Merge tag 'asoc-fix-v5.19-rc3' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / nvme / host / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 #include <linux/blk-cgroup.h>
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19 #include <linux/blk-mq-pci.h>
20
21 /* *************************** Data Structures/Defines ****************** */
22
23
24 enum nvme_fc_queue_flags {
25         NVME_FC_Q_CONNECTED = 0,
26         NVME_FC_Q_LIVE,
27 };
28
29 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
30 #define NVME_FC_DEFAULT_RECONNECT_TMO   2       /* delay between reconnects
31                                                  * when connected and a
32                                                  * connection failure.
33                                                  */
34
35 struct nvme_fc_queue {
36         struct nvme_fc_ctrl     *ctrl;
37         struct device           *dev;
38         struct blk_mq_hw_ctx    *hctx;
39         void                    *lldd_handle;
40         size_t                  cmnd_capsule_len;
41         u32                     qnum;
42         u32                     rqcnt;
43         u32                     seqno;
44
45         u64                     connection_id;
46         atomic_t                csn;
47
48         unsigned long           flags;
49 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
50
51 enum nvme_fcop_flags {
52         FCOP_FLAGS_TERMIO       = (1 << 0),
53         FCOP_FLAGS_AEN          = (1 << 1),
54 };
55
56 struct nvmefc_ls_req_op {
57         struct nvmefc_ls_req    ls_req;
58
59         struct nvme_fc_rport    *rport;
60         struct nvme_fc_queue    *queue;
61         struct request          *rq;
62         u32                     flags;
63
64         int                     ls_error;
65         struct completion       ls_done;
66         struct list_head        lsreq_list;     /* rport->ls_req_list */
67         bool                    req_queued;
68 };
69
70 struct nvmefc_ls_rcv_op {
71         struct nvme_fc_rport            *rport;
72         struct nvmefc_ls_rsp            *lsrsp;
73         union nvmefc_ls_requests        *rqstbuf;
74         union nvmefc_ls_responses       *rspbuf;
75         u16                             rqstdatalen;
76         bool                            handled;
77         dma_addr_t                      rspdma;
78         struct list_head                lsrcv_list;     /* rport->ls_rcv_list */
79 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
80
81 enum nvme_fcpop_state {
82         FCPOP_STATE_UNINIT      = 0,
83         FCPOP_STATE_IDLE        = 1,
84         FCPOP_STATE_ACTIVE      = 2,
85         FCPOP_STATE_ABORTED     = 3,
86         FCPOP_STATE_COMPLETE    = 4,
87 };
88
89 struct nvme_fc_fcp_op {
90         struct nvme_request     nreq;           /*
91                                                  * nvme/host/core.c
92                                                  * requires this to be
93                                                  * the 1st element in the
94                                                  * private structure
95                                                  * associated with the
96                                                  * request.
97                                                  */
98         struct nvmefc_fcp_req   fcp_req;
99
100         struct nvme_fc_ctrl     *ctrl;
101         struct nvme_fc_queue    *queue;
102         struct request          *rq;
103
104         atomic_t                state;
105         u32                     flags;
106         u32                     rqno;
107         u32                     nents;
108
109         struct nvme_fc_cmd_iu   cmd_iu;
110         struct nvme_fc_ersp_iu  rsp_iu;
111 };
112
113 struct nvme_fcp_op_w_sgl {
114         struct nvme_fc_fcp_op   op;
115         struct scatterlist      sgl[NVME_INLINE_SG_CNT];
116         uint8_t                 priv[];
117 };
118
119 struct nvme_fc_lport {
120         struct nvme_fc_local_port       localport;
121
122         struct ida                      endp_cnt;
123         struct list_head                port_list;      /* nvme_fc_port_list */
124         struct list_head                endp_list;
125         struct device                   *dev;   /* physical device for dma */
126         struct nvme_fc_port_template    *ops;
127         struct kref                     ref;
128         atomic_t                        act_rport_cnt;
129 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
130
131 struct nvme_fc_rport {
132         struct nvme_fc_remote_port      remoteport;
133
134         struct list_head                endp_list; /* for lport->endp_list */
135         struct list_head                ctrl_list;
136         struct list_head                ls_req_list;
137         struct list_head                ls_rcv_list;
138         struct list_head                disc_list;
139         struct device                   *dev;   /* physical device for dma */
140         struct nvme_fc_lport            *lport;
141         spinlock_t                      lock;
142         struct kref                     ref;
143         atomic_t                        act_ctrl_cnt;
144         unsigned long                   dev_loss_end;
145         struct work_struct              lsrcv_work;
146 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
147
148 /* fc_ctrl flags values - specified as bit positions */
149 #define ASSOC_ACTIVE            0
150 #define ASSOC_FAILED            1
151 #define FCCTRL_TERMIO           2
152
153 struct nvme_fc_ctrl {
154         spinlock_t              lock;
155         struct nvme_fc_queue    *queues;
156         struct device           *dev;
157         struct nvme_fc_lport    *lport;
158         struct nvme_fc_rport    *rport;
159         u32                     cnum;
160
161         bool                    ioq_live;
162         u64                     association_id;
163         struct nvmefc_ls_rcv_op *rcv_disconn;
164
165         struct list_head        ctrl_list;      /* rport->ctrl_list */
166
167         struct blk_mq_tag_set   admin_tag_set;
168         struct blk_mq_tag_set   tag_set;
169
170         struct work_struct      ioerr_work;
171         struct delayed_work     connect_work;
172
173         struct kref             ref;
174         unsigned long           flags;
175         u32                     iocnt;
176         wait_queue_head_t       ioabort_wait;
177
178         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
179
180         struct nvme_ctrl        ctrl;
181 };
182
183 static inline struct nvme_fc_ctrl *
184 to_fc_ctrl(struct nvme_ctrl *ctrl)
185 {
186         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
187 }
188
189 static inline struct nvme_fc_lport *
190 localport_to_lport(struct nvme_fc_local_port *portptr)
191 {
192         return container_of(portptr, struct nvme_fc_lport, localport);
193 }
194
195 static inline struct nvme_fc_rport *
196 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
197 {
198         return container_of(portptr, struct nvme_fc_rport, remoteport);
199 }
200
201 static inline struct nvmefc_ls_req_op *
202 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
203 {
204         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
205 }
206
207 static inline struct nvme_fc_fcp_op *
208 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
209 {
210         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
211 }
212
213
214
215 /* *************************** Globals **************************** */
216
217
218 static DEFINE_SPINLOCK(nvme_fc_lock);
219
220 static LIST_HEAD(nvme_fc_lport_list);
221 static DEFINE_IDA(nvme_fc_local_port_cnt);
222 static DEFINE_IDA(nvme_fc_ctrl_cnt);
223
224 static struct workqueue_struct *nvme_fc_wq;
225
226 static bool nvme_fc_waiting_to_unload;
227 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
228
229 /*
230  * These items are short-term. They will eventually be moved into
231  * a generic FC class. See comments in module init.
232  */
233 static struct device *fc_udev_device;
234
235 static void nvme_fc_complete_rq(struct request *rq);
236
237 /* *********************** FC-NVME Port Management ************************ */
238
239 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
240                         struct nvme_fc_queue *, unsigned int);
241
242 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
243
244
245 static void
246 nvme_fc_free_lport(struct kref *ref)
247 {
248         struct nvme_fc_lport *lport =
249                 container_of(ref, struct nvme_fc_lport, ref);
250         unsigned long flags;
251
252         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
253         WARN_ON(!list_empty(&lport->endp_list));
254
255         /* remove from transport list */
256         spin_lock_irqsave(&nvme_fc_lock, flags);
257         list_del(&lport->port_list);
258         if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
259                 complete(&nvme_fc_unload_proceed);
260         spin_unlock_irqrestore(&nvme_fc_lock, flags);
261
262         ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
263         ida_destroy(&lport->endp_cnt);
264
265         put_device(lport->dev);
266
267         kfree(lport);
268 }
269
270 static void
271 nvme_fc_lport_put(struct nvme_fc_lport *lport)
272 {
273         kref_put(&lport->ref, nvme_fc_free_lport);
274 }
275
276 static int
277 nvme_fc_lport_get(struct nvme_fc_lport *lport)
278 {
279         return kref_get_unless_zero(&lport->ref);
280 }
281
282
283 static struct nvme_fc_lport *
284 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
285                         struct nvme_fc_port_template *ops,
286                         struct device *dev)
287 {
288         struct nvme_fc_lport *lport;
289         unsigned long flags;
290
291         spin_lock_irqsave(&nvme_fc_lock, flags);
292
293         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
294                 if (lport->localport.node_name != pinfo->node_name ||
295                     lport->localport.port_name != pinfo->port_name)
296                         continue;
297
298                 if (lport->dev != dev) {
299                         lport = ERR_PTR(-EXDEV);
300                         goto out_done;
301                 }
302
303                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
304                         lport = ERR_PTR(-EEXIST);
305                         goto out_done;
306                 }
307
308                 if (!nvme_fc_lport_get(lport)) {
309                         /*
310                          * fails if ref cnt already 0. If so,
311                          * act as if lport already deleted
312                          */
313                         lport = NULL;
314                         goto out_done;
315                 }
316
317                 /* resume the lport */
318
319                 lport->ops = ops;
320                 lport->localport.port_role = pinfo->port_role;
321                 lport->localport.port_id = pinfo->port_id;
322                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
323
324                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
325
326                 return lport;
327         }
328
329         lport = NULL;
330
331 out_done:
332         spin_unlock_irqrestore(&nvme_fc_lock, flags);
333
334         return lport;
335 }
336
337 /**
338  * nvme_fc_register_localport - transport entry point called by an
339  *                              LLDD to register the existence of a NVME
340  *                              host FC port.
341  * @pinfo:     pointer to information about the port to be registered
342  * @template:  LLDD entrypoints and operational parameters for the port
343  * @dev:       physical hardware device node port corresponds to. Will be
344  *             used for DMA mappings
345  * @portptr:   pointer to a local port pointer. Upon success, the routine
346  *             will allocate a nvme_fc_local_port structure and place its
347  *             address in the local port pointer. Upon failure, local port
348  *             pointer will be set to 0.
349  *
350  * Returns:
351  * a completion status. Must be 0 upon success; a negative errno
352  * (ex: -ENXIO) upon failure.
353  */
354 int
355 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
356                         struct nvme_fc_port_template *template,
357                         struct device *dev,
358                         struct nvme_fc_local_port **portptr)
359 {
360         struct nvme_fc_lport *newrec;
361         unsigned long flags;
362         int ret, idx;
363
364         if (!template->localport_delete || !template->remoteport_delete ||
365             !template->ls_req || !template->fcp_io ||
366             !template->ls_abort || !template->fcp_abort ||
367             !template->max_hw_queues || !template->max_sgl_segments ||
368             !template->max_dif_sgl_segments || !template->dma_boundary) {
369                 ret = -EINVAL;
370                 goto out_reghost_failed;
371         }
372
373         /*
374          * look to see if there is already a localport that had been
375          * deregistered and in the process of waiting for all the
376          * references to fully be removed.  If the references haven't
377          * expired, we can simply re-enable the localport. Remoteports
378          * and controller reconnections should resume naturally.
379          */
380         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
381
382         /* found an lport, but something about its state is bad */
383         if (IS_ERR(newrec)) {
384                 ret = PTR_ERR(newrec);
385                 goto out_reghost_failed;
386
387         /* found existing lport, which was resumed */
388         } else if (newrec) {
389                 *portptr = &newrec->localport;
390                 return 0;
391         }
392
393         /* nothing found - allocate a new localport struct */
394
395         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
396                          GFP_KERNEL);
397         if (!newrec) {
398                 ret = -ENOMEM;
399                 goto out_reghost_failed;
400         }
401
402         idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
403         if (idx < 0) {
404                 ret = -ENOSPC;
405                 goto out_fail_kfree;
406         }
407
408         if (!get_device(dev) && dev) {
409                 ret = -ENODEV;
410                 goto out_ida_put;
411         }
412
413         INIT_LIST_HEAD(&newrec->port_list);
414         INIT_LIST_HEAD(&newrec->endp_list);
415         kref_init(&newrec->ref);
416         atomic_set(&newrec->act_rport_cnt, 0);
417         newrec->ops = template;
418         newrec->dev = dev;
419         ida_init(&newrec->endp_cnt);
420         if (template->local_priv_sz)
421                 newrec->localport.private = &newrec[1];
422         else
423                 newrec->localport.private = NULL;
424         newrec->localport.node_name = pinfo->node_name;
425         newrec->localport.port_name = pinfo->port_name;
426         newrec->localport.port_role = pinfo->port_role;
427         newrec->localport.port_id = pinfo->port_id;
428         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
429         newrec->localport.port_num = idx;
430
431         spin_lock_irqsave(&nvme_fc_lock, flags);
432         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
433         spin_unlock_irqrestore(&nvme_fc_lock, flags);
434
435         if (dev)
436                 dma_set_seg_boundary(dev, template->dma_boundary);
437
438         *portptr = &newrec->localport;
439         return 0;
440
441 out_ida_put:
442         ida_free(&nvme_fc_local_port_cnt, idx);
443 out_fail_kfree:
444         kfree(newrec);
445 out_reghost_failed:
446         *portptr = NULL;
447
448         return ret;
449 }
450 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
451
452 /**
453  * nvme_fc_unregister_localport - transport entry point called by an
454  *                              LLDD to deregister/remove a previously
455  *                              registered a NVME host FC port.
456  * @portptr: pointer to the (registered) local port that is to be deregistered.
457  *
458  * Returns:
459  * a completion status. Must be 0 upon success; a negative errno
460  * (ex: -ENXIO) upon failure.
461  */
462 int
463 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
464 {
465         struct nvme_fc_lport *lport = localport_to_lport(portptr);
466         unsigned long flags;
467
468         if (!portptr)
469                 return -EINVAL;
470
471         spin_lock_irqsave(&nvme_fc_lock, flags);
472
473         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
474                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
475                 return -EINVAL;
476         }
477         portptr->port_state = FC_OBJSTATE_DELETED;
478
479         spin_unlock_irqrestore(&nvme_fc_lock, flags);
480
481         if (atomic_read(&lport->act_rport_cnt) == 0)
482                 lport->ops->localport_delete(&lport->localport);
483
484         nvme_fc_lport_put(lport);
485
486         return 0;
487 }
488 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
489
490 /*
491  * TRADDR strings, per FC-NVME are fixed format:
492  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
493  * udev event will only differ by prefix of what field is
494  * being specified:
495  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
496  *  19 + 43 + null_fudge = 64 characters
497  */
498 #define FCNVME_TRADDR_LENGTH            64
499
500 static void
501 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
502                 struct nvme_fc_rport *rport)
503 {
504         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
505         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
506         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
507
508         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
509                 return;
510
511         snprintf(hostaddr, sizeof(hostaddr),
512                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
513                 lport->localport.node_name, lport->localport.port_name);
514         snprintf(tgtaddr, sizeof(tgtaddr),
515                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
516                 rport->remoteport.node_name, rport->remoteport.port_name);
517         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
518 }
519
520 static void
521 nvme_fc_free_rport(struct kref *ref)
522 {
523         struct nvme_fc_rport *rport =
524                 container_of(ref, struct nvme_fc_rport, ref);
525         struct nvme_fc_lport *lport =
526                         localport_to_lport(rport->remoteport.localport);
527         unsigned long flags;
528
529         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
530         WARN_ON(!list_empty(&rport->ctrl_list));
531
532         /* remove from lport list */
533         spin_lock_irqsave(&nvme_fc_lock, flags);
534         list_del(&rport->endp_list);
535         spin_unlock_irqrestore(&nvme_fc_lock, flags);
536
537         WARN_ON(!list_empty(&rport->disc_list));
538         ida_free(&lport->endp_cnt, rport->remoteport.port_num);
539
540         kfree(rport);
541
542         nvme_fc_lport_put(lport);
543 }
544
545 static void
546 nvme_fc_rport_put(struct nvme_fc_rport *rport)
547 {
548         kref_put(&rport->ref, nvme_fc_free_rport);
549 }
550
551 static int
552 nvme_fc_rport_get(struct nvme_fc_rport *rport)
553 {
554         return kref_get_unless_zero(&rport->ref);
555 }
556
557 static void
558 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
559 {
560         switch (ctrl->ctrl.state) {
561         case NVME_CTRL_NEW:
562         case NVME_CTRL_CONNECTING:
563                 /*
564                  * As all reconnects were suppressed, schedule a
565                  * connect.
