Merge tag 'dma-mapping-5.13' of git://git.infradead.org/users/hch/dma-mapping
[linux-2.6-microblaze.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29
30 #include "trace.h"
31 #include "nvme.h"
32
33 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
35
36 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ  4096
43 #define NVME_MAX_SEGS   127
44
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60                 "Use SGLs when average request segment size is larger or equal to "
61                 "this size. Use 0 to disable SGLs.");
62
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65         .set = io_queue_depth_set,
66         .get = param_get_uint,
67 };
68
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72
73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75         unsigned int n;
76         int ret;
77
78         ret = kstrtouint(val, 10, &n);
79         if (ret != 0 || n > num_possible_cpus())
80                 return -EINVAL;
81         return param_set_uint(val, kp);
82 }
83
84 static const struct kernel_param_ops io_queue_count_ops = {
85         .set = io_queue_count_set,
86         .get = param_get_uint,
87 };
88
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92         "Number of queues to use for writes. If not set, reads and writes "
93         "will share a queue set.");
94
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102
103 struct nvme_dev;
104 struct nvme_queue;
105
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108
109 /*
110  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
111  */
112 struct nvme_dev {
113         struct nvme_queue *queues;
114         struct blk_mq_tag_set tagset;
115         struct blk_mq_tag_set admin_tagset;
116         u32 __iomem *dbs;
117         struct device *dev;
118         struct dma_pool *prp_page_pool;
119         struct dma_pool *prp_small_pool;
120         unsigned online_queues;
121         unsigned max_qid;
122         unsigned io_queues[HCTX_MAX_TYPES];
123         unsigned int num_vecs;
124         u32 q_depth;
125         int io_sqes;
126         u32 db_stride;
127         void __iomem *bar;
128         unsigned long bar_mapped_size;
129         struct work_struct remove_work;
130         struct mutex shutdown_lock;
131         bool subsystem;
132         u64 cmb_size;
133         bool cmb_use_sqes;
134         u32 cmbsz;
135         u32 cmbloc;
136         struct nvme_ctrl ctrl;
137         u32 last_ps;
138
139         mempool_t *iod_mempool;
140
141         /* shadow doorbell buffer support: */
142         u32 *dbbuf_dbs;
143         dma_addr_t dbbuf_dbs_dma_addr;
144         u32 *dbbuf_eis;
145         dma_addr_t dbbuf_eis_dma_addr;
146
147         /* host memory buffer support: */
148         u64 host_mem_size;
149         u32 nr_host_mem_descs;
150         dma_addr_t host_mem_descs_dma;
151         struct nvme_host_mem_buf_desc *host_mem_descs;
152         void **host_mem_desc_bufs;
153         unsigned int nr_allocated_queues;
154         unsigned int nr_write_queues;
155         unsigned int nr_poll_queues;
156 };
157
158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160         int ret;
161         u32 n;
162
163         ret = kstrtou32(val, 10, &n);
164         if (ret != 0 || n < 2)
165                 return -EINVAL;
166
167         return param_set_uint(val, kp);
168 }
169
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172         return qid * 2 * stride;
173 }
174
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177         return (qid * 2 + 1) * stride;
178 }
179
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182         return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190         struct nvme_dev *dev;
191         spinlock_t sq_lock;
192         void *sq_cmds;
193          /* only used for poll queues: */
194         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195         struct nvme_completion *cqes;
196         dma_addr_t sq_dma_addr;
197         dma_addr_t cq_dma_addr;
198         u32 __iomem *q_db;
199         u32 q_depth;
200         u16 cq_vector;
201         u16 sq_tail;
202         u16 last_sq_tail;
203         u16 cq_head;
204         u16 qid;
205         u8 cq_phase;
206         u8 sqes;
207         unsigned long flags;
208 #define NVMEQ_ENABLED           0
209 #define NVMEQ_SQ_CMB            1
210 #define NVMEQ_DELETE_ERROR      2
211 #define NVMEQ_POLLED            3
212         u32 *dbbuf_sq_db;
213         u32 *dbbuf_cq_db;
214         u32 *dbbuf_sq_ei;
215         u32 *dbbuf_cq_ei;
216         struct completion delete_done;
217 };
218
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226         struct nvme_request req;
227         struct nvme_command cmd;
228         struct nvme_queue *nvmeq;
229         bool use_sgl;
230         int aborted;
231         int npages;             /* In the PRP list. 0 means small pool in use */
232         int nents;              /* Used in scatterlist */
233         dma_addr_t first_dma;
234         unsigned int dma_len;   /* length of single DMA segment mapping */
235         dma_addr_t meta_dma;
236         struct scatterlist *sg;
237 };
238
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241         return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246         unsigned int mem_size = nvme_dbbuf_size(dev);
247
248         if (dev->dbbuf_dbs)
249                 return 0;
250
251         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252                                             &dev->dbbuf_dbs_dma_addr,
253                                             GFP_KERNEL);
254         if (!dev->dbbuf_dbs)
255                 return -ENOMEM;
256         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257                                             &dev->dbbuf_eis_dma_addr,
258                                             GFP_KERNEL);
259         if (!dev->dbbuf_eis) {
260                 dma_free_coherent(dev->dev, mem_size,
261                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262                 dev->dbbuf_dbs = NULL;
263                 return -ENOMEM;
264         }
265
266         return 0;
267 }
268
269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
270 {
271         unsigned int mem_size = nvme_dbbuf_size(dev);
272
273         if (dev->dbbuf_dbs) {
274                 dma_free_coherent(dev->dev, mem_size,
275                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276                 dev->dbbuf_dbs = NULL;
277         }
278         if (dev->dbbuf_eis) {
279                 dma_free_coherent(dev->dev, mem_size,
280                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281                 dev->dbbuf_eis = NULL;
282         }
283 }
284
285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286                             struct nvme_queue *nvmeq, int qid)
287 {
288         if (!dev->dbbuf_dbs || !qid)
289                 return;
290
291         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
295 }
296
297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
298 {
299         if (!nvmeq->qid)
300                 return;
301
302         nvmeq->dbbuf_sq_db = NULL;
303         nvmeq->dbbuf_cq_db = NULL;
304         nvmeq->dbbuf_sq_ei = NULL;
305         nvmeq->dbbuf_cq_ei = NULL;
306 }
307
308 static void nvme_dbbuf_set(struct nvme_dev *dev)
309 {
310         struct nvme_command c;
311         unsigned int i;
312
313         if (!dev->dbbuf_dbs)
314                 return;
315
316         memset(&c, 0, sizeof(c));
317         c.dbbuf.opcode = nvme_admin_dbbuf;
318         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
319         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
320
321         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
322                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
323                 /* Free memory and continue on */
324                 nvme_dbbuf_dma_free(dev);
325
326                 for (i = 1; i <= dev->online_queues; i++)
327                         nvme_dbbuf_free(&dev->queues[i]);
328         }
329 }
330
331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
332 {
333         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
334 }
335
336 /* Update dbbuf and return true if an MMIO is required */
337 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
338                                               volatile u32 *dbbuf_ei)
339 {
340         if (dbbuf_db) {
341                 u16 old_value;
342
343                 /*
344                  * Ensure that the queue is written before updating
345                  * the doorbell in memory
346                  */
347                 wmb();
348
349                 old_value = *dbbuf_db;
350                 *dbbuf_db = value;
351
352                 /*
353                  * Ensure that the doorbell is updated before reading the event
354                  * index from memory.  The controller needs to provide similar
355                  * ordering to ensure the envent index is updated before reading
356                  * the doorbell.
357                  */
358                 mb();
359
360                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
361                         return false;
362         }
363
364         return true;
365 }
366
367 /*
368  * Will slightly overestimate the number of pages needed.  This is OK
369  * as it only leads to a small amount of wasted memory for the lifetime of
370  * the I/O.
371  */
372 static int nvme_pci_npages_prp(void)
373 {
374         unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
375                                       NVME_CTRL_PAGE_SIZE);
376         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
377 }
378
379 /*
380  * Calculates the number of pages needed for the SGL segments. For example a 4k
381  * page can accommodate 256 SGL descriptors.
382  */
383 static int nvme_pci_npages_sgl(void)
384 {
385         return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
386                         PAGE_SIZE);
387 }
388
389 static size_t nvme_pci_iod_alloc_size(void)
390 {
391         size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
392
393         return sizeof(__le64 *) * npages +
394                 sizeof(struct scatterlist) * NVME_MAX_SEGS;
395 }
396
397 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
398                                 unsigned int hctx_idx)
399 {
400         struct nvme_dev *dev = data;
401         struct nvme_queue *nvmeq = &dev->queues[0];
402
403         WARN_ON(hctx_idx != 0);
404         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
405
406         hctx->driver_data = nvmeq;
407         return 0;
408 }
409
410 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
411                           unsigned int hctx_idx)
412 {
413         struct nvme_dev *dev = data;
414         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
415
416         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
417         hctx->driver_data = nvmeq;
418         return 0;
419 }
420
421 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
422                 unsigned int hctx_idx, unsigned int numa_node)
423 {
424         struct nvme_dev *dev = set->driver_data;
425         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
427         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
428
429         BUG_ON(!nvmeq);
430         iod->nvmeq = nvmeq;
431
432         nvme_req(req)->ctrl = &dev->ctrl;
433         nvme_req(req)->cmd = &iod->cmd;
434         return 0;
435 }
436
437 static int queue_irq_offset(struct nvme_dev *dev)
438 {
439         /* if we have more than 1 vec, admin queue offsets us by 1 */
440         if (dev->num_vecs > 1)
441                 return 1;
442
443         return 0;
444 }
445
446 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
447 {
448         struct nvme_dev *dev = set->driver_data;
449         int i, qoff, offset;
450
451         offset = queue_irq_offset(dev);
452         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
453                 struct blk_mq_queue_map *map = &set->map[i];
454
455                 map->nr_queues = dev->io_queues[i];
456                 if (!map->nr_queues) {
457                         BUG_ON(i == HCTX_TYPE_DEFAULT);
458                         continue;
459                 }
460
461                 /*
462                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
463                  * affinity), so use the regular blk-mq cpu mapping
464                  */
465                 map->queue_offset = qoff;
466                 if (i != HCTX_TYPE_POLL && offset)
467                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
468                 else
469                         blk_mq_map_queues(map);
470                 qoff += map->nr_queues;
471                 offset += map->nr_queues;
472         }
473
474         return 0;
475 }
476
477 /*
478  * Write sq tail if we are asked to, or if the next command would wrap.
