Merge tag 'nvme-6.4-2023-05-18' of git://git.infradead.org/nvme into block-6.4
[linux-2.6-microblaze.git] / drivers / nvme / host / multipath.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15         "turn on native support for multiple controllers per subsystem");
16
17 static const char *nvme_iopolicy_names[] = {
18         [NVME_IOPOLICY_NUMA]    = "numa",
19         [NVME_IOPOLICY_RR]      = "round-robin",
20 };
21
22 static int iopolicy = NVME_IOPOLICY_NUMA;
23
24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25 {
26         if (!val)
27                 return -EINVAL;
28         if (!strncmp(val, "numa", 4))
29                 iopolicy = NVME_IOPOLICY_NUMA;
30         else if (!strncmp(val, "round-robin", 11))
31                 iopolicy = NVME_IOPOLICY_RR;
32         else
33                 return -EINVAL;
34
35         return 0;
36 }
37
38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39 {
40         return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41 }
42
43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44         &iopolicy, 0644);
45 MODULE_PARM_DESC(iopolicy,
46         "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49 {
50         subsys->iopolicy = iopolicy;
51 }
52
53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54 {
55         struct nvme_ns_head *h;
56
57         lockdep_assert_held(&subsys->lock);
58         list_for_each_entry(h, &subsys->nsheads, entry)
59                 if (h->disk)
60                         blk_mq_unfreeze_queue(h->disk->queue);
61 }
62
63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64 {
65         struct nvme_ns_head *h;
66
67         lockdep_assert_held(&subsys->lock);
68         list_for_each_entry(h, &subsys->nsheads, entry)
69                 if (h->disk)
70                         blk_mq_freeze_queue_wait(h->disk->queue);
71 }
72
73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74 {
75         struct nvme_ns_head *h;
76
77         lockdep_assert_held(&subsys->lock);
78         list_for_each_entry(h, &subsys->nsheads, entry)
79                 if (h->disk)
80                         blk_freeze_queue_start(h->disk->queue);
81 }
82
83 void nvme_failover_req(struct request *req)
84 {
85         struct nvme_ns *ns = req->q->queuedata;
86         u16 status = nvme_req(req)->status & 0x7ff;
87         unsigned long flags;
88         struct bio *bio;
89
90         nvme_mpath_clear_current_path(ns);
91
92         /*
93          * If we got back an ANA error, we know the controller is alive but not
94          * ready to serve this namespace.  Kick of a re-read of the ANA
95          * information page, and just try any other available path for now.
96          */
97         if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98                 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99                 queue_work(nvme_wq, &ns->ctrl->ana_work);
100         }
101
102         spin_lock_irqsave(&ns->head->requeue_lock, flags);
103         for (bio = req->bio; bio; bio = bio->bi_next) {
104                 bio_set_dev(bio, ns->head->disk->part0);
105                 if (bio->bi_opf & REQ_POLLED) {
106                         bio->bi_opf &= ~REQ_POLLED;
107                         bio->bi_cookie = BLK_QC_T_NONE;
108                 }
109         }
110         blk_steal_bios(&ns->head->requeue_list, req);
111         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
112
113         blk_mq_end_request(req, 0);
114         kblockd_schedule_work(&ns->head->requeue_work);
115 }
116
117 void nvme_mpath_start_request(struct request *rq)
118 {
119         struct nvme_ns *ns = rq->q->queuedata;
120         struct gendisk *disk = ns->head->disk;
121
122         if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
123                 return;
124
125         nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
126         nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
127                                                       jiffies);
128 }
129 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
130
131 void nvme_mpath_end_request(struct request *rq)
132 {
133         struct nvme_ns *ns = rq->q->queuedata;
134
135         if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
136                 return;
137         bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
138                          blk_rq_bytes(rq) >> SECTOR_SHIFT,
139                          nvme_req(rq)->start_time);
140 }
141
142 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
143 {
144         struct nvme_ns *ns;
145
146         down_read(&ctrl->namespaces_rwsem);
147         list_for_each_entry(ns, &ctrl->namespaces, list) {
148                 if (!ns->head->disk)
149                         continue;
150                 kblockd_schedule_work(&ns->head->requeue_work);
151                 if (ctrl->state == NVME_CTRL_LIVE)
152                         disk_uevent(ns->head->disk, KOBJ_CHANGE);
153         }
154         up_read(&ctrl->namespaces_rwsem);
155 }
156
157 static const char *nvme_ana_state_names[] = {
158         [0]                             = "invalid state",
159         [NVME_ANA_OPTIMIZED]            = "optimized",
160         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
161         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
