Merge branch irq/misc-5.17 into irq/irqchip-next
[linux-2.6-microblaze.git] / drivers / nvme / host / multipath.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14         "turn on native support for multiple controllers per subsystem");
15
16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18         struct nvme_ns_head *h;
19
20         lockdep_assert_held(&subsys->lock);
21         list_for_each_entry(h, &subsys->nsheads, entry)
22                 if (h->disk)
23                         blk_mq_unfreeze_queue(h->disk->queue);
24 }
25
26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28         struct nvme_ns_head *h;
29
30         lockdep_assert_held(&subsys->lock);
31         list_for_each_entry(h, &subsys->nsheads, entry)
32                 if (h->disk)
33                         blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35
36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38         struct nvme_ns_head *h;
39
40         lockdep_assert_held(&subsys->lock);
41         list_for_each_entry(h, &subsys->nsheads, entry)
42                 if (h->disk)
43                         blk_freeze_queue_start(h->disk->queue);
44 }
45
46 /*
47  * If multipathing is enabled we need to always use the subsystem instance
48  * number for numbering our devices to avoid conflicts between subsystems that
49  * have multiple controllers and thus use the multipath-aware subsystem node
50  * and those that have a single controller and use the controller node
51  * directly.
52  */
53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
54 {
55         if (!multipath)
56                 return false;
57         if (!ns->head->disk) {
58                 sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
59                         ns->head->instance);
60                 return true;
61         }
62         sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
63                 ns->ctrl->instance, ns->head->instance);
64         *flags = GENHD_FL_HIDDEN;
65         return true;
66 }
67
68 void nvme_failover_req(struct request *req)
69 {
70         struct nvme_ns *ns = req->q->queuedata;
71         u16 status = nvme_req(req)->status & 0x7ff;
72         unsigned long flags;
73         struct bio *bio;
74
75         nvme_mpath_clear_current_path(ns);
76
77         /*
78          * If we got back an ANA error, we know the controller is alive but not
79          * ready to serve this namespace.  Kick of a re-read of the ANA
80          * information page, and just try any other available path for now.
81          */
82         if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
83                 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
84                 queue_work(nvme_wq, &ns->ctrl->ana_work);
85         }
86
87         spin_lock_irqsave(&ns->head->requeue_lock, flags);
88         for (bio = req->bio; bio; bio = bio->bi_next) {
89                 bio_set_dev(bio, ns->head->disk->part0);
90                 if (bio->bi_opf & REQ_POLLED) {
91                         bio->bi_opf &= ~REQ_POLLED;
92                         bio->bi_cookie = BLK_QC_T_NONE;
93                 }
94         }
95         blk_steal_bios(&ns->head->requeue_list, req);
96         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
97
98         blk_mq_end_request(req, 0);
99         kblockd_schedule_work(&ns->head->requeue_work);
100 }
101
102 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
103 {
104         struct nvme_ns *ns;
105
106         down_read(&ctrl->namespaces_rwsem);
107         list_for_each_entry(ns, &ctrl->namespaces, list) {
108                 if (!ns->head->disk)
109                         continue;
110                 kblockd_schedule_work(&ns->head->requeue_work);
111                 if (ctrl->state == NVME_CTRL_LIVE)
112                         disk_uevent(ns->head->disk, KOBJ_CHANGE);
113         }
114         up_read(&ctrl->namespaces_rwsem);
115 }
116
117 static const char *nvme_ana_state_names[] = {
118         [0]                             = "invalid state",
119         [NVME_ANA_OPTIMIZED]            = "optimized",
120         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
121         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
122         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
123         [NVME_ANA_CHANGE]               = "change",
124 };
125
126 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
127 {
128         struct nvme_ns_head *head = ns->head;
129         bool changed = false;
130         int node;
131
132         if (!head)
133                 goto out;
134
135         for_each_node(node) {
136                 if (ns == rcu_access_pointer(head->current_path[node])) {
137                         rcu_assign_pointer(head->current_path[node], NULL);
138                         changed = true;
139                 }
140         }
141 out:
142         return changed;
143 }
144
145 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
146 {
147         struct nvme_ns *ns;
148
149         down_read(&ctrl->namespaces_rwsem);
150         list_for_each_entry(ns, &ctrl->namespaces, list) {
151                 nvme_mpath_clear_current_path(ns);
152                 kblockd_schedule_work(&ns->head->requeue_work);
153         }
154         up_read(&ctrl->namespaces_rwsem);
155 }
156
157 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
158 {
159         struct nvme_ns_head *head = ns->head;
160         sector_t capacity = get_capacity(head->disk);
161         int node;
162
163         list_for_each_entry_rcu(ns, &head->list, siblings) {
164                 if (capacity != get_capacity(ns->disk))
165                         clear_bit(NVME_NS_READY, &ns->flags);
166         }
167
168         for_each_node(node)
169                 rcu_assign_pointer(head->current_path[node], NULL);
170 }
171
172 static bool nvme_path_is_disabled(struct nvme_ns *ns)
173 {
174         /*
175          * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
176          * still be able to complete assuming that the controller is connected.
