Merge branch 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[linux-2.6-microblaze.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22
23 #include "nvme.h"
24 #include "fabrics.h"
25 #include <linux/nvme-fc-driver.h>
26 #include <linux/nvme-fc.h>
27
28
29 /* *************************** Data Structures/Defines ****************** */
30
31
32 /*
33  * We handle AEN commands ourselves and don't even let the
34  * block layer know about them.
35  */
36 #define NVME_FC_NR_AEN_COMMANDS 1
37 #define NVME_FC_AQ_BLKMQ_DEPTH  \
38         (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
39 #define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
40
41 enum nvme_fc_queue_flags {
42         NVME_FC_Q_CONNECTED = (1 << 0),
43 };
44
45 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
46
47 struct nvme_fc_queue {
48         struct nvme_fc_ctrl     *ctrl;
49         struct device           *dev;
50         struct blk_mq_hw_ctx    *hctx;
51         void                    *lldd_handle;
52         int                     queue_size;
53         size_t                  cmnd_capsule_len;
54         u32                     qnum;
55         u32                     rqcnt;
56         u32                     seqno;
57
58         u64                     connection_id;
59         atomic_t                csn;
60
61         unsigned long           flags;
62 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
63
64 struct nvmefc_ls_req_op {
65         struct nvmefc_ls_req    ls_req;
66
67         struct nvme_fc_ctrl     *ctrl;
68         struct nvme_fc_queue    *queue;
69         struct request          *rq;
70
71         int                     ls_error;
72         struct completion       ls_done;
73         struct list_head        lsreq_list;     /* ctrl->ls_req_list */
74         bool                    req_queued;
75 };
76
77 enum nvme_fcpop_state {
78         FCPOP_STATE_UNINIT      = 0,
79         FCPOP_STATE_IDLE        = 1,
80         FCPOP_STATE_ACTIVE      = 2,
81         FCPOP_STATE_ABORTED     = 3,
82 };
83
84 struct nvme_fc_fcp_op {
85         struct nvme_request     nreq;           /*
86                                                  * nvme/host/core.c
87                                                  * requires this to be
88                                                  * the 1st element in the
89                                                  * private structure
90                                                  * associated with the
91                                                  * request.
92                                                  */
93         struct nvmefc_fcp_req   fcp_req;
94
95         struct nvme_fc_ctrl     *ctrl;
96         struct nvme_fc_queue    *queue;
97         struct request          *rq;
98
99         atomic_t                state;
100         u32                     rqno;
101         u32                     nents;
102
103         struct nvme_fc_cmd_iu   cmd_iu;
104         struct nvme_fc_ersp_iu  rsp_iu;
105 };
106
107 struct nvme_fc_lport {
108         struct nvme_fc_local_port       localport;
109
110         struct ida                      endp_cnt;
111         struct list_head                port_list;      /* nvme_fc_port_list */
112         struct list_head                endp_list;
113         struct device                   *dev;   /* physical device for dma */
114         struct nvme_fc_port_template    *ops;
115         struct kref                     ref;
116 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
117
118 struct nvme_fc_rport {
119         struct nvme_fc_remote_port      remoteport;
120
121         struct list_head                endp_list; /* for lport->endp_list */
122         struct list_head                ctrl_list;
123         spinlock_t                      lock;
124         struct kref                     ref;
125 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
126
127 enum nvme_fcctrl_state {
128         FCCTRL_INIT             = 0,
129         FCCTRL_ACTIVE           = 1,
130 };
131
132 struct nvme_fc_ctrl {
133         spinlock_t              lock;
134         struct nvme_fc_queue    *queues;
135         u32                     queue_count;
136
137         struct device           *dev;
138         struct nvme_fc_lport    *lport;
139         struct nvme_fc_rport    *rport;
140         u32                     cnum;
141
142         u64                     association_id;
143
144         u64                     cap;
145
146         struct list_head        ctrl_list;      /* rport->ctrl_list */
147         struct list_head        ls_req_list;
148
149         struct blk_mq_tag_set   admin_tag_set;
150         struct blk_mq_tag_set   tag_set;
151
152         struct work_struct      delete_work;
153         struct kref             ref;
154         int                     state;
155
156         struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
157
158         struct nvme_ctrl        ctrl;
159 };
160
161 static inline struct nvme_fc_ctrl *
162 to_fc_ctrl(struct nvme_ctrl *ctrl)
163 {
164         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
165 }
166
167 static inline struct nvme_fc_lport *
168 localport_to_lport(struct nvme_fc_local_port *portptr)
169 {
170         return container_of(portptr, struct nvme_fc_lport, localport);
171 }
172
173 static inline struct nvme_fc_rport *
174 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
175 {
176         return container_of(portptr, struct nvme_fc_rport, remoteport);
177 }
178
179 static inline struct nvmefc_ls_req_op *
180 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
181 {
182         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
183 }
184
185 static inline struct nvme_fc_fcp_op *
186 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
187 {
188         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
189 }
190
191
192
193 /* *************************** Globals **************************** */
194
195
196 static DEFINE_SPINLOCK(nvme_fc_lock);
197
198 static LIST_HEAD(nvme_fc_lport_list);
199 static DEFINE_IDA(nvme_fc_local_port_cnt);
200 static DEFINE_IDA(nvme_fc_ctrl_cnt);
201
202 static struct workqueue_struct *nvme_fc_wq;
203
204
205
206 /* *********************** FC-NVME Port Management ************************ */
207
208 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
209 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
210                         struct nvme_fc_queue *, unsigned int);
211
212
213 /**
214  * nvme_fc_register_localport - transport entry point called by an
215  *                              LLDD to register the existence of a NVME
216  *                              host FC port.
217  * @pinfo:     pointer to information about the port to be registered
218  * @template:  LLDD entrypoints and operational parameters for the port
219  * @dev:       physical hardware device node port corresponds to. Will be
220  *             used for DMA mappings
221  * @lport_p:   pointer to a local port pointer. Upon success, the routine
222  *             will allocate a nvme_fc_local_port structure and place its
223  *             address in the local port pointer. Upon failure, local port
224  *             pointer will be set to 0.
225  *
226  * Returns:
227  * a completion status. Must be 0 upon success; a negative errno
228  * (ex: -ENXIO) upon failure.
229  */
230 int
231 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
232                         struct nvme_fc_port_template *template,
233                         struct device *dev,
234                         struct nvme_fc_local_port **portptr)
235 {
236         struct nvme_fc_lport *newrec;
237         unsigned long flags;
238         int ret, idx;
239
240         if (!template->localport_delete || !template->remoteport_delete ||
241             !template->ls_req || !template->fcp_io ||
242             !template->ls_abort || !template->fcp_abort ||
243             !template->max_hw_queues || !template->max_sgl_segments ||
244             !template->max_dif_sgl_segments || !template->dma_boundary) {
245                 ret = -EINVAL;
246                 goto out_reghost_failed;
247         }
248
249         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
250                          GFP_KERNEL);
251         if (!newrec) {
252                 ret = -ENOMEM;
253                 goto out_reghost_failed;
254         }
255
256         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
257         if (idx < 0) {
258                 ret = -ENOSPC;
259                 goto out_fail_kfree;
260         }
261
262         if (!get_device(dev) && dev) {
263                 ret = -ENODEV;
264                 goto out_ida_put;
265         }
266
267         INIT_LIST_HEAD(&newrec->port_list);
268         INIT_LIST_HEAD(&newrec->endp_list);
269         kref_init(&newrec->ref);
270         newrec->ops = template;
271         newrec->dev = dev;
272         ida_init(&newrec->endp_cnt);
273         newrec->localport.private = &newrec[1];
274         newrec->localport.node_name = pinfo->node_name;
275         newrec->localport.port_name = pinfo->port_name;
276         newrec->localport.port_role = pinfo->port_role;
277         newrec->localport.port_id = pinfo->port_id;
278         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
279         newrec->localport.port_num = idx;
280
281         spin_lock_irqsave(&nvme_fc_lock, flags);
282         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
283         spin_unlock_irqrestore(&nvme_fc_lock, flags);
284
285         if (dev)
286                 dma_set_seg_boundary(dev, template->dma_boundary);
287
288         *portptr = &newrec->localport;
289         return 0;
290
291 out_ida_put:
292         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
293 out_fail_kfree:
294         kfree(newrec);
295 out_reghost_failed:
296         *portptr = NULL;
297
298         return ret;
299 }
300 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
301
302 static void
303 nvme_fc_free_lport(struct kref *ref)
304 {
305         struct nvme_fc_lport *lport =
306                 container_of(ref, struct nvme_fc_lport, ref);
307         unsigned long flags;
308
309         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
310         WARN_ON(!list_empty(&lport->endp_list));
311
312         /* remove from transport list */
313         spin_lock_irqsave(&nvme_fc_lock, flags);
314         list_del(&lport->port_list);
315         spin_unlock_irqrestore(&nvme_fc_lock, flags);
316
317         /* let the LLDD know we've finished tearing it down */
318         lport->ops->localport_delete(&lport->localport);
319
320         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
321         ida_destroy(&lport->endp_cnt);
322
323         put_device(lport->dev);
324
325         kfree(lport);
326 }
327
328 static void
329 nvme_fc_lport_put(struct nvme_fc_lport *lport)
330 {
331         kref_put(&lport->ref, nvme_fc_free_lport);
332 }
333
334 static int
335 nvme_fc_lport_get(struct nvme_fc_lport *lport)
336 {
337         return kref_get_unless_zero(&lport->ref);
338 }
339
340 /**
341  * nvme_fc_unregister_localport - transport entry point called by an
342  *                              LLDD to deregister/remove a previously
343  *                              registered a NVME host FC port.
344  * @localport: pointer to the (registered) local port that is to be
345  *             deregistered.