566                  */
567                 dev_info(ctrl->ctrl.device,
568                         "NVME-FC{%d}: connectivity re-established. "
569                         "Attempting reconnect\n", ctrl->cnum);
570
571                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
572                 break;
573
574         case NVME_CTRL_RESETTING:
575                 /*
576                  * Controller is already in the process of terminating the
577                  * association. No need to do anything further. The reconnect
578                  * step will naturally occur after the reset completes.
579                  */
580                 break;
581
582         default:
583                 /* no action to take - let it delete */
584                 break;
585         }
586 }
587
588 static struct nvme_fc_rport *
589 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
590                                 struct nvme_fc_port_info *pinfo)
591 {
592         struct nvme_fc_rport *rport;
593         struct nvme_fc_ctrl *ctrl;
594         unsigned long flags;
595
596         spin_lock_irqsave(&nvme_fc_lock, flags);
597
598         list_for_each_entry(rport, &lport->endp_list, endp_list) {
599                 if (rport->remoteport.node_name != pinfo->node_name ||
600                     rport->remoteport.port_name != pinfo->port_name)
601                         continue;
602
603                 if (!nvme_fc_rport_get(rport)) {
604                         rport = ERR_PTR(-ENOLCK);
605                         goto out_done;
606                 }
607
608                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
609
610                 spin_lock_irqsave(&rport->lock, flags);
611
612                 /* has it been unregistered */
613                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
614                         /* means lldd called us twice */
615                         spin_unlock_irqrestore(&rport->lock, flags);
616                         nvme_fc_rport_put(rport);
617                         return ERR_PTR(-ESTALE);
618                 }
619
620                 rport->remoteport.port_role = pinfo->port_role;
621                 rport->remoteport.port_id = pinfo->port_id;
622                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
623                 rport->dev_loss_end = 0;
624
625                 /*
626                  * kick off a reconnect attempt on all associations to the
627                  * remote port. A successful reconnects will resume i/o.
628                  */
629                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
630                         nvme_fc_resume_controller(ctrl);
631
632                 spin_unlock_irqrestore(&rport->lock, flags);
633
634                 return rport;
635         }
636
637         rport = NULL;
638
639 out_done:
640         spin_unlock_irqrestore(&nvme_fc_lock, flags);
641
642         return rport;
643 }
644
645 static inline void
646 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
647                         struct nvme_fc_port_info *pinfo)
648 {
649         if (pinfo->dev_loss_tmo)
650                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
651         else
652                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
653 }
654
655 /**
656  * nvme_fc_register_remoteport - transport entry point called by an
657  *                              LLDD to register the existence of a NVME
658  *                              subsystem FC port on its fabric.
659  * @localport: pointer to the (registered) local port that the remote
660  *             subsystem port is connected to.
661  * @pinfo:     pointer to information about the port to be registered
662  * @portptr:   pointer to a remote port pointer. Upon success, the routine
663  *             will allocate a nvme_fc_remote_port structure and place its
664  *             address in the remote port pointer. Upon failure, remote port
665  *             pointer will be set to 0.
666  *
667  * Returns:
668  * a completion status. Must be 0 upon success; a negative errno
669  * (ex: -ENXIO) upon failure.
670  */
671 int
672 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
673                                 struct nvme_fc_port_info *pinfo,
674                                 struct nvme_fc_remote_port **portptr)
675 {
676         struct nvme_fc_lport *lport = localport_to_lport(localport);
677         struct nvme_fc_rport *newrec;
678         unsigned long flags;
679         int ret, idx;
680
681         if (!nvme_fc_lport_get(lport)) {
682                 ret = -ESHUTDOWN;
683                 goto out_reghost_failed;
684         }
685
686         /*
687          * look to see if there is already a remoteport that is waiting
688          * for a reconnect (within dev_loss_tmo) with the same WWN's.
689          * If so, transition to it and reconnect.
690          */
691         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
692
693         /* found an rport, but something about its state is bad */
694         if (IS_ERR(newrec)) {
695                 ret = PTR_ERR(newrec);
696                 goto out_lport_put;
697
698         /* found existing rport, which was resumed */
699         } else if (newrec) {
700                 nvme_fc_lport_put(lport);
701                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
702                 nvme_fc_signal_discovery_scan(lport, newrec);
703                 *portptr = &newrec->remoteport;
704                 return 0;
705         }
706
707         /* nothing found - allocate a new remoteport struct */
708
709         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
710                          GFP_KERNEL);
711         if (!newrec) {
712                 ret = -ENOMEM;
713                 goto out_lport_put;
714         }
715
716         idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
717         if (idx < 0) {
718                 ret = -ENOSPC;
719                 goto out_kfree_rport;
720         }
721
722         INIT_LIST_HEAD(&newrec->endp_list);
723         INIT_LIST_HEAD(&newrec->ctrl_list);
724         INIT_LIST_HEAD(&newrec->ls_req_list);
725         INIT_LIST_HEAD(&newrec->disc_list);
726         kref_init(&newrec->ref);
727         atomic_set(&newrec->act_ctrl_cnt, 0);
728         spin_lock_init(&newrec->lock);
729         newrec->remoteport.localport = &lport->localport;
730         INIT_LIST_HEAD(&newrec->ls_rcv_list);
731         newrec->dev = lport->dev;
732         newrec->lport = lport;
733         if (lport->ops->remote_priv_sz)
734                 newrec->remoteport.private = &newrec[1];
735         else
736                 newrec->remoteport.private = NULL;
737         newrec->remoteport.port_role = pinfo->port_role;
738         newrec->remoteport.node_name = pinfo->node_name;
739         newrec->remoteport.port_name = pinfo->port_name;
740         newrec->remoteport.port_id = pinfo->port_id;
741         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
742         newrec->remoteport.port_num = idx;
743         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
744         INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
745
746         spin_lock_irqsave(&nvme_fc_lock, flags);
747         list_add_tail(&newrec->endp_list, &lport->endp_list);
748         spin_unlock_irqrestore(&nvme_fc_lock, flags);
749
750         nvme_fc_signal_discovery_scan(lport, newrec);
751
752         *portptr = &newrec->remoteport;
753         return 0;
754
755 out_kfree_rport:
756         kfree(newrec);
757 out_lport_put:
758         nvme_fc_lport_put(lport);
759 out_reghost_failed:
760         *portptr = NULL;
761         return ret;
762 }
763 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
764
765 static int
766 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
767 {
768         struct nvmefc_ls_req_op *lsop;
769         unsigned long flags;
770
771 restart:
772         spin_lock_irqsave(&rport->lock, flags);
773
774         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
775                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
776                         lsop->flags |= FCOP_FLAGS_TERMIO;
777                         spin_unlock_irqrestore(&rport->lock, flags);
778                         rport->lport->ops->ls_abort(&rport->lport->localport,
779                                                 &rport->remoteport,
780                                                 &lsop->ls_req);
781                         goto restart;
782                 }
783         }
784         spin_unlock_irqrestore(&rport->lock, flags);
785
786         return 0;
787 }
788
789 static void
790 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
791 {
792         dev_info(ctrl->ctrl.device,
793                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
794                 "Reconnect", ctrl->cnum);
795
796         switch (ctrl->ctrl.state) {
797         case NVME_CTRL_NEW:
798         case NVME_CTRL_LIVE:
799                 /*
800                  * Schedule a controller reset. The reset will terminate the
801                  * association and schedule the reconnect timer.  Reconnects
802                  * will be attempted until either the ctlr_loss_tmo
803                  * (max_retries * connect_delay) expires or the remoteport's
804                  * dev_loss_tmo expires.
805                  */
806                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
807                         dev_warn(ctrl->ctrl.device,
808                                 "NVME-FC{%d}: Couldn't schedule reset.\n",
809                                 ctrl->cnum);
810                         nvme_delete_ctrl(&ctrl->ctrl);
811                 }
812                 break;
813
814         case NVME_CTRL_CONNECTING:
815                 /*
816                  * The association has already been terminated and the
817                  * controller is attempting reconnects.  No need to do anything
818                  * futher.  Reconnects will be attempted until either the
819                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
820                  * remoteport's dev_loss_tmo expires.
821                  */
822                 break;
823
824         case NVME_CTRL_RESETTING:
825                 /*
826                  * Controller is already in the process of terminating the
827                  * association.  No need to do anything further. The reconnect
828                  * step will kick in naturally after the association is
829                  * terminated.
830                  */
831                 break;
832
833         case NVME_CTRL_DELETING:
834         case NVME_CTRL_DELETING_NOIO:
835         default:
836                 /* no action to take - let it delete */
837                 break;
838         }
839 }
840
841 /**
842  * nvme_fc_unregister_remoteport - transport entry point called by an
843  *                              LLDD to deregister/remove a previously
844  *                              registered a NVME subsystem FC port.
845  * @portptr: pointer to the (registered) remote port that is to be
846  *           deregistered.
847  *
848  * Returns:
849  * a completion status. Must be 0 upon success; a negative errno
850  * (ex: -ENXIO) upon failure.
851  */
852 int
853 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
854 {
855         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
856         struct nvme_fc_ctrl *ctrl;
857         unsigned long flags;
858
859         if (!portptr)
860                 return -EINVAL;
861
862         spin_lock_irqsave(&rport->lock, flags);
863
864         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
865                 spin_unlock_irqrestore(&rport->lock, flags);
866                 return -EINVAL;
867         }
868         portptr->port_state = FC_OBJSTATE_DELETED;
869
870         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
871
872         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
873                 /* if dev_loss_tmo==0, dev loss is immediate */
874                 if (!portptr->dev_loss_tmo) {
875                         dev_warn(ctrl->ctrl.device,
876                                 "NVME-FC{%d}: controller connectivity lost.\n",
877                                 ctrl->cnum);
878                         nvme_delete_ctrl(&ctrl->ctrl);
879                 } else
880                         nvme_fc_ctrl_connectivity_loss(ctrl);
881         }
882
883         spin_unlock_irqrestore(&rport->lock, flags);
884
885         nvme_fc_abort_lsops(rport);
886
887         if (atomic_read(&rport->act_ctrl_cnt) == 0)
888                 rport->lport->ops->remoteport_delete(portptr);
889
890         /*
891          * release the reference, which will allow, if all controllers
892          * go away, which should only occur after dev_loss_tmo occurs,
893          * for the rport to be torn down.
894          */
895         nvme_fc_rport_put(rport);
896
897         return 0;
898 }
899 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
900
901 /**
902  * nvme_fc_rescan_remoteport - transport entry point called by an
903  *                              LLDD to request a nvme device rescan.
904  * @remoteport: pointer to the (registered) remote port that is to be
905  *              rescanned.
906  *
907  * Returns: N/A
908  */
909 void
910 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
911 {
912         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
913
914         nvme_fc_signal_discovery_scan(rport->lport, rport);
915 }
916 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
917
918 int
919 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
920                         u32 dev_loss_tmo)
921 {
922         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
923         unsigned long flags;
924
925         spin_lock_irqsave(&rport->lock, flags);
926
927         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
928                 spin_unlock_irqrestore(&rport->lock, flags);
929                 return -EINVAL;
930         }
931
932         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
933         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
934
935         spin_unlock_irqrestore(&rport->lock, flags);
936
937         return 0;
938 }
939 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
940
941
942 /* *********************** FC-NVME DMA Handling **************************** */
943
944 /*
945  * The fcloop device passes in a NULL device pointer. Real LLD's will
946  * pass in a valid device pointer. If NULL is passed to the dma mapping
947  * routines, depending on the platform, it may or may not succeed, and
948  * may crash.
949  *
950  * As such:
951  * Wrapper all the dma routines and check the dev pointer.
952  *
953  * If simple mappings (return just a dma address, we'll noop them,
954  * returning a dma address of 0.
955  *
956  * On more complex mappings (dma_map_sg), a pseudo routine fills
957  * in the scatter list, setting all dma addresses to 0.
