Merge branch 'access-creds'
[linux-2.6-microblaze.git] / drivers / nvme / host / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include <scsi/scsi_transport_fc.h>
18
19 /* *************************** Data Structures/Defines ****************** */
20
21
22 enum nvme_fc_queue_flags {
23         NVME_FC_Q_CONNECTED = 0,
24         NVME_FC_Q_LIVE,
25 };
26
27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
28
29 struct nvme_fc_queue {
30         struct nvme_fc_ctrl     *ctrl;
31         struct device           *dev;
32         struct blk_mq_hw_ctx    *hctx;
33         void                    *lldd_handle;
34         size_t                  cmnd_capsule_len;
35         u32                     qnum;
36         u32                     rqcnt;
37         u32                     seqno;
38
39         u64                     connection_id;
40         atomic_t                csn;
41
42         unsigned long           flags;
43 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
44
45 enum nvme_fcop_flags {
46         FCOP_FLAGS_TERMIO       = (1 << 0),
47         FCOP_FLAGS_AEN          = (1 << 1),
48 };
49
50 struct nvmefc_ls_req_op {
51         struct nvmefc_ls_req    ls_req;
52
53         struct nvme_fc_rport    *rport;
54         struct nvme_fc_queue    *queue;
55         struct request          *rq;
56         u32                     flags;
57
58         int                     ls_error;
59         struct completion       ls_done;
60         struct list_head        lsreq_list;     /* rport->ls_req_list */
61         bool                    req_queued;
62 };
63
64 enum nvme_fcpop_state {
65         FCPOP_STATE_UNINIT      = 0,
66         FCPOP_STATE_IDLE        = 1,
67         FCPOP_STATE_ACTIVE      = 2,
68         FCPOP_STATE_ABORTED     = 3,
69         FCPOP_STATE_COMPLETE    = 4,
70 };
71
72 struct nvme_fc_fcp_op {
73         struct nvme_request     nreq;           /*
74                                                  * nvme/host/core.c
75                                                  * requires this to be
76                                                  * the 1st element in the
77                                                  * private structure
78                                                  * associated with the
79                                                  * request.
80                                                  */
81         struct nvmefc_fcp_req   fcp_req;
82
83         struct nvme_fc_ctrl     *ctrl;
84         struct nvme_fc_queue    *queue;
85         struct request          *rq;
86
87         atomic_t                state;
88         u32                     flags;
89         u32                     rqno;
90         u32                     nents;
91
92         struct nvme_fc_cmd_iu   cmd_iu;
93         struct nvme_fc_ersp_iu  rsp_iu;
94 };
95
96 struct nvme_fcp_op_w_sgl {
97         struct nvme_fc_fcp_op   op;
98         struct scatterlist      sgl[SG_CHUNK_SIZE];
99         uint8_t                 priv[0];
100 };
101
102 struct nvme_fc_lport {
103         struct nvme_fc_local_port       localport;
104
105         struct ida                      endp_cnt;
106         struct list_head                port_list;      /* nvme_fc_port_list */
107         struct list_head                endp_list;
108         struct device                   *dev;   /* physical device for dma */
109         struct nvme_fc_port_template    *ops;
110         struct kref                     ref;
111         atomic_t                        act_rport_cnt;
112 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
113
114 struct nvme_fc_rport {
115         struct nvme_fc_remote_port      remoteport;
116
117         struct list_head                endp_list; /* for lport->endp_list */
118         struct list_head                ctrl_list;
119         struct list_head                ls_req_list;
120         struct list_head                disc_list;
121         struct device                   *dev;   /* physical device for dma */
122         struct nvme_fc_lport            *lport;
123         spinlock_t                      lock;
124         struct kref                     ref;
125         atomic_t                        act_ctrl_cnt;
126         unsigned long                   dev_loss_end;
127 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
128
129 enum nvme_fcctrl_flags {
130         FCCTRL_TERMIO           = (1 << 0),
131 };
132
133 struct nvme_fc_ctrl {
134         spinlock_t              lock;
135         struct nvme_fc_queue    *queues;
136         struct device           *dev;
137         struct nvme_fc_lport    *lport;
138         struct nvme_fc_rport    *rport;
139         u32                     cnum;
140
141         bool                    ioq_live;
142         bool                    assoc_active;
143         atomic_t                err_work_active;
144         u64                     association_id;
145
146         struct list_head        ctrl_list;      /* rport->ctrl_list */
147
148         struct blk_mq_tag_set   admin_tag_set;
149         struct blk_mq_tag_set   tag_set;
150
151         struct delayed_work     connect_work;
152         struct work_struct      err_work;
153
154         struct kref             ref;
155         u32                     flags;
156         u32                     iocnt;
157         wait_queue_head_t       ioabort_wait;
158
159         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
160
161         struct nvme_ctrl        ctrl;
162 };
163
164 static inline struct nvme_fc_ctrl *
165 to_fc_ctrl(struct nvme_ctrl *ctrl)
166 {
167         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
168 }
169
170 static inline struct nvme_fc_lport *
171 localport_to_lport(struct nvme_fc_local_port *portptr)
172 {
173         return container_of(portptr, struct nvme_fc_lport, localport);
174 }
175
176 static inline struct nvme_fc_rport *
177 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
178 {
179         return container_of(portptr, struct nvme_fc_rport, remoteport);
180 }
181
182 static inline struct nvmefc_ls_req_op *
183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
184 {
185         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
186 }
187
188 static inline struct nvme_fc_fcp_op *
189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
190 {
191         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
192 }
193
194
195
196 /* *************************** Globals **************************** */
197
198
199 static DEFINE_SPINLOCK(nvme_fc_lock);
200
201 static LIST_HEAD(nvme_fc_lport_list);
202 static DEFINE_IDA(nvme_fc_local_port_cnt);
203 static DEFINE_IDA(nvme_fc_ctrl_cnt);
204
205 static struct workqueue_struct *nvme_fc_wq;
206
207 static bool nvme_fc_waiting_to_unload;
208 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
209
210 /*
211  * These items are short-term. They will eventually be moved into
212  * a generic FC class. See comments in module init.
213  */
214 static struct device *fc_udev_device;
215
216
217 /* *********************** FC-NVME Port Management ************************ */
218
219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
220                         struct nvme_fc_queue *, unsigned int);
221
222 static void
223 nvme_fc_free_lport(struct kref *ref)
224 {
225         struct nvme_fc_lport *lport =
226                 container_of(ref, struct nvme_fc_lport, ref);
227         unsigned long flags;
228
229         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
230         WARN_ON(!list_empty(&lport->endp_list));
231
232         /* remove from transport list */
233         spin_lock_irqsave(&nvme_fc_lock, flags);
234         list_del(&lport->port_list);
235         if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
236                 complete(&nvme_fc_unload_proceed);
237         spin_unlock_irqrestore(&nvme_fc_lock, flags);
238
239         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
240         ida_destroy(&lport->endp_cnt);
241
242         put_device(lport->dev);
243
244         kfree(lport);
245 }
246
247 static void
248 nvme_fc_lport_put(struct nvme_fc_lport *lport)
249 {
250         kref_put(&lport->ref, nvme_fc_free_lport);
251 }
252
253 static int
254 nvme_fc_lport_get(struct nvme_fc_lport *lport)
255 {
256         return kref_get_unless_zero(&lport->ref);
257 }
258
259
260 static struct nvme_fc_lport *
261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
262                         struct nvme_fc_port_template *ops,
263                         struct device *dev)
264 {
265         struct nvme_fc_lport *lport;
266         unsigned long flags;
267
268         spin_lock_irqsave(&nvme_fc_lock, flags);
269
270         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271                 if (lport->localport.node_name != pinfo->node_name ||
272                     lport->localport.port_name != pinfo->port_name)
273                         continue;
274
275                 if (lport->dev != dev) {
276                         lport = ERR_PTR(-EXDEV);
277                         goto out_done;
278                 }
279
280                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
281                         lport = ERR_PTR(-EEXIST);
282                         goto out_done;
283                 }
284
285                 if (!nvme_fc_lport_get(lport)) {
286                         /*
287                          * fails if ref cnt already 0. If so,
288                          * act as if lport already deleted
289                          */
290                         lport = NULL;
291                         goto out_done;
292                 }
293
294                 /* resume the lport */
295
296                 lport->ops = ops;
297                 lport->localport.port_role = pinfo->port_role;
298                 lport->localport.port_id = pinfo->port_id;
299                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
300
301                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
302
303                 return lport;
304         }
305
306         lport = NULL;
307
308 out_done:
309         spin_unlock_irqrestore(&nvme_fc_lock, flags);
310
311         return lport;
312 }
313
314 /**
315  * nvme_fc_register_localport - transport entry point called by an
316  *                              LLDD to register the existence of a NVME
317  *                              host FC port.
318  * @pinfo:     pointer to information about the port to be registered
319  * @template:  LLDD entrypoints and operational parameters for the port
320  * @dev:       physical hardware device node port corresponds to. Will be
321  *             used for DMA mappings
322  * @portptr:   pointer to a local port pointer. Upon success, the routine
323  *             will allocate a nvme_fc_local_port structure and place its
324  *             address in the local port pointer. Upon failure, local port
325  *             pointer will be set to 0.
326  *
327  * Returns:
328  * a completion status. Must be 0 upon success; a negative errno
329  * (ex: -ENXIO) upon failure.
330  */
331 int
332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
333                         struct nvme_fc_port_template *template,
334                         struct device *dev,
335                         struct nvme_fc_local_port **portptr)
336 {
337         struct nvme_fc_lport *newrec;
338         unsigned long flags;
339         int ret, idx;
340
341         if (!template->localport_delete || !template->remoteport_delete ||
342             !template->ls_req || !template->fcp_io ||
343             !template->ls_abort || !template->fcp_abort ||
344             !template->max_hw_queues || !template->max_sgl_segments ||
345             !template->max_dif_sgl_segments || !template->dma_boundary) {
346                 ret = -EINVAL;
347                 goto out_reghost_failed;
348         }
349
350         /*
351          * look to see if there is already a localport that had been
352          * deregistered and in the process of waiting for all the
353          * references to fully be removed.  If the references haven't
354          * expired, we can simply re-enable the localport. Remoteports
355          * and controller reconnections should resume naturally.
356          */
357         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
358
359         /* found an lport, but something about its state is bad */
360         if (IS_ERR(newrec)) {
361                 ret = PTR_ERR(newrec);
362                 goto out_reghost_failed;
363
364         /* found existing lport, which was resumed */
365         } else if (newrec) {
366                 *portptr = &newrec->localport;
367                 return 0;
368         }
369
370         /* nothing found - allocate a new localport struct */
371
372         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
373                          GFP_KERNEL);
374         if (!newrec) {
375                 ret = -ENOMEM;
376                 goto out_reghost_failed;
377         }
378
379         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
380         if (idx < 0) {
381                 ret = -ENOSPC;
382                 goto out_fail_kfree;
383         }
384
385         if (!get_device(dev) && dev) {
386                 ret = -ENODEV;
387                 goto out_ida_put;
388         }
389
390         INIT_LIST_HEAD(&newrec->port_list);
391         INIT_LIST_HEAD(&newrec->endp_list);
392         kref_init(&newrec->ref);
393         atomic_set(&newrec->act_rport_cnt, 0);
394         newrec->ops = template;
395         newrec->dev = dev;
396         ida_init(&newrec->endp_cnt);
397         newrec->localport.private = &newrec[1];
398         newrec->localport.node_name = pinfo->node_name;
399         newrec->localport.port_name = pinfo->port_name;
400         newrec->localport.port_role = pinfo->port_role;
401         newrec->localport.port_id = pinfo->port_id;
402         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
403         newrec->localport.port_num = idx;
404
405         spin_lock_irqsave(&nvme_fc_lock, flags);
406         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
407         spin_unlock_irqrestore(&nvme_fc_lock, flags);
408
409         if (dev)
410                 dma_set_seg_boundary(dev, template->dma_boundary);
411
412         *portptr = &newrec->localport;
413         return 0;
414
415 out_ida_put:
416         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
417 out_fail_kfree:
418         kfree(newrec);
419 out_reghost_failed:
420         *portptr = NULL;
421
422         return ret;
423 }
424 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
425
426 /**
427  * nvme_fc_unregister_localport - transport entry point called by an
428  *                              LLDD to deregister/remove a previously
429  *                              registered a NVME host FC port.
430  * @portptr: pointer to the (registered) local port that is to be deregistered.
431  *
432  * Returns:
433  * a completion status. Must be 0 upon success; a negative errno
434  * (ex: -ENXIO) upon failure.