346  *
347  * Returns:
348  * a completion status. Must be 0 upon success; a negative errno
349  * (ex: -ENXIO) upon failure.
350  */
351 int
352 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
353 {
354         struct nvme_fc_lport *lport = localport_to_lport(portptr);
355         unsigned long flags;
356
357         if (!portptr)
358                 return -EINVAL;
359
360         spin_lock_irqsave(&nvme_fc_lock, flags);
361
362         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
363                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
364                 return -EINVAL;
365         }
366         portptr->port_state = FC_OBJSTATE_DELETED;
367
368         spin_unlock_irqrestore(&nvme_fc_lock, flags);
369
370         nvme_fc_lport_put(lport);
371
372         return 0;
373 }
374 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
375
376 /**
377  * nvme_fc_register_remoteport - transport entry point called by an
378  *                              LLDD to register the existence of a NVME
379  *                              subsystem FC port on its fabric.
380  * @localport: pointer to the (registered) local port that the remote
381  *             subsystem port is connected to.
382  * @pinfo:     pointer to information about the port to be registered
383  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
384  *             will allocate a nvme_fc_remote_port structure and place its
385  *             address in the remote port pointer. Upon failure, remote port
386  *             pointer will be set to 0.
387  *
388  * Returns:
389  * a completion status. Must be 0 upon success; a negative errno
390  * (ex: -ENXIO) upon failure.
391  */
392 int
393 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
394                                 struct nvme_fc_port_info *pinfo,
395                                 struct nvme_fc_remote_port **portptr)
396 {
397         struct nvme_fc_lport *lport = localport_to_lport(localport);
398         struct nvme_fc_rport *newrec;
399         unsigned long flags;
400         int ret, idx;
401
402         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
403                          GFP_KERNEL);
404         if (!newrec) {
405                 ret = -ENOMEM;
406                 goto out_reghost_failed;
407         }
408
409         if (!nvme_fc_lport_get(lport)) {
410                 ret = -ESHUTDOWN;
411                 goto out_kfree_rport;
412         }
413
414         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
415         if (idx < 0) {
416                 ret = -ENOSPC;
417                 goto out_lport_put;
418         }
419
420         INIT_LIST_HEAD(&newrec->endp_list);
421         INIT_LIST_HEAD(&newrec->ctrl_list);
422         kref_init(&newrec->ref);
423         spin_lock_init(&newrec->lock);
424         newrec->remoteport.localport = &lport->localport;
425         newrec->remoteport.private = &newrec[1];
426         newrec->remoteport.port_role = pinfo->port_role;
427         newrec->remoteport.node_name = pinfo->node_name;
428         newrec->remoteport.port_name = pinfo->port_name;
429         newrec->remoteport.port_id = pinfo->port_id;
430         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
431         newrec->remoteport.port_num = idx;
432
433         spin_lock_irqsave(&nvme_fc_lock, flags);
434         list_add_tail(&newrec->endp_list, &lport->endp_list);
435         spin_unlock_irqrestore(&nvme_fc_lock, flags);
436
437         *portptr = &newrec->remoteport;
438         return 0;
439
440 out_lport_put:
441         nvme_fc_lport_put(lport);
442 out_kfree_rport:
443         kfree(newrec);
444 out_reghost_failed:
445         *portptr = NULL;
446         return ret;
447
448 }
449 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
450
451 static void
452 nvme_fc_free_rport(struct kref *ref)
453 {
454         struct nvme_fc_rport *rport =
455                 container_of(ref, struct nvme_fc_rport, ref);
456         struct nvme_fc_lport *lport =
457                         localport_to_lport(rport->remoteport.localport);
458         unsigned long flags;
459
460         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
461         WARN_ON(!list_empty(&rport->ctrl_list));
462
463         /* remove from lport list */
464         spin_lock_irqsave(&nvme_fc_lock, flags);
465         list_del(&rport->endp_list);
466         spin_unlock_irqrestore(&nvme_fc_lock, flags);
467
468         /* let the LLDD know we've finished tearing it down */
469         lport->ops->remoteport_delete(&rport->remoteport);
470
471         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
472
473         kfree(rport);
474
475         nvme_fc_lport_put(lport);
476 }
477
478 static void
479 nvme_fc_rport_put(struct nvme_fc_rport *rport)
480 {
481         kref_put(&rport->ref, nvme_fc_free_rport);
482 }
483
484 static int
485 nvme_fc_rport_get(struct nvme_fc_rport *rport)
486 {
487         return kref_get_unless_zero(&rport->ref);
488 }
489
490 /**
491  * nvme_fc_unregister_remoteport - transport entry point called by an
492  *                              LLDD to deregister/remove a previously
493  *                              registered a NVME subsystem FC port.
494  * @remoteport: pointer to the (registered) remote port that is to be
495  *              deregistered.
496  *
497  * Returns:
498  * a completion status. Must be 0 upon success; a negative errno
499  * (ex: -ENXIO) upon failure.
500  */
501 int
502 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
503 {
504         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
505         struct nvme_fc_ctrl *ctrl;
506         unsigned long flags;
507
508         if (!portptr)
509                 return -EINVAL;
510
511         spin_lock_irqsave(&rport->lock, flags);
512
513         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
514                 spin_unlock_irqrestore(&rport->lock, flags);
515                 return -EINVAL;
516         }
517         portptr->port_state = FC_OBJSTATE_DELETED;
518
519         /* tear down all associations to the remote port */
520         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
521                 __nvme_fc_del_ctrl(ctrl);
522
523         spin_unlock_irqrestore(&rport->lock, flags);
524
525         nvme_fc_rport_put(rport);
526         return 0;
527 }
528 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
529
530
531 /* *********************** FC-NVME DMA Handling **************************** */
532
533 /*
534  * The fcloop device passes in a NULL device pointer. Real LLD's will
535  * pass in a valid device pointer. If NULL is passed to the dma mapping
536  * routines, depending on the platform, it may or may not succeed, and
537  * may crash.
538  *
539  * As such:
540  * Wrapper all the dma routines and check the dev pointer.
541  *
542  * If simple mappings (return just a dma address, we'll noop them,
543  * returning a dma address of 0.
544  *
545  * On more complex mappings (dma_map_sg), a pseudo routine fills
546  * in the scatter list, setting all dma addresses to 0.
547  */
548
549 static inline dma_addr_t
550 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
551                 enum dma_data_direction dir)
552 {
553         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
554 }
555
556 static inline int
557 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
558 {
559         return dev ? dma_mapping_error(dev, dma_addr) : 0;
560 }
561
562 static inline void
563 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
564         enum dma_data_direction dir)
565 {
566         if (dev)
567                 dma_unmap_single(dev, addr, size, dir);
568 }
569
570 static inline void
571 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
572                 enum dma_data_direction dir)
573 {
574         if (dev)
575                 dma_sync_single_for_cpu(dev, addr, size, dir);
576 }
577
578 static inline void
579 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
580                 enum dma_data_direction dir)
581 {
582         if (dev)
583                 dma_sync_single_for_device(dev, addr, size, dir);
584 }
585
586 /* pseudo dma_map_sg call */
587 static int
588 fc_map_sg(struct scatterlist *sg, int nents)
589 {
590         struct scatterlist *s;
591         int i;
592
593         WARN_ON(nents == 0 || sg[0].length == 0);
594
595         for_each_sg(sg, s, nents, i) {
596                 s->dma_address = 0L;
597 #ifdef CONFIG_NEED_SG_DMA_LENGTH
598                 s->dma_length = s->length;
599 #endif
600         }
601         return nents;
602 }
603
604 static inline int
605 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
606                 enum dma_data_direction dir)
607 {
608         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
609 }
610
611 static inline void
612 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
613                 enum dma_data_direction dir)
614 {
615         if (dev)
616                 dma_unmap_sg(dev, sg, nents, dir);
617 }
618
619
620 /* *********************** FC-NVME LS Handling **************************** */
621
622 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
623 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
624
625
626 static void
627 __nvme_fc_finish_ls_req(struct nvme_fc_ctrl *ctrl,
628                 struct nvmefc_ls_req_op *lsop)
629 {
630         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
631         unsigned long flags;
632
633         spin_lock_irqsave(&ctrl->lock, flags);
634
635         if (!lsop->req_queued) {
636                 spin_unlock_irqrestore(&ctrl->lock, flags);
637                 return;
638         }
639
640         list_del(&lsop->lsreq_list);
641
642         lsop->req_queued = false;
643
644         spin_unlock_irqrestore(&ctrl->lock, flags);
645
646         fc_dma_unmap_single(ctrl->dev, lsreq->rqstdma,
647                                   (lsreq->rqstlen + lsreq->rsplen),
648                                   DMA_BIDIRECTIONAL);
649
650         nvme_fc_ctrl_put(ctrl);
651 }
652
653 static int
654 __nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl,
655                 struct nvmefc_ls_req_op *lsop,
656                 void (*done)(struct nvmefc_ls_req *req, int status))
657 {
658         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
659         unsigned long flags;
660         int ret;
661
662         if (!nvme_fc_ctrl_get(ctrl))
663                 return -ESHUTDOWN;
664
665         lsreq->done = done;
666         lsop->ctrl = ctrl;
667         lsop->req_queued = false;
668         INIT_LIST_HEAD(&lsop->lsreq_list);
669         init_completion(&lsop->ls_done);
670
671         lsreq->rqstdma = fc_dma_map_single(ctrl->dev, lsreq->rqstaddr,
672                                   lsreq->rqstlen + lsreq->rsplen,
673                                   DMA_BIDIRECTIONAL);
674         if (fc_dma_mapping_error(ctrl->dev, lsreq->rqstdma)) {
675                 nvme_fc_ctrl_put(ctrl);
676                 dev_err(ctrl->dev,
677                         "els request command failed EFAULT.\n");
678                 return -EFAULT;
679         }
680         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
681
682         spin_lock_irqsave(&ctrl->lock, flags);
683
684         list_add_tail(&lsop->lsreq_list, &ctrl->ls_req_list);
685
686         lsop->req_queued = true;
687
688         spin_unlock_irqrestore(&ctrl->lock, flags);
689
690         ret = ctrl->lport->ops->ls_req(&ctrl->lport->localport,
691                                         &ctrl->rport->remoteport, lsreq);
692         if (ret)
693                 lsop->ls_error = ret;
694
695         return ret;
696 }
697
698 static void
699 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
700 {
701         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
702
703         lsop->ls_error = status;
704         complete(&lsop->ls_done);
705 }
706
707 static int
708 nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop)
709 {
710         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
711         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
712         int ret;
713
714         ret = __nvme_fc_send_ls_req(ctrl, lsop, nvme_fc_send_ls_req_done);
715
716         if (!ret)
717                 /*
718                  * No timeout/not interruptible as we need the struct
