Merge tag 'riscv-for-linus-5.13-mw0' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / nvme / host / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 enum nvme_fc_queue_flags {
24         NVME_FC_Q_CONNECTED = 0,
25         NVME_FC_Q_LIVE,
26 };
27
28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
29 #define NVME_FC_DEFAULT_RECONNECT_TMO   2       /* delay between reconnects
30                                                  * when connected and a
31                                                  * connection failure.
32                                                  */
33
34 struct nvme_fc_queue {
35         struct nvme_fc_ctrl     *ctrl;
36         struct device           *dev;
37         struct blk_mq_hw_ctx    *hctx;
38         void                    *lldd_handle;
39         size_t                  cmnd_capsule_len;
40         u32                     qnum;
41         u32                     rqcnt;
42         u32                     seqno;
43
44         u64                     connection_id;
45         atomic_t                csn;
46
47         unsigned long           flags;
48 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
49
50 enum nvme_fcop_flags {
51         FCOP_FLAGS_TERMIO       = (1 << 0),
52         FCOP_FLAGS_AEN          = (1 << 1),
53 };
54
55 struct nvmefc_ls_req_op {
56         struct nvmefc_ls_req    ls_req;
57
58         struct nvme_fc_rport    *rport;
59         struct nvme_fc_queue    *queue;
60         struct request          *rq;
61         u32                     flags;
62
63         int                     ls_error;
64         struct completion       ls_done;
65         struct list_head        lsreq_list;     /* rport->ls_req_list */
66         bool                    req_queued;
67 };
68
69 struct nvmefc_ls_rcv_op {
70         struct nvme_fc_rport            *rport;
71         struct nvmefc_ls_rsp            *lsrsp;
72         union nvmefc_ls_requests        *rqstbuf;
73         union nvmefc_ls_responses       *rspbuf;
74         u16                             rqstdatalen;
75         bool                            handled;
76         dma_addr_t                      rspdma;
77         struct list_head                lsrcv_list;     /* rport->ls_rcv_list */
78 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
79
80 enum nvme_fcpop_state {
81         FCPOP_STATE_UNINIT      = 0,
82         FCPOP_STATE_IDLE        = 1,
83         FCPOP_STATE_ACTIVE      = 2,
84         FCPOP_STATE_ABORTED     = 3,
85         FCPOP_STATE_COMPLETE    = 4,
86 };
87
88 struct nvme_fc_fcp_op {
89         struct nvme_request     nreq;           /*
90                                                  * nvme/host/core.c
91                                                  * requires this to be
92                                                  * the 1st element in the
93                                                  * private structure
94                                                  * associated with the
95                                                  * request.
96                                                  */
97         struct nvmefc_fcp_req   fcp_req;
98
99         struct nvme_fc_ctrl     *ctrl;
100         struct nvme_fc_queue    *queue;
101         struct request          *rq;
102
103         atomic_t                state;
104         u32                     flags;
105         u32                     rqno;
106         u32                     nents;
107
108         struct nvme_fc_cmd_iu   cmd_iu;
109         struct nvme_fc_ersp_iu  rsp_iu;
110 };
111
112 struct nvme_fcp_op_w_sgl {
113         struct nvme_fc_fcp_op   op;
114         struct scatterlist      sgl[NVME_INLINE_SG_CNT];
115         uint8_t                 priv[];
116 };
117
118 struct nvme_fc_lport {
119         struct nvme_fc_local_port       localport;
120
121         struct ida                      endp_cnt;
122         struct list_head                port_list;      /* nvme_fc_port_list */
123         struct list_head                endp_list;
124         struct device                   *dev;   /* physical device for dma */
125         struct nvme_fc_port_template    *ops;
126         struct kref                     ref;
127         atomic_t                        act_rport_cnt;
128 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
129
130 struct nvme_fc_rport {
131         struct nvme_fc_remote_port      remoteport;
132
133         struct list_head                endp_list; /* for lport->endp_list */
134         struct list_head                ctrl_list;
135         struct list_head                ls_req_list;
136         struct list_head                ls_rcv_list;
137         struct list_head                disc_list;
138         struct device                   *dev;   /* physical device for dma */
139         struct nvme_fc_lport            *lport;
140         spinlock_t                      lock;
141         struct kref                     ref;
142         atomic_t                        act_ctrl_cnt;
143         unsigned long                   dev_loss_end;
144         struct work_struct              lsrcv_work;
145 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
146
147 /* fc_ctrl flags values - specified as bit positions */
148 #define ASSOC_ACTIVE            0
149 #define ASSOC_FAILED            1
150 #define FCCTRL_TERMIO           2
151
152 struct nvme_fc_ctrl {
153         spinlock_t              lock;
154         struct nvme_fc_queue    *queues;
155         struct device           *dev;
156         struct nvme_fc_lport    *lport;
157         struct nvme_fc_rport    *rport;
158         u32                     cnum;
159
160         bool                    ioq_live;
161         u64                     association_id;
162         struct nvmefc_ls_rcv_op *rcv_disconn;
163
164         struct list_head        ctrl_list;      /* rport->ctrl_list */
165
166         struct blk_mq_tag_set   admin_tag_set;
167         struct blk_mq_tag_set   tag_set;
168
169         struct work_struct      ioerr_work;
170         struct delayed_work     connect_work;
171
172         struct kref             ref;
173         unsigned long           flags;
174         u32                     iocnt;
175         wait_queue_head_t       ioabort_wait;
176
177         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
178
179         struct nvme_ctrl        ctrl;
180 };
181
182 static inline struct nvme_fc_ctrl *
183 to_fc_ctrl(struct nvme_ctrl *ctrl)
184 {
185         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
186 }
187
188 static inline struct nvme_fc_lport *
189 localport_to_lport(struct nvme_fc_local_port *portptr)
190 {
191         return container_of(portptr, struct nvme_fc_lport, localport);
192 }
193
194 static inline struct nvme_fc_rport *
195 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
196 {
197         return container_of(portptr, struct nvme_fc_rport, remoteport);
198 }
199
200 static inline struct nvmefc_ls_req_op *
201 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
202 {
203         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
204 }
205
206 static inline struct nvme_fc_fcp_op *
207 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
208 {
209         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
210 }
211
212
213
214 /* *************************** Globals **************************** */
215
216
217 static DEFINE_SPINLOCK(nvme_fc_lock);
218
219 static LIST_HEAD(nvme_fc_lport_list);
220 static DEFINE_IDA(nvme_fc_local_port_cnt);
221 static DEFINE_IDA(nvme_fc_ctrl_cnt);
222
223 static struct workqueue_struct *nvme_fc_wq;
224
225 static bool nvme_fc_waiting_to_unload;
226 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
227
228 /*
229  * These items are short-term. They will eventually be moved into
230  * a generic FC class. See comments in module init.
231  */
232 static struct device *fc_udev_device;
233
234 static void nvme_fc_complete_rq(struct request *rq);
235
236 /* *********************** FC-NVME Port Management ************************ */
237
238 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
239                         struct nvme_fc_queue *, unsigned int);
240
241 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
242
243
244 static void
245 nvme_fc_free_lport(struct kref *ref)
246 {
247         struct nvme_fc_lport *lport =
248                 container_of(ref, struct nvme_fc_lport, ref);
249         unsigned long flags;
250
251         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
252         WARN_ON(!list_empty(&lport->endp_list));
253
254         /* remove from transport list */
255         spin_lock_irqsave(&nvme_fc_lock, flags);
256         list_del(&lport->port_list);
257         if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
258                 complete(&nvme_fc_unload_proceed);
259         spin_unlock_irqrestore(&nvme_fc_lock, flags);
260
261         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
262         ida_destroy(&lport->endp_cnt);
263
264         put_device(lport->dev);
265
266         kfree(lport);
267 }
268
269 static void
270 nvme_fc_lport_put(struct nvme_fc_lport *lport)
271 {
272         kref_put(&lport->ref, nvme_fc_free_lport);
273 }
274
275 static int
276 nvme_fc_lport_get(struct nvme_fc_lport *lport)
277 {
278         return kref_get_unless_zero(&lport->ref);
279 }
280
281
282 static struct nvme_fc_lport *
283 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
284                         struct nvme_fc_port_template *ops,
285                         struct device *dev)
286 {
287         struct nvme_fc_lport *lport;
288         unsigned long flags;
289
290         spin_lock_irqsave(&nvme_fc_lock, flags);
291
292         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
293                 if (lport->localport.node_name != pinfo->node_name ||
294                     lport->localport.port_name != pinfo->port_name)
295                         continue;
296
297                 if (lport->dev != dev) {
298                         lport = ERR_PTR(-EXDEV);
299                         goto out_done;
300                 }
301
302                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
303                         lport = ERR_PTR(-EEXIST);
304                         goto out_done;
305                 }
306
307                 if (!nvme_fc_lport_get(lport)) {
308                         /*
309                          * fails if ref cnt already 0. If so,
310                          * act as if lport already deleted
311                          */
312                         lport = NULL;
313                         goto out_done;
314                 }
315
316                 /* resume the lport */
317
318                 lport->ops = ops;
319                 lport->localport.port_role = pinfo->port_role;
320                 lport->localport.port_id = pinfo->port_id;
321                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
322
323                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
324
325                 return lport;
326         }
327
328         lport = NULL;
329
330 out_done:
331         spin_unlock_irqrestore(&nvme_fc_lock, flags);
332
333         return lport;
334 }
335
336 /**
337  * nvme_fc_register_localport - transport entry point called by an
338  *                              LLDD to register the existence of a NVME
339  *                              host FC port.
340  * @pinfo:     pointer to information about the port to be registered
341  * @template:  LLDD entrypoints and operational parameters for the port
342  * @dev:       physical hardware device node port corresponds to. Will be
343  *             used for DMA mappings
344  * @portptr:   pointer to a local port pointer. Upon success, the routine
345  *             will allocate a nvme_fc_local_port structure and place its
346  *             address in the local port pointer. Upon failure, local port
347  *             pointer will be set to 0.
348  *
349  * Returns:
350  * a completion status. Must be 0 upon success; a negative errno
351  * (ex: -ENXIO) upon failure.
352  */
353 int
354 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
355                         struct nvme_fc_port_template *template,
356                         struct device *dev,
357                         struct nvme_fc_local_port **portptr)
358 {
359         struct nvme_fc_lport *newrec;
360         unsigned long flags;
361         int ret, idx;
362
363         if (!template->localport_delete || !template->remoteport_delete ||
364             !template->ls_req || !template->fcp_io ||
365             !template->ls_abort || !template->fcp_abort ||
366             !template->max_hw_queues || !template->max_sgl_segments ||
367             !template->max_dif_sgl_segments || !template->dma_boundary) {
368                 ret = -EINVAL;
369                 goto out_reghost_failed;
370         }
371
372         /*
373          * look to see if there is already a localport that had been
374          * deregistered and in the process of waiting for all the
375          * references to fully be removed.  If the references haven't
376          * expired, we can simply re-enable the localport. Remoteports
377          * and controller reconnections should resume naturally.
