Merge branch 'cpufreq/arm/fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / nvme / host / multipath.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14         "turn on native support for multiple controllers per subsystem");
15
16 static const char *nvme_iopolicy_names[] = {
17         [NVME_IOPOLICY_NUMA]    = "numa",
18         [NVME_IOPOLICY_RR]      = "round-robin",
19 };
20
21 static int iopolicy = NVME_IOPOLICY_NUMA;
22
23 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
24 {
25         if (!val)
26                 return -EINVAL;
27         if (!strncmp(val, "numa", 4))
28                 iopolicy = NVME_IOPOLICY_NUMA;
29         else if (!strncmp(val, "round-robin", 11))
30                 iopolicy = NVME_IOPOLICY_RR;
31         else
32                 return -EINVAL;
33
34         return 0;
35 }
36
37 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
38 {
39         return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
40 }
41
42 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
43         &iopolicy, 0644);
44 MODULE_PARM_DESC(iopolicy,
45         "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
46
47 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
48 {
49         subsys->iopolicy = iopolicy;
50 }
51
52 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
53 {
54         struct nvme_ns_head *h;
55
56         lockdep_assert_held(&subsys->lock);
57         list_for_each_entry(h, &subsys->nsheads, entry)
58                 if (h->disk)
59                         blk_mq_unfreeze_queue(h->disk->queue);
60 }
61
62 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
63 {
64         struct nvme_ns_head *h;
65
66         lockdep_assert_held(&subsys->lock);
67         list_for_each_entry(h, &subsys->nsheads, entry)
68                 if (h->disk)
69                         blk_mq_freeze_queue_wait(h->disk->queue);
70 }
71
72 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
73 {
74         struct nvme_ns_head *h;
75
76         lockdep_assert_held(&subsys->lock);
77         list_for_each_entry(h, &subsys->nsheads, entry)
78                 if (h->disk)
79                         blk_freeze_queue_start(h->disk->queue);
80 }
81
82 /*
83  * If multipathing is enabled we need to always use the subsystem instance
84  * number for numbering our devices to avoid conflicts between subsystems that
85  * have multiple controllers and thus use the multipath-aware subsystem node
86  * and those that have a single controller and use the controller node
87  * directly.
88  */
89 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
90 {
91         if (!multipath)
92                 return false;
93         if (!ns->head->disk) {
94                 sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
95                         ns->head->instance);
96                 return true;
97         }
98         sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
99                 ns->ctrl->instance, ns->head->instance);
100         *flags = GENHD_FL_HIDDEN;
101         return true;
102 }
103
104 void nvme_failover_req(struct request *req)
105 {
106         struct nvme_ns *ns = req->q->queuedata;
107         u16 status = nvme_req(req)->status & 0x7ff;
108         unsigned long flags;
109         struct bio *bio;
110
111         nvme_mpath_clear_current_path(ns);
112
113         /*
114          * If we got back an ANA error, we know the controller is alive but not
115          * ready to serve this namespace.  Kick of a re-read of the ANA
116          * information page, and just try any other available path for now.
117          */
118         if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
119                 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
120                 queue_work(nvme_wq, &ns->ctrl->ana_work);
121         }
122
123         spin_lock_irqsave(&ns->head->requeue_lock, flags);
124         for (bio = req->bio; bio; bio = bio->bi_next) {
125                 bio_set_dev(bio, ns->head->disk->part0);
126                 if (bio->bi_opf & REQ_POLLED) {
127                         bio->bi_opf &= ~REQ_POLLED;
128                         bio->bi_cookie = BLK_QC_T_NONE;
129                 }
130         }
131         blk_steal_bios(&ns->head->requeue_list, req);
132         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
133
134         blk_mq_end_request(req, 0);
135         kblockd_schedule_work(&ns->head->requeue_work);
136 }
137
138 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
139 {
140         struct nvme_ns *ns;
141
142         down_read(&ctrl->namespaces_rwsem);
143         list_for_each_entry(ns, &ctrl->namespaces, list) {
144                 if (!ns->head->disk)
145                         continue;
146                 kblockd_schedule_work(&ns->head->requeue_work);
147                 if (ctrl->state == NVME_CTRL_LIVE)
148                         disk_uevent(ns->head->disk, KOBJ_CHANGE);
149         }
150         up_read(&ctrl->namespaces_rwsem);
151 }
152
153 static const char *nvme_ana_state_names[] = {
154         [0]                             = "invalid state",
155         [NVME_ANA_OPTIMIZED]            = "optimized",
156         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
157         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