177          * Otherwise it will fail immediately and return to the requeue list.
178          */
179         if (ns->ctrl->state != NVME_CTRL_LIVE &&
180             ns->ctrl->state != NVME_CTRL_DELETING)
181                 return true;
182         if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
183             !test_bit(NVME_NS_READY, &ns->flags))
184                 return true;
185         return false;
186 }
187
188 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
189 {
190         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
191         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
192
193         list_for_each_entry_rcu(ns, &head->list, siblings) {
194                 if (nvme_path_is_disabled(ns))
195                         continue;
196
197                 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
198                         distance = node_distance(node, ns->ctrl->numa_node);
199                 else
200                         distance = LOCAL_DISTANCE;
201
202                 switch (ns->ana_state) {
203                 case NVME_ANA_OPTIMIZED:
204                         if (distance < found_distance) {
205                                 found_distance = distance;
206                                 found = ns;
207                         }
208                         break;
209                 case NVME_ANA_NONOPTIMIZED:
210                         if (distance < fallback_distance) {
211                                 fallback_distance = distance;
212                                 fallback = ns;
213                         }
214                         break;
215                 default:
216                         break;
217                 }
218         }
219
220         if (!found)
221                 found = fallback;
222         if (found)
223                 rcu_assign_pointer(head->current_path[node], found);
224         return found;
225 }
226
227 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
228                 struct nvme_ns *ns)
229 {
230         ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
231                         siblings);
232         if (ns)
233                 return ns;
234         return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
235 }
236
237 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
238                 int node, struct nvme_ns *old)
239 {
240         struct nvme_ns *ns, *found = NULL;
241
242         if (list_is_singular(&head->list)) {
243                 if (nvme_path_is_disabled(old))
244                         return NULL;
245                 return old;
246         }
247
248         for (ns = nvme_next_ns(head, old);
249              ns && ns != old;
250              ns = nvme_next_ns(head, ns)) {
251                 if (nvme_path_is_disabled(ns))
252                         continue;
253
254                 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
255                         found = ns;
256                         goto out;
257                 }
258                 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
259                         found = ns;
260         }
261
262         /*
263          * The loop above skips the current path for round-robin semantics.
264          * Fall back to the current path if either:
265          *  - no other optimized path found and current is optimized,
266          *  - no other usable path found and current is usable.
267          */
268         if (!nvme_path_is_disabled(old) &&
269             (old->ana_state == NVME_ANA_OPTIMIZED ||
270              (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
271                 return old;
272
273         if (!found)
274                 return NULL;
275 out:
276         rcu_assign_pointer(head->current_path[node], found);
277         return found;
278 }
279
280 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
281 {
282         return ns->ctrl->state == NVME_CTRL_LIVE &&
283                 ns->ana_state == NVME_ANA_OPTIMIZED;
284 }
285
286 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
287 {
288         int node = numa_node_id();
289         struct nvme_ns *ns;
290
291         ns = srcu_dereference(head->current_path[node], &head->srcu);
292         if (unlikely(!ns))
293                 return __nvme_find_path(head, node);
294
295         if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
296                 return nvme_round_robin_path(head, node, ns);
297         if (unlikely(!nvme_path_is_optimized(ns)))
298                 return __nvme_find_path(head, node);
299         return ns;
300 }
301
302 static bool nvme_available_path(struct nvme_ns_head *head)
303 {
304         struct nvme_ns *ns;
305
306         list_for_each_entry_rcu(ns, &head->list, siblings) {
307                 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
308                         continue;
309                 switch (ns->ctrl->state) {
310                 case NVME_CTRL_LIVE:
311                 case NVME_CTRL_RESETTING:
312                 case NVME_CTRL_CONNECTING:
313                         /* fallthru */
314                         return true;
315                 default:
316                         break;
317                 }
318         }
319         return false;
320 }
321
322 static void nvme_ns_head_submit_bio(struct bio *bio)
323 {
324         struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
325         struct device *dev = disk_to_dev(head->disk);
326         struct nvme_ns *ns;
327         int srcu_idx;
328
329         /*
330          * The namespace might be going away and the bio might be moved to a
331          * different queue via blk_steal_bios(), so we need to use the bio_split
332          * pool from the original queue to allocate the bvecs from.