479  */
480 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
481 {
482         if (!write_sq) {
483                 u16 next_tail = nvmeq->sq_tail + 1;
484
485                 if (next_tail == nvmeq->q_depth)
486                         next_tail = 0;
487                 if (next_tail != nvmeq->last_sq_tail)
488                         return;
489         }
490
491         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
492                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
493                 writel(nvmeq->sq_tail, nvmeq->q_db);
494         nvmeq->last_sq_tail = nvmeq->sq_tail;
495 }
496
497 /**
498  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
499  * @nvmeq: The queue to use
500  * @cmd: The command to send
501  * @write_sq: whether to write to the SQ doorbell
502  */
503 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
504                             bool write_sq)
505 {
506         spin_lock(&nvmeq->sq_lock);
507         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
508                cmd, sizeof(*cmd));
509         if (++nvmeq->sq_tail == nvmeq->q_depth)
510                 nvmeq->sq_tail = 0;
511         nvme_write_sq_db(nvmeq, write_sq);
512         spin_unlock(&nvmeq->sq_lock);
513 }
514
515 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
516 {
517         struct nvme_queue *nvmeq = hctx->driver_data;
518
519         spin_lock(&nvmeq->sq_lock);
520         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
521                 nvme_write_sq_db(nvmeq, true);
522         spin_unlock(&nvmeq->sq_lock);
523 }
524
525 static void **nvme_pci_iod_list(struct request *req)
526 {
527         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
529 }
530
531 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
532 {
533         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
534         int nseg = blk_rq_nr_phys_segments(req);
535         unsigned int avg_seg_size;
536
537         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
538
539         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
540                 return false;
541         if (!iod->nvmeq->qid)
542                 return false;
543         if (!sgl_threshold || avg_seg_size < sgl_threshold)
544                 return false;
545         return true;
546 }
547
548 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
549 {
550         const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
551         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
552         dma_addr_t dma_addr = iod->first_dma;
553         int i;
554
555         for (i = 0; i < iod->npages; i++) {
556                 __le64 *prp_list = nvme_pci_iod_list(req)[i];
557                 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
558
559                 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
560                 dma_addr = next_dma_addr;
561         }
562
563 }
564
565 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
566 {
567         const int last_sg = SGES_PER_PAGE - 1;
568         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
569         dma_addr_t dma_addr = iod->first_dma;
570         int i;
571
572         for (i = 0; i < iod->npages; i++) {
573                 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
574                 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
575
576                 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
577                 dma_addr = next_dma_addr;
578         }
579
580 }
581
582 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
583 {
584         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
585
586         if (is_pci_p2pdma_page(sg_page(iod->sg)))
587                 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
588                                     rq_dma_dir(req));
589         else
590                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
591 }
592
593 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
594 {
595         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
596
597         if (iod->dma_len) {
598                 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
599                                rq_dma_dir(req));
600                 return;
601         }
602
603         WARN_ON_ONCE(!iod->nents);
604
605         nvme_unmap_sg(dev, req);
606         if (iod->npages == 0)
607                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
608                               iod->first_dma);
609         else if (iod->use_sgl)
610                 nvme_free_sgls(dev, req);
611         else
612                 nvme_free_prps(dev, req);
613         mempool_free(iod->sg, dev->iod_mempool);
614 }
615
616 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
617 {
618         int i;
619         struct scatterlist *sg;
620
621         for_each_sg(sgl, sg, nents, i) {
622                 dma_addr_t phys = sg_phys(sg);
623                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
624                         "dma_address:%pad dma_length:%d\n",
625                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
626                         sg_dma_len(sg));
627         }
628 }
629
630 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
631                 struct request *req, struct nvme_rw_command *cmnd)
632 {
633         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
634         struct dma_pool *pool;
635         int length = blk_rq_payload_bytes(req);
636         struct scatterlist *sg = iod->sg;
637         int dma_len = sg_dma_len(sg);
638         u64 dma_addr = sg_dma_address(sg);
639         int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
640         __le64 *prp_list;
641         void **list = nvme_pci_iod_list(req);
642         dma_addr_t prp_dma;
643         int nprps, i;
644
645         length -= (NVME_CTRL_PAGE_SIZE - offset);
646         if (length <= 0) {
647                 iod->first_dma = 0;
648                 goto done;
649         }
650
651         dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
652         if (dma_len) {
653                 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
654         } else {
655                 sg = sg_next(sg);
656                 dma_addr = sg_dma_address(sg);
657                 dma_len = sg_dma_len(sg);
658         }
659
660         if (length <= NVME_CTRL_PAGE_SIZE) {
661                 iod->first_dma = dma_addr;
662                 goto done;
663         }
664
665         nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
666         if (nprps <= (256 / 8)) {
667                 pool = dev->prp_small_pool;
668                 iod->npages = 0;
669         } else {
670                 pool = dev->prp_page_pool;
671                 iod->npages = 1;
672         }
673
674         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
675         if (!prp_list) {
676                 iod->first_dma = dma_addr;
677                 iod->npages = -1;
678                 return BLK_STS_RESOURCE;
679         }
680         list[0] = prp_list;
681         iod->first_dma = prp_dma;
682         i = 0;
683         for (;;) {
684                 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
685                         __le64 *old_prp_list = prp_list;
686                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
687                         if (!prp_list)
688                                 goto free_prps;
689                         list[iod->npages++] = prp_list;
690                         prp_list[0] = old_prp_list[i - 1];
691                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
692                         i = 1;
693                 }
694                 prp_list[i++] = cpu_to_le64(dma_addr);
695                 dma_len -= NVME_CTRL_PAGE_SIZE;
696                 dma_addr += NVME_CTRL_PAGE_SIZE;
697                 length -= NVME_CTRL_PAGE_SIZE;
698                 if (length <= 0)
699                         break;
700                 if (dma_len > 0)
701                         continue;
702                 if (unlikely(dma_len < 0))
703                         goto bad_sgl;
704                 sg = sg_next(sg);
705                 dma_addr = sg_dma_address(sg);
706                 dma_len = sg_dma_len(sg);
707         }
708 done:
709         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
710         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
711         return BLK_STS_OK;
712 free_prps:
713         nvme_free_prps(dev, req);
714         return BLK_STS_RESOURCE;
715 bad_sgl:
716         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
717                         "Invalid SGL for payload:%d nents:%d\n",
718                         blk_rq_payload_bytes(req), iod->nents);
719         return BLK_STS_IOERR;
720 }
721
722 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
723                 struct scatterlist *sg)
724 {
725         sge->addr = cpu_to_le64(sg_dma_address(sg));
726         sge->length = cpu_to_le32(sg_dma_len(sg));
727         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
728 }
729
730 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
731                 dma_addr_t dma_addr, int entries)
732 {
733         sge->addr = cpu_to_le64(dma_addr);
734         if (entries < SGES_PER_PAGE) {
735                 sge->length = cpu_to_le32(entries * sizeof(*sge));
736                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
737         } else {
738                 sge->length = cpu_to_le32(PAGE_SIZE);
739                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
740         }
741 }
742
743 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
744                 struct request *req, struct nvme_rw_command *cmd, int entries)
745 {
746         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
747         struct dma_pool *pool;
748         struct nvme_sgl_desc *sg_list;
749         struct scatterlist *sg = iod->sg;
750         dma_addr_t sgl_dma;
751         int i = 0;
752
753         /* setting the transfer type as SGL */
754         cmd->flags = NVME_CMD_SGL_METABUF;
755
756         if (entries == 1) {
757                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
758                 return BLK_STS_OK;
759         }
760
761         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
762                 pool = dev->prp_small_pool;
763                 iod->npages = 0;
764         } else {
765                 pool = dev->prp_page_pool;
766                 iod->npages = 1;
767         }
768
769         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
770         if (!sg_list) {
771                 iod->npages = -1;
772                 return BLK_STS_RESOURCE;
773         }
774
775         nvme_pci_iod_list(req)[0] = sg_list;
776         iod->first_dma = sgl_dma;
777
778         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
779
780         do {
781                 if (i == SGES_PER_PAGE) {
782                         struct nvme_sgl_desc *old_sg_desc = sg_list;
783                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
784
785                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
786                         if (!sg_list)
787                                 goto free_sgls;
788
789                         i = 0;
790                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
791                         sg_list[i++] = *link;
792                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
793                 }
794
795                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
796                 sg = sg_next(sg);
797         } while (--entries > 0);
798
799         return BLK_STS_OK;
800 free_sgls:
801         nvme_free_sgls(dev, req);
802         return BLK_STS_RESOURCE;
803 }
804
805 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
806                 struct request *req, struct nvme_rw_command *cmnd,
807                 struct bio_vec *bv)
808 {
809         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
810         unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
811         unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
812
813         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
814         if (dma_mapping_error(dev->dev, iod->first_dma))
815                 return BLK_STS_RESOURCE;
816         iod->dma_len = bv->bv_len;
817
818         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
819         if (bv->bv_len > first_prp_len)
820                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
821         return BLK_STS_OK;
822 }
823
824 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
825                 struct request *req, struct nvme_rw_command *cmnd,
826                 struct bio_vec *bv)
827 {
828         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
829
830         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
831         if (dma_mapping_error(dev->dev, iod->first_dma))
832                 return BLK_STS_RESOURCE;
833         iod->dma_len = bv->bv_len;
834
835         cmnd->flags = NVME_CMD_SGL_METABUF;
836         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
837         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
838         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
839         return BLK_STS_OK;
840 }
841
842 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
843                 struct nvme_command *cmnd)
844 {
845         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846         blk_status_t ret = BLK_STS_RESOURCE;
847         int nr_mapped;
848
849         if (blk_rq_nr_phys_segments(req) == 1) {
850                 struct bio_vec bv = req_bvec(req);
851
852                 if (!is_pci_p2pdma_page(bv.bv_page)) {
853                         if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
854                                 return nvme_setup_prp_simple(dev, req,
855                                                              &cmnd->rw, &bv);
856
857                         if (iod->nvmeq->qid && sgl_threshold &&
858                             dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
859                                 return nvme_setup_sgl_simple(dev, req,
860                                                              &cmnd->rw, &bv);
861                 }
862         }
863
864         iod->dma_len = 0;
865         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
866         if (!iod->sg)
867                 return BLK_STS_RESOURCE;
868         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
869         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
870         if (!iod->nents)
871                 goto out_free_sg;
872
873         if (is_pci_p2pdma_page(sg_page(iod->sg)))
874                 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
875                                 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
876         else
877                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
878                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
879         if (!nr_mapped)
880                 goto out_free_sg;
881
882         iod->use_sgl = nvme_pci_use_sgls(dev, req);
883         if (iod->use_sgl)
884                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
885         else
886                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
887         if (ret != BLK_STS_OK)
888                 goto out_unmap_sg;
889         return BLK_STS_OK;
890
891 out_unmap_sg:
892         nvme_unmap_sg(dev, req);
893 out_free_sg:
894         mempool_free(iod->sg, dev->iod_mempool);
895         return ret;
896 }
897
898 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
899                 struct nvme_command *cmnd)
900 {
901         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
902
903         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
904                         rq_dma_dir(req), 0);
905         if (dma_mapping_error(dev->dev, iod->meta_dma))
906                 return BLK_STS_IOERR;
907         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
908         return BLK_STS_OK;
909 }
910
911 /*
912  * NOTE: ns is NULL when called on the admin queue.
913  */
914 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
915                          const struct blk_mq_queue_data *bd)
916 {
917         struct nvme_ns *ns = hctx->queue->queuedata;
918         struct nvme_queue *nvmeq = hctx->driver_data;
919         struct nvme_dev *dev = nvmeq->dev;
920         struct request *req = bd->rq;
921         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
922         struct nvme_command *cmnd = &iod->cmd;
923         blk_status_t ret;
924
925         iod->aborted = 0;
926         iod->npages = -1;
927         iod->nents = 0;
928
929         /*
930          * We should not need to do this, but we're still using this to
931          * ensure we can drain requests on a dying queue.