719                  * to exist until the lldd calls us back. Thus mandate
720                  * wait until driver calls back. lldd responsible for
721                  * the timeout action
722                  */
723                 wait_for_completion(&lsop->ls_done);
724
725         __nvme_fc_finish_ls_req(ctrl, lsop);
726
727         if (ret) {
728                 dev_err(ctrl->dev,
729                         "ls request command failed (%d).\n", ret);
730                 return ret;
731         }
732
733         /* ACC or RJT payload ? */
734         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
735                 return -ENXIO;
736
737         return 0;
738 }
739
740 static void
741 nvme_fc_send_ls_req_async(struct nvme_fc_ctrl *ctrl,
742                 struct nvmefc_ls_req_op *lsop,
743                 void (*done)(struct nvmefc_ls_req *req, int status))
744 {
745         int ret;
746
747         ret = __nvme_fc_send_ls_req(ctrl, lsop, done);
748
749         /* don't wait for completion */
750
751         if (ret)
752                 done(&lsop->ls_req, ret);
753 }
754
755 /* Validation Error indexes into the string table below */
756 enum {
757         VERR_NO_ERROR           = 0,
758         VERR_LSACC              = 1,
759         VERR_LSDESC_RQST        = 2,
760         VERR_LSDESC_RQST_LEN    = 3,
761         VERR_ASSOC_ID           = 4,
762         VERR_ASSOC_ID_LEN       = 5,
763         VERR_CONN_ID            = 6,
764         VERR_CONN_ID_LEN        = 7,
765         VERR_CR_ASSOC           = 8,
766         VERR_CR_ASSOC_ACC_LEN   = 9,
767         VERR_CR_CONN            = 10,
768         VERR_CR_CONN_ACC_LEN    = 11,
769         VERR_DISCONN            = 12,
770         VERR_DISCONN_ACC_LEN    = 13,
771 };
772
773 static char *validation_errors[] = {
774         "OK",
775         "Not LS_ACC",
776         "Not LSDESC_RQST",
777         "Bad LSDESC_RQST Length",
778         "Not Association ID",
779         "Bad Association ID Length",
780         "Not Connection ID",
781         "Bad Connection ID Length",
782         "Not CR_ASSOC Rqst",
783         "Bad CR_ASSOC ACC Length",
784         "Not CR_CONN Rqst",
785         "Bad CR_CONN ACC Length",
786         "Not Disconnect Rqst",
787         "Bad Disconnect ACC Length",
788 };
789
790 static int
791 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
792         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
793 {
794         struct nvmefc_ls_req_op *lsop;
795         struct nvmefc_ls_req *lsreq;
796         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
797         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
798         int ret, fcret = 0;
799
800         lsop = kzalloc((sizeof(*lsop) +
801                          ctrl->lport->ops->lsrqst_priv_sz +
802                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
803         if (!lsop) {
804                 ret = -ENOMEM;
805                 goto out_no_memory;
806         }
807         lsreq = &lsop->ls_req;
808
809         lsreq->private = (void *)&lsop[1];
810         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
811                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
812         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
813
814         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
815         assoc_rqst->desc_list_len =
816                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
817
818         assoc_rqst->assoc_cmd.desc_tag =
819                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
820         assoc_rqst->assoc_cmd.desc_len =
821                         fcnvme_lsdesc_len(
822                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
823
824         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
825         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
826         /* Linux supports only Dynamic controllers */
827         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
828         memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
829                 min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
830         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
831                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
832         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
833                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
834
835         lsop->queue = queue;
836         lsreq->rqstaddr = assoc_rqst;
837         lsreq->rqstlen = sizeof(*assoc_rqst);
838         lsreq->rspaddr = assoc_acc;
839         lsreq->rsplen = sizeof(*assoc_acc);
840         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
841
842         ret = nvme_fc_send_ls_req(ctrl, lsop);
843         if (ret)
844                 goto out_free_buffer;
845
846         /* process connect LS completion */
847
848         /* validate the ACC response */
849         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
850                 fcret = VERR_LSACC;
851         if (assoc_acc->hdr.desc_list_len !=
852                         fcnvme_lsdesc_len(
853                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
854                 fcret = VERR_CR_ASSOC_ACC_LEN;
855         if (assoc_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
856                 fcret = VERR_LSDESC_RQST;
857         else if (assoc_acc->hdr.rqst.desc_len !=
858                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
859                 fcret = VERR_LSDESC_RQST_LEN;
860         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
861                 fcret = VERR_CR_ASSOC;
862         else if (assoc_acc->associd.desc_tag !=
863                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
864                 fcret = VERR_ASSOC_ID;
865         else if (assoc_acc->associd.desc_len !=
866                         fcnvme_lsdesc_len(
867                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
868                 fcret = VERR_ASSOC_ID_LEN;
869         else if (assoc_acc->connectid.desc_tag !=
870                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
871                 fcret = VERR_CONN_ID;
872         else if (assoc_acc->connectid.desc_len !=
873                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
874                 fcret = VERR_CONN_ID_LEN;
875
876         if (fcret) {
877                 ret = -EBADF;
878                 dev_err(ctrl->dev,
879                         "q %d connect failed: %s\n",
880                         queue->qnum, validation_errors[fcret]);
881         } else {
882                 ctrl->association_id =
883                         be64_to_cpu(assoc_acc->associd.association_id);
884                 queue->connection_id =
885                         be64_to_cpu(assoc_acc->connectid.connection_id);
886                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
887         }
888
889 out_free_buffer:
890         kfree(lsop);
891 out_no_memory:
892         if (ret)
893                 dev_err(ctrl->dev,
894                         "queue %d connect admin queue failed (%d).\n",
895                         queue->qnum, ret);
896         return ret;
897 }
898
899 static int
900 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
901                         u16 qsize, u16 ersp_ratio)
902 {
903         struct nvmefc_ls_req_op *lsop;
904         struct nvmefc_ls_req *lsreq;
905         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
906         struct fcnvme_ls_cr_conn_acc *conn_acc;
907         int ret, fcret = 0;
908
909         lsop = kzalloc((sizeof(*lsop) +
910                          ctrl->lport->ops->lsrqst_priv_sz +
911                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
912         if (!lsop) {
913                 ret = -ENOMEM;
914                 goto out_no_memory;
915         }
916         lsreq = &lsop->ls_req;
917
918         lsreq->private = (void *)&lsop[1];
919         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
920                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
921         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
922
923         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
924         conn_rqst->desc_list_len = cpu_to_be32(
925                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
926                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
927
928         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
929         conn_rqst->associd.desc_len =
930                         fcnvme_lsdesc_len(
931                                 sizeof(struct fcnvme_lsdesc_assoc_id));
932         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
933         conn_rqst->connect_cmd.desc_tag =
934                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
935         conn_rqst->connect_cmd.desc_len =
936                         fcnvme_lsdesc_len(
937                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
938         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
939         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
940         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
941
942         lsop->queue = queue;
943         lsreq->rqstaddr = conn_rqst;
944         lsreq->rqstlen = sizeof(*conn_rqst);
945         lsreq->rspaddr = conn_acc;
946         lsreq->rsplen = sizeof(*conn_acc);
947         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
948
949         ret = nvme_fc_send_ls_req(ctrl, lsop);
950         if (ret)
951                 goto out_free_buffer;
952
953         /* process connect LS completion */
954
955         /* validate the ACC response */
956         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
957                 fcret = VERR_LSACC;
958         if (conn_acc->hdr.desc_list_len !=
959                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
960                 fcret = VERR_CR_CONN_ACC_LEN;
961         if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
962                 fcret = VERR_LSDESC_RQST;
963         else if (conn_acc->hdr.rqst.desc_len !=
964                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
965                 fcret = VERR_LSDESC_RQST_LEN;
966         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
967                 fcret = VERR_CR_CONN;
968         else if (conn_acc->connectid.desc_tag !=
969                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
970                 fcret = VERR_CONN_ID;
971         else if (conn_acc->connectid.desc_len !=
972                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
973                 fcret = VERR_CONN_ID_LEN;
974
975         if (fcret) {
976                 ret = -EBADF;
977                 dev_err(ctrl->dev,
978                         "q %d connect failed: %s\n",
979                         queue->qnum, validation_errors[fcret]);
980         } else {
981                 queue->connection_id =
982                         be64_to_cpu(conn_acc->connectid.connection_id);
983                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
984         }
985
986 out_free_buffer:
987         kfree(lsop);
988 out_no_memory:
989         if (ret)
990                 dev_err(ctrl->dev,
991                         "queue %d connect command failed (%d).\n",
992                         queue->qnum, ret);
993         return ret;
994 }
995
996 static void
997 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
998 {
999         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1000         struct nvme_fc_ctrl *ctrl = lsop->ctrl;
1001
1002         __nvme_fc_finish_ls_req(ctrl, lsop);
1003
1004         if (status)
1005                 dev_err(ctrl->dev,
1006                         "disconnect assoc ls request command failed (%d).\n",
1007                         status);
1008
1009         /* fc-nvme iniator doesn't care about success or failure of cmd */
1010
1011         kfree(lsop);
1012 }
1013
1014 /*
1015  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1016  * the FC-NVME Association.  Terminating the association also
1017  * terminates the FC-NVME connections (per queue, both admin and io
1018  * queues) that are part of the association. E.g. things are torn
1019  * down, and the related FC-NVME Association ID and Connection IDs
1020  * become invalid.