435  */
436 int
437 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
438 {
439         struct nvme_fc_lport *lport = localport_to_lport(portptr);
440         unsigned long flags;
441
442         if (!portptr)
443                 return -EINVAL;
444
445         spin_lock_irqsave(&nvme_fc_lock, flags);
446
447         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
448                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
449                 return -EINVAL;
450         }
451         portptr->port_state = FC_OBJSTATE_DELETED;
452
453         spin_unlock_irqrestore(&nvme_fc_lock, flags);
454
455         if (atomic_read(&lport->act_rport_cnt) == 0)
456                 lport->ops->localport_delete(&lport->localport);
457
458         nvme_fc_lport_put(lport);
459
460         return 0;
461 }
462 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
463
464 /*
465  * TRADDR strings, per FC-NVME are fixed format:
466  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
467  * udev event will only differ by prefix of what field is
468  * being specified:
469  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
470  *  19 + 43 + null_fudge = 64 characters
471  */
472 #define FCNVME_TRADDR_LENGTH            64
473
474 static void
475 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
476                 struct nvme_fc_rport *rport)
477 {
478         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
479         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
480         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
481
482         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
483                 return;
484
485         snprintf(hostaddr, sizeof(hostaddr),
486                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
487                 lport->localport.node_name, lport->localport.port_name);
488         snprintf(tgtaddr, sizeof(tgtaddr),
489                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
490                 rport->remoteport.node_name, rport->remoteport.port_name);
491         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
492 }
493
494 static void
495 nvme_fc_free_rport(struct kref *ref)
496 {
497         struct nvme_fc_rport *rport =
498                 container_of(ref, struct nvme_fc_rport, ref);
499         struct nvme_fc_lport *lport =
500                         localport_to_lport(rport->remoteport.localport);
501         unsigned long flags;
502
503         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
504         WARN_ON(!list_empty(&rport->ctrl_list));
505
506         /* remove from lport list */
507         spin_lock_irqsave(&nvme_fc_lock, flags);
508         list_del(&rport->endp_list);
509         spin_unlock_irqrestore(&nvme_fc_lock, flags);
510
511         WARN_ON(!list_empty(&rport->disc_list));
512         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
513
514         kfree(rport);
515
516         nvme_fc_lport_put(lport);
517 }
518
519 static void
520 nvme_fc_rport_put(struct nvme_fc_rport *rport)
521 {
522         kref_put(&rport->ref, nvme_fc_free_rport);
523 }
524
525 static int
526 nvme_fc_rport_get(struct nvme_fc_rport *rport)
527 {
528         return kref_get_unless_zero(&rport->ref);
529 }
530
531 static void
532 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
533 {
534         switch (ctrl->ctrl.state) {
535         case NVME_CTRL_NEW:
536         case NVME_CTRL_CONNECTING:
537                 /*
538                  * As all reconnects were suppressed, schedule a
539                  * connect.
540                  */
541                 dev_info(ctrl->ctrl.device,
542                         "NVME-FC{%d}: connectivity re-established. "
543                         "Attempting reconnect\n", ctrl->cnum);
544
545                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
546                 break;
547
548         case NVME_CTRL_RESETTING:
549                 /*
550                  * Controller is already in the process of terminating the
551                  * association. No need to do anything further. The reconnect
552                  * step will naturally occur after the reset completes.
553                  */
554                 break;
555
556         default:
557                 /* no action to take - let it delete */
558                 break;
559         }
560 }
561
562 static struct nvme_fc_rport *
563 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
564                                 struct nvme_fc_port_info *pinfo)
565 {
566         struct nvme_fc_rport *rport;
567         struct nvme_fc_ctrl *ctrl;
568         unsigned long flags;
569
570         spin_lock_irqsave(&nvme_fc_lock, flags);
571
572         list_for_each_entry(rport, &lport->endp_list, endp_list) {
573                 if (rport->remoteport.node_name != pinfo->node_name ||
574                     rport->remoteport.port_name != pinfo->port_name)
575                         continue;
576
577                 if (!nvme_fc_rport_get(rport)) {
578                         rport = ERR_PTR(-ENOLCK);
579                         goto out_done;
580                 }
581
582                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
583
584                 spin_lock_irqsave(&rport->lock, flags);
585
586                 /* has it been unregistered */
587                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
588                         /* means lldd called us twice */
589                         spin_unlock_irqrestore(&rport->lock, flags);
590                         nvme_fc_rport_put(rport);
591                         return ERR_PTR(-ESTALE);
592                 }
593
594                 rport->remoteport.port_role = pinfo->port_role;
595                 rport->remoteport.port_id = pinfo->port_id;
596                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
597                 rport->dev_loss_end = 0;
598
599                 /*
600                  * kick off a reconnect attempt on all associations to the
601                  * remote port. A successful reconnects will resume i/o.
602                  */
603                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
604                         nvme_fc_resume_controller(ctrl);
605
606                 spin_unlock_irqrestore(&rport->lock, flags);
607
608                 return rport;
609         }
610
611         rport = NULL;
612
613 out_done:
614         spin_unlock_irqrestore(&nvme_fc_lock, flags);
615
616         return rport;
617 }
618
619 static inline void
620 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
621                         struct nvme_fc_port_info *pinfo)
622 {
623         if (pinfo->dev_loss_tmo)
624                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
625         else
626                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
627 }
628
629 /**
630  * nvme_fc_register_remoteport - transport entry point called by an
631  *                              LLDD to register the existence of a NVME
632  *                              subsystem FC port on its fabric.
633  * @localport: pointer to the (registered) local port that the remote
634  *             subsystem port is connected to.
635  * @pinfo:     pointer to information about the port to be registered
636  * @portptr:   pointer to a remote port pointer. Upon success, the routine
637  *             will allocate a nvme_fc_remote_port structure and place its
638  *             address in the remote port pointer. Upon failure, remote port
639  *             pointer will be set to 0.
640  *
641  * Returns:
642  * a completion status. Must be 0 upon success; a negative errno
643  * (ex: -ENXIO) upon failure.
644  */
645 int
646 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
647                                 struct nvme_fc_port_info *pinfo,
648                                 struct nvme_fc_remote_port **portptr)
649 {
650         struct nvme_fc_lport *lport = localport_to_lport(localport);
651         struct nvme_fc_rport *newrec;
652         unsigned long flags;
653         int ret, idx;
654
655         if (!nvme_fc_lport_get(lport)) {
656                 ret = -ESHUTDOWN;
657                 goto out_reghost_failed;
658         }
659
660         /*
661          * look to see if there is already a remoteport that is waiting
662          * for a reconnect (within dev_loss_tmo) with the same WWN's.
663          * If so, transition to it and reconnect.
664          */
665         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
666
667         /* found an rport, but something about its state is bad */
668         if (IS_ERR(newrec)) {
669                 ret = PTR_ERR(newrec);
670                 goto out_lport_put;
671
672         /* found existing rport, which was resumed */
673         } else if (newrec) {
674                 nvme_fc_lport_put(lport);
675                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
676                 nvme_fc_signal_discovery_scan(lport, newrec);
677                 *portptr = &newrec->remoteport;
678                 return 0;
679         }
680
681         /* nothing found - allocate a new remoteport struct */
682
683         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
684                          GFP_KERNEL);
685         if (!newrec) {
686                 ret = -ENOMEM;
687                 goto out_lport_put;
688         }
689
690         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
691         if (idx < 0) {
692                 ret = -ENOSPC;
693                 goto out_kfree_rport;
694         }
695
696         INIT_LIST_HEAD(&newrec->endp_list);
697         INIT_LIST_HEAD(&newrec->ctrl_list);
698         INIT_LIST_HEAD(&newrec->ls_req_list);
699         INIT_LIST_HEAD(&newrec->disc_list);
700         kref_init(&newrec->ref);
701         atomic_set(&newrec->act_ctrl_cnt, 0);
702         spin_lock_init(&newrec->lock);
703         newrec->remoteport.localport = &lport->localport;
704         newrec->dev = lport->dev;
705         newrec->lport = lport;
706         newrec->remoteport.private = &newrec[1];
707         newrec->remoteport.port_role = pinfo->port_role;
708         newrec->remoteport.node_name = pinfo->node_name;
709         newrec->remoteport.port_name = pinfo->port_name;
710         newrec->remoteport.port_id = pinfo->port_id;
711         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
712         newrec->remoteport.port_num = idx;
713         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
714
715         spin_lock_irqsave(&nvme_fc_lock, flags);
716         list_add_tail(&newrec->endp_list, &lport->endp_list);
717         spin_unlock_irqrestore(&nvme_fc_lock, flags);
718
719         nvme_fc_signal_discovery_scan(lport, newrec);
720
721         *portptr = &newrec->remoteport;
722         return 0;
723
724 out_kfree_rport:
725         kfree(newrec);
726 out_lport_put:
727         nvme_fc_lport_put(lport);
728 out_reghost_failed:
729         *portptr = NULL;
730         return ret;
731 }
732 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
733
734 static int
735 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
736 {
737         struct nvmefc_ls_req_op *lsop;
738         unsigned long flags;
739
740 restart:
741         spin_lock_irqsave(&rport->lock, flags);
742
743         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
744                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
745                         lsop->flags |= FCOP_FLAGS_TERMIO;
746                         spin_unlock_irqrestore(&rport->lock, flags);
747                         rport->lport->ops->ls_abort(&rport->lport->localport,
748                                                 &rport->remoteport,
749                                                 &lsop->ls_req);
750                         goto restart;
751                 }
752         }
753         spin_unlock_irqrestore(&rport->lock, flags);
754
755         return 0;
756 }
757
758 static void
759 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
760 {
761         dev_info(ctrl->ctrl.device,
762                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
763                 "Reconnect", ctrl->cnum);
764
765         switch (ctrl->ctrl.state) {
766         case NVME_CTRL_NEW:
767         case NVME_CTRL_LIVE:
768                 /*
769                  * Schedule a controller reset. The reset will terminate the
770                  * association and schedule the reconnect timer.  Reconnects
771                  * will be attempted until either the ctlr_loss_tmo
772                  * (max_retries * connect_delay) expires or the remoteport's
773                  * dev_loss_tmo expires.
774                  */
775                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
776                         dev_warn(ctrl->ctrl.device,
777                                 "NVME-FC{%d}: Couldn't schedule reset.\n",
778                                 ctrl->cnum);
779                         nvme_delete_ctrl(&ctrl->ctrl);
780                 }
781                 break;
782
783         case NVME_CTRL_CONNECTING:
784                 /*
785                  * The association has already been terminated and the
786                  * controller is attempting reconnects.  No need to do anything
787                  * futher.  Reconnects will be attempted until either the
788                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
789                  * remoteport's dev_loss_tmo expires.
790                  */
791                 break;
792
793         case NVME_CTRL_RESETTING:
794                 /*
795                  * Controller is already in the process of terminating the
796                  * association.  No need to do anything further. The reconnect
797                  * step will kick in naturally after the association is
798                  * terminated.
799                  */
800                 break;
801
802         case NVME_CTRL_DELETING:
803         default:
804                 /* no action to take - let it delete */
805                 break;
806         }
807 }
808
809 /**
810  * nvme_fc_unregister_remoteport - transport entry point called by an
811  *                              LLDD to deregister/remove a previously
812  *                              registered a NVME subsystem FC port.
813  * @portptr: pointer to the (registered) remote port that is to be
814  *           deregistered.
815  *
816  * Returns:
817  * a completion status. Must be 0 upon success; a negative errno
818  * (ex: -ENXIO) upon failure.
819  */
820 int
821 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
822 {
823         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
824         struct nvme_fc_ctrl *ctrl;
825         unsigned long flags;
826
827         if (!portptr)
828                 return -EINVAL;
829
830         spin_lock_irqsave(&rport->lock, flags);
831
832         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
833                 spin_unlock_irqrestore(&rport->lock, flags);
834                 return -EINVAL;
835         }
836         portptr->port_state = FC_OBJSTATE_DELETED;
837
838         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
839
840         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
841                 /* if dev_loss_tmo==0, dev loss is immediate */
842                 if (!portptr->dev_loss_tmo) {
843                         dev_warn(ctrl->ctrl.device,
844                                 "NVME-FC{%d}: controller connectivity lost.\n",
845                                 ctrl->cnum);
846                         nvme_delete_ctrl(&ctrl->ctrl);
847                 } else
848                         nvme_fc_ctrl_connectivity_loss(ctrl);
849         }
850
851         spin_unlock_irqrestore(&rport->lock, flags);
852
853         nvme_fc_abort_lsops(rport);
854
855         if (atomic_read(&rport->act_ctrl_cnt) == 0)
856                 rport->lport->ops->remoteport_delete(portptr);
857
858         /*
859          * release the reference, which will allow, if all controllers
860          * go away, which should only occur after dev_loss_tmo occurs,
861          * for the rport to be torn down.
862          */
863         nvme_fc_rport_put(rport);
864
865         return 0;
866 }
867 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
868
869 /**
870  * nvme_fc_rescan_remoteport - transport entry point called by an
871  *                              LLDD to request a nvme device rescan.
872  * @remoteport: pointer to the (registered) remote port that is to be
873  *              rescanned.
