1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 #include <linux/blk-cgroup.h>
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
18 #include <scsi/scsi_transport_fc.h>
19 #include <linux/blk-mq-pci.h>
21 /* *************************** Data Structures/Defines ****************** */
24 enum nvme_fc_queue_flags {
25 NVME_FC_Q_CONNECTED = 0,
29 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
30 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects
31 * when connected and a
35 struct nvme_fc_queue {
36 struct nvme_fc_ctrl *ctrl;
38 struct blk_mq_hw_ctx *hctx;
40 size_t cmnd_capsule_len;
49 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
51 enum nvme_fcop_flags {
52 FCOP_FLAGS_TERMIO = (1 << 0),
53 FCOP_FLAGS_AEN = (1 << 1),
56 struct nvmefc_ls_req_op {
57 struct nvmefc_ls_req ls_req;
59 struct nvme_fc_rport *rport;
60 struct nvme_fc_queue *queue;
65 struct completion ls_done;
66 struct list_head lsreq_list; /* rport->ls_req_list */
70 struct nvmefc_ls_rcv_op {
71 struct nvme_fc_rport *rport;
72 struct nvmefc_ls_rsp *lsrsp;
73 union nvmefc_ls_requests *rqstbuf;
74 union nvmefc_ls_responses *rspbuf;
78 struct list_head lsrcv_list; /* rport->ls_rcv_list */
79 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
81 enum nvme_fcpop_state {
82 FCPOP_STATE_UNINIT = 0,
84 FCPOP_STATE_ACTIVE = 2,
85 FCPOP_STATE_ABORTED = 3,
86 FCPOP_STATE_COMPLETE = 4,
89 struct nvme_fc_fcp_op {
90 struct nvme_request nreq; /*
93 * the 1st element in the
98 struct nvmefc_fcp_req fcp_req;
100 struct nvme_fc_ctrl *ctrl;
101 struct nvme_fc_queue *queue;
109 struct nvme_fc_cmd_iu cmd_iu;
110 struct nvme_fc_ersp_iu rsp_iu;
113 struct nvme_fcp_op_w_sgl {
114 struct nvme_fc_fcp_op op;
115 struct scatterlist sgl[NVME_INLINE_SG_CNT];
119 struct nvme_fc_lport {
120 struct nvme_fc_local_port localport;
123 struct list_head port_list; /* nvme_fc_port_list */
124 struct list_head endp_list;
125 struct device *dev; /* physical device for dma */
126 struct nvme_fc_port_template *ops;
128 atomic_t act_rport_cnt;
129 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
131 struct nvme_fc_rport {
132 struct nvme_fc_remote_port remoteport;
134 struct list_head endp_list; /* for lport->endp_list */
135 struct list_head ctrl_list;
136 struct list_head ls_req_list;
137 struct list_head ls_rcv_list;
138 struct list_head disc_list;
139 struct device *dev; /* physical device for dma */
140 struct nvme_fc_lport *lport;
143 atomic_t act_ctrl_cnt;
144 unsigned long dev_loss_end;
145 struct work_struct lsrcv_work;
146 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
148 /* fc_ctrl flags values - specified as bit positions */
149 #define ASSOC_ACTIVE 0
150 #define ASSOC_FAILED 1
151 #define FCCTRL_TERMIO 2
153 struct nvme_fc_ctrl {
155 struct nvme_fc_queue *queues;
157 struct nvme_fc_lport *lport;
158 struct nvme_fc_rport *rport;
163 struct nvmefc_ls_rcv_op *rcv_disconn;
165 struct list_head ctrl_list; /* rport->ctrl_list */
167 struct blk_mq_tag_set admin_tag_set;
168 struct blk_mq_tag_set tag_set;
170 struct work_struct ioerr_work;
171 struct delayed_work connect_work;
176 wait_queue_head_t ioabort_wait;
178 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
180 struct nvme_ctrl ctrl;
183 static inline struct nvme_fc_ctrl *
184 to_fc_ctrl(struct nvme_ctrl *ctrl)
186 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
189 static inline struct nvme_fc_lport *
190 localport_to_lport(struct nvme_fc_local_port *portptr)
192 return container_of(portptr, struct nvme_fc_lport, localport);
195 static inline struct nvme_fc_rport *
196 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
198 return container_of(portptr, struct nvme_fc_rport, remoteport);
201 static inline struct nvmefc_ls_req_op *
202 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
204 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
207 static inline struct nvme_fc_fcp_op *
208 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
210 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
215 /* *************************** Globals **************************** */
218 static DEFINE_SPINLOCK(nvme_fc_lock);
220 static LIST_HEAD(nvme_fc_lport_list);
221 static DEFINE_IDA(nvme_fc_local_port_cnt);
222 static DEFINE_IDA(nvme_fc_ctrl_cnt);
224 static struct workqueue_struct *nvme_fc_wq;
226 static bool nvme_fc_waiting_to_unload;
227 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
230 * These items are short-term. They will eventually be moved into
231 * a generic FC class. See comments in module init.
233 static struct device *fc_udev_device;
235 static void nvme_fc_complete_rq(struct request *rq);
237 /* *********************** FC-NVME Port Management ************************ */
239 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
240 struct nvme_fc_queue *, unsigned int);
242 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
246 nvme_fc_free_lport(struct kref *ref)
248 struct nvme_fc_lport *lport =
249 container_of(ref, struct nvme_fc_lport, ref);
252 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
253 WARN_ON(!list_empty(&lport->endp_list));
255 /* remove from transport list */
256 spin_lock_irqsave(&nvme_fc_lock, flags);
257 list_del(&lport->port_list);
258 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
259 complete(&nvme_fc_unload_proceed);
260 spin_unlock_irqrestore(&nvme_fc_lock, flags);
262 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
263 ida_destroy(&lport->endp_cnt);
265 put_device(lport->dev);
271 nvme_fc_lport_put(struct nvme_fc_lport *lport)
273 kref_put(&lport->ref, nvme_fc_free_lport);
277 nvme_fc_lport_get(struct nvme_fc_lport *lport)
279 return kref_get_unless_zero(&lport->ref);
283 static struct nvme_fc_lport *
284 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
285 struct nvme_fc_port_template *ops,
288 struct nvme_fc_lport *lport;
291 spin_lock_irqsave(&nvme_fc_lock, flags);
293 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
294 if (lport->localport.node_name != pinfo->node_name ||
295 lport->localport.port_name != pinfo->port_name)
298 if (lport->dev != dev) {
299 lport = ERR_PTR(-EXDEV);
303 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
304 lport = ERR_PTR(-EEXIST);
308 if (!nvme_fc_lport_get(lport)) {
310 * fails if ref cnt already 0. If so,
311 * act as if lport already deleted
317 /* resume the lport */
320 lport->localport.port_role = pinfo->port_role;
321 lport->localport.port_id = pinfo->port_id;
322 lport->localport.port_state = FC_OBJSTATE_ONLINE;
324 spin_unlock_irqrestore(&nvme_fc_lock, flags);
332 spin_unlock_irqrestore(&nvme_fc_lock, flags);
338 * nvme_fc_register_localport - transport entry point called by an
339 * LLDD to register the existence of a NVME
341 * @pinfo: pointer to information about the port to be registered
342 * @template: LLDD entrypoints and operational parameters for the port
343 * @dev: physical hardware device node port corresponds to. Will be
344 * used for DMA mappings
345 * @portptr: pointer to a local port pointer. Upon success, the routine
346 * will allocate a nvme_fc_local_port structure and place its
347 * address in the local port pointer. Upon failure, local port
348 * pointer will be set to 0.
351 * a completion status. Must be 0 upon success; a negative errno
352 * (ex: -ENXIO) upon failure.
355 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
356 struct nvme_fc_port_template *template,
358 struct nvme_fc_local_port **portptr)
360 struct nvme_fc_lport *newrec;
364 if (!template->localport_delete || !template->remoteport_delete ||
365 !template->ls_req || !template->fcp_io ||
366 !template->ls_abort || !template->fcp_abort ||
367 !template->max_hw_queues || !template->max_sgl_segments ||
368 !template->max_dif_sgl_segments || !template->dma_boundary) {
370 goto out_reghost_failed;
374 * look to see if there is already a localport that had been
375 * deregistered and in the process of waiting for all the
376 * references to fully be removed. If the references haven't
377 * expired, we can simply re-enable the localport. Remoteports
378 * and controller reconnections should resume naturally.
380 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
382 /* found an lport, but something about its state is bad */
383 if (IS_ERR(newrec)) {
384 ret = PTR_ERR(newrec);
385 goto out_reghost_failed;
387 /* found existing lport, which was resumed */
389 *portptr = &newrec->localport;
393 /* nothing found - allocate a new localport struct */
395 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
399 goto out_reghost_failed;
402 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
408 if (!get_device(dev) && dev) {
413 INIT_LIST_HEAD(&newrec->port_list);
414 INIT_LIST_HEAD(&newrec->endp_list);
415 kref_init(&newrec->ref);
416 atomic_set(&newrec->act_rport_cnt, 0);
417 newrec->ops = template;
419 ida_init(&newrec->endp_cnt);
420 if (template->local_priv_sz)
421 newrec->localport.private = &newrec[1];
423 newrec->localport.private = NULL;
424 newrec->localport.node_name = pinfo->node_name;
425 newrec->localport.port_name = pinfo->port_name;
426 newrec->localport.port_role = pinfo->port_role;
427 newrec->localport.port_id = pinfo->port_id;
428 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
429 newrec->localport.port_num = idx;
431 spin_lock_irqsave(&nvme_fc_lock, flags);
432 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
433 spin_unlock_irqrestore(&nvme_fc_lock, flags);
436 dma_set_seg_boundary(dev, template->dma_boundary);
438 *portptr = &newrec->localport;
442 ida_free(&nvme_fc_local_port_cnt, idx);
450 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
453 * nvme_fc_unregister_localport - transport entry point called by an
454 * LLDD to deregister/remove a previously
455 * registered a NVME host FC port.
456 * @portptr: pointer to the (registered) local port that is to be deregistered.
459 * a completion status. Must be 0 upon success; a negative errno
460 * (ex: -ENXIO) upon failure.
463 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
465 struct nvme_fc_lport *lport = localport_to_lport(portptr);
471 spin_lock_irqsave(&nvme_fc_lock, flags);
473 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
474 spin_unlock_irqrestore(&nvme_fc_lock, flags);
477 portptr->port_state = FC_OBJSTATE_DELETED;
479 spin_unlock_irqrestore(&nvme_fc_lock, flags);
481 if (atomic_read(&lport->act_rport_cnt) == 0)
482 lport->ops->localport_delete(&lport->localport);
484 nvme_fc_lport_put(lport);
488 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
491 * TRADDR strings, per FC-NVME are fixed format:
492 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
493 * udev event will only differ by prefix of what field is
495 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
496 * 19 + 43 + null_fudge = 64 characters
498 #define FCNVME_TRADDR_LENGTH 64
501 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
502 struct nvme_fc_rport *rport)
504 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
505 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
506 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
508 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
511 snprintf(hostaddr, sizeof(hostaddr),
512 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
513 lport->localport.node_name, lport->localport.port_name);
514 snprintf(tgtaddr, sizeof(tgtaddr),
515 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
516 rport->remoteport.node_name, rport->remoteport.port_name);
517 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
521 nvme_fc_free_rport(struct kref *ref)
523 struct nvme_fc_rport *rport =
524 container_of(ref, struct nvme_fc_rport, ref);
525 struct nvme_fc_lport *lport =
526 localport_to_lport(rport->remoteport.localport);
529 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
530 WARN_ON(!list_empty(&rport->ctrl_list));
532 /* remove from lport list */
533 spin_lock_irqsave(&nvme_fc_lock, flags);
534 list_del(&rport->endp_list);
535 spin_unlock_irqrestore(&nvme_fc_lock, flags);
537 WARN_ON(!list_empty(&rport->disc_list));
538 ida_free(&lport->endp_cnt, rport->remoteport.port_num);
542 nvme_fc_lport_put(lport);
546 nvme_fc_rport_put(struct nvme_fc_rport *rport)
548 kref_put(&rport->ref, nvme_fc_free_rport);
552 nvme_fc_rport_get(struct nvme_fc_rport *rport)
554 return kref_get_unless_zero(&rport->ref);
558 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
560 switch (nvme_ctrl_state(&ctrl->ctrl)) {
562 case NVME_CTRL_CONNECTING:
564 * As all reconnects were suppressed, schedule a
567 dev_info(ctrl->ctrl.device,
568 "NVME-FC{%d}: connectivity re-established. "
569 "Attempting reconnect\n", ctrl->cnum);
571 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
574 case NVME_CTRL_RESETTING:
576 * Controller is already in the process of terminating the
577 * association. No need to do anything further. The reconnect
578 * step will naturally occur after the reset completes.