1021  *
1022  * The behavior of the fc-nvme initiator is such that it's
1023  * understanding of the association and connections will implicitly
1024  * be torn down. The action is implicit as it may be due to a loss of
1025  * connectivity with the fc-nvme target, so you may never get a
1026  * response even if you tried.  As such, the action of this routine
1027  * is to asynchronously send the LS, ignore any results of the LS, and
1028  * continue on with terminating the association. If the fc-nvme target
1029  * is present and receives the LS, it too can tear down.
1030  */
1031 static void
1032 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1033 {
1034         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1035         struct fcnvme_ls_disconnect_acc *discon_acc;
1036         struct nvmefc_ls_req_op *lsop;
1037         struct nvmefc_ls_req *lsreq;
1038
1039         lsop = kzalloc((sizeof(*lsop) +
1040                          ctrl->lport->ops->lsrqst_priv_sz +
1041                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1042                         GFP_KERNEL);
1043         if (!lsop)
1044                 /* couldn't sent it... too bad */
1045                 return;
1046
1047         lsreq = &lsop->ls_req;
1048
1049         lsreq->private = (void *)&lsop[1];
1050         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1051                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1052         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1053
1054         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1055         discon_rqst->desc_list_len = cpu_to_be32(
1056                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1057                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1058
1059         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1060         discon_rqst->associd.desc_len =
1061                         fcnvme_lsdesc_len(
1062                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1063
1064         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1065
1066         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1067                                                 FCNVME_LSDESC_DISCONN_CMD);
1068         discon_rqst->discon_cmd.desc_len =
1069                         fcnvme_lsdesc_len(
1070                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1071         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1072         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1073
1074         lsreq->rqstaddr = discon_rqst;
1075         lsreq->rqstlen = sizeof(*discon_rqst);
1076         lsreq->rspaddr = discon_acc;
1077         lsreq->rsplen = sizeof(*discon_acc);
1078         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1079
1080         nvme_fc_send_ls_req_async(ctrl, lsop, nvme_fc_disconnect_assoc_done);
1081
1082         /* only meaningful part to terminating the association */
1083         ctrl->association_id = 0;
1084 }
1085
1086
1087 /* *********************** NVME Ctrl Routines **************************** */
1088
1089
1090 static int
1091 nvme_fc_reinit_request(void *data, struct request *rq)
1092 {
1093         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1094         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1095
1096         memset(cmdiu, 0, sizeof(*cmdiu));
1097         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1098         cmdiu->fc_id = NVME_CMD_FC_ID;
1099         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1100         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1101
1102         return 0;
1103 }
1104
1105 static void
1106 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1107                 struct nvme_fc_fcp_op *op)
1108 {
1109         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1110                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1111         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1112                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1113
1114         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1115 }
1116
1117 static void
1118 nvme_fc_exit_request(void *data, struct request *rq,
1119                                 unsigned int hctx_idx, unsigned int rq_idx)
1120 {
1121         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1122
1123         return __nvme_fc_exit_request(data, op);
1124 }
1125
1126 static void
1127 nvme_fc_exit_aen_ops(struct nvme_fc_ctrl *ctrl)
1128 {
1129         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1130         int i;
1131
1132         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1133                 if (atomic_read(&aen_op->state) == FCPOP_STATE_UNINIT)
1134                         continue;
1135                 __nvme_fc_exit_request(ctrl, aen_op);
1136                 nvme_fc_ctrl_put(ctrl);
1137         }
1138 }
1139
1140 void
1141 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1142 {
1143         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1144         struct request *rq = op->rq;
1145         struct nvmefc_fcp_req *freq = &op->fcp_req;
1146         struct nvme_fc_ctrl *ctrl = op->ctrl;
1147         struct nvme_fc_queue *queue = op->queue;
1148         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1149         u16 status;
1150
1151         /*
1152          * WARNING:
1153          * The current linux implementation of a nvme controller
1154          * allocates a single tag set for all io queues and sizes
1155          * the io queues to fully hold all possible tags. Thus, the
1156          * implementation does not reference or care about the sqhd
1157          * value as it never needs to use the sqhd/sqtail pointers
1158          * for submission pacing.
1159          *
1160          * This affects the FC-NVME implementation in two ways:
1161          * 1) As the value doesn't matter, we don't need to waste
1162          *    cycles extracting it from ERSPs and stamping it in the
1163          *    cases where the transport fabricates CQEs on successful
1164          *    completions.
1165          * 2) The FC-NVME implementation requires that delivery of
1166          *    ERSP completions are to go back to the nvme layer in order
1167          *    relative to the rsn, such that the sqhd value will always
1168          *    be "in order" for the nvme layer. As the nvme layer in
1169          *    linux doesn't care about sqhd, there's no need to return
1170          *    them in order.
1171          *
1172          * Additionally:
1173          * As the core nvme layer in linux currently does not look at
1174          * every field in the cqe - in cases where the FC transport must
1175          * fabricate a CQE, the following fields will not be set as they
1176          * are not referenced:
1177          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1178          */
1179
1180         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1181                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1182
1183         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1184                 status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1185         else
1186                 status = freq->status;
1187
1188         /*
1189          * For the linux implementation, if we have an unsuccesful
1190          * status, they blk-mq layer can typically be called with the
1191          * non-zero status and the content of the cqe isn't important.
1192          */
1193         if (status)
1194                 goto done;
1195
1196         /*
1197          * command completed successfully relative to the wire
1198          * protocol. However, validate anything received and
1199          * extract the status and result from the cqe (create it
1200          * where necessary).
1201          */
1202
1203         switch (freq->rcv_rsplen) {
1204
1205         case 0:
1206         case NVME_FC_SIZEOF_ZEROS_RSP:
1207                 /*
1208                  * No response payload or 12 bytes of payload (which
1209                  * should all be zeros) are considered successful and
1210                  * no payload in the CQE by the transport.
1211                  */
1212                 if (freq->transferred_length !=
1213                         be32_to_cpu(op->cmd_iu.data_len)) {
1214                         status = -EIO;
1215                         goto done;
1216                 }
1217                 op->nreq.result.u64 = 0;
1218                 break;
1219
1220         case sizeof(struct nvme_fc_ersp_iu):
1221                 /*
1222                  * The ERSP IU contains a full completion with CQE.
1223                  * Validate ERSP IU and look at cqe.
1224                  */
1225                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1226                                         (freq->rcv_rsplen / 4) ||
1227                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1228                                         freq->transferred_length ||
1229                              op->rqno != le16_to_cpu(cqe->command_id))) {
1230                         status = -EIO;
1231                         goto done;
1232                 }
1233                 op->nreq.result = cqe->result;
1234                 status = le16_to_cpu(cqe->status) >> 1;
1235                 break;
1236
1237         default:
1238                 status = -EIO;
1239                 goto done;
1240         }
1241
1242 done:
1243         if (!queue->qnum && op->rqno >= AEN_CMDID_BASE) {
1244                 nvme_complete_async_event(&queue->ctrl->ctrl, status,
1245                                         &op->nreq.result);
1246                 nvme_fc_ctrl_put(ctrl);
1247                 return;
1248         }
1249
1250         blk_mq_complete_request(rq, status);
1251 }
1252
1253 static int
1254 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1255                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1256                 struct request *rq, u32 rqno)
1257 {
1258         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1259         int ret = 0;
1260
1261         memset(op, 0, sizeof(*op));
1262         op->fcp_req.cmdaddr = &op->cmd_iu;
1263         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1264         op->fcp_req.rspaddr = &op->rsp_iu;
1265         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1266         op->fcp_req.done = nvme_fc_fcpio_done;
1267         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1268         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1269         op->ctrl = ctrl;
1270         op->queue = queue;
1271         op->rq = rq;
1272         op->rqno = rqno;
1273
1274         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1275         cmdiu->fc_id = NVME_CMD_FC_ID;
1276         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1277
1278         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1279                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1280         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1281                 dev_err(ctrl->dev,
1282                         "FCP Op failed - cmdiu dma mapping failed.\n");
1283                 ret = EFAULT;
1284                 goto out_on_error;
1285         }
1286
1287         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1288                                 &op->rsp_iu, sizeof(op->rsp_iu),
1289                                 DMA_FROM_DEVICE);
1290         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1291                 dev_err(ctrl->dev,
1292                         "FCP Op failed - rspiu dma mapping failed.\n");
1293                 ret = EFAULT;
1294         }
1295
1296         atomic_set(&op->state, FCPOP_STATE_IDLE);
1297 out_on_error:
1298         return ret;
1299 }
1300
1301 static int
1302 nvme_fc_init_request(void *data, struct request *rq,
1303                                 unsigned int hctx_idx, unsigned int rq_idx,
1304                                 unsigned int numa_node)
1305 {
1306         struct nvme_fc_ctrl *ctrl = data;
1307         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1308         struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1309
1310         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1311 }
1312
1313 static int
1314 nvme_fc_init_admin_request(void *data, struct request *rq,
1315                                 unsigned int hctx_idx, unsigned int rq_idx,
1316                                 unsigned int numa_node)
1317 {
1318         struct nvme_fc_ctrl *ctrl = data;
1319         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1320         struct nvme_fc_queue *queue = &ctrl->queues[0];
1321
1322         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1323 }
1324
1325 static int
1326 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1327 {
1328         struct nvme_fc_fcp_op *aen_op;
1329         struct nvme_fc_cmd_iu *cmdiu;
1330         struct nvme_command *sqe;
1331         int i, ret;
1332
1333         aen_op = ctrl->aen_ops;
1334         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1335                 cmdiu = &aen_op->cmd_iu;
1336                 sqe = &cmdiu->sqe;
1337                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1338                                 aen_op, (struct request *)NULL,
1339                                 (AEN_CMDID_BASE + i));
1340                 if (ret)
1341                         return ret;
1342
1343                 memset(sqe, 0, sizeof(*sqe));
1344                 sqe->common.opcode = nvme_admin_async_event;
1345                 sqe->common.command_id = AEN_CMDID_BASE + i;
1346         }
1347         return 0;
1348 }
1349
1350
1351 static inline void
1352 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1353                 unsigned int qidx)
1354 {
1355         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1356
1357         hctx->driver_data = queue;
1358         queue->hctx = hctx;
1359 }
1360
1361 static int
1362 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1363                 unsigned int hctx_idx)
1364 {
1365         struct nvme_fc_ctrl *ctrl = data;
1366
1367         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1368
1369         return 0;
1370 }
1371
1372 static int
1373 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1374                 unsigned int hctx_idx)
1375 {
1376         struct nvme_fc_ctrl *ctrl = data;
1377
1378         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1379
1380         return 0;
1381 }
1382
1383 static void
1384 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1385 {
1386         struct nvme_fc_queue *queue;
1387
1388         queue = &ctrl->queues[idx];
1389         memset(queue, 0, sizeof(*queue));
1390         queue->ctrl = ctrl;
1391         queue->qnum = idx;
1392         atomic_set(&queue->csn, 1);
1393         queue->dev = ctrl->dev;
1394
1395         if (idx > 0)
1396                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1397         else
1398                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1399
1400         queue->queue_size = queue_size;
1401
1402         /*
1403          * Considered whether we should allocate buffers for all SQEs
1404          * and CQEs and dma map them - mapping their respective entries
1405          * into the request structures (kernel vm addr and dma address)
1406          * thus the driver could use the buffers/mappings directly.