333          */
334         blk_queue_split(&bio);
335
336         srcu_idx = srcu_read_lock(&head->srcu);
337         ns = nvme_find_path(head);
338         if (likely(ns)) {
339                 bio_set_dev(bio, ns->disk->part0);
340                 bio->bi_opf |= REQ_NVME_MPATH;
341                 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
342                                       bio->bi_iter.bi_sector);
343                 submit_bio_noacct(bio);
344         } else if (nvme_available_path(head)) {
345                 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
346
347                 spin_lock_irq(&head->requeue_lock);
348                 bio_list_add(&head->requeue_list, bio);
349                 spin_unlock_irq(&head->requeue_lock);
350         } else {
351                 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
352
353                 bio->bi_status = BLK_STS_IOERR;
354                 bio_endio(bio);
355         }
356
357         srcu_read_unlock(&head->srcu, srcu_idx);
358 }
359
360 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
361 {
362         if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
363                 return -ENXIO;
364         return 0;
365 }
366
367 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
368 {
369         nvme_put_ns_head(disk->private_data);
370 }
371
372 #ifdef CONFIG_BLK_DEV_ZONED
373 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
374                 unsigned int nr_zones, report_zones_cb cb, void *data)
375 {
376         struct nvme_ns_head *head = disk->private_data;
377         struct nvme_ns *ns;
378         int srcu_idx, ret = -EWOULDBLOCK;
379
380         srcu_idx = srcu_read_lock(&head->srcu);
381         ns = nvme_find_path(head);
382         if (ns)
383                 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
384         srcu_read_unlock(&head->srcu, srcu_idx);
385         return ret;
386 }
387 #else
388 #define nvme_ns_head_report_zones       NULL
389 #endif /* CONFIG_BLK_DEV_ZONED */
390
391 const struct block_device_operations nvme_ns_head_ops = {
392         .owner          = THIS_MODULE,
393         .submit_bio     = nvme_ns_head_submit_bio,
394         .open           = nvme_ns_head_open,
395         .release        = nvme_ns_head_release,
396         .ioctl          = nvme_ns_head_ioctl,
397         .getgeo         = nvme_getgeo,
398         .report_zones   = nvme_ns_head_report_zones,
399         .pr_ops         = &nvme_pr_ops,
400 };
401
402 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
403 {
404         return container_of(cdev, struct nvme_ns_head, cdev);
405 }
406
407 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
408 {
409         if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
410                 return -ENXIO;
411         return 0;
412 }
413
414 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
415 {
416         nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
417         return 0;
418 }
419
420 static const struct file_operations nvme_ns_head_chr_fops = {
421         .owner          = THIS_MODULE,
422         .open           = nvme_ns_head_chr_open,
423         .release        = nvme_ns_head_chr_release,
424         .unlocked_ioctl = nvme_ns_head_chr_ioctl,
425         .compat_ioctl   = compat_ptr_ioctl,
426 };
427
428 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
429 {
430         int ret;
431
432         head->cdev_device.parent = &head->subsys->dev;
433         ret = dev_set_name(&head->cdev_device, "ng%dn%d",
434                            head->subsys->instance, head->instance);
435         if (ret)
436                 return ret;
437         ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
438                             &nvme_ns_head_chr_fops, THIS_MODULE);
439         return ret;
440 }
441
442 static void nvme_requeue_work(struct work_struct *work)
443 {
444         struct nvme_ns_head *head =
445                 container_of(work, struct nvme_ns_head, requeue_work);
446         struct bio *bio, *next;
447
448         spin_lock_irq(&head->requeue_lock);
449         next = bio_list_get(&head->requeue_list);
450         spin_unlock_irq(&head->requeue_lock);
451
452         while ((bio = next) != NULL) {
453                 next = bio->bi_next;
454                 bio->bi_next = NULL;
455
456                 submit_bio_noacct(bio);
457         }
458 }
459
460 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
461 {
462         bool vwc = false;
463
464         mutex_init(&head->lock);
465         bio_list_init(&head->requeue_list);
466         spin_lock_init(&head->requeue_lock);
467         INIT_WORK(&head->requeue_work, nvme_requeue_work);
468
469         /*
470          * Add a multipath node if the subsystems supports multiple controllers.