932          */
933         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
934                 return BLK_STS_IOERR;
935
936         ret = nvme_setup_cmd(ns, req);
937         if (ret)
938                 return ret;
939
940         if (blk_rq_nr_phys_segments(req)) {
941                 ret = nvme_map_data(dev, req, cmnd);
942                 if (ret)
943                         goto out_free_cmd;
944         }
945
946         if (blk_integrity_rq(req)) {
947                 ret = nvme_map_metadata(dev, req, cmnd);
948                 if (ret)
949                         goto out_unmap_data;
950         }
951
952         blk_mq_start_request(req);
953         nvme_submit_cmd(nvmeq, cmnd, bd->last);
954         return BLK_STS_OK;
955 out_unmap_data:
956         nvme_unmap_data(dev, req);
957 out_free_cmd:
958         nvme_cleanup_cmd(req);
959         return ret;
960 }
961
962 static void nvme_pci_complete_rq(struct request *req)
963 {
964         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
965         struct nvme_dev *dev = iod->nvmeq->dev;
966
967         if (blk_integrity_rq(req))
968                 dma_unmap_page(dev->dev, iod->meta_dma,
969                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
970         if (blk_rq_nr_phys_segments(req))
971                 nvme_unmap_data(dev, req);
972         nvme_complete_rq(req);
973 }
974
975 /* We read the CQE phase first to check if the rest of the entry is valid */
976 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
977 {
978         struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
979
980         return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
981 }
982
983 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
984 {
985         u16 head = nvmeq->cq_head;
986
987         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
988                                               nvmeq->dbbuf_cq_ei))
989                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
990 }
991
992 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
993 {
994         if (!nvmeq->qid)
995                 return nvmeq->dev->admin_tagset.tags[0];
996         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
997 }
998
999 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
1000 {
1001         struct nvme_completion *cqe = &nvmeq->cqes[idx];
1002         __u16 command_id = READ_ONCE(cqe->command_id);
1003         struct request *req;
1004
1005         /*
1006          * AEN requests are special as they don't time out and can
1007          * survive any kind of queue freeze and often don't respond to
1008          * aborts.  We don't even bother to allocate a struct request
1009          * for them but rather special case them here.
1010          */
1011         if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1012                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1013                                 cqe->status, &cqe->result);
1014                 return;
1015         }
1016
1017         req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), command_id);
1018         if (unlikely(!req)) {
1019                 dev_warn(nvmeq->dev->ctrl.device,
1020                         "invalid id %d completed on queue %d\n",
1021                         command_id, le16_to_cpu(cqe->sq_id));
1022                 return;
1023         }
1024
1025         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1026         if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1027                 nvme_pci_complete_rq(req);
1028 }
1029
1030 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1031 {
1032         u16 tmp = nvmeq->cq_head + 1;
1033
1034         if (tmp == nvmeq->q_depth) {
1035                 nvmeq->cq_head = 0;
1036                 nvmeq->cq_phase ^= 1;
1037         } else {
1038                 nvmeq->cq_head = tmp;
1039         }
1040 }
1041
1042 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1043 {
1044         int found = 0;
1045
1046         while (nvme_cqe_pending(nvmeq)) {
1047                 found++;
1048                 /*
1049                  * load-load control dependency between phase and the rest of
1050                  * the cqe requires a full read memory barrier
1051                  */
1052                 dma_rmb();
1053                 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1054                 nvme_update_cq_head(nvmeq);
1055         }
1056
1057         if (found)
1058                 nvme_ring_cq_doorbell(nvmeq);
1059         return found;
1060 }
1061
1062 static irqreturn_t nvme_irq(int irq, void *data)
1063 {
1064         struct nvme_queue *nvmeq = data;
1065
1066         if (nvme_process_cq(nvmeq))
1067                 return IRQ_HANDLED;
1068         return IRQ_NONE;
1069 }
1070
1071 static irqreturn_t nvme_irq_check(int irq, void *data)
1072 {
1073         struct nvme_queue *nvmeq = data;
1074
1075         if (nvme_cqe_pending(nvmeq))
1076                 return IRQ_WAKE_THREAD;
1077         return IRQ_NONE;
1078 }
1079
1080 /*
1081  * Poll for completions for any interrupt driven queue
1082  * Can be called from any context.
1083  */
1084 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1085 {
1086         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1087
1088         WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1089
1090         disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1091         nvme_process_cq(nvmeq);
1092         enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1093 }
1094
1095 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1096 {
1097         struct nvme_queue *nvmeq = hctx->driver_data;
1098         bool found;
1099
1100         if (!nvme_cqe_pending(nvmeq))
1101                 return 0;
1102
1103         spin_lock(&nvmeq->cq_poll_lock);
1104         found = nvme_process_cq(nvmeq);
1105         spin_unlock(&nvmeq->cq_poll_lock);
1106
1107         return found;
1108 }
1109
1110 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1111 {
1112         struct nvme_dev *dev = to_nvme_dev(ctrl);
1113         struct nvme_queue *nvmeq = &dev->queues[0];
1114         struct nvme_command c;
1115
1116         memset(&c, 0, sizeof(c));
1117         c.common.opcode = nvme_admin_async_event;
1118         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1119         nvme_submit_cmd(nvmeq, &c, true);
1120 }
1121
1122 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1123 {
1124         struct nvme_command c;
1125
1126         memset(&c, 0, sizeof(c));
1127         c.delete_queue.opcode = opcode;
1128         c.delete_queue.qid = cpu_to_le16(id);
1129
1130         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1131 }
1132
1133 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1134                 struct nvme_queue *nvmeq, s16 vector)
1135 {
1136         struct nvme_command c;
1137         int flags = NVME_QUEUE_PHYS_CONTIG;
1138
1139         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1140                 flags |= NVME_CQ_IRQ_ENABLED;
1141
1142         /*
1143          * Note: we (ab)use the fact that the prp fields survive if no data
1144          * is attached to the request.
1145          */
1146         memset(&c, 0, sizeof(c));
1147         c.create_cq.opcode = nvme_admin_create_cq;
1148         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1149         c.create_cq.cqid = cpu_to_le16(qid);
1150         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1151         c.create_cq.cq_flags = cpu_to_le16(flags);
1152         c.create_cq.irq_vector = cpu_to_le16(vector);
1153
1154         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1155 }
1156
1157 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1158                                                 struct nvme_queue *nvmeq)
1159 {
1160         struct nvme_ctrl *ctrl = &dev->ctrl;
1161         struct nvme_command c;
1162         int flags = NVME_QUEUE_PHYS_CONTIG;
1163
1164         /*
1165          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1166          * set. Since URGENT priority is zeroes, it makes all queues
1167          * URGENT.
1168          */
1169         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1170                 flags |= NVME_SQ_PRIO_MEDIUM;
1171
1172         /*
1173          * Note: we (ab)use the fact that the prp fields survive if no data
1174          * is attached to the request.
1175          */
1176         memset(&c, 0, sizeof(c));
1177         c.create_sq.opcode = nvme_admin_create_sq;
1178         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1179         c.create_sq.sqid = cpu_to_le16(qid);
1180         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1181         c.create_sq.sq_flags = cpu_to_le16(flags);
1182         c.create_sq.cqid = cpu_to_le16(qid);
1183
1184         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1185 }
1186
1187 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1188 {
1189         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1190 }
1191
1192 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1193 {
1194         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1195 }
1196
1197 static void abort_endio(struct request *req, blk_status_t error)
1198 {
1199         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1200         struct nvme_queue *nvmeq = iod->nvmeq;
1201
1202         dev_warn(nvmeq->dev->ctrl.device,
1203                  "Abort status: 0x%x", nvme_req(req)->status);
1204         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1205         blk_mq_free_request(req);
1206 }
1207
1208 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1209 {
1210         /* If true, indicates loss of adapter communication, possibly by a
1211          * NVMe Subsystem reset.
1212          */
1213         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1214
1215         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1216         switch (dev->ctrl.state) {
1217         case NVME_CTRL_RESETTING:
1218         case NVME_CTRL_CONNECTING:
1219                 return false;
1220         default:
1221                 break;
1222         }
1223
1224         /* We shouldn't reset unless the controller is on fatal error state
1225          * _or_ if we lost the communication with it.
1226          */
1227         if (!(csts & NVME_CSTS_CFS) && !nssro)
1228                 return false;
1229
1230         return true;
1231 }
1232
1233 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1234 {
1235         /* Read a config register to help see what died. */
1236         u16 pci_status;
1237         int result;
1238
1239         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1240                                       &pci_status);
1241         if (result == PCIBIOS_SUCCESSFUL)
1242                 dev_warn(dev->ctrl.device,
1243                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1244                          csts, pci_status);
1245         else
1246                 dev_warn(dev->ctrl.device,
1247                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1248                          csts, result);
1249 }
1250
1251 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1252 {
1253         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1254         struct nvme_queue *nvmeq = iod->nvmeq;
1255         struct nvme_dev *dev = nvmeq->dev;
1256         struct request *abort_req;
1257         struct nvme_command cmd;
1258         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1259
1260         /* If PCI error recovery process is happening, we cannot reset or
1261          * the recovery mechanism will surely fail.
1262          */
1263         mb();
1264         if (pci_channel_offline(to_pci_dev(dev->dev)))
1265                 return BLK_EH_RESET_TIMER;
1266
1267         /*
1268          * Reset immediately if the controller is failed
1269          */
1270         if (nvme_should_reset(dev, csts)) {
1271                 nvme_warn_reset(dev, csts);
1272                 nvme_dev_disable(dev, false);
1273                 nvme_reset_ctrl(&dev->ctrl);
1274                 return BLK_EH_DONE;
1275         }
1276
1277         /*
1278          * Did we miss an interrupt?
1279          */
1280         if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1281                 nvme_poll(req->mq_hctx);
1282         else
1283                 nvme_poll_irqdisable(nvmeq);
1284
1285         if (blk_mq_request_completed(req)) {
1286                 dev_warn(dev->ctrl.device,
1287                          "I/O %d QID %d timeout, completion polled\n",
1288                          req->tag, nvmeq->qid);
1289                 return BLK_EH_DONE;
1290         }
1291
1292         /*
1293          * Shutdown immediately if controller times out while starting. The
1294          * reset work will see the pci device disabled when it gets the forced
1295          * cancellation error. All outstanding requests are completed on
1296          * shutdown, so we return BLK_EH_DONE.
1297          */
1298         switch (dev->ctrl.state) {
1299         case NVME_CTRL_CONNECTING:
1300                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1301                 fallthrough;
1302         case NVME_CTRL_DELETING:
1303                 dev_warn_ratelimited(dev->ctrl.device,
1304                          "I/O %d QID %d timeout, disable controller\n",
1305                          req->tag, nvmeq->qid);
1306                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1307                 nvme_dev_disable(dev, true);
1308                 return BLK_EH_DONE;
1309         case NVME_CTRL_RESETTING:
1310                 return BLK_EH_RESET_TIMER;
1311         default:
1312                 break;
1313         }
1314
1315         /*
1316          * Shutdown the controller immediately and schedule a reset if the
1317          * command was already aborted once before and still hasn't been
1318          * returned to the driver, or if this is the admin queue.