958  */
959
960 static inline dma_addr_t
961 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
962                 enum dma_data_direction dir)
963 {
964         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
965 }
966
967 static inline int
968 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
969 {
970         return dev ? dma_mapping_error(dev, dma_addr) : 0;
971 }
972
973 static inline void
974 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
975         enum dma_data_direction dir)
976 {
977         if (dev)
978                 dma_unmap_single(dev, addr, size, dir);
979 }
980
981 static inline void
982 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
983                 enum dma_data_direction dir)
984 {
985         if (dev)
986                 dma_sync_single_for_cpu(dev, addr, size, dir);
987 }
988
989 static inline void
990 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
991                 enum dma_data_direction dir)
992 {
993         if (dev)
994                 dma_sync_single_for_device(dev, addr, size, dir);
995 }
996
997 /* pseudo dma_map_sg call */
998 static int
999 fc_map_sg(struct scatterlist *sg, int nents)
1000 {
1001         struct scatterlist *s;
1002         int i;
1003
1004         WARN_ON(nents == 0 || sg[0].length == 0);
1005
1006         for_each_sg(sg, s, nents, i) {
1007                 s->dma_address = 0L;
1008 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1009                 s->dma_length = s->length;
1010 #endif
1011         }
1012         return nents;
1013 }
1014
1015 static inline int
1016 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1017                 enum dma_data_direction dir)
1018 {
1019         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1020 }
1021
1022 static inline void
1023 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1024                 enum dma_data_direction dir)
1025 {
1026         if (dev)
1027                 dma_unmap_sg(dev, sg, nents, dir);
1028 }
1029
1030 /* *********************** FC-NVME LS Handling **************************** */
1031
1032 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1033 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1034
1035 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1036
1037 static void
1038 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1039 {
1040         struct nvme_fc_rport *rport = lsop->rport;
1041         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1042         unsigned long flags;
1043
1044         spin_lock_irqsave(&rport->lock, flags);
1045
1046         if (!lsop->req_queued) {
1047                 spin_unlock_irqrestore(&rport->lock, flags);
1048                 return;
1049         }
1050
1051         list_del(&lsop->lsreq_list);
1052
1053         lsop->req_queued = false;
1054
1055         spin_unlock_irqrestore(&rport->lock, flags);
1056
1057         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1058                                   (lsreq->rqstlen + lsreq->rsplen),
1059                                   DMA_BIDIRECTIONAL);
1060
1061         nvme_fc_rport_put(rport);
1062 }
1063
1064 static int
1065 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1066                 struct nvmefc_ls_req_op *lsop,
1067                 void (*done)(struct nvmefc_ls_req *req, int status))
1068 {
1069         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1070         unsigned long flags;
1071         int ret = 0;
1072
1073         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1074                 return -ECONNREFUSED;
1075
1076         if (!nvme_fc_rport_get(rport))
1077                 return -ESHUTDOWN;
1078
1079         lsreq->done = done;
1080         lsop->rport = rport;
1081         lsop->req_queued = false;
1082         INIT_LIST_HEAD(&lsop->lsreq_list);
1083         init_completion(&lsop->ls_done);
1084
1085         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1086                                   lsreq->rqstlen + lsreq->rsplen,
1087                                   DMA_BIDIRECTIONAL);
1088         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1089                 ret = -EFAULT;
1090                 goto out_putrport;
1091         }
1092         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1093
1094         spin_lock_irqsave(&rport->lock, flags);
1095
1096         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1097
1098         lsop->req_queued = true;
1099
1100         spin_unlock_irqrestore(&rport->lock, flags);
1101
1102         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1103                                         &rport->remoteport, lsreq);
1104         if (ret)
1105                 goto out_unlink;
1106
1107         return 0;
1108
1109 out_unlink:
1110         lsop->ls_error = ret;
1111         spin_lock_irqsave(&rport->lock, flags);
1112         lsop->req_queued = false;
1113         list_del(&lsop->lsreq_list);
1114         spin_unlock_irqrestore(&rport->lock, flags);
1115         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1116                                   (lsreq->rqstlen + lsreq->rsplen),
1117                                   DMA_BIDIRECTIONAL);
1118 out_putrport:
1119         nvme_fc_rport_put(rport);
1120
1121         return ret;
1122 }
1123
1124 static void
1125 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1126 {
1127         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1128
1129         lsop->ls_error = status;
1130         complete(&lsop->ls_done);
1131 }
1132
1133 static int
1134 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1135 {
1136         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1137         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1138         int ret;
1139
1140         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1141
1142         if (!ret) {
1143                 /*
1144                  * No timeout/not interruptible as we need the struct
1145                  * to exist until the lldd calls us back. Thus mandate
1146                  * wait until driver calls back. lldd responsible for
1147                  * the timeout action
1148                  */
1149                 wait_for_completion(&lsop->ls_done);
1150
1151                 __nvme_fc_finish_ls_req(lsop);
1152
1153                 ret = lsop->ls_error;
1154         }
1155
1156         if (ret)
1157                 return ret;
1158
1159         /* ACC or RJT payload ? */
1160         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1161                 return -ENXIO;
1162
1163         return 0;
1164 }
1165
1166 static int
1167 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1168                 struct nvmefc_ls_req_op *lsop,
1169                 void (*done)(struct nvmefc_ls_req *req, int status))
1170 {
1171         /* don't wait for completion */
1172
1173         return __nvme_fc_send_ls_req(rport, lsop, done);
1174 }
1175
1176 static int
1177 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1178         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1179 {
1180         struct nvmefc_ls_req_op *lsop;
1181         struct nvmefc_ls_req *lsreq;
1182         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1183         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1184         unsigned long flags;
1185         int ret, fcret = 0;
1186
1187         lsop = kzalloc((sizeof(*lsop) +
1188                          sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1189                          ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1190         if (!lsop) {
1191                 dev_info(ctrl->ctrl.device,
1192                         "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1193                         ctrl->cnum);
1194                 ret = -ENOMEM;
1195                 goto out_no_memory;
1196         }
1197
1198         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1199         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1200         lsreq = &lsop->ls_req;
1201         if (ctrl->lport->ops->lsrqst_priv_sz)
1202                 lsreq->private = &assoc_acc[1];
1203         else
1204                 lsreq->private = NULL;
1205
1206         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1207         assoc_rqst->desc_list_len =
1208                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1209
1210         assoc_rqst->assoc_cmd.desc_tag =
1211                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1212         assoc_rqst->assoc_cmd.desc_len =
1213                         fcnvme_lsdesc_len(
1214                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1215
1216         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1217         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1218         /* Linux supports only Dynamic controllers */
1219         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1220         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1221         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1222                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1223         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1224                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1225
1226         lsop->queue = queue;
1227         lsreq->rqstaddr = assoc_rqst;
1228         lsreq->rqstlen = sizeof(*assoc_rqst);
1229         lsreq->rspaddr = assoc_acc;
1230         lsreq->rsplen = sizeof(*assoc_acc);
1231         lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1232
1233         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1234         if (ret)
1235                 goto out_free_buffer;
1236
1237         /* process connect LS completion */
1238
1239         /* validate the ACC response */
1240         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1241                 fcret = VERR_LSACC;
1242         else if (assoc_acc->hdr.desc_list_len !=
1243                         fcnvme_lsdesc_len(
1244                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1245                 fcret = VERR_CR_ASSOC_ACC_LEN;
1246         else if (assoc_acc->hdr.rqst.desc_tag !=
1247                         cpu_to_be32(FCNVME_LSDESC_RQST))
1248                 fcret = VERR_LSDESC_RQST;
1249         else if (assoc_acc->hdr.rqst.desc_len !=
1250                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1251                 fcret = VERR_LSDESC_RQST_LEN;
1252         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1253                 fcret = VERR_CR_ASSOC;
1254         else if (assoc_acc->associd.desc_tag !=
1255                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1256                 fcret = VERR_ASSOC_ID;
1257         else if (assoc_acc->associd.desc_len !=
1258                         fcnvme_lsdesc_len(
1259                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1260                 fcret = VERR_ASSOC_ID_LEN;
1261         else if (assoc_acc->connectid.desc_tag !=
1262                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1263                 fcret = VERR_CONN_ID;
1264         else if (assoc_acc->connectid.desc_len !=
1265                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1266                 fcret = VERR_CONN_ID_LEN;
1267
1268         if (fcret) {
1269                 ret = -EBADF;
1270                 dev_err(ctrl->dev,
1271                         "q %d Create Association LS failed: %s\n",
1272                         queue->qnum, validation_errors[fcret]);
1273         } else {
1274                 spin_lock_irqsave(&ctrl->lock, flags);
1275                 ctrl->association_id =
1276                         be64_to_cpu(assoc_acc->associd.association_id);
1277                 queue->connection_id =
1278                         be64_to_cpu(assoc_acc->connectid.connection_id);
1279                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1280                 spin_unlock_irqrestore(&ctrl->lock, flags);
1281         }
1282
1283 out_free_buffer:
1284         kfree(lsop);
1285 out_no_memory:
1286         if (ret)
1287                 dev_err(ctrl->dev,
1288                         "queue %d connect admin queue failed (%d).\n",
1289                         queue->qnum, ret);
1290         return ret;
1291 }
1292
1293 static int
1294 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1295                         u16 qsize, u16 ersp_ratio)
1296 {
1297         struct nvmefc_ls_req_op *lsop;
1298         struct nvmefc_ls_req *lsreq;
1299         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1300         struct fcnvme_ls_cr_conn_acc *conn_acc;
1301         int ret, fcret = 0;
1302
1303         lsop = kzalloc((sizeof(*lsop) +
1304                          sizeof(*conn_rqst) + sizeof(*conn_acc) +
1305                          ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1306         if (!lsop) {
1307                 dev_info(ctrl->ctrl.device,
1308                         "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1309                         ctrl->cnum);
1310                 ret = -ENOMEM;
1311                 goto out_no_memory;
1312         }
1313
1314         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1315         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1316         lsreq = &lsop->ls_req;
1317         if (ctrl->lport->ops->lsrqst_priv_sz)
1318                 lsreq->private = (void *)&conn_acc[1];
1319         else
1320                 lsreq->private = NULL;
1321
1322         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1323         conn_rqst->desc_list_len = cpu_to_be32(
1324                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1325                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326
1327         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1328         conn_rqst->associd.desc_len =
1329                         fcnvme_lsdesc_len(
1330                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1331         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1332         conn_rqst->connect_cmd.desc_tag =
1333                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1334         conn_rqst->connect_cmd.desc_len =
1335                         fcnvme_lsdesc_len(
1336                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1337         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1338         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1339         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1340
1341         lsop->queue = queue;
1342         lsreq->rqstaddr = conn_rqst;
1343         lsreq->rqstlen = sizeof(*conn_rqst);
1344         lsreq->rspaddr = conn_acc;
1345         lsreq->rsplen = sizeof(*conn_acc);
1346         lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1347
1348         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1349         if (ret)
1350                 goto out_free_buffer;
1351
1352         /* process connect LS completion */
1353
1354         /* validate the ACC response */
1355         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1356                 fcret = VERR_LSACC;
1357         else if (conn_acc->hdr.desc_list_len !=
1358                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1359                 fcret = VERR_CR_CONN_ACC_LEN;
1360         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1361                 fcret = VERR_LSDESC_RQST;
1362         else if (conn_acc->hdr.rqst.desc_len !=
1363                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1364                 fcret = VERR_LSDESC_RQST_LEN;
1365         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1366                 fcret = VERR_CR_CONN;
1367         else if (conn_acc->connectid.desc_tag !=
1368                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1369                 fcret = VERR_CONN_ID;
1370         else if (conn_acc->connectid.desc_len !=
1371                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1372                 fcret = VERR_CONN_ID_LEN;
1373
1374         if (fcret) {
1375                 ret = -EBADF;
1376                 dev_err(ctrl->dev,
1377                         "q %d Create I/O Connection LS failed: %s\n",
1378                         queue->qnum, validation_errors[fcret]);
1379         } else {
1380                 queue->connection_id =
1381                         be64_to_cpu(conn_acc->connectid.connection_id);
1382                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1383         }
1384
1385 out_free_buffer:
1386         kfree(lsop);
1387 out_no_memory:
1388         if (ret)
1389                 dev_err(ctrl->dev,
1390                         "queue %d connect I/O queue failed (%d).\n",
1391                         queue->qnum, ret);
1392         return ret;
1393 }
1394
1395 static void
1396 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1397 {
1398         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1399
1400         __nvme_fc_finish_ls_req(lsop);
1401
1402         /* fc-nvme initiator doesn't care about success or failure of cmd */
1403
1404         kfree(lsop);
1405 }
1406
1407 /*
1408  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1409  * the FC-NVME Association.  Terminating the association also
1410  * terminates the FC-NVME connections (per queue, both admin and io
1411  * queues) that are part of the association. E.g. things are torn
1412  * down, and the related FC-NVME Association ID and Connection IDs
1413  * become invalid.
1414  *
1415  * The behavior of the fc-nvme initiator is such that it's
1416  * understanding of the association and connections will implicitly
1417  * be torn down. The action is implicit as it may be due to a loss of
1418  * connectivity with the fc-nvme target, so you may never get a
1419  * response even if you tried.  As such, the action of this routine
1420  * is to asynchronously send the LS, ignore any results of the LS, and
1421  * continue on with terminating the association. If the fc-nvme target
1422  * is present and receives the LS, it too can tear down.
1423  */
1424 static void
1425 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1426 {
1427         struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1428         struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1429         struct nvmefc_ls_req_op *lsop;
1430         struct nvmefc_ls_req *lsreq;
1431         int ret;
1432
1433         lsop = kzalloc((sizeof(*lsop) +
1434                         sizeof(*discon_rqst) + sizeof(*discon_acc) +
1435                         ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1436         if (!lsop) {
1437                 dev_info(ctrl->ctrl.device,
1438                         "NVME-FC{%d}: send Disconnect Association "
1439                         "failed: ENOMEM\n",
1440                         ctrl->cnum);
1441                 return;
1442         }
1443
1444         discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1445         discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1446         lsreq = &lsop->ls_req;
1447         if (ctrl->lport->ops->lsrqst_priv_sz)
1448                 lsreq->private = (void *)&discon_acc[1];
1449         else
1450                 lsreq->private = NULL;
1451
1452         nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1453                                 ctrl->association_id);
1454
1455         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1456                                 nvme_fc_disconnect_assoc_done);
1457         if (ret)
1458                 kfree(lsop);
1459 }
1460
1461 static void
1462 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1463 {
1464         struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1465         struct nvme_fc_rport *rport = lsop->rport;
1466         struct nvme_fc_lport *lport = rport->lport;
1467         unsigned long flags;
1468
1469         spin_lock_irqsave(&rport->lock, flags);
1470         list_del(&lsop->lsrcv_list);
1471         spin_unlock_irqrestore(&rport->lock, flags);
1472
1473         fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1474                                 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1475         fc_dma_unmap_single(lport->dev, lsop->rspdma,
1476                         sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1477
1478         kfree(lsop);
1479
1480         nvme_fc_rport_put(rport);
1481 }
1482
1483 static void
1484 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1485 {
1486         struct nvme_fc_rport *rport = lsop->rport;
1487         struct nvme_fc_lport *lport = rport->lport;
1488         struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1489         int ret;
1490
1491         fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1492                                   sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1493
1494         ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1495                                      lsop->lsrsp);
1496         if (ret) {
1497                 dev_warn(lport->dev,
1498                         "LLDD rejected LS RSP xmt: LS %d status %d\n",
1499                         w0->ls_cmd, ret);
1500                 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1501                 return;
1502         }
1503 }
1504
1505 static struct nvme_fc_ctrl *
1506 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1507                       struct nvmefc_ls_rcv_op *lsop)
1508 {
1509         struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1510                                         &lsop->rqstbuf->rq_dis_assoc;
1511         struct nvme_fc_ctrl *ctrl, *ret = NULL;
1512         struct nvmefc_ls_rcv_op *oldls = NULL;
1513         u64 association_id = be64_to_cpu(rqst->associd.association_id);
1514         unsigned long flags;
1515
1516         spin_lock_irqsave(&rport->lock, flags);
1517
1518         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1519                 if (!nvme_fc_ctrl_get(ctrl))
1520                         continue;
1521                 spin_lock(&ctrl->lock);
1522                 if (association_id == ctrl->association_id) {
1523                         oldls = ctrl->rcv_disconn;
1524                         ctrl->rcv_disconn = lsop;
1525                         ret = ctrl;
1526                 }
1527                 spin_unlock(&ctrl->lock);
1528                 if (ret)
1529                         /* leave the ctrl get reference */
1530                         break;
1531                 nvme_fc_ctrl_put(ctrl);
1532         }
1533
1534         spin_unlock_irqrestore(&rport->lock, flags);
1535
1536         /* transmit a response for anything that was pending */
1537         if (oldls) {
1538                 dev_info(rport->lport->dev,
1539                         "NVME-FC{%d}: Multiple Disconnect Association "
1540                         "LS's received\n", ctrl->cnum);
1541                 /* overwrite good response with bogus failure */
1542                 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1543                                                 sizeof(*oldls->rspbuf),
1544                                                 rqst->w0.ls_cmd,
1545                                                 FCNVME_RJT_RC_UNAB,
1546                                                 FCNVME_RJT_EXP_NONE, 0);
1547                 nvme_fc_xmt_ls_rsp(oldls);
1548         }
1549
1550         return ret;
1551 }
1552
1553 /*
1554  * returns true to mean LS handled and ls_rsp can be sent
1555  * returns false to defer ls_rsp xmt (will be done as part of
1556  *     association termination)
1557  */
1558 static bool
1559 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1560 {
1561         struct nvme_fc_rport *rport = lsop->rport;
1562         struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1563                                         &lsop->rqstbuf->rq_dis_assoc;
1564         struct fcnvme_ls_disconnect_assoc_acc *acc =
1565                                         &lsop->rspbuf->rsp_dis_assoc;
1566         struct nvme_fc_ctrl *ctrl = NULL;
1567         int ret = 0;
1568
1569         memset(acc, 0, sizeof(*acc));
1570
1571         ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1572         if (!ret) {
1573                 /* match an active association */
1574                 ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1575                 if (!ctrl)
1576                         ret = VERR_NO_ASSOC;
1577         }
1578
1579         if (ret) {
1580                 dev_info(rport->lport->dev,
1581                         "Disconnect LS failed: %s\n",
1582                         validation_errors[ret]);
1583                 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1584                                         sizeof(*acc), rqst->w0.ls_cmd,
1585                                         (ret == VERR_NO_ASSOC) ?
