953e59f56139202a1aee6308bf5ce6b74c0ed739
[linux-2.6-microblaze.git] / drivers / nvme / host / nvme.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2011-2014, Intel Corporation.
4  */
5
6 #ifndef _NVME_H
7 #define _NVME_H
8
9 #include <linux/nvme.h>
10 #include <linux/cdev.h>
11 #include <linux/pci.h>
12 #include <linux/kref.h>
13 #include <linux/blk-mq.h>
14 #include <linux/sed-opal.h>
15 #include <linux/fault-inject.h>
16 #include <linux/rcupdate.h>
17 #include <linux/wait.h>
18 #include <linux/t10-pi.h>
19
20 #include <trace/events/block.h>
21
22 extern unsigned int nvme_io_timeout;
23 #define NVME_IO_TIMEOUT (nvme_io_timeout * HZ)
24
25 extern unsigned int admin_timeout;
26 #define NVME_ADMIN_TIMEOUT      (admin_timeout * HZ)
27
28 #define NVME_DEFAULT_KATO       5
29
30 #ifdef CONFIG_ARCH_NO_SG_CHAIN
31 #define  NVME_INLINE_SG_CNT  0
32 #define  NVME_INLINE_METADATA_SG_CNT  0
33 #else
34 #define  NVME_INLINE_SG_CNT  2
35 #define  NVME_INLINE_METADATA_SG_CNT  1
36 #endif
37
38 /*
39  * Default to a 4K page size, with the intention to update this
40  * path in the future to accommodate architectures with differing
41  * kernel and IO page sizes.
42  */
43 #define NVME_CTRL_PAGE_SHIFT    12
44 #define NVME_CTRL_PAGE_SIZE     (1 << NVME_CTRL_PAGE_SHIFT)
45
46 extern struct workqueue_struct *nvme_wq;
47 extern struct workqueue_struct *nvme_reset_wq;
48 extern struct workqueue_struct *nvme_delete_wq;
49
50 /*
51  * List of workarounds for devices that required behavior not specified in
52  * the standard.
53  */
54 enum nvme_quirks {
55         /*
56          * Prefers I/O aligned to a stripe size specified in a vendor
57          * specific Identify field.
58          */
59         NVME_QUIRK_STRIPE_SIZE                  = (1 << 0),
60
61         /*
62          * The controller doesn't handle Identify value others than 0 or 1
63          * correctly.
64          */
65         NVME_QUIRK_IDENTIFY_CNS                 = (1 << 1),
66
67         /*
68          * The controller deterministically returns O's on reads to
69          * logical blocks that deallocate was called on.
70          */
71         NVME_QUIRK_DEALLOCATE_ZEROES            = (1 << 2),
72
73         /*
74          * The controller needs a delay before starts checking the device
75          * readiness, which is done by reading the NVME_CSTS_RDY bit.
76          */
77         NVME_QUIRK_DELAY_BEFORE_CHK_RDY         = (1 << 3),
78
79         /*
80          * APST should not be used.
81          */
82         NVME_QUIRK_NO_APST                      = (1 << 4),
83
84         /*
85          * The deepest sleep state should not be used.
86          */
87         NVME_QUIRK_NO_DEEPEST_PS                = (1 << 5),
88
89         /*
90          * Set MEDIUM priority on SQ creation
91          */
92         NVME_QUIRK_MEDIUM_PRIO_SQ               = (1 << 7),
93
94         /*
95          * Ignore device provided subnqn.
96          */
97         NVME_QUIRK_IGNORE_DEV_SUBNQN            = (1 << 8),
98
99         /*
100          * Broken Write Zeroes.
101          */
102         NVME_QUIRK_DISABLE_WRITE_ZEROES         = (1 << 9),
103
104         /*
105          * Force simple suspend/resume path.
106          */
107         NVME_QUIRK_SIMPLE_SUSPEND               = (1 << 10),
108
109         /*
110          * Use only one interrupt vector for all queues
111          */
112         NVME_QUIRK_SINGLE_VECTOR                = (1 << 11),
113
114         /*
115          * Use non-standard 128 bytes SQEs.
116          */
117         NVME_QUIRK_128_BYTES_SQES               = (1 << 12),
118
119         /*
120          * Prevent tag overlap between queues
121          */
122         NVME_QUIRK_SHARED_TAGS                  = (1 << 13),
123
124         /*
125          * Don't change the value of the temperature threshold feature
126          */
127         NVME_QUIRK_NO_TEMP_THRESH_CHANGE        = (1 << 14),
128
129         /*
130          * The controller doesn't handle the Identify Namespace
131          * Identification Descriptor list subcommand despite claiming
132          * NVMe 1.3 compliance.