162         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
163         [NVME_ANA_CHANGE]               = "change",
164 };
165
166 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
167 {
168         struct nvme_ns_head *head = ns->head;
169         bool changed = false;
170         int node;
171
172         if (!head)
173                 goto out;
174
175         for_each_node(node) {
176                 if (ns == rcu_access_pointer(head->current_path[node])) {
177                         rcu_assign_pointer(head->current_path[node], NULL);
178                         changed = true;
179                 }
180         }
181 out:
182         return changed;
183 }
184
185 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
186 {
187         struct nvme_ns *ns;
188
189         down_read(&ctrl->namespaces_rwsem);
190         list_for_each_entry(ns, &ctrl->namespaces, list) {
191                 nvme_mpath_clear_current_path(ns);
192                 kblockd_schedule_work(&ns->head->requeue_work);
193         }
194         up_read(&ctrl->namespaces_rwsem);
195 }
196
197 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
198 {
199         struct nvme_ns_head *head = ns->head;
200         sector_t capacity = get_capacity(head->disk);
201         int node;
202         int srcu_idx;
203
204         srcu_idx = srcu_read_lock(&head->srcu);
205         list_for_each_entry_rcu(ns, &head->list, siblings) {
206                 if (capacity != get_capacity(ns->disk))
207                         clear_bit(NVME_NS_READY, &ns->flags);
208         }
209         srcu_read_unlock(&head->srcu, srcu_idx);
210
211         for_each_node(node)
212                 rcu_assign_pointer(head->current_path[node], NULL);
213         kblockd_schedule_work(&head->requeue_work);
214 }
215
216 static bool nvme_path_is_disabled(struct nvme_ns *ns)
217 {
218         /*
219          * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
220          * still be able to complete assuming that the controller is connected.
221          * Otherwise it will fail immediately and return to the requeue list.
222          */
223         if (ns->ctrl->state != NVME_CTRL_LIVE &&
224             ns->ctrl->state != NVME_CTRL_DELETING)
225                 return true;
226         if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
227             !test_bit(NVME_NS_READY, &ns->flags))
228                 return true;
229         return false;
230 }
231
232 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
233 {
234         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
235         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
236
237         list_for_each_entry_rcu(ns, &head->list, siblings) {
238                 if (nvme_path_is_disabled(ns))
239                         continue;
240
241                 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
242                         distance = node_distance(node, ns->ctrl->numa_node);
243                 else
244                         distance = LOCAL_DISTANCE;
245
246                 switch (ns->ana_state) {
247                 case NVME_ANA_OPTIMIZED:
248                         if (distance < found_distance) {
249                                 found_distance = distance;
250                                 found = ns;
251                         }
252                         break;
253                 case NVME_ANA_NONOPTIMIZED:
254                         if (distance < fallback_distance) {
255                                 fallback_distance = distance;
256                                 fallback = ns;
257                         }
258                         break;
259                 default:
260                         break;
261                 }
262         }
263
264         if (!found)
265                 found = fallback;
266         if (found)
267                 rcu_assign_pointer(head->current_path[node], found);
268         return found;
269 }
270
271 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
272                 struct nvme_ns *ns)
273 {
274         ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
275                         siblings);
276         if (ns)
277                 return ns;
278         return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
279 }
280
281 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
282                 int node, struct nvme_ns *old)
283 {
284         struct nvme_ns *ns, *found = NULL;
285
286         if (list_is_singular(&head->list)) {
287                 if (nvme_path_is_disabled(old))
288                         return NULL;
289                 return old;
290         }
291
292         for (ns = nvme_next_ns(head, old);
293              ns && ns != old;
294              ns = nvme_next_ns(head, ns)) {
295                 if (nvme_path_is_disabled(ns))
296                         continue;
297
298                 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
299                         found = ns;
300                         goto out;
301                 }
302                 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
303                         found = ns;
304         }
305
306         /*
307          * The loop above skips the current path for round-robin semantics.
