Merge tag 'riscv-for-linus-5.13-mw0' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / nvme / host / multipath.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14         "turn on native support for multiple controllers per subsystem");
15
16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18         struct nvme_ns_head *h;
19
20         lockdep_assert_held(&subsys->lock);
21         list_for_each_entry(h, &subsys->nsheads, entry)
22                 if (h->disk)
23                         blk_mq_unfreeze_queue(h->disk->queue);
24 }
25
26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28         struct nvme_ns_head *h;
29
30         lockdep_assert_held(&subsys->lock);
31         list_for_each_entry(h, &subsys->nsheads, entry)
32                 if (h->disk)
33                         blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35
36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38         struct nvme_ns_head *h;
39
40         lockdep_assert_held(&subsys->lock);
41         list_for_each_entry(h, &subsys->nsheads, entry)
42                 if (h->disk)
43                         blk_freeze_queue_start(h->disk->queue);
44 }
45
46 /*
47  * If multipathing is enabled we need to always use the subsystem instance
48  * number for numbering our devices to avoid conflicts between subsystems that
49  * have multiple controllers and thus use the multipath-aware subsystem node
50  * and those that have a single controller and use the controller node
51  * directly.
52  */
53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
54 {
55         if (!multipath)
56                 return false;
57         if (!ns->head->disk) {
58                 sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
59                         ns->head->instance);
60                 return true;
61         }
62         sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
63                 ns->ctrl->instance, ns->head->instance);
64         *flags = GENHD_FL_HIDDEN;
65         return true;
66 }
67
68 void nvme_failover_req(struct request *req)
69 {
70         struct nvme_ns *ns = req->q->queuedata;
71         u16 status = nvme_req(req)->status & 0x7ff;
72         unsigned long flags;
73
74         nvme_mpath_clear_current_path(ns);
75
76         /*
77          * If we got back an ANA error, we know the controller is alive but not
78          * ready to serve this namespace.  Kick of a re-read of the ANA
79          * information page, and just try any other available path for now.
80          */
81         if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
82                 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
83                 queue_work(nvme_wq, &ns->ctrl->ana_work);
84         }
85
86         spin_lock_irqsave(&ns->head->requeue_lock, flags);
87         blk_steal_bios(&ns->head->requeue_list, req);
88         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
89
90         blk_mq_end_request(req, 0);
91         kblockd_schedule_work(&ns->head->requeue_work);
92 }
93
94 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
95 {
96         struct nvme_ns *ns;
97
98         down_read(&ctrl->namespaces_rwsem);
99         list_for_each_entry(ns, &ctrl->namespaces, list) {
100                 if (ns->head->disk)
101                         kblockd_schedule_work(&ns->head->requeue_work);
102         }
103         up_read(&ctrl->namespaces_rwsem);
104 }
105
106 static const char *nvme_ana_state_names[] = {
107         [0]                             = "invalid state",
108         [NVME_ANA_OPTIMIZED]            = "optimized",
109         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
110         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
111         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
112         [NVME_ANA_CHANGE]               = "change",
113 };
114
115 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
116 {
117         struct nvme_ns_head *head = ns->head;
118         bool changed = false;
119         int node;
120
121         if (!head)
122                 goto out;
123
124         for_each_node(node) {
125                 if (ns == rcu_access_pointer(head->current_path[node])) {
126                         rcu_assign_pointer(head->current_path[node], NULL);
127                         changed = true;
128                 }
129         }
130 out:
131         return changed;
132 }
133
134 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
135 {
136         struct nvme_ns *ns;
137
138         mutex_lock(&ctrl->scan_lock);
139         down_read(&ctrl->namespaces_rwsem);
140         list_for_each_entry(ns, &ctrl->namespaces, list)
141                 if (nvme_mpath_clear_current_path(ns))
142                         kblockd_schedule_work(&ns->head->requeue_work);
143         up_read(&ctrl->namespaces_rwsem);
144         mutex_unlock(&ctrl->scan_lock);
145 }
146
147 static bool nvme_path_is_disabled(struct nvme_ns *ns)
148 {
149         /*
150          * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
151          * still be able to complete assuming that the controller is connected.