874  *
875  * Returns: N/A
876  */
877 void
878 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
879 {
880         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
881
882         nvme_fc_signal_discovery_scan(rport->lport, rport);
883 }
884 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
885
886 int
887 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
888                         u32 dev_loss_tmo)
889 {
890         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
891         unsigned long flags;
892
893         spin_lock_irqsave(&rport->lock, flags);
894
895         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
896                 spin_unlock_irqrestore(&rport->lock, flags);
897                 return -EINVAL;
898         }
899
900         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
901         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
902
903         spin_unlock_irqrestore(&rport->lock, flags);
904
905         return 0;
906 }
907 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
908
909
910 /* *********************** FC-NVME DMA Handling **************************** */
911
912 /*
913  * The fcloop device passes in a NULL device pointer. Real LLD's will
914  * pass in a valid device pointer. If NULL is passed to the dma mapping
915  * routines, depending on the platform, it may or may not succeed, and
916  * may crash.
917  *
918  * As such:
919  * Wrapper all the dma routines and check the dev pointer.
920  *
921  * If simple mappings (return just a dma address, we'll noop them,
922  * returning a dma address of 0.
923  *
924  * On more complex mappings (dma_map_sg), a pseudo routine fills
925  * in the scatter list, setting all dma addresses to 0.
926  */
927
928 static inline dma_addr_t
929 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
930                 enum dma_data_direction dir)
931 {
932         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
933 }
934
935 static inline int
936 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
937 {
938         return dev ? dma_mapping_error(dev, dma_addr) : 0;
939 }
940
941 static inline void
942 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
943         enum dma_data_direction dir)
944 {
945         if (dev)
946                 dma_unmap_single(dev, addr, size, dir);
947 }
948
949 static inline void
950 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
951                 enum dma_data_direction dir)
952 {
953         if (dev)
954                 dma_sync_single_for_cpu(dev, addr, size, dir);
955 }
956
957 static inline void
958 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
959                 enum dma_data_direction dir)
960 {
961         if (dev)
962                 dma_sync_single_for_device(dev, addr, size, dir);
963 }
964
965 /* pseudo dma_map_sg call */
966 static int
967 fc_map_sg(struct scatterlist *sg, int nents)
968 {
969         struct scatterlist *s;
970         int i;
971
972         WARN_ON(nents == 0 || sg[0].length == 0);
973
974         for_each_sg(sg, s, nents, i) {
975                 s->dma_address = 0L;
976 #ifdef CONFIG_NEED_SG_DMA_LENGTH
977                 s->dma_length = s->length;
978 #endif
979         }
980         return nents;
981 }
982
983 static inline int
984 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
985                 enum dma_data_direction dir)
986 {
987         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
988 }
989
990 static inline void
991 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
992                 enum dma_data_direction dir)
993 {
994         if (dev)
995                 dma_unmap_sg(dev, sg, nents, dir);
996 }
997
998 /* *********************** FC-NVME LS Handling **************************** */
999
1000 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1001 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1002
1003
1004 static void
1005 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1006 {
1007         struct nvme_fc_rport *rport = lsop->rport;
1008         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1009         unsigned long flags;
1010
1011         spin_lock_irqsave(&rport->lock, flags);
1012
1013         if (!lsop->req_queued) {
1014                 spin_unlock_irqrestore(&rport->lock, flags);
1015                 return;
1016         }
1017
1018         list_del(&lsop->lsreq_list);
1019
1020         lsop->req_queued = false;
1021
1022         spin_unlock_irqrestore(&rport->lock, flags);
1023
1024         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1025                                   (lsreq->rqstlen + lsreq->rsplen),
1026                                   DMA_BIDIRECTIONAL);
1027
1028         nvme_fc_rport_put(rport);
1029 }
1030
1031 static int
1032 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1033                 struct nvmefc_ls_req_op *lsop,
1034                 void (*done)(struct nvmefc_ls_req *req, int status))
1035 {
1036         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1037         unsigned long flags;
1038         int ret = 0;
1039
1040         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1041                 return -ECONNREFUSED;
1042
1043         if (!nvme_fc_rport_get(rport))
1044                 return -ESHUTDOWN;
1045
1046         lsreq->done = done;
1047         lsop->rport = rport;
1048         lsop->req_queued = false;
1049         INIT_LIST_HEAD(&lsop->lsreq_list);
1050         init_completion(&lsop->ls_done);
1051
1052         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1053                                   lsreq->rqstlen + lsreq->rsplen,
1054                                   DMA_BIDIRECTIONAL);
1055         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1056                 ret = -EFAULT;
1057                 goto out_putrport;
1058         }
1059         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1060
1061         spin_lock_irqsave(&rport->lock, flags);
1062
1063         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1064
1065         lsop->req_queued = true;
1066
1067         spin_unlock_irqrestore(&rport->lock, flags);
1068
1069         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1070                                         &rport->remoteport, lsreq);
1071         if (ret)
1072                 goto out_unlink;
1073
1074         return 0;
1075
1076 out_unlink:
1077         lsop->ls_error = ret;
1078         spin_lock_irqsave(&rport->lock, flags);
1079         lsop->req_queued = false;
1080         list_del(&lsop->lsreq_list);
1081         spin_unlock_irqrestore(&rport->lock, flags);
1082         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1083                                   (lsreq->rqstlen + lsreq->rsplen),
1084                                   DMA_BIDIRECTIONAL);
1085 out_putrport:
1086         nvme_fc_rport_put(rport);
1087
1088         return ret;
1089 }
1090
1091 static void
1092 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1093 {
1094         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1095
1096         lsop->ls_error = status;
1097         complete(&lsop->ls_done);
1098 }
1099
1100 static int
1101 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1102 {
1103         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1104         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1105         int ret;
1106
1107         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1108
1109         if (!ret) {
1110                 /*
1111                  * No timeout/not interruptible as we need the struct
1112                  * to exist until the lldd calls us back. Thus mandate
1113                  * wait until driver calls back. lldd responsible for
1114                  * the timeout action
1115                  */
1116                 wait_for_completion(&lsop->ls_done);
1117
1118                 __nvme_fc_finish_ls_req(lsop);
1119
1120                 ret = lsop->ls_error;
1121         }
1122
1123         if (ret)
1124                 return ret;
1125
1126         /* ACC or RJT payload ? */
1127         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1128                 return -ENXIO;
1129
1130         return 0;
1131 }
1132
1133 static int
1134 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1135                 struct nvmefc_ls_req_op *lsop,
1136                 void (*done)(struct nvmefc_ls_req *req, int status))
1137 {
1138         /* don't wait for completion */
1139
1140         return __nvme_fc_send_ls_req(rport, lsop, done);
1141 }
1142
1143 /* Validation Error indexes into the string table below */
1144 enum {
1145         VERR_NO_ERROR           = 0,
1146         VERR_LSACC              = 1,
1147         VERR_LSDESC_RQST        = 2,
1148         VERR_LSDESC_RQST_LEN    = 3,
1149         VERR_ASSOC_ID           = 4,
1150         VERR_ASSOC_ID_LEN       = 5,
1151         VERR_CONN_ID            = 6,
1152         VERR_CONN_ID_LEN        = 7,
1153         VERR_CR_ASSOC           = 8,
1154         VERR_CR_ASSOC_ACC_LEN   = 9,
1155         VERR_CR_CONN            = 10,
1156         VERR_CR_CONN_ACC_LEN    = 11,
1157         VERR_DISCONN            = 12,
1158         VERR_DISCONN_ACC_LEN    = 13,
1159 };
1160
1161 static char *validation_errors[] = {
1162         "OK",
1163         "Not LS_ACC",
1164         "Not LSDESC_RQST",
1165         "Bad LSDESC_RQST Length",
1166         "Not Association ID",
1167         "Bad Association ID Length",
1168         "Not Connection ID",
1169         "Bad Connection ID Length",
1170         "Not CR_ASSOC Rqst",
1171         "Bad CR_ASSOC ACC Length",
1172         "Not CR_CONN Rqst",
1173         "Bad CR_CONN ACC Length",
1174         "Not Disconnect Rqst",
1175         "Bad Disconnect ACC Length",
1176 };
1177
1178 static int
1179 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1180         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1181 {
1182         struct nvmefc_ls_req_op *lsop;
1183         struct nvmefc_ls_req *lsreq;
1184         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1185         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1186         int ret, fcret = 0;
1187
1188         lsop = kzalloc((sizeof(*lsop) +
1189                          ctrl->lport->ops->lsrqst_priv_sz +
1190                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1191         if (!lsop) {
1192                 ret = -ENOMEM;
1193                 goto out_no_memory;
1194         }
1195         lsreq = &lsop->ls_req;
1196
1197         lsreq->private = (void *)&lsop[1];
1198         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1199                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1200         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1201
1202         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1203         assoc_rqst->desc_list_len =
1204                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1205
1206         assoc_rqst->assoc_cmd.desc_tag =
1207                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1208         assoc_rqst->assoc_cmd.desc_len =
1209                         fcnvme_lsdesc_len(
1210                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1211
1212         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1213         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1214         /* Linux supports only Dynamic controllers */
1215         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1216         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1217         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1218                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1219         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1220                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1221
1222         lsop->queue = queue;
1223         lsreq->rqstaddr = assoc_rqst;
1224         lsreq->rqstlen = sizeof(*assoc_rqst);
1225         lsreq->rspaddr = assoc_acc;
1226         lsreq->rsplen = sizeof(*assoc_acc);
1227         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1228
1229         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1230         if (ret)
1231                 goto out_free_buffer;
1232
1233         /* process connect LS completion */
1234
1235         /* validate the ACC response */
1236         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1237                 fcret = VERR_LSACC;
1238         else if (assoc_acc->hdr.desc_list_len !=
1239                         fcnvme_lsdesc_len(
1240                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1241                 fcret = VERR_CR_ASSOC_ACC_LEN;
1242         else if (assoc_acc->hdr.rqst.desc_tag !=
1243                         cpu_to_be32(FCNVME_LSDESC_RQST))
1244                 fcret = VERR_LSDESC_RQST;
1245         else if (assoc_acc->hdr.rqst.desc_len !=
1246                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1247                 fcret = VERR_LSDESC_RQST_LEN;
1248         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1249                 fcret = VERR_CR_ASSOC;
1250         else if (assoc_acc->associd.desc_tag !=
1251                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1252                 fcret = VERR_ASSOC_ID;
1253         else if (assoc_acc->associd.desc_len !=
1254                         fcnvme_lsdesc_len(
1255                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1256                 fcret = VERR_ASSOC_ID_LEN;
1257         else if (assoc_acc->connectid.desc_tag !=
1258                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1259                 fcret = VERR_CONN_ID;
1260         else if (assoc_acc->connectid.desc_len !=
1261                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1262                 fcret = VERR_CONN_ID_LEN;
1263
1264         if (fcret) {
1265                 ret = -EBADF;
1266                 dev_err(ctrl->dev,
1267                         "q %d connect failed: %s\n",
1268                         queue->qnum, validation_errors[fcret]);
1269         } else {
1270                 ctrl->association_id =
1271                         be64_to_cpu(assoc_acc->associd.association_id);
1272                 queue->connection_id =
1273                         be64_to_cpu(assoc_acc->connectid.connection_id);
1274                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1275         }
1276
1277 out_free_buffer:
1278         kfree(lsop);
1279 out_no_memory:
1280         if (ret)
1281                 dev_err(ctrl->dev,
1282                         "queue %d connect admin queue failed (%d).\n",
1283                         queue->qnum, ret);
1284         return ret;
1285 }
1286
1287 static int
1288 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1289                         u16 qsize, u16 ersp_ratio)
1290 {
1291         struct nvmefc_ls_req_op *lsop;
1292         struct nvmefc_ls_req *lsreq;
1293         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1294         struct fcnvme_ls_cr_conn_acc *conn_acc;
1295         int ret, fcret = 0;
1296
1297         lsop = kzalloc((sizeof(*lsop) +
1298                          ctrl->lport->ops->lsrqst_priv_sz +
1299                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1300         if (!lsop) {
1301                 ret = -ENOMEM;
1302                 goto out_no_memory;
1303         }
1304         lsreq = &lsop->ls_req;
1305
1306         lsreq->private = (void *)&lsop[1];
1307         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1308                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1309         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1310
1311         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1312         conn_rqst->desc_list_len = cpu_to_be32(
1313                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1314                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1315
1316         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1317         conn_rqst->associd.desc_len =
1318                         fcnvme_lsdesc_len(
1319                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1320         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1321         conn_rqst->connect_cmd.desc_tag =
1322                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1323         conn_rqst->connect_cmd.desc_len =
1324                         fcnvme_lsdesc_len(
1325                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1327         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1328         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1329
1330         lsop->queue = queue;
1331         lsreq->rqstaddr = conn_rqst;
1332         lsreq->rqstlen = sizeof(*conn_rqst);
1333         lsreq->rspaddr = conn_acc;
1334         lsreq->rsplen = sizeof(*conn_acc);
1335         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1336
1337         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1338         if (ret)
1339                 goto out_free_buffer;
1340
1341         /* process connect LS completion */
1342
1343         /* validate the ACC response */
1344         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1345                 fcret = VERR_LSACC;
1346         else if (conn_acc->hdr.desc_list_len !=
1347                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1348                 fcret = VERR_CR_CONN_ACC_LEN;
1349         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1350                 fcret = VERR_LSDESC_RQST;
1351         else if (conn_acc->hdr.rqst.desc_len !=
1352                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1353                 fcret = VERR_LSDESC_RQST_LEN;
1354         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1355                 fcret = VERR_CR_CONN;
1356         else if (conn_acc->connectid.desc_tag !=
1357                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1358                 fcret = VERR_CONN_ID;
1359         else if (conn_acc->connectid.desc_len !=
1360                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1361                 fcret = VERR_CONN_ID_LEN;
1362
1363         if (fcret) {
1364                 ret = -EBADF;
1365                 dev_err(ctrl->dev,
1366                         "q %d connect failed: %s\n",
1367                         queue->qnum, validation_errors[fcret]);
1368         } else {
1369                 queue->connection_id =
1370                         be64_to_cpu(conn_acc->connectid.connection_id);
1371                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1372         }
1373
1374 out_free_buffer:
1375         kfree(lsop);
1376 out_no_memory:
1377         if (ret)
1378                 dev_err(ctrl->dev,
1379                         "queue %d connect command failed (%d).\n",
1380                         queue->qnum, ret);
1381         return ret;
1382 }
1383
1384 static void
1385 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1386 {
1387         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1388
1389         __nvme_fc_finish_ls_req(lsop);
1390
1391         /* fc-nvme initiator doesn't care about success or failure of cmd */
1392
1393         kfree(lsop);
1394 }
1395
1396 /*
1397  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1398  * the FC-NVME Association.  Terminating the association also
1399  * terminates the FC-NVME connections (per queue, both admin and io
1400  * queues) that are part of the association. E.g. things are torn
1401  * down, and the related FC-NVME Association ID and Connection IDs
1402  * become invalid.