583 /* no action to take - let it delete */
588 static struct nvme_fc_rport *
589 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
590 struct nvme_fc_port_info *pinfo)
592 struct nvme_fc_rport *rport;
593 struct nvme_fc_ctrl *ctrl;
596 spin_lock_irqsave(&nvme_fc_lock, flags);
598 list_for_each_entry(rport, &lport->endp_list, endp_list) {
599 if (rport->remoteport.node_name != pinfo->node_name ||
600 rport->remoteport.port_name != pinfo->port_name)
603 if (!nvme_fc_rport_get(rport)) {
604 rport = ERR_PTR(-ENOLCK);
608 spin_unlock_irqrestore(&nvme_fc_lock, flags);
610 spin_lock_irqsave(&rport->lock, flags);
612 /* has it been unregistered */
613 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
614 /* means lldd called us twice */
615 spin_unlock_irqrestore(&rport->lock, flags);
616 nvme_fc_rport_put(rport);
617 return ERR_PTR(-ESTALE);
620 rport->remoteport.port_role = pinfo->port_role;
621 rport->remoteport.port_id = pinfo->port_id;
622 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
623 rport->dev_loss_end = 0;
626 * kick off a reconnect attempt on all associations to the
627 * remote port. A successful reconnects will resume i/o.
629 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
630 nvme_fc_resume_controller(ctrl);
632 spin_unlock_irqrestore(&rport->lock, flags);
640 spin_unlock_irqrestore(&nvme_fc_lock, flags);
646 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
647 struct nvme_fc_port_info *pinfo)
649 if (pinfo->dev_loss_tmo)
650 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
652 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
656 * nvme_fc_register_remoteport - transport entry point called by an
657 * LLDD to register the existence of a NVME
658 * subsystem FC port on its fabric.
659 * @localport: pointer to the (registered) local port that the remote
660 * subsystem port is connected to.
661 * @pinfo: pointer to information about the port to be registered
662 * @portptr: pointer to a remote port pointer. Upon success, the routine
663 * will allocate a nvme_fc_remote_port structure and place its
664 * address in the remote port pointer. Upon failure, remote port
665 * pointer will be set to 0.
668 * a completion status. Must be 0 upon success; a negative errno
669 * (ex: -ENXIO) upon failure.
672 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
673 struct nvme_fc_port_info *pinfo,
674 struct nvme_fc_remote_port **portptr)
676 struct nvme_fc_lport *lport = localport_to_lport(localport);
677 struct nvme_fc_rport *newrec;
681 if (!nvme_fc_lport_get(lport)) {
683 goto out_reghost_failed;
687 * look to see if there is already a remoteport that is waiting
688 * for a reconnect (within dev_loss_tmo) with the same WWN's.
689 * If so, transition to it and reconnect.
691 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
693 /* found an rport, but something about its state is bad */
694 if (IS_ERR(newrec)) {
695 ret = PTR_ERR(newrec);
698 /* found existing rport, which was resumed */
700 nvme_fc_lport_put(lport);
701 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
702 nvme_fc_signal_discovery_scan(lport, newrec);
703 *portptr = &newrec->remoteport;
707 /* nothing found - allocate a new remoteport struct */
709 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
716 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
719 goto out_kfree_rport;
722 INIT_LIST_HEAD(&newrec->endp_list);
723 INIT_LIST_HEAD(&newrec->ctrl_list);
724 INIT_LIST_HEAD(&newrec->ls_req_list);
725 INIT_LIST_HEAD(&newrec->disc_list);
726 kref_init(&newrec->ref);
727 atomic_set(&newrec->act_ctrl_cnt, 0);
728 spin_lock_init(&newrec->lock);
729 newrec->remoteport.localport = &lport->localport;
730 INIT_LIST_HEAD(&newrec->ls_rcv_list);
731 newrec->dev = lport->dev;
732 newrec->lport = lport;
733 if (lport->ops->remote_priv_sz)
734 newrec->remoteport.private = &newrec[1];
736 newrec->remoteport.private = NULL;
737 newrec->remoteport.port_role = pinfo->port_role;
738 newrec->remoteport.node_name = pinfo->node_name;
739 newrec->remoteport.port_name = pinfo->port_name;
740 newrec->remoteport.port_id = pinfo->port_id;
741 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
742 newrec->remoteport.port_num = idx;
743 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
744 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
746 spin_lock_irqsave(&nvme_fc_lock, flags);
747 list_add_tail(&newrec->endp_list, &lport->endp_list);
748 spin_unlock_irqrestore(&nvme_fc_lock, flags);
750 nvme_fc_signal_discovery_scan(lport, newrec);
752 *portptr = &newrec->remoteport;
758 nvme_fc_lport_put(lport);
763 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
766 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
768 struct nvmefc_ls_req_op *lsop;
772 spin_lock_irqsave(&rport->lock, flags);
774 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
775 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
776 lsop->flags |= FCOP_FLAGS_TERMIO;
777 spin_unlock_irqrestore(&rport->lock, flags);
778 rport->lport->ops->ls_abort(&rport->lport->localport,
784 spin_unlock_irqrestore(&rport->lock, flags);
790 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
792 dev_info(ctrl->ctrl.device,
793 "NVME-FC{%d}: controller connectivity lost. Awaiting "
794 "Reconnect", ctrl->cnum);
796 switch (nvme_ctrl_state(&ctrl->ctrl)) {
800 * Schedule a controller reset. The reset will terminate the
801 * association and schedule the reconnect timer. Reconnects
802 * will be attempted until either the ctlr_loss_tmo
803 * (max_retries * connect_delay) expires or the remoteport's
804 * dev_loss_tmo expires.
806 if (nvme_reset_ctrl(&ctrl->ctrl)) {
807 dev_warn(ctrl->ctrl.device,
808 "NVME-FC{%d}: Couldn't schedule reset.\n",
810 nvme_delete_ctrl(&ctrl->ctrl);
814 case NVME_CTRL_CONNECTING:
816 * The association has already been terminated and the
817 * controller is attempting reconnects. No need to do anything
818 * futher. Reconnects will be attempted until either the
819 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
820 * remoteport's dev_loss_tmo expires.
824 case NVME_CTRL_RESETTING:
826 * Controller is already in the process of terminating the
827 * association. No need to do anything further. The reconnect
828 * step will kick in naturally after the association is
833 case NVME_CTRL_DELETING:
834 case NVME_CTRL_DELETING_NOIO:
836 /* no action to take - let it delete */
842 * nvme_fc_unregister_remoteport - transport entry point called by an
843 * LLDD to deregister/remove a previously
844 * registered a NVME subsystem FC port.
845 * @portptr: pointer to the (registered) remote port that is to be
849 * a completion status. Must be 0 upon success; a negative errno
850 * (ex: -ENXIO) upon failure.
853 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
855 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
856 struct nvme_fc_ctrl *ctrl;
862 spin_lock_irqsave(&rport->lock, flags);
864 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
865 spin_unlock_irqrestore(&rport->lock, flags);
868 portptr->port_state = FC_OBJSTATE_DELETED;
870 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
872 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
873 /* if dev_loss_tmo==0, dev loss is immediate */
874 if (!portptr->dev_loss_tmo) {
875 dev_warn(ctrl->ctrl.device,
876 "NVME-FC{%d}: controller connectivity lost.\n",
878 nvme_delete_ctrl(&ctrl->ctrl);
880 nvme_fc_ctrl_connectivity_loss(ctrl);
883 spin_unlock_irqrestore(&rport->lock, flags);
885 nvme_fc_abort_lsops(rport);
887 if (atomic_read(&rport->act_ctrl_cnt) == 0)
888 rport->lport->ops->remoteport_delete(portptr);
891 * release the reference, which will allow, if all controllers
892 * go away, which should only occur after dev_loss_tmo occurs,
893 * for the rport to be torn down.
895 nvme_fc_rport_put(rport);
899 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
902 * nvme_fc_rescan_remoteport - transport entry point called by an
903 * LLDD to request a nvme device rescan.
904 * @remoteport: pointer to the (registered) remote port that is to be
910 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
912 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
914 nvme_fc_signal_discovery_scan(rport->lport, rport);
916 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
919 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
922 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
925 spin_lock_irqsave(&rport->lock, flags);
927 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
928 spin_unlock_irqrestore(&rport->lock, flags);
932 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
933 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
935 spin_unlock_irqrestore(&rport->lock, flags);
939 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
942 /* *********************** FC-NVME DMA Handling **************************** */
945 * The fcloop device passes in a NULL device pointer. Real LLD's will
946 * pass in a valid device pointer. If NULL is passed to the dma mapping
947 * routines, depending on the platform, it may or may not succeed, and
951 * Wrapper all the dma routines and check the dev pointer.
953 * If simple mappings (return just a dma address, we'll noop them,
954 * returning a dma address of 0.
956 * On more complex mappings (dma_map_sg), a pseudo routine fills
957 * in the scatter list, setting all dma addresses to 0.