308          * Fall back to the current path if either:
309          *  - no other optimized path found and current is optimized,
310          *  - no other usable path found and current is usable.
311          */
312         if (!nvme_path_is_disabled(old) &&
313             (old->ana_state == NVME_ANA_OPTIMIZED ||
314              (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
315                 return old;
316
317         if (!found)
318                 return NULL;
319 out:
320         rcu_assign_pointer(head->current_path[node], found);
321         return found;
322 }
323
324 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
325 {
326         return ns->ctrl->state == NVME_CTRL_LIVE &&
327                 ns->ana_state == NVME_ANA_OPTIMIZED;
328 }
329
330 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
331 {
332         int node = numa_node_id();
333         struct nvme_ns *ns;
334
335         ns = srcu_dereference(head->current_path[node], &head->srcu);
336         if (unlikely(!ns))
337                 return __nvme_find_path(head, node);
338
339         if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
340                 return nvme_round_robin_path(head, node, ns);
341         if (unlikely(!nvme_path_is_optimized(ns)))
342                 return __nvme_find_path(head, node);
343         return ns;
344 }
345
346 static bool nvme_available_path(struct nvme_ns_head *head)
347 {
348         struct nvme_ns *ns;
349
350         list_for_each_entry_rcu(ns, &head->list, siblings) {
351                 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
352                         continue;
353                 switch (ns->ctrl->state) {
354                 case NVME_CTRL_LIVE:
355                 case NVME_CTRL_RESETTING:
356                 case NVME_CTRL_CONNECTING:
357                         /* fallthru */
358                         return true;
359                 default:
360                         break;
361                 }
362         }
363         return false;
364 }
365
366 static void nvme_ns_head_submit_bio(struct bio *bio)
367 {
368         struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
369         struct device *dev = disk_to_dev(head->disk);
370         struct nvme_ns *ns;
371         int srcu_idx;
372
373         /*
374          * The namespace might be going away and the bio might be moved to a
375          * different queue via blk_steal_bios(), so we need to use the bio_split
376          * pool from the original queue to allocate the bvecs from.
377          */
378         bio = bio_split_to_limits(bio);
379         if (!bio)
380                 return;
381
382         srcu_idx = srcu_read_lock(&head->srcu);
383         ns = nvme_find_path(head);
384         if (likely(ns)) {
385                 bio_set_dev(bio, ns->disk->part0);
386                 bio->bi_opf |= REQ_NVME_MPATH;
387                 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
388                                       bio->bi_iter.bi_sector);
389                 submit_bio_noacct(bio);
390         } else if (nvme_available_path(head)) {
391                 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
392
393                 spin_lock_irq(&head->requeue_lock);
394                 bio_list_add(&head->requeue_list, bio);
395                 spin_unlock_irq(&head->requeue_lock);
396         } else {
397                 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
398
399                 bio_io_error(bio);
400         }
401
402         srcu_read_unlock(&head->srcu, srcu_idx);
403 }
404
405 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
406 {
407         if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
408                 return -ENXIO;
409         return 0;
410 }
411
412 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
413 {
414         nvme_put_ns_head(disk->private_data);
415 }
416
417 #ifdef CONFIG_BLK_DEV_ZONED
418 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
419                 unsigned int nr_zones, report_zones_cb cb, void *data)
420 {
421         struct nvme_ns_head *head = disk->private_data;
422         struct nvme_ns *ns;
423         int srcu_idx, ret = -EWOULDBLOCK;
424
425         srcu_idx = srcu_read_lock(&head->srcu);
426         ns = nvme_find_path(head);
427         if (ns)