152          * Otherwise it will fail immediately and return to the requeue list.
153          */
154         if (ns->ctrl->state != NVME_CTRL_LIVE &&
155             ns->ctrl->state != NVME_CTRL_DELETING)
156                 return true;
157         if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
158             test_bit(NVME_NS_REMOVING, &ns->flags))
159                 return true;
160         return false;
161 }
162
163 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
164 {
165         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
166         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
167
168         list_for_each_entry_rcu(ns, &head->list, siblings) {
169                 if (nvme_path_is_disabled(ns))
170                         continue;
171
172                 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
173                         distance = node_distance(node, ns->ctrl->numa_node);
174                 else
175                         distance = LOCAL_DISTANCE;
176
177                 switch (ns->ana_state) {
178                 case NVME_ANA_OPTIMIZED:
179                         if (distance < found_distance) {
180                                 found_distance = distance;
181                                 found = ns;
182                         }
183                         break;
184                 case NVME_ANA_NONOPTIMIZED:
185                         if (distance < fallback_distance) {
186                                 fallback_distance = distance;
187                                 fallback = ns;
188                         }
189                         break;
190                 default:
191                         break;
192                 }
193         }
194
195         if (!found)
196                 found = fallback;
197         if (found)
198                 rcu_assign_pointer(head->current_path[node], found);
199         return found;
200 }
201
202 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
203                 struct nvme_ns *ns)
204 {
205         ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
206                         siblings);
207         if (ns)
208                 return ns;
209         return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
210 }
211
212 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
213                 int node, struct nvme_ns *old)
214 {
215         struct nvme_ns *ns, *found = NULL;
216
217         if (list_is_singular(&head->list)) {
218                 if (nvme_path_is_disabled(old))
219                         return NULL;
220                 return old;
221         }
222
223         for (ns = nvme_next_ns(head, old);
224              ns && ns != old;
225              ns = nvme_next_ns(head, ns)) {
226                 if (nvme_path_is_disabled(ns))
227                         continue;
228
229                 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
230                         found = ns;
231                         goto out;
232                 }
233                 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
234                         found = ns;
235         }
236
237         /*
238          * The loop above skips the current path for round-robin semantics.
239          * Fall back to the current path if either:
240          *  - no other optimized path found and current is optimized,
241          *  - no other usable path found and current is usable.
242          */
243         if (!nvme_path_is_disabled(old) &&
244             (old->ana_state == NVME_ANA_OPTIMIZED ||
245              (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
246                 return old;
247
248         if (!found)
249                 return NULL;
250 out:
251         rcu_assign_pointer(head->current_path[node], found);
252         return found;
253 }
254
255 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
256 {
257         return ns->ctrl->state == NVME_CTRL_LIVE &&
258                 ns->ana_state == NVME_ANA_OPTIMIZED;
259 }
260
261 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
262 {
263         int node = numa_node_id();
264         struct nvme_ns *ns;
265
266         ns = srcu_dereference(head->current_path[node], &head->srcu);
267         if (unlikely(!ns))
268                 return __nvme_find_path(head, node);
269
270         if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
271                 return nvme_round_robin_path(head, node, ns);
272         if (unlikely(!nvme_path_is_optimized(ns)))
273                 return __nvme_find_path(head, node);
274         return ns;
275 }
276
277 static bool nvme_available_path(struct nvme_ns_head *head)
278 {
279         struct nvme_ns *ns;
280
281         list_for_each_entry_rcu(ns, &head->list, siblings) {
282                 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
283                         continue;
284                 switch (ns->ctrl->state) {
285                 case NVME_CTRL_LIVE:
286                 case NVME_CTRL_RESETTING:
287                 case NVME_CTRL_CONNECTING:
288                         /* fallthru */
289                         return true;
290                 default:
291                         break;
292                 }
293         }
294         return false;
295 }
296
297 static blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
298 {
299         struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
300         struct device *dev = disk_to_dev(head->disk);
301         struct nvme_ns *ns;
302         blk_qc_t ret = BLK_QC_T_NONE;
303         int srcu_idx;
304
305         /*
306          * The namespace might be going away and the bio might be moved to a
307          * different queue via blk_steal_bios(), so we need to use the bio_split
308          * pool from the original queue to allocate the bvecs from.