158         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
159         [NVME_ANA_CHANGE]               = "change",
160 };
161
162 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
163 {
164         struct nvme_ns_head *head = ns->head;
165         bool changed = false;
166         int node;
167
168         if (!head)
169                 goto out;
170
171         for_each_node(node) {
172                 if (ns == rcu_access_pointer(head->current_path[node])) {
173                         rcu_assign_pointer(head->current_path[node], NULL);
174                         changed = true;
175                 }
176         }
177 out:
178         return changed;
179 }
180
181 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
182 {
183         struct nvme_ns *ns;
184
185         down_read(&ctrl->namespaces_rwsem);
186         list_for_each_entry(ns, &ctrl->namespaces, list) {
187                 nvme_mpath_clear_current_path(ns);
188                 kblockd_schedule_work(&ns->head->requeue_work);
189         }
190         up_read(&ctrl->namespaces_rwsem);
191 }
192
193 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
194 {
195         struct nvme_ns_head *head = ns->head;
196         sector_t capacity = get_capacity(head->disk);
197         int node;
198
199         list_for_each_entry_rcu(ns, &head->list, siblings) {
200                 if (capacity != get_capacity(ns->disk))
201                         clear_bit(NVME_NS_READY, &ns->flags);
202         }
203
204         for_each_node(node)
205                 rcu_assign_pointer(head->current_path[node], NULL);
206 }
207
208 static bool nvme_path_is_disabled(struct nvme_ns *ns)
209 {
210         /*
211          * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
212          * still be able to complete assuming that the controller is connected.
213          * Otherwise it will fail immediately and return to the requeue list.
214          */
215         if (ns->ctrl->state != NVME_CTRL_LIVE &&
216             ns->ctrl->state != NVME_CTRL_DELETING)
217                 return true;
218         if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
219             !test_bit(NVME_NS_READY, &ns->flags))
220                 return true;
221         return false;
222 }
223
224 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
225 {
226         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
227         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
228
229         list_for_each_entry_rcu(ns, &head->list, siblings) {
230                 if (nvme_path_is_disabled(ns))
231                         continue;
232
233                 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
234                         distance = node_distance(node, ns->ctrl->numa_node);
235                 else
236                         distance = LOCAL_DISTANCE;
237
238                 switch (ns->ana_state) {
239                 case NVME_ANA_OPTIMIZED:
240                         if (distance < found_distance) {
241                                 found_distance = distance;
242                                 found = ns;
243                         }
244                         break;
245                 case NVME_ANA_NONOPTIMIZED:
246                         if (distance < fallback_distance) {
247                                 fallback_distance = distance;
248                                 fallback = ns;
249                         }
250                         break;
251                 default:
252                         break;
253                 }
254         }
255
256         if (!found)
257                 found = fallback;
258         if (found)
259                 rcu_assign_pointer(head->current_path[node], found);
260         return found;
261 }
262
263 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
264                 struct nvme_ns *ns)
265 {
266         ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
267                         siblings);
268         if (ns)
269                 return ns;
270         return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
271 }
272
273 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
274                 int node, struct nvme_ns *old)
275 {
276         struct nvme_ns *ns, *found = NULL;
277
278         if (list_is_singular(&head->list)) {
279                 if (nvme_path_is_disabled(old))
280                         return NULL;
281                 return old;
282         }
283
284         for (ns = nvme_next_ns(head, old);
285              ns && ns != old;
286              ns = nvme_next_ns(head, ns)) {
287                 if (nvme_path_is_disabled(ns))
288                         continue;
289
290                 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
291                         found = ns;
292                         goto out;
293                 }
294                 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
295                         found = ns;
296         }
297
298         /*
299          * The loop above skips the current path for round-robin semantics.
300          * Fall back to the current path if either:
301          *  - no other optimized path found and current is optimized,
302          *  - no other usable path found and current is usable.