378          */
379         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
380
381         /* found an lport, but something about its state is bad */
382         if (IS_ERR(newrec)) {
383                 ret = PTR_ERR(newrec);
384                 goto out_reghost_failed;
385
386         /* found existing lport, which was resumed */
387         } else if (newrec) {
388                 *portptr = &newrec->localport;
389                 return 0;
390         }
391
392         /* nothing found - allocate a new localport struct */
393
394         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
395                          GFP_KERNEL);
396         if (!newrec) {
397                 ret = -ENOMEM;
398                 goto out_reghost_failed;
399         }
400
401         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
402         if (idx < 0) {
403                 ret = -ENOSPC;
404                 goto out_fail_kfree;
405         }
406
407         if (!get_device(dev) && dev) {
408                 ret = -ENODEV;
409                 goto out_ida_put;
410         }
411
412         INIT_LIST_HEAD(&newrec->port_list);
413         INIT_LIST_HEAD(&newrec->endp_list);
414         kref_init(&newrec->ref);
415         atomic_set(&newrec->act_rport_cnt, 0);
416         newrec->ops = template;
417         newrec->dev = dev;
418         ida_init(&newrec->endp_cnt);
419         if (template->local_priv_sz)
420                 newrec->localport.private = &newrec[1];
421         else
422                 newrec->localport.private = NULL;
423         newrec->localport.node_name = pinfo->node_name;
424         newrec->localport.port_name = pinfo->port_name;
425         newrec->localport.port_role = pinfo->port_role;
426         newrec->localport.port_id = pinfo->port_id;
427         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
428         newrec->localport.port_num = idx;
429
430         spin_lock_irqsave(&nvme_fc_lock, flags);
431         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
432         spin_unlock_irqrestore(&nvme_fc_lock, flags);
433
434         if (dev)
435                 dma_set_seg_boundary(dev, template->dma_boundary);
436
437         *portptr = &newrec->localport;
438         return 0;
439
440 out_ida_put:
441         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
442 out_fail_kfree:
443         kfree(newrec);
444 out_reghost_failed:
445         *portptr = NULL;
446
447         return ret;
448 }
449 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
450
451 /**
452  * nvme_fc_unregister_localport - transport entry point called by an
453  *                              LLDD to deregister/remove a previously
454  *                              registered a NVME host FC port.
455  * @portptr: pointer to the (registered) local port that is to be deregistered.
456  *
457  * Returns:
458  * a completion status. Must be 0 upon success; a negative errno
459  * (ex: -ENXIO) upon failure.
460  */
461 int
462 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
463 {
464         struct nvme_fc_lport *lport = localport_to_lport(portptr);
465         unsigned long flags;
466
467         if (!portptr)
468                 return -EINVAL;
469
470         spin_lock_irqsave(&nvme_fc_lock, flags);
471
472         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
473                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
474                 return -EINVAL;
475         }
476         portptr->port_state = FC_OBJSTATE_DELETED;
477
478         spin_unlock_irqrestore(&nvme_fc_lock, flags);
479
480         if (atomic_read(&lport->act_rport_cnt) == 0)
481                 lport->ops->localport_delete(&lport->localport);
482
483         nvme_fc_lport_put(lport);
484
485         return 0;
486 }
487 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
488
489 /*
490  * TRADDR strings, per FC-NVME are fixed format:
491  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
492  * udev event will only differ by prefix of what field is
493  * being specified:
494  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
495  *  19 + 43 + null_fudge = 64 characters
496  */
497 #define FCNVME_TRADDR_LENGTH            64
498
499 static void
500 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
501                 struct nvme_fc_rport *rport)
502 {
503         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
504         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
505         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
506
507         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
508                 return;
509
510         snprintf(hostaddr, sizeof(hostaddr),
511                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
512                 lport->localport.node_name, lport->localport.port_name);
513         snprintf(tgtaddr, sizeof(tgtaddr),
514                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
515                 rport->remoteport.node_name, rport->remoteport.port_name);
516         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
517 }
518
519 static void
520 nvme_fc_free_rport(struct kref *ref)
521 {
522         struct nvme_fc_rport *rport =
523                 container_of(ref, struct nvme_fc_rport, ref);
524         struct nvme_fc_lport *lport =
525                         localport_to_lport(rport->remoteport.localport);
526         unsigned long flags;
527
528         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
529         WARN_ON(!list_empty(&rport->ctrl_list));
530
531         /* remove from lport list */
532         spin_lock_irqsave(&nvme_fc_lock, flags);
533         list_del(&rport->endp_list);
534         spin_unlock_irqrestore(&nvme_fc_lock, flags);
535
536         WARN_ON(!list_empty(&rport->disc_list));
537         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
538
539         kfree(rport);
540
541         nvme_fc_lport_put(lport);
542 }
543
544 static void
545 nvme_fc_rport_put(struct nvme_fc_rport *rport)
546 {
547         kref_put(&rport->ref, nvme_fc_free_rport);
548 }
549
550 static int
551 nvme_fc_rport_get(struct nvme_fc_rport *rport)
552 {
553         return kref_get_unless_zero(&rport->ref);
554 }
555
556 static void
557 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
558 {
559         switch (ctrl->ctrl.state) {
560         case NVME_CTRL_NEW:
561         case NVME_CTRL_CONNECTING:
562                 /*
563                  * As all reconnects were suppressed, schedule a
564                  * connect.
565                  */
566                 dev_info(ctrl->ctrl.device,
567                         "NVME-FC{%d}: connectivity re-established. "
568                         "Attempting reconnect\n", ctrl->cnum);
569
570                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
571                 break;
572
573         case NVME_CTRL_RESETTING:
574                 /*
575                  * Controller is already in the process of terminating the
576                  * association. No need to do anything further. The reconnect
577                  * step will naturally occur after the reset completes.
578                  */
579                 break;
580
581         default:
582                 /* no action to take - let it delete */
583                 break;
584         }
585 }
586
587 static struct nvme_fc_rport *
588 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
589                                 struct nvme_fc_port_info *pinfo)
590 {
591         struct nvme_fc_rport *rport;
592         struct nvme_fc_ctrl *ctrl;
593         unsigned long flags;
594
595         spin_lock_irqsave(&nvme_fc_lock, flags);
596
597         list_for_each_entry(rport, &lport->endp_list, endp_list) {
598                 if (rport->remoteport.node_name != pinfo->node_name ||
599                     rport->remoteport.port_name != pinfo->port_name)
600                         continue;
601
602                 if (!nvme_fc_rport_get(rport)) {
603                         rport = ERR_PTR(-ENOLCK);
604                         goto out_done;
605                 }
606
607                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
608
609                 spin_lock_irqsave(&rport->lock, flags);
610
611                 /* has it been unregistered */
612                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
613                         /* means lldd called us twice */
614                         spin_unlock_irqrestore(&rport->lock, flags);
615                         nvme_fc_rport_put(rport);
616                         return ERR_PTR(-ESTALE);
617                 }
618
619                 rport->remoteport.port_role = pinfo->port_role;
620                 rport->remoteport.port_id = pinfo->port_id;
621                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
622                 rport->dev_loss_end = 0;
623
624                 /*
625                  * kick off a reconnect attempt on all associations to the
626                  * remote port. A successful reconnects will resume i/o.
627                  */
628                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
629                         nvme_fc_resume_controller(ctrl);
630
631                 spin_unlock_irqrestore(&rport->lock, flags);
632
633                 return rport;
634         }
635
636         rport = NULL;
637
638 out_done:
639         spin_unlock_irqrestore(&nvme_fc_lock, flags);
640
641         return rport;
642 }
643
644 static inline void
645 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
646                         struct nvme_fc_port_info *pinfo)
647 {
648         if (pinfo->dev_loss_tmo)
649                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
650         else
651                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
652 }
653
654 /**
655  * nvme_fc_register_remoteport - transport entry point called by an
656  *                              LLDD to register the existence of a NVME
657  *                              subsystem FC port on its fabric.
658  * @localport: pointer to the (registered) local port that the remote
659  *             subsystem port is connected to.
660  * @pinfo:     pointer to information about the port to be registered
661  * @portptr:   pointer to a remote port pointer. Upon success, the routine
662  *             will allocate a nvme_fc_remote_port structure and place its
663  *             address in the remote port pointer. Upon failure, remote port
664  *             pointer will be set to 0.
665  *
666  * Returns:
667  * a completion status. Must be 0 upon success; a negative errno
668  * (ex: -ENXIO) upon failure.
669  */
670 int
671 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
672                                 struct nvme_fc_port_info *pinfo,
673                                 struct nvme_fc_remote_port **portptr)
674 {
675         struct nvme_fc_lport *lport = localport_to_lport(localport);
676         struct nvme_fc_rport *newrec;
677         unsigned long flags;
678         int ret, idx;
679
680         if (!nvme_fc_lport_get(lport)) {
681                 ret = -ESHUTDOWN;
682                 goto out_reghost_failed;
683         }
684
685         /*
686          * look to see if there is already a remoteport that is waiting
687          * for a reconnect (within dev_loss_tmo) with the same WWN's.
688          * If so, transition to it and reconnect.
689          */
690         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
691
692         /* found an rport, but something about its state is bad */
693         if (IS_ERR(newrec)) {
694                 ret = PTR_ERR(newrec);
695                 goto out_lport_put;
696
697         /* found existing rport, which was resumed */
698         } else if (newrec) {
699                 nvme_fc_lport_put(lport);
700                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
701                 nvme_fc_signal_discovery_scan(lport, newrec);
702                 *portptr = &newrec->remoteport;
703                 return 0;
704         }
705
706         /* nothing found - allocate a new remoteport struct */
707
708         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
709                          GFP_KERNEL);
710         if (!newrec) {
711                 ret = -ENOMEM;
712                 goto out_lport_put;
713         }
714
715         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
716         if (idx < 0) {
717                 ret = -ENOSPC;
718                 goto out_kfree_rport;
719         }
720
721         INIT_LIST_HEAD(&newrec->endp_list);
722         INIT_LIST_HEAD(&newrec->ctrl_list);
723         INIT_LIST_HEAD(&newrec->ls_req_list);
724         INIT_LIST_HEAD(&newrec->disc_list);
725         kref_init(&newrec->ref);
726         atomic_set(&newrec->act_ctrl_cnt, 0);
727         spin_lock_init(&newrec->lock);
728         newrec->remoteport.localport = &lport->localport;
729         INIT_LIST_HEAD(&newrec->ls_rcv_list);
730         newrec->dev = lport->dev;
731         newrec->lport = lport;
732         if (lport->ops->remote_priv_sz)
733                 newrec->remoteport.private = &newrec[1];
734         else
735                 newrec->remoteport.private = NULL;
736         newrec->remoteport.port_role = pinfo->port_role;
737         newrec->remoteport.node_name = pinfo->node_name;
738         newrec->remoteport.port_name = pinfo->port_name;
739         newrec->remoteport.port_id = pinfo->port_id;
740         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
741         newrec->remoteport.port_num = idx;
742         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
743         INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
744
745         spin_lock_irqsave(&nvme_fc_lock, flags);
746         list_add_tail(&newrec->endp_list, &lport->endp_list);
747         spin_unlock_irqrestore(&nvme_fc_lock, flags);
748
749         nvme_fc_signal_discovery_scan(lport, newrec);
750
751         *portptr = &newrec->remoteport;
752         return 0;
753
754 out_kfree_rport:
755         kfree(newrec);
756 out_lport_put:
757         nvme_fc_lport_put(lport);
758 out_reghost_failed:
759         *portptr = NULL;
760         return ret;
761 }
762 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
763
764 static int
765 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
766 {
767         struct nvmefc_ls_req_op *lsop;
768         unsigned long flags;
769
770 restart:
771         spin_lock_irqsave(&rport->lock, flags);
772
773         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
774                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
775                         lsop->flags |= FCOP_FLAGS_TERMIO;
776                         spin_unlock_irqrestore(&rport->lock, flags);
777                         rport->lport->ops->ls_abort(&rport->lport->localport,
778                                                 &rport->remoteport,
779                                                 &lsop->ls_req);
780                         goto restart;
781                 }
782         }
783         spin_unlock_irqrestore(&rport->lock, flags);
784
785         return 0;
786 }
787
788 static void
789 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
790 {
791         dev_info(ctrl->ctrl.device,
792                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
793                 "Reconnect", ctrl->cnum);
794
795         switch (ctrl->ctrl.state) {
796         case NVME_CTRL_NEW:
797         case NVME_CTRL_LIVE:
798                 /*
799                  * Schedule a controller reset. The reset will terminate the
800                  * association and schedule the reconnect timer.  Reconnects
801                  * will be attempted until either the ctlr_loss_tmo
802                  * (max_retries * connect_delay) expires or the remoteport's
803                  * dev_loss_tmo expires.