309          */
310         blk_queue_split(&bio);
311
312         srcu_idx = srcu_read_lock(&head->srcu);
313         ns = nvme_find_path(head);
314         if (likely(ns)) {
315                 bio_set_dev(bio, ns->disk->part0);
316                 bio->bi_opf |= REQ_NVME_MPATH;
317                 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
318                                       bio->bi_iter.bi_sector);
319                 ret = submit_bio_noacct(bio);
320         } else if (nvme_available_path(head)) {
321                 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
322
323                 spin_lock_irq(&head->requeue_lock);
324                 bio_list_add(&head->requeue_list, bio);
325                 spin_unlock_irq(&head->requeue_lock);
326         } else {
327                 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
328
329                 bio->bi_status = BLK_STS_IOERR;
330                 bio_endio(bio);
331         }
332
333         srcu_read_unlock(&head->srcu, srcu_idx);
334         return ret;
335 }
336
337 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
338 {
339         if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
340                 return -ENXIO;
341         return 0;
342 }
343
344 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
345 {
346         nvme_put_ns_head(disk->private_data);
347 }
348
349 const struct block_device_operations nvme_ns_head_ops = {
350         .owner          = THIS_MODULE,
351         .submit_bio     = nvme_ns_head_submit_bio,
352         .open           = nvme_ns_head_open,
353         .release        = nvme_ns_head_release,
354         .ioctl          = nvme_ns_head_ioctl,
355         .getgeo         = nvme_getgeo,
356         .report_zones   = nvme_report_zones,
357         .pr_ops         = &nvme_pr_ops,
358 };
359
360 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
361 {
362         return container_of(cdev, struct nvme_ns_head, cdev);
363 }
364
365 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
366 {
367         if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
368                 return -ENXIO;
369         return 0;
370 }
371
372 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
373 {
374         nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
375         return 0;
376 }
377
378 static const struct file_operations nvme_ns_head_chr_fops = {
379         .owner          = THIS_MODULE,
380         .open           = nvme_ns_head_chr_open,
381         .release        = nvme_ns_head_chr_release,
382         .unlocked_ioctl = nvme_ns_head_chr_ioctl,
383         .compat_ioctl   = compat_ptr_ioctl,
384 };
385
386 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
387 {
388         int ret;
389
390         head->cdev_device.parent = &head->subsys->dev;
391         ret = dev_set_name(&head->cdev_device, "ng%dn%d",
392                            head->subsys->instance, head->instance);
393         if (ret)
394                 return ret;
395         ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
396                             &nvme_ns_head_chr_fops, THIS_MODULE);
397         if (ret)
398                 kfree_const(head->cdev_device.kobj.name);
399         return ret;
400 }
401
402 static void nvme_requeue_work(struct work_struct *work)
403 {
404         struct nvme_ns_head *head =
405                 container_of(work, struct nvme_ns_head, requeue_work);
406         struct bio *bio, *next;
407
408         spin_lock_irq(&head->requeue_lock);
409         next = bio_list_get(&head->requeue_list);
410         spin_unlock_irq(&head->requeue_lock);
411
412         while ((bio = next) != NULL) {
413                 next = bio->bi_next;
414                 bio->bi_next = NULL;
415
416                 /*
417                  * Reset disk to the mpath node and resubmit to select a new
418                  * path.