133          */
134         NVME_QUIRK_NO_NS_DESC_LIST              = (1 << 15),
135
136         /*
137          * The controller does not properly handle DMA addresses over
138          * 48 bits.
139          */
140         NVME_QUIRK_DMA_ADDRESS_BITS_48          = (1 << 16),
141
142         /*
143          * The controller requires the command_id value be limited, so skip
144          * encoding the generation sequence number.
145          */
146         NVME_QUIRK_SKIP_CID_GEN                 = (1 << 17),
147
148         /*
149          * Reports garbage in the namespace identifiers (eui64, nguid, uuid).
150          */
151         NVME_QUIRK_BOGUS_NID                    = (1 << 18),
152 };
153
154 /*
155  * Common request structure for NVMe passthrough.  All drivers must have
156  * this structure as the first member of their request-private data.
157  */
158 struct nvme_request {
159         struct nvme_command     *cmd;
160         union nvme_result       result;
161         u8                      genctr;
162         u8                      retries;
163         u8                      flags;
164         u16                     status;
165 #ifdef CONFIG_NVME_MULTIPATH
166         unsigned long           start_time;
167 #endif
168         struct nvme_ctrl        *ctrl;
169 };
170
171 /*
172  * Mark a bio as coming in through the mpath node.
173  */
174 #define REQ_NVME_MPATH          REQ_DRV
175
176 enum {
177         NVME_REQ_CANCELLED              = (1 << 0),
178         NVME_REQ_USERCMD                = (1 << 1),
179         NVME_MPATH_IO_STATS             = (1 << 2),
180 };
181
182 static inline struct nvme_request *nvme_req(struct request *req)
183 {
184         return blk_mq_rq_to_pdu(req);
185 }
186
187 static inline u16 nvme_req_qid(struct request *req)
188 {
189         if (!req->q->queuedata)
190                 return 0;
191
192         return req->mq_hctx->queue_num + 1;
193 }
194
195 /* The below value is the specific amount of delay needed before checking
196  * readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
197  * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
198  * found empirically.
199  */
200 #define NVME_QUIRK_DELAY_AMOUNT         2300
201
202 /*
203  * enum nvme_ctrl_state: Controller state
204  *
205  * @NVME_CTRL_NEW:              New controller just allocated, initial state
206  * @NVME_CTRL_LIVE:             Controller is connected and I/O capable
207  * @NVME_CTRL_RESETTING:        Controller is resetting (or scheduled reset)
208  * @NVME_CTRL_CONNECTING:       Controller is disconnected, now connecting the
209  *                              transport
210  * @NVME_CTRL_DELETING:         Controller is deleting (or scheduled deletion)
211  * @NVME_CTRL_DELETING_NOIO:    Controller is deleting and I/O is not
212  *                              disabled/failed immediately. This state comes
213  *                              after all async event processing took place and
214  *                              before ns removal and the controller deletion
215  *                              progress
216  * @NVME_CTRL_DEAD:             Controller is non-present/unresponsive during
217  *                              shutdown or removal. In this case we forcibly
218  *                              kill all inflight I/O as they have no chance to
219  *                              complete
220  */
221 enum nvme_ctrl_state {
222         NVME_CTRL_NEW,
223         NVME_CTRL_LIVE,
224         NVME_CTRL_RESETTING,
225         NVME_CTRL_CONNECTING,
226         NVME_CTRL_DELETING,
227         NVME_CTRL_DELETING_NOIO,
228         NVME_CTRL_DEAD,
229 };
230
231 struct nvme_fault_inject {
232 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
233         struct fault_attr attr;
234         struct dentry *parent;
235         bool dont_retry;        /* DNR, do not retry */
236         u16 status;             /* status code */
237 #endif
238 };
239
240 enum nvme_ctrl_flags {
241         NVME_CTRL_FAILFAST_EXPIRED      = 0,
242         NVME_CTRL_ADMIN_Q_STOPPED       = 1,
243         NVME_CTRL_STARTED_ONCE          = 2,
244         NVME_CTRL_STOPPED               = 3,
245 };
246
247 struct nvme_ctrl {
248         bool comp_seen;