1319          */
1320         if (!nvmeq->qid || iod->aborted) {
1321                 dev_warn(dev->ctrl.device,
1322                          "I/O %d QID %d timeout, reset controller\n",
1323                          req->tag, nvmeq->qid);
1324                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1325                 nvme_dev_disable(dev, false);
1326                 nvme_reset_ctrl(&dev->ctrl);
1327
1328                 return BLK_EH_DONE;
1329         }
1330
1331         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1332                 atomic_inc(&dev->ctrl.abort_limit);
1333                 return BLK_EH_RESET_TIMER;
1334         }
1335         iod->aborted = 1;
1336
1337         memset(&cmd, 0, sizeof(cmd));
1338         cmd.abort.opcode = nvme_admin_abort_cmd;
1339         cmd.abort.cid = req->tag;
1340         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1341
1342         dev_warn(nvmeq->dev->ctrl.device,
1343                 "I/O %d QID %d timeout, aborting\n",
1344                  req->tag, nvmeq->qid);
1345
1346         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1347                         BLK_MQ_REQ_NOWAIT);
1348         if (IS_ERR(abort_req)) {
1349                 atomic_inc(&dev->ctrl.abort_limit);
1350                 return BLK_EH_RESET_TIMER;
1351         }
1352
1353         abort_req->end_io_data = NULL;
1354         blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio);
1355
1356         /*
1357          * The aborted req will be completed on receiving the abort req.
1358          * We enable the timer again. If hit twice, it'll cause a device reset,
1359          * as the device then is in a faulty state.
1360          */
1361         return BLK_EH_RESET_TIMER;
1362 }
1363
1364 static void nvme_free_queue(struct nvme_queue *nvmeq)
1365 {
1366         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1367                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1368         if (!nvmeq->sq_cmds)
1369                 return;
1370
1371         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1372                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1373                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1374         } else {
1375                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1376                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1377         }
1378 }
1379
1380 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1381 {
1382         int i;
1383
1384         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1385                 dev->ctrl.queue_count--;
1386                 nvme_free_queue(&dev->queues[i]);
1387         }
1388 }
1389
1390 /**
1391  * nvme_suspend_queue - put queue into suspended state
1392  * @nvmeq: queue to suspend
1393  */
1394 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1395 {
1396         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1397                 return 1;
1398
1399         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1400         mb();
1401
1402         nvmeq->dev->online_queues--;
1403         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1404                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1405         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1406                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1407         return 0;
1408 }
1409
1410 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1411 {
1412         int i;
1413
1414         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1415                 nvme_suspend_queue(&dev->queues[i]);
1416 }
1417
1418 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1419 {
1420         struct nvme_queue *nvmeq = &dev->queues[0];
1421
1422         if (shutdown)
1423                 nvme_shutdown_ctrl(&dev->ctrl);
1424         else
1425                 nvme_disable_ctrl(&dev->ctrl);
1426
1427         nvme_poll_irqdisable(nvmeq);
1428 }
1429
1430 /*
1431  * Called only on a device that has been disabled and after all other threads
1432  * that can check this device's completion queues have synced, except
1433  * nvme_poll(). This is the last chance for the driver to see a natural
1434  * completion before nvme_cancel_request() terminates all incomplete requests.
1435  */
1436 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1437 {
1438         int i;
1439
1440         for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1441                 spin_lock(&dev->queues[i].cq_poll_lock);
1442                 nvme_process_cq(&dev->queues[i]);
1443                 spin_unlock(&dev->queues[i].cq_poll_lock);
1444         }
1445 }
1446
1447 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1448                                 int entry_size)
1449 {
1450         int q_depth = dev->q_depth;
1451         unsigned q_size_aligned = roundup(q_depth * entry_size,
1452                                           NVME_CTRL_PAGE_SIZE);
1453
1454         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1455                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1456
1457                 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1458                 q_depth = div_u64(mem_per_q, entry_size);
1459
1460                 /*
1461                  * Ensure the reduced q_depth is above some threshold where it
1462                  * would be better to map queues in system memory with the
1463                  * original depth
1464                  */
1465                 if (q_depth < 64)
1466                         return -ENOMEM;
1467         }
1468
1469         return q_depth;
1470 }
1471
1472 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1473                                 int qid)
1474 {
1475         struct pci_dev *pdev = to_pci_dev(dev->dev);
1476
1477         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1478                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1479                 if (nvmeq->sq_cmds) {
1480                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1481                                                         nvmeq->sq_cmds);
1482                         if (nvmeq->sq_dma_addr) {
1483                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1484                                 return 0;
1485                         }
1486
1487                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1488                 }
1489         }
1490
1491         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1492                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1493         if (!nvmeq->sq_cmds)
1494                 return -ENOMEM;
1495         return 0;
1496 }
1497
1498 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1499 {
1500         struct nvme_queue *nvmeq = &dev->queues[qid];
1501
1502         if (dev->ctrl.queue_count > qid)
1503                 return 0;
1504
1505         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1506         nvmeq->q_depth = depth;
1507         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1508                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1509         if (!nvmeq->cqes)
1510                 goto free_nvmeq;
1511
1512         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1513                 goto free_cqdma;
1514
1515         nvmeq->dev = dev;
1516         spin_lock_init(&nvmeq->sq_lock);
1517         spin_lock_init(&nvmeq->cq_poll_lock);
1518         nvmeq->cq_head = 0;
1519         nvmeq->cq_phase = 1;
1520         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1521         nvmeq->qid = qid;
1522         dev->ctrl.queue_count++;
1523
1524         return 0;
1525
1526  free_cqdma:
1527         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1528                           nvmeq->cq_dma_addr);
1529  free_nvmeq:
1530         return -ENOMEM;
1531 }
1532
1533 static int queue_request_irq(struct nvme_queue *nvmeq)
1534 {
1535         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1536         int nr = nvmeq->dev->ctrl.instance;
1537
1538         if (use_threaded_interrupts) {
1539                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1540                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1541         } else {
1542                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1543                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1544         }
1545 }
1546
1547 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1548 {
1549         struct nvme_dev *dev = nvmeq->dev;
1550
1551         nvmeq->sq_tail = 0;
1552         nvmeq->last_sq_tail = 0;
1553         nvmeq->cq_head = 0;
1554         nvmeq->cq_phase = 1;
1555         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1556         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1557         nvme_dbbuf_init(dev, nvmeq, qid);
1558         dev->online_queues++;
1559         wmb(); /* ensure the first interrupt sees the initialization */
1560 }
1561
1562 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1563 {
1564         struct nvme_dev *dev = nvmeq->dev;
1565         int result;
1566         u16 vector = 0;
1567
1568         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1569
1570         /*
1571          * A queue's vector matches the queue identifier unless the controller
1572          * has only one vector available.
1573          */
1574         if (!polled)
1575                 vector = dev->num_vecs == 1 ? 0 : qid;
1576         else
1577                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1578
1579         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1580         if (result)
1581                 return result;
1582
1583         result = adapter_alloc_sq(dev, qid, nvmeq);
1584         if (result < 0)
1585                 return result;
1586         if (result)
1587                 goto release_cq;
1588
1589         nvmeq->cq_vector = vector;
1590         nvme_init_queue(nvmeq, qid);
1591
1592         if (!polled) {
1593                 result = queue_request_irq(nvmeq);
1594                 if (result < 0)
1595                         goto release_sq;
1596         }
1597
1598         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1599         return result;
1600
1601 release_sq:
1602         dev->online_queues--;
1603         adapter_delete_sq(dev, qid);
1604 release_cq:
1605         adapter_delete_cq(dev, qid);
1606         return result;
1607 }
1608
1609 static const struct blk_mq_ops nvme_mq_admin_ops = {
1610         .queue_rq       = nvme_queue_rq,
1611         .complete       = nvme_pci_complete_rq,
1612         .init_hctx      = nvme_admin_init_hctx,
1613         .init_request   = nvme_init_request,
1614         .timeout        = nvme_timeout,
1615 };
1616
1617 static const struct blk_mq_ops nvme_mq_ops = {
1618         .queue_rq       = nvme_queue_rq,
1619         .complete       = nvme_pci_complete_rq,
1620         .commit_rqs     = nvme_commit_rqs,
1621         .init_hctx      = nvme_init_hctx,
1622         .init_request   = nvme_init_request,
1623         .map_queues     = nvme_pci_map_queues,
1624         .timeout        = nvme_timeout,
1625         .poll           = nvme_poll,
1626 };
1627
1628 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1629 {
1630         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1631                 /*
1632                  * If the controller was reset during removal, it's possible
1633                  * user requests may be waiting on a stopped queue. Start the
1634                  * queue to flush these to completion.
1635                  */
1636                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1637                 blk_cleanup_queue(dev->ctrl.admin_q);
1638                 blk_mq_free_tag_set(&dev->admin_tagset);
1639         }
1640 }
1641
1642 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1643 {
1644         if (!dev->ctrl.admin_q) {
1645                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1646                 dev->admin_tagset.nr_hw_queues = 1;
1647
1648                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1649                 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1650                 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1651                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1652                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1653                 dev->admin_tagset.driver_data = dev;
1654
1655                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1656                         return -ENOMEM;
1657                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1658
1659                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1660                 if (IS_ERR(dev->ctrl.admin_q)) {
1661                         blk_mq_free_tag_set(&dev->admin_tagset);
1662                         return -ENOMEM;
1663                 }
1664                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1665                         nvme_dev_remove_admin(dev);
1666                         dev->ctrl.admin_q = NULL;
1667                         return -ENODEV;
1668                 }
1669         } else
1670                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1671
1672         return 0;
1673 }
1674
1675 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1676 {
1677         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1678 }
1679
1680 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1681 {
1682         struct pci_dev *pdev = to_pci_dev(dev->dev);
1683
1684         if (size <= dev->bar_mapped_size)
1685                 return 0;
1686         if (size > pci_resource_len(pdev, 0))
1687                 return -ENOMEM;
1688         if (dev->bar)
1689                 iounmap(dev->bar);
1690         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1691         if (!dev->bar) {
1692                 dev->bar_mapped_size = 0;
1693                 return -ENOMEM;
1694         }
1695         dev->bar_mapped_size = size;
1696         dev->dbs = dev->bar + NVME_REG_DBS;
1697
1698         return 0;
1699 }
1700
1701 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1702 {
1703         int result;
1704         u32 aqa;
1705         struct nvme_queue *nvmeq;
1706
1707         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1708         if (result < 0)
1709                 return result;
1710
1711         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1712                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1713
1714         if (dev->subsystem &&
1715             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1716                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1717
1718         result = nvme_disable_ctrl(&dev->ctrl);
1719         if (result < 0)
1720                 return result;
1721
1722         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1723         if (result)
1724                 return result;
1725
1726         dev->ctrl.numa_node = dev_to_node(dev->dev);
1727
1728         nvmeq = &dev->queues[0];
1729         aqa = nvmeq->q_depth - 1;
1730         aqa |= aqa << 16;
1731
1732         writel(aqa, dev->bar + NVME_REG_AQA);
1733         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1734         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1735
1736         result = nvme_enable_ctrl(&dev->ctrl);
1737         if (result)
1738                 return result;
1739
1740         nvmeq->cq_vector = 0;
1741         nvme_init_queue(nvmeq, 0);
1742         result = queue_request_irq(nvmeq);
1743         if (result) {
1744                 dev->online_queues--;
1745                 return result;
1746         }
1747
1748         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1749         return result;
1750 }
1751
1752 static int nvme_create_io_queues(struct nvme_dev *dev)
1753 {
1754         unsigned i, max, rw_queues;
1755         int ret = 0;
1756
1757         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1758                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1759                         ret = -ENOMEM;
1760                         break;
1761                 }
1762         }
1763
1764         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1765         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1766                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1767                                 dev->io_queues[HCTX_TYPE_READ];
1768         } else {
1769                 rw_queues = max;
1770         }
1771
1772         for (i = dev->online_queues; i <= max; i++) {
1773                 bool polled = i > rw_queues;
1774
1775                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1776                 if (ret)
1777                         break;
1778         }
1779
1780         /*
1781          * Ignore failing Create SQ/CQ commands, we can continue with less
1782          * than the desired amount of queues, and even a controller without
1783          * I/O queues can still be used to issue admin commands.  This might
1784          * be useful to upgrade a buggy firmware for example.