1403  *
1404  * The behavior of the fc-nvme initiator is such that it's
1405  * understanding of the association and connections will implicitly
1406  * be torn down. The action is implicit as it may be due to a loss of
1407  * connectivity with the fc-nvme target, so you may never get a
1408  * response even if you tried.  As such, the action of this routine
1409  * is to asynchronously send the LS, ignore any results of the LS, and
1410  * continue on with terminating the association. If the fc-nvme target
1411  * is present and receives the LS, it too can tear down.
1412  */
1413 static void
1414 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1415 {
1416         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1417         struct fcnvme_ls_disconnect_acc *discon_acc;
1418         struct nvmefc_ls_req_op *lsop;
1419         struct nvmefc_ls_req *lsreq;
1420         int ret;
1421
1422         lsop = kzalloc((sizeof(*lsop) +
1423                          ctrl->lport->ops->lsrqst_priv_sz +
1424                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1425                         GFP_KERNEL);
1426         if (!lsop)
1427                 /* couldn't sent it... too bad */
1428                 return;
1429
1430         lsreq = &lsop->ls_req;
1431
1432         lsreq->private = (void *)&lsop[1];
1433         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1434                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1435         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1436
1437         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1438         discon_rqst->desc_list_len = cpu_to_be32(
1439                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1440                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1441
1442         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1443         discon_rqst->associd.desc_len =
1444                         fcnvme_lsdesc_len(
1445                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1446
1447         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1448
1449         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1450                                                 FCNVME_LSDESC_DISCONN_CMD);
1451         discon_rqst->discon_cmd.desc_len =
1452                         fcnvme_lsdesc_len(
1453                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1454         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1455         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1456
1457         lsreq->rqstaddr = discon_rqst;
1458         lsreq->rqstlen = sizeof(*discon_rqst);
1459         lsreq->rspaddr = discon_acc;
1460         lsreq->rsplen = sizeof(*discon_acc);
1461         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1462
1463         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1464                                 nvme_fc_disconnect_assoc_done);
1465         if (ret)
1466                 kfree(lsop);
1467
1468         /* only meaningful part to terminating the association */
1469         ctrl->association_id = 0;
1470 }
1471
1472
1473 /* *********************** NVME Ctrl Routines **************************** */
1474
1475 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1476
1477 static void
1478 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1479                 struct nvme_fc_fcp_op *op)
1480 {
1481         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1482                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1483         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1484                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1485
1486         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1487 }
1488
1489 static void
1490 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1491                 unsigned int hctx_idx)
1492 {
1493         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1494
1495         return __nvme_fc_exit_request(set->driver_data, op);
1496 }
1497
1498 static int
1499 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1500 {
1501         unsigned long flags;
1502         int opstate;
1503
1504         spin_lock_irqsave(&ctrl->lock, flags);
1505         opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1506         if (opstate != FCPOP_STATE_ACTIVE)
1507                 atomic_set(&op->state, opstate);
1508         else if (ctrl->flags & FCCTRL_TERMIO)
1509                 ctrl->iocnt++;
1510         spin_unlock_irqrestore(&ctrl->lock, flags);
1511
1512         if (opstate != FCPOP_STATE_ACTIVE)
1513                 return -ECANCELED;
1514
1515         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1516                                         &ctrl->rport->remoteport,
1517                                         op->queue->lldd_handle,
1518                                         &op->fcp_req);
1519
1520         return 0;
1521 }
1522
1523 static void
1524 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1525 {
1526         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1527         int i;
1528
1529         /* ensure we've initialized the ops once */
1530         if (!(aen_op->flags & FCOP_FLAGS_AEN))
1531                 return;
1532
1533         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1534                 __nvme_fc_abort_op(ctrl, aen_op);
1535 }
1536
1537 static inline void
1538 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1539                 struct nvme_fc_fcp_op *op, int opstate)
1540 {
1541         unsigned long flags;
1542
1543         if (opstate == FCPOP_STATE_ABORTED) {
1544                 spin_lock_irqsave(&ctrl->lock, flags);
1545                 if (ctrl->flags & FCCTRL_TERMIO) {
1546                         if (!--ctrl->iocnt)
1547                                 wake_up(&ctrl->ioabort_wait);
1548                 }
1549                 spin_unlock_irqrestore(&ctrl->lock, flags);
1550         }
1551 }
1552
1553 static void
1554 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1555 {
1556         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1557         struct request *rq = op->rq;
1558         struct nvmefc_fcp_req *freq = &op->fcp_req;
1559         struct nvme_fc_ctrl *ctrl = op->ctrl;
1560         struct nvme_fc_queue *queue = op->queue;
1561         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1562         struct nvme_command *sqe = &op->cmd_iu.sqe;
1563         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1564         union nvme_result result;
1565         bool terminate_assoc = true;
1566         int opstate;
1567
1568         /*
1569          * WARNING:
1570          * The current linux implementation of a nvme controller
1571          * allocates a single tag set for all io queues and sizes
1572          * the io queues to fully hold all possible tags. Thus, the
1573          * implementation does not reference or care about the sqhd
1574          * value as it never needs to use the sqhd/sqtail pointers
1575          * for submission pacing.
1576          *
1577          * This affects the FC-NVME implementation in two ways:
1578          * 1) As the value doesn't matter, we don't need to waste
1579          *    cycles extracting it from ERSPs and stamping it in the
1580          *    cases where the transport fabricates CQEs on successful
1581          *    completions.
1582          * 2) The FC-NVME implementation requires that delivery of
1583          *    ERSP completions are to go back to the nvme layer in order
1584          *    relative to the rsn, such that the sqhd value will always
1585          *    be "in order" for the nvme layer. As the nvme layer in
1586          *    linux doesn't care about sqhd, there's no need to return
1587          *    them in order.
1588          *
1589          * Additionally:
1590          * As the core nvme layer in linux currently does not look at
1591          * every field in the cqe - in cases where the FC transport must
1592          * fabricate a CQE, the following fields will not be set as they
1593          * are not referenced:
1594          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1595          *
1596          * Failure or error of an individual i/o, in a transport
1597          * detected fashion unrelated to the nvme completion status,
1598          * potentially cause the initiator and target sides to get out
1599          * of sync on SQ head/tail (aka outstanding io count allowed).
1600          * Per FC-NVME spec, failure of an individual command requires
1601          * the connection to be terminated, which in turn requires the
1602          * association to be terminated.
1603          */
1604
1605         opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1606
1607         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1608                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1609
1610         if (opstate == FCPOP_STATE_ABORTED)
1611                 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1612         else if (freq->status)
1613                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1614
1615         /*
1616          * For the linux implementation, if we have an unsuccesful
1617          * status, they blk-mq layer can typically be called with the
1618          * non-zero status and the content of the cqe isn't important.
1619          */
1620         if (status)
1621                 goto done;
1622
1623         /*
1624          * command completed successfully relative to the wire
1625          * protocol. However, validate anything received and
1626          * extract the status and result from the cqe (create it
1627          * where necessary).
1628          */
1629
1630         switch (freq->rcv_rsplen) {
1631
1632         case 0:
1633         case NVME_FC_SIZEOF_ZEROS_RSP:
1634                 /*
1635                  * No response payload or 12 bytes of payload (which
1636                  * should all be zeros) are considered successful and
1637                  * no payload in the CQE by the transport.
1638                  */
1639                 if (freq->transferred_length !=
1640                         be32_to_cpu(op->cmd_iu.data_len)) {
1641                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1642                         goto done;
1643                 }
1644                 result.u64 = 0;
1645                 break;
1646
1647         case sizeof(struct nvme_fc_ersp_iu):
1648                 /*
1649                  * The ERSP IU contains a full completion with CQE.
1650                  * Validate ERSP IU and look at cqe.
1651                  */
1652                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1653                                         (freq->rcv_rsplen / 4) ||
1654                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1655                                         freq->transferred_length ||
1656                              op->rsp_iu.status_code ||
1657                              sqe->common.command_id != cqe->command_id)) {
1658                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1659                         goto done;
1660                 }
1661                 result = cqe->result;
1662                 status = cqe->status;
1663                 break;
1664
1665         default:
1666                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1667                 goto done;
1668         }
1669
1670         terminate_assoc = false;
1671
1672 done:
1673         if (op->flags & FCOP_FLAGS_AEN) {
1674                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1675                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1676                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1677                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1678                 nvme_fc_ctrl_put(ctrl);
1679                 goto check_error;
1680         }
1681
1682         __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1683         nvme_end_request(rq, status, result);
1684
1685 check_error:
1686         if (terminate_assoc)
1687                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1688 }
1689
1690 static int
1691 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1692                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1693                 struct request *rq, u32 rqno)
1694 {
1695         struct nvme_fcp_op_w_sgl *op_w_sgl =
1696                 container_of(op, typeof(*op_w_sgl), op);
1697         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1698         int ret = 0;
1699
1700         memset(op, 0, sizeof(*op));
1701         op->fcp_req.cmdaddr = &op->cmd_iu;
1702         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1703         op->fcp_req.rspaddr = &op->rsp_iu;
1704         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1705         op->fcp_req.done = nvme_fc_fcpio_done;
1706         op->ctrl = ctrl;
1707         op->queue = queue;
1708         op->rq = rq;
1709         op->rqno = rqno;
1710
1711         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1712         cmdiu->fc_id = NVME_CMD_FC_ID;
1713         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1714
1715         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1716                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1717         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1718                 dev_err(ctrl->dev,
1719                         "FCP Op failed - cmdiu dma mapping failed.\n");
1720                 ret = EFAULT;
1721                 goto out_on_error;
1722         }
1723
1724         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1725                                 &op->rsp_iu, sizeof(op->rsp_iu),
1726                                 DMA_FROM_DEVICE);
1727         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1728                 dev_err(ctrl->dev,
1729                         "FCP Op failed - rspiu dma mapping failed.\n");
1730                 ret = EFAULT;
1731         }
1732
1733         atomic_set(&op->state, FCPOP_STATE_IDLE);
1734 out_on_error:
1735         return ret;
1736 }
1737
1738 static int
1739 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1740                 unsigned int hctx_idx, unsigned int numa_node)
1741 {
1742         struct nvme_fc_ctrl *ctrl = set->driver_data;
1743         struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1744         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1745         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1746         int res;
1747
1748         res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1749         if (res)
1750                 return res;
1751         op->op.fcp_req.first_sgl = &op->sgl[0];
1752         op->op.fcp_req.private = &op->priv[0];
1753         nvme_req(rq)->ctrl = &ctrl->ctrl;
1754         return res;
1755 }
1756
1757 static int
1758 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1759 {
1760         struct nvme_fc_fcp_op *aen_op;
1761         struct nvme_fc_cmd_iu *cmdiu;
1762         struct nvme_command *sqe;
1763         void *private;
1764         int i, ret;
1765
1766         aen_op = ctrl->aen_ops;
1767         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1768                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1769                                                 GFP_KERNEL);
1770                 if (!private)
1771                         return -ENOMEM;
1772
1773                 cmdiu = &aen_op->cmd_iu;
1774                 sqe = &cmdiu->sqe;
1775                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1776                                 aen_op, (struct request *)NULL,
1777                                 (NVME_AQ_BLK_MQ_DEPTH + i));
1778                 if (ret) {
1779                         kfree(private);
1780                         return ret;
1781                 }
1782
1783                 aen_op->flags = FCOP_FLAGS_AEN;
1784                 aen_op->fcp_req.private = private;
1785
1786                 memset(sqe, 0, sizeof(*sqe));
1787                 sqe->common.opcode = nvme_admin_async_event;
1788                 /* Note: core layer may overwrite the sqe.command_id value */
1789                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1790         }
1791         return 0;
1792 }
1793
1794 static void
1795 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1796 {
1797         struct nvme_fc_fcp_op *aen_op;
1798         int i;
1799
1800         aen_op = ctrl->aen_ops;
1801         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1802                 if (!aen_op->fcp_req.private)
1803                         continue;
1804
1805                 __nvme_fc_exit_request(ctrl, aen_op);
1806
1807                 kfree(aen_op->fcp_req.private);
1808                 aen_op->fcp_req.private = NULL;
1809         }
1810 }
1811
1812 static inline void
1813 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1814                 unsigned int qidx)
1815 {
1816         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1817
1818         hctx->driver_data = queue;
1819         queue->hctx = hctx;
1820 }
1821
1822 static int
1823 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1824                 unsigned int hctx_idx)
1825 {
1826         struct nvme_fc_ctrl *ctrl = data;
1827
1828         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1829
1830         return 0;
1831 }
1832
1833 static int
1834 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1835                 unsigned int hctx_idx)
1836 {
1837         struct nvme_fc_ctrl *ctrl = data;
1838
1839         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1840
1841         return 0;
1842 }
1843
1844 static void
1845 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1846 {
1847         struct nvme_fc_queue *queue;
1848
1849         queue = &ctrl->queues[idx];
1850         memset(queue, 0, sizeof(*queue));
1851         queue->ctrl = ctrl;
1852         queue->qnum = idx;
1853         atomic_set(&queue->csn, 0);
1854         queue->dev = ctrl->dev;
1855
1856         if (idx > 0)
1857                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1858         else
1859                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1860
1861         /*
1862          * Considered whether we should allocate buffers for all SQEs
1863          * and CQEs and dma map them - mapping their respective entries
1864          * into the request structures (kernel vm addr and dma address)
1865          * thus the driver could use the buffers/mappings directly.