471          * We also do this for private namespaces as the namespace sharing data could
472          * change after a rescan.
473          */
474         if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
475                 return 0;
476
477         head->disk = blk_alloc_disk(ctrl->numa_node);
478         if (!head->disk)
479                 return -ENOMEM;
480         head->disk->fops = &nvme_ns_head_ops;
481         head->disk->private_data = head;
482         sprintf(head->disk->disk_name, "nvme%dn%d",
483                         ctrl->subsys->instance, head->instance);
484
485         blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
486         blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
487         /*
488          * This assumes all controllers that refer to a namespace either
489          * support poll queues or not.  That is not a strict guarantee,
490          * but if the assumption is wrong the effect is only suboptimal
491          * performance but not correctness problem.
492          */
493         if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
494             ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
495                 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
496
497         /* set to a default value of 512 until the disk is validated */
498         blk_queue_logical_block_size(head->disk->queue, 512);
499         blk_set_stacking_limits(&head->disk->queue->limits);
500
501         /* we need to propagate up the VMC settings */
502         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
503                 vwc = true;
504         blk_queue_write_cache(head->disk->queue, vwc, vwc);
505         return 0;
506 }
507
508 static void nvme_mpath_set_live(struct nvme_ns *ns)
509 {
510         struct nvme_ns_head *head = ns->head;
511         int rc;
512
513         if (!head->disk)
514                 return;
515
516         /*
517          * test_and_set_bit() is used because it is protecting against two nvme
518          * paths simultaneously calling device_add_disk() on the same namespace
519          * head.
520          */
521         if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
522                 rc = device_add_disk(&head->subsys->dev, head->disk,
523                                      nvme_ns_id_attr_groups);
524                 if (rc) {
525                         clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
526                         return;
527                 }
528                 nvme_add_ns_head_cdev(head);
529         }
530
531         mutex_lock(&head->lock);
532         if (nvme_path_is_optimized(ns)) {
533                 int node, srcu_idx;
534
535                 srcu_idx = srcu_read_lock(&head->srcu);
536                 for_each_node(node)
537                         __nvme_find_path(head, node);
538                 srcu_read_unlock(&head->srcu, srcu_idx);
539         }
540         mutex_unlock(&head->lock);
541
542         synchronize_srcu(&head->srcu);
543         kblockd_schedule_work(&head->requeue_work);
544 }
545
546 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
547                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
548                         void *))
549 {
550         void *base = ctrl->ana_log_buf;
551         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
552         int error, i;
553
554         lockdep_assert_held(&ctrl->ana_lock);
555
556         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
557                 struct nvme_ana_group_desc *desc = base + offset;
558                 u32 nr_nsids;
559                 size_t nsid_buf_size;
560
561                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
562                         return -EINVAL;
563
564                 nr_nsids = le32_to_cpu(desc->nnsids);
565                 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
566
567                 if (WARN_ON_ONCE(desc->grpid == 0))
568                         return -EINVAL;
569                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
570                         return -EINVAL;
571                 if (WARN_ON_ONCE(desc->state == 0))
572                         return -EINVAL;
573                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
574                         return -EINVAL;
575
576                 offset += sizeof(*desc);
577                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
578                         return -EINVAL;
579
580                 error = cb(ctrl, desc, data);
581                 if (error)
582                         return error;
583
584                 offset += nsid_buf_size;
585         }
586
587         return 0;
588 }
589
590 static inline bool nvme_state_is_live(enum nvme_ana_state state)
591 {
592         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
593 }
594
595 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
596                 struct nvme_ns *ns)
597 {
598         ns->ana_grpid = le32_to_cpu(desc->grpid);
599         ns->ana_state = desc->state;
600         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
601
602         if (nvme_state_is_live(ns->ana_state))
603                 nvme_mpath_set_live(ns);
604 }