419                  */
420                 bio_set_dev(bio, head->disk->part0);
421                 submit_bio_noacct(bio);
422         }
423 }
424
425 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
426 {
427         struct request_queue *q;
428         bool vwc = false;
429
430         mutex_init(&head->lock);
431         bio_list_init(&head->requeue_list);
432         spin_lock_init(&head->requeue_lock);
433         INIT_WORK(&head->requeue_work, nvme_requeue_work);
434
435         /*
436          * Add a multipath node if the subsystems supports multiple controllers.
437          * We also do this for private namespaces as the namespace sharing data could
438          * change after a rescan.
439          */
440         if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
441                 return 0;
442
443         q = blk_alloc_queue(ctrl->numa_node);
444         if (!q)
445                 goto out;
446         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
447         /* set to a default value for 512 until disk is validated */
448         blk_queue_logical_block_size(q, 512);
449         blk_set_stacking_limits(&q->limits);
450
451         /* we need to propagate up the VMC settings */
452         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
453                 vwc = true;
454         blk_queue_write_cache(q, vwc, vwc);
455
456         head->disk = alloc_disk(0);
457         if (!head->disk)
458                 goto out_cleanup_queue;
459         head->disk->fops = &nvme_ns_head_ops;
460         head->disk->private_data = head;
461         head->disk->queue = q;
462         head->disk->flags = GENHD_FL_EXT_DEVT;
463         sprintf(head->disk->disk_name, "nvme%dn%d",
464                         ctrl->subsys->instance, head->instance);
465         return 0;
466
467 out_cleanup_queue:
468         blk_cleanup_queue(q);
469 out:
470         return -ENOMEM;
471 }
472
473 static void nvme_mpath_set_live(struct nvme_ns *ns)
474 {
475         struct nvme_ns_head *head = ns->head;
476
477         if (!head->disk)
478                 return;
479
480         if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
481                 device_add_disk(&head->subsys->dev, head->disk,
482                                 nvme_ns_id_attr_groups);
483                 nvme_add_ns_head_cdev(head);
484         }
485
486         mutex_lock(&head->lock);
487         if (nvme_path_is_optimized(ns)) {
488                 int node, srcu_idx;
489
490                 srcu_idx = srcu_read_lock(&head->srcu);
491                 for_each_node(node)
492                         __nvme_find_path(head, node);
493                 srcu_read_unlock(&head->srcu, srcu_idx);
494         }
495         mutex_unlock(&head->lock);
496
497         synchronize_srcu(&head->srcu);
498         kblockd_schedule_work(&head->requeue_work);
499 }
500
501 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
502                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
503                         void *))
504 {
505         void *base = ctrl->ana_log_buf;
506         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
507         int error, i;
508
509         lockdep_assert_held(&ctrl->ana_lock);
510
511         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
512                 struct nvme_ana_group_desc *desc = base + offset;
513                 u32 nr_nsids;
514                 size_t nsid_buf_size;
515
516                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
517                         return -EINVAL;
518
519                 nr_nsids = le32_to_cpu(desc->nnsids);
520                 nsid_buf_size = nr_nsids * sizeof(__le32);
521
522                 if (WARN_ON_ONCE(desc->grpid == 0))
523                         return -EINVAL;
524                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
525                         return -EINVAL;
526                 if (WARN_ON_ONCE(desc->state == 0))
527                         return -EINVAL;
528                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
529                         return -EINVAL;
530
531                 offset += sizeof(*desc);
532                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
533                         return -EINVAL;
534
535                 error = cb(ctrl, desc, data);
536                 if (error)
537                         return error;
538
539                 offset += nsid_buf_size;
540         }
541
542         return 0;
543 }
544
545 static inline bool nvme_state_is_live(enum nvme_ana_state state)
546 {
547         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
548 }
549
550 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
551                 struct nvme_ns *ns)
552 {
553         ns->ana_grpid = le32_to_cpu(desc->grpid);
554         ns->ana_state = desc->state;
555         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
556
557         if (nvme_state_is_live(ns->ana_state))
558                 nvme_mpath_set_live(ns);
559 }
560
