;
456 }
457
458 static int queue_irq_offset(struct nvme_dev *dev)
459 {
460         /* if we have more than 1 vec, admin queue offsets us by 1 */
461         if (dev->num_vecs > 1)
462                 return 1;
463
464         return 0;
465 }
466
467 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
468 {
469         struct nvme_dev *dev = set->driver_data;
470         int i, qoff, offset;
471
472         offset = queue_irq_offset(dev);
473         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
474                 struct blk_mq_queue_map *map = &set->map[i];
475
476                 map->nr_queues = dev->io_queues[i];
477                 if (!map->nr_queues) {
478                         BUG_ON(i == HCTX_TYPE_DEFAULT);
479                         continue;
480                 }
481
482                 /*
483                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
484                  * affinity), so use the regular blk-mq cpu mapping
485                  */
486                 map->queue_offset = qoff;
487                 if (i != HCTX_TYPE_POLL)
488                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
489                 else
490                         blk_mq_map_queues(map);
491                 qoff += map->nr_queues;
492                 offset += map->nr_queues;
493         }
494
495         return 0;
496 }
497
498 /*
499  * Write sq tail if we are asked to, or if the next command would wrap.
500  */
501 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
502 {
503         if (!write_sq) {
504                 u16 next_tail = nvmeq->sq_tail + 1;
505
506                 if (next_tail == nvmeq->q_depth)
507                         next_tail = 0;
508                 if (next_tail != nvmeq->last_sq_tail)
509                         return;
510         }
511
512         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
513                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
514                 writel(nvmeq->sq_tail, nvmeq->q_db);
515         nvmeq->last_sq_tail = nvmeq->sq_tail;
516 }
517
518 /**
519  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
520  * @nvmeq: The queue to use
521  * @cmd: The command to send
522  * @write_sq: whether to write to the SQ doorbell
523  */
524 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
525                             bool write_sq)
526 {
527         spin_lock(&nvmeq->sq_lock);
528         memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
529         if (++nvmeq->sq_tail == nvmeq->q_depth)
530                 nvmeq->sq_tail = 0;
531         nvme_write_sq_db(nvmeq, write_sq);
532         spin_unlock(&nvmeq->sq_lock);
533 }
534
535 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
536 {
537         struct nvme_queue *nvmeq = hctx->driver_data;
538
539         spin_lock(&nvmeq->sq_lock);
540         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
541                 nvme_write_sq_db(nvmeq, true);
542         spin_unlock(&nvmeq->sq_lock);
543 }
544
545 static void **nvme_pci_iod_list(struct request *req)
546 {
547         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
548         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
549 }
550
551 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
552 {
553         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
554         int nseg = blk_rq_nr_phys_segments(req);
555         unsigned int avg_seg_size;
556
557         if (nseg == 0)
558                 return false;
559
560         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
561
562         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
563                 return false;
564         if (!iod->nvmeq->qid)
565                 return false;
566         if (!sgl_threshold || avg_seg_size < sgl_threshold)
567                 return false;
568         return true;
569 }
570
571 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
572 {
573         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
574         enum dma_data_direction dma_dir = rq_data_dir(req) ?
575                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
576         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
577         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
578         int i;
579
580         if (iod->dma_len) {
581                 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, dma_dir);
582                 return;
583         }
584
585         WARN_ON_ONCE(!iod->nents);
586
587         /* P2PDMA requests do not need to be unmapped */
588         if (!is_pci_p2pdma_page(sg_page(iod->sg)))
589                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
590
591
592         if (iod->npages == 0)
593                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
594                         dma_addr);
595
596         for (i = 0; i < iod->npages; i++) {
597                 void *addr = nvme_pci_iod_list(req)[i];
598
599                 if (iod->use_sgl) {
600                         struct nvme_sgl_desc *sg_list = addr;
601
602                         next_dma_addr =
603                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
604                 } else {
605                         __le64 *prp_list = addr;
606
607                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
608                 }
609
610                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
611                 dma_addr = next_dma_addr;
612         }
613
614         mempool_free(iod->sg, dev->iod_mempool);
615 }
616
617 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
618 {
619         int i;
620         struct scatterlist *sg;
621
622         for_each_sg(sgl, sg, nents, i) {
623                 dma_addr_t phys = sg_phys(sg);
624                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
625                         "dma_address:%pad dma_length:%d\n",
626                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
627                         sg_dma_len(sg));
628         }
629 }
630
631 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
632                 struct request *req, struct nvme_rw_command *cmnd)
633 {
634         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
635         struct dma_pool *pool;
636         int length = blk_rq_payload_bytes(req);
637         struct scatterlist *sg = iod->sg;
638         int dma_len = sg_dma_len(sg);
639         u64 dma_addr = sg_dma_address(sg);
640         u32 page_size = dev->ctrl.page_size;
641         int offset = dma_addr & (page_size - 1);
642         __le64 *prp_list;
643         void **list = nvme_pci_iod_list(req);
644         dma_addr_t prp_dma;
645         int nprps, i;
646
647         length -= (page_size - offset);
648         if (length <= 0) {
649                 iod->first_dma = 0;
650                 goto done;
651         }
652
653         dma_len -= (page_size - offset);
654         if (dma_len) {
655                 dma_addr += (page_size - offset);
656         } else {
657                 sg = sg_next(sg);
658                 dma_addr = sg_dma_address(sg);
659                 dma_len = sg_dma_len(sg);
660         }
661
662         if (length <= page_size) {
663                 iod->first_dma = dma_addr;
664                 goto done;
665         }
666
667         nprps = DIV_ROUND_UP(length, page_size);
668         if (nprps <= (256 / 8)) {
669                 pool = dev->prp_small_pool;
670                 iod->npages = 0;
671         } else {
672                 pool = dev->prp_page_pool;
673                 iod->npages = 1;
674         }
675
676         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
677         if (!prp_list) {
678                 iod->first_dma = dma_addr;
679                 iod->npages = -1;
680                 return BLK_STS_RESOURCE;
681         }
682         list[0] = prp_list;
683         iod->first_dma = prp_dma;
684         i = 0;
685         for (;;) {
686                 if (i == page_size >> 3) {
687                         __le64 *old_prp_list = prp_list;
688                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
689                         if (!prp_list)
690                                 return BLK_STS_RESOURCE;
691                         list[iod->npages++] = prp_list;
692                         prp_list[0] = old_prp_list[i - 1];
693                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
694                         i = 1;
695                 }
696                 prp_list[i++] = cpu_to_le64(dma_addr);
697                 dma_len -= page_size;
698                 dma_addr += page_size;
699                 length -= page_size;
700                 if (length <= 0)
701                         break;
702                 if (dma_len > 0)
703                         continue;
704                 if (unlikely(dma_len < 0))
705                         goto bad_sgl;
706                 sg = sg_next(sg);
707                 dma_addr = sg_dma_address(sg);
708                 dma_len = sg_dma_len(sg);
709         }
710
711 done:
712         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
713         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
714
715         return BLK_STS_OK;
716
717  bad_sgl:
718         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
719                         "Invalid SGL for payload:%d nents:%d\n",
720                         blk_rq_payload_bytes(req), iod->nents);
721         return BLK_STS_IOERR;
722 }
723
724 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
725                 struct scatterlist *sg)
726 {
727         sge->addr = cpu_to_le64(sg_dma_address(sg));
728         sge->length = cpu_to_le32(sg_dma_len(sg));
729         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
730 }
731
732 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
733                 dma_addr_t dma_addr, int entries)
734 {
735         sge->addr = cpu_to_le64(dma_addr);
736         if (entries < SGES_PER_PAGE) {
737                 sge->length = cpu_to_le32(entries * sizeof(*sge));
738                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
739         } else {
740                 sge->length = cpu_to_le32(PAGE_SIZE);
741                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
742         }
743 }
744
745 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
746                 struct request *req, struct nvme_rw_command *cmd, int entries)
747 {
748         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
749         struct dma_pool *pool;
750         struct nvme_sgl_desc *sg_list;
751         struct scatterlist *sg = iod->sg;
752         dma_addr_t sgl_dma;
753         int i = 0;
754
755         /* setting the transfer type as SGL */
756         cmd->flags = NVME_CMD_SGL_METABUF;
757
758         if (entries == 1) {
759                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
760                 return BLK_STS_OK;
761         }
762
763         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
764                 pool = dev->prp_small_pool;
765                 iod->npages = 0;
766         } else {
767                 pool = dev->prp_page_pool;
768                 iod->npages = 1;
769         }
770
771         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
772         if (!sg_list) {
773                 iod->npages = -1;
774                 return BLK_STS_RESOURCE;
775         }
776
777         nvme_pci_iod_list(req)[0] = sg_list;
778         iod->first_dma = sgl_dma;
779
780         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
781
782         do {
783                 if (i == SGES_PER_PAGE) {
784                         struct nvme_sgl_desc *old_sg_desc = sg_list;