960 static inline dma_addr_t
961 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
962 enum dma_data_direction dir)
964 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
968 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
970 return dev ? dma_mapping_error(dev, dma_addr) : 0;
974 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
975 enum dma_data_direction dir)
978 dma_unmap_single(dev, addr, size, dir);
982 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
983 enum dma_data_direction dir)
986 dma_sync_single_for_cpu(dev, addr, size, dir);
990 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
991 enum dma_data_direction dir)
994 dma_sync_single_for_device(dev, addr, size, dir);
997 /* pseudo dma_map_sg call */
999 fc_map_sg(struct scatterlist *sg, int nents)
1001 struct scatterlist *s;
1004 WARN_ON(nents == 0 || sg[0].length == 0);
1006 for_each_sg(sg, s, nents, i) {
1007 s->dma_address = 0L;
1008 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1009 s->dma_length = s->length;
1016 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1017 enum dma_data_direction dir)
1019 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1023 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1024 enum dma_data_direction dir)
1027 dma_unmap_sg(dev, sg, nents, dir);
1030 /* *********************** FC-NVME LS Handling **************************** */
1032 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1033 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1035 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1038 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1040 struct nvme_fc_rport *rport = lsop->rport;
1041 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1042 unsigned long flags;
1044 spin_lock_irqsave(&rport->lock, flags);
1046 if (!lsop->req_queued) {
1047 spin_unlock_irqrestore(&rport->lock, flags);
1051 list_del(&lsop->lsreq_list);
1053 lsop->req_queued = false;
1055 spin_unlock_irqrestore(&rport->lock, flags);
1057 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1058 (lsreq->rqstlen + lsreq->rsplen),
1061 nvme_fc_rport_put(rport);
1065 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1066 struct nvmefc_ls_req_op *lsop,
1067 void (*done)(struct nvmefc_ls_req *req, int status))
1069 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1070 unsigned long flags;
1073 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1074 return -ECONNREFUSED;
1076 if (!nvme_fc_rport_get(rport))
1080 lsop->rport = rport;
1081 lsop->req_queued = false;
1082 INIT_LIST_HEAD(&lsop->lsreq_list);
1083 init_completion(&lsop->ls_done);
1085 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1086 lsreq->rqstlen + lsreq->rsplen,
1088 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1092 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1094 spin_lock_irqsave(&rport->lock, flags);
1096 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1098 lsop->req_queued = true;
1100 spin_unlock_irqrestore(&rport->lock, flags);
1102 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1103 &rport->remoteport, lsreq);
1110 lsop->ls_error = ret;
1111 spin_lock_irqsave(&rport->lock, flags);
1112 lsop->req_queued = false;
1113 list_del(&lsop->lsreq_list);
1114 spin_unlock_irqrestore(&rport->lock, flags);
1115 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1116 (lsreq->rqstlen + lsreq->rsplen),
1119 nvme_fc_rport_put(rport);
1125 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1127 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1129 lsop->ls_error = status;
1130 complete(&lsop->ls_done);
1134 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1136 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1137 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1140 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1144 * No timeout/not interruptible as we need the struct
1145 * to exist until the lldd calls us back. Thus mandate
1146 * wait until driver calls back. lldd responsible for
1147 * the timeout action
1149 wait_for_completion(&lsop->ls_done);
1151 __nvme_fc_finish_ls_req(lsop);
1153 ret = lsop->ls_error;
1159 /* ACC or RJT payload ? */
1160 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1167 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1168 struct nvmefc_ls_req_op *lsop,
1169 void (*done)(struct nvmefc_ls_req *req, int status))
1171 /* don't wait for completion */
1173 return __nvme_fc_send_ls_req(rport, lsop, done);
1177 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1178 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1180 struct nvmefc_ls_req_op *lsop;
1181 struct nvmefc_ls_req *lsreq;
1182 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1183 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1184 unsigned long flags;
1187 lsop = kzalloc((sizeof(*lsop) +
1188 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1189 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1191 dev_info(ctrl->ctrl.device,
1192 "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1198 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1199 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1200 lsreq = &lsop->ls_req;
1201 if (ctrl->lport->ops->lsrqst_priv_sz)
1202 lsreq->private = &assoc_acc[1];
1204 lsreq->private = NULL;
1206 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1207 assoc_rqst->desc_list_len =
1208 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1210 assoc_rqst->assoc_cmd.desc_tag =
1211 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1212 assoc_rqst->assoc_cmd.desc_len =
1214 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1216 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1217 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1218 /* Linux supports only Dynamic controllers */
1219 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1220 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1221 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1222 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1223 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1224 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1226 lsop->queue = queue;
1227 lsreq->rqstaddr = assoc_rqst;
1228 lsreq->rqstlen = sizeof(*assoc_rqst);
1229 lsreq->rspaddr = assoc_acc;
1230 lsreq->rsplen = sizeof(*assoc_acc);
1231 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1233 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1235 goto out_free_buffer;
1237 /* process connect LS completion */
1239 /* validate the ACC response */
1240 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1242 else if (assoc_acc->hdr.desc_list_len !=
1244 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1245 fcret = VERR_CR_ASSOC_ACC_LEN;
1246 else if (assoc_acc->hdr.rqst.desc_tag !=
1247 cpu_to_be32(FCNVME_LSDESC_RQST))
1248 fcret = VERR_LSDESC_RQST;
1249 else if (assoc_acc->hdr.rqst.desc_len !=
1250 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1251 fcret = VERR_LSDESC_RQST_LEN;
1252 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1253 fcret = VERR_CR_ASSOC;
1254 else if (assoc_acc->associd.desc_tag !=
1255 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1256 fcret = VERR_ASSOC_ID;
1257 else if (assoc_acc->associd.desc_len !=
1259 sizeof(struct fcnvme_lsdesc_assoc_id)))
1260 fcret = VERR_ASSOC_ID_LEN;
1261 else if (assoc_acc->connectid.desc_tag !=
1262 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1263 fcret = VERR_CONN_ID;
1264 else if (assoc_acc->connectid.desc_len !=
1265 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1266 fcret = VERR_CONN_ID_LEN;
1271 "q %d Create Association LS failed: %s\n",
1272 queue->qnum, validation_errors[fcret]);
1274 spin_lock_irqsave(&ctrl->lock, flags);
1275 ctrl->association_id =
1276 be64_to_cpu(assoc_acc->associd.association_id);
1277 queue->connection_id =
1278 be64_to_cpu(assoc_acc->connectid.connection_id);
1279 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1280 spin_unlock_irqrestore(&ctrl->lock, flags);
1288 "queue %d connect admin queue failed (%d).\n",
1294 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1295 u16 qsize, u16 ersp_ratio)
1297 struct nvmefc_ls_req_op *lsop;
1298 struct nvmefc_ls_req *lsreq;
1299 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1300 struct fcnvme_ls_cr_conn_acc *conn_acc;
1303 lsop = kzalloc((sizeof(*lsop) +
1304 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1305 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1307 dev_info(ctrl->ctrl.device,
1308 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1314 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1315 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1316 lsreq = &lsop->ls_req;
1317 if (ctrl->lport->ops->lsrqst_priv_sz)
1318 lsreq->private = (void *)&conn_acc[1];
1320 lsreq->private = NULL;
1322 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1323 conn_rqst->desc_list_len = cpu_to_be32(
1324 sizeof(struct fcnvme_lsdesc_assoc_id) +
1325 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1327 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1328 conn_rqst->associd.desc_len =
1330 sizeof(struct fcnvme_lsdesc_assoc_id));
1331 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1332 conn_rqst->connect_cmd.desc_tag =
1333 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1334 conn_rqst->connect_cmd.desc_len =
1336 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1337 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1338 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1339 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1341 lsop->queue = queue;
1342 lsreq->rqstaddr = conn_rqst;
1343 lsreq->rqstlen = sizeof(*conn_rqst);
1344 lsreq->rspaddr = conn_acc;
1345 lsreq->rsplen = sizeof(*conn_acc);
1346 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1348 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1350 goto out_free_buffer;
1352 /* process connect LS completion */
1354 /* validate the ACC response */
1355 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1357 else if (conn_acc->hdr.desc_list_len !=
1358 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1359 fcret = VERR_CR_CONN_ACC_LEN;
1360 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1361 fcret = VERR_LSDESC_RQST;
1362 else if (conn_acc->hdr.rqst.desc_len !=
1363 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1364 fcret = VERR_LSDESC_RQST_LEN;
1365 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1366 fcret = VERR_CR_CONN;
1367 else if (conn_acc->connectid.desc_tag !=
1368 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1369 fcret = VERR_CONN_ID;
1370 else if (conn_acc->connectid.desc_len !=
1371 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1372 fcret = VERR_CONN_ID_LEN;
1377 "q %d Create I/O Connection LS failed: %s\n",
1378 queue->qnum, validation_errors[fcret]);
1380 queue->connection_id =
1381 be64_to_cpu(conn_acc->connectid.connection_id);
1382 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1390 "queue %d connect I/O queue failed (%d).\n",
1396 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1398 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1400 __nvme_fc_finish_ls_req(lsop);
1402 /* fc-nvme initiator doesn't care about success or failure of cmd */
1408 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1409 * the FC-NVME Association. Terminating the association also
1410 * terminates the FC-NVME connections (per queue, both admin and io
1411 * queues) that are part of the association. E.g. things are torn
1412 * down, and the related FC-NVME Association ID and Connection IDs
1415 * The behavior of the fc-nvme initiator is such that it's
1416 * understanding of the association and connections will implicitly
1417 * be torn down. The action is implicit as it may be due to a loss of
1418 * connectivity with the fc-nvme target, so you may never get a
1419 * response even if you tried. As such, the action of this routine
1420 * is to asynchronously send the LS, ignore any results of the LS, and
1421 * continue on with terminating the association. If the fc-nvme target
1422 * is present and receives the LS, it too can tear down.
1425 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1427 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1428 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1429 struct nvmefc_ls_req_op *lsop;
1430 struct nvmefc_ls_req *lsreq;
1433 lsop = kzalloc((sizeof(*lsop) +
1434 sizeof(*discon_rqst) + sizeof(*discon_acc) +
1435 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1437 dev_info(ctrl->ctrl.device,
1438 "NVME-FC{%d}: send Disconnect Association "
1444 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1445 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1446 lsreq = &lsop->ls_req;
1447 if (ctrl->lport->ops->lsrqst_priv_sz)
1448 lsreq->private = (void *)&discon_acc[1];
1450 lsreq->private = NULL;
1452 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1453 ctrl->association_id);
1455 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1456 nvme_fc_disconnect_assoc_done);
1462 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1464 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1465 struct nvme_fc_rport *rport = lsop->rport;
1466 struct nvme_fc_lport *lport = rport->lport;
1467 unsigned long flags;
1469 spin_lock_irqsave(&rport->lock, flags);
1470 list_del(&lsop->lsrcv_list);
1471 spin_unlock_irqrestore(&rport->lock, flags);
1473 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1474 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1475 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1476 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1478 kfree(lsop->rspbuf);
1479 kfree(lsop->rqstbuf);
1482 nvme_fc_rport_put(rport);
1486 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1488 struct nvme_fc_rport *rport = lsop->rport;
1489 struct nvme_fc_lport *lport = rport->lport;
1490 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1493 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1494 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1496 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1499 dev_warn(lport->dev,
1500 "LLDD rejected LS RSP xmt: LS %d status %d\n",
1502 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1507 static struct nvme_fc_ctrl *
1508 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1509 struct nvmefc_ls_rcv_op *lsop)
1511 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1512 &lsop->rqstbuf->rq_dis_assoc;
1513 struct nvme_fc_ctrl *ctrl, *ret = NULL;
1514 struct nvmefc_ls_rcv_op *oldls = NULL;
1515 u64 association_id = be64_to_cpu(rqst->associd.association_id);
1516 unsigned long flags;
1518 spin_lock_irqsave(&rport->lock, flags);
1520 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1521 if (!nvme_fc_ctrl_get(ctrl))
1523 spin_lock(&ctrl->lock);
1524 if (association_id == ctrl->association_id) {
1525 oldls = ctrl->rcv_disconn;
1526 ctrl->rcv_disconn = lsop;
1529 spin_unlock(&ctrl->lock);
1531 /* leave the ctrl get reference */
1533 nvme_fc_ctrl_put(ctrl);
1536 spin_unlock_irqrestore(&rport->lock, flags);
1538 /* transmit a response for anything that was pending */
1540 dev_info(rport->lport->dev,
1541 "NVME-FC{%d}: Multiple Disconnect Association "
1542 "LS's received\n", ctrl->cnum);
1543 /* overwrite good response with bogus failure */
1544 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1545 sizeof(*oldls->rspbuf),
1548 FCNVME_RJT_EXP_NONE, 0);
1549 nvme_fc_xmt_ls_rsp(oldls);
1556 * returns true to mean LS handled and ls_rsp can be sent
1557 * returns false to defer ls_rsp xmt (will be done as part of
1558 * association termination)
1561 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1563 struct nvme_fc_rport *rport = lsop->rport;
1564 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1565 &lsop->rqstbuf->rq_dis_assoc;
1566 struct fcnvme_ls_disconnect_assoc_acc *acc =
1567 &lsop->rspbuf->rsp_dis_assoc;
1568 struct nvme_fc_ctrl *ctrl = NULL;
1571 memset(acc, 0, sizeof(*acc));
1573 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1575 /* match an active association */
1576 ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1578 ret = VERR_NO_ASSOC;
1582 dev_info(rport->lport->dev,
1583 "Disconnect LS failed: %s\n",
1584 validation_errors[ret]);
1585 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1586 sizeof(*acc), rqst->w0.ls_cmd,
1587 (ret == VERR_NO_ASSOC) ?