561 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
562                 struct nvme_ana_group_desc *desc, void *data)
563 {
564         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
565         unsigned *nr_change_groups = data;
566         struct nvme_ns *ns;
567
568         dev_dbg(ctrl->device, "ANA group %d: %s.\n",
569                         le32_to_cpu(desc->grpid),
570                         nvme_ana_state_names[desc->state]);
571
572         if (desc->state == NVME_ANA_CHANGE)
573                 (*nr_change_groups)++;
574
575         if (!nr_nsids)
576                 return 0;
577
578         down_read(&ctrl->namespaces_rwsem);
579         list_for_each_entry(ns, &ctrl->namespaces, list) {
580                 unsigned nsid = le32_to_cpu(desc->nsids[n]);
581
582                 if (ns->head->ns_id < nsid)
583                         continue;
584                 if (ns->head->ns_id == nsid)
585                         nvme_update_ns_ana_state(desc, ns);
586                 if (++n == nr_nsids)
587                         break;
588         }
589         up_read(&ctrl->namespaces_rwsem);
590         return 0;
591 }
592
593 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
594 {
595         u32 nr_change_groups = 0;
596         int error;
597
598         mutex_lock(&ctrl->ana_lock);
599         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
600                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
601         if (error) {
602                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
603                 goto out_unlock;
604         }
605
606         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
607                         nvme_update_ana_state);
608         if (error)
609                 goto out_unlock;
610
611         /*
612          * In theory we should have an ANATT timer per group as they might enter
613          * the change state at different times.  But that is a lot of overhead
614          * just to protect against a target that keeps entering new changes
615          * states while never finishing previous ones.  But we'll still
616          * eventually time out once all groups are in change state, so this
617          * isn't a big deal.
618          *
619          * We also double the ANATT value to provide some slack for transports
620          * or AEN processing overhead.
621          */
622         if (nr_change_groups)
623                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
624         else
625                 del_timer_sync(&ctrl->anatt_timer);
626 out_unlock:
627         mutex_unlock(&ctrl->ana_lock);
628         return error;
629 }
630
631 static void nvme_ana_work(struct work_struct *work)
632 {
633         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
634
635         if (ctrl->state != NVME_CTRL_LIVE)
636                 return;
637
638         nvme_read_ana_log(ctrl);
639 }
640
641 static void nvme_anatt_timeout(struct timer_list *t)
642 {
643         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
644
645         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
646         nvme_reset_ctrl(ctrl);
647 }
648
649 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
650 {
651         if (!nvme_ctrl_use_ana(ctrl))
652                 return;
653         del_timer_sync(&ctrl->anatt_timer);
654         cancel_work_sync(&ctrl->ana_work);
655 }
656
657 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
658         struct device_attribute subsys_attr_##_name =   \
659                 __ATTR(_name, _mode, _show, _store)
660
661 static const char *nvme_iopolicy_names[] = {
662         [NVME_IOPOLICY_NUMA]    = "numa",
663         [NVME_IOPOLICY_RR]      = "round-robin",
664 };
665
666 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
667                 struct device_attribute *attr, char *buf)
668 {
669         struct nvme_subsystem *subsys =
670                 container_of(dev, struct nvme_subsystem, dev);
671
672         return sysfs_emit(buf, "%s\n",
673                           nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
674 }
675
676 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
677                 struct device_attribute *attr, const char *buf, size_t count)
678 {
679         struct nvme_subsystem *subsys =
680                 container_of(dev, struct nvme_subsystem, dev);
681         int i;
682
683         for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
684                 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
685                         WRITE_ONCE(subsys->iopolicy, i);
686                         return count;
687                 }
688         }
689
690         return -EINVAL;
691 }
692 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
693                       nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
694
695 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
696                 char *buf)
697 {
698         return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
699 }
700 DEVICE_ATTR_RO(ana_grpid);
701