785                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
786
787                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
788                         if (!sg_list)
789                                 return BLK_STS_RESOURCE;
790
791                         i = 0;
792                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
793                         sg_list[i++] = *link;
794                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
795                 }
796
797                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
798                 sg = sg_next(sg);
799         } while (--entries > 0);
800
801         return BLK_STS_OK;
802 }
803
804 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
805                 struct request *req, struct nvme_rw_command *cmnd,
806                 struct bio_vec *bv)
807 {
808         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
809         unsigned int first_prp_len = dev->ctrl.page_size - bv->bv_offset;
810
811         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
812         if (dma_mapping_error(dev->dev, iod->first_dma))
813                 return BLK_STS_RESOURCE;
814         iod->dma_len = bv->bv_len;
815
816         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
817         if (bv->bv_len > first_prp_len)
818                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
819         return 0;
820 }
821
822 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
823                 struct request *req, struct nvme_rw_command *cmnd,
824                 struct bio_vec *bv)
825 {
826         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
827
828         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
829         if (dma_mapping_error(dev->dev, iod->first_dma))
830                 return BLK_STS_RESOURCE;
831         iod->dma_len = bv->bv_len;
832
833         cmnd->flags = NVME_CMD_SGL_METABUF;
834         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
835         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
836         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
837         return 0;
838 }
839
840 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
841                 struct nvme_command *cmnd)
842 {
843         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
844         blk_status_t ret = BLK_STS_RESOURCE;
845         int nr_mapped;
846
847         if (blk_rq_nr_phys_segments(req) == 1) {
848                 struct bio_vec bv = req_bvec(req);
849
850                 if (!is_pci_p2pdma_page(bv.bv_page)) {
851                         if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
852                                 return nvme_setup_prp_simple(dev, req,
853                                                              &cmnd->rw, &bv);
854
855                         if (iod->nvmeq->qid &&
856                             dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
857                                 return nvme_setup_sgl_simple(dev, req,
858                                                              &cmnd->rw, &bv);
859                 }
860         }
861
862         iod->dma_len = 0;
863         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
864         if (!iod->sg)
865                 return BLK_STS_RESOURCE;
866         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
867         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
868         if (!iod->nents)
869                 goto out;
870
871         if (is_pci_p2pdma_page(sg_page(iod->sg)))
872                 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
873                                               rq_dma_dir(req));
874         else
875                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
876                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
877         if (!nr_mapped)
878                 goto out;
879
880         iod->use_sgl = nvme_pci_use_sgls(dev, req);
881         if (iod->use_sgl)
882                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
883         else
884                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
885 out:
886         if (ret != BLK_STS_OK)
887                 nvme_unmap_data(dev, req);
888         return ret;
889 }
890
891 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
892                 struct nvme_command *cmnd)
893 {
894         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
895
896         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
897                         rq_dma_dir(req), 0);
898         if (dma_mapping_error(dev->dev, iod->meta_dma))
899                 return BLK_STS_IOERR;
900         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
901         return 0;
902 }
903
904 /*
905  * NOTE: ns is NULL when called on the admin queue.
906  */
907 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
908                          const struct blk_mq_queue_data *bd)
909 {
910         struct nvme_ns *ns = hctx->queue->queuedata;
911         struct nvme_queue *nvmeq = hctx->driver_data;
912         struct nvme_dev *dev = nvmeq->dev;
913         struct request *req = bd->rq;
914         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
915         struct nvme_command cmnd;
916         blk_status_t ret;
917
918         iod->aborted = 0;
919         iod->npages = -1;
920         iod->nents = 0;
921
922         /*
923          * We should not need to do this, but we're still using this to
924          * ensure we can drain requests on a dying queue.
925          */
926         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
927                 return BLK_STS_IOERR;
928
929         ret = nvme_setup_cmd(ns, req, &cmnd);
930         if (ret)
931                 return ret;
932
933         if (blk_rq_nr_phys_segments(req)) {
934                 ret = nvme_map_data(dev, req, &cmnd);
935                 if (ret)
936                         goto out_free_cmd;
937         }
938
939         if (blk_integrity_rq(req)) {
940                 ret = nvme_map_metadata(dev, req, &cmnd);
941                 if (ret)
942                         goto out_unmap_data;
943         }
944
945         blk_mq_start_request(req);
946         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
947         return BLK_STS_OK;
948 out_unmap_data:
949         nvme_unmap_data(dev, req);
950 out_free_cmd:
951         nvme_cleanup_cmd(req);
952         return ret;
953 }
954
955 static void nvme_pci_complete_rq(struct request *req)
956 {
957         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
958         struct nvme_dev *dev = iod->nvmeq->dev;
959
960         nvme_cleanup_cmd(req);
961         if (blk_integrity_rq(req))
962                 dma_unmap_page(dev->dev, iod->meta_dma,
963                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
964         if (blk_rq_nr_phys_segments(req))
965                 nvme_unmap_data(dev, req);
966         nvme_complete_rq(req);
967 }
968
969 /* We read the CQE phase first to check if the rest of the entry is valid */
970 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
971 {
972         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
973                         nvmeq->cq_phase;
974 }
975
976 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
977 {
978         u16 head = nvmeq->cq_head;
979
980         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
981                                               nvmeq->dbbuf_cq_ei))
982                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
983 }
984
985 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
986 {
987         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
988         struct request *req;
989
990         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
991                 dev_warn(nvmeq->dev->ctrl.device,
992                         "invalid id %d completed on queue %d\n",
993                         cqe->command_id, le16_to_cpu(cqe->sq_id));
994                 return;
995         }
996
997         /*
998          * AEN requests are special as they don't time out and can
999          * survive any kind of queue freeze and often don't respond to
1000          * aborts.  We don't even bother to allocate a struct request
1001          * for them but rather special case them here.
1002          */
1003         if (unlikely(nvmeq->qid == 0 &&
1004                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
1005                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1006                                 cqe->status, &cqe->result);
1007                 return;
1008         }
1009
1010         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1011         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1012         nvme_end_request(req, cqe->status, cqe->result);
1013 }
1014
1015 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1016 {
1017         while (start != end) {
1018                 nvme_handle_cqe(nvmeq, start);
1019                 if (++start == nvmeq->q_depth)
1020                         start = 0;
1021         }
1022 }
1023
1024 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1025 {
1026         if (nvmeq->cq_head == nvmeq->q_depth - 1) {
1027                 nvmeq->cq_head = 0;
1028                 nvmeq->cq_phase = !nvmeq->cq_phase;
1029         } else {
1030                 nvmeq->cq_head++;
1031         }
1032 }
1033
1034 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1035                                   u16 *end, unsigned int tag)
1036 {
1037         int found = 0;
1038
1039         *start = nvmeq->cq_head;
1040         while (nvme_cqe_pending(nvmeq)) {
1041                 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1042                         found++;
1043                 nvme_update_cq_head(nvmeq);
1044         }
1045         *end = nvmeq->cq_head;
1046
1047         if (*start != *end)
1048                 nvme_ring_cq_doorbell(nvmeq);
1049         return found;
1050 }
1051
1052 static irqreturn_t nvme_irq(int irq, void *data)
1053 {
1054         struct nvme_queue *nvmeq = data;
1055         irqreturn_t ret = IRQ_NONE;
1056         u16 start, end;
1057
1058         /*
1059          * The rmb/wmb pair ensures we see all updates from a previous run of
1060          * the irq handler, even if that was on another CPU.
1061          */
1062         rmb();
1063         if (nvmeq->cq_head != nvmeq->last_cq_head)
1064                 ret = IRQ_HANDLED;
1065         nvme_process_cq(nvmeq, &start, &end, -1);
1066         nvmeq->last_cq_head = nvmeq->cq_head;
1067         wmb();
1068
1069         if (start != end) {
1070                 nvme_complete_cqes(nvmeq, start, end);
1071                 return IRQ_HANDLED;
1072         }
1073
1074         return ret;
1075 }
1076
1077 static irqreturn_t nvme_irq_check(int irq, void *data)
1078 {
1079         struct nvme_queue *nvmeq = data;
1080         if (nvme_cqe_pending(nvmeq))
1081                 return IRQ_WAKE_THREAD;
1082         return IRQ_NONE;
1083 }
1084
1085 /*
1086  * Poll for completions any queue, including those not dedicated to polling.
1087  * Can be called from any context.
1088  */
1089 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1090 {
1091         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1092         u16 start, end;
1093         int found;
1094
1095         /*
1096          * For a poll queue we need to protect against the polling thread
1097          * using the CQ lock.  For normal interrupt driven threads we have
1098          * to disable the interrupt to avoid racing with it.