1588 FCNVME_RJT_RC_INV_ASSOC :
1589 FCNVME_RJT_RC_LOGIC,
1590 FCNVME_RJT_EXP_NONE, 0);
1594 /* format an ACCept response */
1596 lsop->lsrsp->rsplen = sizeof(*acc);
1598 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1600 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1601 FCNVME_LS_DISCONNECT_ASSOC);
1604 * the transmit of the response will occur after the exchanges
1605 * for the association have been ABTS'd by
1606 * nvme_fc_delete_association().
1609 /* fail the association */
1610 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1612 /* release the reference taken by nvme_fc_match_disconn_ls() */
1613 nvme_fc_ctrl_put(ctrl);
1619 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1620 * returns true if a response should be sent afterward, false if rsp will
1621 * be sent asynchronously.
1624 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1626 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1629 lsop->lsrsp->nvme_fc_private = lsop;
1630 lsop->lsrsp->rspbuf = lsop->rspbuf;
1631 lsop->lsrsp->rspdma = lsop->rspdma;
1632 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1633 /* Be preventative. handlers will later set to valid length */
1634 lsop->lsrsp->rsplen = 0;
1638 * parse request input, execute the request, and format the
1641 switch (w0->ls_cmd) {
1642 case FCNVME_LS_DISCONNECT_ASSOC:
1643 ret = nvme_fc_ls_disconnect_assoc(lsop);
1645 case FCNVME_LS_DISCONNECT_CONN:
1646 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1647 sizeof(*lsop->rspbuf), w0->ls_cmd,
1648 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1650 case FCNVME_LS_CREATE_ASSOCIATION:
1651 case FCNVME_LS_CREATE_CONNECTION:
1652 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1653 sizeof(*lsop->rspbuf), w0->ls_cmd,
1654 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1657 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1658 sizeof(*lsop->rspbuf), w0->ls_cmd,
1659 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1667 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1669 struct nvme_fc_rport *rport =
1670 container_of(work, struct nvme_fc_rport, lsrcv_work);
1671 struct fcnvme_ls_rqst_w0 *w0;
1672 struct nvmefc_ls_rcv_op *lsop;
1673 unsigned long flags;
1678 spin_lock_irqsave(&rport->lock, flags);
1679 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1683 lsop->handled = true;
1684 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1685 spin_unlock_irqrestore(&rport->lock, flags);
1686 sendrsp = nvme_fc_handle_ls_rqst(lsop);
1688 spin_unlock_irqrestore(&rport->lock, flags);
1689 w0 = &lsop->rqstbuf->w0;
1690 lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1692 sizeof(*lsop->rspbuf),
1695 FCNVME_RJT_EXP_NONE, 0);
1698 nvme_fc_xmt_ls_rsp(lsop);
1701 spin_unlock_irqrestore(&rport->lock, flags);
1705 void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport,
1706 struct fcnvme_ls_rqst_w0 *w0)
1708 dev_info(lport->dev, "RCV %s LS failed: No memory\n",
1709 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1710 nvmefc_ls_names[w0->ls_cmd] : "");
1714 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1715 * upon the reception of a NVME LS request.
1717 * The nvme-fc layer will copy payload to an internal structure for
1718 * processing. As such, upon completion of the routine, the LLDD may
1719 * immediately free/reuse the LS request buffer passed in the call.
1721 * If this routine returns error, the LLDD should abort the exchange.
1723 * @portptr: pointer to the (registered) remote port that the LS
1724 * was received from. The remoteport is associated with
1725 * a specific localport.
1726 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be
1727 * used to reference the exchange corresponding to the LS
1728 * when issuing an ls response.
1729 * @lsreqbuf: pointer to the buffer containing the LS Request
1730 * @lsreqbuf_len: length, in bytes, of the received LS request
1733 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1734 struct nvmefc_ls_rsp *lsrsp,
1735 void *lsreqbuf, u32 lsreqbuf_len)
1737 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1738 struct nvme_fc_lport *lport = rport->lport;
1739 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1740 struct nvmefc_ls_rcv_op *lsop;
1741 unsigned long flags;
1744 nvme_fc_rport_get(rport);
1746 /* validate there's a routine to transmit a response */
1747 if (!lport->ops->xmt_ls_rsp) {
1748 dev_info(lport->dev,
1749 "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1750 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1751 nvmefc_ls_names[w0->ls_cmd] : "");
1756 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1757 dev_info(lport->dev,
1758 "RCV %s LS failed: payload too large\n",
1759 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1760 nvmefc_ls_names[w0->ls_cmd] : "");
1765 lsop = kzalloc(sizeof(*lsop), GFP_KERNEL);
1767 nvme_fc_rcv_ls_req_err_msg(lport, w0);
1772 lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL);
1773 lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL);
1774 if (!lsop->rqstbuf || !lsop->rspbuf) {
1775 nvme_fc_rcv_ls_req_err_msg(lport, w0);
1780 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1781 sizeof(*lsop->rspbuf),
1783 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1784 dev_info(lport->dev,
1785 "RCV %s LS failed: DMA mapping failure\n",
1786 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1787 nvmefc_ls_names[w0->ls_cmd] : "");
1792 lsop->rport = rport;
1793 lsop->lsrsp = lsrsp;
1795 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1796 lsop->rqstdatalen = lsreqbuf_len;
1798 spin_lock_irqsave(&rport->lock, flags);
1799 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1800 spin_unlock_irqrestore(&rport->lock, flags);
1804 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1805 spin_unlock_irqrestore(&rport->lock, flags);
1807 schedule_work(&rport->lsrcv_work);
1812 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1813 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1815 kfree(lsop->rspbuf);
1816 kfree(lsop->rqstbuf);
1819 nvme_fc_rport_put(rport);
1822 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1825 /* *********************** NVME Ctrl Routines **************************** */
1828 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1829 struct nvme_fc_fcp_op *op)
1831 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1832 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1833 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1834 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1836 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1840 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1841 unsigned int hctx_idx)
1843 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1845 return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op);
1849 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1851 unsigned long flags;
1854 spin_lock_irqsave(&ctrl->lock, flags);
1855 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1856 if (opstate != FCPOP_STATE_ACTIVE)
1857 atomic_set(&op->state, opstate);
1858 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1859 op->flags |= FCOP_FLAGS_TERMIO;
1862 spin_unlock_irqrestore(&ctrl->lock, flags);
1864 if (opstate != FCPOP_STATE_ACTIVE)
1867 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1868 &ctrl->rport->remoteport,
1869 op->queue->lldd_handle,
1876 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1878 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1881 /* ensure we've initialized the ops once */
1882 if (!(aen_op->flags & FCOP_FLAGS_AEN))
1885 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1886 __nvme_fc_abort_op(ctrl, aen_op);
1890 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1891 struct nvme_fc_fcp_op *op, int opstate)
1893 unsigned long flags;
1895 if (opstate == FCPOP_STATE_ABORTED) {
1896 spin_lock_irqsave(&ctrl->lock, flags);
1897 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1898 op->flags & FCOP_FLAGS_TERMIO) {
1900 wake_up(&ctrl->ioabort_wait);
1902 spin_unlock_irqrestore(&ctrl->lock, flags);
1907 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1909 struct nvme_fc_ctrl *ctrl =
1910 container_of(work, struct nvme_fc_ctrl, ioerr_work);
1912 nvme_fc_error_recovery(ctrl, "transport detected io error");
1916 * nvme_fc_io_getuuid - Routine called to get the appid field
1917 * associated with request by the lldd
1918 * @req:IO request from nvme fc to driver
1919 * Returns: UUID if there is an appid associated with VM or
1920 * NULL if the user/libvirt has not set the appid to VM
1922 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
1924 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1925 struct request *rq = op->rq;
1927 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio)
1929 return blkcg_get_fc_appid(rq->bio);
1931 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
1934 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1936 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1937 struct request *rq = op->rq;
1938 struct nvmefc_fcp_req *freq = &op->fcp_req;
1939 struct nvme_fc_ctrl *ctrl = op->ctrl;
1940 struct nvme_fc_queue *queue = op->queue;
1941 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1942 struct nvme_command *sqe = &op->cmd_iu.sqe;
1943 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1944 union nvme_result result;
1945 bool terminate_assoc = true;
1950 * The current linux implementation of a nvme controller
1951 * allocates a single tag set for all io queues and sizes
1952 * the io queues to fully hold all possible tags. Thus, the
1953 * implementation does not reference or care about the sqhd
1954 * value as it never needs to use the sqhd/sqtail pointers
1955 * for submission pacing.
1957 * This affects the FC-NVME implementation in two ways:
1958 * 1) As the value doesn't matter, we don't need to waste
1959 * cycles extracting it from ERSPs and stamping it in the
1960 * cases where the transport fabricates CQEs on successful
1962 * 2) The FC-NVME implementation requires that delivery of
1963 * ERSP completions are to go back to the nvme layer in order
1964 * relative to the rsn, such that the sqhd value will always
1965 * be "in order" for the nvme layer. As the nvme layer in
1966 * linux doesn't care about sqhd, there's no need to return
1970 * As the core nvme layer in linux currently does not look at
1971 * every field in the cqe - in cases where the FC transport must
1972 * fabricate a CQE, the following fields will not be set as they
1973 * are not referenced:
1974 * cqe.sqid, cqe.sqhd, cqe.command_id
1976 * Failure or error of an individual i/o, in a transport
1977 * detected fashion unrelated to the nvme completion status,
1978 * potentially cause the initiator and target sides to get out
1979 * of sync on SQ head/tail (aka outstanding io count allowed).
1980 * Per FC-NVME spec, failure of an individual command requires
1981 * the connection to be terminated, which in turn requires the
1982 * association to be terminated.
1985 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1987 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1988 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1990 if (opstate == FCPOP_STATE_ABORTED)
1991 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1992 else if (freq->status) {
1993 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1994 dev_info(ctrl->ctrl.device,
1995 "NVME-FC{%d}: io failed due to lldd error %d\n",
1996 ctrl->cnum, freq->status);
2000 * For the linux implementation, if we have an unsuccesful
2001 * status, they blk-mq layer can typically be called with the
2002 * non-zero status and the content of the cqe isn't important.
2008 * command completed successfully relative to the wire
2009 * protocol. However, validate anything received and
2010 * extract the status and result from the cqe (create it
2014 switch (freq->rcv_rsplen) {
2017 case NVME_FC_SIZEOF_ZEROS_RSP:
2019 * No response payload or 12 bytes of payload (which
2020 * should all be zeros) are considered successful and
2021 * no payload in the CQE by the transport.
2023 if (freq->transferred_length !=
2024 be32_to_cpu(op->cmd_iu.data_len)) {
2025 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2026 dev_info(ctrl->ctrl.device,
2027 "NVME-FC{%d}: io failed due to bad transfer "
2028 "length: %d vs expected %d\n",
2029 ctrl->cnum, freq->transferred_length,
2030 be32_to_cpu(op->cmd_iu.data_len));
2036 case sizeof(struct nvme_fc_ersp_iu):
2038 * The ERSP IU contains a full completion with CQE.