1407          * It only makes sense if the LLDD would use them for its
1408          * messaging api. It's very unlikely most adapter api's would use
1409          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1410          * structures were used instead.
1411          */
1412 }
1413
1414 /*
1415  * This routine terminates a queue at the transport level.
1416  * The transport has already ensured that all outstanding ios on
1417  * the queue have been terminated.
1418  * The transport will send a Disconnect LS request to terminate
1419  * the queue's connection. Termination of the admin queue will also
1420  * terminate the association at the target.
1421  */
1422 static void
1423 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1424 {
1425         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1426                 return;
1427
1428         /*
1429          * Current implementation never disconnects a single queue.
1430          * It always terminates a whole association. So there is never
1431          * a disconnect(queue) LS sent to the target.
1432          */
1433
1434         queue->connection_id = 0;
1435         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1436 }
1437
1438 static void
1439 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1440         struct nvme_fc_queue *queue, unsigned int qidx)
1441 {
1442         if (ctrl->lport->ops->delete_queue)
1443                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1444                                 queue->lldd_handle);
1445         queue->lldd_handle = NULL;
1446 }
1447
1448 static void
1449 nvme_fc_destroy_admin_queue(struct nvme_fc_ctrl *ctrl)
1450 {
1451         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
1452         blk_cleanup_queue(ctrl->ctrl.admin_q);
1453         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1454         nvme_fc_free_queue(&ctrl->queues[0]);
1455 }
1456
1457 static void
1458 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1459 {
1460         int i;
1461
1462         for (i = 1; i < ctrl->queue_count; i++)
1463                 nvme_fc_free_queue(&ctrl->queues[i]);
1464 }
1465
1466 static int
1467 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1468         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1469 {
1470         int ret = 0;
1471
1472         queue->lldd_handle = NULL;
1473         if (ctrl->lport->ops->create_queue)
1474                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1475                                 qidx, qsize, &queue->lldd_handle);
1476
1477         return ret;
1478 }
1479
1480 static void
1481 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1482 {
1483         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1484         int i;
1485
1486         for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1487                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1488 }
1489
1490 static int
1491 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1492 {
1493         struct nvme_fc_queue *queue = &ctrl->queues[1];
1494         int i, ret;
1495
1496         for (i = 1; i < ctrl->queue_count; i++, queue++) {
1497                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1498                 if (ret)
1499                         goto delete_queues;
1500         }
1501
1502         return 0;
1503
1504 delete_queues:
1505         for (; i >= 0; i--)
1506                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1507         return ret;
1508 }
1509
1510 static int
1511 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1512 {
1513         int i, ret = 0;
1514
1515         for (i = 1; i < ctrl->queue_count; i++) {
1516                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1517                                         (qsize / 5));
1518                 if (ret)
1519                         break;
1520                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1521                 if (ret)
1522                         break;
1523         }
1524
1525         return ret;
1526 }
1527
1528 static void
1529 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1530 {
1531         int i;
1532
1533         for (i = 1; i < ctrl->queue_count; i++)
1534                 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1535 }
1536
1537 static void
1538 nvme_fc_ctrl_free(struct kref *ref)
1539 {
1540         struct nvme_fc_ctrl *ctrl =
1541                 container_of(ref, struct nvme_fc_ctrl, ref);
1542         unsigned long flags;
1543
1544         if (ctrl->state != FCCTRL_INIT) {
1545                 /* remove from rport list */
1546                 spin_lock_irqsave(&ctrl->rport->lock, flags);
1547                 list_del(&ctrl->ctrl_list);
1548                 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1549         }
1550
1551         put_device(ctrl->dev);
1552         nvme_fc_rport_put(ctrl->rport);
1553
1554         kfree(ctrl->queues);
1555         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1556         nvmf_free_options(ctrl->ctrl.opts);
1557         kfree(ctrl);
1558 }
1559
1560 static void
1561 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1562 {
1563         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1564 }
1565
1566 static int
1567 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1568 {
1569         return kref_get_unless_zero(&ctrl->ref);
1570 }
1571
1572 /*
1573  * All accesses from nvme core layer done - can now free the
1574  * controller. Called after last nvme_put_ctrl() call
1575  */
1576 static void
1577 nvme_fc_free_nvme_ctrl(struct nvme_ctrl *nctrl)
1578 {
1579         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1580
1581         WARN_ON(nctrl != &ctrl->ctrl);
1582
1583         /*
1584          * Tear down the association, which will generate link
1585          * traffic to terminate connections
1586          */
1587
1588         if (ctrl->state != FCCTRL_INIT) {
1589                 /* send a Disconnect(association) LS to fc-nvme target */
1590                 nvme_fc_xmt_disconnect_assoc(ctrl);
1591
1592                 if (ctrl->ctrl.tagset) {
1593                         blk_cleanup_queue(ctrl->ctrl.connect_q);
1594                         blk_mq_free_tag_set(&ctrl->tag_set);
1595                         nvme_fc_delete_hw_io_queues(ctrl);
1596                         nvme_fc_free_io_queues(ctrl);
1597                 }
1598
1599                 nvme_fc_exit_aen_ops(ctrl);
1600
1601                 nvme_fc_destroy_admin_queue(ctrl);
1602         }
1603
1604         nvme_fc_ctrl_put(ctrl);
1605 }
1606
1607
1608 static int
1609 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1610 {
1611         int state;
1612
1613         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1614         if (state != FCPOP_STATE_ACTIVE) {
1615                 atomic_set(&op->state, state);
1616                 return -ECANCELED; /* fail */
1617         }
1618
1619         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1620                                         &ctrl->rport->remoteport,
1621                                         op->queue->lldd_handle,
1622                                         &op->fcp_req);
1623
1624         return 0;
1625 }
1626
1627 enum blk_eh_timer_return
1628 nvme_fc_timeout(struct request *rq, bool reserved)
1629 {
1630         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1631         struct nvme_fc_ctrl *ctrl = op->ctrl;
1632         int ret;
1633
1634         if (reserved)
1635                 return BLK_EH_RESET_TIMER;
1636
1637         ret = __nvme_fc_abort_op(ctrl, op);
1638         if (ret)
1639                 /* io wasn't active to abort consider it done */
1640                 return BLK_EH_HANDLED;
1641
1642         /*
1643          * TODO: force a controller reset
1644          *   when that happens, queues will be torn down and outstanding
1645          *   ios will be terminated, and the above abort, on a single io
1646          *   will no longer be needed.
1647          */
1648
1649         return BLK_EH_HANDLED;
1650 }
1651
1652 static int
1653 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1654                 struct nvme_fc_fcp_op *op)
1655 {
1656         struct nvmefc_fcp_req *freq = &op->fcp_req;
1657         u32 map_len = nvme_map_len(rq);
1658         enum dma_data_direction dir;
1659         int ret;
1660
1661         freq->sg_cnt = 0;
1662
1663         if (!map_len)
1664                 return 0;
1665
1666         freq->sg_table.sgl = freq->first_sgl;
1667         ret = sg_alloc_table_chained(&freq->sg_table, rq->nr_phys_segments,
1668                         freq->sg_table.sgl);
1669         if (ret)
1670                 return -ENOMEM;
1671
1672         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1673         WARN_ON(op->nents > rq->nr_phys_segments);
1674         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1675         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1676                                 op->nents, dir);
1677         if (unlikely(freq->sg_cnt <= 0)) {
1678                 sg_free_table_chained(&freq->sg_table, true);
1679                 freq->sg_cnt = 0;
1680                 return -EFAULT;
1681         }
1682
1683         /*
1684          * TODO: blk_integrity_rq(rq)  for DIF
1685          */
1686         return 0;
1687 }
1688
1689 static void
1690 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1691                 struct nvme_fc_fcp_op *op)
1692 {
1693         struct nvmefc_fcp_req *freq = &op->fcp_req;
1694
1695         if (!freq->sg_cnt)
1696                 return;
1697
1698         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1699                                 ((rq_data_dir(rq) == WRITE) ?