1099          */
1100         if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1101                 spin_lock(&nvmeq->cq_poll_lock);
1102                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1103                 spin_unlock(&nvmeq->cq_poll_lock);
1104         } else {
1105                 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1106                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1107                 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1108         }
1109
1110         nvme_complete_cqes(nvmeq, start, end);
1111         return found;
1112 }
1113
1114 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1115 {
1116         struct nvme_queue *nvmeq = hctx->driver_data;
1117         u16 start, end;
1118         bool found;
1119
1120         if (!nvme_cqe_pending(nvmeq))
1121                 return 0;
1122
1123         spin_lock(&nvmeq->cq_poll_lock);
1124         found = nvme_process_cq(nvmeq, &start, &end, -1);
1125         spin_unlock(&nvmeq->cq_poll_lock);
1126
1127         nvme_complete_cqes(nvmeq, start, end);
1128         return found;
1129 }
1130
1131 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1132 {
1133         struct nvme_dev *dev = to_nvme_dev(ctrl);
1134         struct nvme_queue *nvmeq = &dev->queues[0];
1135         struct nvme_command c;
1136
1137         memset(&c, 0, sizeof(c));
1138         c.common.opcode = nvme_admin_async_event;
1139         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1140         nvme_submit_cmd(nvmeq, &c, true);
1141 }
1142
1143 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1144 {
1145         struct nvme_command c;
1146
1147         memset(&c, 0, sizeof(c));
1148         c.delete_queue.opcode = opcode;
1149         c.delete_queue.qid = cpu_to_le16(id);
1150
1151         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1152 }
1153
1154 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1155                 struct nvme_queue *nvmeq, s16 vector)
1156 {
1157         struct nvme_command c;
1158         int flags = NVME_QUEUE_PHYS_CONTIG;
1159
1160         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1161                 flags |= NVME_CQ_IRQ_ENABLED;
1162
1163         /*
1164          * Note: we (ab)use the fact that the prp fields survive if no data
1165          * is attached to the request.
1166          */
1167         memset(&c, 0, sizeof(c));
1168         c.create_cq.opcode = nvme_admin_create_cq;
1169         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1170         c.create_cq.cqid = cpu_to_le16(qid);
1171         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1172         c.create_cq.cq_flags = cpu_to_le16(flags);
1173         c.create_cq.irq_vector = cpu_to_le16(vector);
1174
1175         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1176 }
1177
1178 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1179                                                 struct nvme_queue *nvmeq)
1180 {
1181         struct nvme_ctrl *ctrl = &dev->ctrl;
1182         struct nvme_command c;
1183         int flags = NVME_QUEUE_PHYS_CONTIG;
1184
1185         /*
1186          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1187          * set. Since URGENT priority is zeroes, it makes all queues
1188          * URGENT.
1189          */
1190         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1191                 flags |= NVME_SQ_PRIO_MEDIUM;
1192
1193         /*
1194          * Note: we (ab)use the fact that the prp fields survive if no data
1195          * is attached to the request.
1196          */
1197         memset(&c, 0, sizeof(c));
1198         c.create_sq.opcode = nvme_admin_create_sq;
1199         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1200         c.create_sq.sqid = cpu_to_le16(qid);
1201         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1202         c.create_sq.sq_flags = cpu_to_le16(flags);
1203         c.create_sq.cqid = cpu_to_le16(qid);
1204
1205         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1206 }
1207
1208 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1209 {
1210         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1211 }
1212
1213 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1214 {
1215         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1216 }
1217
1218 static void abort_endio(struct request *req, blk_status_t error)
1219 {
1220         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1221         struct nvme_queue *nvmeq = iod->nvmeq;
1222
1223         dev_warn(nvmeq->dev->ctrl.device,
1224                  "Abort status: 0x%x", nvme_req(req)->status);
1225         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1226         blk_mq_free_request(req);
1227 }
1228
1229 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1230 {
1231
1232         /* If true, indicates loss of adapter communication, possibly by a
1233          * NVMe Subsystem reset.
1234          */
1235         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1236
1237         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1238         switch (dev->ctrl.state) {
1239         case NVME_CTRL_RESETTING:
1240         case NVME_CTRL_CONNECTING:
1241                 return false;
1242         default:
1243                 break;
1244         }
1245
1246         /* We shouldn't reset unless the controller is on fatal error state
1247          * _or_ if we lost the communication with it.
1248          */
1249         if (!(csts & NVME_CSTS_CFS) && !nssro)
1250                 return false;
1251
1252         return true;
1253 }
1254
1255 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1256 {
1257         /* Read a config register to help see what died. */
1258         u16 pci_status;
1259         int result;
1260
1261         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1262                                       &pci_status);
1263         if (result == PCIBIOS_SUCCESSFUL)
1264                 dev_warn(dev->ctrl.device,
1265                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1266                          csts, pci_status);
1267         else
1268                 dev_warn(dev->ctrl.device,
1269                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1270                          csts, result);
1271 }
1272
1273 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1274 {
1275         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1276         struct nvme_queue *nvmeq = iod->nvmeq;
1277         struct nvme_dev *dev = nvmeq->dev;
1278         struct request *abort_req;
1279         struct nvme_command cmd;
1280         bool shutdown = false;
1281         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1282
1283         /* If PCI error recovery process is happening, we cannot reset or
1284          * the recovery mechanism will surely fail.
1285          */
1286         mb();
1287         if (pci_channel_offline(to_pci_dev(dev->dev)))
1288                 return BLK_EH_RESET_TIMER;
1289
1290         /*
1291          * Reset immediately if the controller is failed
1292          */
1293         if (nvme_should_reset(dev, csts)) {
1294                 nvme_warn_reset(dev, csts);
1295                 nvme_dev_disable(dev, false);
1296                 nvme_reset_ctrl(&dev->ctrl);
1297                 return BLK_EH_DONE;
1298         }
1299
1300         /*
1301          * Did we miss an interrupt?
1302          */
1303         if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1304                 dev_warn(dev->ctrl.device,
1305                          "I/O %d QID %d timeout, completion polled\n",
1306                          req->tag, nvmeq->qid);
1307                 return BLK_EH_DONE;
1308         }
1309
1310         /*
1311          * Shutdown immediately if controller times out while starting. The
1312          * reset work will see the pci device disabled when it gets the forced
1313          * cancellation error. All outstanding requests are completed on
1314          * shutdown, so we return BLK_EH_DONE.
1315          */
1316         switch (dev->ctrl.state) {
1317         case NVME_CTRL_DELETING:
1318                 shutdown = true;
1319         case NVME_CTRL_CONNECTING:
1320         case NVME_CTRL_RESETTING:
1321                 dev_warn_ratelimited(dev->ctrl.device,
1322                          "I/O %d QID %d timeout, disable controller\n",
1323                          req->tag, nvmeq->qid);
1324                 nvme_dev_disable(dev, shutdown);
1325                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1326                 return BLK_EH_DONE;
1327         default:
1328                 break;
1329         }
1330
1331         /*
1332          * Shutdown the controller immediately and schedule a reset if the
1333          * command was already aborted once before and still hasn't been
1334          * returned to the driver, or if this is the admin queue.
1335          */
1336         if (!nvmeq->qid || iod->aborted) {
1337                 dev_warn(dev->ctrl.device,
1338                          "I/O %d QID %d timeout, reset controller\n",
1339                          req->tag, nvmeq->qid);
1340                 nvme_dev_disable(dev, false);
1341                 nvme_reset_ctrl(&dev->ctrl);
1342
1343                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1344                 return BLK_EH_DONE;
1345         }
1346
1347         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1348                 atomic_inc(&dev->ctrl.abort_limit);
1349                 return BLK_EH_RESET_TIMER;
1350         }
1351         iod->aborted = 1;
1352
1353         memset(&cmd, 0, sizeof(cmd));
1354         cmd.abort.opcode = nvme_admin_abort_cmd;
1355         cmd.abort.cid = req->tag;
1356         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1357
1358         dev_warn(nvmeq->dev->ctrl.device,
1359                 "I/O %d QID %d timeout, aborting\n",
1360                  req->tag, nvmeq->qid);
1361
1362         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1363                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1364         if (IS_ERR(abort_req)) {
1365                 atomic_inc(&dev->ctrl.abort_limit);
1366                 return BLK_EH_RESET_TIMER;
1367         }
1368
1369         abort_req->timeout = ADMIN_TIMEOUT;
1370         abort_req->end_io_data = NULL;
1371         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1372
1373         /*
1374          * The aborted req will be completed on receiving the abort req.
1375          * We enable the timer again. If hit twice, it'll cause a device reset,
1376          * as the device then is in a faulty state.