804                  */
805                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
806                         dev_warn(ctrl->ctrl.device,
807                                 "NVME-FC{%d}: Couldn't schedule reset.\n",
808                                 ctrl->cnum);
809                         nvme_delete_ctrl(&ctrl->ctrl);
810                 }
811                 break;
812
813         case NVME_CTRL_CONNECTING:
814                 /*
815                  * The association has already been terminated and the
816                  * controller is attempting reconnects.  No need to do anything
817                  * futher.  Reconnects will be attempted until either the
818                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
819                  * remoteport's dev_loss_tmo expires.
820                  */
821                 break;
822
823         case NVME_CTRL_RESETTING:
824                 /*
825                  * Controller is already in the process of terminating the
826                  * association.  No need to do anything further. The reconnect
827                  * step will kick in naturally after the association is
828                  * terminated.
829                  */
830                 break;
831
832         case NVME_CTRL_DELETING:
833         case NVME_CTRL_DELETING_NOIO:
834         default:
835                 /* no action to take - let it delete */
836                 break;
837         }
838 }
839
840 /**
841  * nvme_fc_unregister_remoteport - transport entry point called by an
842  *                              LLDD to deregister/remove a previously
843  *                              registered a NVME subsystem FC port.
844  * @portptr: pointer to the (registered) remote port that is to be
845  *           deregistered.
846  *
847  * Returns:
848  * a completion status. Must be 0 upon success; a negative errno
849  * (ex: -ENXIO) upon failure.
850  */
851 int
852 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
853 {
854         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
855         struct nvme_fc_ctrl *ctrl;
856         unsigned long flags;
857
858         if (!portptr)
859                 return -EINVAL;
860
861         spin_lock_irqsave(&rport->lock, flags);
862
863         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
864                 spin_unlock_irqrestore(&rport->lock, flags);
865                 return -EINVAL;
866         }
867         portptr->port_state = FC_OBJSTATE_DELETED;
868
869         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
870
871         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
872                 /* if dev_loss_tmo==0, dev loss is immediate */
873                 if (!portptr->dev_loss_tmo) {
874                         dev_warn(ctrl->ctrl.device,
875                                 "NVME-FC{%d}: controller connectivity lost.\n",
876                                 ctrl->cnum);
877                         nvme_delete_ctrl(&ctrl->ctrl);
878                 } else
879                         nvme_fc_ctrl_connectivity_loss(ctrl);
880         }
881
882         spin_unlock_irqrestore(&rport->lock, flags);
883
884         nvme_fc_abort_lsops(rport);
885
886         if (atomic_read(&rport->act_ctrl_cnt) == 0)
887                 rport->lport->ops->remoteport_delete(portptr);
888
889         /*
890          * release the reference, which will allow, if all controllers
891          * go away, which should only occur after dev_loss_tmo occurs,
892          * for the rport to be torn down.
893          */
894         nvme_fc_rport_put(rport);
895
896         return 0;
897 }
898 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
899
900 /**
901  * nvme_fc_rescan_remoteport - transport entry point called by an
902  *                              LLDD to request a nvme device rescan.
903  * @remoteport: pointer to the (registered) remote port that is to be
904  *              rescanned.
905  *
906  * Returns: N/A
907  */
908 void
909 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
910 {
911         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
912
913         nvme_fc_signal_discovery_scan(rport->lport, rport);
914 }
915 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
916
917 int
918 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
919                         u32 dev_loss_tmo)
920 {
921         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
922         unsigned long flags;
923
924         spin_lock_irqsave(&rport->lock, flags);
925
926         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
927                 spin_unlock_irqrestore(&rport->lock, flags);
928                 return -EINVAL;
929         }
930
931         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
932         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
933
934         spin_unlock_irqrestore(&rport->lock, flags);
935
936         return 0;
937 }
938 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
939
940
941 /* *********************** FC-NVME DMA Handling **************************** */
942
943 /*
944  * The fcloop device passes in a NULL device pointer. Real LLD's will
945  * pass in a valid device pointer. If NULL is passed to the dma mapping
946  * routines, depending on the platform, it may or may not succeed, and
947  * may crash.
948  *
949  * As such:
950  * Wrapper all the dma routines and check the dev pointer.
951  *
952  * If simple mappings (return just a dma address, we'll noop them,
953  * returning a dma address of 0.
954  *
955  * On more complex mappings (dma_map_sg), a pseudo routine fills
956  * in the scatter list, setting all dma addresses to 0.
957  */
958
959 static inline dma_addr_t
960 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
961                 enum dma_data_direction dir)
962 {
963         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
964 }
965
966 static inline int
967 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
968 {
969         return dev ? dma_mapping_error(dev, dma_addr) : 0;
970 }
971
972 static inline void
973 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
974         enum dma_data_direction dir)
975 {
976         if (dev)
977                 dma_unmap_single(dev, addr, size, dir);
978 }
979
980 static inline void
981 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
982                 enum dma_data_direction dir)
983 {
984         if (dev)
985                 dma_sync_single_for_cpu(dev, addr, size, dir);
986 }
987
988 static inline void
989 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
990                 enum dma_data_direction dir)
991 {
992         if (dev)
993                 dma_sync_single_for_device(dev, addr, size, dir);
994 }
995
996 /* pseudo dma_map_sg call */
997 static int
998 fc_map_sg(struct scatterlist *sg, int nents)
999 {
1000         struct scatterlist *s;
1001         int i;
1002
1003         WARN_ON(nents == 0 || sg[0].length == 0);
1004
1005         for_each_sg(sg, s, nents, i) {
1006                 s->dma_address = 0L;
1007 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1008                 s->dma_length = s->length;
1009 #endif
1010         }
1011         return nents;
1012 }
1013
1014 static inline int
1015 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1016                 enum dma_data_direction dir)
1017 {
1018         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1019 }
1020
1021 static inline void
1022 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1023                 enum dma_data_direction dir)
1024 {
1025         if (dev)
1026                 dma_unmap_sg(dev, sg, nents, dir);
1027 }
1028
1029 /* *********************** FC-NVME LS Handling **************************** */
1030
1031 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1032 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1033
1034 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1035
1036 static void
1037 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1038 {
1039         struct nvme_fc_rport *rport = lsop->rport;
1040         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1041         unsigned long flags;
1042
1043         spin_lock_irqsave(&rport->lock, flags);
1044
1045         if (!lsop->req_queued) {
1046                 spin_unlock_irqrestore(&rport->lock, flags);
1047                 return;
1048         }
1049
1050         list_del(&lsop->lsreq_list);
1051
1052         lsop->req_queued = false;
1053
1054         spin_unlock_irqrestore(&rport->lock, flags);
1055
1056         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1057                                   (lsreq->rqstlen + lsreq->rsplen),
1058                                   DMA_BIDIRECTIONAL);
1059
1060         nvme_fc_rport_put(rport);
1061 }
1062
1063 static int
1064 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1065                 struct nvmefc_ls_req_op *lsop,
1066                 void (*done)(struct nvmefc_ls_req *req, int status))
1067 {
1068         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1069         unsigned long flags;
1070         int ret = 0;
1071
1072         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1073                 return -ECONNREFUSED;
1074
1075         if (!nvme_fc_rport_get(rport))
1076                 return -ESHUTDOWN;
1077
1078         lsreq->done = done;
1079         lsop->rport = rport;
1080         lsop->req_queued = false;
1081         INIT_LIST_HEAD(&lsop->lsreq_list);
1082         init_completion(&lsop->ls_done);
1083
1084         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1085                                   lsreq->rqstlen + lsreq->rsplen,
1086                                   DMA_BIDIRECTIONAL);
1087         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1088                 ret = -EFAULT;
1089                 goto out_putrport;
1090         }
1091         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1092
1093         spin_lock_irqsave(&rport->lock, flags);
1094
1095         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1096
1097         lsop->req_queued = true;
1098
1099         spin_unlock_irqrestore(&rport->lock, flags);
1100
1101         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1102                                         &rport->remoteport, lsreq);
1103         if (ret)
1104                 goto out_unlink;
1105
1106         return 0;
1107
1108 out_unlink:
1109         lsop->ls_error = ret;
1110         spin_lock_irqsave(&rport->lock, flags);
1111         lsop->req_queued = false;
1112         list_del(&lsop->lsreq_list);
1113         spin_unlock_irqrestore(&rport->lock, flags);
1114         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1115                                   (lsreq->rqstlen + lsreq->rsplen),
1116                                   DMA_BIDIRECTIONAL);
1117 out_putrport:
1118         nvme_fc_rport_put(rport);
1119
1120         return ret;
1121 }
1122
1123 static void
1124 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1125 {
1126         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1127
1128         lsop->ls_error = status;
1129         complete(&lsop->ls_done);
1130 }
1131
1132 static int
1133 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1134 {
1135         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1136         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1137         int ret;
1138
1139         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1140
1141         if (!ret) {
1142                 /*
1143                  * No timeout/not interruptible as we need the struct
1144                  * to exist until the lldd calls us back. Thus mandate
1145                  * wait until driver calls back. lldd responsible for
1146                  * the timeout action
1147                  */
1148                 wait_for_completion(&lsop->ls_done);
1149
1150                 __nvme_fc_finish_ls_req(lsop);
1151
1152                 ret = lsop->ls_error;
1153         }
1154
1155         if (ret)
1156                 return ret;
1157
1158         /* ACC or RJT payload ? */
1159         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1160                 return -ENXIO;
1161
1162         return 0;
1163 }
1164
1165 static int
1166 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1167                 struct nvmefc_ls_req_op *lsop,
1168                 void (*done)(struct nvmefc_ls_req *req, int status))
1169 {
1170         /* don't wait for completion */
1171
1172         return __nvme_fc_send_ls_req(rport, lsop, done);
1173 }
1174
1175 static int
1176 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1177         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1178 {
1179         struct nvmefc_ls_req_op *lsop;
1180         struct nvmefc_ls_req *lsreq;
1181         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1182         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1183         unsigned long flags;
1184         int ret, fcret = 0;
1185
1186         lsop = kzalloc((sizeof(*lsop) +
1187                          sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1188                          ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1189         if (!lsop) {
1190                 dev_info(ctrl->ctrl.device,
1191                         "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1192                         ctrl->cnum);
1193                 ret = -ENOMEM;
1194                 goto out_no_memory;
1195         }
1196
1197         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1198         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1199         lsreq = &lsop->ls_req;
1200         if (ctrl->lport->ops->lsrqst_priv_sz)
1201                 lsreq->private = &assoc_acc[1];
1202         else
1203                 lsreq->private = NULL;
1204
1205         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1206         assoc_rqst->desc_list_len =
1207                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1208
1209         assoc_rqst->assoc_cmd.desc_tag =
1210                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1211         assoc_rqst->assoc_cmd.desc_len =
1212                         fcnvme_lsdesc_len(
1213                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1214
1215         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1216         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1217         /* Linux supports only Dynamic controllers */
1218         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1219         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1220         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1221                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1222         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1223                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1224
1225         lsop->queue = queue;
1226         lsreq->rqstaddr = assoc_rqst;
1227         lsreq->rqstlen = sizeof(*assoc_rqst);
1228         lsreq->rspaddr = assoc_acc;
1229         lsreq->rsplen = sizeof(*assoc_acc);
1230         lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1231
1232         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1233         if (ret)