605
606 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
607                 struct nvme_ana_group_desc *desc, void *data)
608 {
609         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
610         unsigned *nr_change_groups = data;
611         struct nvme_ns *ns;
612
613         dev_dbg(ctrl->device, "ANA group %d: %s.\n",
614                         le32_to_cpu(desc->grpid),
615                         nvme_ana_state_names[desc->state]);
616
617         if (desc->state == NVME_ANA_CHANGE)
618                 (*nr_change_groups)++;
619
620         if (!nr_nsids)
621                 return 0;
622
623         down_read(&ctrl->namespaces_rwsem);
624         list_for_each_entry(ns, &ctrl->namespaces, list) {
625                 unsigned nsid;
626 again:
627                 nsid = le32_to_cpu(desc->nsids[n]);
628                 if (ns->head->ns_id < nsid)
629                         continue;
630                 if (ns->head->ns_id == nsid)
631                         nvme_update_ns_ana_state(desc, ns);
632                 if (++n == nr_nsids)
633                         break;
634                 if (ns->head->ns_id > nsid)
635                         goto again;
636         }
637         up_read(&ctrl->namespaces_rwsem);
638         return 0;
639 }
640
641 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
642 {
643         u32 nr_change_groups = 0;
644         int error;
645
646         mutex_lock(&ctrl->ana_lock);
647         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
648                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
649         if (error) {
650                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
651                 goto out_unlock;
652         }
653
654         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
655                         nvme_update_ana_state);
656         if (error)
657                 goto out_unlock;
658
659         /*
660          * In theory we should have an ANATT timer per group as they might enter
661          * the change state at different times.  But that is a lot of overhead
662          * just to protect against a target that keeps entering new changes
663          * states while never finishing previous ones.  But we'll still
664          * eventually time out once all groups are in change state, so this
665          * isn't a big deal.
666          *
667          * We also double the ANATT value to provide some slack for transports
668          * or AEN processing overhead.
669          */
670         if (nr_change_groups)
671                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
672         else
673                 del_timer_sync(&ctrl->anatt_timer);
674 out_unlock:
675         mutex_unlock(&ctrl->ana_lock);
676         return error;
677 }
678
679 static void nvme_ana_work(struct work_struct *work)
680 {
681         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
682
683         if (ctrl->state != NVME_CTRL_LIVE)
684                 return;
685
686         nvme_read_ana_log(ctrl);
687 }
688
689 static void nvme_anatt_timeout(struct timer_list *t)
690 {
691         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
692
693         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
694         nvme_reset_ctrl(ctrl);
695 }
696
697 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
698 {
699         if (!nvme_ctrl_use_ana(ctrl))
700                 return;
701         del_timer_sync(&ctrl->anatt_timer);
702         cancel_work_sync(&ctrl->ana_work);
703 }
704
705 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
706         struct device_attribute subsys_attr_##_name =   \
707                 __ATTR(_name, _mode, _show, _store)
708
709 static const char *nvme_iopolicy_names[] = {
710         [NVME_IOPOLICY_NUMA]    = "numa",
711         [NVME_IOPOLICY_RR]      = "round-robin",
712 };
713
714 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
715                 struct device_attribute *attr, char *buf)
716 {
717         struct nvme_subsystem *subsys =
718                 container_of(dev, struct nvme_subsystem, dev);
719
720         return sysfs_emit(buf, "%s\n",
721                           nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
722 }
723
724 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
725                 struct device_attribute *attr, const char *buf, size_t count)
726 {
727         struct nvme_subsystem *subsys =
728                 container_of(dev, struct nvme_subsystem, dev);
729         int i;
730
731         for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
732                 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
733                         WRITE_ONCE(subsys->iopolicy, i);
734                         return count;
735                 }
736         }
737
738         return -EINVAL;
739 }
740 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
741                       nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
742
743 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
744                 char *buf)
745 {
746         return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
747 }
748 DEVICE_ATTR_RO(ana_grpid);
749
750 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