303          */
304         if (!nvme_path_is_disabled(old) &&
305             (old->ana_state == NVME_ANA_OPTIMIZED ||
306              (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
307                 return old;
308
309         if (!found)
310                 return NULL;
311 out:
312         rcu_assign_pointer(head->current_path[node], found);
313         return found;
314 }
315
316 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
317 {
318         return ns->ctrl->state == NVME_CTRL_LIVE &&
319                 ns->ana_state == NVME_ANA_OPTIMIZED;
320 }
321
322 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
323 {
324         int node = numa_node_id();
325         struct nvme_ns *ns;
326
327         ns = srcu_dereference(head->current_path[node], &head->srcu);
328         if (unlikely(!ns))
329                 return __nvme_find_path(head, node);
330
331         if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
332                 return nvme_round_robin_path(head, node, ns);
333         if (unlikely(!nvme_path_is_optimized(ns)))
334                 return __nvme_find_path(head, node);
335         return ns;
336 }
337
338 static bool nvme_available_path(struct nvme_ns_head *head)
339 {
340         struct nvme_ns *ns;
341
342         list_for_each_entry_rcu(ns, &head->list, siblings) {
343                 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
344                         continue;
345                 switch (ns->ctrl->state) {
346                 case NVME_CTRL_LIVE:
347                 case NVME_CTRL_RESETTING:
348                 case NVME_CTRL_CONNECTING:
349                         /* fallthru */
350                         return true;
351                 default:
352                         break;
353                 }
354         }
355         return false;
356 }
357
358 static void nvme_ns_head_submit_bio(struct bio *bio)
359 {
360         struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
361         struct device *dev = disk_to_dev(head->disk);
362         struct nvme_ns *ns;
363         int srcu_idx;
364
365         /*
366          * The namespace might be going away and the bio might be moved to a
367          * different queue via blk_steal_bios(), so we need to use the bio_split
368          * pool from the original queue to allocate the bvecs from.
369          */
370         blk_queue_split(&bio);
371
372         srcu_idx = srcu_read_lock(&head->srcu);
373         ns = nvme_find_path(head);
374         if (likely(ns)) {
375                 bio_set_dev(bio, ns->disk->part0);
376                 bio->bi_opf |= REQ_NVME_MPATH;
377                 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
378                                       bio->bi_iter.bi_sector);
379                 submit_bio_noacct(bio);
380         } else if (nvme_available_path(head)) {
381                 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
382
383                 spin_lock_irq(&head->requeue_lock);
384                 bio_list_add(&head->requeue_list, bio);
385                 spin_unlock_irq(&head->requeue_lock);
386         } else {
387                 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
388
389                 bio->bi_status = BLK_STS_IOERR;
390                 bio_endio(bio);
391         }
392
393         srcu_read_unlock(&head->srcu, srcu_idx);
394 }
395
396 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
397 {
398         if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
399                 return -ENXIO;
400         return 0;
401 }
402
403 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
404 {
405         nvme_put_ns_head(disk->private_data);
406 }
407
408 #ifdef CONFIG_BLK_DEV_ZONED
409 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
410                 unsigned int nr_zones, report_zones_cb cb, void *data)
411 {
412         struct nvme_ns_head *head = disk->private_data;
413         struct nvme_ns *ns;
414         int srcu_idx, ret = -EWOULDBLOCK;
415
416         srcu_idx = srcu_read_lock(&head->srcu);
417         ns = nvme_find_path(head);
418         if (ns)
419                 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
420         srcu_read_unlock(&head->srcu, srcu_idx);
421         return ret;
422 }
423 #else
424 #define nvme_ns_head_report_zones       NULL
425 #endif /* CONFIG_BLK_DEV_ZONED */
426
427 const struct block_device_operations nvme_ns_head_ops = {
428         .owner          = THIS_MODULE,
429         .submit_bio     = nvme_ns_head_submit_bio,
430         .open           = nvme_ns_head_open,
431         .release        = nvme_ns_head_release,
432         .ioctl          = nvme_ns_head_ioctl,
433         .getgeo         = nvme_getgeo,
434         .report_zones   = nvme_ns_head_report_zones,
435         .pr_ops         = &nvme_pr_ops,
436 };
437
438 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
439 {
440         return container_of(cdev, struct nvme_ns_head, cdev);
441 }
442
443 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
444 {
445         if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
446                 return -ENXIO;
447         return 0;
448 }
449
450 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
451 {
452         nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
453         return 0;
454 }
455
456 static const struct file_operations nvme_ns_head_chr_fops = {
457         .owner          = THIS_MODULE,
458         .open           = nvme_ns_head_chr_open,
459         .release        = nvme_ns_head_chr_release,
460         .unlocked_ioctl = nvme_ns_head_chr_ioctl,
461         .compat_ioctl   = compat_ptr_ioctl,
462 };
463
464 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