1234                 goto out_free_buffer;
1235
1236         /* process connect LS completion */
1237
1238         /* validate the ACC response */
1239         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1240                 fcret = VERR_LSACC;
1241         else if (assoc_acc->hdr.desc_list_len !=
1242                         fcnvme_lsdesc_len(
1243                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1244                 fcret = VERR_CR_ASSOC_ACC_LEN;
1245         else if (assoc_acc->hdr.rqst.desc_tag !=
1246                         cpu_to_be32(FCNVME_LSDESC_RQST))
1247                 fcret = VERR_LSDESC_RQST;
1248         else if (assoc_acc->hdr.rqst.desc_len !=
1249                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1250                 fcret = VERR_LSDESC_RQST_LEN;
1251         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1252                 fcret = VERR_CR_ASSOC;
1253         else if (assoc_acc->associd.desc_tag !=
1254                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1255                 fcret = VERR_ASSOC_ID;
1256         else if (assoc_acc->associd.desc_len !=
1257                         fcnvme_lsdesc_len(
1258                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1259                 fcret = VERR_ASSOC_ID_LEN;
1260         else if (assoc_acc->connectid.desc_tag !=
1261                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1262                 fcret = VERR_CONN_ID;
1263         else if (assoc_acc->connectid.desc_len !=
1264                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1265                 fcret = VERR_CONN_ID_LEN;
1266
1267         if (fcret) {
1268                 ret = -EBADF;
1269                 dev_err(ctrl->dev,
1270                         "q %d Create Association LS failed: %s\n",
1271                         queue->qnum, validation_errors[fcret]);
1272         } else {
1273                 spin_lock_irqsave(&ctrl->lock, flags);
1274                 ctrl->association_id =
1275                         be64_to_cpu(assoc_acc->associd.association_id);
1276                 queue->connection_id =
1277                         be64_to_cpu(assoc_acc->connectid.connection_id);
1278                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1279                 spin_unlock_irqrestore(&ctrl->lock, flags);
1280         }
1281
1282 out_free_buffer:
1283         kfree(lsop);
1284 out_no_memory:
1285         if (ret)
1286                 dev_err(ctrl->dev,
1287                         "queue %d connect admin queue failed (%d).\n",
1288                         queue->qnum, ret);
1289         return ret;
1290 }
1291
1292 static int
1293 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1294                         u16 qsize, u16 ersp_ratio)
1295 {
1296         struct nvmefc_ls_req_op *lsop;
1297         struct nvmefc_ls_req *lsreq;
1298         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1299         struct fcnvme_ls_cr_conn_acc *conn_acc;
1300         int ret, fcret = 0;
1301
1302         lsop = kzalloc((sizeof(*lsop) +
1303                          sizeof(*conn_rqst) + sizeof(*conn_acc) +
1304                          ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1305         if (!lsop) {
1306                 dev_info(ctrl->ctrl.device,
1307                         "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1308                         ctrl->cnum);
1309                 ret = -ENOMEM;
1310                 goto out_no_memory;
1311         }
1312
1313         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1314         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1315         lsreq = &lsop->ls_req;
1316         if (ctrl->lport->ops->lsrqst_priv_sz)
1317                 lsreq->private = (void *)&conn_acc[1];
1318         else
1319                 lsreq->private = NULL;
1320
1321         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1322         conn_rqst->desc_list_len = cpu_to_be32(
1323                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1324                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1325
1326         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1327         conn_rqst->associd.desc_len =
1328                         fcnvme_lsdesc_len(
1329                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1330         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1331         conn_rqst->connect_cmd.desc_tag =
1332                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1333         conn_rqst->connect_cmd.desc_len =
1334                         fcnvme_lsdesc_len(
1335                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1336         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1337         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1338         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1339
1340         lsop->queue = queue;
1341         lsreq->rqstaddr = conn_rqst;
1342         lsreq->rqstlen = sizeof(*conn_rqst);
1343         lsreq->rspaddr = conn_acc;
1344         lsreq->rsplen = sizeof(*conn_acc);
1345         lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1346
1347         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1348         if (ret)
1349                 goto out_free_buffer;
1350
1351         /* process connect LS completion */
1352
1353         /* validate the ACC response */
1354         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1355                 fcret = VERR_LSACC;
1356         else if (conn_acc->hdr.desc_list_len !=
1357                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1358                 fcret = VERR_CR_CONN_ACC_LEN;
1359         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1360                 fcret = VERR_LSDESC_RQST;
1361         else if (conn_acc->hdr.rqst.desc_len !=
1362                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1363                 fcret = VERR_LSDESC_RQST_LEN;
1364         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1365                 fcret = VERR_CR_CONN;
1366         else if (conn_acc->connectid.desc_tag !=
1367                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1368                 fcret = VERR_CONN_ID;
1369         else if (conn_acc->connectid.desc_len !=
1370                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1371                 fcret = VERR_CONN_ID_LEN;
1372
1373         if (fcret) {
1374                 ret = -EBADF;
1375                 dev_err(ctrl->dev,
1376                         "q %d Create I/O Connection LS failed: %s\n",
1377                         queue->qnum, validation_errors[fcret]);
1378         } else {
1379                 queue->connection_id =
1380                         be64_to_cpu(conn_acc->connectid.connection_id);
1381                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1382         }
1383
1384 out_free_buffer:
1385         kfree(lsop);
1386 out_no_memory:
1387         if (ret)
1388                 dev_err(ctrl->dev,
1389                         "queue %d connect I/O queue failed (%d).\n",
1390                         queue->qnum, ret);
1391         return ret;
1392 }
1393
1394 static void
1395 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1396 {
1397         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1398
1399         __nvme_fc_finish_ls_req(lsop);
1400
1401         /* fc-nvme initiator doesn't care about success or failure of cmd */
1402
1403         kfree(lsop);
1404 }
1405
1406 /*
1407  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1408  * the FC-NVME Association.  Terminating the association also
1409  * terminates the FC-NVME connections (per queue, both admin and io
1410  * queues) that are part of the association. E.g. things are torn
1411  * down, and the related FC-NVME Association ID and Connection IDs
1412  * become invalid.
1413  *
1414  * The behavior of the fc-nvme initiator is such that it's
1415  * understanding of the association and connections will implicitly
1416  * be torn down. The action is implicit as it may be due to a loss of
1417  * connectivity with the fc-nvme target, so you may never get a
1418  * response even if you tried.  As such, the action of this routine
1419  * is to asynchronously send the LS, ignore any results of the LS, and
1420  * continue on with terminating the association. If the fc-nvme target
1421  * is present and receives the LS, it too can tear down.
1422  */
1423 static void
1424 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1425 {
1426         struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1427         struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1428         struct nvmefc_ls_req_op *lsop;
1429         struct nvmefc_ls_req *lsreq;
1430         int ret;
1431
1432         lsop = kzalloc((sizeof(*lsop) +
1433                         sizeof(*discon_rqst) + sizeof(*discon_acc) +
1434                         ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1435         if (!lsop) {
1436                 dev_info(ctrl->ctrl.device,
1437                         "NVME-FC{%d}: send Disconnect Association "
1438                         "failed: ENOMEM\n",
1439                         ctrl->cnum);
1440                 return;
1441         }
1442
1443         discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1444         discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1445         lsreq = &lsop->ls_req;
1446         if (ctrl->lport->ops->lsrqst_priv_sz)
1447                 lsreq->private = (void *)&discon_acc[1];
1448         else
1449                 lsreq->private = NULL;
1450
1451         nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1452                                 ctrl->association_id);
1453
1454         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1455                                 nvme_fc_disconnect_assoc_done);
1456         if (ret)
1457                 kfree(lsop);
1458 }
1459
1460 static void
1461 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1462 {
1463         struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1464         struct nvme_fc_rport *rport = lsop->rport;
1465         struct nvme_fc_lport *lport = rport->lport;
1466         unsigned long flags;
1467
1468         spin_lock_irqsave(&rport->lock, flags);
1469         list_del(&lsop->lsrcv_list);
1470         spin_unlock_irqrestore(&rport->lock, flags);
1471
1472         fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1473                                 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1474         fc_dma_unmap_single(lport->dev, lsop->rspdma,
1475                         sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1476
1477         kfree(lsop);
1478
1479         nvme_fc_rport_put(rport);
1480 }
1481
1482 static void
1483 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1484 {
1485         struct nvme_fc_rport *rport = lsop->rport;
1486         struct nvme_fc_lport *lport = rport->lport;
1487         struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1488         int ret;
1489
1490         fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1491                                   sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1492
1493         ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1494                                      lsop->lsrsp);
1495         if (ret) {
1496                 dev_warn(lport->dev,
1497                         "LLDD rejected LS RSP xmt: LS %d status %d\n",
1498                         w0->ls_cmd, ret);
1499                 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1500                 return;
1501         }
1502 }
1503
1504 static struct nvme_fc_ctrl *
1505 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1506                       struct nvmefc_ls_rcv_op *lsop)
1507 {
1508         struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1509                                         &lsop->rqstbuf->rq_dis_assoc;
1510         struct nvme_fc_ctrl *ctrl, *ret = NULL;
1511         struct nvmefc_ls_rcv_op *oldls = NULL;
1512         u64 association_id = be64_to_cpu(rqst->associd.association_id);
1513         unsigned long flags;
1514
1515         spin_lock_irqsave(&rport->lock, flags);
1516
1517         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1518                 if (!nvme_fc_ctrl_get(ctrl))
1519                         continue;
1520                 spin_lock(&ctrl->lock);
1521                 if (association_id == ctrl->association_id) {
1522                         oldls = ctrl->rcv_disconn;
1523                         ctrl->rcv_disconn = lsop;
1524                         ret = ctrl;
1525                 }
1526                 spin_unlock(&ctrl->lock);
1527                 if (ret)
1528                         /* leave the ctrl get reference */
1529                         break;
1530                 nvme_fc_ctrl_put(ctrl);
1531         }
1532
1533         spin_unlock_irqrestore(&rport->lock, flags);
1534
1535         /* transmit a response for anything that was pending */
1536         if (oldls) {
1537                 dev_info(rport->lport->dev,
1538                         "NVME-FC{%d}: Multiple Disconnect Association "
1539                         "LS's received\n", ctrl->cnum);
1540                 /* overwrite good response with bogus failure */
1541                 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1542                                                 sizeof(*oldls->rspbuf),
1543                                                 rqst->w0.ls_cmd,
1544                                                 FCNVME_RJT_RC_UNAB,
1545                                                 FCNVME_RJT_EXP_NONE, 0);
1546                 nvme_fc_xmt_ls_rsp(oldls);
1547         }
1548
1549         return ret;
1550 }
1551
1552 /*
1553  * returns true to mean LS handled and ls_rsp can be sent
1554  * returns false to defer ls_rsp xmt (will be done as part of
1555  *     association termination)
1556  */
1557 static bool
1558 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1559 {
1560         struct nvme_fc_rport *rport = lsop->rport;
1561         struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1562                                         &lsop->rqstbuf->rq_dis_assoc;
1563         struct fcnvme_ls_disconnect_assoc_acc *acc =
1564                                         &lsop->rspbuf->rsp_dis_assoc;
1565         struct nvme_fc_ctrl *ctrl = NULL;
1566         int ret = 0;
1567
1568         memset(acc, 0, sizeof(*acc));
1569
1570         ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1571         if (!ret) {
1572                 /* match an active association */
1573                 ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1574                 if (!ctrl)
1575                         ret = VERR_NO_ASSOC;
1576         }
1577
1578         if (ret) {
1579                 dev_info(rport->lport->dev,
1580                         "Disconnect LS failed: %s\n",
1581                         validation_errors[ret]);
1582                 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1583                                         sizeof(*acc), rqst->w0.ls_cmd,
1584                                         (ret == VERR_NO_ASSOC) ?