249         enum nvme_ctrl_state state;
250         bool identified;
251         spinlock_t lock;
252         struct mutex scan_lock;
253         const struct nvme_ctrl_ops *ops;
254         struct request_queue *admin_q;
255         struct request_queue *connect_q;
256         struct request_queue *fabrics_q;
257         struct device *dev;
258         int instance;
259         int numa_node;
260         struct blk_mq_tag_set *tagset;
261         struct blk_mq_tag_set *admin_tagset;
262         struct list_head namespaces;
263         struct rw_semaphore namespaces_rwsem;
264         struct device ctrl_device;
265         struct device *device;  /* char device */
266 #ifdef CONFIG_NVME_HWMON
267         struct device *hwmon_device;
268 #endif
269         struct cdev cdev;
270         struct work_struct reset_work;
271         struct work_struct delete_work;
272         wait_queue_head_t state_wq;
273
274         struct nvme_subsystem *subsys;
275         struct list_head subsys_entry;
276
277         struct opal_dev *opal_dev;
278
279         char name[12];
280         u16 cntlid;
281
282         u32 ctrl_config;
283         u16 mtfa;
284         u32 queue_count;
285
286         u64 cap;
287         u32 max_hw_sectors;
288         u32 max_segments;
289         u32 max_integrity_segments;
290         u32 max_discard_sectors;
291         u32 max_discard_segments;
292         u32 max_zeroes_sectors;
293 #ifdef CONFIG_BLK_DEV_ZONED
294         u32 max_zone_append;
295 #endif
296         u16 crdt[3];
297         u16 oncs;
298         u32 dmrsl;
299         u16 oacs;
300         u16 sqsize;
301         u32 max_namespaces;
302         atomic_t abort_limit;
303         u8 vwc;
304         u32 vs;
305         u32 sgls;
306         u16 kas;
307         u8 npss;
308         u8 apsta;
309         u16 wctemp;
310         u16 cctemp;
311         u32 oaes;
312         u32 aen_result;
313         u32 ctratt;
314         unsigned int shutdown_timeout;
315         unsigned int kato;
316         bool subsystem;
317         unsigned long quirks;
318         struct nvme_id_power_state psd[32];
319         struct nvme_effects_log *effects;
320         struct xarray cels;
321         struct work_struct scan_work;
322         struct work_struct async_event_work;
323         struct delayed_work ka_work;
324         struct delayed_work failfast_work;
325         struct nvme_command ka_cmd;
326         struct work_struct fw_act_work;
327         unsigned long events;
328
329 #ifdef CONFIG_NVME_MULTIPATH
330         /* asymmetric namespace access: */
331         u8 anacap;
332         u8 anatt;
333         u32 anagrpmax;
334         u32 nanagrpid;
335         struct mutex ana_lock;
336         struct nvme_ana_rsp_hdr *ana_log_buf;
337         size_t ana_log_size;
338         struct timer_list anatt_timer;
339         struct work_struct ana_work;
340 #endif
341
342 #ifdef CONFIG_NVME_AUTH
343         struct work_struct dhchap_auth_work;
344         struct mutex dhchap_auth_mutex;
345         struct nvme_dhchap_queue_context *dhchap_ctxs;
346         struct nvme_dhchap_key *host_key;
347         struct nvme_dhchap_key *ctrl_key;
348         u16 transaction;
349 #endif
350
351         /* Power saving configuration */
352         u64 ps_max_latency_us;
353         bool apst_enabled;
354
355         /* PCIe only: */
356         u32 hmpre;
357         u32 hmmin;
358         u32 hmminds;
359         u16 hmmaxd;
360
361         /* Fabrics only */
362         u32 ioccsz;
363         u32 iorcsz;
364         u16 icdoff;
365         u16 maxcmd;
366         int nr_reconnects;
367         unsigned long flags;
368         struct nvmf_ctrl_options *opts;
369
370         struct page *discard_page;
371         unsigned long discard_page_busy;
372
373         struct nvme_fault_inject fault_inject;
374
375         enum nvme_ctrl_type cntrltype;
376         enum nvme_dctype dctype;
377 };
378
379 enum nvme_iopolicy {
380         NVME_IOPOLICY_NUMA,
381         NVME_IOPOLICY_RR,
382 };
383
384 struct nvme_subsystem {
385         int                     instance;
386         struct device           dev;
387         /*
388          * Because we unregister the device on the last put we need
389          * a separate refcount.