1586                                                 FCNVME_RJT_RC_INV_ASSOC :
1587                                                 FCNVME_RJT_RC_LOGIC,
1588                                         FCNVME_RJT_EXP_NONE, 0);
1589                 return true;
1590         }
1591
1592         /* format an ACCept response */
1593
1594         lsop->lsrsp->rsplen = sizeof(*acc);
1595
1596         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1597                         fcnvme_lsdesc_len(
1598                                 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1599                         FCNVME_LS_DISCONNECT_ASSOC);
1600
1601         /*
1602          * the transmit of the response will occur after the exchanges
1603          * for the association have been ABTS'd by
1604          * nvme_fc_delete_association().
1605          */
1606
1607         /* fail the association */
1608         nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1609
1610         /* release the reference taken by nvme_fc_match_disconn_ls() */
1611         nvme_fc_ctrl_put(ctrl);
1612
1613         return false;
1614 }
1615
1616 /*
1617  * Actual Processing routine for received FC-NVME LS Requests from the LLD
1618  * returns true if a response should be sent afterward, false if rsp will
1619  * be sent asynchronously.
1620  */
1621 static bool
1622 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1623 {
1624         struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1625         bool ret = true;
1626
1627         lsop->lsrsp->nvme_fc_private = lsop;
1628         lsop->lsrsp->rspbuf = lsop->rspbuf;
1629         lsop->lsrsp->rspdma = lsop->rspdma;
1630         lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1631         /* Be preventative. handlers will later set to valid length */
1632         lsop->lsrsp->rsplen = 0;
1633
1634         /*
1635          * handlers:
1636          *   parse request input, execute the request, and format the
1637          *   LS response
1638          */
1639         switch (w0->ls_cmd) {
1640         case FCNVME_LS_DISCONNECT_ASSOC:
1641                 ret = nvme_fc_ls_disconnect_assoc(lsop);
1642                 break;
1643         case FCNVME_LS_DISCONNECT_CONN:
1644                 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1645                                 sizeof(*lsop->rspbuf), w0->ls_cmd,
1646                                 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1647                 break;
1648         case FCNVME_LS_CREATE_ASSOCIATION:
1649         case FCNVME_LS_CREATE_CONNECTION:
1650                 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1651                                 sizeof(*lsop->rspbuf), w0->ls_cmd,
1652                                 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1653                 break;
1654         default:
1655                 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1656                                 sizeof(*lsop->rspbuf), w0->ls_cmd,
1657                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1658                 break;
1659         }
1660
1661         return(ret);
1662 }
1663
1664 static void
1665 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1666 {
1667         struct nvme_fc_rport *rport =
1668                 container_of(work, struct nvme_fc_rport, lsrcv_work);
1669         struct fcnvme_ls_rqst_w0 *w0;
1670         struct nvmefc_ls_rcv_op *lsop;
1671         unsigned long flags;
1672         bool sendrsp;
1673
1674 restart:
1675         sendrsp = true;
1676         spin_lock_irqsave(&rport->lock, flags);
1677         list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1678                 if (lsop->handled)
1679                         continue;
1680
1681                 lsop->handled = true;
1682                 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1683                         spin_unlock_irqrestore(&rport->lock, flags);
1684                         sendrsp = nvme_fc_handle_ls_rqst(lsop);
1685                 } else {
1686                         spin_unlock_irqrestore(&rport->lock, flags);
1687                         w0 = &lsop->rqstbuf->w0;
1688                         lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1689                                                 lsop->rspbuf,
1690                                                 sizeof(*lsop->rspbuf),
1691                                                 w0->ls_cmd,
1692                                                 FCNVME_RJT_RC_UNAB,
1693                                                 FCNVME_RJT_EXP_NONE, 0);
1694                 }
1695                 if (sendrsp)
1696                         nvme_fc_xmt_ls_rsp(lsop);
1697                 goto restart;
1698         }
1699         spin_unlock_irqrestore(&rport->lock, flags);
1700 }
1701
1702 /**
1703  * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1704  *                       upon the reception of a NVME LS request.
1705  *
1706  * The nvme-fc layer will copy payload to an internal structure for
1707  * processing.  As such, upon completion of the routine, the LLDD may
1708  * immediately free/reuse the LS request buffer passed in the call.
1709  *
1710  * If this routine returns error, the LLDD should abort the exchange.
1711  *
1712  * @portptr:    pointer to the (registered) remote port that the LS
1713  *              was received from. The remoteport is associated with
1714  *              a specific localport.
1715  * @lsrsp:      pointer to a nvmefc_ls_rsp response structure to be
1716  *              used to reference the exchange corresponding to the LS
1717  *              when issuing an ls response.
1718  * @lsreqbuf:   pointer to the buffer containing the LS Request
1719  * @lsreqbuf_len: length, in bytes, of the received LS request
1720  */
1721 int
1722 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1723                         struct nvmefc_ls_rsp *lsrsp,
1724                         void *lsreqbuf, u32 lsreqbuf_len)
1725 {
1726         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1727         struct nvme_fc_lport *lport = rport->lport;
1728         struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1729         struct nvmefc_ls_rcv_op *lsop;
1730         unsigned long flags;
1731         int ret;
1732
1733         nvme_fc_rport_get(rport);
1734
1735         /* validate there's a routine to transmit a response */
1736         if (!lport->ops->xmt_ls_rsp) {
1737                 dev_info(lport->dev,
1738                         "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1739                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1740                                 nvmefc_ls_names[w0->ls_cmd] : "");
1741                 ret = -EINVAL;
1742                 goto out_put;
1743         }
1744
1745         if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1746                 dev_info(lport->dev,
1747                         "RCV %s LS failed: payload too large\n",
1748                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1749                                 nvmefc_ls_names[w0->ls_cmd] : "");
1750                 ret = -E2BIG;
1751                 goto out_put;
1752         }
1753
1754         lsop = kzalloc(sizeof(*lsop) +
1755                         sizeof(union nvmefc_ls_requests) +
1756                         sizeof(union nvmefc_ls_responses),
1757                         GFP_KERNEL);
1758         if (!lsop) {
1759                 dev_info(lport->dev,
1760                         "RCV %s LS failed: No memory\n",
1761                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1762                                 nvmefc_ls_names[w0->ls_cmd] : "");
1763                 ret = -ENOMEM;
1764                 goto out_put;
1765         }
1766         lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1];
1767         lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1];
1768
1769         lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1770                                         sizeof(*lsop->rspbuf),
1771                                         DMA_TO_DEVICE);
1772         if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1773                 dev_info(lport->dev,
1774                         "RCV %s LS failed: DMA mapping failure\n",
1775                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1776                                 nvmefc_ls_names[w0->ls_cmd] : "");
1777                 ret = -EFAULT;
1778                 goto out_free;
1779         }
1780
1781         lsop->rport = rport;
1782         lsop->lsrsp = lsrsp;
1783
1784         memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1785         lsop->rqstdatalen = lsreqbuf_len;
1786
1787         spin_lock_irqsave(&rport->lock, flags);
1788         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1789                 spin_unlock_irqrestore(&rport->lock, flags);
1790                 ret = -ENOTCONN;
1791                 goto out_unmap;
1792         }
1793         list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1794         spin_unlock_irqrestore(&rport->lock, flags);
1795
1796         schedule_work(&rport->lsrcv_work);
1797
1798         return 0;
1799
1800 out_unmap:
1801         fc_dma_unmap_single(lport->dev, lsop->rspdma,
1802                         sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1803 out_free:
1804         kfree(lsop);
1805 out_put:
1806         nvme_fc_rport_put(rport);
1807         return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1810
1811
1812 /* *********************** NVME Ctrl Routines **************************** */
1813
1814 static void
1815 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1816                 struct nvme_fc_fcp_op *op)
1817 {
1818         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1819                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1820         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1821                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1822
1823         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1824 }
1825
1826 static void
1827 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1828                 unsigned int hctx_idx)
1829 {
1830         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1831
1832         return __nvme_fc_exit_request(set->driver_data, op);
1833 }
1834
1835 static int
1836 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1837 {
1838         unsigned long flags;
1839         int opstate;
1840
1841         spin_lock_irqsave(&ctrl->lock, flags);
1842         opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1843         if (opstate != FCPOP_STATE_ACTIVE)
1844                 atomic_set(&op->state, opstate);
1845         else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1846                 op->flags |= FCOP_FLAGS_TERMIO;
1847                 ctrl->iocnt++;
1848         }
1849         spin_unlock_irqrestore(&ctrl->lock, flags);
1850
1851         if (opstate != FCPOP_STATE_ACTIVE)
1852                 return -ECANCELED;
1853
1854         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1855                                         &ctrl->rport->remoteport,
1856                                         op->queue->lldd_handle,
1857                                         &op->fcp_req);
1858
1859         return 0;
1860 }
1861
1862 static void
1863 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1864 {
1865         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1866         int i;
1867
1868         /* ensure we've initialized the ops once */
1869         if (!(aen_op->flags & FCOP_FLAGS_AEN))
1870                 return;
1871
1872         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1873                 __nvme_fc_abort_op(ctrl, aen_op);
1874 }
1875
1876 static inline void
1877 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1878                 struct nvme_fc_fcp_op *op, int opstate)
1879 {
1880         unsigned long flags;
1881
1882         if (opstate == FCPOP_STATE_ABORTED) {
1883                 spin_lock_irqsave(&ctrl->lock, flags);
1884                 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1885                     op->flags & FCOP_FLAGS_TERMIO) {
1886                         if (!--ctrl->iocnt)
1887                                 wake_up(&ctrl->ioabort_wait);
1888                 }
1889                 spin_unlock_irqrestore(&ctrl->lock, flags);
1890         }
1891 }
1892
1893 static void
1894 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1895 {
1896         struct nvme_fc_ctrl *ctrl =
1897                         container_of(work, struct nvme_fc_ctrl, ioerr_work);
1898
1899         nvme_fc_error_recovery(ctrl, "transport detected io error");
1900 }
1901
1902 /*
1903  * nvme_fc_io_getuuid - Routine called to get the appid field
1904  * associated with request by the lldd
1905  * @req:IO request from nvme fc to driver
1906  * Returns: UUID if there is an appid associated with VM or
1907  * NULL if the user/libvirt has not set the appid to VM
1908  */
1909 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
1910 {
1911         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1912         struct request *rq = op->rq;
1913
1914         if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq->bio)
1915                 return NULL;
1916         return blkcg_get_fc_appid(rq->bio);
1917 }
1918 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
1919
1920 static void
1921 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1922 {
1923         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1924         struct request *rq = op->rq;
1925         struct nvmefc_fcp_req *freq = &op->fcp_req;
1926         struct nvme_fc_ctrl *ctrl = op->ctrl;
1927         struct nvme_fc_queue *queue = op->queue;
1928         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1929         struct nvme_command *sqe = &op->cmd_iu.sqe;
1930         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1931         union nvme_result result;
1932         bool terminate_assoc = true;
1933         int opstate;
1934
1935         /*
1936          * WARNING:
1937          * The current linux implementation of a nvme controller
1938          * allocates a single tag set for all io queues and sizes
1939          * the io queues to fully hold all possible tags. Thus, the
1940          * implementation does not reference or care about the sqhd
1941          * value as it never needs to use the sqhd/sqtail pointers
1942          * for submission pacing.
1943          *
1944          * This affects the FC-NVME implementation in two ways:
1945          * 1) As the value doesn't matter, we don't need to waste
1946          *    cycles extracting it from ERSPs and stamping it in the
1947          *    cases where the transport fabricates CQEs on successful
1948          *    completions.
1949          * 2) The FC-NVME implementation requires that delivery of
1950          *    ERSP completions are to go back to the nvme layer in order
1951          *    relative to the rsn, such that the sqhd value will always
1952          *    be "in order" for the nvme layer. As the nvme layer in
1953          *    linux doesn't care about sqhd, there's no need to return
1954          *    them in order.
1955          *
1956          * Additionally:
1957          * As the core nvme layer in linux currently does not look at
1958          * every field in the cqe - in cases where the FC transport must
1959          * fabricate a CQE, the following fields will not be set as they
1960          * are not referenced:
1961          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1962          *
1963          * Failure or error of an individual i/o, in a transport
1964          * detected fashion unrelated to the nvme completion status,
1965          * potentially cause the initiator and target sides to get out
1966          * of sync on SQ head/tail (aka outstanding io count allowed).
1967          * Per FC-NVME spec, failure of an individual command requires
1968          * the connection to be terminated, which in turn requires the
1969          * association to be terminated.
1970          */
1971
1972         opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1973
1974         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1975                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1976
1977         if (opstate == FCPOP_STATE_ABORTED)
1978                 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1979         else if (freq->status) {
1980                 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1981                 dev_info(ctrl->ctrl.device,
1982                         "NVME-FC{%d}: io failed due to lldd error %d\n",
1983                         ctrl->cnum, freq->status);
1984         }
1985
1986         /*
1987          * For the linux implementation, if we have an unsuccesful
1988          * status, they blk-mq layer can typically be called with the
1989          * non-zero status and the content of the cqe isn't important.
1990          */
1991         if (status)
1992                 goto done;
1993
1994         /*
1995          * command completed successfully relative to the wire
1996          * protocol. However, validate anything received and
1997          * extract the status and result from the cqe (create it
1998          * where necessary).
1999          */
2000
2001         switch (freq->rcv_rsplen) {
2002
2003         case 0:
2004         case NVME_FC_SIZEOF_ZEROS_RSP:
2005                 /*
2006                  * No response payload or 12 bytes of payload (which
2007                  * should all be zeros) are considered successful and
2008                  * no payload in the CQE by the transport.
2009                  */
2010                 if (freq->transferred_length !=
2011                     be32_to_cpu(op->cmd_iu.data_len)) {
2012                         status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2013                         dev_info(ctrl->ctrl.device,
2014                                 "NVME-FC{%d}: io failed due to bad transfer "
2015                                 "length: %d vs expected %d\n",
2016                                 ctrl->cnum, freq->transferred_length,
2017                                 be32_to_cpu(op->cmd_iu.data_len));
2018                         goto done;
2019                 }
2020                 result.u64 = 0;
2021                 break;
2022
2023         case sizeof(struct nvme_fc_ersp_iu):
2024                 /*
2025                  * The ERSP IU contains a full completion with CQE.
2026                  * Validate ERSP IU and look at cqe.