1700                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
1701
1702         nvme_cleanup_cmd(rq);
1703
1704         sg_free_table_chained(&freq->sg_table, true);
1705
1706         freq->sg_cnt = 0;
1707 }
1708
1709 /*
1710  * In FC, the queue is a logical thing. At transport connect, the target
1711  * creates its "queue" and returns a handle that is to be given to the
1712  * target whenever it posts something to the corresponding SQ.  When an
1713  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1714  * command contained within the SQE, an io, and assigns a FC exchange
1715  * to it. The SQE and the associated SQ handle are sent in the initial
1716  * CMD IU sents on the exchange. All transfers relative to the io occur
1717  * as part of the exchange.  The CQE is the last thing for the io,
1718  * which is transferred (explicitly or implicitly) with the RSP IU
1719  * sent on the exchange. After the CQE is received, the FC exchange is
1720  * terminaed and the Exchange may be used on a different io.
1721  *
1722  * The transport to LLDD api has the transport making a request for a
1723  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1724  * resource and transfers the command. The LLDD will then process all
1725  * steps to complete the io. Upon completion, the transport done routine
1726  * is called.
1727  *
1728  * So - while the operation is outstanding to the LLDD, there is a link
1729  * level FC exchange resource that is also outstanding. This must be
1730  * considered in all cleanup operations.
1731  */
1732 static int
1733 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1734         struct nvme_fc_fcp_op *op, u32 data_len,
1735         enum nvmefc_fcp_datadir io_dir)
1736 {
1737         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1738         struct nvme_command *sqe = &cmdiu->sqe;
1739         u32 csn;
1740         int ret;
1741
1742         if (!nvme_fc_ctrl_get(ctrl))
1743                 return BLK_MQ_RQ_QUEUE_ERROR;
1744
1745         /* format the FC-NVME CMD IU and fcp_req */
1746         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1747         csn = atomic_inc_return(&queue->csn);
1748         cmdiu->csn = cpu_to_be32(csn);
1749         cmdiu->data_len = cpu_to_be32(data_len);
1750         switch (io_dir) {
1751         case NVMEFC_FCP_WRITE:
1752                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1753                 break;
1754         case NVMEFC_FCP_READ:
1755                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1756                 break;
1757         case NVMEFC_FCP_NODATA:
1758                 cmdiu->flags = 0;
1759                 break;
1760         }
1761         op->fcp_req.payload_length = data_len;
1762         op->fcp_req.io_dir = io_dir;
1763         op->fcp_req.transferred_length = 0;
1764         op->fcp_req.rcv_rsplen = 0;
1765         op->fcp_req.status = 0;
1766         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1767
1768         /*
1769          * validate per fabric rules, set fields mandated by fabric spec
1770          * as well as those by FC-NVME spec.
1771          */
1772         WARN_ON_ONCE(sqe->common.metadata);
1773         WARN_ON_ONCE(sqe->common.dptr.prp1);
1774         WARN_ON_ONCE(sqe->common.dptr.prp2);
1775         sqe->common.flags |= NVME_CMD_SGL_METABUF;
1776
1777         /*
1778          * format SQE DPTR field per FC-NVME rules
1779          *    type=data block descr; subtype=offset;
1780          *    offset is currently 0.
1781          */
1782         sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1783         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1784         sqe->rw.dptr.sgl.addr = 0;
1785
1786         /* odd that we set the command_id - should come from nvme-fabrics */
1787         WARN_ON_ONCE(sqe->common.command_id != cpu_to_le16(op->rqno));
1788
1789         if (op->rq) {                           /* skipped on aens */
1790                 ret = nvme_fc_map_data(ctrl, op->rq, op);
1791                 if (ret < 0) {
1792                         dev_err(queue->ctrl->ctrl.device,
1793                              "Failed to map data (%d)\n", ret);
1794                         nvme_cleanup_cmd(op->rq);
1795                         nvme_fc_ctrl_put(ctrl);
1796                         return (ret == -ENOMEM || ret == -EAGAIN) ?
1797                                 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1798                 }
1799         }
1800
1801         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1802                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
1803
1804         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1805
1806         if (op->rq)
1807                 blk_mq_start_request(op->rq);
1808
1809         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1810                                         &ctrl->rport->remoteport,
1811                                         queue->lldd_handle, &op->fcp_req);
1812
1813         if (ret) {
1814                 dev_err(ctrl->dev,
1815                         "Send nvme command failed - lldd returned %d.\n", ret);
1816
1817                 if (op->rq) {                   /* normal request */
1818                         nvme_fc_unmap_data(ctrl, op->rq, op);
1819                         nvme_cleanup_cmd(op->rq);
1820                 }
1821                 /* else - aen. no cleanup needed */
1822
1823                 nvme_fc_ctrl_put(ctrl);
1824
1825                 if (ret != -EBUSY)
1826                         return BLK_MQ_RQ_QUEUE_ERROR;
1827
1828                 if (op->rq) {
1829                         blk_mq_stop_hw_queues(op->rq->q);
1830                         blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1831                 }
1832                 return BLK_MQ_RQ_QUEUE_BUSY;
1833         }
1834
1835         return BLK_MQ_RQ_QUEUE_OK;
1836 }
1837
1838 static int
1839 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1840                         const struct blk_mq_queue_data *bd)
1841 {
1842         struct nvme_ns *ns = hctx->queue->queuedata;
1843         struct nvme_fc_queue *queue = hctx->driver_data;
1844         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1845         struct request *rq = bd->rq;
1846         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1847         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1848         struct nvme_command *sqe = &cmdiu->sqe;
1849         enum nvmefc_fcp_datadir io_dir;
1850         u32 data_len;
1851         int ret;
1852
1853         ret = nvme_setup_cmd(ns, rq, sqe);
1854         if (ret)
1855                 return ret;
1856
1857         data_len = nvme_map_len(rq);
1858         if (data_len)
1859                 io_dir = ((rq_data_dir(rq) == WRITE) ?
1860                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
1861         else
1862                 io_dir = NVMEFC_FCP_NODATA;
1863
1864         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
1865 }
1866
1867 static struct blk_mq_tags *
1868 nvme_fc_tagset(struct nvme_fc_queue *queue)
1869 {
1870         if (queue->qnum == 0)
1871                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
1872
1873         return queue->ctrl->tag_set.tags[queue->qnum - 1];
1874 }
1875
1876 static int
1877 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1878
1879 {
1880         struct nvme_fc_queue *queue = hctx->driver_data;
1881         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1882         struct request *req;
1883         struct nvme_fc_fcp_op *op;
1884
1885         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
1886         if (!req) {
1887                 dev_err(queue->ctrl->ctrl.device,
1888                          "tag 0x%x on QNum %#x not found\n",
1889                         tag, queue->qnum);
1890                 return 0;
1891         }
1892
1893         op = blk_mq_rq_to_pdu(req);
1894
1895         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
1896                  (ctrl->lport->ops->poll_queue))
1897                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
1898                                                  queue->lldd_handle);
1899
1900         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
1901 }
1902
1903 static void
1904 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1905 {
1906         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
1907         struct nvme_fc_fcp_op *aen_op;
1908         int ret;
1909
1910         if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
1911                 return;
1912
1913         aen_op = &ctrl->aen_ops[aer_idx];
1914
1915         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
1916                                         NVMEFC_FCP_NODATA);
1917         if (ret)
1918                 dev_err(ctrl->ctrl.device,
1919                         "failed async event work [%d]\n", aer_idx);
1920 }
1921
1922 static void
1923 nvme_fc_complete_rq(struct request *rq)
1924 {
1925         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1926         struct nvme_fc_ctrl *ctrl = op->ctrl;
1927         int error = 0, state;
1928
1929         state = atomic_xchg(&op->state, FCPOP_STATE_IDLE);
1930
1931         nvme_cleanup_cmd(rq);
1932
1933         nvme_fc_unmap_data(ctrl, rq, op);
1934
1935         if (unlikely(rq->errors)) {
1936                 if (nvme_req_needs_retry(rq, rq->errors)) {
1937                         nvme_requeue_req(rq);
1938                         return;
1939                 }
1940
1941                 if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1942                         error = rq->errors;
1943                 else
1944                         error = nvme_error_status(rq->errors);
1945         }
1946
1947         nvme_fc_ctrl_put(ctrl);
1948
1949         blk_mq_end_request(rq, error);
1950 }
1951
1952 static struct blk_mq_ops nvme_fc_mq_ops = {
1953         .queue_rq       = nvme_fc_queue_rq,
1954         .complete       = nvme_fc_complete_rq,
1955         .init_request   = nvme_fc_init_request,
1956         .exit_request   = nvme_fc_exit_request,
1957         .reinit_request = nvme_fc_reinit_request,
1958         .init_hctx      = nvme_fc_init_hctx,
1959         .poll           = nvme_fc_poll,
1960         .timeout        = nvme_fc_timeout,
1961 };
1962
1963 static struct blk_mq_ops nvme_fc_admin_mq_ops = {
1964         .queue_rq       = nvme_fc_queue_rq,
1965         .complete       = nvme_fc_complete_rq,
1966         .init_request   = nvme_fc_init_admin_request,
1967         .exit_request   = nvme_fc_exit_request,
1968         .reinit_request = nvme_fc_reinit_request,
1969         .init_hctx      = nvme_fc_init_admin_hctx,
1970         .timeout        = nvme_fc_timeout,
1971 };
1972
1973 static int
1974 nvme_fc_configure_admin_queue(struct nvme_fc_ctrl *ctrl)
1975 {
1976         u32 segs;
1977         int error;
1978
1979         nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
1980
1981         error = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
1982                                 NVME_FC_AQ_BLKMQ_DEPTH,
1983                                 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
1984         if (error)
1985                 return error;
1986
1987         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1988         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
1989         ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
1990         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
1991         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1992         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
1993                                         (SG_CHUNK_SIZE *
1994                                                 sizeof(struct scatterlist)) +
1995                                         ctrl->lport->ops->fcprqst_priv_sz;
1996         ctrl->admin_tag_set.driver_data = ctrl;
1997         ctrl->admin_tag_set.nr_hw_queues = 1;
1998         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1999
2000         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2001         if (error)
2002                 goto out_free_queue;
2003
2004         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2005         if (IS_ERR(ctrl->ctrl.admin_q)) {
2006                 error = PTR_ERR(ctrl->ctrl.admin_q);
2007                 goto out_free_tagset;
2008         }
2009
2010         error = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2011                                 NVME_FC_AQ_BLKMQ_DEPTH);
2012         if (error)
2013                 goto out_cleanup_queue;
2014
2015         error = nvmf_connect_admin_queue(&ctrl->ctrl);
2016         if (error)
2017                 goto out_delete_hw_queue;
2018
2019         error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2020         if (error) {
2021                 dev_err(ctrl->ctrl.device,
2022                         "prop_get NVME_REG_CAP failed\n");
2023                 goto out_delete_hw_queue;
2024         }
2025
2026         ctrl->ctrl.sqsize =
2027                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2028
2029         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2030         if (error)
2031                 goto out_delete_hw_queue;
2032
2033         segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2034                         ctrl->lport->ops->max_sgl_segments);
2035         ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2036
2037         error = nvme_init_identify(&ctrl->ctrl);
2038         if (error)
2039                 goto out_delete_hw_queue;
2040
2041         nvme_start_keep_alive(&ctrl->ctrl);
2042
2043         return 0;
2044
2045 out_delete_hw_queue:
2046         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2047 out_cleanup_queue:
2048         blk_cleanup_queue(ctrl->ctrl.admin_q);
2049 out_free_tagset:
2050         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2051 out_free_queue:
2052         nvme_fc_free_queue(&ctrl->queues[0]);
2053         return error;
2054 }
2055
2056 /*
2057  * This routine is used by the transport when it needs to find active
2058  * io on a queue that is to be terminated. The transport uses
2059  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2060  * this routine to kill them on a 1 by 1 basis.