390          */
391         struct kref             ref;
392         struct list_head        entry;
393         struct mutex            lock;
394         struct list_head        ctrls;
395         struct list_head        nsheads;
396         char                    subnqn[NVMF_NQN_SIZE];
397         char                    serial[20];
398         char                    model[40];
399         char                    firmware_rev[8];
400         u8                      cmic;
401         enum nvme_subsys_type   subtype;
402         u16                     vendor_id;
403         u16                     awupf;  /* 0's based awupf value. */
404         struct ida              ns_ida;
405 #ifdef CONFIG_NVME_MULTIPATH
406         enum nvme_iopolicy      iopolicy;
407 #endif
408 };
409
410 /*
411  * Container structure for uniqueue namespace identifiers.
412  */
413 struct nvme_ns_ids {
414         u8      eui64[8];
415         u8      nguid[16];
416         uuid_t  uuid;
417         u8      csi;
418 };
419
420 /*
421  * Anchor structure for namespaces.  There is one for each namespace in a
422  * NVMe subsystem that any of our controllers can see, and the namespace
423  * structure for each controller is chained of it.  For private namespaces
424  * there is a 1:1 relation to our namespace structures, that is ->list
425  * only ever has a single entry for private namespaces.
426  */
427 struct nvme_ns_head {
428         struct list_head        list;
429         struct srcu_struct      srcu;
430         struct nvme_subsystem   *subsys;
431         unsigned                ns_id;
432         struct nvme_ns_ids      ids;
433         struct list_head        entry;
434         struct kref             ref;
435         bool                    shared;
436         int                     instance;
437         struct nvme_effects_log *effects;
438
439         struct cdev             cdev;
440         struct device           cdev_device;
441
442         struct gendisk          *disk;
443 #ifdef CONFIG_NVME_MULTIPATH
444         struct bio_list         requeue_list;
445         spinlock_t              requeue_lock;
446         struct work_struct      requeue_work;
447         struct mutex            lock;
448         unsigned long           flags;
449 #define NVME_NSHEAD_DISK_LIVE   0
450         struct nvme_ns __rcu    *current_path[];
451 #endif
452 };
453
454 static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head)
455 {
456         return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk;
457 }
458
459 enum nvme_ns_features {
460         NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */
461         NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */
462         NVME_NS_DEAC,           /* DEAC bit in Write Zeores supported */
463 };
464
465 struct nvme_ns {
466         struct list_head list;
467
468         struct nvme_ctrl *ctrl;
469         struct request_queue *queue;
470         struct gendisk *disk;
471 #ifdef CONFIG_NVME_MULTIPATH
472         enum nvme_ana_state ana_state;
473         u32 ana_grpid;
474 #endif
475         struct list_head siblings;
476         struct kref kref;
477         struct nvme_ns_head *head;
478
479         int lba_shift;
480         u16 ms;
481         u16 pi_size;
482         u16 sgs;
483         u32 sws;
484         u8 pi_type;
485         u8 guard_type;
486 #ifdef CONFIG_BLK_DEV_ZONED
487         u64 zsze;
488 #endif
489         unsigned long features;
490         unsigned long flags;
491 #define NVME_NS_REMOVING        0
492 #define NVME_NS_ANA_PENDING     2
493 #define NVME_NS_FORCE_RO        3
494 #define NVME_NS_READY           4
495
496         struct cdev             cdev;
497         struct device           cdev_device;
498
499         struct nvme_fault_inject fault_inject;
500
501 };
502
503 /* NVMe ns supports metadata actions by the controller (generate/strip) */
504 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
505 {
506         return ns->pi_type && ns->ms == ns->pi_size;
507 }
508
509 struct nvme_ctrl_ops {
510         const char *name;
511         struct module *module;
512         unsigned int flags;
513 #define NVME_F_FABRICS                  (1 << 0)
514 #define NVME_F_METADATA_SUPPORTED       (1 << 1)
515 #define NVME_F_BLOCKING                 (1 << 2)
516
517         const struct attribute_group **dev_attr_groups;
518         int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
519         int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
520         int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
521         void (*free_ctrl)(struct nvme_ctrl *ctrl);
522         void (*submit_async_event)(struct nvme_ctrl *ctrl);
523         void (*delete_ctrl)(struct nvme_ctrl *ctrl);
524         void (*stop_ctrl)(struct nvme_ctrl *ctrl);
525         int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
526         void (*print_device_info)(struct nvme_ctrl *ctrl);
527         bool (*supports_pci_p2pdma)(struct nvme_ctrl *ctrl);
528 };
529
530 /*
531  * nvme command_id is constructed as such:
532  * | xxxx | xxxxxxxxxxxx |
533  *   gen    request tag
534  */
535 #define nvme_genctr_mask(gen)                   (gen & 0xf)
536 #define nvme_cid_install_genctr(gen)            (nvme_genctr_mask(gen) << 12)
537 #define nvme_genctr_from_cid(cid)               ((cid & 0xf000) >> 12)
538 #define nvme_tag_from_cid(cid)                  (cid & 0xfff)
539
540 static inline u16 nvme_cid(struct request *rq)
541 {
542         return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag;
543 }
544
545 static inline struct request *nvme_find_rq(struct blk_mq_tags *tags,
546                 u16 command_id)
547 {
548         u8 genctr = nvme_genctr_from_cid(command_id);
549         u16 tag = nvme_tag_from_cid(command_id);
550         struct request *rq;
551
552         rq = blk_mq_tag_to_rq(tags, tag);
553         if (unlikely(!rq)) {
554                 pr_err("could not locate request for tag %#x\n",
555                         tag);
556                 return NULL;
557         }
558         if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) {
559                 dev_err(nvme_req(rq)->ctrl->device,
560                         "request %#x genctr mismatch (got %#x expected %#x)\n",
561                         tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr));
562                 return NULL;
563         }
564         return rq;
565 }
566
567 static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags,
568                 u16 command_id)
569 {
570         return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id));
571 }
572
573 /*
574  * Return the length of the string without the space padding
575  */
576 static inline int nvme_strlen(char *s, int len)
577 {
578         while (s[len - 1] == ' ')
579                 len--;
580         return len;
581 }
582
583 static inline void nvme_print_device_info(struct nvme_ctrl *ctrl)
584 {
585         struct nvme_subsystem *subsys = ctrl->subsys;
586
587         if (ctrl->ops->print_device_info) {
588                 ctrl->ops->print_device_info(ctrl);
589                 return;
590         }
591
592         dev_err(ctrl->device,
593                 "VID:%04x model:%.*s firmware:%.*s\n", subsys->vendor_id,
594                 nvme_strlen(subsys->model, sizeof(subsys->model)),
595                 subsys->model, nvme_strlen(subsys->firmware_rev,
596                                            sizeof(subsys->firmware_rev)),
597                 subsys->firmware_rev);
598 }
599
600 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
601 void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
602                             const char *dev_name);
603 void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject);
604 void nvme_should_fail(struct request *req);
605 #else
606 static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
607                                           const char *dev_name)
608 {
609 }
610 static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj)
611 {
612 }
613 static inline void nvme_should_fail(struct request *req) {}
614 #endif
615
616 bool nvme_wait_reset(struct nvme_ctrl *ctrl);
617 int nvme_try_sched_reset(struct nvme_ctrl *ctrl);
618
619 static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
620 {
621         int ret;
622
623         if (!ctrl->subsystem)
624                 return -ENOTTY;
625         if (!nvme_wait_reset(ctrl))
626                 return -EBUSY;
627
628         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
629         if (ret)
630                 return ret;
631
632         return nvme_try_sched_reset(ctrl);
633 }
634
635 /*
636  * Convert a 512B sector number to a device logical block number.
637  */
638 static inline u64 nvme_sect_to_lba(struct nvme_ns *ns, sector_t sector)
639 {
640         return sector >> (ns->lba_shift - SECTOR_SHIFT);
641 }
642
643 /*
644  * Convert a device logical block number to a 512B sector number.
645  */
646 static inline sector_t nvme_lba_to_sect(struct nvme_ns *ns, u64 lba)
647 {
648         return lba << (ns->lba_shift - SECTOR_SHIFT);
649 }
650
651 /*
652  * Convert byte length to nvme's 0-based num dwords
653  */
654 static inline u32 nvme_bytes_to_numd(size_t len)
655 {
656         return (len >> 2) - 1;
657 }
658
659 static inline bool nvme_is_ana_error(u16 status)
660 {
661         switch (status & 0x7ff) {
662         case NVME_SC_ANA_TRANSITION:
663         case NVME_SC_ANA_INACCESSIBLE:
664         case NVME_SC_ANA_PERSISTENT_LOSS:
665                 return true;
666         default:
667                 return false;
668         }
669 }
670
671 static inline bool nvme_is_path_error(u16 status)
672 {
673         /* check for a status code type of 'path related status' */
674         return (status & 0x700) == 0x300;
675 }
676
677 /*
678  * Fill in the status and result information from the CQE, and then figure out
679  * if blk-mq will need to use IPI magic to complete the request, and if yes do
680  * so.  If not let the caller complete the request without an indirect function
681  * call.