465 {
466         int ret;
467
468         head->cdev_device.parent = &head->subsys->dev;
469         ret = dev_set_name(&head->cdev_device, "ng%dn%d",
470                            head->subsys->instance, head->instance);
471         if (ret)
472                 return ret;
473         ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
474                             &nvme_ns_head_chr_fops, THIS_MODULE);
475         return ret;
476 }
477
478 static void nvme_requeue_work(struct work_struct *work)
479 {
480         struct nvme_ns_head *head =
481                 container_of(work, struct nvme_ns_head, requeue_work);
482         struct bio *bio, *next;
483
484         spin_lock_irq(&head->requeue_lock);
485         next = bio_list_get(&head->requeue_list);
486         spin_unlock_irq(&head->requeue_lock);
487
488         while ((bio = next) != NULL) {
489                 next = bio->bi_next;
490                 bio->bi_next = NULL;
491
492                 submit_bio_noacct(bio);
493         }
494 }
495
496 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
497 {
498         bool vwc = false;
499
500         mutex_init(&head->lock);
501         bio_list_init(&head->requeue_list);
502         spin_lock_init(&head->requeue_lock);
503         INIT_WORK(&head->requeue_work, nvme_requeue_work);
504
505         /*
506          * Add a multipath node if the subsystems supports multiple controllers.
507          * We also do this for private namespaces as the namespace sharing data could
508          * change after a rescan.
509          */
510         if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
511                 return 0;
512
513         head->disk = blk_alloc_disk(ctrl->numa_node);
514         if (!head->disk)
515                 return -ENOMEM;
516         head->disk->fops = &nvme_ns_head_ops;
517         head->disk->private_data = head;
518         sprintf(head->disk->disk_name, "nvme%dn%d",
519                         ctrl->subsys->instance, head->instance);
520
521         blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
522         blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
523         /*
524          * This assumes all controllers that refer to a namespace either
525          * support poll queues or not.  That is not a strict guarantee,
526          * but if the assumption is wrong the effect is only suboptimal
527          * performance but not correctness problem.
528          */
529         if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
530             ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
531                 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
532
533         /* set to a default value of 512 until the disk is validated */
534         blk_queue_logical_block_size(head->disk->queue, 512);
535         blk_set_stacking_limits(&head->disk->queue->limits);
536
537         /* we need to propagate up the VMC settings */
538         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
539                 vwc = true;
540         blk_queue_write_cache(head->disk->queue, vwc, vwc);
541         return 0;
542 }
543
544 static void nvme_mpath_set_live(struct nvme_ns *ns)
545 {
546         struct nvme_ns_head *head = ns->head;
547         int rc;
548
549         if (!head->disk)
550                 return;
551
552         /*
553          * test_and_set_bit() is used because it is protecting against two nvme
554          * paths simultaneously calling device_add_disk() on the same namespace
555          * head.
556          */
557         if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
558                 rc = device_add_disk(&head->subsys->dev, head->disk,
559                                      nvme_ns_id_attr_groups);
560                 if (rc) {
561                         clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
562                         return;
563                 }
564                 nvme_add_ns_head_cdev(head);
565         }
566
567         mutex_lock(&head->lock);
568         if (nvme_path_is_optimized(ns)) {
569                 int node, srcu_idx;
570
571                 srcu_idx = srcu_read_lock(&head->srcu);
572                 for_each_node(node)
573                         __nvme_find_path(head, node);
574                 srcu_read_unlock(&head->srcu, srcu_idx);
575         }
576         mutex_unlock(&head->lock);
577
578         synchronize_srcu(&head->srcu);
579         kblockd_schedule_work(&head->requeue_work);
580 }
581
582 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
583                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
584                         void *))
585 {
586         void *base = ctrl->ana_log_buf;
587         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
588         int error, i;
589
590         lockdep_assert_held(&ctrl->ana_lock);
591
592         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
593                 struct nvme_ana_group_desc *desc = base + offset;
594                 u32 nr_nsids;
595                 size_t nsid_buf_size;
596
597                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
598                         return -EINVAL;
599
600                 nr_nsids = le32_to_cpu(desc->nnsids);
601                 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
602
603                 if (WARN_ON_ONCE(desc->grpid == 0))
604                         return -EINVAL;
605                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
606                         return -EINVAL;
607                 if (WARN_ON_ONCE(desc->state == 0))
608                         return -EINVAL;