1785          */
1786         return ret >= 0 ? 0 : ret;
1787 }
1788
1789 static ssize_t nvme_cmb_show(struct device *dev,
1790                              struct device_attribute *attr,
1791                              char *buf)
1792 {
1793         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1794
1795         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1796                        ndev->cmbloc, ndev->cmbsz);
1797 }
1798 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1799
1800 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1801 {
1802         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1803
1804         return 1ULL << (12 + 4 * szu);
1805 }
1806
1807 static u32 nvme_cmb_size(struct nvme_dev *dev)
1808 {
1809         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1810 }
1811
1812 static void nvme_map_cmb(struct nvme_dev *dev)
1813 {
1814         u64 size, offset;
1815         resource_size_t bar_size;
1816         struct pci_dev *pdev = to_pci_dev(dev->dev);
1817         int bar;
1818
1819         if (dev->cmb_size)
1820                 return;
1821
1822         if (NVME_CAP_CMBS(dev->ctrl.cap))
1823                 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1824
1825         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1826         if (!dev->cmbsz)
1827                 return;
1828         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1829
1830         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1831         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1832         bar = NVME_CMB_BIR(dev->cmbloc);
1833         bar_size = pci_resource_len(pdev, bar);
1834
1835         if (offset > bar_size)
1836                 return;
1837
1838         /*
1839          * Tell the controller about the host side address mapping the CMB,
1840          * and enable CMB decoding for the NVMe 1.4+ scheme:
1841          */
1842         if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1843                 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1844                              (pci_bus_address(pdev, bar) + offset),
1845                              dev->bar + NVME_REG_CMBMSC);
1846         }
1847
1848         /*
1849          * Controllers may support a CMB size larger than their BAR,
1850          * for example, due to being behind a bridge. Reduce the CMB to
1851          * the reported size of the BAR
1852          */
1853         if (size > bar_size - offset)
1854                 size = bar_size - offset;
1855
1856         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1857                 dev_warn(dev->ctrl.device,
1858                          "failed to register the CMB\n");
1859                 return;
1860         }
1861
1862         dev->cmb_size = size;
1863         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1864
1865         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1866                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1867                 pci_p2pmem_publish(pdev, true);
1868
1869         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1870                                     &dev_attr_cmb.attr, NULL))
1871                 dev_warn(dev->ctrl.device,
1872                          "failed to add sysfs attribute for CMB\n");
1873 }
1874
1875 static inline void nvme_release_cmb(struct nvme_dev *dev)
1876 {
1877         if (dev->cmb_size) {
1878                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1879                                              &dev_attr_cmb.attr, NULL);
1880                 dev->cmb_size = 0;
1881         }
1882 }
1883
1884 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1885 {
1886         u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1887         u64 dma_addr = dev->host_mem_descs_dma;
1888         struct nvme_command c;
1889         int ret;
1890
1891         memset(&c, 0, sizeof(c));
1892         c.features.opcode       = nvme_admin_set_features;
1893         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1894         c.features.dword11      = cpu_to_le32(bits);
1895         c.features.dword12      = cpu_to_le32(host_mem_size);
1896         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1897         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1898         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1899
1900         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1901         if (ret) {
1902                 dev_warn(dev->ctrl.device,
1903                          "failed to set host mem (err %d, flags %#x).\n",
1904                          ret, bits);
1905         }
1906         return ret;
1907 }
1908
1909 static void nvme_free_host_mem(struct nvme_dev *dev)
1910 {
1911         int i;
1912
1913         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1914                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1915                 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1916
1917                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1918                                le64_to_cpu(desc->addr),
1919                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1920         }
1921
1922         kfree(dev->host_mem_desc_bufs);
1923         dev->host_mem_desc_bufs = NULL;
1924         dma_free_coherent(dev->dev,
1925                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1926                         dev->host_mem_descs, dev->host_mem_descs_dma);
1927         dev->host_mem_descs = NULL;
1928         dev->nr_host_mem_descs = 0;
1929 }
1930
1931 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1932                 u32 chunk_size)
1933 {
1934         struct nvme_host_mem_buf_desc *descs;
1935         u32 max_entries, len;
1936         dma_addr_t descs_dma;
1937         int i = 0;
1938         void **bufs;
1939         u64 size, tmp;
1940
1941         tmp = (preferred + chunk_size - 1);
1942         do_div(tmp, chunk_size);
1943         max_entries = tmp;
1944
1945         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1946                 max_entries = dev->ctrl.hmmaxd;
1947
1948         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1949                                    &descs_dma, GFP_KERNEL);
1950         if (!descs)
1951                 goto out;
1952
1953         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1954         if (!bufs)
1955                 goto out_free_descs;
1956
1957         for (size = 0; size < preferred && i < max_entries; size += len) {
1958                 dma_addr_t dma_addr;
1959
1960                 len = min_t(u64, chunk_size, preferred - size);
1961                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1962                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1963                 if (!bufs[i])
1964                         break;
1965
1966                 descs[i].addr = cpu_to_le64(dma_addr);
1967                 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1968                 i++;
1969         }
1970
1971         if (!size)
1972                 goto out_free_bufs;
1973
1974         dev->nr_host_mem_descs = i;
1975         dev->host_mem_size = size;
1976         dev->host_mem_descs = descs;
1977         dev->host_mem_descs_dma = descs_dma;
1978         dev->host_mem_desc_bufs = bufs;
1979         return 0;
1980
1981 out_free_bufs:
1982         while (--i >= 0) {
1983                 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1984
1985                 dma_free_attrs(dev->dev, size, bufs[i],
1986                                le64_to_cpu(descs[i].addr),
1987                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1988         }
1989
1990         kfree(bufs);
1991 out_free_descs:
1992         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1993                         descs_dma);
1994 out:
1995         dev->host_mem_descs = NULL;
1996         return -ENOMEM;
1997 }
1998
1999 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2000 {
2001         u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2002         u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2003         u64 chunk_size;
2004
2005         /* start big and work our way down */
2006         for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2007                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2008                         if (!min || dev->host_mem_size >= min)
2009                                 return 0;
2010                         nvme_free_host_mem(dev);
2011                 }
2012         }
2013
2014         return -ENOMEM;
2015 }
2016
2017 static int nvme_setup_host_mem(struct nvme_dev *dev)
2018 {
2019         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2020         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2021         u64 min = (u64)dev->ctrl.hmmin * 4096;
2022         u32 enable_bits = NVME_HOST_MEM_ENABLE;
2023         int ret;
2024
2025         preferred = min(preferred, max);
2026         if (min > max) {
2027                 dev_warn(dev->ctrl.device,
2028                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2029                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2030                 nvme_free_host_mem(dev);
2031                 return 0;
2032         }
2033
2034         /*
2035          * If we already have a buffer allocated check if we can reuse it.
2036          */
2037         if (dev->host_mem_descs) {
2038                 if (dev->host_mem_size >= min)
2039                         enable_bits |= NVME_HOST_MEM_RETURN;
2040                 else
2041                         nvme_free_host_mem(dev);
2042         }
2043
2044         if (!dev->host_mem_descs) {
2045                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2046                         dev_warn(dev->ctrl.device,
2047                                 "failed to allocate host memory buffer.\n");
2048                         return 0; /* controller must work without HMB */
2049                 }
2050
2051                 dev_info(dev->ctrl.device,
2052                         "allocated %lld MiB host memory buffer.\n",
2053                         dev->host_mem_size >> ilog2(SZ_1M));
2054         }
2055
2056         ret = nvme_set_host_mem(dev, enable_bits);
2057         if (ret)
2058                 nvme_free_host_mem(dev);
2059         return ret;
2060 }
2061
2062 /*
2063  * nirqs is the number of interrupts available for write and read
2064  * queues. The core already reserved an interrupt for the admin queue.
2065  */
2066 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2067 {
2068         struct nvme_dev *dev = affd->priv;
2069         unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2070
2071         /*
2072          * If there is no interrupt available for queues, ensure that
2073          * the default queue is set to 1. The affinity set size is
2074          * also set to one, but the irq core ignores it for this case.
2075          *
2076          * If only one interrupt is available or 'write_queue' == 0, combine
2077          * write and read queues.
2078          *
2079          * If 'write_queues' > 0, ensure it leaves room for at least one read
2080          * queue.
2081          */
2082         if (!nrirqs) {
2083                 nrirqs = 1;
2084                 nr_read_queues = 0;
2085         } else if (nrirqs == 1 || !nr_write_queues) {
2086                 nr_read_queues = 0;
2087         } else if (nr_write_queues >= nrirqs) {
2088                 nr_read_queues = 1;
2089         } else {
2090                 nr_read_queues = nrirqs - nr_write_queues;
2091         }
2092
2093         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2094         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2095         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2096         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2097         affd->nr_sets = nr_read_queues ? 2 : 1;
2098 }
2099
2100 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2101 {
2102         struct pci_dev *pdev = to_pci_dev(dev->dev);
2103         struct irq_affinity affd = {
2104                 .pre_vectors    = 1,
2105                 .calc_sets      = nvme_calc_irq_sets,
2106                 .priv           = dev,
2107         };
2108         unsigned int irq_queues, poll_queues;
2109
2110         /*
2111          * Poll queues don't need interrupts, but we need at least one I/O queue
2112          * left over for non-polled I/O.
2113          */
2114         poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2115         dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2116
2117         /*
2118          * Initialize for the single interrupt case, will be updated in
2119          * nvme_calc_irq_sets().
2120          */
2121         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2122         dev->io_queues[HCTX_TYPE_READ] = 0;
2123
2124         /*
2125          * We need interrupts for the admin queue and each non-polled I/O queue,
2126          * but some Apple controllers require all queues to use the first
2127          * vector.
2128          */
2129         irq_queues = 1;
2130         if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2131                 irq_queues += (nr_io_queues - poll_queues);
2132         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2133                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2134 }
2135
2136 static void nvme_disable_io_queues(struct nvme_dev *dev)
2137 {
2138         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2139                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2140 }
2141
2142 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2143 {
2144         /*
2145          * If tags are shared with admin queue (Apple bug), then
2146          * make sure we only use one IO queue.
2147          */
2148         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2149                 return 1;
2150         return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2151 }
2152
2153 static int nvme_setup_io_queues(struct nvme_dev *dev)
2154 {
2155         struct nvme_queue *adminq = &dev->queues[0];
2156         struct pci_dev *pdev = to_pci_dev(dev->dev);
2157         unsigned int nr_io_queues;
2158         unsigned long size;
2159         int result;
2160
2161         /*
2162          * Sample the module parameters once at reset time so that we have
2163          * stable values to work with.