682  */
683 static inline bool nvme_try_complete_req(struct request *req, __le16 status,
684                 union nvme_result result)
685 {
686         struct nvme_request *rq = nvme_req(req);
687         struct nvme_ctrl *ctrl = rq->ctrl;
688
689         if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
690                 rq->genctr++;
691
692         rq->status = le16_to_cpu(status) >> 1;
693         rq->result = result;
694         /* inject error when permitted by fault injection framework */
695         nvme_should_fail(req);
696         if (unlikely(blk_should_fake_timeout(req->q)))
697                 return true;
698         return blk_mq_complete_request_remote(req);
699 }
700
701 static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
702 {
703         get_device(ctrl->device);
704 }
705
706 static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
707 {
708         put_device(ctrl->device);
709 }
710
711 static inline bool nvme_is_aen_req(u16 qid, __u16 command_id)
712 {
713         return !qid &&
714                 nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH;
715 }
716
717 void nvme_complete_rq(struct request *req);
718 void nvme_complete_batch_req(struct request *req);
719
720 static __always_inline void nvme_complete_batch(struct io_comp_batch *iob,
721                                                 void (*fn)(struct request *rq))
722 {
723         struct request *req;
724
725         rq_list_for_each(&iob->req_list, req) {
726                 fn(req);
727                 nvme_complete_batch_req(req);
728         }
729         blk_mq_end_request_batch(iob);
730 }
731
732 blk_status_t nvme_host_path_error(struct request *req);
733 bool nvme_cancel_request(struct request *req, void *data);
734 void nvme_cancel_tagset(struct nvme_ctrl *ctrl);
735 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl);
736 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
737                 enum nvme_ctrl_state new_state);
738 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown);
739 int nvme_enable_ctrl(struct nvme_ctrl *ctrl);
740 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
741                 const struct nvme_ctrl_ops *ops, unsigned long quirks);
742 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
743 void nvme_start_ctrl(struct nvme_ctrl *ctrl);
744 void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
745 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended);
746 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
747                 const struct blk_mq_ops *ops, unsigned int cmd_size);
748 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl);
749 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
750                 const struct blk_mq_ops *ops, unsigned int nr_maps,
751                 unsigned int cmd_size);
752 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl);
753
754 void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
755
756 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
757                 volatile union nvme_result *res);
758
759 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl);
760 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl);
761 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl);
762 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl);
763 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl);
764 void nvme_sync_queues(struct nvme_ctrl *ctrl);
765 void nvme_sync_io_queues(struct nvme_ctrl *ctrl);
766 void nvme_unfreeze(struct nvme_ctrl *ctrl);
767 void nvme_wait_freeze(struct nvme_ctrl *ctrl);
768 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
769 void nvme_start_freeze(struct nvme_ctrl *ctrl);
770
771 static inline enum req_op nvme_req_op(struct nvme_command *cmd)
772 {
773         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
774 }
775
776 #define NVME_QID_ANY -1
777 void nvme_init_request(struct request *req, struct nvme_command *cmd);
778 void nvme_cleanup_cmd(struct request *req);
779 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req);
780 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
781                 struct request *req);
782 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
783                 bool queue_live);
784
785 static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
786                 bool queue_live)
787 {
788         if (likely(ctrl->state == NVME_CTRL_LIVE))
789                 return true;
790         if (ctrl->ops->flags & NVME_F_FABRICS &&
791             ctrl->state == NVME_CTRL_DELETING)
792                 return queue_live;
793         return __nvme_check_ready(ctrl, rq, queue_live);
794 }
795
796 /*
797  * NSID shall be unique for all shared namespaces, or if at least one of the
798  * following conditions is met:
799  *   1. Namespace Management is supported by the controller
800  *   2. ANA is supported by the controller
801  *   3. NVM Set are supported by the controller
802  *
803  * In other case, private namespace are not required to report a unique NSID.