1377          */
1378         return BLK_EH_RESET_TIMER;
1379 }
1380
1381 static void nvme_free_queue(struct nvme_queue *nvmeq)
1382 {
1383         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq->q_depth),
1384                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1385         if (!nvmeq->sq_cmds)
1386                 return;
1387
1388         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1389                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1390                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1391         } else {
1392                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq->q_depth),
1393                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1394         }
1395 }
1396
1397 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1398 {
1399         int i;
1400
1401         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1402                 dev->ctrl.queue_count--;
1403                 nvme_free_queue(&dev->queues[i]);
1404         }
1405 }
1406
1407 /**
1408  * nvme_suspend_queue - put queue into suspended state
1409  * @nvmeq: queue to suspend
1410  */
1411 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1412 {
1413         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1414                 return 1;
1415
1416         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1417         mb();
1418
1419         nvmeq->dev->online_queues--;
1420         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1421                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1422         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1423                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1424         return 0;
1425 }
1426
1427 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1428 {
1429         int i;
1430
1431         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1432                 nvme_suspend_queue(&dev->queues[i]);
1433 }
1434
1435 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1436 {
1437         struct nvme_queue *nvmeq = &dev->queues[0];
1438
1439         if (shutdown)
1440                 nvme_shutdown_ctrl(&dev->ctrl);
1441         else
1442                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1443
1444         nvme_poll_irqdisable(nvmeq, -1);
1445 }
1446
1447 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1448                                 int entry_size)
1449 {
1450         int q_depth = dev->q_depth;
1451         unsigned q_size_aligned = roundup(q_depth * entry_size,
1452                                           dev->ctrl.page_size);
1453
1454         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1455                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1456                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1457                 q_depth = div_u64(mem_per_q, entry_size);
1458
1459                 /*
1460                  * Ensure the reduced q_depth is above some threshold where it
1461                  * would be better to map queues in system memory with the
1462                  * original depth
1463                  */
1464                 if (q_depth < 64)
1465                         return -ENOMEM;
1466         }
1467
1468         return q_depth;
1469 }
1470
1471 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1472                                 int qid, int depth)
1473 {
1474         struct pci_dev *pdev = to_pci_dev(dev->dev);
1475
1476         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1477                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1478                 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1479                                                 nvmeq->sq_cmds);
1480                 if (nvmeq->sq_dma_addr) {
1481                         set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1482                         return 0; 
1483                 }
1484         }
1485
1486         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1487                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1488         if (!nvmeq->sq_cmds)
1489                 return -ENOMEM;
1490         return 0;
1491 }
1492
1493 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1494 {
1495         struct nvme_queue *nvmeq = &dev->queues[qid];
1496
1497         if (dev->ctrl.queue_count > qid)
1498                 return 0;
1499
1500         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1501                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1502         if (!nvmeq->cqes)
1503                 goto free_nvmeq;
1504
1505         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1506                 goto free_cqdma;
1507
1508         nvmeq->dev = dev;
1509         spin_lock_init(&nvmeq->sq_lock);
1510         spin_lock_init(&nvmeq->cq_poll_lock);
1511         nvmeq->cq_head = 0;
1512         nvmeq->cq_phase = 1;
1513         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1514         nvmeq->q_depth = depth;
1515         nvmeq->qid = qid;
1516         dev->ctrl.queue_count++;
1517
1518         return 0;
1519
1520  free_cqdma:
1521         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1522                                                         nvmeq->cq_dma_addr);
1523  free_nvmeq:
1524         return -ENOMEM;
1525 }
1526
1527 static int queue_request_irq(struct nvme_queue *nvmeq)
1528 {
1529         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1530         int nr = nvmeq->dev->ctrl.instance;
1531
1532         if (use_threaded_interrupts) {
1533                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1534                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1535         } else {
1536                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1537                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1538         }
1539 }
1540
1541 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1542 {
1543         struct nvme_dev *dev = nvmeq->dev;
1544
1545         nvmeq->sq_tail = 0;
1546         nvmeq->last_sq_tail = 0;
1547         nvmeq->cq_head = 0;
1548         nvmeq->cq_phase = 1;
1549         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1550         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1551         nvme_dbbuf_init(dev, nvmeq, qid);
1552         dev->online_queues++;
1553         wmb(); /* ensure the first interrupt sees the initialization */
1554 }
1555
1556 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1557 {
1558         struct nvme_dev *dev = nvmeq->dev;
1559         int result;
1560         u16 vector = 0;
1561
1562         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1563
1564         /*
1565          * A queue's vector matches the queue identifier unless the controller
1566          * has only one vector available.
1567          */
1568         if (!polled)
1569                 vector = dev->num_vecs == 1 ? 0 : qid;
1570         else
1571                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1572
1573         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1574         if (result)
1575                 return result;
1576
1577         result = adapter_alloc_sq(dev, qid, nvmeq);
1578         if (result < 0)
1579                 return result;
1580         else if (result)
1581                 goto release_cq;
1582
1583         nvmeq->cq_vector = vector;
1584         nvme_init_queue(nvmeq, qid);
1585
1586         if (!polled) {
1587                 nvmeq->cq_vector = vector;
1588                 result = queue_request_irq(nvmeq);
1589                 if (result < 0)
1590                         goto release_sq;
1591         }
1592
1593         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1594         return result;
1595
1596 release_sq:
1597         dev->online_queues--;
1598         adapter_delete_sq(dev, qid);
1599 release_cq:
1600         adapter_delete_cq(dev, qid);
1601         return result;
1602 }
1603
1604 static const struct blk_mq_ops nvme_mq_admin_ops = {
1605         .queue_rq       = nvme_queue_rq,
1606         .complete       = nvme_pci_complete_rq,
1607         .init_hctx      = nvme_admin_init_hctx,
1608         .exit_hctx      = nvme_admin_exit_hctx,
1609         .init_request   = nvme_init_request,
1610         .timeout        = nvme_timeout,
1611 };
1612
1613 static const struct blk_mq_ops nvme_mq_ops = {
1614         .queue_rq       = nvme_queue_rq,
1615         .complete       = nvme_pci_complete_rq,
1616         .commit_rqs     = nvme_commit_rqs,
1617         .init_hctx      = nvme_init_hctx,
1618         .init_request   = nvme_init_request,
1619         .map_queues     = nvme_pci_map_queues,
1620         .timeout        = nvme_timeout,
1621         .poll           = nvme_poll,
1622 };
1623
1624 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1625 {
1626         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1627                 /*
1628                  * If the controller was reset during removal, it's possible
1629                  * user requests may be waiting on a stopped queue. Start the
1630                  * queue to flush these to completion.
1631                  */
1632                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1633                 blk_cleanup_queue(dev->ctrl.admin_q);
1634                 blk_mq_free_tag_set(&dev->admin_tagset);
1635         }
1636 }
1637
1638 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1639 {
1640         if (!dev->ctrl.admin_q) {
1641                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1642                 dev->admin_tagset.nr_hw_queues = 1;
1643
1644                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1645                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1646                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1647                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1648                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1649                 dev->admin_tagset.driver_data = dev;
1650
1651                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1652                         return -ENOMEM;
1653                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1654
1655                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1656                 if (IS_ERR(dev->ctrl.admin_q)) {
1657                         blk_mq_free_tag_set(&dev->admin_tagset);
1658                         return -ENOMEM;
1659                 }
1660                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1661                         nvme_dev_remove_admin(dev);
1662                         dev->ctrl.admin_q = NULL;
1663                         return -ENODEV;
1664                 }
1665         } else
1666                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1667
1668         return 0;
1669 }
1670
1671 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1672 {
1673         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1674 }
1675
1676 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1677 {
1678         struct pci_dev *pdev = to_pci_dev(dev->dev);
1679
1680         if (size <= dev->bar_mapped_size)
1681                 return 0;
1682         if (size > pci_resource_len(pdev, 0))
1683                 return -ENOMEM;
1684         if (dev->bar)
1685                 iounmap(dev->bar);
1686         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1687         if (!dev->bar) {
1688                 dev->bar_mapped_size = 0;
1689                 return -ENOMEM;
1690         }
1691         dev->bar_mapped_size = size;
1692         dev->dbs = dev->bar + NVME_REG_DBS;
1693
1694         return 0;
1695 }
1696
1697 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1698 {
1699         int result;
1700         u32 aqa;
1701         struct nvme_queue *nvmeq;
1702
1703         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1704         if (result < 0)
1705                 return result;
1706
1707         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1708                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1709
1710         if (dev->subsystem &&
1711             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1712                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1713
1714         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1715         if (result < 0)
1716                 return result;
1717
1718         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1719         if (result)
1720                 return result;
1721
1722         nvmeq = &dev->queues[0];
1723         aqa = nvmeq->q_depth - 1;
1724         aqa |= aqa << 16;
1725
1726         writel(aqa, dev->bar + NVME_REG_AQA);
1727         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1728         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1729
1730         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1731         if (result)
1732                 return result;
1733
1734         nvmeq->cq_vector = 0;
1735         nvme_init_queue(nvmeq, 0);
1736         result = queue_request_irq(nvmeq);
1737         if (result) {
1738                 dev->online_queues--;
1739                 return result;
1740         }
1741
1742         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1743         return result;
1744 }
1745
1746 static int nvme_create_io_queues(struct nvme_dev *dev)
1747 {
1748         unsigned i, max, rw_queues;
1749         int ret = 0;
1750
1751         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1752                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1753                         ret = -ENOMEM;
1754                         break;
1755                 }
1756         }
1757
1758         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1759         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1760                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1761                                 dev->io_queues[HCTX_TYPE_READ];
1762         } else {
1763                 rw_queues = max;
1764         }
1765
1766         for (i = dev->online_queues; i <= max; i++) {
1767                 bool polled = i > rw_queues;
1768
1769                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1770                 if (ret)
1771                         break;
1772         }
1773
1774         /*
1775          * Ignore failing Create SQ/CQ commands, we can continue with less
1776          * than the desired amount of queues, and even a controller without
1777          * I/O queues can still be used to issue admin commands.  This might
1778          * be useful to upgrade a buggy firmware for example.