2027                  */
2028                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2029                                         (freq->rcv_rsplen / 4) ||
2030                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
2031                                         freq->transferred_length ||
2032                              op->rsp_iu.ersp_result ||
2033                              sqe->common.command_id != cqe->command_id)) {
2034                         status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2035                         dev_info(ctrl->ctrl.device,
2036                                 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2037                                 "iu len %d, xfr len %d vs %d, status code "
2038                                 "%d, cmdid %d vs %d\n",
2039                                 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2040                                 be32_to_cpu(op->rsp_iu.xfrd_len),
2041                                 freq->transferred_length,
2042                                 op->rsp_iu.ersp_result,
2043                                 sqe->common.command_id,
2044                                 cqe->command_id);
2045                         goto done;
2046                 }
2047                 result = cqe->result;
2048                 status = cqe->status;
2049                 break;
2050
2051         default:
2052                 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2053                 dev_info(ctrl->ctrl.device,
2054                         "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2055                         "len %d\n",
2056                         ctrl->cnum, freq->rcv_rsplen);
2057                 goto done;
2058         }
2059
2060         terminate_assoc = false;
2061
2062 done:
2063         if (op->flags & FCOP_FLAGS_AEN) {
2064                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2065                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2066                 atomic_set(&op->state, FCPOP_STATE_IDLE);
2067                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
2068                 nvme_fc_ctrl_put(ctrl);
2069                 goto check_error;
2070         }
2071
2072         __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2073         if (!nvme_try_complete_req(rq, status, result))
2074                 nvme_fc_complete_rq(rq);
2075
2076 check_error:
2077         if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2078                 queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2079 }
2080
2081 static int
2082 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2083                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2084                 struct request *rq, u32 rqno)
2085 {
2086         struct nvme_fcp_op_w_sgl *op_w_sgl =
2087                 container_of(op, typeof(*op_w_sgl), op);
2088         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2089         int ret = 0;
2090
2091         memset(op, 0, sizeof(*op));
2092         op->fcp_req.cmdaddr = &op->cmd_iu;
2093         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2094         op->fcp_req.rspaddr = &op->rsp_iu;
2095         op->fcp_req.rsplen = sizeof(op->rsp_iu);
2096         op->fcp_req.done = nvme_fc_fcpio_done;
2097         op->ctrl = ctrl;
2098         op->queue = queue;
2099         op->rq = rq;
2100         op->rqno = rqno;
2101
2102         cmdiu->format_id = NVME_CMD_FORMAT_ID;
2103         cmdiu->fc_id = NVME_CMD_FC_ID;
2104         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2105         if (queue->qnum)
2106                 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2107                                         (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2108         else
2109                 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2110
2111         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2112                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2113         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2114                 dev_err(ctrl->dev,
2115                         "FCP Op failed - cmdiu dma mapping failed.\n");
2116                 ret = -EFAULT;
2117                 goto out_on_error;
2118         }
2119
2120         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2121                                 &op->rsp_iu, sizeof(op->rsp_iu),
2122                                 DMA_FROM_DEVICE);
2123         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2124                 dev_err(ctrl->dev,
2125                         "FCP Op failed - rspiu dma mapping failed.\n");
2126                 ret = -EFAULT;
2127         }
2128
2129         atomic_set(&op->state, FCPOP_STATE_IDLE);
2130 out_on_error:
2131         return ret;
2132 }
2133
2134 static int
2135 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2136                 unsigned int hctx_idx, unsigned int numa_node)
2137 {
2138         struct nvme_fc_ctrl *ctrl = set->driver_data;
2139         struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2140         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2141         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2142         int res;
2143
2144         res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2145         if (res)
2146                 return res;
2147         op->op.fcp_req.first_sgl = op->sgl;
2148         op->op.fcp_req.private = &op->priv[0];
2149         nvme_req(rq)->ctrl = &ctrl->ctrl;
2150         nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2151         return res;
2152 }
2153
2154 static int
2155 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2156 {
2157         struct nvme_fc_fcp_op *aen_op;
2158         struct nvme_fc_cmd_iu *cmdiu;
2159         struct nvme_command *sqe;
2160         void *private = NULL;
2161         int i, ret;
2162
2163         aen_op = ctrl->aen_ops;
2164         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2165                 if (ctrl->lport->ops->fcprqst_priv_sz) {
2166                         private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2167                                                 GFP_KERNEL);
2168                         if (!private)
2169                                 return -ENOMEM;
2170                 }
2171
2172                 cmdiu = &aen_op->cmd_iu;
2173                 sqe = &cmdiu->sqe;
2174                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2175                                 aen_op, (struct request *)NULL,
2176                                 (NVME_AQ_BLK_MQ_DEPTH + i));
2177                 if (ret) {
2178                         kfree(private);
2179                         return ret;
2180                 }
2181
2182                 aen_op->flags = FCOP_FLAGS_AEN;
2183                 aen_op->fcp_req.private = private;
2184
2185                 memset(sqe, 0, sizeof(*sqe));
2186                 sqe->common.opcode = nvme_admin_async_event;
2187                 /* Note: core layer may overwrite the sqe.command_id value */
2188                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2189         }
2190         return 0;
2191 }
2192
2193 static void
2194 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2195 {
2196         struct nvme_fc_fcp_op *aen_op;
2197         int i;
2198
2199         cancel_work_sync(&ctrl->ctrl.async_event_work);
2200         aen_op = ctrl->aen_ops;
2201         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2202                 __nvme_fc_exit_request(ctrl, aen_op);
2203
2204                 kfree(aen_op->fcp_req.private);
2205                 aen_op->fcp_req.private = NULL;
2206         }
2207 }
2208
2209 static inline void
2210 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
2211                 unsigned int qidx)
2212 {
2213         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2214
2215         hctx->driver_data = queue;
2216         queue->hctx = hctx;
2217 }
2218
2219 static int
2220 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2221                 unsigned int hctx_idx)
2222 {
2223         struct nvme_fc_ctrl *ctrl = data;
2224
2225         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
2226
2227         return 0;
2228 }
2229
2230 static int
2231 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2232                 unsigned int hctx_idx)
2233 {
2234         struct nvme_fc_ctrl *ctrl = data;
2235
2236         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
2237
2238         return 0;
2239 }
2240
2241 static void
2242 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2243 {
2244         struct nvme_fc_queue *queue;
2245
2246         queue = &ctrl->queues[idx];
2247         memset(queue, 0, sizeof(*queue));
2248         queue->ctrl = ctrl;
2249         queue->qnum = idx;
2250         atomic_set(&queue->csn, 0);
2251         queue->dev = ctrl->dev;
2252
2253         if (idx > 0)
2254                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2255         else
2256                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
2257
2258         /*
2259          * Considered whether we should allocate buffers for all SQEs
2260          * and CQEs and dma map them - mapping their respective entries
2261          * into the request structures (kernel vm addr and dma address)
2262          * thus the driver could use the buffers/mappings directly.
2263          * It only makes sense if the LLDD would use them for its
2264          * messaging api. It's very unlikely most adapter api's would use
2265          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2266          * structures were used instead.
2267          */
2268 }
2269
2270 /*
2271  * This routine terminates a queue at the transport level.
2272  * The transport has already ensured that all outstanding ios on
2273  * the queue have been terminated.
2274  * The transport will send a Disconnect LS request to terminate
2275  * the queue's connection. Termination of the admin queue will also
2276  * terminate the association at the target.
2277  */
2278 static void
2279 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2280 {
2281         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2282                 return;
2283
2284         clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2285         /*
2286          * Current implementation never disconnects a single queue.
2287          * It always terminates a whole association. So there is never
2288          * a disconnect(queue) LS sent to the target.
2289          */
2290
2291         queue->connection_id = 0;
2292         atomic_set(&queue->csn, 0);
2293 }
2294
2295 static void
2296 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2297         struct nvme_fc_queue *queue, unsigned int qidx)
2298 {
2299         if (ctrl->lport->ops->delete_queue)
2300                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2301                                 queue->lldd_handle);
2302         queue->lldd_handle = NULL;
2303 }
2304
2305 static void
2306 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2307 {
2308         int i;
2309
2310         for (i = 1; i < ctrl->ctrl.queue_count; i++)
2311                 nvme_fc_free_queue(&ctrl->queues[i]);
2312 }
2313
2314 static int
2315 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2316         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2317 {
2318         int ret = 0;
2319
2320         queue->lldd_handle = NULL;
2321         if (ctrl->lport->ops->create_queue)
2322                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2323                                 qidx, qsize, &queue->lldd_handle);
2324
2325         return ret;
2326 }
2327
2328 static void
2329 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2330 {
2331         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2332         int i;
2333
2334         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2335                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
2336 }
2337
2338 static int
2339 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2340 {
2341         struct nvme_fc_queue *queue = &ctrl->queues[1];
2342         int i, ret;
2343
2344         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2345                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2346                 if (ret)
2347                         goto delete_queues;
2348         }
2349
2350         return 0;
2351
2352 delete_queues:
2353         for (; i > 0; i--)
2354                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2355         return ret;
2356 }
2357
2358 static int
2359 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2360 {
2361         int i, ret = 0;
2362
2363         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2364                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2365                                         (qsize / 5));
2366                 if (ret)
2367                         break;
2368                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2369                 if (ret)
2370                         break;
2371
2372                 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2373         }
2374
2375         return ret;
2376 }
2377
2378 static void
2379 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2380 {
2381         int i;
2382
2383         for (i = 1; i < ctrl->ctrl.queue_count; i++)
2384                 nvme_fc_init_queue(ctrl, i);
2385 }
2386
2387 static void
2388 nvme_fc_ctrl_free(struct kref *ref)
2389 {
2390         struct nvme_fc_ctrl *ctrl =
2391                 container_of(ref, struct nvme_fc_ctrl, ref);
2392         unsigned long flags;
2393
2394         if (ctrl->ctrl.tagset) {
2395                 blk_cleanup_queue(ctrl->ctrl.connect_q);
2396                 blk_mq_free_tag_set(&ctrl->tag_set);
2397         }
2398
2399         /* remove from rport list */
2400         spin_lock_irqsave(&ctrl->rport->lock, flags);
2401         list_del(&ctrl->ctrl_list);
2402         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2403
2404         nvme_start_admin_queue(&ctrl->ctrl);
2405         blk_cleanup_queue(ctrl->ctrl.admin_q);
2406         blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2407         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2408
2409         kfree(ctrl->queues);
2410
2411         put_device(ctrl->dev);
2412         nvme_fc_rport_put(ctrl->rport);
2413
2414         ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
2415         if (ctrl->ctrl.opts)
2416                 nvmf_free_options(ctrl->ctrl.opts);
2417         kfree(ctrl);
2418 }
2419
2420 static void
2421 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2422 {
2423         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2424 }
2425
2426 static int
2427 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2428 {
2429         return kref_get_unless_zero(&ctrl->ref);
2430 }
2431
2432 /*
2433  * All accesses from nvme core layer done - can now free the
2434  * controller. Called after last nvme_put_ctrl() call
2435  */
2436 static void
2437 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2438 {
2439         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2440
2441         WARN_ON(nctrl != &ctrl->ctrl);
2442
2443         nvme_fc_ctrl_put(ctrl);
2444 }
2445
2446 /*
2447  * This routine is used by the transport when it needs to find active
2448  * io on a queue that is to be terminated. The transport uses
2449  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2450  * this routine to kill them on a 1 by 1 basis.
2451  *
2452  * As FC allocates FC exchange for each io, the transport must contact
2453  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2454  * After terminating the exchange the LLDD will call the transport's
2455  * normal io done path for the request, but it will have an aborted
2456  * status. The done path will return the io request back to the block
2457  * layer with an error status.
2458  */
2459 static bool
2460 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2461 {
2462         struct nvme_ctrl *nctrl = data;
2463         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2464         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2465
2466         op->nreq.flags |= NVME_REQ_CANCELLED;
2467         __nvme_fc_abort_op(ctrl, op);
2468         return true;
2469 }
2470
2471 /*
2472  * This routine runs through all outstanding commands on the association
2473  * and aborts them.  This routine is typically be called by the
2474  * delete_association routine. It is also called due to an error during
2475  * reconnect. In that scenario, it is most likely a command that initializes
2476  * the controller, including fabric Connect commands on io queues, that
2477  * may have timed out or failed thus the io must be killed for the connect
2478  * thread to see the error.
2479  */
2480 static void
2481 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2482 {
2483         int q;
2484
2485         /*
2486          * if aborting io, the queues are no longer good, mark them
2487          * all as not live.
2488          */
2489         if (ctrl->ctrl.queue_count > 1) {
2490                 for (q = 1; q < ctrl->ctrl.queue_count; q++)
2491                         clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2492         }
2493         clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2494
2495         /*
2496          * If io queues are present, stop them and terminate all outstanding
2497          * ios on them. As FC allocates FC exchange for each io, the
2498          * transport must contact the LLDD to terminate the exchange,
2499          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2500          * to tell us what io's are busy and invoke a transport routine
2501          * to kill them with the LLDD.  After terminating the exchange
2502          * the LLDD will call the transport's normal io done path, but it
2503          * will have an aborted status. The done path will return the
2504          * io requests back to the block layer as part of normal completions
2505          * (but with error status).
2506          */
2507         if (ctrl->ctrl.queue_count > 1) {
2508                 nvme_stop_queues(&ctrl->ctrl);
2509                 nvme_sync_io_queues(&ctrl->ctrl);
2510                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2511                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2512                 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2513                 if (start_queues)
2514                         nvme_start_queues(&ctrl->ctrl);
2515         }
2516
2517         /*
2518          * Other transports, which don't have link-level contexts bound
2519          * to sqe's, would try to gracefully shutdown the controller by
2520          * writing the registers for shutdown and polling (call
2521          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2522          * just aborted and we will wait on those contexts, and given
2523          * there was no indication of how live the controlelr is on the
2524          * link, don't send more io to create more contexts for the
2525          * shutdown. Let the controller fail via keepalive failure if
2526          * its still present.
2527          */
2528
2529         /*
2530          * clean up the admin queue. Same thing as above.
2531          */
2532         nvme_stop_admin_queue(&ctrl->ctrl);
2533         blk_sync_queue(ctrl->ctrl.admin_q);
2534         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2535                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2536         blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2537 }
2538
2539 static void
2540 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2541 {
2542         /*
2543          * if an error (io timeout, etc) while (re)connecting, the remote
2544          * port requested terminating of the association (disconnect_ls)
2545          * or an error (timeout or abort) occurred on an io while creating
2546          * the controller.  Abort any ios on the association and let the
2547          * create_association error path resolve things.
2548          */
2549         if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2550                 __nvme_fc_abort_outstanding_ios(ctrl, true);
2551                 set_bit(ASSOC_FAILED, &ctrl->flags);
2552                 return;
2553         }
2554
2555         /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2556         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2557                 return;
2558
2559         dev_warn(ctrl->ctrl.device,
2560                 "NVME-FC{%d}: transport association event: %s\n",
2561                 ctrl->cnum, errmsg);
2562         dev_warn(ctrl->ctrl.device,
2563                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2564
2565         nvme_reset_ctrl(&ctrl->ctrl);
2566 }
2567
2568 static enum blk_eh_timer_return
2569 nvme_fc_timeout(struct request *rq, bool reserved)
2570 {
2571         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2572         struct nvme_fc_ctrl *ctrl = op->ctrl;
2573         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2574         struct nvme_command *sqe = &cmdiu->sqe;
2575
2576         /*
2577          * Attempt to abort the offending command. Command completion
2578          * will detect the aborted io and will fail the connection.