804  */
805 static inline bool nvme_is_unique_nsid(struct nvme_ctrl *ctrl,
806                 struct nvme_ns_head *head)
807 {
808         return head->shared ||
809                 (ctrl->oacs & NVME_CTRL_OACS_NS_MNGT_SUPP) ||
810                 (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) ||
811                 (ctrl->ctratt & NVME_CTRL_CTRATT_NVM_SETS);
812 }
813
814 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
815                 void *buf, unsigned bufflen);
816 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
817                 union nvme_result *result, void *buffer, unsigned bufflen,
818                 int qid, int at_head,
819                 blk_mq_req_flags_t flags);
820 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
821                       unsigned int dword11, void *buffer, size_t buflen,
822                       u32 *result);
823 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
824                       unsigned int dword11, void *buffer, size_t buflen,
825                       u32 *result);
826 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
827 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
828 int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
829 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
830 int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
831 void nvme_queue_scan(struct nvme_ctrl *ctrl);
832 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
833                 void *log, size_t size, u64 offset);
834 bool nvme_tryget_ns_head(struct nvme_ns_head *head);
835 void nvme_put_ns_head(struct nvme_ns_head *head);
836 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
837                 const struct file_operations *fops, struct module *owner);
838 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device);
839 int nvme_ioctl(struct block_device *bdev, blk_mode_t mode,
840                 unsigned int cmd, unsigned long arg);
841 long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
842 int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode,
843                 unsigned int cmd, unsigned long arg);
844 long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
845                 unsigned long arg);
846 long nvme_dev_ioctl(struct file *file, unsigned int cmd,
847                 unsigned long arg);
848 int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
849                 struct io_comp_batch *iob, unsigned int poll_flags);
850 int nvme_ns_head_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
851                 struct io_comp_batch *iob, unsigned int poll_flags);
852 int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd,
853                 unsigned int issue_flags);
854 int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
855                 unsigned int issue_flags);
856 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo);
857 int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
858
859 extern const struct attribute_group *nvme_ns_id_attr_groups[];
860 extern const struct pr_ops nvme_pr_ops;
861 extern const struct block_device_operations nvme_ns_head_ops;
862 extern const struct attribute_group nvme_dev_attrs_group;
863
864 struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
865 #ifdef CONFIG_NVME_MULTIPATH
866 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
867 {
868         return ctrl->ana_log_buf != NULL;
869 }
870
871 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
872 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
873 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
874 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys);
875 void nvme_failover_req(struct request *req);
876 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
877 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
878 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid);
879 void nvme_mpath_remove_disk(struct nvme_ns_head *head);
880 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
881 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl);
882 void nvme_mpath_update(struct nvme_ctrl *ctrl);
883 void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
884 void nvme_mpath_stop(struct nvme_ctrl *ctrl);
885 bool nvme_mpath_clear_current_path(struct nvme_ns *ns);
886 void nvme_mpath_revalidate_paths(struct nvme_ns *ns);
887 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl);
888 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head);
889 void nvme_mpath_start_request(struct request *rq);
890 void nvme_mpath_end_request(struct request *rq);
891
892 static inline void nvme_trace_bio_complete(struct request *req)
893 {
894         struct nvme_ns *ns = req->q->queuedata;
895
896         if ((req->cmd_flags & REQ_NVME_MPATH) && req->bio)
897                 trace_block_bio_complete(ns->head->disk->queue, req->bio);
898 }
899
900 extern bool multipath;
901 extern struct device_attribute dev_attr_ana_grpid;
902 extern struct device_attribute dev_attr_ana_state;
903 extern struct device_attribute subsys_attr_iopolicy;
904
905 #else
906 #define multipath false
907 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
908 {
909         return false;
910 }
911 static inline void nvme_failover_req(struct request *req)
912 {
913 }
914 static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
915 {
916 }
917 static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
918                 struct nvme_ns_head *head)
919 {
920         return 0;
921 }
922 static inline void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
923 {
924 }
925 static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
926 {
927 }
928 static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
929 {
930         return false;
931 }
932 static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
933 {
934 }
935 static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
936 {
937 }
938 static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
939 {
940 }
941 static inline void nvme_trace_bio_complete(struct request *req)