1585                                                 FCNVME_RJT_RC_INV_ASSOC :
1586                                                 FCNVME_RJT_RC_LOGIC,
1587                                         FCNVME_RJT_EXP_NONE, 0);
1588                 return true;
1589         }
1590
1591         /* format an ACCept response */
1592
1593         lsop->lsrsp->rsplen = sizeof(*acc);
1594
1595         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1596                         fcnvme_lsdesc_len(
1597                                 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1598                         FCNVME_LS_DISCONNECT_ASSOC);
1599
1600         /*
1601          * the transmit of the response will occur after the exchanges
1602          * for the association have been ABTS'd by
1603          * nvme_fc_delete_association().
1604          */
1605
1606         /* fail the association */
1607         nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1608
1609         /* release the reference taken by nvme_fc_match_disconn_ls() */
1610         nvme_fc_ctrl_put(ctrl);
1611
1612         return false;
1613 }
1614
1615 /*
1616  * Actual Processing routine for received FC-NVME LS Requests from the LLD
1617  * returns true if a response should be sent afterward, false if rsp will
1618  * be sent asynchronously.
1619  */
1620 static bool
1621 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1622 {
1623         struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1624         bool ret = true;
1625
1626         lsop->lsrsp->nvme_fc_private = lsop;
1627         lsop->lsrsp->rspbuf = lsop->rspbuf;
1628         lsop->lsrsp->rspdma = lsop->rspdma;
1629         lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1630         /* Be preventative. handlers will later set to valid length */
1631         lsop->lsrsp->rsplen = 0;
1632
1633         /*
1634          * handlers:
1635          *   parse request input, execute the request, and format the
1636          *   LS response
1637          */
1638         switch (w0->ls_cmd) {
1639         case FCNVME_LS_DISCONNECT_ASSOC:
1640                 ret = nvme_fc_ls_disconnect_assoc(lsop);
1641                 break;
1642         case FCNVME_LS_DISCONNECT_CONN:
1643                 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1644                                 sizeof(*lsop->rspbuf), w0->ls_cmd,
1645                                 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1646                 break;
1647         case FCNVME_LS_CREATE_ASSOCIATION:
1648         case FCNVME_LS_CREATE_CONNECTION:
1649                 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1650                                 sizeof(*lsop->rspbuf), w0->ls_cmd,
1651                                 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1652                 break;
1653         default:
1654                 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1655                                 sizeof(*lsop->rspbuf), w0->ls_cmd,
1656                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1657                 break;
1658         }
1659
1660         return(ret);
1661 }
1662
1663 static void
1664 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1665 {
1666         struct nvme_fc_rport *rport =
1667                 container_of(work, struct nvme_fc_rport, lsrcv_work);
1668         struct fcnvme_ls_rqst_w0 *w0;
1669         struct nvmefc_ls_rcv_op *lsop;
1670         unsigned long flags;
1671         bool sendrsp;
1672
1673 restart:
1674         sendrsp = true;
1675         spin_lock_irqsave(&rport->lock, flags);
1676         list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1677                 if (lsop->handled)
1678                         continue;
1679
1680                 lsop->handled = true;
1681                 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1682                         spin_unlock_irqrestore(&rport->lock, flags);
1683                         sendrsp = nvme_fc_handle_ls_rqst(lsop);
1684                 } else {
1685                         spin_unlock_irqrestore(&rport->lock, flags);
1686                         w0 = &lsop->rqstbuf->w0;
1687                         lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1688                                                 lsop->rspbuf,
1689                                                 sizeof(*lsop->rspbuf),
1690                                                 w0->ls_cmd,
1691                                                 FCNVME_RJT_RC_UNAB,
1692                                                 FCNVME_RJT_EXP_NONE, 0);
1693                 }
1694                 if (sendrsp)
1695                         nvme_fc_xmt_ls_rsp(lsop);
1696                 goto restart;
1697         }
1698         spin_unlock_irqrestore(&rport->lock, flags);
1699 }
1700
1701 /**
1702  * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1703  *                       upon the reception of a NVME LS request.
1704  *
1705  * The nvme-fc layer will copy payload to an internal structure for
1706  * processing.  As such, upon completion of the routine, the LLDD may
1707  * immediately free/reuse the LS request buffer passed in the call.
1708  *
1709  * If this routine returns error, the LLDD should abort the exchange.
1710  *
1711  * @portptr:    pointer to the (registered) remote port that the LS
1712  *              was received from. The remoteport is associated with
1713  *              a specific localport.
1714  * @lsrsp:      pointer to a nvmefc_ls_rsp response structure to be
1715  *              used to reference the exchange corresponding to the LS
1716  *              when issuing an ls response.
1717  * @lsreqbuf:   pointer to the buffer containing the LS Request
1718  * @lsreqbuf_len: length, in bytes, of the received LS request
1719  */
1720 int
1721 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1722                         struct nvmefc_ls_rsp *lsrsp,
1723                         void *lsreqbuf, u32 lsreqbuf_len)
1724 {
1725         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1726         struct nvme_fc_lport *lport = rport->lport;
1727         struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1728         struct nvmefc_ls_rcv_op *lsop;
1729         unsigned long flags;
1730         int ret;
1731
1732         nvme_fc_rport_get(rport);
1733
1734         /* validate there's a routine to transmit a response */
1735         if (!lport->ops->xmt_ls_rsp) {
1736                 dev_info(lport->dev,
1737                         "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1738                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1739                                 nvmefc_ls_names[w0->ls_cmd] : "");
1740                 ret = -EINVAL;
1741                 goto out_put;
1742         }
1743
1744         if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1745                 dev_info(lport->dev,
1746                         "RCV %s LS failed: payload too large\n",
1747                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1748                                 nvmefc_ls_names[w0->ls_cmd] : "");
1749                 ret = -E2BIG;
1750                 goto out_put;
1751         }
1752
1753         lsop = kzalloc(sizeof(*lsop) +
1754                         sizeof(union nvmefc_ls_requests) +
1755                         sizeof(union nvmefc_ls_responses),
1756                         GFP_KERNEL);
1757         if (!lsop) {
1758                 dev_info(lport->dev,
1759                         "RCV %s LS failed: No memory\n",
1760                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1761                                 nvmefc_ls_names[w0->ls_cmd] : "");
1762                 ret = -ENOMEM;
1763                 goto out_put;
1764         }
1765         lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1];
1766         lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1];
1767
1768         lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1769                                         sizeof(*lsop->rspbuf),
1770                                         DMA_TO_DEVICE);
1771         if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1772                 dev_info(lport->dev,
1773                         "RCV %s LS failed: DMA mapping failure\n",
1774                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1775                                 nvmefc_ls_names[w0->ls_cmd] : "");
1776                 ret = -EFAULT;
1777                 goto out_free;
1778         }
1779
1780         lsop->rport = rport;
1781         lsop->lsrsp = lsrsp;
1782
1783         memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1784         lsop->rqstdatalen = lsreqbuf_len;
1785
1786         spin_lock_irqsave(&rport->lock, flags);
1787         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1788                 spin_unlock_irqrestore(&rport->lock, flags);
1789                 ret = -ENOTCONN;
1790                 goto out_unmap;
1791         }
1792         list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1793         spin_unlock_irqrestore(&rport->lock, flags);
1794
1795         schedule_work(&rport->lsrcv_work);
1796
1797         return 0;
1798
1799 out_unmap:
1800         fc_dma_unmap_single(lport->dev, lsop->rspdma,
1801                         sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1802 out_free:
1803         kfree(lsop);
1804 out_put:
1805         nvme_fc_rport_put(rport);
1806         return ret;
1807 }
1808 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1809
1810
1811 /* *********************** NVME Ctrl Routines **************************** */
1812
1813 static void
1814 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1815                 struct nvme_fc_fcp_op *op)
1816 {
1817         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1818                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1819         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1820                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1821
1822         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1823 }
1824
1825 static void
1826 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1827                 unsigned int hctx_idx)
1828 {
1829         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1830
1831         return __nvme_fc_exit_request(set->driver_data, op);
1832 }
1833
1834 static int
1835 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1836 {
1837         unsigned long flags;
1838         int opstate;
1839
1840         spin_lock_irqsave(&ctrl->lock, flags);
1841         opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1842         if (opstate != FCPOP_STATE_ACTIVE)
1843                 atomic_set(&op->state, opstate);
1844         else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1845                 op->flags |= FCOP_FLAGS_TERMIO;
1846                 ctrl->iocnt++;
1847         }
1848         spin_unlock_irqrestore(&ctrl->lock, flags);
1849
1850         if (opstate != FCPOP_STATE_ACTIVE)
1851                 return -ECANCELED;
1852
1853         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1854                                         &ctrl->rport->remoteport,
1855                                         op->queue->lldd_handle,
1856                                         &op->fcp_req);
1857
1858         return 0;
1859 }
1860
1861 static void
1862 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1863 {
1864         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1865         int i;
1866
1867         /* ensure we've initialized the ops once */
1868         if (!(aen_op->flags & FCOP_FLAGS_AEN))
1869                 return;
1870
1871         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1872                 __nvme_fc_abort_op(ctrl, aen_op);
1873 }
1874
1875 static inline void
1876 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1877                 struct nvme_fc_fcp_op *op, int opstate)
1878 {
1879         unsigned long flags;
1880
1881         if (opstate == FCPOP_STATE_ABORTED) {
1882                 spin_lock_irqsave(&ctrl->lock, flags);
1883                 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1884                     op->flags & FCOP_FLAGS_TERMIO) {
1885                         if (!--ctrl->iocnt)
1886                                 wake_up(&ctrl->ioabort_wait);
1887                 }
1888                 spin_unlock_irqrestore(&ctrl->lock, flags);
1889         }
1890 }
1891
1892 static void
1893 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1894 {
1895         struct nvme_fc_ctrl *ctrl =
1896                         container_of(work, struct nvme_fc_ctrl, ioerr_work);
1897
1898         nvme_fc_error_recovery(ctrl, "transport detected io error");
1899 }
1900
1901 static void
1902 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1903 {
1904         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1905         struct request *rq = op->rq;
1906         struct nvmefc_fcp_req *freq = &op->fcp_req;
1907         struct nvme_fc_ctrl *ctrl = op->ctrl;
1908         struct nvme_fc_queue *queue = op->queue;
1909         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1910         struct nvme_command *sqe = &op->cmd_iu.sqe;
1911         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1912         union nvme_result result;
1913         bool terminate_assoc = true;
1914         int opstate;
1915
1916         /*
1917          * WARNING:
1918          * The current linux implementation of a nvme controller
1919          * allocates a single tag set for all io queues and sizes
1920          * the io queues to fully hold all possible tags. Thus, the
1921          * implementation does not reference or care about the sqhd
1922          * value as it never needs to use the sqhd/sqtail pointers
1923          * for submission pacing.