428                 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
429         srcu_read_unlock(&head->srcu, srcu_idx);
430         return ret;
431 }
432 #else
433 #define nvme_ns_head_report_zones       NULL
434 #endif /* CONFIG_BLK_DEV_ZONED */
435
436 const struct block_device_operations nvme_ns_head_ops = {
437         .owner          = THIS_MODULE,
438         .submit_bio     = nvme_ns_head_submit_bio,
439         .open           = nvme_ns_head_open,
440         .release        = nvme_ns_head_release,
441         .ioctl          = nvme_ns_head_ioctl,
442         .compat_ioctl   = blkdev_compat_ptr_ioctl,
443         .getgeo         = nvme_getgeo,
444         .report_zones   = nvme_ns_head_report_zones,
445         .pr_ops         = &nvme_pr_ops,
446 };
447
448 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
449 {
450         return container_of(cdev, struct nvme_ns_head, cdev);
451 }
452
453 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
454 {
455         if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
456                 return -ENXIO;
457         return 0;
458 }
459
460 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
461 {
462         nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
463         return 0;
464 }
465
466 static const struct file_operations nvme_ns_head_chr_fops = {
467         .owner          = THIS_MODULE,
468         .open           = nvme_ns_head_chr_open,
469         .release        = nvme_ns_head_chr_release,
470         .unlocked_ioctl = nvme_ns_head_chr_ioctl,
471         .compat_ioctl   = compat_ptr_ioctl,
472         .uring_cmd      = nvme_ns_head_chr_uring_cmd,
473         .uring_cmd_iopoll = nvme_ns_head_chr_uring_cmd_iopoll,
474 };
475
476 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
477 {
478         int ret;
479
480         head->cdev_device.parent = &head->subsys->dev;
481         ret = dev_set_name(&head->cdev_device, "ng%dn%d",
482                            head->subsys->instance, head->instance);
483         if (ret)
484                 return ret;
485         ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
486                             &nvme_ns_head_chr_fops, THIS_MODULE);
487         return ret;
488 }
489
490 static void nvme_requeue_work(struct work_struct *work)
491 {
492         struct nvme_ns_head *head =
493                 container_of(work, struct nvme_ns_head, requeue_work);
494         struct bio *bio, *next;
495
496         spin_lock_irq(&head->requeue_lock);
497         next = bio_list_get(&head->requeue_list);
498         spin_unlock_irq(&head->requeue_lock);
499
500         while ((bio = next) != NULL) {
501                 next = bio->bi_next;
502                 bio->bi_next = NULL;
503
504                 submit_bio_noacct(bio);
505         }
506 }
507
508 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
509 {
510         bool vwc = false;
511
512         mutex_init(&head->lock);
513         bio_list_init(&head->requeue_list);
514         spin_lock_init(&head->requeue_lock);
515         INIT_WORK(&head->requeue_work, nvme_requeue_work);
516
517         /*
518          * Add a multipath node if the subsystems supports multiple controllers.
519          * We also do this for private namespaces as the namespace sharing flag
520          * could change after a rescan.
521          */
522         if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
523             !nvme_is_unique_nsid(ctrl, head) || !multipath)
524                 return 0;
525
526         head->disk = blk_alloc_disk(ctrl->numa_node);
527         if (!head->disk)
528                 return -ENOMEM;
529         head->disk->fops = &nvme_ns_head_ops;
530         head->disk->private_data = head;
531         sprintf(head->disk->disk_name, "nvme%dn%d",
532                         ctrl->subsys->instance, head->instance);
533
534         blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
535         blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
536         blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
537         /*
538          * This assumes all controllers that refer to a namespace either
539          * support poll queues or not.  That is not a strict guarantee,
540          * but if the assumption is wrong the effect is only suboptimal
541          * performance but not correctness problem.