1779          */
1780         return ret >= 0 ? 0 : ret;
1781 }
1782
1783 static ssize_t nvme_cmb_show(struct device *dev,
1784                              struct device_attribute *attr,
1785                              char *buf)
1786 {
1787         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1788
1789         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1790                        ndev->cmbloc, ndev->cmbsz);
1791 }
1792 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1793
1794 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1795 {
1796         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1797
1798         return 1ULL << (12 + 4 * szu);
1799 }
1800
1801 static u32 nvme_cmb_size(struct nvme_dev *dev)
1802 {
1803         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1804 }
1805
1806 static void nvme_map_cmb(struct nvme_dev *dev)
1807 {
1808         u64 size, offset;
1809         resource_size_t bar_size;
1810         struct pci_dev *pdev = to_pci_dev(dev->dev);
1811         int bar;
1812
1813         if (dev->cmb_size)
1814                 return;
1815
1816         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1817         if (!dev->cmbsz)
1818                 return;
1819         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1820
1821         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1822         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1823         bar = NVME_CMB_BIR(dev->cmbloc);
1824         bar_size = pci_resource_len(pdev, bar);
1825
1826         if (offset > bar_size)
1827                 return;
1828
1829         /*
1830          * Controllers may support a CMB size larger than their BAR,
1831          * for example, due to being behind a bridge. Reduce the CMB to
1832          * the reported size of the BAR
1833          */
1834         if (size > bar_size - offset)
1835                 size = bar_size - offset;
1836
1837         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1838                 dev_warn(dev->ctrl.device,
1839                          "failed to register the CMB\n");
1840                 return;
1841         }
1842
1843         dev->cmb_size = size;
1844         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1845
1846         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1847                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1848                 pci_p2pmem_publish(pdev, true);
1849
1850         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1851                                     &dev_attr_cmb.attr, NULL))
1852                 dev_warn(dev->ctrl.device,
1853                          "failed to add sysfs attribute for CMB\n");
1854 }
1855
1856 static inline void nvme_release_cmb(struct nvme_dev *dev)
1857 {
1858         if (dev->cmb_size) {
1859                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1860                                              &dev_attr_cmb.attr, NULL);
1861                 dev->cmb_size = 0;
1862         }
1863 }
1864
1865 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1866 {
1867         u64 dma_addr = dev->host_mem_descs_dma;
1868         struct nvme_command c;
1869         int ret;
1870
1871         memset(&c, 0, sizeof(c));
1872         c.features.opcode       = nvme_admin_set_features;
1873         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1874         c.features.dword11      = cpu_to_le32(bits);
1875         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1876                                               ilog2(dev->ctrl.page_size));
1877         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1878         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1879         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1880
1881         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1882         if (ret) {
1883                 dev_warn(dev->ctrl.device,
1884                          "failed to set host mem (err %d, flags %#x).\n",
1885                          ret, bits);
1886         }
1887         return ret;
1888 }
1889
1890 static void nvme_free_host_mem(struct nvme_dev *dev)
1891 {
1892         int i;
1893
1894         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1895                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1896                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1897
1898                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1899                                le64_to_cpu(desc->addr),
1900                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1901         }
1902
1903         kfree(dev->host_mem_desc_bufs);
1904         dev->host_mem_desc_bufs = NULL;
1905         dma_free_coherent(dev->dev,
1906                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1907                         dev->host_mem_descs, dev->host_mem_descs_dma);
1908         dev->host_mem_descs = NULL;
1909         dev->nr_host_mem_descs = 0;
1910 }
1911
1912 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1913                 u32 chunk_size)
1914 {
1915         struct nvme_host_mem_buf_desc *descs;
1916         u32 max_entries, len;
1917         dma_addr_t descs_dma;
1918         int i = 0;
1919         void **bufs;
1920         u64 size, tmp;
1921
1922         tmp = (preferred + chunk_size - 1);
1923         do_div(tmp, chunk_size);
1924         max_entries = tmp;
1925
1926         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1927                 max_entries = dev->ctrl.hmmaxd;
1928
1929         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1930                                    &descs_dma, GFP_KERNEL);
1931         if (!descs)
1932                 goto out;
1933
1934         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1935         if (!bufs)
1936                 goto out_free_descs;
1937
1938         for (size = 0; size < preferred && i < max_entries; size += len) {
1939                 dma_addr_t dma_addr;
1940
1941                 len = min_t(u64, chunk_size, preferred - size);
1942                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1943                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1944                 if (!bufs[i])
1945                         break;
1946
1947                 descs[i].addr = cpu_to_le64(dma_addr);
1948                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1949                 i++;
1950         }
1951
1952         if (!size)
1953                 goto out_free_bufs;
1954
1955         dev->nr_host_mem_descs = i;
1956         dev->host_mem_size = size;
1957         dev->host_mem_descs = descs;
1958         dev->host_mem_descs_dma = descs_dma;
1959         dev->host_mem_desc_bufs = bufs;
1960         return 0;
1961
1962 out_free_bufs:
1963         while (--i >= 0) {
1964                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1965
1966                 dma_free_attrs(dev->dev, size, bufs[i],
1967                                le64_to_cpu(descs[i].addr),
1968                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1969         }
1970
1971         kfree(bufs);
1972 out_free_descs:
1973         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1974                         descs_dma);
1975 out:
1976         dev->host_mem_descs = NULL;
1977         return -ENOMEM;
1978 }
1979
1980 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1981 {
1982         u32 chunk_size;
1983
1984         /* start big and work our way down */
1985         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1986              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1987              chunk_size /= 2) {
1988                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1989                         if (!min || dev->host_mem_size >= min)
1990                                 return 0;
1991                         nvme_free_host_mem(dev);
1992                 }
1993         }
1994
1995         return -ENOMEM;
1996 }
1997
1998 static int nvme_setup_host_mem(struct nvme_dev *dev)
1999 {
2000         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2001         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2002         u64 min = (u64)dev->ctrl.hmmin * 4096;
2003         u32 enable_bits = NVME_HOST_MEM_ENABLE;
2004         int ret;
2005
2006         preferred = min(preferred, max);
2007         if (min > max) {
2008                 dev_warn(dev->ctrl.device,
2009                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2010                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2011                 nvme_free_host_mem(dev);
2012                 return 0;
2013         }
2014
2015         /*
2016          * If we already have a buffer allocated check if we can reuse it.
2017          */
2018         if (dev->host_mem_descs) {
2019                 if (dev->host_mem_size >= min)
2020                         enable_bits |= NVME_HOST_MEM_RETURN;
2021                 else
2022                         nvme_free_host_mem(dev);
2023         }
2024
2025         if (!dev->host_mem_descs) {
2026                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2027                         dev_warn(dev->ctrl.device,
2028                                 "failed to allocate host memory buffer.\n");
2029                         return 0; /* controller must work without HMB */
2030                 }
2031
2032                 dev_info(dev->ctrl.device,
2033                         "allocated %lld MiB host memory buffer.\n",
2034                         dev->host_mem_size >> ilog2(SZ_1M));
2035         }
2036
2037         ret = nvme_set_host_mem(dev, enable_bits);
2038         if (ret)
2039                 nvme_free_host_mem(dev);
2040         return ret;
2041 }
2042
2043 /*
2044  * nirqs is the number of interrupts available for write and read
2045  * queues. The core already reserved an interrupt for the admin queue.
2046  */
2047 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2048 {
2049         struct nvme_dev *dev = affd->priv;
2050         unsigned int nr_read_queues;
2051
2052         /*
2053          * If there is no interupt available for queues, ensure that
2054          * the default queue is set to 1. The affinity set size is
2055          * also set to one, but the irq core ignores it for this case.
2056          *
2057          * If only one interrupt is available or 'write_queue' == 0, combine
2058          * write and read queues.
2059          *
2060          * If 'write_queues' > 0, ensure it leaves room for at least one read
2061          * queue.
2062          */
2063         if (!nrirqs) {
2064                 nrirqs = 1;
2065                 nr_read_queues = 0;
2066         } else if (nrirqs == 1 || !write_queues) {
2067                 nr_read_queues = 0;
2068         } else if (write_queues >= nrirqs) {
2069                 nr_read_queues = 1;
2070         } else {
2071                 nr_read_queues = nrirqs - write_queues;
2072         }
2073
2074         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2075         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2076         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2077         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2078         affd->nr_sets = nr_read_queues ? 2 : 1;
2079 }
2080
2081 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2082 {
2083         struct pci_dev *pdev = to_pci_dev(dev->dev);
2084         struct irq_affinity affd = {
2085                 .pre_vectors    = 1,
2086                 .calc_sets      = nvme_calc_irq_sets,
2087                 .priv           = dev,
2088         };
2089         unsigned int irq_queues, this_p_queues;
2090
2091         /*
2092          * Poll queues don't need interrupts, but we need at least one IO
2093          * queue left over for non-polled IO.