1924          *
1925          * This affects the FC-NVME implementation in two ways:
1926          * 1) As the value doesn't matter, we don't need to waste
1927          *    cycles extracting it from ERSPs and stamping it in the
1928          *    cases where the transport fabricates CQEs on successful
1929          *    completions.
1930          * 2) The FC-NVME implementation requires that delivery of
1931          *    ERSP completions are to go back to the nvme layer in order
1932          *    relative to the rsn, such that the sqhd value will always
1933          *    be "in order" for the nvme layer. As the nvme layer in
1934          *    linux doesn't care about sqhd, there's no need to return
1935          *    them in order.
1936          *
1937          * Additionally:
1938          * As the core nvme layer in linux currently does not look at
1939          * every field in the cqe - in cases where the FC transport must
1940          * fabricate a CQE, the following fields will not be set as they
1941          * are not referenced:
1942          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1943          *
1944          * Failure or error of an individual i/o, in a transport
1945          * detected fashion unrelated to the nvme completion status,
1946          * potentially cause the initiator and target sides to get out
1947          * of sync on SQ head/tail (aka outstanding io count allowed).
1948          * Per FC-NVME spec, failure of an individual command requires
1949          * the connection to be terminated, which in turn requires the
1950          * association to be terminated.
1951          */
1952
1953         opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1954
1955         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1956                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1957
1958         if (opstate == FCPOP_STATE_ABORTED)
1959                 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1960         else if (freq->status) {
1961                 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1962                 dev_info(ctrl->ctrl.device,
1963                         "NVME-FC{%d}: io failed due to lldd error %d\n",
1964                         ctrl->cnum, freq->status);
1965         }
1966
1967         /*
1968          * For the linux implementation, if we have an unsuccesful
1969          * status, they blk-mq layer can typically be called with the
1970          * non-zero status and the content of the cqe isn't important.
1971          */
1972         if (status)
1973                 goto done;
1974
1975         /*
1976          * command completed successfully relative to the wire
1977          * protocol. However, validate anything received and
1978          * extract the status and result from the cqe (create it
1979          * where necessary).
1980          */
1981
1982         switch (freq->rcv_rsplen) {
1983
1984         case 0:
1985         case NVME_FC_SIZEOF_ZEROS_RSP:
1986                 /*
1987                  * No response payload or 12 bytes of payload (which
1988                  * should all be zeros) are considered successful and
1989                  * no payload in the CQE by the transport.
1990                  */
1991                 if (freq->transferred_length !=
1992                     be32_to_cpu(op->cmd_iu.data_len)) {
1993                         status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1994                         dev_info(ctrl->ctrl.device,
1995                                 "NVME-FC{%d}: io failed due to bad transfer "
1996                                 "length: %d vs expected %d\n",
1997                                 ctrl->cnum, freq->transferred_length,
1998                                 be32_to_cpu(op->cmd_iu.data_len));
1999                         goto done;
2000                 }
2001                 result.u64 = 0;
2002                 break;
2003
2004         case sizeof(struct nvme_fc_ersp_iu):
2005                 /*
2006                  * The ERSP IU contains a full completion with CQE.
2007                  * Validate ERSP IU and look at cqe.
2008                  */
2009                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2010                                         (freq->rcv_rsplen / 4) ||
2011                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
2012                                         freq->transferred_length ||
2013                              op->rsp_iu.ersp_result ||
2014                              sqe->common.command_id != cqe->command_id)) {
2015                         status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2016                         dev_info(ctrl->ctrl.device,
2017                                 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2018                                 "iu len %d, xfr len %d vs %d, status code "
2019                                 "%d, cmdid %d vs %d\n",
2020                                 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2021                                 be32_to_cpu(op->rsp_iu.xfrd_len),
2022                                 freq->transferred_length,
2023                                 op->rsp_iu.ersp_result,
2024                                 sqe->common.command_id,
2025                                 cqe->command_id);
2026                         goto done;
2027                 }
2028                 result = cqe->result;
2029                 status = cqe->status;
2030                 break;
2031
2032         default:
2033                 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2034                 dev_info(ctrl->ctrl.device,
2035                         "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2036                         "len %d\n",
2037                         ctrl->cnum, freq->rcv_rsplen);
2038                 goto done;
2039         }
2040
2041         terminate_assoc = false;
2042
2043 done:
2044         if (op->flags & FCOP_FLAGS_AEN) {
2045                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2046                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2047                 atomic_set(&op->state, FCPOP_STATE_IDLE);
2048                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
2049                 nvme_fc_ctrl_put(ctrl);
2050                 goto check_error;
2051         }
2052
2053         __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2054         if (!nvme_try_complete_req(rq, status, result))
2055                 nvme_fc_complete_rq(rq);
2056
2057 check_error:
2058         if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2059                 queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2060 }
2061
2062 static int
2063 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2064                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2065                 struct request *rq, u32 rqno)
2066 {
2067         struct nvme_fcp_op_w_sgl *op_w_sgl =
2068                 container_of(op, typeof(*op_w_sgl), op);
2069         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2070         int ret = 0;
2071
2072         memset(op, 0, sizeof(*op));
2073         op->fcp_req.cmdaddr = &op->cmd_iu;
2074         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2075         op->fcp_req.rspaddr = &op->rsp_iu;
2076         op->fcp_req.rsplen = sizeof(op->rsp_iu);
2077         op->fcp_req.done = nvme_fc_fcpio_done;
2078         op->ctrl = ctrl;
2079         op->queue = queue;
2080         op->rq = rq;
2081         op->rqno = rqno;
2082
2083         cmdiu->format_id = NVME_CMD_FORMAT_ID;
2084         cmdiu->fc_id = NVME_CMD_FC_ID;
2085         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2086         if (queue->qnum)
2087                 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2088                                         (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2089         else
2090                 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2091
2092         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2093                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2094         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2095                 dev_err(ctrl->dev,
2096                         "FCP Op failed - cmdiu dma mapping failed.\n");
2097                 ret = -EFAULT;
2098                 goto out_on_error;
2099         }
2100
2101         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2102                                 &op->rsp_iu, sizeof(op->rsp_iu),
2103                                 DMA_FROM_DEVICE);
2104         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2105                 dev_err(ctrl->dev,
2106                         "FCP Op failed - rspiu dma mapping failed.\n");
2107                 ret = -EFAULT;
2108         }
2109
2110         atomic_set(&op->state, FCPOP_STATE_IDLE);
2111 out_on_error:
2112         return ret;
2113 }
2114
2115 static int
2116 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2117                 unsigned int hctx_idx, unsigned int numa_node)
2118 {
2119         struct nvme_fc_ctrl *ctrl = set->driver_data;
2120         struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2121         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2122         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2123         int res;
2124
2125         res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2126         if (res)
2127                 return res;
2128         op->op.fcp_req.first_sgl = op->sgl;
2129         op->op.fcp_req.private = &op->priv[0];
2130         nvme_req(rq)->ctrl = &ctrl->ctrl;
2131         nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2132         return res;
2133 }
2134
2135 static int
2136 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2137 {
2138         struct nvme_fc_fcp_op *aen_op;
2139         struct nvme_fc_cmd_iu *cmdiu;
2140         struct nvme_command *sqe;
2141         void *private = NULL;
2142         int i, ret;
2143
2144         aen_op = ctrl->aen_ops;
2145         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2146                 if (ctrl->lport->ops->fcprqst_priv_sz) {
2147                         private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2148                                                 GFP_KERNEL);
2149                         if (!private)
2150                                 return -ENOMEM;
2151                 }
2152
2153                 cmdiu = &aen_op->cmd_iu;
2154                 sqe = &cmdiu->sqe;
2155                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2156                                 aen_op, (struct request *)NULL,
2157                                 (NVME_AQ_BLK_MQ_DEPTH + i));
2158                 if (ret) {
2159                         kfree(private);
2160                         return ret;
2161                 }
2162
2163                 aen_op->flags = FCOP_FLAGS_AEN;
2164                 aen_op->fcp_req.private = private;
2165
2166                 memset(sqe, 0, sizeof(*sqe));
2167                 sqe->common.opcode = nvme_admin_async_event;
2168                 /* Note: core layer may overwrite the sqe.command_id value */
2169                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2170         }
2171         return 0;
2172 }
2173
2174 static void
2175 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2176 {
2177         struct nvme_fc_fcp_op *aen_op;
2178         int i;
2179
2180         cancel_work_sync(&ctrl->ctrl.async_event_work);
2181         aen_op = ctrl->aen_ops;
2182         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2183                 __nvme_fc_exit_request(ctrl, aen_op);
2184
2185                 kfree(aen_op->fcp_req.private);
2186                 aen_op->fcp_req.private = NULL;
2187         }
2188 }
2189
2190 static inline void
2191 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
2192                 unsigned int qidx)
2193 {
2194         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2195
2196         hctx->driver_data = queue;
2197         queue->hctx = hctx;
2198 }
2199
2200 static int
2201 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2202                 unsigned int hctx_idx)
2203 {
2204         struct nvme_fc_ctrl *ctrl = data;
2205
2206         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
2207
2208         return 0;
2209 }
2210
2211 static int
2212 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2213                 unsigned int hctx_idx)
2214 {
2215         struct nvme_fc_ctrl *ctrl = data;
2216
2217         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
2218
2219         return 0;
2220 }
2221
2222 static void
2223 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2224 {
2225         struct nvme_fc_queue *queue;
2226
2227         queue = &ctrl->queues[idx];
2228         memset(queue, 0, sizeof(*queue));
2229         queue->ctrl = ctrl;
2230         queue->qnum = idx;
2231         atomic_set(&queue->csn, 0);
2232         queue->dev = ctrl->dev;
2233
2234         if (idx > 0)
2235                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2236         else
2237                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
2238
2239         /*
2240          * Considered whether we should allocate buffers for all SQEs
2241          * and CQEs and dma map them - mapping their respective entries
2242          * into the request structures (kernel vm addr and dma address)
2243          * thus the driver could use the buffers/mappings directly.
2244          * It only makes sense if the LLDD would use them for its
2245          * messaging api. It's very unlikely most adapter api's would use
2246          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2247          * structures were used instead.
2248          */
2249 }
2250
2251 /*
2252  * This routine terminates a queue at the transport level.
2253  * The transport has already ensured that all outstanding ios on
2254  * the queue have been terminated.
2255  * The transport will send a Disconnect LS request to terminate
2256  * the queue's connection. Termination of the admin queue will also
2257  * terminate the association at the target.
2258  */
2259 static void
2260 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2261 {
2262         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2263                 return;
2264
2265         clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2266         /*
2267          * Current implementation never disconnects a single queue.
2268          * It always terminates a whole association. So there is never
2269          * a disconnect(queue) LS sent to the target.