542          */
543         if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
544             ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
545                 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
546
547         /* set to a default value of 512 until the disk is validated */
548         blk_queue_logical_block_size(head->disk->queue, 512);
549         blk_set_stacking_limits(&head->disk->queue->limits);
550         blk_queue_dma_alignment(head->disk->queue, 3);
551
552         /* we need to propagate up the VMC settings */
553         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
554                 vwc = true;
555         blk_queue_write_cache(head->disk->queue, vwc, vwc);
556         return 0;
557 }
558
559 static void nvme_mpath_set_live(struct nvme_ns *ns)
560 {
561         struct nvme_ns_head *head = ns->head;
562         int rc;
563
564         if (!head->disk)
565                 return;
566
567         /*
568          * test_and_set_bit() is used because it is protecting against two nvme
569          * paths simultaneously calling device_add_disk() on the same namespace
570          * head.
571          */
572         if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
573                 rc = device_add_disk(&head->subsys->dev, head->disk,
574                                      nvme_ns_id_attr_groups);
575                 if (rc) {
576                         clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
577                         return;
578                 }
579                 nvme_add_ns_head_cdev(head);
580         }
581
582         mutex_lock(&head->lock);
583         if (nvme_path_is_optimized(ns)) {
584                 int node, srcu_idx;
585
586                 srcu_idx = srcu_read_lock(&head->srcu);
587                 for_each_node(node)
588                         __nvme_find_path(head, node);
589                 srcu_read_unlock(&head->srcu, srcu_idx);
590         }
591         mutex_unlock(&head->lock);
592
593         synchronize_srcu(&head->srcu);
594         kblockd_schedule_work(&head->requeue_work);
595 }
596
597 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
598                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
599                         void *))
600 {
601         void *base = ctrl->ana_log_buf;
602         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
603         int error, i;
604
605         lockdep_assert_held(&ctrl->ana_lock);
606
607         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
608                 struct nvme_ana_group_desc *desc = base + offset;
609                 u32 nr_nsids;
610                 size_t nsid_buf_size;
611
612                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
613                         return -EINVAL;
614
615                 nr_nsids = le32_to_cpu(desc->nnsids);
616                 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
617
618                 if (WARN_ON_ONCE(desc->grpid == 0))
619                         return -EINVAL;
620                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
621                         return -EINVAL;
622                 if (WARN_ON_ONCE(desc->state == 0))
623                         return -EINVAL;
624                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
625                         return -EINVAL;
626
627                 offset += sizeof(*desc);
628                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
629                         return -EINVAL;
630
631                 error = cb(ctrl, desc, data);
632                 if (error)
633                         return error;
634
635                 offset += nsid_buf_size;
636         }
637
638         return 0;
639 }
640
641 static inline bool nvme_state_is_live(enum nvme_ana_state state)
642 {
643         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
644 }
645
646 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
647                 struct nvme_ns *ns)
648 {
649         ns->ana_grpid = le32_to_cpu(desc->grpid);
650         ns->ana_state = desc->state;
651         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
652         /*
653          * nvme_mpath_set_live() will trigger I/O to the multipath path device
654          * and in turn to this path device.  However we cannot accept this I/O
655          * if the controller is not live.  This may deadlock if called from
656          * nvme_mpath_init_identify() and the ctrl will never complete
657          * initialization, preventing I/O from completing.  For this case we
658          * will reprocess the ANA log page in nvme_mpath_update() once the
659          * controller is ready.