2094          */
2095         this_p_queues = poll_queues;
2096         if (this_p_queues >= nr_io_queues) {
2097                 this_p_queues = nr_io_queues - 1;
2098                 irq_queues = 1;
2099         } else {
2100                 irq_queues = nr_io_queues - this_p_queues + 1;
2101         }
2102         dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2103
2104         /* Initialize for the single interrupt case */
2105         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2106         dev->io_queues[HCTX_TYPE_READ] = 0;
2107
2108         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2109                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2110 }
2111
2112 static void nvme_disable_io_queues(struct nvme_dev *dev)
2113 {
2114         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2115                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2116 }
2117
2118 static int nvme_setup_io_queues(struct nvme_dev *dev)
2119 {
2120         struct nvme_queue *adminq = &dev->queues[0];
2121         struct pci_dev *pdev = to_pci_dev(dev->dev);
2122         int result, nr_io_queues;
2123         unsigned long size;
2124
2125         nr_io_queues = max_io_queues();
2126         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2127         if (result < 0)
2128                 return result;
2129
2130         if (nr_io_queues == 0)
2131                 return 0;
2132         
2133         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2134
2135         if (dev->cmb_use_sqes) {
2136                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2137                                 sizeof(struct nvme_command));
2138                 if (result > 0)
2139                         dev->q_depth = result;
2140                 else
2141                         dev->cmb_use_sqes = false;
2142         }
2143
2144         do {
2145                 size = db_bar_size(dev, nr_io_queues);
2146                 result = nvme_remap_bar(dev, size);
2147                 if (!result)
2148                         break;
2149                 if (!--nr_io_queues)
2150                         return -ENOMEM;
2151         } while (1);
2152         adminq->q_db = dev->dbs;
2153
2154  retry:
2155         /* Deregister the admin queue's interrupt */
2156         pci_free_irq(pdev, 0, adminq);
2157
2158         /*
2159          * If we enable msix early due to not intx, disable it again before
2160          * setting up the full range we need.
2161          */
2162         pci_free_irq_vectors(pdev);
2163
2164         result = nvme_setup_irqs(dev, nr_io_queues);
2165         if (result <= 0)
2166                 return -EIO;
2167
2168         dev->num_vecs = result;
2169         result = max(result - 1, 1);
2170         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2171
2172         /*
2173          * Should investigate if there's a performance win from allocating
2174          * more queues than interrupt vectors; it might allow the submission
2175          * path to scale better, even if the receive path is limited by the
2176          * number of interrupts.
2177          */
2178         result = queue_request_irq(adminq);
2179         if (result)
2180                 return result;
2181         set_bit(NVMEQ_ENABLED, &adminq->flags);
2182
2183         result = nvme_create_io_queues(dev);
2184         if (result || dev->online_queues < 2)
2185                 return result;
2186
2187         if (dev->online_queues - 1 < dev->max_qid) {
2188                 nr_io_queues = dev->online_queues - 1;
2189                 nvme_disable_io_queues(dev);
2190                 nvme_suspend_io_queues(dev);
2191                 goto retry;
2192         }
2193         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2194                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2195                                         dev->io_queues[HCTX_TYPE_READ],
2196                                         dev->io_queues[HCTX_TYPE_POLL]);
2197         return 0;
2198 }
2199
2200 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2201 {
2202         struct nvme_queue *nvmeq = req->end_io_data;
2203
2204         blk_mq_free_request(req);
2205         complete(&nvmeq->delete_done);
2206 }
2207
2208 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2209 {
2210         struct nvme_queue *nvmeq = req->end_io_data;
2211
2212         if (error)
2213                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2214
2215         nvme_del_queue_end(req, error);
2216 }
2217
2218 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2219 {
2220         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2221         struct request *req;
2222         struct nvme_command cmd;
2223
2224         memset(&cmd, 0, sizeof(cmd));
2225         cmd.delete_queue.opcode = opcode;
2226         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2227
2228         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2229         if (IS_ERR(req))
2230                 return PTR_ERR(req);
2231
2232         req->timeout = ADMIN_TIMEOUT;
2233         req->end_io_data = nvmeq;
2234
2235         init_completion(&nvmeq->delete_done);
2236         blk_execute_rq_nowait(q, NULL, req, false,
2237                         opcode == nvme_admin_delete_cq ?
2238                                 nvme_del_cq_end : nvme_del_queue_end);
2239         return 0;
2240 }
2241
2242 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2243 {
2244         int nr_queues = dev->online_queues - 1, sent = 0;
2245         unsigned long timeout;
2246
2247  retry:
2248         timeout = ADMIN_TIMEOUT;
2249         while (nr_queues > 0) {
2250                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2251                         break;
2252                 nr_queues--;
2253                 sent++;
2254         }
2255         while (sent) {
2256                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2257
2258                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2259                                 timeout);
2260                 if (timeout == 0)
2261                         return false;
2262
2263                 /* handle any remaining CQEs */
2264                 if (opcode == nvme_admin_delete_cq &&
2265                     !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2266                         nvme_poll_irqdisable(nvmeq, -1);
2267
2268                 sent--;
2269                 if (nr_queues)
2270                         goto retry;
2271         }
2272         return true;
2273 }
2274
2275 /*
2276  * return error value only when tagset allocation failed
2277  */
2278 static int nvme_dev_add(struct nvme_dev *dev)
2279 {
2280         int ret;
2281
2282         if (!dev->ctrl.tagset) {
2283                 dev->tagset.ops = &nvme_mq_ops;
2284                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2285                 dev->tagset.nr_maps = 2; /* default + read */
2286                 if (dev->io_queues[HCTX_TYPE_POLL])
2287                         dev->tagset.nr_maps++;
2288                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2289                 dev->tagset.numa_node = dev_to_node(dev->dev);
2290                 dev->tagset.queue_depth =
2291                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2292                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2293                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2294                 dev->tagset.driver_data = dev;
2295
2296                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2297                 if (ret) {
2298                         dev_warn(dev->ctrl.device,
2299                                 "IO queues tagset allocation failed %d\n", ret);
2300                         return ret;
2301                 }
2302                 dev->ctrl.tagset = &dev->tagset;
2303
2304                 nvme_dbbuf_set(dev);
2305         } else {
2306                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2307
2308                 /* Free previously allocated queues that are no longer usable */
2309                 nvme_free_queues(dev, dev->online_queues);
2310         }
2311
2312         return 0;
2313 }
2314
2315 static int nvme_pci_enable(struct nvme_dev *dev)
2316 {
2317         int result = -ENOMEM;
2318         struct pci_dev *pdev = to_pci_dev(dev->dev);
2319
2320         if (pci_enable_device_mem(pdev))
2321                 return result;
2322
2323         pci_set_master(pdev);
2324
2325         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2326             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2327                 goto disable;
2328
2329         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2330                 result = -ENODEV;
2331                 goto disable;
2332         }
2333
2334         /*
2335          * Some devices and/or platforms don't advertise or work with INTx
2336          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2337          * adjust this later.
2338          */
2339         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2340         if (result < 0)
2341                 return result;
2342
2343         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2344
2345         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2346                                 io_queue_depth);
2347         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2348         dev->dbs = dev->bar + 4096;
2349
2350         /*
2351          * Temporary fix for the Apple controller found in the MacBook8,1 and
2352          * some MacBook7,1 to avoid controller resets and data loss.
2353          */
2354         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2355                 dev->q_depth = 2;
2356                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2357                         "set queue depth=%u to work around controller resets\n",
2358                         dev->q_depth);
2359         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2360                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2361                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2362                 dev->q_depth = 64;
2363                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2364                         "set queue depth=%u\n", dev->q_depth);
2365         }
2366
2367         nvme_map_cmb(dev);
2368
2369         pci_enable_pcie_error_reporting(pdev);
2370         pci_save_state(pdev);
2371         return 0;
2372
2373  disable:
2374         pci_disable_device(pdev);
2375         return result;
2376 }
2377
2378 static void nvme_dev_unmap(struct nvme_dev *dev)
2379 {
2380         if (dev->bar)
2381                 iounmap(dev->bar);
2382         pci_release_mem_regions(to_pci_dev(dev->dev));
2383 }
2384
2385 static void nvme_pci_disable(struct nvme_dev *dev)
2386 {
2387         struct pci_dev *pdev = to_pci_dev(dev->dev);
2388
2389         pci_free_irq_vectors(pdev);
2390
2391         if (pci_is_enabled(pdev)) {
2392                 pci_disable_pcie_error_reporting(pdev);
2393                 pci_disable_device(pdev);
2394         }
2395 }
2396
2397 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2398 {
2399         bool dead = true;
2400         struct pci_dev *pdev = to_pci_dev(dev->dev);
2401
2402         mutex_lock(&dev->shutdown_lock);
2403         if (pci_is_enabled(pdev)) {
2404                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2405
2406                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2407                     dev->ctrl.state == NVME_CTRL_RESETTING)
2408                         nvme_start_freeze(&dev->ctrl);
2409                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2410                         pdev->error_state  != pci_channel_io_normal);
2411         }
2412
2413         /*
2414          * Give the controller a chance to complete all entered requests if
2415          * doing a safe shutdown.