2579          */
2580         dev_info(ctrl->ctrl.device,
2581                 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2582                 "x%08x/x%08x\n",
2583                 ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2584                 sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2585         if (__nvme_fc_abort_op(ctrl, op))
2586                 nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2587
2588         /*
2589          * the io abort has been initiated. Have the reset timer
2590          * restarted and the abort completion will complete the io
2591          * shortly. Avoids a synchronous wait while the abort finishes.
2592          */
2593         return BLK_EH_RESET_TIMER;
2594 }
2595
2596 static int
2597 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2598                 struct nvme_fc_fcp_op *op)
2599 {
2600         struct nvmefc_fcp_req *freq = &op->fcp_req;
2601         int ret;
2602
2603         freq->sg_cnt = 0;
2604
2605         if (!blk_rq_nr_phys_segments(rq))
2606                 return 0;
2607
2608         freq->sg_table.sgl = freq->first_sgl;
2609         ret = sg_alloc_table_chained(&freq->sg_table,
2610                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2611                         NVME_INLINE_SG_CNT);
2612         if (ret)
2613                 return -ENOMEM;
2614
2615         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2616         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2617         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2618                                 op->nents, rq_dma_dir(rq));
2619         if (unlikely(freq->sg_cnt <= 0)) {
2620                 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2621                 freq->sg_cnt = 0;
2622                 return -EFAULT;
2623         }
2624
2625         /*
2626          * TODO: blk_integrity_rq(rq)  for DIF
2627          */
2628         return 0;
2629 }
2630
2631 static void
2632 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2633                 struct nvme_fc_fcp_op *op)
2634 {
2635         struct nvmefc_fcp_req *freq = &op->fcp_req;
2636
2637         if (!freq->sg_cnt)
2638                 return;
2639
2640         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2641                         rq_dma_dir(rq));
2642
2643         sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2644
2645         freq->sg_cnt = 0;
2646 }
2647
2648 /*
2649  * In FC, the queue is a logical thing. At transport connect, the target
2650  * creates its "queue" and returns a handle that is to be given to the
2651  * target whenever it posts something to the corresponding SQ.  When an
2652  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2653  * command contained within the SQE, an io, and assigns a FC exchange
2654  * to it. The SQE and the associated SQ handle are sent in the initial
2655  * CMD IU sents on the exchange. All transfers relative to the io occur
2656  * as part of the exchange.  The CQE is the last thing for the io,
2657  * which is transferred (explicitly or implicitly) with the RSP IU
2658  * sent on the exchange. After the CQE is received, the FC exchange is
2659  * terminaed and the Exchange may be used on a different io.
2660  *
2661  * The transport to LLDD api has the transport making a request for a
2662  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2663  * resource and transfers the command. The LLDD will then process all
2664  * steps to complete the io. Upon completion, the transport done routine
2665  * is called.
2666  *
2667  * So - while the operation is outstanding to the LLDD, there is a link
2668  * level FC exchange resource that is also outstanding. This must be
2669  * considered in all cleanup operations.
2670  */
2671 static blk_status_t
2672 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2673         struct nvme_fc_fcp_op *op, u32 data_len,
2674         enum nvmefc_fcp_datadir io_dir)
2675 {
2676         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2677         struct nvme_command *sqe = &cmdiu->sqe;
2678         int ret, opstate;
2679
2680         /*
2681          * before attempting to send the io, check to see if we believe
2682          * the target device is present
2683          */
2684         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2685                 return BLK_STS_RESOURCE;
2686
2687         if (!nvme_fc_ctrl_get(ctrl))
2688                 return BLK_STS_IOERR;
2689
2690         /* format the FC-NVME CMD IU and fcp_req */
2691         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2692         cmdiu->data_len = cpu_to_be32(data_len);
2693         switch (io_dir) {
2694         case NVMEFC_FCP_WRITE:
2695                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2696                 break;
2697         case NVMEFC_FCP_READ:
2698                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2699                 break;
2700         case NVMEFC_FCP_NODATA:
2701                 cmdiu->flags = 0;
2702                 break;
2703         }
2704         op->fcp_req.payload_length = data_len;
2705         op->fcp_req.io_dir = io_dir;
2706         op->fcp_req.transferred_length = 0;
2707         op->fcp_req.rcv_rsplen = 0;
2708         op->fcp_req.status = NVME_SC_SUCCESS;
2709         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2710
2711         /*
2712          * validate per fabric rules, set fields mandated by fabric spec
2713          * as well as those by FC-NVME spec.
2714          */
2715         WARN_ON_ONCE(sqe->common.metadata);
2716         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2717
2718         /*
2719          * format SQE DPTR field per FC-NVME rules:
2720          *    type=0x5     Transport SGL Data Block Descriptor
2721          *    subtype=0xA  Transport-specific value
2722          *    address=0
2723          *    length=length of the data series
2724          */
2725         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2726                                         NVME_SGL_FMT_TRANSPORT_A;
2727         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2728         sqe->rw.dptr.sgl.addr = 0;
2729
2730         if (!(op->flags & FCOP_FLAGS_AEN)) {
2731                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2732                 if (ret < 0) {
2733                         nvme_cleanup_cmd(op->rq);
2734                         nvme_fc_ctrl_put(ctrl);
2735                         if (ret == -ENOMEM || ret == -EAGAIN)
2736                                 return BLK_STS_RESOURCE;
2737                         return BLK_STS_IOERR;
2738                 }
2739         }
2740
2741         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2742                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2743
2744         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2745
2746         if (!(op->flags & FCOP_FLAGS_AEN))
2747                 blk_mq_start_request(op->rq);
2748
2749         cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2750         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2751                                         &ctrl->rport->remoteport,
2752                                         queue->lldd_handle, &op->fcp_req);
2753
2754         if (ret) {
2755                 /*
2756                  * If the lld fails to send the command is there an issue with
2757                  * the csn value?  If the command that fails is the Connect,
2758                  * no - as the connection won't be live.  If it is a command
2759                  * post-connect, it's possible a gap in csn may be created.
2760                  * Does this matter?  As Linux initiators don't send fused
2761                  * commands, no.  The gap would exist, but as there's nothing
2762                  * that depends on csn order to be delivered on the target
2763                  * side, it shouldn't hurt.  It would be difficult for a
2764                  * target to even detect the csn gap as it has no idea when the
2765                  * cmd with the csn was supposed to arrive.
2766                  */
2767                 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2768                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2769
2770                 if (!(op->flags & FCOP_FLAGS_AEN)) {
2771                         nvme_fc_unmap_data(ctrl, op->rq, op);
2772                         nvme_cleanup_cmd(op->rq);
2773                 }
2774
2775                 nvme_fc_ctrl_put(ctrl);
2776
2777                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2778                                 ret != -EBUSY)
2779                         return BLK_STS_IOERR;
2780
2781                 return BLK_STS_RESOURCE;
2782         }
2783
2784         return BLK_STS_OK;
2785 }
2786
2787 static blk_status_t
2788 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2789                         const struct blk_mq_queue_data *bd)
2790 {
2791         struct nvme_ns *ns = hctx->queue->queuedata;
2792         struct nvme_fc_queue *queue = hctx->driver_data;
2793         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2794         struct request *rq = bd->rq;
2795         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2796         enum nvmefc_fcp_datadir io_dir;
2797         bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2798         u32 data_len;
2799         blk_status_t ret;
2800
2801         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2802             !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2803                 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2804
2805         ret = nvme_setup_cmd(ns, rq);
2806         if (ret)
2807                 return ret;
2808
2809         /*
2810          * nvme core doesn't quite treat the rq opaquely. Commands such
2811          * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2812          * there is no actual payload to be transferred.
2813          * To get it right, key data transmission on there being 1 or
2814          * more physical segments in the sg list. If there is no
2815          * physical segments, there is no payload.
2816          */
2817         if (blk_rq_nr_phys_segments(rq)) {
2818                 data_len = blk_rq_payload_bytes(rq);
2819                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2820                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2821         } else {
2822                 data_len = 0;
2823                 io_dir = NVMEFC_FCP_NODATA;
2824         }
2825
2826
2827         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2828 }
2829
2830 static void
2831 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2832 {
2833         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2834         struct nvme_fc_fcp_op *aen_op;
2835         blk_status_t ret;
2836
2837         if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2838                 return;
2839
2840         aen_op = &ctrl->aen_ops[0];
2841
2842         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2843                                         NVMEFC_FCP_NODATA);
2844         if (ret)
2845                 dev_err(ctrl->ctrl.device,
2846                         "failed async event work\n");
2847 }
2848
2849 static void
2850 nvme_fc_complete_rq(struct request *rq)
2851 {
2852         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2853         struct nvme_fc_ctrl *ctrl = op->ctrl;
2854
2855         atomic_set(&op->state, FCPOP_STATE_IDLE);
2856         op->flags &= ~FCOP_FLAGS_TERMIO;
2857
2858         nvme_fc_unmap_data(ctrl, rq, op);
2859         nvme_complete_rq(rq);
2860         nvme_fc_ctrl_put(ctrl);
2861 }
2862
2863 static int nvme_fc_map_queues(struct blk_mq_tag_set *set)
2864 {
2865         struct nvme_fc_ctrl *ctrl = set->driver_data;
2866         int i;
2867
2868         for (i = 0; i < set->nr_maps; i++) {
2869                 struct blk_mq_queue_map *map = &set->map[i];
2870
2871                 if (!map->nr_queues) {
2872                         WARN_ON(i == HCTX_TYPE_DEFAULT);
2873                         continue;
2874                 }
2875
2876                 /* Call LLDD map queue functionality if defined */
2877                 if (ctrl->lport->ops->map_queues)
2878                         ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2879                                                      map);
2880                 else
2881                         blk_mq_map_queues(map);
2882         }
2883         return 0;
2884 }
2885
2886 static const struct blk_mq_ops nvme_fc_mq_ops = {
2887         .queue_rq       = nvme_fc_queue_rq,
2888         .complete       = nvme_fc_complete_rq,
2889         .init_request   = nvme_fc_init_request,
2890         .exit_request   = nvme_fc_exit_request,
2891         .init_hctx      = nvme_fc_init_hctx,
2892         .timeout        = nvme_fc_timeout,
2893         .map_queues     = nvme_fc_map_queues,
2894 };
2895
2896 static int
2897 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2898 {
2899         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2900         unsigned int nr_io_queues;
2901         int ret;
2902
2903         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2904                                 ctrl->lport->ops->max_hw_queues);
2905         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2906         if (ret) {
2907                 dev_info(ctrl->ctrl.device,
2908                         "set_queue_count failed: %d\n", ret);
2909                 return ret;
2910         }
2911
2912         ctrl->ctrl.queue_count = nr_io_queues + 1;
2913         if (!nr_io_queues)
2914                 return 0;
2915
2916         nvme_fc_init_io_queues(ctrl);
2917
2918         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2919         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2920         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2921         ctrl->tag_set.reserved_tags = NVMF_RESERVED_TAGS;
2922         ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2923         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2924         ctrl->tag_set.cmd_size =
2925                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2926                             ctrl->lport->ops->fcprqst_priv_sz);
2927         ctrl->tag_set.driver_data = ctrl;
2928         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2929         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2930
2931         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2932         if (ret)
2933                 return ret;
2934
2935         ctrl->ctrl.tagset = &ctrl->tag_set;
2936
2937         ret = nvme_ctrl_init_connect_q(&(ctrl->ctrl));
2938         if (ret)
2939                 goto out_free_tag_set;
2940
2941         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2942         if (ret)
2943                 goto out_cleanup_blk_queue;
2944
2945         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2946         if (ret)
2947                 goto out_delete_hw_queues;
2948
2949         ctrl->ioq_live = true;
2950
2951         return 0;
2952
2953 out_delete_hw_queues:
2954         nvme_fc_delete_hw_io_queues(ctrl);
2955 out_cleanup_blk_queue:
2956         blk_cleanup_queue(ctrl->ctrl.connect_q);
2957 out_free_tag_set:
2958         blk_mq_free_tag_set(&ctrl->tag_set);
2959         nvme_fc_free_io_queues(ctrl);
2960
2961         /* force put free routine to ignore io queues */
2962         ctrl->ctrl.tagset = NULL;
2963
2964         return ret;
2965 }
2966
2967 static int
2968 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2969 {
2970         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2971         u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2972         unsigned int nr_io_queues;
2973         int ret;
2974
2975         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2976                                 ctrl->lport->ops->max_hw_queues);
2977         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2978         if (ret) {
2979                 dev_info(ctrl->ctrl.device,
2980                         "set_queue_count failed: %d\n", ret);
2981                 return ret;
2982         }
2983
2984         if (!nr_io_queues && prior_ioq_cnt) {
2985                 dev_info(ctrl->ctrl.device,
2986                         "Fail Reconnect: At least 1 io queue "
2987                         "required (was %d)\n", prior_ioq_cnt);
2988                 return -ENOSPC;
2989         }
2990
2991         ctrl->ctrl.queue_count = nr_io_queues + 1;
2992         /* check for io queues existing */
2993         if (ctrl->ctrl.queue_count == 1)
2994                 return 0;
2995
2996         if (prior_ioq_cnt != nr_io_queues) {
2997                 dev_info(ctrl->ctrl.device,
2998                         "reconnect: revising io queue count from %d to %d\n",
2999                         prior_ioq_cnt, nr_io_queues);
3000                 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
3001         }
3002
3003         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
3004         if (ret)
3005                 goto out_free_io_queues;
3006
3007         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
3008         if (ret)
3009                 goto out_delete_hw_queues;
3010
3011         return 0;
3012
3013 out_delete_hw_queues:
3014         nvme_fc_delete_hw_io_queues(ctrl);
3015 out_free_io_queues:
3016         nvme_fc_free_io_queues(ctrl);
3017         return ret;
3018 }
3019
3020 static void
3021 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
3022 {
3023         struct nvme_fc_lport *lport = rport->lport;
3024
3025         atomic_inc(&lport->act_rport_cnt);
3026 }
3027
3028 static void
3029 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
3030 {
3031         struct nvme_fc_lport *lport = rport->lport;
3032         u32 cnt;
3033
3034         cnt = atomic_dec_return(&lport->act_rport_cnt);
3035         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
3036                 lport->ops->localport_delete(&lport->localport);
3037 }
3038
3039 static int
3040 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3041 {
3042         struct nvme_fc_rport *rport = ctrl->rport;
3043         u32 cnt;
3044
3045         if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3046                 return 1;
3047
3048         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3049         if (cnt == 1)
3050                 nvme_fc_rport_active_on_lport(rport);
3051
3052         return 0;
3053 }
3054
3055 static int
3056 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3057 {
3058         struct nvme_fc_rport *rport = ctrl->rport;
3059         struct nvme_fc_lport *lport = rport->lport;
3060         u32 cnt;
3061
3062         /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3063
3064         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3065         if (cnt == 0) {
3066                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3067                         lport->ops->remoteport_delete(&rport->remoteport);
3068                 nvme_fc_rport_inactive_on_lport(rport);
3069         }
3070
3071         return 0;
3072 }
3073
3074 /*
3075  * This routine restarts the controller on the host side, and
3076  * on the link side, recreates the controller association.