2164          */
2165         dev->nr_write_queues = write_queues;
2166         dev->nr_poll_queues = poll_queues;
2167
2168         nr_io_queues = dev->nr_allocated_queues - 1;
2169         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2170         if (result < 0)
2171                 return result;
2172
2173         if (nr_io_queues == 0)
2174                 return 0;
2175
2176         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2177
2178         if (dev->cmb_use_sqes) {
2179                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2180                                 sizeof(struct nvme_command));
2181                 if (result > 0)
2182                         dev->q_depth = result;
2183                 else
2184                         dev->cmb_use_sqes = false;
2185         }
2186
2187         do {
2188                 size = db_bar_size(dev, nr_io_queues);
2189                 result = nvme_remap_bar(dev, size);
2190                 if (!result)
2191                         break;
2192                 if (!--nr_io_queues)
2193                         return -ENOMEM;
2194         } while (1);
2195         adminq->q_db = dev->dbs;
2196
2197  retry:
2198         /* Deregister the admin queue's interrupt */
2199         pci_free_irq(pdev, 0, adminq);
2200
2201         /*
2202          * If we enable msix early due to not intx, disable it again before
2203          * setting up the full range we need.
2204          */
2205         pci_free_irq_vectors(pdev);
2206
2207         result = nvme_setup_irqs(dev, nr_io_queues);
2208         if (result <= 0)
2209                 return -EIO;
2210
2211         dev->num_vecs = result;
2212         result = max(result - 1, 1);
2213         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2214
2215         /*
2216          * Should investigate if there's a performance win from allocating
2217          * more queues than interrupt vectors; it might allow the submission
2218          * path to scale better, even if the receive path is limited by the
2219          * number of interrupts.
2220          */
2221         result = queue_request_irq(adminq);
2222         if (result)
2223                 return result;
2224         set_bit(NVMEQ_ENABLED, &adminq->flags);
2225
2226         result = nvme_create_io_queues(dev);
2227         if (result || dev->online_queues < 2)
2228                 return result;
2229
2230         if (dev->online_queues - 1 < dev->max_qid) {
2231                 nr_io_queues = dev->online_queues - 1;
2232                 nvme_disable_io_queues(dev);
2233                 nvme_suspend_io_queues(dev);
2234                 goto retry;
2235         }
2236         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2237                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2238                                         dev->io_queues[HCTX_TYPE_READ],
2239                                         dev->io_queues[HCTX_TYPE_POLL]);
2240         return 0;
2241 }
2242
2243 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2244 {
2245         struct nvme_queue *nvmeq = req->end_io_data;
2246
2247         blk_mq_free_request(req);
2248         complete(&nvmeq->delete_done);
2249 }
2250
2251 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2252 {
2253         struct nvme_queue *nvmeq = req->end_io_data;
2254
2255         if (error)
2256                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2257
2258         nvme_del_queue_end(req, error);
2259 }
2260
2261 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2262 {
2263         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2264         struct request *req;
2265         struct nvme_command cmd;
2266
2267         memset(&cmd, 0, sizeof(cmd));
2268         cmd.delete_queue.opcode = opcode;
2269         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2270
2271         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2272         if (IS_ERR(req))
2273                 return PTR_ERR(req);
2274
2275         req->end_io_data = nvmeq;
2276
2277         init_completion(&nvmeq->delete_done);
2278         blk_execute_rq_nowait(NULL, req, false,
2279                         opcode == nvme_admin_delete_cq ?
2280                                 nvme_del_cq_end : nvme_del_queue_end);
2281         return 0;
2282 }
2283
2284 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2285 {
2286         int nr_queues = dev->online_queues - 1, sent = 0;
2287         unsigned long timeout;
2288
2289  retry:
2290         timeout = NVME_ADMIN_TIMEOUT;
2291         while (nr_queues > 0) {
2292                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2293                         break;
2294                 nr_queues--;
2295                 sent++;
2296         }
2297         while (sent) {
2298                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2299
2300                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2301                                 timeout);
2302                 if (timeout == 0)
2303                         return false;
2304
2305                 sent--;
2306                 if (nr_queues)
2307                         goto retry;
2308         }
2309         return true;
2310 }
2311
2312 static void nvme_dev_add(struct nvme_dev *dev)
2313 {
2314         int ret;
2315
2316         if (!dev->ctrl.tagset) {
2317                 dev->tagset.ops = &nvme_mq_ops;
2318                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2319                 dev->tagset.nr_maps = 2; /* default + read */
2320                 if (dev->io_queues[HCTX_TYPE_POLL])
2321                         dev->tagset.nr_maps++;
2322                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2323                 dev->tagset.numa_node = dev->ctrl.numa_node;
2324                 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2325                                                 BLK_MQ_MAX_DEPTH) - 1;
2326                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2327                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2328                 dev->tagset.driver_data = dev;
2329
2330                 /*
2331                  * Some Apple controllers requires tags to be unique
2332                  * across admin and IO queue, so reserve the first 32
2333                  * tags of the IO queue.
2334                  */
2335                 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2336                         dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2337
2338                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2339                 if (ret) {
2340                         dev_warn(dev->ctrl.device,
2341                                 "IO queues tagset allocation failed %d\n", ret);
2342                         return;
2343                 }
2344                 dev->ctrl.tagset = &dev->tagset;
2345         } else {
2346                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2347
2348                 /* Free previously allocated queues that are no longer usable */
2349                 nvme_free_queues(dev, dev->online_queues);
2350         }
2351
2352         nvme_dbbuf_set(dev);
2353 }
2354
2355 static int nvme_pci_enable(struct nvme_dev *dev)
2356 {
2357         int result = -ENOMEM;
2358         struct pci_dev *pdev = to_pci_dev(dev->dev);
2359         int dma_address_bits = 64;
2360
2361         if (pci_enable_device_mem(pdev))
2362                 return result;
2363
2364         pci_set_master(pdev);
2365
2366         if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2367                 dma_address_bits = 48;
2368         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2369                 goto disable;
2370
2371         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2372                 result = -ENODEV;
2373                 goto disable;
2374         }
2375
2376         /*
2377          * Some devices and/or platforms don't advertise or work with INTx
2378          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2379          * adjust this later.
2380          */
2381         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2382         if (result < 0)
2383                 return result;
2384
2385         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2386
2387         dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2388                                 io_queue_depth);
2389         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2390         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2391         dev->dbs = dev->bar + 4096;
2392
2393         /*
2394          * Some Apple controllers require a non-standard SQE size.
2395          * Interestingly they also seem to ignore the CC:IOSQES register
2396          * so we don't bother updating it here.
2397          */
2398         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2399                 dev->io_sqes = 7;
2400         else
2401                 dev->io_sqes = NVME_NVM_IOSQES;
2402
2403         /*
2404          * Temporary fix for the Apple controller found in the MacBook8,1 and
2405          * some MacBook7,1 to avoid controller resets and data loss.
2406          */
2407         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2408                 dev->q_depth = 2;
2409                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2410                         "set queue depth=%u to work around controller resets\n",
2411                         dev->q_depth);
2412         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2413                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2414                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2415                 dev->q_depth = 64;
2416                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2417                         "set queue depth=%u\n", dev->q_depth);
2418         }
2419
2420         /*
2421          * Controllers with the shared tags quirk need the IO queue to be
2422          * big enough so that we get 32 tags for the admin queue
2423          */
2424         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2425             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2426                 dev->q_depth = NVME_AQ_DEPTH + 2;
2427                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2428                          dev->q_depth);
2429         }
2430
2431
2432         nvme_map_cmb(dev);
2433
2434         pci_enable_pcie_error_reporting(pdev);
2435         pci_save_state(pdev);
2436         return 0;
2437
2438  disable:
2439         pci_disable_device(pdev);
2440         return result;
2441 }
2442
2443 static void nvme_dev_unmap(struct nvme_dev *dev)
2444 {
2445         if (dev->bar)
2446                 iounmap(dev->bar);
2447         pci_release_mem_regions(to_pci_dev(dev->dev));
2448 }
2449
2450 static void nvme_pci_disable(struct nvme_dev *dev)
2451 {
2452         struct pci_dev *pdev = to_pci_dev(dev->dev);
2453
2454         pci_free_irq_vectors(pdev);
2455
2456         if (pci_is_enabled(pdev)) {
2457                 pci_disable_pcie_error_reporting(pdev);
2458                 pci_disable_device(pdev);
2459         }
2460 }
2461
2462 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2463 {
2464         bool dead = true, freeze = false;
2465         struct pci_dev *pdev = to_pci_dev(dev->dev);
2466
2467         mutex_lock(&dev->shutdown_lock);
2468         if (pci_is_enabled(pdev)) {
2469                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2470
2471                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2472                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2473                         freeze = true;
2474                         nvme_start_freeze(&dev->ctrl);
2475                 }
2476                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2477                         pdev->error_state  != pci_channel_io_normal);
2478         }
2479
2480         /*
2481          * Give the controller a chance to complete all entered requests if
2482          * doing a safe shutdown.
2483          */
2484         if (!dead && shutdown && freeze)
2485                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2486
2487         nvme_stop_queues(&dev->ctrl);
2488
2489         if (!dead && dev->ctrl.queue_count > 0) {
2490                 nvme_disable_io_queues(dev);
2491                 nvme_disable_admin_queue(dev, shutdown);
2492         }
2493         nvme_suspend_io_queues(dev);
2494         nvme_suspend_queue(&dev->queues[0]);
2495         nvme_pci_disable(dev);
2496         nvme_reap_pending_cqes(dev);
2497
2498         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2499         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2500         blk_mq_tagset_wait_completed_request(&dev->tagset);
2501         blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2502
2503         /*
2504          * The driver will not be starting up queues again if shutting down so
2505          * must flush all entered requests to their failed completion to avoid
2506          * deadlocking blk-mq hot-cpu notifier.
2507          */
2508         if (shutdown) {
2509                 nvme_start_queues(&dev->ctrl);
2510                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2511                         blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2512         }
2513         mutex_unlock(&dev->shutdown_lock);
2514 }
2515
2516 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2517 {
2518         if (!nvme_wait_reset(&dev->ctrl))
2519                 return -EBUSY;
2520         nvme_dev_disable(dev, shutdown);
2521         return 0;
2522 }
2523
2524 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2525 {
2526         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2527                                                 NVME_CTRL_PAGE_SIZE,
2528                                                 NVME_CTRL_PAGE_SIZE, 0);
2529         if (!dev->prp_page_pool)
2530                 return -ENOMEM;
2531
2532         /* Optimisation for I/Os between 4k and 128k */
2533         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2534                                                 256, 256, 0);
2535         if (!dev->prp_small_pool) {
2536                 dma_pool_destroy(dev->prp_page_pool);
2537                 return -ENOMEM;
2538         }
2539         return 0;
2540 }
2541
2542 static void nvme_release_prp_pools(struct nvme_dev *dev)
2543 {
2544         dma_pool_destroy(dev->prp_page_pool);
2545         dma_pool_destroy(dev->prp_small_pool);
2546 }
2547
2548 static void nvme_free_tagset(struct nvme_dev *dev)
2549 {
2550         if (dev->tagset.tags)
2551                 blk_mq_free_tag_set(&dev->tagset);
2552         dev->ctrl.tagset = NULL;
2553 }
2554
2555 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2556 {
2557         struct nvme_dev *dev = to_nvme_dev(ctrl);
2558
2559         nvme_dbbuf_dma_free(dev);
2560         nvme_free_tagset(dev);
2561         if (dev->ctrl.admin_q)
2562                 blk_put_queue(dev->ctrl.admin_q);
2563         free_opal_dev(dev->ctrl.opal_dev);
2564         mempool_destroy(dev->iod_mempool);
2565         put_device(dev->dev);
2566         kfree(dev->queues);
2567         kfree(dev);
2568 }
2569
2570 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2571 {
2572         /*
2573          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2574          * may be holding this pci_dev's device lock.