1866          * It only makes sense if the LLDD would use them for its
1867          * messaging api. It's very unlikely most adapter api's would use
1868          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1869          * structures were used instead.
1870          */
1871 }
1872
1873 /*
1874  * This routine terminates a queue at the transport level.
1875  * The transport has already ensured that all outstanding ios on
1876  * the queue have been terminated.
1877  * The transport will send a Disconnect LS request to terminate
1878  * the queue's connection. Termination of the admin queue will also
1879  * terminate the association at the target.
1880  */
1881 static void
1882 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1883 {
1884         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1885                 return;
1886
1887         clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1888         /*
1889          * Current implementation never disconnects a single queue.
1890          * It always terminates a whole association. So there is never
1891          * a disconnect(queue) LS sent to the target.
1892          */
1893
1894         queue->connection_id = 0;
1895         atomic_set(&queue->csn, 0);
1896 }
1897
1898 static void
1899 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1900         struct nvme_fc_queue *queue, unsigned int qidx)
1901 {
1902         if (ctrl->lport->ops->delete_queue)
1903                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1904                                 queue->lldd_handle);
1905         queue->lldd_handle = NULL;
1906 }
1907
1908 static void
1909 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1910 {
1911         int i;
1912
1913         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1914                 nvme_fc_free_queue(&ctrl->queues[i]);
1915 }
1916
1917 static int
1918 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1919         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1920 {
1921         int ret = 0;
1922
1923         queue->lldd_handle = NULL;
1924         if (ctrl->lport->ops->create_queue)
1925                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1926                                 qidx, qsize, &queue->lldd_handle);
1927
1928         return ret;
1929 }
1930
1931 static void
1932 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1933 {
1934         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1935         int i;
1936
1937         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1938                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1939 }
1940
1941 static int
1942 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1943 {
1944         struct nvme_fc_queue *queue = &ctrl->queues[1];
1945         int i, ret;
1946
1947         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1948                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1949                 if (ret)
1950                         goto delete_queues;
1951         }
1952
1953         return 0;
1954
1955 delete_queues:
1956         for (; i >= 0; i--)
1957                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1958         return ret;
1959 }
1960
1961 static int
1962 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1963 {
1964         int i, ret = 0;
1965
1966         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1967                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1968                                         (qsize / 5));
1969                 if (ret)
1970                         break;
1971                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1972                 if (ret)
1973                         break;
1974
1975                 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1976         }
1977
1978         return ret;
1979 }
1980
1981 static void
1982 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1983 {
1984         int i;
1985
1986         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1987                 nvme_fc_init_queue(ctrl, i);
1988 }
1989
1990 static void
1991 nvme_fc_ctrl_free(struct kref *ref)
1992 {
1993         struct nvme_fc_ctrl *ctrl =
1994                 container_of(ref, struct nvme_fc_ctrl, ref);
1995         unsigned long flags;
1996
1997         if (ctrl->ctrl.tagset) {
1998                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1999                 blk_mq_free_tag_set(&ctrl->tag_set);
2000         }
2001
2002         /* remove from rport list */
2003         spin_lock_irqsave(&ctrl->rport->lock, flags);
2004         list_del(&ctrl->ctrl_list);
2005         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2006
2007         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2008         blk_cleanup_queue(ctrl->ctrl.admin_q);
2009         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2010
2011         kfree(ctrl->queues);
2012
2013         put_device(ctrl->dev);
2014         nvme_fc_rport_put(ctrl->rport);
2015
2016         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2017         if (ctrl->ctrl.opts)
2018                 nvmf_free_options(ctrl->ctrl.opts);
2019         kfree(ctrl);
2020 }
2021
2022 static void
2023 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2024 {
2025         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2026 }
2027
2028 static int
2029 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2030 {
2031         return kref_get_unless_zero(&ctrl->ref);
2032 }
2033
2034 /*
2035  * All accesses from nvme core layer done - can now free the
2036  * controller. Called after last nvme_put_ctrl() call
2037  */
2038 static void
2039 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2040 {
2041         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2042
2043         WARN_ON(nctrl != &ctrl->ctrl);
2044
2045         nvme_fc_ctrl_put(ctrl);
2046 }
2047
2048 static void
2049 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2050 {
2051         int active;
2052
2053         /*
2054          * if an error (io timeout, etc) while (re)connecting,
2055          * it's an error on creating the new association.
2056          * Start the error recovery thread if it hasn't already
2057          * been started. It is expected there could be multiple
2058          * ios hitting this path before things are cleaned up.
2059          */
2060         if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2061                 active = atomic_xchg(&ctrl->err_work_active, 1);
2062                 if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2063                         atomic_set(&ctrl->err_work_active, 0);
2064                         WARN_ON(1);
2065                 }
2066                 return;
2067         }
2068
2069         /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2070         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2071                 return;
2072
2073         dev_warn(ctrl->ctrl.device,
2074                 "NVME-FC{%d}: transport association error detected: %s\n",
2075                 ctrl->cnum, errmsg);
2076         dev_warn(ctrl->ctrl.device,
2077                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2078
2079         nvme_reset_ctrl(&ctrl->ctrl);
2080 }
2081
2082 static enum blk_eh_timer_return
2083 nvme_fc_timeout(struct request *rq, bool reserved)
2084 {
2085         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2086         struct nvme_fc_ctrl *ctrl = op->ctrl;
2087
2088         /*
2089          * we can't individually ABTS an io without affecting the queue,
2090          * thus killing the queue, and thus the association.
2091          * So resolve by performing a controller reset, which will stop
2092          * the host/io stack, terminate the association on the link,
2093          * and recreate an association on the link.
2094          */
2095         nvme_fc_error_recovery(ctrl, "io timeout error");
2096
2097         /*
2098          * the io abort has been initiated. Have the reset timer
2099          * restarted and the abort completion will complete the io
2100          * shortly. Avoids a synchronous wait while the abort finishes.
2101          */
2102         return BLK_EH_RESET_TIMER;
2103 }
2104
2105 static int
2106 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2107                 struct nvme_fc_fcp_op *op)
2108 {
2109         struct nvmefc_fcp_req *freq = &op->fcp_req;
2110         enum dma_data_direction dir;
2111         int ret;
2112
2113         freq->sg_cnt = 0;
2114
2115         if (!blk_rq_nr_phys_segments(rq))
2116                 return 0;
2117
2118         freq->sg_table.sgl = freq->first_sgl;
2119         ret = sg_alloc_table_chained(&freq->sg_table,
2120                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2121                         SG_CHUNK_SIZE);
2122         if (ret)
2123                 return -ENOMEM;
2124
2125         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2126         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2127         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2128         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2129                                 op->nents, dir);
2130         if (unlikely(freq->sg_cnt <= 0)) {
2131                 sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2132                 freq->sg_cnt = 0;
2133                 return -EFAULT;
2134         }
2135
2136         /*
2137          * TODO: blk_integrity_rq(rq)  for DIF
2138          */
2139         return 0;
2140 }
2141
2142 static void
2143 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2144                 struct nvme_fc_fcp_op *op)
2145 {
2146         struct nvmefc_fcp_req *freq = &op->fcp_req;
2147
2148         if (!freq->sg_cnt)
2149                 return;
2150
2151         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2152                                 ((rq_data_dir(rq) == WRITE) ?
2153                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
2154
2155         nvme_cleanup_cmd(rq);
2156
2157         sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2158
2159         freq->sg_cnt = 0;
2160 }
2161
2162 /*
2163  * In FC, the queue is a logical thing. At transport connect, the target
2164  * creates its "queue" and returns a handle that is to be given to the
2165  * target whenever it posts something to the corresponding SQ.  When an
2166  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2167  * command contained within the SQE, an io, and assigns a FC exchange
2168  * to it. The SQE and the associated SQ handle are sent in the initial
2169  * CMD IU sents on the exchange. All transfers relative to the io occur
2170  * as part of the exchange.  The CQE is the last thing for the io,
2171  * which is transferred (explicitly or implicitly) with the RSP IU
2172  * sent on the exchange. After the CQE is received, the FC exchange is
2173  * terminaed and the Exchange may be used on a different io.
2174  *
2175  * The transport to LLDD api has the transport making a request for a
2176  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2177  * resource and transfers the command. The LLDD will then process all
2178  * steps to complete the io. Upon completion, the transport done routine
2179  * is called.
2180  *
2181  * So - while the operation is outstanding to the LLDD, there is a link
2182  * level FC exchange resource that is also outstanding. This must be
2183  * considered in all cleanup operations.
2184  */
2185 static blk_status_t
2186 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2187         struct nvme_fc_fcp_op *op, u32 data_len,
2188         enum nvmefc_fcp_datadir io_dir)
2189 {
2190         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2191         struct nvme_command *sqe = &cmdiu->sqe;
2192         int ret, opstate;
2193
2194         /*
2195          * before attempting to send the io, check to see if we believe
2196          * the target device is present
2197          */
2198         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2199                 return BLK_STS_RESOURCE;
2200
2201         if (!nvme_fc_ctrl_get(ctrl))
2202                 return BLK_STS_IOERR;
2203
2204         /* format the FC-NVME CMD IU and fcp_req */
2205         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2206         cmdiu->data_len = cpu_to_be32(data_len);
2207         switch (io_dir) {
2208         case NVMEFC_FCP_WRITE:
2209                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2210                 break;
2211         case NVMEFC_FCP_READ:
2212                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2213                 break;
2214         case NVMEFC_FCP_NODATA:
2215                 cmdiu->flags = 0;
2216                 break;
2217         }
2218         op->fcp_req.payload_length = data_len;
2219         op->fcp_req.io_dir = io_dir;
2220         op->fcp_req.transferred_length = 0;
2221         op->fcp_req.rcv_rsplen = 0;
2222         op->fcp_req.status = NVME_SC_SUCCESS;
2223         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2224
2225         /*
2226          * validate per fabric rules, set fields mandated by fabric spec
2227          * as well as those by FC-NVME spec.