609                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
610                         return -EINVAL;
611
612                 offset += sizeof(*desc);
613                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
614                         return -EINVAL;
615
616                 error = cb(ctrl, desc, data);
617                 if (error)
618                         return error;
619
620                 offset += nsid_buf_size;
621         }
622
623         return 0;
624 }
625
626 static inline bool nvme_state_is_live(enum nvme_ana_state state)
627 {
628         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
629 }
630
631 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
632                 struct nvme_ns *ns)
633 {
634         ns->ana_grpid = le32_to_cpu(desc->grpid);
635         ns->ana_state = desc->state;
636         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
637
638         if (nvme_state_is_live(ns->ana_state))
639                 nvme_mpath_set_live(ns);
640 }
641
642 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
643                 struct nvme_ana_group_desc *desc, void *data)
644 {
645         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
646         unsigned *nr_change_groups = data;
647         struct nvme_ns *ns;
648
649         dev_dbg(ctrl->device, "ANA group %d: %s.\n",
650                         le32_to_cpu(desc->grpid),
651                         nvme_ana_state_names[desc->state]);
652
653         if (desc->state == NVME_ANA_CHANGE)
654                 (*nr_change_groups)++;
655
656         if (!nr_nsids)
657                 return 0;
658
659         down_read(&ctrl->namespaces_rwsem);
660         list_for_each_entry(ns, &ctrl->namespaces, list) {
661                 unsigned nsid;
662 again:
663                 nsid = le32_to_cpu(desc->nsids[n]);
664                 if (ns->head->ns_id < nsid)
665                         continue;
666                 if (ns->head->ns_id == nsid)
667                         nvme_update_ns_ana_state(desc, ns);
668                 if (++n == nr_nsids)
669                         break;
670                 if (ns->head->ns_id > nsid)
671                         goto again;
672         }
673         up_read(&ctrl->namespaces_rwsem);
674         return 0;
675 }
676
677 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
678 {
679         u32 nr_change_groups = 0;
680         int error;
681
682         mutex_lock(&ctrl->ana_lock);
683         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
684                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
685         if (error) {
686                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
687                 goto out_unlock;
688         }
689
690         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
691                         nvme_update_ana_state);
692         if (error)
693                 goto out_unlock;
694
695         /*
696          * In theory we should have an ANATT timer per group as they might enter
697          * the change state at different times.  But that is a lot of overhead
698          * just to protect against a target that keeps entering new changes
699          * states while never finishing previous ones.  But we'll still
700          * eventually time out once all groups are in change state, so this
701          * isn't a big deal.
702          *
703          * We also double the ANATT value to provide some slack for transports
704          * or AEN processing overhead.
705          */
706         if (nr_change_groups)
707                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
708         else
709                 del_timer_sync(&ctrl->anatt_timer);
710 out_unlock:
711         mutex_unlock(&ctrl->ana_lock);
712         return error;
713 }
714
715 static void nvme_ana_work(struct work_struct *work)
716 {
717         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
718
719         if (ctrl->state != NVME_CTRL_LIVE)
720                 return;
721
722         nvme_read_ana_log(ctrl);
723 }
724
725 static void nvme_anatt_timeout(struct timer_list *t)
726 {
727         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
728
729         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
730         nvme_reset_ctrl(ctrl);
731 }
732
733 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
734 {
735         if (!nvme_ctrl_use_ana(ctrl))
736                 return;
737         del_timer_sync(&ctrl->anatt_timer);
738         cancel_work_sync(&ctrl->ana_work);
739 }
740
741 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
742         struct device_attribute subsys_attr_##_name =   \
743                 __ATTR(_name, _mode, _show, _store)
744
745 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
746                 struct device_attribute *attr, char *buf)
747 {
748         struct nvme_subsystem *subsys =
749                 container_of(dev, struct nvme_subsystem, dev);
750
751         return sysfs_emit(buf, "%s\n",
752                           nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
753 }
754
755 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
756                 struct device_attribute *attr, const char *buf, size_t count)
757 {
758         struct nvme_subsystem *subsys =
759                 container_of(dev, struct nvme_subsystem, dev);
760         int i;
761
762         for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
763                 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
764                         WRITE_ONCE(subsys->iopolicy, i);
765                         return count;
766                 }
767         }
768
769         return -EINVAL;
770 }