942 {
943 }
944 static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
945 {
946 }
947 static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl,
948                 struct nvme_id_ctrl *id)
949 {
950         if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)
951                 dev_warn(ctrl->device,
952 "Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
953         return 0;
954 }
955 static inline void nvme_mpath_update(struct nvme_ctrl *ctrl)
956 {
957 }
958 static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
959 {
960 }
961 static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
962 {
963 }
964 static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
965 {
966 }
967 static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
968 {
969 }
970 static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
971 {
972 }
973 static inline void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
974 {
975 }
976 static inline void nvme_mpath_start_request(struct request *rq)
977 {
978 }
979 static inline void nvme_mpath_end_request(struct request *rq)
980 {
981 }
982 #endif /* CONFIG_NVME_MULTIPATH */
983
984 int nvme_revalidate_zones(struct nvme_ns *ns);
985 int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector,
986                 unsigned int nr_zones, report_zones_cb cb, void *data);
987 #ifdef CONFIG_BLK_DEV_ZONED
988 int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf);
989 blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
990                                        struct nvme_command *cmnd,
991                                        enum nvme_zone_mgmt_action action);
992 #else
993 static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns,
994                 struct request *req, struct nvme_command *cmnd,
995                 enum nvme_zone_mgmt_action action)
996 {
997         return BLK_STS_NOTSUPP;
998 }
999
1000 static inline int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf)
1001 {
1002         dev_warn(ns->ctrl->device,
1003                  "Please enable CONFIG_BLK_DEV_ZONED to support ZNS devices\n");
1004         return -EPROTONOSUPPORT;
1005 }
1006 #endif
1007
1008 static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
1009 {
1010         return dev_to_disk(dev)->private_data;
1011 }
1012
1013 #ifdef CONFIG_NVME_HWMON
1014 int nvme_hwmon_init(struct nvme_ctrl *ctrl);
1015 void nvme_hwmon_exit(struct nvme_ctrl *ctrl);
1016 #else
1017 static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl)
1018 {
1019         return 0;
1020 }
1021
1022 static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
1023 {
1024 }
1025 #endif
1026
1027 static inline void nvme_start_request(struct request *rq)
1028 {
1029         if (rq->cmd_flags & REQ_NVME_MPATH)
1030                 nvme_mpath_start_request(rq);
1031         blk_mq_start_request(rq);
1032 }
1033
1034 static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl)
1035 {
1036         return ctrl->sgls & ((1 << 0) | (1 << 1));
1037 }
1038
1039 #ifdef CONFIG_NVME_AUTH
1040 int __init nvme_init_auth(void);
1041 void __exit nvme_exit_auth(void);
1042 int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl);
1043 void nvme_auth_stop(struct nvme_ctrl *ctrl);
1044 int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid);
1045 int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid);
1046 void nvme_auth_free(struct nvme_ctrl *ctrl);
1047 #else
1048 static inline int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl)
1049 {
1050         return 0;
1051 }
1052 static inline int __init nvme_init_auth(void)
1053 {
1054         return 0;
1055 }
1056 static inline void __exit nvme_exit_auth(void)
1057 {
1058 }
1059 static inline void nvme_auth_stop(struct nvme_ctrl *ctrl) {};
1060 static inline int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid)
1061 {
1062         return -EPROTONOSUPPORT;
1063 }
1064 static inline int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid)
1065 {
1066         return NVME_SC_AUTH_REQUIRED;
1067 }
1068 static inline void nvme_auth_free(struct nvme_ctrl *ctrl) {};
1069 #endif
1070
1071 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1072                          u8 opcode);
1073 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode);
1074 int nvme_execute_rq(struct request *rq, bool at_head);
1075 void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1076                        struct nvme_command *cmd, int status);
1077 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file);
1078 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid);
1079 void nvme_put_ns(struct nvme_ns *ns);
1080
1081 static inline bool nvme_multi_css(struct nvme_ctrl *ctrl)
1082 {
1083         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1084 }
1085
1086 #ifdef CONFIG_NVME_VERBOSE_ERRORS
1087 const unsigned char *nvme_get_error_status_str(u16 status);
1088 const unsigned char *nvme_get_opcode_str(u8 opcode);
1089 const unsigned char *nvme_get_admin_opcode_str(u8 opcode);
1090 const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode);
1091 #else /* CONFIG_NVME_VERBOSE_ERRORS */
1092 static inline const unsigned char *nvme_get_error_status_str(u16 status)
1093 {
1094         return "I/O Error";
1095 }
1096 static inline const unsigned char *nvme_get_opcode_str(u8 opcode)
1097 {
1098         return "I/O Cmd";
1099 }
1100 static inline const unsigned char *nvme_get_admin_opcode_str(u8 opcode)
1101 {
1102         return "Admin Cmd";
1103 }
1104
1105 static inline const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode)
1106 {
1107         return "Fabrics Cmd";
1108 }
1109 #endif /* CONFIG_NVME_VERBOSE_ERRORS */
1110
1111 static inline const unsigned char *nvme_opcode_str(int qid, u8 opcode, u8 fctype)
1112 {
1113         if (opcode == nvme_fabrics_command)
1114                 return nvme_get_fabrics_opcode_str(fctype);
1115         return qid ? nvme_get_opcode_str(opcode) :
1116                 nvme_get_admin_opcode_str(opcode);
1117 }
1118 #endif /* _NVME_H */