2228          */
2229         WARN_ON_ONCE(sqe->common.metadata);
2230         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2231
2232         /*
2233          * format SQE DPTR field per FC-NVME rules:
2234          *    type=0x5     Transport SGL Data Block Descriptor
2235          *    subtype=0xA  Transport-specific value
2236          *    address=0
2237          *    length=length of the data series
2238          */
2239         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2240                                         NVME_SGL_FMT_TRANSPORT_A;
2241         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2242         sqe->rw.dptr.sgl.addr = 0;
2243
2244         if (!(op->flags & FCOP_FLAGS_AEN)) {
2245                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2246                 if (ret < 0) {
2247                         nvme_cleanup_cmd(op->rq);
2248                         nvme_fc_ctrl_put(ctrl);
2249                         if (ret == -ENOMEM || ret == -EAGAIN)
2250                                 return BLK_STS_RESOURCE;
2251                         return BLK_STS_IOERR;
2252                 }
2253         }
2254
2255         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2256                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2257
2258         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2259
2260         if (!(op->flags & FCOP_FLAGS_AEN))
2261                 blk_mq_start_request(op->rq);
2262
2263         cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2264         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2265                                         &ctrl->rport->remoteport,
2266                                         queue->lldd_handle, &op->fcp_req);
2267
2268         if (ret) {
2269                 /*
2270                  * If the lld fails to send the command is there an issue with
2271                  * the csn value?  If the command that fails is the Connect,
2272                  * no - as the connection won't be live.  If it is a command
2273                  * post-connect, it's possible a gap in csn may be created.
2274                  * Does this matter?  As Linux initiators don't send fused
2275                  * commands, no.  The gap would exist, but as there's nothing
2276                  * that depends on csn order to be delivered on the target
2277                  * side, it shouldn't hurt.  It would be difficult for a
2278                  * target to even detect the csn gap as it has no idea when the
2279                  * cmd with the csn was supposed to arrive.
2280                  */
2281                 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2282                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2283
2284                 if (!(op->flags & FCOP_FLAGS_AEN))
2285                         nvme_fc_unmap_data(ctrl, op->rq, op);
2286
2287                 nvme_fc_ctrl_put(ctrl);
2288
2289                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2290                                 ret != -EBUSY)
2291                         return BLK_STS_IOERR;
2292
2293                 return BLK_STS_RESOURCE;
2294         }
2295
2296         return BLK_STS_OK;
2297 }
2298
2299 static blk_status_t
2300 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2301                         const struct blk_mq_queue_data *bd)
2302 {
2303         struct nvme_ns *ns = hctx->queue->queuedata;
2304         struct nvme_fc_queue *queue = hctx->driver_data;
2305         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2306         struct request *rq = bd->rq;
2307         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2308         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2309         struct nvme_command *sqe = &cmdiu->sqe;
2310         enum nvmefc_fcp_datadir io_dir;
2311         bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2312         u32 data_len;
2313         blk_status_t ret;
2314
2315         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2316             !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2317                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2318
2319         ret = nvme_setup_cmd(ns, rq, sqe);
2320         if (ret)
2321                 return ret;
2322
2323         /*
2324          * nvme core doesn't quite treat the rq opaquely. Commands such
2325          * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2326          * there is no actual payload to be transferred.
2327          * To get it right, key data transmission on there being 1 or
2328          * more physical segments in the sg list. If there is no
2329          * physical segments, there is no payload.
2330          */
2331         if (blk_rq_nr_phys_segments(rq)) {
2332                 data_len = blk_rq_payload_bytes(rq);
2333                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2334                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2335         } else {
2336                 data_len = 0;
2337                 io_dir = NVMEFC_FCP_NODATA;
2338         }
2339
2340
2341         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2342 }
2343
2344 static void
2345 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2346 {
2347         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2348         struct nvme_fc_fcp_op *aen_op;
2349         unsigned long flags;
2350         bool terminating = false;
2351         blk_status_t ret;
2352
2353         spin_lock_irqsave(&ctrl->lock, flags);
2354         if (ctrl->flags & FCCTRL_TERMIO)
2355                 terminating = true;
2356         spin_unlock_irqrestore(&ctrl->lock, flags);
2357
2358         if (terminating)
2359                 return;
2360
2361         aen_op = &ctrl->aen_ops[0];
2362
2363         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2364                                         NVMEFC_FCP_NODATA);
2365         if (ret)
2366                 dev_err(ctrl->ctrl.device,
2367                         "failed async event work\n");
2368 }
2369
2370 static void
2371 nvme_fc_complete_rq(struct request *rq)
2372 {
2373         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2374         struct nvme_fc_ctrl *ctrl = op->ctrl;
2375
2376         atomic_set(&op->state, FCPOP_STATE_IDLE);
2377
2378         nvme_fc_unmap_data(ctrl, rq, op);
2379         nvme_complete_rq(rq);
2380         nvme_fc_ctrl_put(ctrl);
2381 }
2382
2383 /*
2384  * This routine is used by the transport when it needs to find active
2385  * io on a queue that is to be terminated. The transport uses
2386  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2387  * this routine to kill them on a 1 by 1 basis.
2388  *
2389  * As FC allocates FC exchange for each io, the transport must contact
2390  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2391  * After terminating the exchange the LLDD will call the transport's
2392  * normal io done path for the request, but it will have an aborted
2393  * status. The done path will return the io request back to the block
2394  * layer with an error status.
2395  */
2396 static bool
2397 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2398 {
2399         struct nvme_ctrl *nctrl = data;
2400         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2401         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2402
2403         __nvme_fc_abort_op(ctrl, op);
2404         return true;
2405 }
2406
2407
2408 static const struct blk_mq_ops nvme_fc_mq_ops = {
2409         .queue_rq       = nvme_fc_queue_rq,
2410         .complete       = nvme_fc_complete_rq,
2411         .init_request   = nvme_fc_init_request,
2412         .exit_request   = nvme_fc_exit_request,
2413         .init_hctx      = nvme_fc_init_hctx,
2414         .timeout        = nvme_fc_timeout,
2415 };
2416
2417 static int
2418 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2419 {
2420         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2421         unsigned int nr_io_queues;
2422         int ret;
2423
2424         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2425                                 ctrl->lport->ops->max_hw_queues);
2426         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2427         if (ret) {
2428                 dev_info(ctrl->ctrl.device,
2429                         "set_queue_count failed: %d\n", ret);
2430                 return ret;
2431         }
2432
2433         ctrl->ctrl.queue_count = nr_io_queues + 1;
2434         if (!nr_io_queues)
2435                 return 0;
2436
2437         nvme_fc_init_io_queues(ctrl);
2438
2439         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2440         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2441         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2442         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2443         ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2444         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2445         ctrl->tag_set.cmd_size =
2446                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2447                             ctrl->lport->ops->fcprqst_priv_sz);
2448         ctrl->tag_set.driver_data = ctrl;
2449         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2450         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2451
2452         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2453         if (ret)
2454                 return ret;
2455
2456         ctrl->ctrl.tagset = &ctrl->tag_set;
2457
2458         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2459         if (IS_ERR(ctrl->ctrl.connect_q)) {
2460                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2461                 goto out_free_tag_set;
2462         }
2463
2464         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2465         if (ret)
2466                 goto out_cleanup_blk_queue;
2467
2468         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2469         if (ret)
2470                 goto out_delete_hw_queues;
2471
2472         ctrl->ioq_live = true;
2473
2474         return 0;
2475
2476 out_delete_hw_queues:
2477         nvme_fc_delete_hw_io_queues(ctrl);
2478 out_cleanup_blk_queue:
2479         blk_cleanup_queue(ctrl->ctrl.connect_q);
2480 out_free_tag_set:
2481         blk_mq_free_tag_set(&ctrl->tag_set);
2482         nvme_fc_free_io_queues(ctrl);
2483
2484         /* force put free routine to ignore io queues */
2485         ctrl->ctrl.tagset = NULL;
2486
2487         return ret;
2488 }
2489
2490 static int
2491 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2492 {
2493         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2494         u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2495         unsigned int nr_io_queues;
2496         int ret;
2497
2498         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2499                                 ctrl->lport->ops->max_hw_queues);
2500         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2501         if (ret) {
2502                 dev_info(ctrl->ctrl.device,
2503                         "set_queue_count failed: %d\n", ret);
2504                 return ret;
2505         }
2506
2507         if (!nr_io_queues && prior_ioq_cnt) {
2508                 dev_info(ctrl->ctrl.device,
2509                         "Fail Reconnect: At least 1 io queue "
2510                         "required (was %d)\n", prior_ioq_cnt);
2511                 return -ENOSPC;
2512         }
2513
2514         ctrl->ctrl.queue_count = nr_io_queues + 1;
2515         /* check for io queues existing */
2516         if (ctrl->ctrl.queue_count == 1)
2517                 return 0;
2518
2519         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2520         if (ret)
2521                 goto out_free_io_queues;
2522
2523         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2524         if (ret)
2525                 goto out_delete_hw_queues;
2526
2527         if (prior_ioq_cnt != nr_io_queues)
2528                 dev_info(ctrl->ctrl.device,
2529                         "reconnect: revising io queue count from %d to %d\n",
2530                         prior_ioq_cnt, nr_io_queues);
2531         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2532
2533         return 0;
2534
2535 out_delete_hw_queues:
2536         nvme_fc_delete_hw_io_queues(ctrl);
2537 out_free_io_queues:
2538         nvme_fc_free_io_queues(ctrl);
2539         return ret;
2540 }
2541
2542 static void
2543 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2544 {
2545         struct nvme_fc_lport *lport = rport->lport;
2546
2547         atomic_inc(&lport->act_rport_cnt);
2548 }
2549
2550 static void
2551 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2552 {
2553         struct nvme_fc_lport *lport = rport->lport;
2554         u32 cnt;
2555
2556         cnt = atomic_dec_return(&lport->act_rport_cnt);
2557         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2558                 lport->ops->localport_delete(&lport->localport);
2559 }
2560
2561 static int
2562 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2563 {
2564         struct nvme_fc_rport *rport = ctrl->rport;
2565         u32 cnt;
2566
2567         if (ctrl->assoc_active)
2568                 return 1;
2569
2570         ctrl->assoc_active = true;
2571         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2572         if (cnt == 1)
2573                 nvme_fc_rport_active_on_lport(rport);
2574
2575         return 0;
2576 }
2577
2578 static int
2579 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2580 {
2581         struct nvme_fc_rport *rport = ctrl->rport;
2582         struct nvme_fc_lport *lport = rport->lport;
2583         u32 cnt;
2584
2585         /* ctrl->assoc_active=false will be set independently */
2586
2587         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2588         if (cnt == 0) {
2589                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2590                         lport->ops->remoteport_delete(&rport->remoteport);
2591                 nvme_fc_rport_inactive_on_lport(rport);
2592         }
2593
2594         return 0;
2595 }
2596
2597 /*
2598  * This routine restarts the controller on the host side, and
2599  * on the link side, recreates the controller association.
2600  */
2601 static int
2602 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2603 {
2604         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2605         int ret;
2606         bool changed;
2607
2608         ++ctrl->ctrl.nr_reconnects;
2609
2610         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2611                 return -ENODEV;
2612
2613         if (nvme_fc_ctlr_active_on_rport(ctrl))
2614                 return -ENOTUNIQ;
2615
2616         dev_info(ctrl->ctrl.device,
2617                 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
2618                 " rport wwpn 0x%016llx: NQN \"%s\"\n",
2619                 ctrl->cnum, ctrl->lport->localport.port_name,
2620                 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
2621
2622         /*
2623          * Create the admin queue
2624          */
2625
2626         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2627                                 NVME_AQ_DEPTH);
2628         if (ret)
2629                 goto out_free_queue;
2630
2631         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2632                                 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2633         if (ret)
2634                 goto out_delete_hw_queue;
2635
2636         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2637
2638         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2639         if (ret)
2640                 goto out_disconnect_admin_queue;
2641
2642         set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2643
2644         /*
2645          * Check controller capabilities
2646          *
2647          * todo:- add code to check if ctrl attributes changed from
2648          * prior connection values
2649          */
2650
2651         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2652         if (ret) {
2653                 dev_err(ctrl->ctrl.device,
2654                         "prop_get NVME_REG_CAP failed\n");
2655                 goto out_disconnect_admin_queue;
2656         }
2657
2658         ctrl->ctrl.sqsize =
2659                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2660
2661         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2662         if (ret)
2663                 goto out_disconnect_admin_queue;
2664
2665         ctrl->ctrl.max_hw_sectors =
2666                 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2667
2668         ret = nvme_init_identify(&ctrl->ctrl);
2669         if (ret)
2670                 goto out_disconnect_admin_queue;
2671
2672         /* sanity checks */
2673
2674         /* FC-NVME does not have other data in the capsule */
2675         if (ctrl->ctrl.icdoff) {
2676                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2677                                 ctrl->ctrl.icdoff);
2678                 goto out_disconnect_admin_queue;
2679         }
2680
2681         /* FC-NVME supports normal SGL Data Block Descriptors */
2682
2683         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2684                 /* warn if maxcmd is lower than queue_size */
2685                 dev_warn(ctrl->ctrl.device,
2686                         "queue_size %zu > ctrl maxcmd %u, reducing "
2687                         "to queue_size\n",
2688                         opts->queue_size, ctrl->ctrl.maxcmd);
2689                 opts->queue_size = ctrl->ctrl.maxcmd;
2690         }
2691
2692         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2693                 /* warn if sqsize is lower than queue_size */
2694                 dev_warn(ctrl->ctrl.device,
2695                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
2696                         opts->queue_size, ctrl->ctrl.sqsize + 1);
2697                 opts->queue_size = ctrl->ctrl.sqsize + 1;
2698         }
2699
2700         ret = nvme_fc_init_aen_ops(ctrl);
2701         if (ret)
2702                 goto out_term_aen_ops;
2703
2704         /*
2705          * Create the io queues
2706          */
2707
2708         if (ctrl->ctrl.queue_count > 1) {
2709                 if (!ctrl->ioq_live)
2710                         ret = nvme_fc_create_io_queues(ctrl);
2711                 else
2712                         ret = nvme_fc_recreate_io_queues(ctrl);
2713                 if (ret)
2714                         goto out_term_aen_ops;
2715         }
2716
2717         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2718
2719         ctrl->ctrl.nr_reconnects = 0;
2720
2721         if (changed)
2722                 nvme_start_ctrl(&ctrl->ctrl);
2723
2724         return 0;       /* Success */
2725
2726 out_term_aen_ops:
2727         nvme_fc_term_aen_ops(ctrl);
2728 out_disconnect_admin_queue:
2729         /* send a Disconnect(association) LS to fc-nvme target */
2730         nvme_fc_xmt_disconnect_assoc(ctrl);
2731 out_delete_hw_queue:
2732         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2733 out_free_queue:
2734         nvme_fc_free_queue(&ctrl->queues[0]);
2735         ctrl->assoc_active = false;
2736         nvme_fc_ctlr_inactive_on_rport(ctrl);
2737
2738         return ret;
2739 }
2740
2741 /*
2742  * This routine stops operation of the controller on the host side.