3077  */
3078 static int
3079 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3080 {
3081         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3082         struct nvmefc_ls_rcv_op *disls = NULL;
3083         unsigned long flags;
3084         int ret;
3085         bool changed;
3086
3087         ++ctrl->ctrl.nr_reconnects;
3088
3089         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3090                 return -ENODEV;
3091
3092         if (nvme_fc_ctlr_active_on_rport(ctrl))
3093                 return -ENOTUNIQ;
3094
3095         dev_info(ctrl->ctrl.device,
3096                 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3097                 " rport wwpn 0x%016llx: NQN \"%s\"\n",
3098                 ctrl->cnum, ctrl->lport->localport.port_name,
3099                 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3100
3101         clear_bit(ASSOC_FAILED, &ctrl->flags);
3102
3103         /*
3104          * Create the admin queue
3105          */
3106
3107         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3108                                 NVME_AQ_DEPTH);
3109         if (ret)
3110                 goto out_free_queue;
3111
3112         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3113                                 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3114         if (ret)
3115                 goto out_delete_hw_queue;
3116
3117         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3118         if (ret)
3119                 goto out_disconnect_admin_queue;
3120
3121         set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3122
3123         /*
3124          * Check controller capabilities
3125          *
3126          * todo:- add code to check if ctrl attributes changed from
3127          * prior connection values
3128          */
3129
3130         ret = nvme_enable_ctrl(&ctrl->ctrl);
3131         if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3132                 goto out_disconnect_admin_queue;
3133
3134         ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3135         ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3136                                                 (ilog2(SZ_4K) - 9);
3137
3138         nvme_start_admin_queue(&ctrl->ctrl);
3139
3140         ret = nvme_init_ctrl_finish(&ctrl->ctrl);
3141         if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3142                 goto out_disconnect_admin_queue;
3143
3144         /* sanity checks */
3145
3146         /* FC-NVME does not have other data in the capsule */
3147         if (ctrl->ctrl.icdoff) {
3148                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3149                                 ctrl->ctrl.icdoff);
3150                 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3151                 goto out_disconnect_admin_queue;
3152         }
3153
3154         /* FC-NVME supports normal SGL Data Block Descriptors */
3155         if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3156                 dev_err(ctrl->ctrl.device,
3157                         "Mandatory sgls are not supported!\n");
3158                 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3159                 goto out_disconnect_admin_queue;
3160         }
3161
3162         if (opts->queue_size > ctrl->ctrl.maxcmd) {
3163                 /* warn if maxcmd is lower than queue_size */
3164                 dev_warn(ctrl->ctrl.device,
3165                         "queue_size %zu > ctrl maxcmd %u, reducing "
3166                         "to maxcmd\n",
3167                         opts->queue_size, ctrl->ctrl.maxcmd);
3168                 opts->queue_size = ctrl->ctrl.maxcmd;
3169         }
3170
3171         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
3172                 /* warn if sqsize is lower than queue_size */
3173                 dev_warn(ctrl->ctrl.device,
3174                         "queue_size %zu > ctrl sqsize %u, reducing "
3175                         "to sqsize\n",
3176                         opts->queue_size, ctrl->ctrl.sqsize + 1);
3177                 opts->queue_size = ctrl->ctrl.sqsize + 1;
3178         }
3179
3180         ret = nvme_fc_init_aen_ops(ctrl);
3181         if (ret)
3182                 goto out_term_aen_ops;
3183
3184         /*
3185          * Create the io queues
3186          */
3187
3188         if (ctrl->ctrl.queue_count > 1) {
3189                 if (!ctrl->ioq_live)
3190                         ret = nvme_fc_create_io_queues(ctrl);
3191                 else
3192                         ret = nvme_fc_recreate_io_queues(ctrl);
3193         }
3194         if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3195                 goto out_term_aen_ops;
3196
3197         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3198
3199         ctrl->ctrl.nr_reconnects = 0;
3200
3201         if (changed)
3202                 nvme_start_ctrl(&ctrl->ctrl);
3203
3204         return 0;       /* Success */
3205
3206 out_term_aen_ops:
3207         nvme_fc_term_aen_ops(ctrl);
3208 out_disconnect_admin_queue:
3209         /* send a Disconnect(association) LS to fc-nvme target */
3210         nvme_fc_xmt_disconnect_assoc(ctrl);
3211         spin_lock_irqsave(&ctrl->lock, flags);
3212         ctrl->association_id = 0;
3213         disls = ctrl->rcv_disconn;
3214         ctrl->rcv_disconn = NULL;
3215         spin_unlock_irqrestore(&ctrl->lock, flags);
3216         if (disls)
3217                 nvme_fc_xmt_ls_rsp(disls);
3218 out_delete_hw_queue:
3219         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3220 out_free_queue:
3221         nvme_fc_free_queue(&ctrl->queues[0]);
3222         clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3223         nvme_fc_ctlr_inactive_on_rport(ctrl);
3224
3225         return ret;
3226 }
3227
3228
3229 /*
3230  * This routine stops operation of the controller on the host side.
3231  * On the host os stack side: Admin and IO queues are stopped,
3232  *   outstanding ios on them terminated via FC ABTS.
3233  * On the link side: the association is terminated.
3234  */
3235 static void
3236 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3237 {
3238         struct nvmefc_ls_rcv_op *disls = NULL;
3239         unsigned long flags;
3240
3241         if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3242                 return;
3243
3244         spin_lock_irqsave(&ctrl->lock, flags);
3245         set_bit(FCCTRL_TERMIO, &ctrl->flags);
3246         ctrl->iocnt = 0;
3247         spin_unlock_irqrestore(&ctrl->lock, flags);
3248
3249         __nvme_fc_abort_outstanding_ios(ctrl, false);
3250
3251         /* kill the aens as they are a separate path */
3252         nvme_fc_abort_aen_ops(ctrl);
3253
3254         /* wait for all io that had to be aborted */
3255         spin_lock_irq(&ctrl->lock);
3256         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3257         clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3258         spin_unlock_irq(&ctrl->lock);
3259
3260         nvme_fc_term_aen_ops(ctrl);
3261
3262         /*
3263          * send a Disconnect(association) LS to fc-nvme target
3264          * Note: could have been sent at top of process, but
3265          * cleaner on link traffic if after the aborts complete.
3266          * Note: if association doesn't exist, association_id will be 0
3267          */
3268         if (ctrl->association_id)
3269                 nvme_fc_xmt_disconnect_assoc(ctrl);
3270
3271         spin_lock_irqsave(&ctrl->lock, flags);
3272         ctrl->association_id = 0;
3273         disls = ctrl->rcv_disconn;
3274         ctrl->rcv_disconn = NULL;
3275         spin_unlock_irqrestore(&ctrl->lock, flags);
3276         if (disls)
3277                 /*
3278                  * if a Disconnect Request was waiting for a response, send
3279                  * now that all ABTS's have been issued (and are complete).
3280                  */
3281                 nvme_fc_xmt_ls_rsp(disls);
3282
3283         if (ctrl->ctrl.tagset) {
3284                 nvme_fc_delete_hw_io_queues(ctrl);
3285                 nvme_fc_free_io_queues(ctrl);
3286         }
3287
3288         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3289         nvme_fc_free_queue(&ctrl->queues[0]);
3290
3291         /* re-enable the admin_q so anything new can fast fail */
3292         nvme_start_admin_queue(&ctrl->ctrl);
3293
3294         /* resume the io queues so that things will fast fail */
3295         nvme_start_queues(&ctrl->ctrl);
3296
3297         nvme_fc_ctlr_inactive_on_rport(ctrl);
3298 }
3299
3300 static void
3301 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3302 {
3303         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3304
3305         cancel_work_sync(&ctrl->ioerr_work);
3306         cancel_delayed_work_sync(&ctrl->connect_work);
3307         /*
3308          * kill the association on the link side.  this will block
3309          * waiting for io to terminate
3310          */
3311         nvme_fc_delete_association(ctrl);
3312 }
3313
3314 static void
3315 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3316 {
3317         struct nvme_fc_rport *rport = ctrl->rport;
3318         struct nvme_fc_remote_port *portptr = &rport->remoteport;
3319         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3320         bool recon = true;
3321
3322         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
3323                 return;
3324
3325         if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3326                 dev_info(ctrl->ctrl.device,
3327                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3328                         ctrl->cnum, status);
3329                 if (status > 0 && (status & NVME_SC_DNR))
3330                         recon = false;
3331         } else if (time_after_eq(jiffies, rport->dev_loss_end))
3332                 recon = false;
3333
3334         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3335                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3336                         dev_info(ctrl->ctrl.device,
3337                                 "NVME-FC{%d}: Reconnect attempt in %ld "
3338                                 "seconds\n",
3339                                 ctrl->cnum, recon_delay / HZ);
3340                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3341                         recon_delay = rport->dev_loss_end - jiffies;
3342
3343                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3344         } else {
3345                 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3346                         if (status > 0 && (status & NVME_SC_DNR))
3347                                 dev_warn(ctrl->ctrl.device,
3348                                          "NVME-FC{%d}: reconnect failure\n",
3349                                          ctrl->cnum);
3350                         else
3351                                 dev_warn(ctrl->ctrl.device,
3352                                          "NVME-FC{%d}: Max reconnect attempts "
3353                                          "(%d) reached.\n",
3354                                          ctrl->cnum, ctrl->ctrl.nr_reconnects);
3355                 } else
3356                         dev_warn(ctrl->ctrl.device,
3357                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3358                                 "while waiting for remoteport connectivity.\n",
3359                                 ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3360                                         (ctrl->ctrl.opts->max_reconnects *
3361                                          ctrl->ctrl.opts->reconnect_delay)));
3362                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3363         }
3364 }
3365
3366 static void
3367 nvme_fc_reset_ctrl_work(struct work_struct *work)
3368 {
3369         struct nvme_fc_ctrl *ctrl =
3370                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3371
3372         nvme_stop_ctrl(&ctrl->ctrl);
3373
3374         /* will block will waiting for io to terminate */
3375         nvme_fc_delete_association(ctrl);
3376
3377         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3378                 dev_err(ctrl->ctrl.device,
3379                         "NVME-FC{%d}: error_recovery: Couldn't change state "
3380                         "to CONNECTING\n", ctrl->cnum);
3381
3382         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3383                 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3384                         dev_err(ctrl->ctrl.device,
3385                                 "NVME-FC{%d}: failed to schedule connect "
3386                                 "after reset\n", ctrl->cnum);
3387                 } else {
3388                         flush_delayed_work(&ctrl->connect_work);
3389                 }
3390         } else {
3391                 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3392         }
3393 }
3394
3395
3396 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3397         .name                   = "fc",
3398         .module                 = THIS_MODULE,
3399         .flags                  = NVME_F_FABRICS,
3400         .reg_read32             = nvmf_reg_read32,
3401         .reg_read64             = nvmf_reg_read64,
3402         .reg_write32            = nvmf_reg_write32,
3403         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
3404         .submit_async_event     = nvme_fc_submit_async_event,
3405         .delete_ctrl            = nvme_fc_delete_ctrl,
3406         .get_address            = nvmf_get_address,
3407 };
3408
3409 static void
3410 nvme_fc_connect_ctrl_work(struct work_struct *work)
3411 {
3412         int ret;
3413
3414         struct nvme_fc_ctrl *ctrl =
3415                         container_of(to_delayed_work(work),
3416                                 struct nvme_fc_ctrl, connect_work);
3417
3418         ret = nvme_fc_create_association(ctrl);
3419         if (ret)
3420                 nvme_fc_reconnect_or_delete(ctrl, ret);
3421         else
3422                 dev_info(ctrl->ctrl.device,
3423                         "NVME-FC{%d}: controller connect complete\n",
3424                         ctrl->cnum);
3425 }
3426
3427
3428 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3429         .queue_rq       = nvme_fc_queue_rq,
3430         .complete       = nvme_fc_complete_rq,
3431         .init_request   = nvme_fc_init_request,
3432         .exit_request   = nvme_fc_exit_request,
3433         .init_hctx      = nvme_fc_init_admin_hctx,
3434         .timeout        = nvme_fc_timeout,
3435 };
3436
3437
3438 /*
3439  * Fails a controller request if it matches an existing controller
3440  * (association) with the same tuple:
3441  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3442  *
3443  * The ports don't need to be compared as they are intrinsically
3444  * already matched by the port pointers supplied.
3445  */
3446 static bool
3447 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3448                 struct nvmf_ctrl_options *opts)
3449 {
3450         struct nvme_fc_ctrl *ctrl;
3451         unsigned long flags;
3452         bool found = false;
3453
3454         spin_lock_irqsave(&rport->lock, flags);
3455         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3456                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3457                 if (found)
3458                         break;
3459         }
3460         spin_unlock_irqrestore(&rport->lock, flags);
3461
3462         return found;
3463 }
3464
3465 static struct nvme_ctrl *
3466 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3467         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3468 {
3469         struct nvme_fc_ctrl *ctrl;
3470         unsigned long flags;
3471         int ret, idx, ctrl_loss_tmo;
3472
3473         if (!(rport->remoteport.port_role &
3474             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3475                 ret = -EBADR;
3476                 goto out_fail;
3477         }
3478
3479         if (!opts->duplicate_connect &&
3480             nvme_fc_existing_controller(rport, opts)) {
3481                 ret = -EALREADY;
3482                 goto out_fail;
3483         }
3484
3485         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3486         if (!ctrl) {
3487                 ret = -ENOMEM;
3488                 goto out_fail;
3489         }
3490
3491         idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
3492         if (idx < 0) {
3493                 ret = -ENOSPC;
3494                 goto out_free_ctrl;
3495         }
3496
3497         /*
3498          * if ctrl_loss_tmo is being enforced and the default reconnect delay
3499          * is being used, change to a shorter reconnect delay for FC.
3500          */
3501         if (opts->max_reconnects != -1 &&
3502             opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3503             opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3504                 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3505                 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3506                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3507                                                 opts->reconnect_delay);
3508         }
3509
3510         ctrl->ctrl.opts = opts;
3511         ctrl->ctrl.nr_reconnects = 0;
3512         if (lport->dev)
3513                 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3514         else
3515                 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3516         INIT_LIST_HEAD(&ctrl->ctrl_list);
3517         ctrl->lport = lport;
3518         ctrl->rport = rport;
3519         ctrl->dev = lport->dev;
3520         ctrl->cnum = idx;
3521         ctrl->ioq_live = false;
3522         init_waitqueue_head(&ctrl->ioabort_wait);
3523
3524         get_device(ctrl->dev);
3525         kref_init(&ctrl->ref);
3526
3527         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3528         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3529         INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3530         spin_lock_init(&ctrl->lock);
3531
3532         /* io queue count */
3533         ctrl->ctrl.queue_count = min_t(unsigned int,
3534                                 opts->nr_io_queues,
3535                                 lport->ops->max_hw_queues);
3536         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3537
3538         ctrl->ctrl.sqsize = opts->queue_size - 1;
3539         ctrl->ctrl.kato = opts->kato;
3540         ctrl->ctrl.cntlid = 0xffff;
3541
3542         ret = -ENOMEM;
3543         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3544                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3545         if (!ctrl->queues)
3546                 goto out_free_ida;
3547
3548         nvme_fc_init_queue(ctrl, 0);
3549
3550         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3551         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3552         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3553         ctrl->admin_tag_set.reserved_tags = NVMF_RESERVED_TAGS;
3554         ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3555         ctrl->admin_tag_set.cmd_size =
3556                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3557                             ctrl->lport->ops->fcprqst_priv_sz);
3558         ctrl->admin_tag_set.driver_data = ctrl;
3559         ctrl->admin_tag_set.nr_hw_queues = 1;
3560         ctrl->admin_tag_set.timeout = NVME_ADMIN_TIMEOUT;
3561         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3562
3563         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3564         if (ret)
3565                 goto out_free_queues;
3566         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3567
3568         ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3569         if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3570                 ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3571                 goto out_free_admin_tag_set;
3572         }
3573
3574         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3575         if (IS_ERR(ctrl->ctrl.admin_q)) {
3576                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3577                 goto out_cleanup_fabrics_q;
3578         }
3579
3580         /*
3581          * Would have been nice to init io queues tag set as well.