660          */
661         if (nvme_state_is_live(ns->ana_state) &&
662             ns->ctrl->state == NVME_CTRL_LIVE)
663                 nvme_mpath_set_live(ns);
664 }
665
666 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
667                 struct nvme_ana_group_desc *desc, void *data)
668 {
669         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
670         unsigned *nr_change_groups = data;
671         struct nvme_ns *ns;
672
673         dev_dbg(ctrl->device, "ANA group %d: %s.\n",
674                         le32_to_cpu(desc->grpid),
675                         nvme_ana_state_names[desc->state]);
676
677         if (desc->state == NVME_ANA_CHANGE)
678                 (*nr_change_groups)++;
679
680         if (!nr_nsids)
681                 return 0;
682
683         down_read(&ctrl->namespaces_rwsem);
684         list_for_each_entry(ns, &ctrl->namespaces, list) {
685                 unsigned nsid;
686 again:
687                 nsid = le32_to_cpu(desc->nsids[n]);
688                 if (ns->head->ns_id < nsid)
689                         continue;
690                 if (ns->head->ns_id == nsid)
691                         nvme_update_ns_ana_state(desc, ns);
692                 if (++n == nr_nsids)
693                         break;
694                 if (ns->head->ns_id > nsid)
695                         goto again;
696         }
697         up_read(&ctrl->namespaces_rwsem);
698         return 0;
699 }
700
701 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
702 {
703         u32 nr_change_groups = 0;
704         int error;
705
706         mutex_lock(&ctrl->ana_lock);
707         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
708                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
709         if (error) {
710                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
711                 goto out_unlock;
712         }
713
714         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
715                         nvme_update_ana_state);
716         if (error)
717                 goto out_unlock;
718
719         /*
720          * In theory we should have an ANATT timer per group as they might enter
721          * the change state at different times.  But that is a lot of overhead
722          * just to protect against a target that keeps entering new changes
723          * states while never finishing previous ones.  But we'll still
724          * eventually time out once all groups are in change state, so this
725          * isn't a big deal.
726          *
727          * We also double the ANATT value to provide some slack for transports
728          * or AEN processing overhead.
729          */
730         if (nr_change_groups)
731                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
732         else
733                 del_timer_sync(&ctrl->anatt_timer);
734 out_unlock:
735         mutex_unlock(&ctrl->ana_lock);
736         return error;
737 }
738
739 static void nvme_ana_work(struct work_struct *work)
740 {
741         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
742
743         if (ctrl->state != NVME_CTRL_LIVE)
744                 return;
745
746         nvme_read_ana_log(ctrl);
747 }
748
749 void nvme_mpath_update(struct nvme_ctrl *ctrl)
750 {
751         u32 nr_change_groups = 0;
752
753         if (!ctrl->ana_log_buf)
754                 return;
755
756         mutex_lock(&ctrl->ana_lock);
757         nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
758         mutex_unlock(&ctrl->ana_lock);
759 }
760
761 static void nvme_anatt_timeout(struct timer_list *t)
762 {
763         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
764
765         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
766         nvme_reset_ctrl(ctrl);
767 }
768
769 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
770 {
771         if (!nvme_ctrl_use_ana(ctrl))
772                 return;
773         del_timer_sync(&ctrl->anatt_timer);
774         cancel_work_sync(&ctrl->ana_work);
775 }
776
777 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
778         struct device_attribute subsys_attr_##_name =   \
779                 __ATTR(_name, _mode, _show, _store)
780
781 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
782                 struct device_attribute *attr, char *buf)
783 {
784         struct nvme_subsystem *subsys =
785                 container_of(dev, struct nvme_subsystem, dev);
786
787         return sysfs_emit(buf, "%s\n",
788                           nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
789 }
790
791 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
792                 struct device_attribute *attr, const char *buf, size_t count)
793 {
794         struct nvme_subsystem *subsys =
795                 container_of(dev, struct nvme_subsystem, dev);
796         int i;
797
798         for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
799                 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
800                         WRITE_ONCE(subsys->iopolicy, i);
801                         return count;
802                 }
803         }
804
805         return -EINVAL;
806 }
807 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
808                       nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
809
810 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
811                 char *buf)