2743  * On the host os stack side: Admin and IO queues are stopped,
2744  *   outstanding ios on them terminated via FC ABTS.
2745  * On the link side: the association is terminated.
2746  */
2747 static void
2748 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2749 {
2750         unsigned long flags;
2751
2752         if (!ctrl->assoc_active)
2753                 return;
2754         ctrl->assoc_active = false;
2755
2756         spin_lock_irqsave(&ctrl->lock, flags);
2757         ctrl->flags |= FCCTRL_TERMIO;
2758         ctrl->iocnt = 0;
2759         spin_unlock_irqrestore(&ctrl->lock, flags);
2760
2761         /*
2762          * If io queues are present, stop them and terminate all outstanding
2763          * ios on them. As FC allocates FC exchange for each io, the
2764          * transport must contact the LLDD to terminate the exchange,
2765          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2766          * to tell us what io's are busy and invoke a transport routine
2767          * to kill them with the LLDD.  After terminating the exchange
2768          * the LLDD will call the transport's normal io done path, but it
2769          * will have an aborted status. The done path will return the
2770          * io requests back to the block layer as part of normal completions
2771          * (but with error status).
2772          */
2773         if (ctrl->ctrl.queue_count > 1) {
2774                 nvme_stop_queues(&ctrl->ctrl);
2775                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2776                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2777         }
2778
2779         /*
2780          * Other transports, which don't have link-level contexts bound
2781          * to sqe's, would try to gracefully shutdown the controller by
2782          * writing the registers for shutdown and polling (call
2783          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2784          * just aborted and we will wait on those contexts, and given
2785          * there was no indication of how live the controlelr is on the
2786          * link, don't send more io to create more contexts for the
2787          * shutdown. Let the controller fail via keepalive failure if
2788          * its still present.
2789          */
2790
2791         /*
2792          * clean up the admin queue. Same thing as above.
2793          * use blk_mq_tagset_busy_itr() and the transport routine to
2794          * terminate the exchanges.
2795          */
2796         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2797         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2798                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2799
2800         /* kill the aens as they are a separate path */
2801         nvme_fc_abort_aen_ops(ctrl);
2802
2803         /* wait for all io that had to be aborted */
2804         spin_lock_irq(&ctrl->lock);
2805         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2806         ctrl->flags &= ~FCCTRL_TERMIO;
2807         spin_unlock_irq(&ctrl->lock);
2808
2809         nvme_fc_term_aen_ops(ctrl);
2810
2811         /*
2812          * send a Disconnect(association) LS to fc-nvme target
2813          * Note: could have been sent at top of process, but
2814          * cleaner on link traffic if after the aborts complete.
2815          * Note: if association doesn't exist, association_id will be 0
2816          */
2817         if (ctrl->association_id)
2818                 nvme_fc_xmt_disconnect_assoc(ctrl);
2819
2820         if (ctrl->ctrl.tagset) {
2821                 nvme_fc_delete_hw_io_queues(ctrl);
2822                 nvme_fc_free_io_queues(ctrl);
2823         }
2824
2825         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2826         nvme_fc_free_queue(&ctrl->queues[0]);
2827
2828         /* re-enable the admin_q so anything new can fast fail */
2829         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2830
2831         /* resume the io queues so that things will fast fail */
2832         nvme_start_queues(&ctrl->ctrl);
2833
2834         nvme_fc_ctlr_inactive_on_rport(ctrl);
2835 }
2836
2837 static void
2838 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2839 {
2840         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2841
2842         cancel_work_sync(&ctrl->err_work);
2843         cancel_delayed_work_sync(&ctrl->connect_work);
2844         /*
2845          * kill the association on the link side.  this will block
2846          * waiting for io to terminate
2847          */
2848         nvme_fc_delete_association(ctrl);
2849 }
2850
2851 static void
2852 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2853 {
2854         struct nvme_fc_rport *rport = ctrl->rport;
2855         struct nvme_fc_remote_port *portptr = &rport->remoteport;
2856         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2857         bool recon = true;
2858
2859         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2860                 return;
2861
2862         if (portptr->port_state == FC_OBJSTATE_ONLINE)
2863                 dev_info(ctrl->ctrl.device,
2864                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2865                         ctrl->cnum, status);
2866         else if (time_after_eq(jiffies, rport->dev_loss_end))
2867                 recon = false;
2868
2869         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2870                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2871                         dev_info(ctrl->ctrl.device,
2872                                 "NVME-FC{%d}: Reconnect attempt in %ld "
2873                                 "seconds\n",
2874                                 ctrl->cnum, recon_delay / HZ);
2875                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2876                         recon_delay = rport->dev_loss_end - jiffies;
2877
2878                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2879         } else {
2880                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2881                         dev_warn(ctrl->ctrl.device,
2882                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2883                                 "reached.\n",
2884                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2885                 else
2886                         dev_warn(ctrl->ctrl.device,
2887                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2888                                 "while waiting for remoteport connectivity.\n",
2889                                 ctrl->cnum, portptr->dev_loss_tmo);
2890                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2891         }
2892 }
2893
2894 static void
2895 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2896 {
2897         nvme_stop_keep_alive(&ctrl->ctrl);
2898
2899         /* will block will waiting for io to terminate */
2900         nvme_fc_delete_association(ctrl);
2901
2902         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2903             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2904                 dev_err(ctrl->ctrl.device,
2905                         "NVME-FC{%d}: error_recovery: Couldn't change state "
2906                         "to CONNECTING\n", ctrl->cnum);
2907 }
2908
2909 static void
2910 nvme_fc_reset_ctrl_work(struct work_struct *work)
2911 {
2912         struct nvme_fc_ctrl *ctrl =
2913                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2914         int ret;
2915
2916         __nvme_fc_terminate_io(ctrl);
2917
2918         nvme_stop_ctrl(&ctrl->ctrl);
2919
2920         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2921                 ret = nvme_fc_create_association(ctrl);
2922         else
2923                 ret = -ENOTCONN;
2924
2925         if (ret)
2926                 nvme_fc_reconnect_or_delete(ctrl, ret);
2927         else
2928                 dev_info(ctrl->ctrl.device,
2929                         "NVME-FC{%d}: controller reset complete\n",
2930                         ctrl->cnum);
2931 }
2932
2933 static void
2934 nvme_fc_connect_err_work(struct work_struct *work)
2935 {
2936         struct nvme_fc_ctrl *ctrl =
2937                         container_of(work, struct nvme_fc_ctrl, err_work);
2938
2939         __nvme_fc_terminate_io(ctrl);
2940
2941         atomic_set(&ctrl->err_work_active, 0);
2942
2943         /*
2944          * Rescheduling the connection after recovering
2945          * from the io error is left to the reconnect work
2946          * item, which is what should have stalled waiting on
2947          * the io that had the error that scheduled this work.
2948          */
2949 }
2950
2951 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2952         .name                   = "fc",
2953         .module                 = THIS_MODULE,
2954         .flags                  = NVME_F_FABRICS,
2955         .reg_read32             = nvmf_reg_read32,
2956         .reg_read64             = nvmf_reg_read64,
2957         .reg_write32            = nvmf_reg_write32,
2958         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2959         .submit_async_event     = nvme_fc_submit_async_event,
2960         .delete_ctrl            = nvme_fc_delete_ctrl,
2961         .get_address            = nvmf_get_address,
2962 };
2963
2964 static void
2965 nvme_fc_connect_ctrl_work(struct work_struct *work)
2966 {
2967         int ret;
2968
2969         struct nvme_fc_ctrl *ctrl =
2970                         container_of(to_delayed_work(work),
2971                                 struct nvme_fc_ctrl, connect_work);
2972
2973         ret = nvme_fc_create_association(ctrl);
2974         if (ret)
2975                 nvme_fc_reconnect_or_delete(ctrl, ret);
2976         else
2977                 dev_info(ctrl->ctrl.device,
2978                         "NVME-FC{%d}: controller connect complete\n",
2979                         ctrl->cnum);
2980 }
2981
2982
2983 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2984         .queue_rq       = nvme_fc_queue_rq,
2985         .complete       = nvme_fc_complete_rq,
2986         .init_request   = nvme_fc_init_request,
2987         .exit_request   = nvme_fc_exit_request,
2988         .init_hctx      = nvme_fc_init_admin_hctx,
2989         .timeout        = nvme_fc_timeout,
2990 };
2991
2992
2993 /*
2994  * Fails a controller request if it matches an existing controller
2995  * (association) with the same tuple:
2996  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2997  *
2998  * The ports don't need to be compared as they are intrinsically
2999  * already matched by the port pointers supplied.
3000  */
3001 static bool
3002 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3003                 struct nvmf_ctrl_options *opts)
3004 {
3005         struct nvme_fc_ctrl *ctrl;
3006         unsigned long flags;
3007         bool found = false;
3008
3009         spin_lock_irqsave(&rport->lock, flags);
3010         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3011                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3012                 if (found)
3013                         break;
3014         }
3015         spin_unlock_irqrestore(&rport->lock, flags);
3016
3017         return found;
3018 }
3019
3020 static struct nvme_ctrl *
3021 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3022         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3023 {
3024         struct nvme_fc_ctrl *ctrl;
3025         unsigned long flags;
3026         int ret, idx;
3027
3028         if (!(rport->remoteport.port_role &
3029             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3030                 ret = -EBADR;
3031                 goto out_fail;
3032         }
3033
3034         if (!opts->duplicate_connect &&
3035             nvme_fc_existing_controller(rport, opts)) {
3036                 ret = -EALREADY;
3037                 goto out_fail;
3038         }
3039
3040         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3041         if (!ctrl) {
3042                 ret = -ENOMEM;
3043                 goto out_fail;
3044         }
3045
3046         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3047         if (idx < 0) {
3048                 ret = -ENOSPC;
3049                 goto out_free_ctrl;
3050         }
3051
3052         ctrl->ctrl.opts = opts;
3053         ctrl->ctrl.nr_reconnects = 0;
3054         if (lport->dev)
3055                 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3056         else
3057                 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3058         INIT_LIST_HEAD(&ctrl->ctrl_list);
3059         ctrl->lport = lport;
3060         ctrl->rport = rport;
3061         ctrl->dev = lport->dev;
3062         ctrl->cnum = idx;
3063         ctrl->ioq_live = false;
3064         ctrl->assoc_active = false;
3065         atomic_set(&ctrl->err_work_active, 0);
3066         init_waitqueue_head(&ctrl->ioabort_wait);
3067
3068         get_device(ctrl->dev);
3069         kref_init(&ctrl->ref);
3070
3071         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3072         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3073         INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3074         spin_lock_init(&ctrl->lock);
3075
3076         /* io queue count */
3077         ctrl->ctrl.queue_count = min_t(unsigned int,
3078                                 opts->nr_io_queues,
3079                                 lport->ops->max_hw_queues);
3080         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3081
3082         ctrl->ctrl.sqsize = opts->queue_size - 1;
3083         ctrl->ctrl.kato = opts->kato;
3084         ctrl->ctrl.cntlid = 0xffff;
3085
3086         ret = -ENOMEM;
3087         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3088                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3089         if (!ctrl->queues)
3090                 goto out_free_ida;
3091
3092         nvme_fc_init_queue(ctrl, 0);
3093
3094         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3095         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3096         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3097         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3098         ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3099         ctrl->admin_tag_set.cmd_size =
3100                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3101                             ctrl->lport->ops->fcprqst_priv_sz);
3102         ctrl->admin_tag_set.driver_data = ctrl;
3103         ctrl->admin_tag_set.nr_hw_queues = 1;
3104         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3105         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3106
3107         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3108         if (ret)
3109                 goto out_free_queues;
3110         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3111
3112         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3113         if (IS_ERR(ctrl->ctrl.admin_q)) {
3114                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3115                 goto out_free_admin_tag_set;
3116         }
3117
3118         /*
3119          * Would have been nice to init io queues tag set as well.