3582          * However, we require interaction from the controller
3583          * for max io queue count before we can do so.
3584          * Defer this to the connect path.
3585          */
3586
3587         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3588         if (ret)
3589                 goto out_cleanup_admin_q;
3590
3591         /* at this point, teardown path changes to ref counting on nvme ctrl */
3592
3593         spin_lock_irqsave(&rport->lock, flags);
3594         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3595         spin_unlock_irqrestore(&rport->lock, flags);
3596
3597         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3598             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3599                 dev_err(ctrl->ctrl.device,
3600                         "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3601                 goto fail_ctrl;
3602         }
3603
3604         if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3605                 dev_err(ctrl->ctrl.device,
3606                         "NVME-FC{%d}: failed to schedule initial connect\n",
3607                         ctrl->cnum);
3608                 goto fail_ctrl;
3609         }
3610
3611         flush_delayed_work(&ctrl->connect_work);
3612
3613         dev_info(ctrl->ctrl.device,
3614                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3615                 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl));
3616
3617         return &ctrl->ctrl;
3618
3619 fail_ctrl:
3620         nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3621         cancel_work_sync(&ctrl->ioerr_work);
3622         cancel_work_sync(&ctrl->ctrl.reset_work);
3623         cancel_delayed_work_sync(&ctrl->connect_work);
3624
3625         ctrl->ctrl.opts = NULL;
3626
3627         /* initiate nvme ctrl ref counting teardown */
3628         nvme_uninit_ctrl(&ctrl->ctrl);
3629
3630         /* Remove core ctrl ref. */
3631         nvme_put_ctrl(&ctrl->ctrl);
3632
3633         /* as we're past the point where we transition to the ref
3634          * counting teardown path, if we return a bad pointer here,
3635          * the calling routine, thinking it's prior to the
3636          * transition, will do an rport put. Since the teardown
3637          * path also does a rport put, we do an extra get here to
3638          * so proper order/teardown happens.
3639          */
3640         nvme_fc_rport_get(rport);
3641
3642         return ERR_PTR(-EIO);
3643
3644 out_cleanup_admin_q:
3645         blk_cleanup_queue(ctrl->ctrl.admin_q);
3646 out_cleanup_fabrics_q:
3647         blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3648 out_free_admin_tag_set:
3649         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3650 out_free_queues:
3651         kfree(ctrl->queues);
3652 out_free_ida:
3653         put_device(ctrl->dev);
3654         ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
3655 out_free_ctrl:
3656         kfree(ctrl);
3657 out_fail:
3658         /* exit via here doesn't follow ctlr ref points */
3659         return ERR_PTR(ret);
3660 }
3661
3662
3663 struct nvmet_fc_traddr {
3664         u64     nn;
3665         u64     pn;
3666 };
3667
3668 static int
3669 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3670 {
3671         u64 token64;
3672
3673         if (match_u64(sstr, &token64))
3674                 return -EINVAL;
3675         *val = token64;
3676
3677         return 0;
3678 }
3679
3680 /*
3681  * This routine validates and extracts the WWN's from the TRADDR string.
3682  * As kernel parsers need the 0x to determine number base, universally
3683  * build string to parse with 0x prefix before parsing name strings.
3684  */
3685 static int
3686 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3687 {
3688         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3689         substring_t wwn = { name, &name[sizeof(name)-1] };
3690         int nnoffset, pnoffset;
3691
3692         /* validate if string is one of the 2 allowed formats */
3693         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3694                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3695                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3696                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3697                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3698                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3699                                                 NVME_FC_TRADDR_OXNNLEN;
3700         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3701                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3702                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3703                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3704                 nnoffset = NVME_FC_TRADDR_NNLEN;
3705                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3706         } else
3707                 goto out_einval;
3708
3709         name[0] = '0';
3710         name[1] = 'x';
3711         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3712
3713         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3714         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3715                 goto out_einval;
3716
3717         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3718         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3719                 goto out_einval;
3720
3721         return 0;
3722
3723 out_einval:
3724         pr_warn("%s: bad traddr string\n", __func__);
3725         return -EINVAL;
3726 }
3727
3728 static struct nvme_ctrl *
3729 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3730 {
3731         struct nvme_fc_lport *lport;
3732         struct nvme_fc_rport *rport;
3733         struct nvme_ctrl *ctrl;
3734         struct nvmet_fc_traddr laddr = { 0L, 0L };
3735         struct nvmet_fc_traddr raddr = { 0L, 0L };
3736         unsigned long flags;
3737         int ret;
3738
3739         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3740         if (ret || !raddr.nn || !raddr.pn)
3741                 return ERR_PTR(-EINVAL);
3742
3743         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3744         if (ret || !laddr.nn || !laddr.pn)
3745                 return ERR_PTR(-EINVAL);
3746
3747         /* find the host and remote ports to connect together */
3748         spin_lock_irqsave(&nvme_fc_lock, flags);
3749         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3750                 if (lport->localport.node_name != laddr.nn ||
3751                     lport->localport.port_name != laddr.pn ||
3752                     lport->localport.port_state != FC_OBJSTATE_ONLINE)
3753                         continue;
3754
3755                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3756                         if (rport->remoteport.node_name != raddr.nn ||
3757                             rport->remoteport.port_name != raddr.pn ||
3758                             rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3759                                 continue;
3760
3761                         /* if fail to get reference fall through. Will error */
3762                         if (!nvme_fc_rport_get(rport))
3763                                 break;
3764
3765                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3766
3767                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3768                         if (IS_ERR(ctrl))
3769                                 nvme_fc_rport_put(rport);
3770                         return ctrl;
3771                 }
3772         }
3773         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3774
3775         pr_warn("%s: %s - %s combination not found\n",
3776                 __func__, opts->traddr, opts->host_traddr);
3777         return ERR_PTR(-ENOENT);
3778 }
3779
3780
3781 static struct nvmf_transport_ops nvme_fc_transport = {
3782         .name           = "fc",
3783         .module         = THIS_MODULE,
3784         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3785         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3786         .create_ctrl    = nvme_fc_create_ctrl,
3787 };
3788
3789 /* Arbitrary successive failures max. With lots of subsystems could be high */
3790 #define DISCOVERY_MAX_FAIL      20
3791
3792 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3793                 struct device_attribute *attr, const char *buf, size_t count)
3794 {
3795         unsigned long flags;
3796         LIST_HEAD(local_disc_list);
3797         struct nvme_fc_lport *lport;
3798         struct nvme_fc_rport *rport;
3799         int failcnt = 0;
3800
3801         spin_lock_irqsave(&nvme_fc_lock, flags);
3802 restart:
3803         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3804                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3805                         if (!nvme_fc_lport_get(lport))
3806                                 continue;
3807                         if (!nvme_fc_rport_get(rport)) {
3808                                 /*
3809                                  * This is a temporary condition. Upon restart
3810                                  * this rport will be gone from the list.
3811                                  *
3812                                  * Revert the lport put and retry.  Anything
3813                                  * added to the list already will be skipped (as
3814                                  * they are no longer list_empty).  Loops should
3815                                  * resume at rports that were not yet seen.
3816                                  */
3817                                 nvme_fc_lport_put(lport);
3818
3819                                 if (failcnt++ < DISCOVERY_MAX_FAIL)
3820                                         goto restart;
3821
3822                                 pr_err("nvme_discovery: too many reference "
3823                                        "failures\n");
3824                                 goto process_local_list;
3825                         }
3826                         if (list_empty(&rport->disc_list))
3827                                 list_add_tail(&rport->disc_list,
3828                                               &local_disc_list);
3829                 }
3830         }
3831
3832 process_local_list:
3833         while (!list_empty(&local_disc_list)) {
3834                 rport = list_first_entry(&local_disc_list,
3835                                          struct nvme_fc_rport, disc_list);
3836                 list_del_init(&rport->disc_list);
3837                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3838
3839                 lport = rport->lport;
3840                 /* signal discovery. Won't hurt if it repeats */
3841                 nvme_fc_signal_discovery_scan(lport, rport);
3842                 nvme_fc_rport_put(rport);
3843                 nvme_fc_lport_put(lport);
3844
3845                 spin_lock_irqsave(&nvme_fc_lock, flags);
3846         }
3847         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3848
3849         return count;
3850 }
3851
3852 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3853
3854 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3855 /* Parse the cgroup id from a buf and return the length of cgrpid */
3856 static int fc_parse_cgrpid(const char *buf, u64 *id)
3857 {
3858         char cgrp_id[16+1];
3859         int cgrpid_len, j;
3860
3861         memset(cgrp_id, 0x0, sizeof(cgrp_id));
3862         for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3863                 if (buf[cgrpid_len] != ':')
3864                         cgrp_id[cgrpid_len] = buf[cgrpid_len];
3865                 else {
3866                         j = 1;
3867                         break;
3868                 }
3869         }
3870         if (!j)
3871                 return -EINVAL;
3872         if (kstrtou64(cgrp_id, 16, id) < 0)
3873                 return -EINVAL;
3874         return cgrpid_len;
3875 }
3876
3877 /*
3878  * Parse and update the appid in the blkcg associated with the cgroupid.
3879  */
3880 static ssize_t fc_appid_store(struct device *dev,
3881                 struct device_attribute *attr, const char *buf, size_t count)
3882 {
3883         u64 cgrp_id;
3884         int appid_len = 0;
3885         int cgrpid_len = 0;
3886         char app_id[FC_APPID_LEN];
3887         int ret = 0;
3888
3889         if (buf[count-1] == '\n')
3890                 count--;
3891
3892         if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3893                 return -EINVAL;
3894
3895         cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3896         if (cgrpid_len < 0)
3897                 return -EINVAL;
3898         appid_len = count - cgrpid_len - 1;
3899         if (appid_len > FC_APPID_LEN)
3900                 return -EINVAL;
3901
3902         memset(app_id, 0x0, sizeof(app_id));
3903         memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3904         ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3905         if (ret < 0)
3906                 return ret;
3907         return count;
3908 }
3909 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3910 #endif /* CONFIG_BLK_CGROUP_FC_APPID */
3911
3912 static struct attribute *nvme_fc_attrs[] = {
3913         &dev_attr_nvme_discovery.attr,
3914 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3915         &dev_attr_appid_store.attr,
3916 #endif
3917         NULL
3918 };
3919
3920 static const struct attribute_group nvme_fc_attr_group = {
3921         .attrs = nvme_fc_attrs,
3922 };
3923
3924 static const struct attribute_group *nvme_fc_attr_groups[] = {
3925         &nvme_fc_attr_group,
3926         NULL
3927 };
3928
3929 static struct class fc_class = {
3930         .name = "fc",
3931         .dev_groups = nvme_fc_attr_groups,
3932         .owner = THIS_MODULE,
3933 };
3934
3935 static int __init nvme_fc_init_module(void)
3936 {
3937         int ret;
3938
3939         nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3940         if (!nvme_fc_wq)
3941                 return -ENOMEM;
3942
3943         /*
3944          * NOTE:
3945          * It is expected that in the future the kernel will combine
3946          * the FC-isms that are currently under scsi and now being
3947          * added to by NVME into a new standalone FC class. The SCSI
3948          * and NVME protocols and their devices would be under this
3949          * new FC class.
3950          *
3951          * As we need something to post FC-specific udev events to,
3952          * specifically for nvme probe events, start by creating the
3953          * new device class.  When the new standalone FC class is
3954          * put in place, this code will move to a more generic
3955          * location for the class.
3956          */
3957         ret = class_register(&fc_class);
3958         if (ret) {
3959                 pr_err("couldn't register class fc\n");
3960                 goto out_destroy_wq;
3961         }
3962
3963         /*
3964          * Create a device for the FC-centric udev events
3965          */
3966         fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3967                                 "fc_udev_device");
3968         if (IS_ERR(fc_udev_device)) {
3969                 pr_err("couldn't create fc_udev device!\n");
3970                 ret = PTR_ERR(fc_udev_device);
3971                 goto out_destroy_class;
3972         }
3973
3974         ret = nvmf_register_transport(&nvme_fc_transport);
3975         if (ret)
3976                 goto out_destroy_device;
3977
3978         return 0;
3979
3980 out_destroy_device:
3981         device_destroy(&fc_class, MKDEV(0, 0));
3982 out_destroy_class:
3983         class_unregister(&fc_class);
3984 out_destroy_wq:
3985         destroy_workqueue(nvme_fc_wq);
3986
3987         return ret;
3988 }
3989
3990 static void
3991 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3992 {
3993         struct nvme_fc_ctrl *ctrl;
3994
3995         spin_lock(&rport->lock);
3996         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3997                 dev_warn(ctrl->ctrl.device,
3998                         "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3999                         ctrl->cnum);
4000                 nvme_delete_ctrl(&ctrl->ctrl);
4001         }
4002         spin_unlock(&rport->lock);
4003 }
4004
4005 static void
4006 nvme_fc_cleanup_for_unload(void)
4007 {
4008         struct nvme_fc_lport *lport;
4009         struct nvme_fc_rport *rport;
4010
4011         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
4012                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
4013                         nvme_fc_delete_controllers(rport);
4014                 }
4015         }
4016 }
4017
4018 static void __exit nvme_fc_exit_module(void)
4019 {
4020         unsigned long flags;
4021         bool need_cleanup = false;
4022
4023         spin_lock_irqsave(&nvme_fc_lock, flags);
4024         nvme_fc_waiting_to_unload = true;
4025         if (!list_empty(&nvme_fc_lport_list)) {
4026                 need_cleanup = true;
4027                 nvme_fc_cleanup_for_unload();
4028         }
4029         spin_unlock_irqrestore(&nvme_fc_lock, flags);
4030         if (need_cleanup) {
4031                 pr_info("%s: waiting for ctlr deletes\n", __func__);
4032                 wait_for_completion(&nvme_fc_unload_proceed);
4033                 pr_info("%s: ctrl deletes complete\n", __func__);
4034         }
4035
4036         nvmf_unregister_transport(&nvme_fc_transport);
4037
4038         ida_destroy(&nvme_fc_local_port_cnt);
4039         ida_destroy(&nvme_fc_ctrl_cnt);
4040
4041         device_destroy(&fc_class, MKDEV(0, 0));
4042         class_unregister(&fc_class);
4043         destroy_workqueue(nvme_fc_wq);
4044 }
4045
4046 module_init(nvme_fc_init_module);
4047 module_exit(nvme_fc_exit_module);
4048
4049 MODULE_LICENSE("GPL v2");