812 {
813         return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
814 }
815 DEVICE_ATTR_RO(ana_grpid);
816
817 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
818                 char *buf)
819 {
820         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
821
822         return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
823 }
824 DEVICE_ATTR_RO(ana_state);
825
826 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
827                 struct nvme_ana_group_desc *desc, void *data)
828 {
829         struct nvme_ana_group_desc *dst = data;
830
831         if (desc->grpid != dst->grpid)
832                 return 0;
833
834         *dst = *desc;
835         return -ENXIO; /* just break out of the loop */
836 }
837
838 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
839 {
840         if (nvme_ctrl_use_ana(ns->ctrl)) {
841                 struct nvme_ana_group_desc desc = {
842                         .grpid = anagrpid,
843                         .state = 0,
844                 };
845
846                 mutex_lock(&ns->ctrl->ana_lock);
847                 ns->ana_grpid = le32_to_cpu(anagrpid);
848                 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
849                 mutex_unlock(&ns->ctrl->ana_lock);
850                 if (desc.state) {
851                         /* found the group desc: update */
852                         nvme_update_ns_ana_state(&desc, ns);
853                 } else {
854                         /* group desc not found: trigger a re-read */
855                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
856                         queue_work(nvme_wq, &ns->ctrl->ana_work);
857                 }
858         } else {
859                 ns->ana_state = NVME_ANA_OPTIMIZED;
860                 nvme_mpath_set_live(ns);
861         }
862
863         if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
864                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
865                                    ns->head->disk->queue);
866 #ifdef CONFIG_BLK_DEV_ZONED
867         if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
868                 ns->head->disk->nr_zones = ns->disk->nr_zones;
869 #endif
870 }
871
872 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
873 {
874         if (!head->disk)
875                 return;
876         kblockd_schedule_work(&head->requeue_work);
877         if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
878                 nvme_cdev_del(&head->cdev, &head->cdev_device);
879                 del_gendisk(head->disk);
880         }
881 }
882
883 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
884 {
885         if (!head->disk)
886                 return;
887         /* make sure all pending bios are cleaned up */
888         kblockd_schedule_work(&head->requeue_work);
889         flush_work(&head->requeue_work);
890         put_disk(head->disk);
891 }
892
893 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
894 {
895         mutex_init(&ctrl->ana_lock);
896         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
897         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
898 }
899
900 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
901 {
902         size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
903         size_t ana_log_size;
904         int error = 0;
905
906         /* check if multipath is enabled and we have the capability */
907         if (!multipath || !ctrl->subsys ||
908             !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
909                 return 0;
910
911         if (!ctrl->max_namespaces ||
912             ctrl->max_namespaces > le32_to_cpu(id->nn)) {
913                 dev_err(ctrl->device,
914                         "Invalid MNAN value %u\n", ctrl->max_namespaces);
915                 return -EINVAL;
916         }
917
918         ctrl->anacap = id->anacap;
919         ctrl->anatt = id->anatt;
920         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
921         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
922
923         ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
924                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
925                 ctrl->max_namespaces * sizeof(__le32);
926         if (ana_log_size > max_transfer_size) {
927                 dev_err(ctrl->device,
928                         "ANA log page size (%zd) larger than MDTS (%zd).\n",
929                         ana_log_size, max_transfer_size);
930                 dev_err(ctrl->device, "disabling ANA support.\n");
931                 goto out_uninit;
932         }
933         if (ana_log_size > ctrl->ana_log_size) {
934                 nvme_mpath_stop(ctrl);
935                 nvme_mpath_uninit(ctrl);
936                 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
937                 if (!ctrl->ana_log_buf)
938                         return -ENOMEM;
939         }
940         ctrl->ana_log_size = ana_log_size;
941         error = nvme_read_ana_log(ctrl);
942         if (error)
943                 goto out_uninit;
944         return 0;
945
946 out_uninit:
947         nvme_mpath_uninit(ctrl);
948         return error;
949 }
950
951 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
952 {
953         kvfree(ctrl->ana_log_buf);
954         ctrl->ana_log_buf = NULL;
955         ctrl->ana_log_size = 0;
956 }