2061  *
2062  * As FC allocates FC exchange for each io, the transport must contact
2063  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2064  * After terminating the exchange the LLDD will call the transport's
2065  * normal io done path for the request, but it will have an aborted
2066  * status. The done path will return the io request back to the block
2067  * layer with an error status.
2068  */
2069 static void
2070 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2071 {
2072         struct nvme_ctrl *nctrl = data;
2073         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2074         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2075 int status;
2076
2077         if (!blk_mq_request_started(req))
2078                 return;
2079
2080         /* this performs an ABTS-LS on the FC exchange for the io */
2081         status = __nvme_fc_abort_op(ctrl, op);
2082         /*
2083          * if __nvme_fc_abort_op failed: io wasn't active to abort
2084          * consider it done. Assume completion path already completing
2085          * in parallel
2086          */
2087         if (status)
2088                 /* io wasn't active to abort consider it done */
2089                 /* assume completion path already completing in parallel */
2090                 return;
2091 }
2092
2093
2094 /*
2095  * This routine stops operation of the controller. Admin and IO queues
2096  * are stopped, outstanding ios on them terminated, and the nvme ctrl
2097  * is shutdown.
2098  */
2099 static void
2100 nvme_fc_shutdown_ctrl(struct nvme_fc_ctrl *ctrl)
2101 {
2102         /*
2103          * If io queues are present, stop them and terminate all outstanding
2104          * ios on them. As FC allocates FC exchange for each io, the
2105          * transport must contact the LLDD to terminate the exchange,
2106          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2107          * to tell us what io's are busy and invoke a transport routine
2108          * to kill them with the LLDD.  After terminating the exchange
2109          * the LLDD will call the transport's normal io done path, but it
2110          * will have an aborted status. The done path will return the
2111          * io requests back to the block layer as part of normal completions
2112          * (but with error status).
2113          */
2114         if (ctrl->queue_count > 1) {
2115                 nvme_stop_queues(&ctrl->ctrl);
2116                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2117                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2118         }
2119
2120         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
2121                 nvme_shutdown_ctrl(&ctrl->ctrl);
2122
2123         /*
2124          * now clean up the admin queue. Same thing as above.
2125          * use blk_mq_tagset_busy_itr() and the transport routine to
2126          * terminate the exchanges.
2127          */
2128         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2129         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2130                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2131 }
2132
2133 /*
2134  * Called to teardown an association.
2135  * May be called with association fully in place or partially in place.
2136  */
2137 static void
2138 __nvme_fc_remove_ctrl(struct nvme_fc_ctrl *ctrl)
2139 {
2140         nvme_stop_keep_alive(&ctrl->ctrl);
2141
2142         /* stop and terminate ios on admin and io queues */
2143         nvme_fc_shutdown_ctrl(ctrl);
2144
2145         /*
2146          * tear down the controller
2147          * This will result in the last reference on the nvme ctrl to
2148          * expire, calling the transport nvme_fc_free_nvme_ctrl() callback.
2149          * From there, the transport will tear down it's logical queues and
2150          * association.
2151          */
2152         nvme_uninit_ctrl(&ctrl->ctrl);
2153
2154         nvme_put_ctrl(&ctrl->ctrl);
2155 }
2156
2157 static void
2158 nvme_fc_del_ctrl_work(struct work_struct *work)
2159 {
2160         struct nvme_fc_ctrl *ctrl =
2161                         container_of(work, struct nvme_fc_ctrl, delete_work);
2162
2163         __nvme_fc_remove_ctrl(ctrl);
2164 }
2165
2166 static int
2167 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2168 {
2169         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2170                 return -EBUSY;
2171
2172         if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2173                 return -EBUSY;
2174
2175         return 0;
2176 }
2177
2178 /*
2179  * Request from nvme core layer to delete the controller
2180  */
2181 static int
2182 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2183 {
2184         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2185         struct nvme_fc_rport *rport = ctrl->rport;
2186         unsigned long flags;
2187         int ret;
2188
2189         spin_lock_irqsave(&rport->lock, flags);
2190         ret = __nvme_fc_del_ctrl(ctrl);
2191         spin_unlock_irqrestore(&rport->lock, flags);
2192         if (ret)
2193                 return ret;
2194
2195         flush_work(&ctrl->delete_work);
2196
2197         return 0;
2198 }
2199
2200 static int
2201 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2202 {
2203         return -EIO;
2204 }
2205
2206 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2207         .name                   = "fc",
2208         .module                 = THIS_MODULE,
2209         .is_fabrics             = true,
2210         .reg_read32             = nvmf_reg_read32,
2211         .reg_read64             = nvmf_reg_read64,
2212         .reg_write32            = nvmf_reg_write32,
2213         .reset_ctrl             = nvme_fc_reset_nvme_ctrl,
2214         .free_ctrl              = nvme_fc_free_nvme_ctrl,
2215         .submit_async_event     = nvme_fc_submit_async_event,
2216         .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2217         .get_subsysnqn          = nvmf_get_subsysnqn,
2218         .get_address            = nvmf_get_address,
2219 };
2220
2221 static int
2222 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2223 {
2224         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2225         int ret;
2226
2227         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2228         if (ret) {
2229                 dev_info(ctrl->ctrl.device,
2230                         "set_queue_count failed: %d\n", ret);
2231                 return ret;
2232         }
2233
2234         ctrl->queue_count = opts->nr_io_queues + 1;
2235         if (!opts->nr_io_queues)
2236                 return 0;
2237
2238         dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n",
2239                         opts->nr_io_queues);
2240
2241         nvme_fc_init_io_queues(ctrl);
2242
2243         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2244         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2245         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2246         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2247         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2248         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2249         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2250                                         (SG_CHUNK_SIZE *
2251                                                 sizeof(struct scatterlist)) +
2252                                         ctrl->lport->ops->fcprqst_priv_sz;
2253         ctrl->tag_set.driver_data = ctrl;
2254         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2255         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2256
2257         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2258         if (ret)
2259                 return ret;
2260
2261         ctrl->ctrl.tagset = &ctrl->tag_set;
2262
2263         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2264         if (IS_ERR(ctrl->ctrl.connect_q)) {
2265                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2266                 goto out_free_tag_set;
2267         }
2268
2269         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2270         if (ret)
2271                 goto out_cleanup_blk_queue;
2272
2273         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2274         if (ret)
2275                 goto out_delete_hw_queues;
2276
2277         return 0;
2278
2279 out_delete_hw_queues:
2280         nvme_fc_delete_hw_io_queues(ctrl);
2281 out_cleanup_blk_queue:
2282         nvme_stop_keep_alive(&ctrl->ctrl);
2283         blk_cleanup_queue(ctrl->ctrl.connect_q);
2284 out_free_tag_set:
2285         blk_mq_free_tag_set(&ctrl->tag_set);
2286         nvme_fc_free_io_queues(ctrl);
2287
2288         /* force put free routine to ignore io queues */
2289         ctrl->ctrl.tagset = NULL;
2290
2291         return ret;
2292 }
2293
2294
2295 static struct nvme_ctrl *
2296 __nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2297         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2298 {
2299         struct nvme_fc_ctrl *ctrl;
2300         unsigned long flags;
2301         int ret, idx;
2302         bool changed;
2303
2304         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2305         if (!ctrl) {
2306                 ret = -ENOMEM;
2307                 goto out_fail;
2308         }
2309
2310         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2311         if (idx < 0) {
2312                 ret = -ENOSPC;
2313                 goto out_free_ctrl;
2314         }
2315
2316         ctrl->ctrl.opts = opts;
2317         INIT_LIST_HEAD(&ctrl->ctrl_list);
2318         INIT_LIST_HEAD(&ctrl->ls_req_list);
2319         ctrl->lport = lport;
2320         ctrl->rport = rport;
2321         ctrl->dev = lport->dev;