2575          */
2576         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2577         nvme_get_ctrl(&dev->ctrl);
2578         nvme_dev_disable(dev, false);
2579         nvme_kill_queues(&dev->ctrl);
2580         if (!queue_work(nvme_wq, &dev->remove_work))
2581                 nvme_put_ctrl(&dev->ctrl);
2582 }
2583
2584 static void nvme_reset_work(struct work_struct *work)
2585 {
2586         struct nvme_dev *dev =
2587                 container_of(work, struct nvme_dev, ctrl.reset_work);
2588         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2589         int result;
2590
2591         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2592                 result = -ENODEV;
2593                 goto out;
2594         }
2595
2596         /*
2597          * If we're called to reset a live controller first shut it down before
2598          * moving on.
2599          */
2600         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2601                 nvme_dev_disable(dev, false);
2602         nvme_sync_queues(&dev->ctrl);
2603
2604         mutex_lock(&dev->shutdown_lock);
2605         result = nvme_pci_enable(dev);
2606         if (result)
2607                 goto out_unlock;
2608
2609         result = nvme_pci_configure_admin_queue(dev);
2610         if (result)
2611                 goto out_unlock;
2612
2613         result = nvme_alloc_admin_tags(dev);
2614         if (result)
2615                 goto out_unlock;
2616
2617         /*
2618          * Limit the max command size to prevent iod->sg allocations going
2619          * over a single page.
2620          */
2621         dev->ctrl.max_hw_sectors = min_t(u32,
2622                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2623         dev->ctrl.max_segments = NVME_MAX_SEGS;
2624
2625         /*
2626          * Don't limit the IOMMU merged segment size.
2627          */
2628         dma_set_max_seg_size(dev->dev, 0xffffffff);
2629         dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2630
2631         mutex_unlock(&dev->shutdown_lock);
2632
2633         /*
2634          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2635          * initializing procedure here.
2636          */
2637         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2638                 dev_warn(dev->ctrl.device,
2639                         "failed to mark controller CONNECTING\n");
2640                 result = -EBUSY;
2641                 goto out;
2642         }
2643
2644         /*
2645          * We do not support an SGL for metadata (yet), so we are limited to a
2646          * single integrity segment for the separate metadata pointer.
2647          */
2648         dev->ctrl.max_integrity_segments = 1;
2649
2650         result = nvme_init_ctrl_finish(&dev->ctrl);
2651         if (result)
2652                 goto out;
2653
2654         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2655                 if (!dev->ctrl.opal_dev)
2656                         dev->ctrl.opal_dev =
2657                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2658                 else if (was_suspend)
2659                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2660         } else {
2661                 free_opal_dev(dev->ctrl.opal_dev);
2662                 dev->ctrl.opal_dev = NULL;
2663         }
2664
2665         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2666                 result = nvme_dbbuf_dma_alloc(dev);
2667                 if (result)
2668                         dev_warn(dev->dev,
2669                                  "unable to allocate dma for dbbuf\n");
2670         }
2671
2672         if (dev->ctrl.hmpre) {
2673                 result = nvme_setup_host_mem(dev);
2674                 if (result < 0)
2675                         goto out;
2676         }
2677
2678         result = nvme_setup_io_queues(dev);
2679         if (result)
2680                 goto out;
2681
2682         /*
2683          * Keep the controller around but remove all namespaces if we don't have
2684          * any working I/O queue.
2685          */
2686         if (dev->online_queues < 2) {
2687                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2688                 nvme_kill_queues(&dev->ctrl);
2689                 nvme_remove_namespaces(&dev->ctrl);
2690                 nvme_free_tagset(dev);
2691         } else {
2692                 nvme_start_queues(&dev->ctrl);
2693                 nvme_wait_freeze(&dev->ctrl);
2694                 nvme_dev_add(dev);
2695                 nvme_unfreeze(&dev->ctrl);
2696         }
2697
2698         /*
2699          * If only admin queue live, keep it to do further investigation or
2700          * recovery.
2701          */
2702         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2703                 dev_warn(dev->ctrl.device,
2704                         "failed to mark controller live state\n");
2705                 result = -ENODEV;
2706                 goto out;
2707         }
2708
2709         nvme_start_ctrl(&dev->ctrl);
2710         return;
2711
2712  out_unlock:
2713         mutex_unlock(&dev->shutdown_lock);
2714  out:
2715         if (result)
2716                 dev_warn(dev->ctrl.device,
2717                          "Removing after probe failure status: %d\n", result);
2718         nvme_remove_dead_ctrl(dev);
2719 }
2720
2721 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2722 {
2723         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2724         struct pci_dev *pdev = to_pci_dev(dev->dev);
2725
2726         if (pci_get_drvdata(pdev))
2727                 device_release_driver(&pdev->dev);
2728         nvme_put_ctrl(&dev->ctrl);
2729 }
2730
2731 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2732 {
2733         *val = readl(to_nvme_dev(ctrl)->bar + off);
2734         return 0;
2735 }
2736
2737 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2738 {
2739         writel(val, to_nvme_dev(ctrl)->bar + off);
2740         return 0;
2741 }
2742
2743 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2744 {
2745         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2746         return 0;
2747 }
2748
2749 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2750 {
2751         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2752
2753         return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2754 }
2755
2756 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2757         .name                   = "pcie",
2758         .module                 = THIS_MODULE,
2759         .flags                  = NVME_F_METADATA_SUPPORTED |
2760                                   NVME_F_PCI_P2PDMA,
2761         .reg_read32             = nvme_pci_reg_read32,
2762         .reg_write32            = nvme_pci_reg_write32,
2763         .reg_read64             = nvme_pci_reg_read64,
2764         .free_ctrl              = nvme_pci_free_ctrl,
2765         .submit_async_event     = nvme_pci_submit_async_event,
2766         .get_address            = nvme_pci_get_address,
2767 };
2768
2769 static int nvme_dev_map(struct nvme_dev *dev)
2770 {
2771         struct pci_dev *pdev = to_pci_dev(dev->dev);
2772
2773         if (pci_request_mem_regions(pdev, "nvme"))
2774                 return -ENODEV;
2775
2776         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2777                 goto release;
2778
2779         return 0;
2780   release:
2781         pci_release_mem_regions(pdev);
2782         return -ENODEV;
2783 }
2784
2785 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2786 {
2787         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2788                 /*
2789                  * Several Samsung devices seem to drop off the PCIe bus
2790                  * randomly when APST is on and uses the deepest sleep state.
2791                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2792                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2793                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2794                  * laptops.
2795                  */
2796                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2797                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2798                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2799                         return NVME_QUIRK_NO_DEEPEST_PS;
2800         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2801                 /*
2802                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2803                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2804                  * within few minutes after bootup on a Coffee Lake board -
2805                  * ASUS PRIME Z370-A
2806                  */
2807                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2808                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2809                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2810                         return NVME_QUIRK_NO_APST;
2811         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2812                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2813                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2814                 /*
2815                  * Forcing to use host managed nvme power settings for
2816                  * lowest idle power with quick resume latency on
2817                  * Samsung and Toshiba SSDs based on suspend behavior
2818                  * on Coffee Lake board for LENOVO C640
2819                  */
2820                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2821                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2822                         return NVME_QUIRK_SIMPLE_SUSPEND;
2823         }
2824
2825         return 0;
2826 }
2827
2828 #ifdef CONFIG_ACPI
2829 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2830 {
2831         struct acpi_device *adev;
2832         struct pci_dev *root;
2833         acpi_handle handle;
2834         acpi_status status;
2835         u8 val;
2836
2837         /*
2838          * Look for _DSD property specifying that the storage device on the port
2839          * must use D3 to support deep platform power savings during
2840          * suspend-to-idle.
2841          */
2842         root = pcie_find_root_port(dev);
2843         if (!root)
2844                 return false;
2845
2846         adev = ACPI_COMPANION(&root->dev);
2847         if (!adev)
2848                 return false;
2849
2850         /*
2851          * The property is defined in the PXSX device for South complex ports
2852          * and in the PEGP device for North complex ports.
2853          */
2854         status = acpi_get_handle(adev->handle, "PXSX", &handle);
2855         if (ACPI_FAILURE(status)) {
2856                 status = acpi_get_handle(adev->handle, "PEGP", &handle);
2857                 if (ACPI_FAILURE(status))
2858                         return false;
2859         }
2860
2861         if (acpi_bus_get_device(handle, &adev))
2862                 return false;
2863
2864         if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2865                         &val))
2866                 return false;
2867         return val == 1;
2868 }
2869 #else
2870 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2871 {
2872         return false;
2873 }
2874 #endif /* CONFIG_ACPI */
2875
2876 static void nvme_async_probe(void *data, async_cookie_t cookie)
2877 {
2878         struct nvme_dev *dev = data;
2879
2880         flush_work(&dev->ctrl.reset_work);
2881         flush_work(&dev->ctrl.scan_work);
2882         nvme_put_ctrl(&dev->ctrl);
2883 }
2884
2885 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2886 {
2887         int node, result = -ENOMEM;
2888         struct nvme_dev *dev;
2889         unsigned long quirks = id->driver_data;
2890         size_t alloc_size;
2891
2892         node = dev_to_node(&pdev->dev);
2893         if (node == NUMA_NO_NODE)
2894                 set_dev_node(&pdev->dev, first_memory_node);
2895
2896         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2897         if (!dev)
2898                 return -ENOMEM;
2899
2900         dev->nr_write_queues = write_queues;
2901         dev->nr_poll_queues = poll_queues;
2902         dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2903         dev->queues = kcalloc_node(dev->nr_allocated_queues,
2904                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2905         if (!dev->queues)
2906                 goto free;
2907
2908         dev->dev = get_device(&pdev->dev);
2909         pci_set_drvdata(pdev, dev);
2910
2911         result = nvme_dev_map(dev);
2912         if (result)
2913                 goto put_pci;
2914
2915         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2916         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2917         mutex_init(&dev->shutdown_lock);
2918
2919         result = nvme_setup_prp_pools(dev);
2920         if (result)
2921                 goto unmap;
2922
2923         quirks |= check_vendor_combination_bug(pdev);
2924
2925         if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2926                 /*
2927                  * Some systems use a bios work around to ask for D3 on
2928                  * platforms that support kernel managed suspend.
2929                  */
2930                 dev_info(&pdev->dev,
2931                          "platform quirk: setting simple suspend\n");
2932                 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2933         }
2934
2935         /*
2936          * Double check that our mempool alloc size will cover the biggest
2937          * command we support.