2416          */
2417         if (!dead) {
2418                 if (shutdown)
2419                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2420         }
2421
2422         nvme_stop_queues(&dev->ctrl);
2423
2424         if (!dead && dev->ctrl.queue_count > 0) {
2425                 nvme_disable_io_queues(dev);
2426                 nvme_disable_admin_queue(dev, shutdown);
2427         }
2428         nvme_suspend_io_queues(dev);
2429         nvme_suspend_queue(&dev->queues[0]);
2430         nvme_pci_disable(dev);
2431
2432         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2433         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2434
2435         /*
2436          * The driver will not be starting up queues again if shutting down so
2437          * must flush all entered requests to their failed completion to avoid
2438          * deadlocking blk-mq hot-cpu notifier.
2439          */
2440         if (shutdown)
2441                 nvme_start_queues(&dev->ctrl);
2442         mutex_unlock(&dev->shutdown_lock);
2443 }
2444
2445 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2446 {
2447         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2448                                                 PAGE_SIZE, PAGE_SIZE, 0);
2449         if (!dev->prp_page_pool)
2450                 return -ENOMEM;
2451
2452         /* Optimisation for I/Os between 4k and 128k */
2453         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2454                                                 256, 256, 0);
2455         if (!dev->prp_small_pool) {
2456                 dma_pool_destroy(dev->prp_page_pool);
2457                 return -ENOMEM;
2458         }
2459         return 0;
2460 }
2461
2462 static void nvme_release_prp_pools(struct nvme_dev *dev)
2463 {
2464         dma_pool_destroy(dev->prp_page_pool);
2465         dma_pool_destroy(dev->prp_small_pool);
2466 }
2467
2468 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2469 {
2470         struct nvme_dev *dev = to_nvme_dev(ctrl);
2471
2472         nvme_dbbuf_dma_free(dev);
2473         put_device(dev->dev);
2474         if (dev->tagset.tags)
2475                 blk_mq_free_tag_set(&dev->tagset);
2476         if (dev->ctrl.admin_q)
2477                 blk_put_queue(dev->ctrl.admin_q);
2478         kfree(dev->queues);
2479         free_opal_dev(dev->ctrl.opal_dev);
2480         mempool_destroy(dev->iod_mempool);
2481         kfree(dev);
2482 }
2483
2484 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2485 {
2486         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2487
2488         nvme_get_ctrl(&dev->ctrl);
2489         nvme_dev_disable(dev, false);
2490         nvme_kill_queues(&dev->ctrl);
2491         if (!queue_work(nvme_wq, &dev->remove_work))
2492                 nvme_put_ctrl(&dev->ctrl);
2493 }
2494
2495 static void nvme_reset_work(struct work_struct *work)
2496 {
2497         struct nvme_dev *dev =
2498                 container_of(work, struct nvme_dev, ctrl.reset_work);
2499         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2500         int result = -ENODEV;
2501         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2502
2503         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2504                 goto out;
2505
2506         /*
2507          * If we're called to reset a live controller first shut it down before
2508          * moving on.
2509          */
2510         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2511                 nvme_dev_disable(dev, false);
2512
2513         mutex_lock(&dev->shutdown_lock);
2514         result = nvme_pci_enable(dev);
2515         if (result)
2516                 goto out_unlock;
2517
2518         result = nvme_pci_configure_admin_queue(dev);
2519         if (result)
2520                 goto out_unlock;
2521
2522         result = nvme_alloc_admin_tags(dev);
2523         if (result)
2524                 goto out_unlock;
2525
2526         /*
2527          * Limit the max command size to prevent iod->sg allocations going
2528          * over a single page.
2529          */
2530         dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2531         dev->ctrl.max_segments = NVME_MAX_SEGS;
2532         mutex_unlock(&dev->shutdown_lock);
2533
2534         /*
2535          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2536          * initializing procedure here.
2537          */
2538         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2539                 dev_warn(dev->ctrl.device,
2540                         "failed to mark controller CONNECTING\n");
2541                 goto out;
2542         }
2543
2544         result = nvme_init_identify(&dev->ctrl);
2545         if (result)
2546                 goto out;
2547
2548         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2549                 if (!dev->ctrl.opal_dev)
2550                         dev->ctrl.opal_dev =
2551                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2552                 else if (was_suspend)
2553                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2554         } else {
2555                 free_opal_dev(dev->ctrl.opal_dev);
2556                 dev->ctrl.opal_dev = NULL;
2557         }
2558
2559         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2560                 result = nvme_dbbuf_dma_alloc(dev);
2561                 if (result)
2562                         dev_warn(dev->dev,
2563                                  "unable to allocate dma for dbbuf\n");
2564         }
2565
2566         if (dev->ctrl.hmpre) {
2567                 result = nvme_setup_host_mem(dev);
2568                 if (result < 0)
2569                         goto out;
2570         }
2571
2572         result = nvme_setup_io_queues(dev);
2573         if (result)
2574                 goto out;
2575
2576         /*
2577          * Keep the controller around but remove all namespaces if we don't have
2578          * any working I/O queue.
2579          */
2580         if (dev->online_queues < 2) {
2581                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2582                 nvme_kill_queues(&dev->ctrl);
2583                 nvme_remove_namespaces(&dev->ctrl);
2584                 new_state = NVME_CTRL_ADMIN_ONLY;
2585         } else {
2586                 nvme_start_queues(&dev->ctrl);
2587                 nvme_wait_freeze(&dev->ctrl);
2588                 /* hit this only when allocate tagset fails */
2589                 if (nvme_dev_add(dev))
2590                         new_state = NVME_CTRL_ADMIN_ONLY;
2591                 nvme_unfreeze(&dev->ctrl);
2592         }
2593
2594         /*
2595          * If only admin queue live, keep it to do further investigation or
2596          * recovery.
2597          */
2598         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2599                 dev_warn(dev->ctrl.device,
2600                         "failed to mark controller state %d\n", new_state);
2601                 goto out;
2602         }
2603
2604         nvme_start_ctrl(&dev->ctrl);
2605         return;
2606
2607  out_unlock:
2608         mutex_unlock(&dev->shutdown_lock);
2609  out:
2610         nvme_remove_dead_ctrl(dev, result);
2611 }
2612
2613 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2614 {
2615         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2616         struct pci_dev *pdev = to_pci_dev(dev->dev);
2617
2618         if (pci_get_drvdata(pdev))
2619                 device_release_driver(&pdev->dev);
2620         nvme_put_ctrl(&dev->ctrl);
2621 }
2622
2623 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2624 {
2625         *val = readl(to_nvme_dev(ctrl)->bar + off);
2626         return 0;
2627 }
2628
2629 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2630 {
2631         writel(val, to_nvme_dev(ctrl)->bar + off);
2632         return 0;
2633 }
2634
2635 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2636 {
2637         *val = readq(to_nvme_dev(ctrl)->bar + off);
2638         return 0;
2639 }
2640
2641 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2642 {
2643         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2644
2645         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2646 }
2647
2648 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2649         .name                   = "pcie",
2650         .module                 = THIS_MODULE,
2651         .flags                  = NVME_F_METADATA_SUPPORTED |
2652                                   NVME_F_PCI_P2PDMA,
2653         .reg_read32             = nvme_pci_reg_read32,
2654         .reg_write32            = nvme_pci_reg_write32,
2655         .reg_read64             = nvme_pci_reg_read64,
2656         .free_ctrl              = nvme_pci_free_ctrl,
2657         .submit_async_event     = nvme_pci_submit_async_event,
2658         .get_address            = nvme_pci_get_address,
2659 };
2660
2661 static int nvme_dev_map(struct nvme_dev *dev)
2662 {
2663         struct pci_dev *pdev = to_pci_dev(dev->dev);
2664
2665         if (pci_request_mem_regions(pdev, "nvme"))
2666                 return -ENODEV;
2667
2668         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2669                 goto release;
2670
2671         return 0;
2672   release:
2673         pci_release_mem_regions(pdev);
2674         return -ENODEV;
2675 }
2676
2677 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2678 {
2679         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2680                 /*
2681                  * Several Samsung devices seem to drop off the PCIe bus
2682                  * randomly when APST is on and uses the deepest sleep state.
2683                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2684                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2685                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2686                  * laptops.