771 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
772                       nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
773
774 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
775                 char *buf)
776 {
777         return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
778 }
779 DEVICE_ATTR_RO(ana_grpid);
780
781 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
782                 char *buf)
783 {
784         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
785
786         return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
787 }
788 DEVICE_ATTR_RO(ana_state);
789
790 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
791                 struct nvme_ana_group_desc *desc, void *data)
792 {
793         struct nvme_ana_group_desc *dst = data;
794
795         if (desc->grpid != dst->grpid)
796                 return 0;
797
798         *dst = *desc;
799         return -ENXIO; /* just break out of the loop */
800 }
801
802 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
803 {
804         if (nvme_ctrl_use_ana(ns->ctrl)) {
805                 struct nvme_ana_group_desc desc = {
806                         .grpid = id->anagrpid,
807                         .state = 0,
808                 };
809
810                 mutex_lock(&ns->ctrl->ana_lock);
811                 ns->ana_grpid = le32_to_cpu(id->anagrpid);
812                 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
813                 mutex_unlock(&ns->ctrl->ana_lock);
814                 if (desc.state) {
815                         /* found the group desc: update */
816                         nvme_update_ns_ana_state(&desc, ns);
817                 } else {
818                         /* group desc not found: trigger a re-read */
819                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
820                         queue_work(nvme_wq, &ns->ctrl->ana_work);
821                 }
822         } else {
823                 ns->ana_state = NVME_ANA_OPTIMIZED;
824                 nvme_mpath_set_live(ns);
825         }
826
827         if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
828                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
829                                    ns->head->disk->queue);
830 #ifdef CONFIG_BLK_DEV_ZONED
831         if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
832                 ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
833 #endif
834 }
835
836 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
837 {
838         if (!head->disk)
839                 return;
840         kblockd_schedule_work(&head->requeue_work);
841         if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
842                 nvme_cdev_del(&head->cdev, &head->cdev_device);
843                 del_gendisk(head->disk);
844         }
845 }
846
847 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
848 {
849         if (!head->disk)
850                 return;
851         blk_mark_disk_dead(head->disk);
852         /* make sure all pending bios are cleaned up */
853         kblockd_schedule_work(&head->requeue_work);
854         flush_work(&head->requeue_work);
855         blk_cleanup_disk(head->disk);
856 }
857
858 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
859 {
860         mutex_init(&ctrl->ana_lock);
861         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
862         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
863 }
864
865 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
866 {
867         size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
868         size_t ana_log_size;
869         int error = 0;
870
871         /* check if multipath is enabled and we have the capability */
872         if (!multipath || !ctrl->subsys ||
873             !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
874                 return 0;
875
876         if (!ctrl->max_namespaces ||
877             ctrl->max_namespaces > le32_to_cpu(id->nn)) {
878                 dev_err(ctrl->device,
879                         "Invalid MNAN value %u\n", ctrl->max_namespaces);
880                 return -EINVAL;
881         }
882
883         ctrl->anacap = id->anacap;
884         ctrl->anatt = id->anatt;
885         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
886         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
887
888         ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
889                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
890                 ctrl->max_namespaces * sizeof(__le32);
891         if (ana_log_size > max_transfer_size) {
892                 dev_err(ctrl->device,
893                         "ANA log page size (%zd) larger than MDTS (%zd).\n",
894                         ana_log_size, max_transfer_size);
895                 dev_err(ctrl->device, "disabling ANA support.\n");
896                 goto out_uninit;
897         }
898         if (ana_log_size > ctrl->ana_log_size) {
899                 nvme_mpath_stop(ctrl);
900                 nvme_mpath_uninit(ctrl);
901                 ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
902                 if (!ctrl->ana_log_buf)
903                         return -ENOMEM;
904         }
905         ctrl->ana_log_size = ana_log_size;
906         error = nvme_read_ana_log(ctrl);
907         if (error)
908                 goto out_uninit;
909         return 0;
910
911 out_uninit:
912         nvme_mpath_uninit(ctrl);
913         return error;
914 }
915
916 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
917 {
918         kfree(ctrl->ana_log_buf);
919         ctrl->ana_log_buf = NULL;
920         ctrl->ana_log_size = 0;
921 }