2938          */
2939         alloc_size = nvme_pci_iod_alloc_size();
2940         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2941
2942         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2943                                                 mempool_kfree,
2944                                                 (void *) alloc_size,
2945                                                 GFP_KERNEL, node);
2946         if (!dev->iod_mempool) {
2947                 result = -ENOMEM;
2948                 goto release_pools;
2949         }
2950
2951         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2952                         quirks);
2953         if (result)
2954                 goto release_mempool;
2955
2956         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2957
2958         nvme_reset_ctrl(&dev->ctrl);
2959         async_schedule(nvme_async_probe, dev);
2960
2961         return 0;
2962
2963  release_mempool:
2964         mempool_destroy(dev->iod_mempool);
2965  release_pools:
2966         nvme_release_prp_pools(dev);
2967  unmap:
2968         nvme_dev_unmap(dev);
2969  put_pci:
2970         put_device(dev->dev);
2971  free:
2972         kfree(dev->queues);
2973         kfree(dev);
2974         return result;
2975 }
2976
2977 static void nvme_reset_prepare(struct pci_dev *pdev)
2978 {
2979         struct nvme_dev *dev = pci_get_drvdata(pdev);
2980
2981         /*
2982          * We don't need to check the return value from waiting for the reset
2983          * state as pci_dev device lock is held, making it impossible to race
2984          * with ->remove().
2985          */
2986         nvme_disable_prepare_reset(dev, false);
2987         nvme_sync_queues(&dev->ctrl);
2988 }
2989
2990 static void nvme_reset_done(struct pci_dev *pdev)
2991 {
2992         struct nvme_dev *dev = pci_get_drvdata(pdev);
2993
2994         if (!nvme_try_sched_reset(&dev->ctrl))
2995                 flush_work(&dev->ctrl.reset_work);
2996 }
2997
2998 static void nvme_shutdown(struct pci_dev *pdev)
2999 {
3000         struct nvme_dev *dev = pci_get_drvdata(pdev);
3001
3002         nvme_disable_prepare_reset(dev, true);
3003 }
3004
3005 /*
3006  * The driver's remove may be called on a device in a partially initialized
3007  * state. This function must not have any dependencies on the device state in
3008  * order to proceed.
3009  */
3010 static void nvme_remove(struct pci_dev *pdev)
3011 {
3012         struct nvme_dev *dev = pci_get_drvdata(pdev);
3013
3014         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3015         pci_set_drvdata(pdev, NULL);
3016
3017         if (!pci_device_is_present(pdev)) {
3018                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3019                 nvme_dev_disable(dev, true);
3020                 nvme_dev_remove_admin(dev);
3021         }
3022
3023         flush_work(&dev->ctrl.reset_work);
3024         nvme_stop_ctrl(&dev->ctrl);
3025         nvme_remove_namespaces(&dev->ctrl);
3026         nvme_dev_disable(dev, true);
3027         nvme_release_cmb(dev);
3028         nvme_free_host_mem(dev);
3029         nvme_dev_remove_admin(dev);
3030         nvme_free_queues(dev, 0);
3031         nvme_release_prp_pools(dev);
3032         nvme_dev_unmap(dev);
3033         nvme_uninit_ctrl(&dev->ctrl);
3034 }
3035
3036 #ifdef CONFIG_PM_SLEEP
3037 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3038 {
3039         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3040 }
3041
3042 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3043 {
3044         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3045 }
3046
3047 static int nvme_resume(struct device *dev)
3048 {
3049         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3050         struct nvme_ctrl *ctrl = &ndev->ctrl;
3051
3052         if (ndev->last_ps == U32_MAX ||
3053             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3054                 return nvme_try_sched_reset(&ndev->ctrl);
3055         return 0;
3056 }
3057
3058 static int nvme_suspend(struct device *dev)
3059 {
3060         struct pci_dev *pdev = to_pci_dev(dev);
3061         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3062         struct nvme_ctrl *ctrl = &ndev->ctrl;
3063         int ret = -EBUSY;
3064
3065         ndev->last_ps = U32_MAX;
3066
3067         /*
3068          * The platform does not remove power for a kernel managed suspend so
3069          * use host managed nvme power settings for lowest idle power if
3070          * possible. This should have quicker resume latency than a full device
3071          * shutdown.  But if the firmware is involved after the suspend or the
3072          * device does not support any non-default power states, shut down the
3073          * device fully.
3074          *
3075          * If ASPM is not enabled for the device, shut down the device and allow
3076          * the PCI bus layer to put it into D3 in order to take the PCIe link
3077          * down, so as to allow the platform to achieve its minimum low-power
3078          * state (which may not be possible if the link is up).
3079          *
3080          * If a host memory buffer is enabled, shut down the device as the NVMe
3081          * specification allows the device to access the host memory buffer in
3082          * host DRAM from all power states, but hosts will fail access to DRAM
3083          * during S3.
3084          */
3085         if (pm_suspend_via_firmware() || !ctrl->npss ||
3086             !pcie_aspm_enabled(pdev) ||
3087             ndev->nr_host_mem_descs ||
3088             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3089                 return nvme_disable_prepare_reset(ndev, true);
3090
3091         nvme_start_freeze(ctrl);
3092         nvme_wait_freeze(ctrl);
3093         nvme_sync_queues(ctrl);
3094
3095         if (ctrl->state != NVME_CTRL_LIVE)
3096                 goto unfreeze;
3097
3098         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3099         if (ret < 0)
3100                 goto unfreeze;
3101
3102         /*
3103          * A saved state prevents pci pm from generically controlling the
3104          * device's power. If we're using protocol specific settings, we don't
3105          * want pci interfering.
3106          */
3107         pci_save_state(pdev);
3108
3109         ret = nvme_set_power_state(ctrl, ctrl->npss);
3110         if (ret < 0)
3111                 goto unfreeze;
3112
3113         if (ret) {
3114                 /* discard the saved state */
3115                 pci_load_saved_state(pdev, NULL);
3116
3117                 /*
3118                  * Clearing npss forces a controller reset on resume. The
3119                  * correct value will be rediscovered then.
3120                  */
3121                 ret = nvme_disable_prepare_reset(ndev, true);
3122                 ctrl->npss = 0;
3123         }
3124 unfreeze:
3125         nvme_unfreeze(ctrl);
3126         return ret;
3127 }
3128
3129 static int nvme_simple_suspend(struct device *dev)
3130 {
3131         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3132
3133         return nvme_disable_prepare_reset(ndev, true);
3134 }
3135
3136 static int nvme_simple_resume(struct device *dev)
3137 {
3138         struct pci_dev *pdev = to_pci_dev(dev);
3139         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3140
3141         return nvme_try_sched_reset(&ndev->ctrl);
3142 }
3143
3144 static const struct dev_pm_ops nvme_dev_pm_ops = {
3145         .suspend        = nvme_suspend,
3146         .resume         = nvme_resume,
3147         .freeze         = nvme_simple_suspend,
3148         .thaw           = nvme_simple_resume,
3149         .poweroff       = nvme_simple_suspend,
3150         .restore        = nvme_simple_resume,
3151 };
3152 #endif /* CONFIG_PM_SLEEP */
3153
3154 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3155                                                 pci_channel_state_t state)
3156 {
3157         struct nvme_dev *dev = pci_get_drvdata(pdev);
3158
3159         /*
3160          * A frozen channel requires a reset. When detected, this method will
3161          * shutdown the controller to quiesce. The controller will be restarted
3162          * after the slot reset through driver's slot_reset callback.
3163          */
3164         switch (state) {
3165         case pci_channel_io_normal:
3166                 return PCI_ERS_RESULT_CAN_RECOVER;
3167         case pci_channel_io_frozen:
3168                 dev_warn(dev->ctrl.device,
3169                         "frozen state error detected, reset controller\n");
3170                 nvme_dev_disable(dev, false);
3171                 return PCI_ERS_RESULT_NEED_RESET;
3172         case pci_channel_io_perm_failure:
3173                 dev_warn(dev->ctrl.device,
3174                         "failure state error detected, request disconnect\n");
3175                 return PCI_ERS_RESULT_DISCONNECT;
3176         }
3177         return PCI_ERS_RESULT_NEED_RESET;
3178 }
3179
3180 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3181 {
3182         struct nvme_dev *dev = pci_get_drvdata(pdev);
3183
3184         dev_info(dev->ctrl.device, "restart after slot reset\n");
3185         pci_restore_state(pdev);
3186         nvme_reset_ctrl(&dev->ctrl);
3187         return PCI_ERS_RESULT_RECOVERED;
3188 }
3189
3190 static void nvme_error_resume(struct pci_dev *pdev)
3191 {
3192         struct nvme_dev *dev = pci_get_drvdata(pdev);
3193
3194         flush_work(&dev->ctrl.reset_work);
3195 }
3196
3197 static const struct pci_error_handlers nvme_err_handler = {
3198         .error_detected = nvme_error_detected,
3199         .slot_reset     = nvme_slot_reset,
3200         .resume         = nvme_error_resume,
3201         .reset_prepare  = nvme_reset_prepare,
3202         .reset_done     = nvme_reset_done,
3203 };
3204
3205 static const struct pci_device_id nvme_id_table[] = {
3206         { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3207                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3208                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3209         { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3210                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3211                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3212         { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3213                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3214                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3215         { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3216                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3217                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3218         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3219                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3220                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3221                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3222                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3223         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3224                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3225         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3226                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3227                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3228         { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3229                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3230         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3231                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3232                                 NVME_QUIRK_NO_NS_DESC_LIST, },
3233         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3234                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3235         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3236                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3237         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3238                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3239         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3240                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3241         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3242                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3243                                 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3244                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3245         { PCI_DEVICE(0x1987, 0x5016),   /* Phison E16 */
3246                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3247         { PCI_DEVICE(0x1b4b, 0x1092),   /* Lexar 256 GB SSD */
3248                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3249                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3250         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3251                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3252         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3253                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3254         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3255                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3256         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3257                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3258         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3259                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3260                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3261         { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3262                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3263         { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3264                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3265         { PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3266                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3267         { PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3268                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3269         { PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3270                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3271         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3272                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3273         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3274                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3275         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3276                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3277         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3278                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3279         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3280                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3281         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3282                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3283         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3284                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3285         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3286         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3287                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3288                                 NVME_QUIRK_128_BYTES_SQES |
3289                                 NVME_QUIRK_SHARED_TAGS },
3290
3291         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3292         { 0, }
3293 };
3294 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3295
3296 static struct pci_driver nvme_driver = {
3297         .name           = "nvme",
3298         .id_table       = nvme_id_table,
3299         .probe          = nvme_probe,
3300         .remove         = nvme_remove,
3301         .shutdown       = nvme_shutdown,
3302 #ifdef CONFIG_PM_SLEEP
3303         .driver         = {
3304                 .pm     = &nvme_dev_pm_ops,
3305         },
3306 #endif
3307         .sriov_configure = pci_sriov_configure_simple,
3308         .err_handler    = &nvme_err_handler,
3309 };
3310
3311 static int __init nvme_init(void)
3312 {
3313         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3314         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3315         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3316         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3317
3318         return pci_register_driver(&nvme_driver);
3319 }
3320
3321 static void __exit nvme_exit(void)
3322 {
3323         pci_unregister_driver(&nvme_driver);
3324         flush_workqueue(nvme_wq);
3325 }
3326
3327 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3328 MODULE_LICENSE("GPL");
3329 MODULE_VERSION("1.0");
3330 module_init(nvme_init);
3331 module_exit(nvme_exit);