702 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
703                 char *buf)
704 {
705         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
706
707         return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
708 }
709 DEVICE_ATTR_RO(ana_state);
710
711 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
712                 struct nvme_ana_group_desc *desc, void *data)
713 {
714         struct nvme_ana_group_desc *dst = data;
715
716         if (desc->grpid != dst->grpid)
717                 return 0;
718
719         *dst = *desc;
720         return -ENXIO; /* just break out of the loop */
721 }
722
723 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
724 {
725         if (nvme_ctrl_use_ana(ns->ctrl)) {
726                 struct nvme_ana_group_desc desc = {
727                         .grpid = id->anagrpid,
728                         .state = 0,
729                 };
730
731                 mutex_lock(&ns->ctrl->ana_lock);
732                 ns->ana_grpid = le32_to_cpu(id->anagrpid);
733                 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
734                 mutex_unlock(&ns->ctrl->ana_lock);
735                 if (desc.state) {
736                         /* found the group desc: update */
737                         nvme_update_ns_ana_state(&desc, ns);
738                 } else {
739                         /* group desc not found: trigger a re-read */
740                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
741                         queue_work(nvme_wq, &ns->ctrl->ana_work);
742                 }
743         } else {
744                 ns->ana_state = NVME_ANA_OPTIMIZED;
745                 nvme_mpath_set_live(ns);
746         }
747
748         if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
749                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
750                                    ns->head->disk->queue);
751 #ifdef CONFIG_BLK_DEV_ZONED
752         if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
753                 ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
754 #endif
755 }
756
757 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
758 {
759         if (!head->disk)
760                 return;
761         if (head->disk->flags & GENHD_FL_UP) {
762                 nvme_cdev_del(&head->cdev, &head->cdev_device);
763                 del_gendisk(head->disk);
764         }
765         blk_set_queue_dying(head->disk->queue);
766         /* make sure all pending bios are cleaned up */
767         kblockd_schedule_work(&head->requeue_work);
768         flush_work(&head->requeue_work);
769         blk_cleanup_queue(head->disk->queue);
770         if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
771                 /*
772                  * if device_add_disk wasn't called, prevent
773                  * disk release to put a bogus reference on the
774                  * request queue
775                  */
776                 head->disk->queue = NULL;
777         }
778         put_disk(head->disk);
779 }
780
781 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
782 {
783         int error;
784
785         /* check if multipath is enabled and we have the capability */
786         if (!multipath || !ctrl->subsys ||
787             !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
788                 return 0;
789
790         ctrl->anacap = id->anacap;
791         ctrl->anatt = id->anatt;
792         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
793         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
794
795         mutex_init(&ctrl->ana_lock);
796         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
797         ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
798                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
799         ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
800
801         if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
802                 dev_err(ctrl->device,
803                         "ANA log page size (%zd) larger than MDTS (%d).\n",
804                         ctrl->ana_log_size,
805                         ctrl->max_hw_sectors << SECTOR_SHIFT);
806                 dev_err(ctrl->device, "disabling ANA support.\n");
807                 return 0;
808         }
809
810         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
811         kfree(ctrl->ana_log_buf);
812         ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
813         if (!ctrl->ana_log_buf) {
814                 error = -ENOMEM;
815                 goto out;
816         }
817
818         error = nvme_read_ana_log(ctrl);
819         if (error)
820                 goto out_free_ana_log_buf;
821         return 0;
822 out_free_ana_log_buf:
823         kfree(ctrl->ana_log_buf);
824         ctrl->ana_log_buf = NULL;
825 out:
826         return error;
827 }
828
829 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
830 {
831         kfree(ctrl->ana_log_buf);
832         ctrl->ana_log_buf = NULL;
833 }