2322         ctrl->state = FCCTRL_INIT;
2323         ctrl->cnum = idx;
2324
2325         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2326         if (ret)
2327                 goto out_free_ida;
2328
2329         get_device(ctrl->dev);
2330         kref_init(&ctrl->ref);
2331
2332         INIT_WORK(&ctrl->delete_work, nvme_fc_del_ctrl_work);
2333         spin_lock_init(&ctrl->lock);
2334
2335         /* io queue count */
2336         ctrl->queue_count = min_t(unsigned int,
2337                                 opts->nr_io_queues,
2338                                 lport->ops->max_hw_queues);
2339         opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2340         ctrl->queue_count++;    /* +1 for admin queue */
2341
2342         ctrl->ctrl.sqsize = opts->queue_size - 1;
2343         ctrl->ctrl.kato = opts->kato;
2344
2345         ret = -ENOMEM;
2346         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2347                                 GFP_KERNEL);
2348         if (!ctrl->queues)
2349                 goto out_uninit_ctrl;
2350
2351         ret = nvme_fc_configure_admin_queue(ctrl);
2352         if (ret)
2353                 goto out_uninit_ctrl;
2354
2355         /* sanity checks */
2356
2357         /* FC-NVME supports 64-byte SQE only */
2358         if (ctrl->ctrl.ioccsz != 4) {
2359                 dev_err(ctrl->ctrl.device, "ioccsz %d is not supported!\n",
2360                                 ctrl->ctrl.ioccsz);
2361                 goto out_remove_admin_queue;
2362         }
2363         /* FC-NVME supports 16-byte CQE only */
2364         if (ctrl->ctrl.iorcsz != 1) {
2365                 dev_err(ctrl->ctrl.device, "iorcsz %d is not supported!\n",
2366                                 ctrl->ctrl.iorcsz);
2367                 goto out_remove_admin_queue;
2368         }
2369         /* FC-NVME does not have other data in the capsule */
2370         if (ctrl->ctrl.icdoff) {
2371                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2372                                 ctrl->ctrl.icdoff);
2373                 goto out_remove_admin_queue;
2374         }
2375
2376         /* FC-NVME supports normal SGL Data Block Descriptors */
2377
2378         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2379                 /* warn if maxcmd is lower than queue_size */
2380                 dev_warn(ctrl->ctrl.device,
2381                         "queue_size %zu > ctrl maxcmd %u, reducing "
2382                         "to queue_size\n",
2383                         opts->queue_size, ctrl->ctrl.maxcmd);
2384                 opts->queue_size = ctrl->ctrl.maxcmd;
2385         }
2386
2387         ret = nvme_fc_init_aen_ops(ctrl);
2388         if (ret)
2389                 goto out_exit_aen_ops;
2390
2391         if (ctrl->queue_count > 1) {
2392                 ret = nvme_fc_create_io_queues(ctrl);
2393                 if (ret)
2394                         goto out_exit_aen_ops;
2395         }
2396
2397         spin_lock_irqsave(&ctrl->lock, flags);
2398         ctrl->state = FCCTRL_ACTIVE;
2399         spin_unlock_irqrestore(&ctrl->lock, flags);
2400
2401         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2402         WARN_ON_ONCE(!changed);
2403
2404         dev_info(ctrl->ctrl.device,
2405                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2406                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2407
2408         kref_get(&ctrl->ctrl.kref);
2409
2410         spin_lock_irqsave(&rport->lock, flags);
2411         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2412         spin_unlock_irqrestore(&rport->lock, flags);
2413
2414         if (opts->nr_io_queues) {
2415                 nvme_queue_scan(&ctrl->ctrl);
2416                 nvme_queue_async_events(&ctrl->ctrl);
2417         }
2418
2419         return &ctrl->ctrl;
2420
2421 out_exit_aen_ops:
2422         nvme_fc_exit_aen_ops(ctrl);
2423 out_remove_admin_queue:
2424         /* send a Disconnect(association) LS to fc-nvme target */
2425         nvme_fc_xmt_disconnect_assoc(ctrl);
2426         nvme_stop_keep_alive(&ctrl->ctrl);
2427         nvme_fc_destroy_admin_queue(ctrl);
2428 out_uninit_ctrl:
2429         nvme_uninit_ctrl(&ctrl->ctrl);
2430         nvme_put_ctrl(&ctrl->ctrl);
2431         if (ret > 0)
2432                 ret = -EIO;
2433         /* exit via here will follow ctlr ref point callbacks to free */
2434         return ERR_PTR(ret);
2435
2436 out_free_ida:
2437         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2438 out_free_ctrl:
2439         kfree(ctrl);
2440 out_fail:
2441         nvme_fc_rport_put(rport);
2442         /* exit via here doesn't follow ctlr ref points */
2443         return ERR_PTR(ret);
2444 }
2445
2446 enum {
2447         FCT_TRADDR_ERR          = 0,
2448         FCT_TRADDR_WWNN         = 1 << 0,
2449         FCT_TRADDR_WWPN         = 1 << 1,
2450 };
2451
2452 struct nvmet_fc_traddr {
2453         u64     nn;
2454         u64     pn;
2455 };
2456
2457 static const match_table_t traddr_opt_tokens = {
2458         { FCT_TRADDR_WWNN,      "nn-%s"         },
2459         { FCT_TRADDR_WWPN,      "pn-%s"         },
2460         { FCT_TRADDR_ERR,       NULL            }
2461 };
2462
2463 static int
2464 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2465 {
2466         substring_t args[MAX_OPT_ARGS];
2467         char *options, *o, *p;
2468         int token, ret = 0;
2469         u64 token64;
2470
2471         options = o = kstrdup(buf, GFP_KERNEL);
2472         if (!options)
2473                 return -ENOMEM;
2474
2475         while ((p = strsep(&o, ":\n")) != NULL) {
2476                 if (!*p)
2477                         continue;
2478
2479                 token = match_token(p, traddr_opt_tokens, args);
2480                 switch (token) {
2481                 case FCT_TRADDR_WWNN:
2482                         if (match_u64(args, &token64)) {
2483                                 ret = -EINVAL;
2484                                 goto out;
2485                         }
2486                         traddr->nn = token64;
2487                         break;
2488                 case FCT_TRADDR_WWPN:
2489                         if (match_u64(args, &token64)) {
2490                                 ret = -EINVAL;
2491                                 goto out;
2492                         }
2493                         traddr->pn = token64;
2494                         break;
2495                 default:
2496                         pr_warn("unknown traddr token or missing value '%s'\n",
2497                                         p);
2498                         ret = -EINVAL;
2499                         goto out;
2500                 }
2501         }
2502
2503 out:
2504         kfree(options);
2505         return ret;
2506 }
2507
2508 static struct nvme_ctrl *
2509 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2510 {
2511         struct nvme_fc_lport *lport;
2512         struct nvme_fc_rport *rport;
2513         struct nvmet_fc_traddr laddr = { 0L, 0L };
2514         struct nvmet_fc_traddr raddr = { 0L, 0L };
2515         unsigned long flags;
2516         int ret;
2517
2518         ret = nvme_fc_parse_address(&raddr, opts->traddr);
2519         if (ret || !raddr.nn || !raddr.pn)
2520                 return ERR_PTR(-EINVAL);
2521
2522         ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2523         if (ret || !laddr.nn || !laddr.pn)
2524                 return ERR_PTR(-EINVAL);
2525
2526         /* find the host and remote ports to connect together */
2527         spin_lock_irqsave(&nvme_fc_lock, flags);
2528         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2529                 if (lport->localport.node_name != laddr.nn ||
2530                     lport->localport.port_name != laddr.pn)
2531                         continue;
2532
2533                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2534                         if (rport->remoteport.node_name != raddr.nn ||
2535                             rport->remoteport.port_name != raddr.pn)
2536                                 continue;
2537
2538                         /* if fail to get reference fall through. Will error */
2539                         if (!nvme_fc_rport_get(rport))
2540                                 break;
2541
2542                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2543
2544                         return __nvme_fc_create_ctrl(dev, opts, lport, rport);
2545                 }
2546         }
2547         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2548
2549         return ERR_PTR(-ENOENT);
2550 }
2551
2552
2553 static struct nvmf_transport_ops nvme_fc_transport = {
2554         .name           = "fc",
2555         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2556         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY,
2557         .create_ctrl    = nvme_fc_create_ctrl,
2558 };
2559
2560 static int __init nvme_fc_init_module(void)
2561 {
2562         nvme_fc_wq = create_workqueue("nvme_fc_wq");
2563         if (!nvme_fc_wq)
2564                 return -ENOMEM;
2565
2566         nvmf_register_transport(&nvme_fc_transport);
2567         return 0;
2568 }
2569
2570 static void __exit nvme_fc_exit_module(void)
2571 {
2572         /* sanity check - all lports should be removed */
2573         if (!list_empty(&nvme_fc_lport_list))
2574                 pr_warn("%s: localport list not empty\n", __func__);
2575
2576         nvmf_unregister_transport(&nvme_fc_transport);
2577
2578         destroy_workqueue(nvme_fc_wq);
2579
2580         ida_destroy(&nvme_fc_local_port_cnt);
2581         ida_destroy(&nvme_fc_ctrl_cnt);
2582 }
2583
2584 module_init(nvme_fc_init_module);
2585 module_exit(nvme_fc_exit_module);
2586
2587 MODULE_LICENSE("GPL v2");