2687                  */
2688                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2689                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2690                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2691                         return NVME_QUIRK_NO_DEEPEST_PS;
2692         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2693                 /*
2694                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2695                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2696                  * within few minutes after bootup on a Coffee Lake board -
2697                  * ASUS PRIME Z370-A
2698                  */
2699                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2700                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2701                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2702                         return NVME_QUIRK_NO_APST;
2703         }
2704
2705         return 0;
2706 }
2707
2708 static void nvme_async_probe(void *data, async_cookie_t cookie)
2709 {
2710         struct nvme_dev *dev = data;
2711
2712         nvme_reset_ctrl_sync(&dev->ctrl);
2713         flush_work(&dev->ctrl.scan_work);
2714         nvme_put_ctrl(&dev->ctrl);
2715 }
2716
2717 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2718 {
2719         int node, result = -ENOMEM;
2720         struct nvme_dev *dev;
2721         unsigned long quirks = id->driver_data;
2722         size_t alloc_size;
2723
2724         node = dev_to_node(&pdev->dev);
2725         if (node == NUMA_NO_NODE)
2726                 set_dev_node(&pdev->dev, first_memory_node);
2727
2728         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2729         if (!dev)
2730                 return -ENOMEM;
2731
2732         dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2733                                         GFP_KERNEL, node);
2734         if (!dev->queues)
2735                 goto free;
2736
2737         dev->dev = get_device(&pdev->dev);
2738         pci_set_drvdata(pdev, dev);
2739
2740         result = nvme_dev_map(dev);
2741         if (result)
2742                 goto put_pci;
2743
2744         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2745         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2746         mutex_init(&dev->shutdown_lock);
2747
2748         result = nvme_setup_prp_pools(dev);
2749         if (result)
2750                 goto unmap;
2751
2752         quirks |= check_vendor_combination_bug(pdev);
2753
2754         /*
2755          * Double check that our mempool alloc size will cover the biggest
2756          * command we support.
2757          */
2758         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2759                                                 NVME_MAX_SEGS, true);
2760         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2761
2762         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2763                                                 mempool_kfree,
2764                                                 (void *) alloc_size,
2765                                                 GFP_KERNEL, node);
2766         if (!dev->iod_mempool) {
2767                 result = -ENOMEM;
2768                 goto release_pools;
2769         }
2770
2771         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2772                         quirks);
2773         if (result)
2774                 goto release_mempool;
2775
2776         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2777
2778         nvme_get_ctrl(&dev->ctrl);
2779         async_schedule(nvme_async_probe, dev);
2780
2781         return 0;
2782
2783  release_mempool:
2784         mempool_destroy(dev->iod_mempool);
2785  release_pools:
2786         nvme_release_prp_pools(dev);
2787  unmap:
2788         nvme_dev_unmap(dev);
2789  put_pci:
2790         put_device(dev->dev);
2791  free:
2792         kfree(dev->queues);
2793         kfree(dev);
2794         return result;
2795 }
2796
2797 static void nvme_reset_prepare(struct pci_dev *pdev)
2798 {
2799         struct nvme_dev *dev = pci_get_drvdata(pdev);
2800         nvme_dev_disable(dev, false);
2801 }
2802
2803 static void nvme_reset_done(struct pci_dev *pdev)
2804 {
2805         struct nvme_dev *dev = pci_get_drvdata(pdev);
2806         nvme_reset_ctrl_sync(&dev->ctrl);
2807 }
2808
2809 static void nvme_shutdown(struct pci_dev *pdev)
2810 {
2811         struct nvme_dev *dev = pci_get_drvdata(pdev);
2812         nvme_dev_disable(dev, true);
2813 }
2814
2815 /*
2816  * The driver's remove may be called on a device in a partially initialized
2817  * state. This function must not have any dependencies on the device state in
2818  * order to proceed.
2819  */
2820 static void nvme_remove(struct pci_dev *pdev)
2821 {
2822         struct nvme_dev *dev = pci_get_drvdata(pdev);
2823
2824         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2825         pci_set_drvdata(pdev, NULL);
2826
2827         if (!pci_device_is_present(pdev)) {
2828                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2829                 nvme_dev_disable(dev, true);
2830                 nvme_dev_remove_admin(dev);
2831         }
2832
2833         flush_work(&dev->ctrl.reset_work);
2834         nvme_stop_ctrl(&dev->ctrl);
2835         nvme_remove_namespaces(&dev->ctrl);
2836         nvme_dev_disable(dev, true);
2837         nvme_release_cmb(dev);
2838         nvme_free_host_mem(dev);
2839         nvme_dev_remove_admin(dev);
2840         nvme_free_queues(dev, 0);
2841         nvme_uninit_ctrl(&dev->ctrl);
2842         nvme_release_prp_pools(dev);
2843         nvme_dev_unmap(dev);
2844         nvme_put_ctrl(&dev->ctrl);
2845 }
2846
2847 #ifdef CONFIG_PM_SLEEP
2848 static int nvme_suspend(struct device *dev)
2849 {
2850         struct pci_dev *pdev = to_pci_dev(dev);
2851         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2852
2853         nvme_dev_disable(ndev, true);
2854         return 0;
2855 }
2856
2857 static int nvme_resume(struct device *dev)
2858 {
2859         struct pci_dev *pdev = to_pci_dev(dev);
2860         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2861
2862         nvme_reset_ctrl(&ndev->ctrl);
2863         return 0;
2864 }
2865 #endif
2866
2867 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2868
2869 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2870                                                 pci_channel_state_t state)
2871 {
2872         struct nvme_dev *dev = pci_get_drvdata(pdev);
2873
2874         /*
2875          * A frozen channel requires a reset. When detected, this method will
2876          * shutdown the controller to quiesce. The controller will be restarted
2877          * after the slot reset through driver's slot_reset callback.
2878          */
2879         switch (state) {
2880         case pci_channel_io_normal:
2881                 return PCI_ERS_RESULT_CAN_RECOVER;
2882         case pci_channel_io_frozen:
2883                 dev_warn(dev->ctrl.device,
2884                         "frozen state error detected, reset controller\n");
2885                 nvme_dev_disable(dev, false);
2886                 return PCI_ERS_RESULT_NEED_RESET;
2887         case pci_channel_io_perm_failure:
2888                 dev_warn(dev->ctrl.device,
2889                         "failure state error detected, request disconnect\n");
2890                 return PCI_ERS_RESULT_DISCONNECT;
2891         }
2892         return PCI_ERS_RESULT_NEED_RESET;
2893 }
2894
2895 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2896 {
2897         struct nvme_dev *dev = pci_get_drvdata(pdev);
2898
2899         dev_info(dev->ctrl.device, "restart after slot reset\n");
2900         pci_restore_state(pdev);
2901         nvme_reset_ctrl(&dev->ctrl);
2902         return PCI_ERS_RESULT_RECOVERED;
2903 }
2904
2905 static void nvme_error_resume(struct pci_dev *pdev)
2906 {
2907         struct nvme_dev *dev = pci_get_drvdata(pdev);
2908
2909         flush_work(&dev->ctrl.reset_work);
2910 }
2911
2912 static const struct pci_error_handlers nvme_err_handler = {
2913         .error_detected = nvme_error_detected,
2914         .slot_reset     = nvme_slot_reset,
2915         .resume         = nvme_error_resume,
2916         .reset_prepare  = nvme_reset_prepare,
2917         .reset_done     = nvme_reset_done,
2918 };
2919
2920 static const struct pci_device_id nvme_id_table[] = {
2921         { PCI_VDEVICE(INTEL, 0x0953),
2922                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2923                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2924         { PCI_VDEVICE(INTEL, 0x0a53),
2925                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2926                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2927         { PCI_VDEVICE(INTEL, 0x0a54),
2928                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2929                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2930         { PCI_VDEVICE(INTEL, 0x0a55),
2931                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2932                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2933         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2934                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2935                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
2936         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
2937                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2938         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2939                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
2940                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
2941         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2942                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2943         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2944                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2945         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2946                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2947         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2948                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2949         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2950                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2951         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2952                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2953         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2954                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2955         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2956                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2957         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2958                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2959         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2960         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2961         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2962         { 0, }
2963 };
2964 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2965
2966 static struct pci_driver nvme_driver = {
2967         .name           = "nvme",
2968         .id_table       = nvme_id_table,
2969         .probe          = nvme_probe,
2970         .remove         = nvme_remove,
2971         .shutdown       = nvme_shutdown,
2972         .driver         = {
2973                 .pm     = &nvme_dev_pm_ops,
2974         },
2975         .sriov_configure = pci_sriov_configure_simple,
2976         .err_handler    = &nvme_err_handler,
2977 };
2978
2979 static int __init nvme_init(void)
2980 {
2981         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
2982         return pci_register_driver(&nvme_driver);
2983 }
2984
2985 static void __exit nvme_exit(void)
2986 {
2987         pci_unregister_driver(&nvme_driver);
2988         flush_workqueue(nvme_wq);
2989         _nvme_check_size();
2990 }
2991
2992 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2993 MODULE_LICENSE("GPL");
2994 MODULE_VERSION("1.0");
2995 module_init(nvme_init);
2996 module_exit(nvme_exit);