751                 char *buf)
752 {
753         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
754
755         return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
756 }
757 DEVICE_ATTR_RO(ana_state);
758
759 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
760                 struct nvme_ana_group_desc *desc, void *data)
761 {
762         struct nvme_ana_group_desc *dst = data;
763
764         if (desc->grpid != dst->grpid)
765                 return 0;
766
767         *dst = *desc;
768         return -ENXIO; /* just break out of the loop */
769 }
770
771 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
772 {
773         if (nvme_ctrl_use_ana(ns->ctrl)) {
774                 struct nvme_ana_group_desc desc = {
775                         .grpid = id->anagrpid,
776                         .state = 0,
777                 };
778
779                 mutex_lock(&ns->ctrl->ana_lock);
780                 ns->ana_grpid = le32_to_cpu(id->anagrpid);
781                 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
782                 mutex_unlock(&ns->ctrl->ana_lock);
783                 if (desc.state) {
784                         /* found the group desc: update */
785                         nvme_update_ns_ana_state(&desc, ns);
786                 } else {
787                         /* group desc not found: trigger a re-read */
788                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
789                         queue_work(nvme_wq, &ns->ctrl->ana_work);
790                 }
791         } else {
792                 ns->ana_state = NVME_ANA_OPTIMIZED;
793                 nvme_mpath_set_live(ns);
794         }
795
796         if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
797                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
798                                    ns->head->disk->queue);
799 #ifdef CONFIG_BLK_DEV_ZONED
800         if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
801                 ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
802 #endif
803 }
804
805 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
806 {
807         if (!head->disk)
808                 return;
809         kblockd_schedule_work(&head->requeue_work);
810         if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
811                 nvme_cdev_del(&head->cdev, &head->cdev_device);
812                 del_gendisk(head->disk);
813         }
814 }
815
816 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
817 {
818         if (!head->disk)
819                 return;
820         blk_set_queue_dying(head->disk->queue);
821         /* make sure all pending bios are cleaned up */
822         kblockd_schedule_work(&head->requeue_work);
823         flush_work(&head->requeue_work);
824         blk_cleanup_disk(head->disk);
825 }
826
827 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
828 {
829         mutex_init(&ctrl->ana_lock);
830         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
831         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
832 }
833
834 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
835 {
836         size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
837         size_t ana_log_size;
838         int error = 0;
839
840         /* check if multipath is enabled and we have the capability */
841         if (!multipath || !ctrl->subsys ||
842             !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
843                 return 0;
844
845         if (!ctrl->max_namespaces ||
846             ctrl->max_namespaces > le32_to_cpu(id->nn)) {
847                 dev_err(ctrl->device,
848                         "Invalid MNAN value %u\n", ctrl->max_namespaces);
849                 return -EINVAL;
850         }
851
852         ctrl->anacap = id->anacap;
853         ctrl->anatt = id->anatt;
854         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
855         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
856
857         ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
858                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
859                 ctrl->max_namespaces * sizeof(__le32);
860         if (ana_log_size > max_transfer_size) {
861                 dev_err(ctrl->device,
862                         "ANA log page size (%zd) larger than MDTS (%zd).\n",
863                         ana_log_size, max_transfer_size);
864                 dev_err(ctrl->device, "disabling ANA support.\n");
865                 goto out_uninit;
866         }
867         if (ana_log_size > ctrl->ana_log_size) {
868                 nvme_mpath_stop(ctrl);
869                 kfree(ctrl->ana_log_buf);
870                 ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
871                 if (!ctrl->ana_log_buf)
872                         return -ENOMEM;
873         }
874         ctrl->ana_log_size = ana_log_size;
875         error = nvme_read_ana_log(ctrl);
876         if (error)
877                 goto out_uninit;
878         return 0;
879
880 out_uninit:
881         nvme_mpath_uninit(ctrl);
882         return error;
883 }
884
885 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
886 {
887         kfree(ctrl->ana_log_buf);
888         ctrl->ana_log_buf = NULL;
889 }