2270          */
2271
2272         queue->connection_id = 0;
2273         atomic_set(&queue->csn, 0);
2274 }
2275
2276 static void
2277 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2278         struct nvme_fc_queue *queue, unsigned int qidx)
2279 {
2280         if (ctrl->lport->ops->delete_queue)
2281                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2282                                 queue->lldd_handle);
2283         queue->lldd_handle = NULL;
2284 }
2285
2286 static void
2287 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2288 {
2289         int i;
2290
2291         for (i = 1; i < ctrl->ctrl.queue_count; i++)
2292                 nvme_fc_free_queue(&ctrl->queues[i]);
2293 }
2294
2295 static int
2296 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2297         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2298 {
2299         int ret = 0;
2300
2301         queue->lldd_handle = NULL;
2302         if (ctrl->lport->ops->create_queue)
2303                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2304                                 qidx, qsize, &queue->lldd_handle);
2305
2306         return ret;
2307 }
2308
2309 static void
2310 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2311 {
2312         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2313         int i;
2314
2315         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2316                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
2317 }
2318
2319 static int
2320 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2321 {
2322         struct nvme_fc_queue *queue = &ctrl->queues[1];
2323         int i, ret;
2324
2325         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2326                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2327                 if (ret)
2328                         goto delete_queues;
2329         }
2330
2331         return 0;
2332
2333 delete_queues:
2334         for (; i > 0; i--)
2335                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2336         return ret;
2337 }
2338
2339 static int
2340 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2341 {
2342         int i, ret = 0;
2343
2344         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2345                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2346                                         (qsize / 5));
2347                 if (ret)
2348                         break;
2349                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
2350                 if (ret)
2351                         break;
2352
2353                 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2354         }
2355
2356         return ret;
2357 }
2358
2359 static void
2360 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2361 {
2362         int i;
2363
2364         for (i = 1; i < ctrl->ctrl.queue_count; i++)
2365                 nvme_fc_init_queue(ctrl, i);
2366 }
2367
2368 static void
2369 nvme_fc_ctrl_free(struct kref *ref)
2370 {
2371         struct nvme_fc_ctrl *ctrl =
2372                 container_of(ref, struct nvme_fc_ctrl, ref);
2373         unsigned long flags;
2374
2375         if (ctrl->ctrl.tagset) {
2376                 blk_cleanup_queue(ctrl->ctrl.connect_q);
2377                 blk_mq_free_tag_set(&ctrl->tag_set);
2378         }
2379
2380         /* remove from rport list */
2381         spin_lock_irqsave(&ctrl->rport->lock, flags);
2382         list_del(&ctrl->ctrl_list);
2383         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2384
2385         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2386         blk_cleanup_queue(ctrl->ctrl.admin_q);
2387         blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2388         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2389
2390         kfree(ctrl->queues);
2391
2392         put_device(ctrl->dev);
2393         nvme_fc_rport_put(ctrl->rport);
2394
2395         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2396         if (ctrl->ctrl.opts)
2397                 nvmf_free_options(ctrl->ctrl.opts);
2398         kfree(ctrl);
2399 }
2400
2401 static void
2402 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2403 {
2404         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2405 }
2406
2407 static int
2408 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2409 {
2410         return kref_get_unless_zero(&ctrl->ref);
2411 }
2412
2413 /*
2414  * All accesses from nvme core layer done - can now free the
2415  * controller. Called after last nvme_put_ctrl() call
2416  */
2417 static void
2418 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2419 {
2420         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2421
2422         WARN_ON(nctrl != &ctrl->ctrl);
2423
2424         nvme_fc_ctrl_put(ctrl);
2425 }
2426
2427 /*
2428  * This routine is used by the transport when it needs to find active
2429  * io on a queue that is to be terminated. The transport uses
2430  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2431  * this routine to kill them on a 1 by 1 basis.
2432  *
2433  * As FC allocates FC exchange for each io, the transport must contact
2434  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2435  * After terminating the exchange the LLDD will call the transport's
2436  * normal io done path for the request, but it will have an aborted
2437  * status. The done path will return the io request back to the block
2438  * layer with an error status.
2439  */
2440 static bool
2441 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2442 {
2443         struct nvme_ctrl *nctrl = data;
2444         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2445         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2446
2447         op->nreq.flags |= NVME_REQ_CANCELLED;
2448         __nvme_fc_abort_op(ctrl, op);
2449         return true;
2450 }
2451
2452 /*
2453  * This routine runs through all outstanding commands on the association
2454  * and aborts them.  This routine is typically be called by the
2455  * delete_association routine. It is also called due to an error during
2456  * reconnect. In that scenario, it is most likely a command that initializes
2457  * the controller, including fabric Connect commands on io queues, that
2458  * may have timed out or failed thus the io must be killed for the connect
2459  * thread to see the error.
2460  */
2461 static void
2462 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2463 {
2464         /*
2465          * If io queues are present, stop them and terminate all outstanding
2466          * ios on them. As FC allocates FC exchange for each io, the
2467          * transport must contact the LLDD to terminate the exchange,
2468          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2469          * to tell us what io's are busy and invoke a transport routine
2470          * to kill them with the LLDD.  After terminating the exchange
2471          * the LLDD will call the transport's normal io done path, but it
2472          * will have an aborted status. The done path will return the
2473          * io requests back to the block layer as part of normal completions
2474          * (but with error status).
2475          */
2476         if (ctrl->ctrl.queue_count > 1) {
2477                 nvme_stop_queues(&ctrl->ctrl);
2478                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2479                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2480                 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2481                 if (start_queues)
2482                         nvme_start_queues(&ctrl->ctrl);
2483         }
2484
2485         /*
2486          * Other transports, which don't have link-level contexts bound
2487          * to sqe's, would try to gracefully shutdown the controller by
2488          * writing the registers for shutdown and polling (call
2489          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2490          * just aborted and we will wait on those contexts, and given
2491          * there was no indication of how live the controlelr is on the
2492          * link, don't send more io to create more contexts for the
2493          * shutdown. Let the controller fail via keepalive failure if
2494          * its still present.
2495          */
2496
2497         /*
2498          * clean up the admin queue. Same thing as above.
2499          */
2500         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2501         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2502                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2503         blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2504 }
2505
2506 static void
2507 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2508 {
2509         /*
2510          * if an error (io timeout, etc) while (re)connecting, the remote
2511          * port requested terminating of the association (disconnect_ls)
2512          * or an error (timeout or abort) occurred on an io while creating
2513          * the controller.  Abort any ios on the association and let the
2514          * create_association error path resolve things.
2515          */
2516         if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2517                 __nvme_fc_abort_outstanding_ios(ctrl, true);
2518                 set_bit(ASSOC_FAILED, &ctrl->flags);
2519                 return;
2520         }
2521
2522         /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2523         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2524                 return;
2525
2526         dev_warn(ctrl->ctrl.device,
2527                 "NVME-FC{%d}: transport association event: %s\n",
2528                 ctrl->cnum, errmsg);
2529         dev_warn(ctrl->ctrl.device,
2530                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2531
2532         nvme_reset_ctrl(&ctrl->ctrl);
2533 }
2534
2535 static enum blk_eh_timer_return
2536 nvme_fc_timeout(struct request *rq, bool reserved)
2537 {
2538         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2539         struct nvme_fc_ctrl *ctrl = op->ctrl;
2540         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2541         struct nvme_command *sqe = &cmdiu->sqe;
2542
2543         /*
2544          * Attempt to abort the offending command. Command completion
2545          * will detect the aborted io and will fail the connection.
2546          */
2547         dev_info(ctrl->ctrl.device,
2548                 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2549                 "x%08x/x%08x\n",
2550                 ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2551                 sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2552         if (__nvme_fc_abort_op(ctrl, op))
2553                 nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2554
2555         /*
2556          * the io abort has been initiated. Have the reset timer
2557          * restarted and the abort completion will complete the io
2558          * shortly. Avoids a synchronous wait while the abort finishes.
2559          */
2560         return BLK_EH_RESET_TIMER;
2561 }
2562
2563 static int
2564 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2565                 struct nvme_fc_fcp_op *op)
2566 {
2567         struct nvmefc_fcp_req *freq = &op->fcp_req;
2568         int ret;
2569
2570         freq->sg_cnt = 0;
2571
2572         if (!blk_rq_nr_phys_segments(rq))
2573                 return 0;
2574
2575         freq->sg_table.sgl = freq->first_sgl;
2576         ret = sg_alloc_table_chained(&freq->sg_table,
2577                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2578                         NVME_INLINE_SG_CNT);
2579         if (ret)
2580                 return -ENOMEM;
2581
2582         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2583         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2584         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2585                                 op->nents, rq_dma_dir(rq));
2586         if (unlikely(freq->sg_cnt <= 0)) {
2587                 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2588                 freq->sg_cnt = 0;
2589                 return -EFAULT;
2590         }
2591
2592         /*
2593          * TODO: blk_integrity_rq(rq)  for DIF
2594          */
2595         return 0;
2596 }
2597
2598 static void
2599 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2600                 struct nvme_fc_fcp_op *op)
2601 {
2602         struct nvmefc_fcp_req *freq = &op->fcp_req;
2603
2604         if (!freq->sg_cnt)
2605                 return;
2606
2607         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2608                         rq_dma_dir(rq));
2609
2610         sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2611
2612         freq->sg_cnt = 0;
2613 }
2614
2615 /*
2616  * In FC, the queue is a logical thing. At transport connect, the target
2617  * creates its "queue" and returns a handle that is to be given to the
2618  * target whenever it posts something to the corresponding SQ.  When an
2619  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2620  * command contained within the SQE, an io, and assigns a FC exchange
2621  * to it. The SQE and the associated SQ handle are sent in the initial
2622  * CMD IU sents on the exchange. All transfers relative to the io occur
2623  * as part of the exchange.  The CQE is the last thing for the io,
2624  * which is transferred (explicitly or implicitly) with the RSP IU
2625  * sent on the exchange. After the CQE is received, the FC exchange is
2626  * terminaed and the Exchange may be used on a different io.
2627  *
2628  * The transport to LLDD api has the transport making a request for a
2629  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2630  * resource and transfers the command. The LLDD will then process all
2631  * steps to complete the io. Upon completion, the transport done routine
2632  * is called.
2633  *
2634  * So - while the operation is outstanding to the LLDD, there is a link
2635  * level FC exchange resource that is also outstanding. This must be
2636  * considered in all cleanup operations.
2637  */
2638 static blk_status_t
2639 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2640         struct nvme_fc_fcp_op *op, u32 data_len,
2641         enum nvmefc_fcp_datadir io_dir)
2642 {
2643         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2644         struct nvme_command *sqe = &cmdiu->sqe;
2645         int ret, opstate;
2646
2647         /*
2648          * before attempting to send the io, check to see if we believe
2649          * the target device is present
2650          */
2651         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2652                 return BLK_STS_RESOURCE;
2653
2654         if (!nvme_fc_ctrl_get(ctrl))
2655                 return BLK_STS_IOERR;
2656
2657         /* format the FC-NVME CMD IU and fcp_req */
2658         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2659         cmdiu->data_len = cpu_to_be32(data_len);
2660         switch (io_dir) {
2661         case NVMEFC_FCP_WRITE:
2662                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2663                 break;
2664         case NVMEFC_FCP_READ:
2665                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2666                 break;
2667         case NVMEFC_FCP_NODATA:
2668                 cmdiu->flags = 0;
2669                 break;
2670         }
2671         op->fcp_req.payload_length = data_len;
2672         op->fcp_req.io_dir = io_dir;
2673         op->fcp_req.transferred_length = 0;
2674         op->fcp_req.rcv_rsplen = 0;
2675         op->fcp_req.status = NVME_SC_SUCCESS;
2676         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2677
2678         /*
2679          * validate per fabric rules, set fields mandated by fabric spec
2680          * as well as those by FC-NVME spec.