2039 * Validate ERSP IU and look at cqe.
2041 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2042 (freq->rcv_rsplen / 4) ||
2043 be32_to_cpu(op->rsp_iu.xfrd_len) !=
2044 freq->transferred_length ||
2045 op->rsp_iu.ersp_result ||
2046 sqe->common.command_id != cqe->command_id)) {
2047 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2048 dev_info(ctrl->ctrl.device,
2049 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2050 "iu len %d, xfr len %d vs %d, status code "
2051 "%d, cmdid %d vs %d\n",
2052 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2053 be32_to_cpu(op->rsp_iu.xfrd_len),
2054 freq->transferred_length,
2055 op->rsp_iu.ersp_result,
2056 sqe->common.command_id,
2060 result = cqe->result;
2061 status = cqe->status;
2065 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2066 dev_info(ctrl->ctrl.device,
2067 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2069 ctrl->cnum, freq->rcv_rsplen);
2073 terminate_assoc = false;
2076 if (op->flags & FCOP_FLAGS_AEN) {
2077 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2078 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2079 atomic_set(&op->state, FCPOP_STATE_IDLE);
2080 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
2081 nvme_fc_ctrl_put(ctrl);
2085 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2086 if (!nvme_try_complete_req(rq, status, result))
2087 nvme_fc_complete_rq(rq);
2090 if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2091 queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2095 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2096 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2097 struct request *rq, u32 rqno)
2099 struct nvme_fcp_op_w_sgl *op_w_sgl =
2100 container_of(op, typeof(*op_w_sgl), op);
2101 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2104 memset(op, 0, sizeof(*op));
2105 op->fcp_req.cmdaddr = &op->cmd_iu;
2106 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2107 op->fcp_req.rspaddr = &op->rsp_iu;
2108 op->fcp_req.rsplen = sizeof(op->rsp_iu);
2109 op->fcp_req.done = nvme_fc_fcpio_done;
2115 cmdiu->format_id = NVME_CMD_FORMAT_ID;
2116 cmdiu->fc_id = NVME_CMD_FC_ID;
2117 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2119 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2120 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2122 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2124 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2125 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2126 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2128 "FCP Op failed - cmdiu dma mapping failed.\n");
2133 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2134 &op->rsp_iu, sizeof(op->rsp_iu),
2136 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2138 "FCP Op failed - rspiu dma mapping failed.\n");
2142 atomic_set(&op->state, FCPOP_STATE_IDLE);
2148 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2149 unsigned int hctx_idx, unsigned int numa_node)
2151 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2152 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2153 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2154 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2157 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2160 op->op.fcp_req.first_sgl = op->sgl;
2161 op->op.fcp_req.private = &op->priv[0];
2162 nvme_req(rq)->ctrl = &ctrl->ctrl;
2163 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2168 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2170 struct nvme_fc_fcp_op *aen_op;
2171 struct nvme_fc_cmd_iu *cmdiu;
2172 struct nvme_command *sqe;
2173 void *private = NULL;
2176 aen_op = ctrl->aen_ops;
2177 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2178 if (ctrl->lport->ops->fcprqst_priv_sz) {
2179 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2185 cmdiu = &aen_op->cmd_iu;
2187 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2188 aen_op, (struct request *)NULL,
2189 (NVME_AQ_BLK_MQ_DEPTH + i));
2195 aen_op->flags = FCOP_FLAGS_AEN;
2196 aen_op->fcp_req.private = private;
2198 memset(sqe, 0, sizeof(*sqe));
2199 sqe->common.opcode = nvme_admin_async_event;
2200 /* Note: core layer may overwrite the sqe.command_id value */
2201 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2207 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2209 struct nvme_fc_fcp_op *aen_op;
2212 cancel_work_sync(&ctrl->ctrl.async_event_work);
2213 aen_op = ctrl->aen_ops;
2214 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2215 __nvme_fc_exit_request(ctrl, aen_op);
2217 kfree(aen_op->fcp_req.private);
2218 aen_op->fcp_req.private = NULL;
2223 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx)
2225 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data);
2226 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2228 hctx->driver_data = queue;
2234 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)
2236 return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1);
2240 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2241 unsigned int hctx_idx)
2243 return __nvme_fc_init_hctx(hctx, data, hctx_idx);
2247 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2249 struct nvme_fc_queue *queue;
2251 queue = &ctrl->queues[idx];
2252 memset(queue, 0, sizeof(*queue));
2255 atomic_set(&queue->csn, 0);
2256 queue->dev = ctrl->dev;
2259 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2261 queue->cmnd_capsule_len = sizeof(struct nvme_command);
2264 * Considered whether we should allocate buffers for all SQEs
2265 * and CQEs and dma map them - mapping their respective entries
2266 * into the request structures (kernel vm addr and dma address)
2267 * thus the driver could use the buffers/mappings directly.
2268 * It only makes sense if the LLDD would use them for its
2269 * messaging api. It's very unlikely most adapter api's would use
2270 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2271 * structures were used instead.
2276 * This routine terminates a queue at the transport level.
2277 * The transport has already ensured that all outstanding ios on
2278 * the queue have been terminated.
2279 * The transport will send a Disconnect LS request to terminate
2280 * the queue's connection. Termination of the admin queue will also
2281 * terminate the association at the target.
2284 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2286 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2289 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2291 * Current implementation never disconnects a single queue.
2292 * It always terminates a whole association. So there is never
2293 * a disconnect(queue) LS sent to the target.
2296 queue->connection_id = 0;
2297 atomic_set(&queue->csn, 0);
2301 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2302 struct nvme_fc_queue *queue, unsigned int qidx)
2304 if (ctrl->lport->ops->delete_queue)
2305 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2306 queue->lldd_handle);
2307 queue->lldd_handle = NULL;
2311 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2315 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2316 nvme_fc_free_queue(&ctrl->queues[i]);
2320 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2321 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2325 queue->lldd_handle = NULL;
2326 if (ctrl->lport->ops->create_queue)
2327 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2328 qidx, qsize, &queue->lldd_handle);
2334 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2336 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2339 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2340 __nvme_fc_delete_hw_queue(ctrl, queue, i);
2344 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2346 struct nvme_fc_queue *queue = &ctrl->queues[1];
2349 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2350 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2359 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2364 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2368 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2369 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2373 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2377 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2384 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2388 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2389 nvme_fc_init_queue(ctrl, i);
2393 nvme_fc_ctrl_free(struct kref *ref)
2395 struct nvme_fc_ctrl *ctrl =
2396 container_of(ref, struct nvme_fc_ctrl, ref);
2397 unsigned long flags;
2399 if (ctrl->ctrl.tagset)
2400 nvme_remove_io_tag_set(&ctrl->ctrl);
2402 /* remove from rport list */
2403 spin_lock_irqsave(&ctrl->rport->lock, flags);
2404 list_del(&ctrl->ctrl_list);
2405 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2407 nvme_unquiesce_admin_queue(&ctrl->ctrl);
2408 nvme_remove_admin_tag_set(&ctrl->ctrl);
2410 kfree(ctrl->queues);
2412 put_device(ctrl->dev);
2413 nvme_fc_rport_put(ctrl->rport);
2415 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
2416 if (ctrl->ctrl.opts)
2417 nvmf_free_options(ctrl->ctrl.opts);
2422 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2424 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2428 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2430 return kref_get_unless_zero(&ctrl->ref);
2434 * All accesses from nvme core layer done - can now free the
2435 * controller. Called after last nvme_put_ctrl() call
2438 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2440 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2442 WARN_ON(nctrl != &ctrl->ctrl);
2444 nvme_fc_ctrl_put(ctrl);
2448 * This routine is used by the transport when it needs to find active
2449 * io on a queue that is to be terminated. The transport uses
2450 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2451 * this routine to kill them on a 1 by 1 basis.
2453 * As FC allocates FC exchange for each io, the transport must contact
2454 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2455 * After terminating the exchange the LLDD will call the transport's
2456 * normal io done path for the request, but it will have an aborted
2457 * status. The done path will return the io request back to the block
2458 * layer with an error status.
2460 static bool nvme_fc_terminate_exchange(struct request *req, void *data)
2462 struct nvme_ctrl *nctrl = data;
2463 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2464 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2466 op->nreq.flags |= NVME_REQ_CANCELLED;
2467 __nvme_fc_abort_op(ctrl, op);
2472 * This routine runs through all outstanding commands on the association
2473 * and aborts them. This routine is typically be called by the
2474 * delete_association routine. It is also called due to an error during
2475 * reconnect. In that scenario, it is most likely a command that initializes
2476 * the controller, including fabric Connect commands on io queues, that
2477 * may have timed out or failed thus the io must be killed for the connect
2478 * thread to see the error.
2481 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2486 * if aborting io, the queues are no longer good, mark them
2489 if (ctrl->ctrl.queue_count > 1) {
2490 for (q = 1; q < ctrl->ctrl.queue_count; q++)
2491 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2493 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2496 * If io queues are present, stop them and terminate all outstanding
2497 * ios on them. As FC allocates FC exchange for each io, the
2498 * transport must contact the LLDD to terminate the exchange,
2499 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2500 * to tell us what io's are busy and invoke a transport routine
2501 * to kill them with the LLDD. After terminating the exchange
2502 * the LLDD will call the transport's normal io done path, but it
2503 * will have an aborted status. The done path will return the
2504 * io requests back to the block layer as part of normal completions
2505 * (but with error status).
2507 if (ctrl->ctrl.queue_count > 1) {
2508 nvme_quiesce_io_queues(&ctrl->ctrl);
2509 nvme_sync_io_queues(&ctrl->ctrl);
2510 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2511 nvme_fc_terminate_exchange, &ctrl->ctrl);
2512 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2514 nvme_unquiesce_io_queues(&ctrl->ctrl);
2518 * Other transports, which don't have link-level contexts bound
2519 * to sqe's, would try to gracefully shutdown the controller by
2520 * writing the registers for shutdown and polling (call
2521 * nvme_disable_ctrl()). Given a bunch of i/o was potentially
2522 * just aborted and we will wait on those contexts, and given
2523 * there was no indication of how live the controlelr is on the
2524 * link, don't send more io to create more contexts for the
2525 * shutdown. Let the controller fail via keepalive failure if
2526 * its still present.
2530 * clean up the admin queue. Same thing as above.
2532 nvme_quiesce_admin_queue(&ctrl->ctrl);
2533 blk_sync_queue(ctrl->ctrl.admin_q);
2534 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2535 nvme_fc_terminate_exchange, &ctrl->ctrl);
2536 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2538 nvme_unquiesce_admin_queue(&ctrl->ctrl);
2542 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2545 * if an error (io timeout, etc) while (re)connecting, the remote
2546 * port requested terminating of the association (disconnect_ls)
2547 * or an error (timeout or abort) occurred on an io while creating
2548 * the controller. Abort any ios on the association and let the
2549 * create_association error path resolve things.