3120          * However, we require interaction from the controller
3121          * for max io queue count before we can do so.
3122          * Defer this to the connect path.
3123          */
3124
3125         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3126         if (ret)
3127                 goto out_cleanup_admin_q;
3128
3129         /* at this point, teardown path changes to ref counting on nvme ctrl */
3130
3131         spin_lock_irqsave(&rport->lock, flags);
3132         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3133         spin_unlock_irqrestore(&rport->lock, flags);
3134
3135         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3136             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3137                 dev_err(ctrl->ctrl.device,
3138                         "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3139                 goto fail_ctrl;
3140         }
3141
3142         nvme_get_ctrl(&ctrl->ctrl);
3143
3144         if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3145                 nvme_put_ctrl(&ctrl->ctrl);
3146                 dev_err(ctrl->ctrl.device,
3147                         "NVME-FC{%d}: failed to schedule initial connect\n",
3148                         ctrl->cnum);
3149                 goto fail_ctrl;
3150         }
3151
3152         flush_delayed_work(&ctrl->connect_work);
3153
3154         dev_info(ctrl->ctrl.device,
3155                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3156                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3157
3158         return &ctrl->ctrl;
3159
3160 fail_ctrl:
3161         nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3162         cancel_work_sync(&ctrl->ctrl.reset_work);
3163         cancel_work_sync(&ctrl->err_work);
3164         cancel_delayed_work_sync(&ctrl->connect_work);
3165
3166         ctrl->ctrl.opts = NULL;
3167
3168         /* initiate nvme ctrl ref counting teardown */
3169         nvme_uninit_ctrl(&ctrl->ctrl);
3170
3171         /* Remove core ctrl ref. */
3172         nvme_put_ctrl(&ctrl->ctrl);
3173
3174         /* as we're past the point where we transition to the ref
3175          * counting teardown path, if we return a bad pointer here,
3176          * the calling routine, thinking it's prior to the
3177          * transition, will do an rport put. Since the teardown
3178          * path also does a rport put, we do an extra get here to
3179          * so proper order/teardown happens.
3180          */
3181         nvme_fc_rport_get(rport);
3182
3183         return ERR_PTR(-EIO);
3184
3185 out_cleanup_admin_q:
3186         blk_cleanup_queue(ctrl->ctrl.admin_q);
3187 out_free_admin_tag_set:
3188         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3189 out_free_queues:
3190         kfree(ctrl->queues);
3191 out_free_ida:
3192         put_device(ctrl->dev);
3193         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3194 out_free_ctrl:
3195         kfree(ctrl);
3196 out_fail:
3197         /* exit via here doesn't follow ctlr ref points */
3198         return ERR_PTR(ret);
3199 }
3200
3201
3202 struct nvmet_fc_traddr {
3203         u64     nn;
3204         u64     pn;
3205 };
3206
3207 static int
3208 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3209 {
3210         u64 token64;
3211
3212         if (match_u64(sstr, &token64))
3213                 return -EINVAL;
3214         *val = token64;
3215
3216         return 0;
3217 }
3218
3219 /*
3220  * This routine validates and extracts the WWN's from the TRADDR string.
3221  * As kernel parsers need the 0x to determine number base, universally
3222  * build string to parse with 0x prefix before parsing name strings.
3223  */
3224 static int
3225 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3226 {
3227         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3228         substring_t wwn = { name, &name[sizeof(name)-1] };
3229         int nnoffset, pnoffset;
3230
3231         /* validate if string is one of the 2 allowed formats */
3232         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3233                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3234                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3235                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3236                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3237                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3238                                                 NVME_FC_TRADDR_OXNNLEN;
3239         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3240                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3241                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3242                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3243                 nnoffset = NVME_FC_TRADDR_NNLEN;
3244                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3245         } else
3246                 goto out_einval;
3247
3248         name[0] = '0';
3249         name[1] = 'x';
3250         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3251
3252         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3253         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3254                 goto out_einval;
3255
3256         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3257         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3258                 goto out_einval;
3259
3260         return 0;
3261
3262 out_einval:
3263         pr_warn("%s: bad traddr string\n", __func__);
3264         return -EINVAL;
3265 }
3266
3267 static struct nvme_ctrl *
3268 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3269 {
3270         struct nvme_fc_lport *lport;
3271         struct nvme_fc_rport *rport;
3272         struct nvme_ctrl *ctrl;
3273         struct nvmet_fc_traddr laddr = { 0L, 0L };
3274         struct nvmet_fc_traddr raddr = { 0L, 0L };
3275         unsigned long flags;
3276         int ret;
3277
3278         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3279         if (ret || !raddr.nn || !raddr.pn)
3280                 return ERR_PTR(-EINVAL);
3281
3282         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3283         if (ret || !laddr.nn || !laddr.pn)
3284                 return ERR_PTR(-EINVAL);
3285
3286         /* find the host and remote ports to connect together */
3287         spin_lock_irqsave(&nvme_fc_lock, flags);
3288         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3289                 if (lport->localport.node_name != laddr.nn ||
3290                     lport->localport.port_name != laddr.pn)
3291                         continue;
3292
3293                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3294                         if (rport->remoteport.node_name != raddr.nn ||
3295                             rport->remoteport.port_name != raddr.pn)
3296                                 continue;
3297
3298                         /* if fail to get reference fall through. Will error */
3299                         if (!nvme_fc_rport_get(rport))
3300                                 break;
3301
3302                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3303
3304                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3305                         if (IS_ERR(ctrl))
3306                                 nvme_fc_rport_put(rport);
3307                         return ctrl;
3308                 }
3309         }
3310         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3311
3312         pr_warn("%s: %s - %s combination not found\n",
3313                 __func__, opts->traddr, opts->host_traddr);
3314         return ERR_PTR(-ENOENT);
3315 }
3316
3317
3318 static struct nvmf_transport_ops nvme_fc_transport = {
3319         .name           = "fc",
3320         .module         = THIS_MODULE,
3321         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3322         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3323         .create_ctrl    = nvme_fc_create_ctrl,
3324 };
3325
3326 /* Arbitrary successive failures max. With lots of subsystems could be high */
3327 #define DISCOVERY_MAX_FAIL      20
3328
3329 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3330                 struct device_attribute *attr, const char *buf, size_t count)
3331 {
3332         unsigned long flags;
3333         LIST_HEAD(local_disc_list);
3334         struct nvme_fc_lport *lport;
3335         struct nvme_fc_rport *rport;
3336         int failcnt = 0;
3337
3338         spin_lock_irqsave(&nvme_fc_lock, flags);
3339 restart:
3340         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3341                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3342                         if (!nvme_fc_lport_get(lport))
3343                                 continue;
3344                         if (!nvme_fc_rport_get(rport)) {
3345                                 /*
3346                                  * This is a temporary condition. Upon restart
3347                                  * this rport will be gone from the list.
3348                                  *
3349                                  * Revert the lport put and retry.  Anything
3350                                  * added to the list already will be skipped (as
3351                                  * they are no longer list_empty).  Loops should
3352                                  * resume at rports that were not yet seen.
3353                                  */
3354                                 nvme_fc_lport_put(lport);
3355
3356                                 if (failcnt++ < DISCOVERY_MAX_FAIL)
3357                                         goto restart;
3358
3359                                 pr_err("nvme_discovery: too many reference "
3360                                        "failures\n");
3361                                 goto process_local_list;
3362                         }
3363                         if (list_empty(&rport->disc_list))
3364                                 list_add_tail(&rport->disc_list,
3365                                               &local_disc_list);
3366                 }
3367         }
3368
3369 process_local_list:
3370         while (!list_empty(&local_disc_list)) {
3371                 rport = list_first_entry(&local_disc_list,
3372                                          struct nvme_fc_rport, disc_list);
3373                 list_del_init(&rport->disc_list);
3374                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3375
3376                 lport = rport->lport;
3377                 /* signal discovery. Won't hurt if it repeats */
3378                 nvme_fc_signal_discovery_scan(lport, rport);
3379                 nvme_fc_rport_put(rport);
3380                 nvme_fc_lport_put(lport);
3381
3382                 spin_lock_irqsave(&nvme_fc_lock, flags);
3383         }
3384         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3385
3386         return count;
3387 }
3388 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3389
3390 static struct attribute *nvme_fc_attrs[] = {
3391         &dev_attr_nvme_discovery.attr,
3392         NULL
3393 };
3394
3395 static struct attribute_group nvme_fc_attr_group = {
3396         .attrs = nvme_fc_attrs,
3397 };
3398
3399 static const struct attribute_group *nvme_fc_attr_groups[] = {
3400         &nvme_fc_attr_group,
3401         NULL
3402 };
3403
3404 static struct class fc_class = {
3405         .name = "fc",
3406         .dev_groups = nvme_fc_attr_groups,
3407         .owner = THIS_MODULE,
3408 };
3409
3410 static int __init nvme_fc_init_module(void)
3411 {
3412         int ret;
3413
3414         nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3415         if (!nvme_fc_wq)
3416                 return -ENOMEM;
3417
3418         /*
3419          * NOTE:
3420          * It is expected that in the future the kernel will combine
3421          * the FC-isms that are currently under scsi and now being
3422          * added to by NVME into a new standalone FC class. The SCSI
3423          * and NVME protocols and their devices would be under this
3424          * new FC class.
3425          *
3426          * As we need something to post FC-specific udev events to,
3427          * specifically for nvme probe events, start by creating the
3428          * new device class.  When the new standalone FC class is
3429          * put in place, this code will move to a more generic
3430          * location for the class.
3431          */
3432         ret = class_register(&fc_class);
3433         if (ret) {
3434                 pr_err("couldn't register class fc\n");
3435                 goto out_destroy_wq;
3436         }
3437
3438         /*
3439          * Create a device for the FC-centric udev events
3440          */
3441         fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3442                                 "fc_udev_device");
3443         if (IS_ERR(fc_udev_device)) {
3444                 pr_err("couldn't create fc_udev device!\n");
3445                 ret = PTR_ERR(fc_udev_device);
3446                 goto out_destroy_class;
3447         }
3448
3449         ret = nvmf_register_transport(&nvme_fc_transport);
3450         if (ret)
3451                 goto out_destroy_device;
3452
3453         return 0;
3454
3455 out_destroy_device:
3456         device_destroy(&fc_class, MKDEV(0, 0));
3457 out_destroy_class:
3458         class_unregister(&fc_class);
3459 out_destroy_wq:
3460         destroy_workqueue(nvme_fc_wq);
3461
3462         return ret;
3463 }
3464
3465 static void
3466 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3467 {
3468         struct nvme_fc_ctrl *ctrl;
3469
3470         spin_lock(&rport->lock);
3471         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3472                 dev_warn(ctrl->ctrl.device,
3473                         "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3474                         ctrl->cnum);
3475                 nvme_delete_ctrl(&ctrl->ctrl);
3476         }
3477         spin_unlock(&rport->lock);
3478 }
3479
3480 static void
3481 nvme_fc_cleanup_for_unload(void)
3482 {
3483         struct nvme_fc_lport *lport;
3484         struct nvme_fc_rport *rport;
3485
3486         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3487                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3488                         nvme_fc_delete_controllers(rport);
3489                 }
3490         }
3491 }
3492
3493 static void __exit nvme_fc_exit_module(void)
3494 {
3495         unsigned long flags;
3496         bool need_cleanup = false;
3497
3498         spin_lock_irqsave(&nvme_fc_lock, flags);
3499         nvme_fc_waiting_to_unload = true;
3500         if (!list_empty(&nvme_fc_lport_list)) {
3501                 need_cleanup = true;
3502                 nvme_fc_cleanup_for_unload();
3503         }
3504         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3505         if (need_cleanup) {
3506                 pr_info("%s: waiting for ctlr deletes\n", __func__);
3507                 wait_for_completion(&nvme_fc_unload_proceed);
3508                 pr_info("%s: ctrl deletes complete\n", __func__);
3509         }
3510
3511         nvmf_unregister_transport(&nvme_fc_transport);
3512
3513         ida_destroy(&nvme_fc_local_port_cnt);
3514         ida_destroy(&nvme_fc_ctrl_cnt);
3515
3516         device_destroy(&fc_class, MKDEV(0, 0));
3517         class_unregister(&fc_class);
3518         destroy_workqueue(nvme_fc_wq);
3519 }
3520
3521 module_init(nvme_fc_init_module);
3522 module_exit(nvme_fc_exit_module);
3523
3524 MODULE_LICENSE("GPL v2");