2551 enum nvme_ctrl_state state;
2552 unsigned long flags;
2554 spin_lock_irqsave(&ctrl->lock, flags);
2555 state = ctrl->ctrl.state;
2556 if (state == NVME_CTRL_CONNECTING) {
2557 set_bit(ASSOC_FAILED, &ctrl->flags);
2558 spin_unlock_irqrestore(&ctrl->lock, flags);
2559 __nvme_fc_abort_outstanding_ios(ctrl, true);
2560 dev_warn(ctrl->ctrl.device,
2561 "NVME-FC{%d}: transport error during (re)connect\n",
2565 spin_unlock_irqrestore(&ctrl->lock, flags);
2567 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2568 if (state != NVME_CTRL_LIVE)
2571 dev_warn(ctrl->ctrl.device,
2572 "NVME-FC{%d}: transport association event: %s\n",
2573 ctrl->cnum, errmsg);
2574 dev_warn(ctrl->ctrl.device,
2575 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2577 nvme_reset_ctrl(&ctrl->ctrl);
2580 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq)
2582 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2583 struct nvme_fc_ctrl *ctrl = op->ctrl;
2584 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2585 struct nvme_command *sqe = &cmdiu->sqe;
2588 * Attempt to abort the offending command. Command completion
2589 * will detect the aborted io and will fail the connection.
2591 dev_info(ctrl->ctrl.device,
2592 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2594 ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2595 sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2596 if (__nvme_fc_abort_op(ctrl, op))
2597 nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2600 * the io abort has been initiated. Have the reset timer
2601 * restarted and the abort completion will complete the io
2602 * shortly. Avoids a synchronous wait while the abort finishes.
2604 return BLK_EH_RESET_TIMER;
2608 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2609 struct nvme_fc_fcp_op *op)
2611 struct nvmefc_fcp_req *freq = &op->fcp_req;
2616 if (!blk_rq_nr_phys_segments(rq))
2619 freq->sg_table.sgl = freq->first_sgl;
2620 ret = sg_alloc_table_chained(&freq->sg_table,
2621 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2622 NVME_INLINE_SG_CNT);
2626 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2627 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2628 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2629 op->nents, rq_dma_dir(rq));
2630 if (unlikely(freq->sg_cnt <= 0)) {
2631 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2637 * TODO: blk_integrity_rq(rq) for DIF
2643 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2644 struct nvme_fc_fcp_op *op)
2646 struct nvmefc_fcp_req *freq = &op->fcp_req;
2651 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2654 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2660 * In FC, the queue is a logical thing. At transport connect, the target
2661 * creates its "queue" and returns a handle that is to be given to the
2662 * target whenever it posts something to the corresponding SQ. When an
2663 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2664 * command contained within the SQE, an io, and assigns a FC exchange
2665 * to it. The SQE and the associated SQ handle are sent in the initial
2666 * CMD IU sents on the exchange. All transfers relative to the io occur
2667 * as part of the exchange. The CQE is the last thing for the io,
2668 * which is transferred (explicitly or implicitly) with the RSP IU
2669 * sent on the exchange. After the CQE is received, the FC exchange is
2670 * terminaed and the Exchange may be used on a different io.
2672 * The transport to LLDD api has the transport making a request for a
2673 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2674 * resource and transfers the command. The LLDD will then process all
2675 * steps to complete the io. Upon completion, the transport done routine
2678 * So - while the operation is outstanding to the LLDD, there is a link
2679 * level FC exchange resource that is also outstanding. This must be
2680 * considered in all cleanup operations.
2683 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2684 struct nvme_fc_fcp_op *op, u32 data_len,
2685 enum nvmefc_fcp_datadir io_dir)
2687 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2688 struct nvme_command *sqe = &cmdiu->sqe;
2692 * before attempting to send the io, check to see if we believe
2693 * the target device is present
2695 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2696 return BLK_STS_RESOURCE;
2698 if (!nvme_fc_ctrl_get(ctrl))
2699 return BLK_STS_IOERR;
2701 /* format the FC-NVME CMD IU and fcp_req */
2702 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2703 cmdiu->data_len = cpu_to_be32(data_len);
2705 case NVMEFC_FCP_WRITE:
2706 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2708 case NVMEFC_FCP_READ:
2709 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2711 case NVMEFC_FCP_NODATA:
2715 op->fcp_req.payload_length = data_len;
2716 op->fcp_req.io_dir = io_dir;
2717 op->fcp_req.transferred_length = 0;
2718 op->fcp_req.rcv_rsplen = 0;
2719 op->fcp_req.status = NVME_SC_SUCCESS;
2720 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2723 * validate per fabric rules, set fields mandated by fabric spec
2724 * as well as those by FC-NVME spec.
2726 WARN_ON_ONCE(sqe->common.metadata);
2727 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2730 * format SQE DPTR field per FC-NVME rules:
2731 * type=0x5 Transport SGL Data Block Descriptor
2732 * subtype=0xA Transport-specific value
2734 * length=length of the data series
2736 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2737 NVME_SGL_FMT_TRANSPORT_A;
2738 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2739 sqe->rw.dptr.sgl.addr = 0;
2741 if (!(op->flags & FCOP_FLAGS_AEN)) {
2742 ret = nvme_fc_map_data(ctrl, op->rq, op);
2744 nvme_cleanup_cmd(op->rq);
2745 nvme_fc_ctrl_put(ctrl);
2746 if (ret == -ENOMEM || ret == -EAGAIN)
2747 return BLK_STS_RESOURCE;
2748 return BLK_STS_IOERR;
2752 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2753 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2755 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2757 if (!(op->flags & FCOP_FLAGS_AEN))
2758 nvme_start_request(op->rq);
2760 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2761 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2762 &ctrl->rport->remoteport,
2763 queue->lldd_handle, &op->fcp_req);
2767 * If the lld fails to send the command is there an issue with
2768 * the csn value? If the command that fails is the Connect,
2769 * no - as the connection won't be live. If it is a command
2770 * post-connect, it's possible a gap in csn may be created.
2771 * Does this matter? As Linux initiators don't send fused
2772 * commands, no. The gap would exist, but as there's nothing
2773 * that depends on csn order to be delivered on the target
2774 * side, it shouldn't hurt. It would be difficult for a
2775 * target to even detect the csn gap as it has no idea when the
2776 * cmd with the csn was supposed to arrive.
2778 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2779 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2781 if (!(op->flags & FCOP_FLAGS_AEN)) {
2782 nvme_fc_unmap_data(ctrl, op->rq, op);
2783 nvme_cleanup_cmd(op->rq);
2786 nvme_fc_ctrl_put(ctrl);
2788 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2790 return BLK_STS_IOERR;
2792 return BLK_STS_RESOURCE;
2799 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2800 const struct blk_mq_queue_data *bd)
2802 struct nvme_ns *ns = hctx->queue->queuedata;
2803 struct nvme_fc_queue *queue = hctx->driver_data;
2804 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2805 struct request *rq = bd->rq;
2806 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2807 enum nvmefc_fcp_datadir io_dir;
2808 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2812 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2813 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2814 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2816 ret = nvme_setup_cmd(ns, rq);
2821 * nvme core doesn't quite treat the rq opaquely. Commands such
2822 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2823 * there is no actual payload to be transferred.
2824 * To get it right, key data transmission on there being 1 or
2825 * more physical segments in the sg list. If there is no
2826 * physical segments, there is no payload.
2828 if (blk_rq_nr_phys_segments(rq)) {
2829 data_len = blk_rq_payload_bytes(rq);
2830 io_dir = ((rq_data_dir(rq) == WRITE) ?
2831 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2834 io_dir = NVMEFC_FCP_NODATA;
2838 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2842 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2844 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2845 struct nvme_fc_fcp_op *aen_op;
2848 if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2851 aen_op = &ctrl->aen_ops[0];
2853 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2856 dev_err(ctrl->ctrl.device,
2857 "failed async event work\n");
2861 nvme_fc_complete_rq(struct request *rq)
2863 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2864 struct nvme_fc_ctrl *ctrl = op->ctrl;
2866 atomic_set(&op->state, FCPOP_STATE_IDLE);
2867 op->flags &= ~FCOP_FLAGS_TERMIO;
2869 nvme_fc_unmap_data(ctrl, rq, op);
2870 nvme_complete_rq(rq);
2871 nvme_fc_ctrl_put(ctrl);
2874 static void nvme_fc_map_queues(struct blk_mq_tag_set *set)
2876 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2879 for (i = 0; i < set->nr_maps; i++) {
2880 struct blk_mq_queue_map *map = &set->map[i];
2882 if (!map->nr_queues) {
2883 WARN_ON(i == HCTX_TYPE_DEFAULT);
2887 /* Call LLDD map queue functionality if defined */
2888 if (ctrl->lport->ops->map_queues)
2889 ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2892 blk_mq_map_queues(map);
2896 static const struct blk_mq_ops nvme_fc_mq_ops = {
2897 .queue_rq = nvme_fc_queue_rq,
2898 .complete = nvme_fc_complete_rq,
2899 .init_request = nvme_fc_init_request,
2900 .exit_request = nvme_fc_exit_request,
2901 .init_hctx = nvme_fc_init_hctx,
2902 .timeout = nvme_fc_timeout,
2903 .map_queues = nvme_fc_map_queues,
2907 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2909 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2910 unsigned int nr_io_queues;
2913 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2914 ctrl->lport->ops->max_hw_queues);
2915 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2917 dev_info(ctrl->ctrl.device,
2918 "set_queue_count failed: %d\n", ret);
2922 ctrl->ctrl.queue_count = nr_io_queues + 1;
2926 nvme_fc_init_io_queues(ctrl);
2928 ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set,
2930 struct_size_t(struct nvme_fcp_op_w_sgl, priv,
2931 ctrl->lport->ops->fcprqst_priv_sz));
2935 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2937 goto out_cleanup_tagset;
2939 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2941 goto out_delete_hw_queues;
2943 ctrl->ioq_live = true;
2947 out_delete_hw_queues:
2948 nvme_fc_delete_hw_io_queues(ctrl);
2950 nvme_remove_io_tag_set(&ctrl->ctrl);
2951 nvme_fc_free_io_queues(ctrl);
2953 /* force put free routine to ignore io queues */
2954 ctrl->ctrl.tagset = NULL;
2960 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2962 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2963 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2964 unsigned int nr_io_queues;
2967 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2968 ctrl->lport->ops->max_hw_queues);
2969 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2971 dev_info(ctrl->ctrl.device,
2972 "set_queue_count failed: %d\n", ret);
2976 if (!nr_io_queues && prior_ioq_cnt) {
2977 dev_info(ctrl->ctrl.device,
2978 "Fail Reconnect: At least 1 io queue "
2979 "required (was %d)\n", prior_ioq_cnt);
2983 ctrl->ctrl.queue_count = nr_io_queues + 1;
2984 /* check for io queues existing */
2985 if (ctrl->ctrl.queue_count == 1)
2988 if (prior_ioq_cnt != nr_io_queues) {
2989 dev_info(ctrl->ctrl.device,
2990 "reconnect: revising io queue count from %d to %d\n",
2991 prior_ioq_cnt, nr_io_queues);
2992 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2995 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2997 goto out_free_io_queues;
2999 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
3001 goto out_delete_hw_queues;
3005 out_delete_hw_queues:
3006 nvme_fc_delete_hw_io_queues(ctrl);
3008 nvme_fc_free_io_queues(ctrl);
3013 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
3015 struct nvme_fc_lport *lport = rport->lport;
3017 atomic_inc(&lport->act_rport_cnt);
3021 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
3023 struct nvme_fc_lport *lport = rport->lport;
3026 cnt = atomic_dec_return(&lport->act_rport_cnt);
3027 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
3028 lport->ops->localport_delete(&lport->localport);
3032 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3034 struct nvme_fc_rport *rport = ctrl->rport;
3037 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3040 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3042 nvme_fc_rport_active_on_lport(rport);
3048 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3050 struct nvme_fc_rport *rport = ctrl->rport;
3051 struct nvme_fc_lport *lport = rport->lport;
3054 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3056 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3058 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3059 lport->ops->remoteport_delete(&rport->remoteport);
3060 nvme_fc_rport_inactive_on_lport(rport);
3067 * This routine restarts the controller on the host side, and
3068 * on the link side, recreates the controller association.
3071 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3073 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3074 struct nvmefc_ls_rcv_op *disls = NULL;
3075 unsigned long flags;
3079 ++ctrl->ctrl.nr_reconnects;
3081 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3084 if (nvme_fc_ctlr_active_on_rport(ctrl))
3087 dev_info(ctrl->ctrl.device,
3088 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3089 " rport wwpn 0x%016llx: NQN \"%s\"\n",
3090 ctrl->cnum, ctrl->lport->localport.port_name,
3091 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3093 clear_bit(ASSOC_FAILED, &ctrl->flags);
3096 * Create the admin queue
3099 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3102 goto out_free_queue;
3104 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3105 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3107 goto out_delete_hw_queue;
3109 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3111 goto out_disconnect_admin_queue;
3113 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3116 * Check controller capabilities
3118 * todo:- add code to check if ctrl attributes changed from
3119 * prior connection values
3122 ret = nvme_enable_ctrl(&ctrl->ctrl);
3123 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3126 goto out_disconnect_admin_queue;
3128 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3129 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3132 nvme_unquiesce_admin_queue(&ctrl->ctrl);
3134 ret = nvme_init_ctrl_finish(&ctrl->ctrl, false);
3136 goto out_disconnect_admin_queue;
3137 if (test_bit(ASSOC_FAILED, &ctrl->flags)) {
3139 goto out_stop_keep_alive;
3143 /* FC-NVME does not have other data in the capsule */
3144 if (ctrl->ctrl.icdoff) {
3145 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3147 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3148 goto out_stop_keep_alive;
3151 /* FC-NVME supports normal SGL Data Block Descriptors */
3152 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3153 dev_err(ctrl->ctrl.device,
3154 "Mandatory sgls are not supported!\n");
3155 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3156 goto out_stop_keep_alive;
3159 if (opts->queue_size > ctrl->ctrl.maxcmd) {
3160 /* warn if maxcmd is lower than queue_size */
3161 dev_warn(ctrl->ctrl.device,
3162 "queue_size %zu > ctrl maxcmd %u, reducing "
3164 opts->queue_size, ctrl->ctrl.maxcmd);
3165 opts->queue_size = ctrl->ctrl.maxcmd;
3166 ctrl->ctrl.sqsize = opts->queue_size - 1;
3169 ret = nvme_fc_init_aen_ops(ctrl);
3171 goto out_term_aen_ops;
3174 * Create the io queues
3177 if (ctrl->ctrl.queue_count > 1) {
3178 if (!ctrl->ioq_live)
3179 ret = nvme_fc_create_io_queues(ctrl);
3181 ret = nvme_fc_recreate_io_queues(ctrl);
3184 spin_lock_irqsave(&ctrl->lock, flags);
3185 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3188 spin_unlock_irqrestore(&ctrl->lock, flags);
3189 goto out_term_aen_ops;
3191 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3192 spin_unlock_irqrestore(&ctrl->lock, flags);
3194 ctrl->ctrl.nr_reconnects = 0;
3197 nvme_start_ctrl(&ctrl->ctrl);
3199 return 0; /* Success */
3202 nvme_fc_term_aen_ops(ctrl);
3203 out_stop_keep_alive:
3204 nvme_stop_keep_alive(&ctrl->ctrl);
3205 out_disconnect_admin_queue:
3206 dev_warn(ctrl->ctrl.device,
3207 "NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n",
3208 ctrl->cnum, ctrl->association_id, ret);
3209 /* send a Disconnect(association) LS to fc-nvme target */
3210 nvme_fc_xmt_disconnect_assoc(ctrl);
3211 spin_lock_irqsave(&ctrl->lock, flags);
3212 ctrl->association_id = 0;
3213 disls = ctrl->rcv_disconn;
3214 ctrl->rcv_disconn = NULL;
3215 spin_unlock_irqrestore(&ctrl->lock, flags);
3217 nvme_fc_xmt_ls_rsp(disls);
3218 out_delete_hw_queue:
3219 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3221 nvme_fc_free_queue(&ctrl->queues[0]);
3222 clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3223 nvme_fc_ctlr_inactive_on_rport(ctrl);
3230 * This routine stops operation of the controller on the host side.
3231 * On the host os stack side: Admin and IO queues are stopped,
3232 * outstanding ios on them terminated via FC ABTS.
3233 * On the link side: the association is terminated.
3236 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3238 struct nvmefc_ls_rcv_op *disls = NULL;
3239 unsigned long flags;
3241 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3244 spin_lock_irqsave(&ctrl->lock, flags);
3245 set_bit(FCCTRL_TERMIO, &ctrl->flags);
3247 spin_unlock_irqrestore(&ctrl->lock, flags);
3249 __nvme_fc_abort_outstanding_ios(ctrl, false);
3251 /* kill the aens as they are a separate path */
3252 nvme_fc_abort_aen_ops(ctrl);
3254 /* wait for all io that had to be aborted */
3255 spin_lock_irq(&ctrl->lock);
3256 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3257 clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3258 spin_unlock_irq(&ctrl->lock);
3260 nvme_fc_term_aen_ops(ctrl);
3263 * send a Disconnect(association) LS to fc-nvme target
3264 * Note: could have been sent at top of process, but
3265 * cleaner on link traffic if after the aborts complete.
3266 * Note: if association doesn't exist, association_id will be 0
3268 if (ctrl->association_id)
3269 nvme_fc_xmt_disconnect_assoc(ctrl);
3271 spin_lock_irqsave(&ctrl->lock, flags);
3272 ctrl->association_id = 0;
3273 disls = ctrl->rcv_disconn;
3274 ctrl->rcv_disconn = NULL;
3275 spin_unlock_irqrestore(&ctrl->lock, flags);
3278 * if a Disconnect Request was waiting for a response, send
3279 * now that all ABTS's have been issued (and are complete).
3281 nvme_fc_xmt_ls_rsp(disls);
3283 if (ctrl->ctrl.tagset) {
3284 nvme_fc_delete_hw_io_queues(ctrl);
3285 nvme_fc_free_io_queues(ctrl);
3288 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3289 nvme_fc_free_queue(&ctrl->queues[0]);
3291 /* re-enable the admin_q so anything new can fast fail */
3292 nvme_unquiesce_admin_queue(&ctrl->ctrl);
3294 /* resume the io queues so that things will fast fail */
3295 nvme_unquiesce_io_queues(&ctrl->ctrl);
3297 nvme_fc_ctlr_inactive_on_rport(ctrl);
3301 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3303 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3305 cancel_work_sync(&ctrl->ioerr_work);
3306 cancel_delayed_work_sync(&ctrl->connect_work);
3308 * kill the association on the link side. this will block
3309 * waiting for io to terminate
3311 nvme_fc_delete_association(ctrl);
3315 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3317 struct nvme_fc_rport *rport = ctrl->rport;
3318 struct nvme_fc_remote_port *portptr = &rport->remoteport;
3319 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3322 if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING)
3325 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3326 dev_info(ctrl->ctrl.device,
3327 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3328 ctrl->cnum, status);
3329 if (status > 0 && (status & NVME_SC_DNR))
3331 } else if (time_after_eq(jiffies, rport->dev_loss_end))
3334 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3335 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3336 dev_info(ctrl->ctrl.device,
3337 "NVME-FC{%d}: Reconnect attempt in %ld "
3339 ctrl->cnum, recon_delay / HZ);
3340 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3341 recon_delay = rport->dev_loss_end - jiffies;
3343 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3345 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3346 if (status > 0 && (status & NVME_SC_DNR))
3347 dev_warn(ctrl->ctrl.device,
3348 "NVME-FC{%d}: reconnect failure\n",
3351 dev_warn(ctrl->ctrl.device,
3352 "NVME-FC{%d}: Max reconnect attempts "
3354 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3356 dev_warn(ctrl->ctrl.device,
3357 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3358 "while waiting for remoteport connectivity.\n",
3359 ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3360 (ctrl->ctrl.opts->max_reconnects *
3361 ctrl->ctrl.opts->reconnect_delay)));
3362 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3367 nvme_fc_reset_ctrl_work(struct work_struct *work)
3369 struct nvme_fc_ctrl *ctrl =
3370 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3372 nvme_stop_ctrl(&ctrl->ctrl);
3374 /* will block will waiting for io to terminate */
3375 nvme_fc_delete_association(ctrl);
3377 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3378 dev_err(ctrl->ctrl.device,
3379 "NVME-FC{%d}: error_recovery: Couldn't change state "
3380 "to CONNECTING\n", ctrl->cnum);
3382 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3383 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3384 dev_err(ctrl->ctrl.device,
3385 "NVME-FC{%d}: failed to schedule connect "
3386 "after reset\n", ctrl->cnum);
3388 flush_delayed_work(&ctrl->connect_work);
3391 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3396 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3398 .module = THIS_MODULE,
3399 .flags = NVME_F_FABRICS,
3400 .reg_read32 = nvmf_reg_read32,
3401 .reg_read64 = nvmf_reg_read64,
3402 .reg_write32 = nvmf_reg_write32,
3403 .free_ctrl = nvme_fc_nvme_ctrl_freed,
3404 .submit_async_event = nvme_fc_submit_async_event,
3405 .delete_ctrl = nvme_fc_delete_ctrl,
3406 .get_address = nvmf_get_address,
3410 nvme_fc_connect_ctrl_work(struct work_struct *work)
3414 struct nvme_fc_ctrl *ctrl =
3415 container_of(to_delayed_work(work),
3416 struct nvme_fc_ctrl, connect_work);
3418 ret = nvme_fc_create_association(ctrl);
3420 nvme_fc_reconnect_or_delete(ctrl, ret);
3422 dev_info(ctrl->ctrl.device,
3423 "NVME-FC{%d}: controller connect complete\n",
3428 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3429 .queue_rq = nvme_fc_queue_rq,
3430 .complete = nvme_fc_complete_rq,
3431 .init_request = nvme_fc_init_request,
3432 .exit_request = nvme_fc_exit_request,
3433 .init_hctx = nvme_fc_init_admin_hctx,
3434 .timeout = nvme_fc_timeout,
3439 * Fails a controller request if it matches an existing controller
3440 * (association) with the same tuple:
3441 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3443 * The ports don't need to be compared as they are intrinsically
3444 * already matched by the port pointers supplied.
3447 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3448 struct nvmf_ctrl_options *opts)
3450 struct nvme_fc_ctrl *ctrl;
3451 unsigned long flags;
3454 spin_lock_irqsave(&rport->lock, flags);
3455 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3456 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3460 spin_unlock_irqrestore(&rport->lock, flags);
3465 static struct nvme_ctrl *
3466 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3467 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3469 struct nvme_fc_ctrl *ctrl;
3470 unsigned long flags;
3471 int ret, idx, ctrl_loss_tmo;
3473 if (!(rport->remoteport.port_role &
3474 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3479 if (!opts->duplicate_connect &&
3480 nvme_fc_existing_controller(rport, opts)) {
3485 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3491 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
3498 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3499 * is being used, change to a shorter reconnect delay for FC.
3501 if (opts->max_reconnects != -1 &&
3502 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3503 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3504 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3505 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3506 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3507 opts->reconnect_delay);
3510 ctrl->ctrl.opts = opts;
3511 ctrl->ctrl.nr_reconnects = 0;
3513 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3515 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3516 INIT_LIST_HEAD(&ctrl->ctrl_list);
3517 ctrl->lport = lport;
3518 ctrl->rport = rport;
3519 ctrl->dev = lport->dev;
3521 ctrl->ioq_live = false;
3522 init_waitqueue_head(&ctrl->ioabort_wait);
3524 get_device(ctrl->dev);
3525 kref_init(&ctrl->ref);
3527 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3528 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3529 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3530 spin_lock_init(&ctrl->lock);
3532 /* io queue count */
3533 ctrl->ctrl.queue_count = min_t(unsigned int,
3535 lport->ops->max_hw_queues);
3536 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3538 ctrl->ctrl.sqsize = opts->queue_size - 1;
3539 ctrl->ctrl.kato = opts->kato;
3540 ctrl->ctrl.cntlid = 0xffff;
3543 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3544 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3548 nvme_fc_init_queue(ctrl, 0);
3551 * Would have been nice to init io queues tag set as well.
3552 * However, we require interaction from the controller
3553 * for max io queue count before we can do so.
3554 * Defer this to the connect path.
3557 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3559 goto out_free_queues;
3561 /* at this point, teardown path changes to ref counting on nvme ctrl */
3563 ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set,
3564 &nvme_fc_admin_mq_ops,
3565 struct_size_t(struct nvme_fcp_op_w_sgl, priv,
3566 ctrl->lport->ops->fcprqst_priv_sz));
3570 spin_lock_irqsave(&rport->lock, flags);
3571 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3572 spin_unlock_irqrestore(&rport->lock, flags);
3574 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3575 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3576 dev_err(ctrl->ctrl.device,
3577 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3581 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3582 dev_err(ctrl->ctrl.device,
3583 "NVME-FC{%d}: failed to schedule initial connect\n",
3588 flush_delayed_work(&ctrl->connect_work);
3590 dev_info(ctrl->ctrl.device,
3591 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3592 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl));
3597 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3598 cancel_work_sync(&ctrl->ioerr_work);
3599 cancel_work_sync(&ctrl->ctrl.reset_work);
3600 cancel_delayed_work_sync(&ctrl->connect_work);
3602 ctrl->ctrl.opts = NULL;
3604 /* initiate nvme ctrl ref counting teardown */
3605 nvme_uninit_ctrl(&ctrl->ctrl);
3607 /* Remove core ctrl ref. */
3608 nvme_put_ctrl(&ctrl->ctrl);
3610 /* as we're past the point where we transition to the ref
3611 * counting teardown path, if we return a bad pointer here,
3612 * the calling routine, thinking it's prior to the
3613 * transition, will do an rport put. Since the teardown
3614 * path also does a rport put, we do an extra get here to
3615 * so proper order/teardown happens.
3617 nvme_fc_rport_get(rport);
3619 return ERR_PTR(-EIO);
3622 kfree(ctrl->queues);
3624 put_device(ctrl->dev);
3625 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
3629 /* exit via here doesn't follow ctlr ref points */
3630 return ERR_PTR(ret);
3634 struct nvmet_fc_traddr {
3640 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3644 if (match_u64(sstr, &token64))
3652 * This routine validates and extracts the WWN's from the TRADDR string.
3653 * As kernel parsers need the 0x to determine number base, universally
3654 * build string to parse with 0x prefix before parsing name strings.
3657 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3659 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3660 substring_t wwn = { name, &name[sizeof(name)-1] };
3661 int nnoffset, pnoffset;
3663 /* validate if string is one of the 2 allowed formats */
3664 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3665 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3666 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3667 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3668 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3669 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3670 NVME_FC_TRADDR_OXNNLEN;
3671 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3672 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3673 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3674 "pn-", NVME_FC_TRADDR_NNLEN))) {
3675 nnoffset = NVME_FC_TRADDR_NNLEN;
3676 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3682 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3684 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3685 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3688 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3689 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3695 pr_warn("%s: bad traddr string\n", __func__);
3699 static struct nvme_ctrl *
3700 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3702 struct nvme_fc_lport *lport;
3703 struct nvme_fc_rport *rport;
3704 struct nvme_ctrl *ctrl;
3705 struct nvmet_fc_traddr laddr = { 0L, 0L };
3706 struct nvmet_fc_traddr raddr = { 0L, 0L };
3707 unsigned long flags;
3710 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3711 if (ret || !raddr.nn || !raddr.pn)
3712 return ERR_PTR(-EINVAL);
3714 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3715 if (ret || !laddr.nn || !laddr.pn)
3716 return ERR_PTR(-EINVAL);
3718 /* find the host and remote ports to connect together */
3719 spin_lock_irqsave(&nvme_fc_lock, flags);
3720 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3721 if (lport->localport.node_name != laddr.nn ||
3722 lport->localport.port_name != laddr.pn ||
3723 lport->localport.port_state != FC_OBJSTATE_ONLINE)
3726 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3727 if (rport->remoteport.node_name != raddr.nn ||
3728 rport->remoteport.port_name != raddr.pn ||
3729 rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3732 /* if fail to get reference fall through. Will error */
3733 if (!nvme_fc_rport_get(rport))
3736 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3738 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3740 nvme_fc_rport_put(rport);
3744 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3746 pr_warn("%s: %s - %s combination not found\n",
3747 __func__, opts->traddr, opts->host_traddr);
3748 return ERR_PTR(-ENOENT);
3752 static struct nvmf_transport_ops nvme_fc_transport = {
3754 .module = THIS_MODULE,
3755 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3756 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3757 .create_ctrl = nvme_fc_create_ctrl,
3760 /* Arbitrary successive failures max. With lots of subsystems could be high */
3761 #define DISCOVERY_MAX_FAIL 20
3763 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3764 struct device_attribute *attr, const char *buf, size_t count)
3766 unsigned long flags;
3767 LIST_HEAD(local_disc_list);
3768 struct nvme_fc_lport *lport;
3769 struct nvme_fc_rport *rport;
3772 spin_lock_irqsave(&nvme_fc_lock, flags);
3774 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3775 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3776 if (!nvme_fc_lport_get(lport))
3778 if (!nvme_fc_rport_get(rport)) {
3780 * This is a temporary condition. Upon restart
3781 * this rport will be gone from the list.
3783 * Revert the lport put and retry. Anything
3784 * added to the list already will be skipped (as
3785 * they are no longer list_empty). Loops should
3786 * resume at rports that were not yet seen.
3788 nvme_fc_lport_put(lport);
3790 if (failcnt++ < DISCOVERY_MAX_FAIL)
3793 pr_err("nvme_discovery: too many reference "
3795 goto process_local_list;
3797 if (list_empty(&rport->disc_list))
3798 list_add_tail(&rport->disc_list,
3804 while (!list_empty(&local_disc_list)) {
3805 rport = list_first_entry(&local_disc_list,
3806 struct nvme_fc_rport, disc_list);
3807 list_del_init(&rport->disc_list);
3808 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3810 lport = rport->lport;
3811 /* signal discovery. Won't hurt if it repeats */
3812 nvme_fc_signal_discovery_scan(lport, rport);
3813 nvme_fc_rport_put(rport);
3814 nvme_fc_lport_put(lport);
3816 spin_lock_irqsave(&nvme_fc_lock, flags);
3818 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3823 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3825 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3826 /* Parse the cgroup id from a buf and return the length of cgrpid */
3827 static int fc_parse_cgrpid(const char *buf, u64 *id)
3832 memset(cgrp_id, 0x0, sizeof(cgrp_id));
3833 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3834 if (buf[cgrpid_len] != ':')
3835 cgrp_id[cgrpid_len] = buf[cgrpid_len];
3843 if (kstrtou64(cgrp_id, 16, id) < 0)
3849 * Parse and update the appid in the blkcg associated with the cgroupid.
3851 static ssize_t fc_appid_store(struct device *dev,
3852 struct device_attribute *attr, const char *buf, size_t count)
3854 size_t orig_count = count;
3858 char app_id[FC_APPID_LEN];
3861 if (buf[count-1] == '\n')
3864 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3867 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3870 appid_len = count - cgrpid_len - 1;
3871 if (appid_len > FC_APPID_LEN)
3874 memset(app_id, 0x0, sizeof(app_id));
3875 memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3876 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3881 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3882 #endif /* CONFIG_BLK_CGROUP_FC_APPID */
3884 static struct attribute *nvme_fc_attrs[] = {
3885 &dev_attr_nvme_discovery.attr,
3886 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3887 &dev_attr_appid_store.attr,
3892 static const struct attribute_group nvme_fc_attr_group = {
3893 .attrs = nvme_fc_attrs,
3896 static const struct attribute_group *nvme_fc_attr_groups[] = {
3897 &nvme_fc_attr_group,
3901 static struct class fc_class = {
3903 .dev_groups = nvme_fc_attr_groups,
3906 static int __init nvme_fc_init_module(void)
3910 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3916 * It is expected that in the future the kernel will combine
3917 * the FC-isms that are currently under scsi and now being
3918 * added to by NVME into a new standalone FC class. The SCSI
3919 * and NVME protocols and their devices would be under this
3922 * As we need something to post FC-specific udev events to,
3923 * specifically for nvme probe events, start by creating the
3924 * new device class. When the new standalone FC class is
3925 * put in place, this code will move to a more generic
3926 * location for the class.
3928 ret = class_register(&fc_class);
3930 pr_err("couldn't register class fc\n");
3931 goto out_destroy_wq;
3935 * Create a device for the FC-centric udev events
3937 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3939 if (IS_ERR(fc_udev_device)) {
3940 pr_err("couldn't create fc_udev device!\n");
3941 ret = PTR_ERR(fc_udev_device);
3942 goto out_destroy_class;
3945 ret = nvmf_register_transport(&nvme_fc_transport);
3947 goto out_destroy_device;
3952 device_destroy(&fc_class, MKDEV(0, 0));
3954 class_unregister(&fc_class);
3956 destroy_workqueue(nvme_fc_wq);
3962 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3964 struct nvme_fc_ctrl *ctrl;
3966 spin_lock(&rport->lock);
3967 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3968 dev_warn(ctrl->ctrl.device,
3969 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3971 nvme_delete_ctrl(&ctrl->ctrl);
3973 spin_unlock(&rport->lock);
3977 nvme_fc_cleanup_for_unload(void)
3979 struct nvme_fc_lport *lport;
3980 struct nvme_fc_rport *rport;
3982 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3983 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3984 nvme_fc_delete_controllers(rport);
3989 static void __exit nvme_fc_exit_module(void)
3991 unsigned long flags;
3992 bool need_cleanup = false;
3994 spin_lock_irqsave(&nvme_fc_lock, flags);
3995 nvme_fc_waiting_to_unload = true;
3996 if (!list_empty(&nvme_fc_lport_list)) {
3997 need_cleanup = true;
3998 nvme_fc_cleanup_for_unload();
4000 spin_unlock_irqrestore(&nvme_fc_lock, flags);
4002 pr_info("%s: waiting for ctlr deletes\n", __func__);
4003 wait_for_completion(&nvme_fc_unload_proceed);
4004 pr_info("%s: ctrl deletes complete\n", __func__);
4007 nvmf_unregister_transport(&nvme_fc_transport);
4009 ida_destroy(&nvme_fc_local_port_cnt);
4010 ida_destroy(&nvme_fc_ctrl_cnt);
4012 device_destroy(&fc_class, MKDEV(0, 0));
4013 class_unregister(&fc_class);
4014 destroy_workqueue(nvme_fc_wq);
4017 module_init(nvme_fc_init_module);
4018 module_exit(nvme_fc_exit_module);
4020 MODULE_LICENSE("GPL v2");