2681          */
2682         WARN_ON_ONCE(sqe->common.metadata);
2683         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2684
2685         /*
2686          * format SQE DPTR field per FC-NVME rules:
2687          *    type=0x5     Transport SGL Data Block Descriptor
2688          *    subtype=0xA  Transport-specific value
2689          *    address=0
2690          *    length=length of the data series
2691          */
2692         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2693                                         NVME_SGL_FMT_TRANSPORT_A;
2694         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2695         sqe->rw.dptr.sgl.addr = 0;
2696
2697         if (!(op->flags & FCOP_FLAGS_AEN)) {
2698                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2699                 if (ret < 0) {
2700                         nvme_cleanup_cmd(op->rq);
2701                         nvme_fc_ctrl_put(ctrl);
2702                         if (ret == -ENOMEM || ret == -EAGAIN)
2703                                 return BLK_STS_RESOURCE;
2704                         return BLK_STS_IOERR;
2705                 }
2706         }
2707
2708         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2709                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2710
2711         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2712
2713         if (!(op->flags & FCOP_FLAGS_AEN))
2714                 blk_mq_start_request(op->rq);
2715
2716         cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2717         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2718                                         &ctrl->rport->remoteport,
2719                                         queue->lldd_handle, &op->fcp_req);
2720
2721         if (ret) {
2722                 /*
2723                  * If the lld fails to send the command is there an issue with
2724                  * the csn value?  If the command that fails is the Connect,
2725                  * no - as the connection won't be live.  If it is a command
2726                  * post-connect, it's possible a gap in csn may be created.
2727                  * Does this matter?  As Linux initiators don't send fused
2728                  * commands, no.  The gap would exist, but as there's nothing
2729                  * that depends on csn order to be delivered on the target
2730                  * side, it shouldn't hurt.  It would be difficult for a
2731                  * target to even detect the csn gap as it has no idea when the
2732                  * cmd with the csn was supposed to arrive.
2733                  */
2734                 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2735                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2736
2737                 if (!(op->flags & FCOP_FLAGS_AEN)) {
2738                         nvme_fc_unmap_data(ctrl, op->rq, op);
2739                         nvme_cleanup_cmd(op->rq);
2740                 }
2741
2742                 nvme_fc_ctrl_put(ctrl);
2743
2744                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2745                                 ret != -EBUSY)
2746                         return BLK_STS_IOERR;
2747
2748                 return BLK_STS_RESOURCE;
2749         }
2750
2751         return BLK_STS_OK;
2752 }
2753
2754 static blk_status_t
2755 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2756                         const struct blk_mq_queue_data *bd)
2757 {
2758         struct nvme_ns *ns = hctx->queue->queuedata;
2759         struct nvme_fc_queue *queue = hctx->driver_data;
2760         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2761         struct request *rq = bd->rq;
2762         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2763         enum nvmefc_fcp_datadir io_dir;
2764         bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2765         u32 data_len;
2766         blk_status_t ret;
2767
2768         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2769             !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2770                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2771
2772         ret = nvme_setup_cmd(ns, rq);
2773         if (ret)
2774                 return ret;
2775
2776         /*
2777          * nvme core doesn't quite treat the rq opaquely. Commands such
2778          * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2779          * there is no actual payload to be transferred.
2780          * To get it right, key data transmission on there being 1 or
2781          * more physical segments in the sg list. If there is no
2782          * physical segments, there is no payload.
2783          */
2784         if (blk_rq_nr_phys_segments(rq)) {
2785                 data_len = blk_rq_payload_bytes(rq);
2786                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2787                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2788         } else {
2789                 data_len = 0;
2790                 io_dir = NVMEFC_FCP_NODATA;
2791         }
2792
2793
2794         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2795 }
2796
2797 static void
2798 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2799 {
2800         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2801         struct nvme_fc_fcp_op *aen_op;
2802         blk_status_t ret;
2803
2804         if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2805                 return;
2806
2807         aen_op = &ctrl->aen_ops[0];
2808
2809         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2810                                         NVMEFC_FCP_NODATA);
2811         if (ret)
2812                 dev_err(ctrl->ctrl.device,
2813                         "failed async event work\n");
2814 }
2815
2816 static void
2817 nvme_fc_complete_rq(struct request *rq)
2818 {
2819         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2820         struct nvme_fc_ctrl *ctrl = op->ctrl;
2821
2822         atomic_set(&op->state, FCPOP_STATE_IDLE);
2823         op->flags &= ~FCOP_FLAGS_TERMIO;
2824
2825         nvme_fc_unmap_data(ctrl, rq, op);
2826         nvme_complete_rq(rq);
2827         nvme_fc_ctrl_put(ctrl);
2828 }
2829
2830
2831 static const struct blk_mq_ops nvme_fc_mq_ops = {
2832         .queue_rq       = nvme_fc_queue_rq,
2833         .complete       = nvme_fc_complete_rq,
2834         .init_request   = nvme_fc_init_request,
2835         .exit_request   = nvme_fc_exit_request,
2836         .init_hctx      = nvme_fc_init_hctx,
2837         .timeout        = nvme_fc_timeout,
2838 };
2839
2840 static int
2841 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2842 {
2843         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2844         unsigned int nr_io_queues;
2845         int ret;
2846
2847         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2848                                 ctrl->lport->ops->max_hw_queues);
2849         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2850         if (ret) {
2851                 dev_info(ctrl->ctrl.device,
2852                         "set_queue_count failed: %d\n", ret);
2853                 return ret;
2854         }
2855
2856         ctrl->ctrl.queue_count = nr_io_queues + 1;
2857         if (!nr_io_queues)
2858                 return 0;
2859
2860         nvme_fc_init_io_queues(ctrl);
2861
2862         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2863         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2864         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2865         ctrl->tag_set.reserved_tags = NVMF_RESERVED_TAGS;
2866         ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2867         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2868         ctrl->tag_set.cmd_size =
2869                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2870                             ctrl->lport->ops->fcprqst_priv_sz);
2871         ctrl->tag_set.driver_data = ctrl;
2872         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2873         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2874
2875         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2876         if (ret)
2877                 return ret;
2878
2879         ctrl->ctrl.tagset = &ctrl->tag_set;
2880
2881         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2882         if (IS_ERR(ctrl->ctrl.connect_q)) {
2883                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2884                 goto out_free_tag_set;
2885         }
2886
2887         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2888         if (ret)
2889                 goto out_cleanup_blk_queue;
2890
2891         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2892         if (ret)
2893                 goto out_delete_hw_queues;
2894
2895         ctrl->ioq_live = true;
2896
2897         return 0;
2898
2899 out_delete_hw_queues:
2900         nvme_fc_delete_hw_io_queues(ctrl);
2901 out_cleanup_blk_queue:
2902         blk_cleanup_queue(ctrl->ctrl.connect_q);
2903 out_free_tag_set:
2904         blk_mq_free_tag_set(&ctrl->tag_set);
2905         nvme_fc_free_io_queues(ctrl);
2906
2907         /* force put free routine to ignore io queues */
2908         ctrl->ctrl.tagset = NULL;
2909
2910         return ret;
2911 }
2912
2913 static int
2914 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2915 {
2916         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2917         u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2918         unsigned int nr_io_queues;
2919         int ret;
2920
2921         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2922                                 ctrl->lport->ops->max_hw_queues);
2923         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2924         if (ret) {
2925                 dev_info(ctrl->ctrl.device,
2926                         "set_queue_count failed: %d\n", ret);
2927                 return ret;
2928         }
2929
2930         if (!nr_io_queues && prior_ioq_cnt) {
2931                 dev_info(ctrl->ctrl.device,
2932                         "Fail Reconnect: At least 1 io queue "
2933                         "required (was %d)\n", prior_ioq_cnt);
2934                 return -ENOSPC;
2935         }
2936
2937         ctrl->ctrl.queue_count = nr_io_queues + 1;
2938         /* check for io queues existing */
2939         if (ctrl->ctrl.queue_count == 1)
2940                 return 0;
2941
2942         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2943         if (ret)
2944                 goto out_free_io_queues;
2945
2946         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2947         if (ret)
2948                 goto out_delete_hw_queues;
2949
2950         if (prior_ioq_cnt != nr_io_queues) {
2951                 dev_info(ctrl->ctrl.device,
2952                         "reconnect: revising io queue count from %d to %d\n",
2953                         prior_ioq_cnt, nr_io_queues);
2954                 nvme_wait_freeze(&ctrl->ctrl);
2955                 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2956                 nvme_unfreeze(&ctrl->ctrl);
2957         }
2958
2959         return 0;
2960
2961 out_delete_hw_queues:
2962         nvme_fc_delete_hw_io_queues(ctrl);
2963 out_free_io_queues:
2964         nvme_fc_free_io_queues(ctrl);
2965         return ret;
2966 }
2967
2968 static void
2969 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2970 {
2971         struct nvme_fc_lport *lport = rport->lport;
2972
2973         atomic_inc(&lport->act_rport_cnt);
2974 }
2975
2976 static void
2977 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2978 {
2979         struct nvme_fc_lport *lport = rport->lport;
2980         u32 cnt;
2981
2982         cnt = atomic_dec_return(&lport->act_rport_cnt);
2983         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2984                 lport->ops->localport_delete(&lport->localport);
2985 }
2986
2987 static int
2988 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2989 {
2990         struct nvme_fc_rport *rport = ctrl->rport;
2991         u32 cnt;
2992
2993         if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
2994                 return 1;
2995
2996         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2997         if (cnt == 1)
2998                 nvme_fc_rport_active_on_lport(rport);
2999
3000         return 0;
3001 }
3002
3003 static int
3004 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3005 {
3006         struct nvme_fc_rport *rport = ctrl->rport;
3007         struct nvme_fc_lport *lport = rport->lport;
3008         u32 cnt;
3009
3010         /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3011
3012         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3013         if (cnt == 0) {
3014                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3015                         lport->ops->remoteport_delete(&rport->remoteport);
3016                 nvme_fc_rport_inactive_on_lport(rport);
3017         }
3018
3019         return 0;
3020 }
3021
3022 /*
3023  * This routine restarts the controller on the host side, and
3024  * on the link side, recreates the controller association.
3025  */
3026 static int
3027 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3028 {
3029         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3030         struct nvmefc_ls_rcv_op *disls = NULL;
3031         unsigned long flags;
3032         int ret;
3033         bool changed;
3034
3035         ++ctrl->ctrl.nr_reconnects;
3036
3037         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3038                 return -ENODEV;
3039
3040         if (nvme_fc_ctlr_active_on_rport(ctrl))
3041                 return -ENOTUNIQ;
3042
3043         dev_info(ctrl->ctrl.device,
3044                 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3045                 " rport wwpn 0x%016llx: NQN \"%s\"\n",
3046                 ctrl->cnum, ctrl->lport->localport.port_name,
3047                 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3048
3049         clear_bit(ASSOC_FAILED, &ctrl->flags);
3050
3051         /*
3052          * Create the admin queue
3053          */
3054
3055         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3056                                 NVME_AQ_DEPTH);
3057         if (ret)
3058                 goto out_free_queue;
3059
3060         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3061                                 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3062         if (ret)
3063                 goto out_delete_hw_queue;
3064
3065         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3066         if (ret)
3067                 goto out_disconnect_admin_queue;
3068
3069         set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3070
3071         /*
3072          * Check controller capabilities
3073          *
3074          * todo:- add code to check if ctrl attributes changed from
3075          * prior connection values
3076          */
3077
3078         ret = nvme_enable_ctrl(&ctrl->ctrl);
3079         if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3080                 goto out_disconnect_admin_queue;
3081
3082         ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3083         ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3084                                                 (ilog2(SZ_4K) - 9);
3085
3086         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
3087
3088         ret = nvme_init_ctrl_finish(&ctrl->ctrl);
3089         if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3090                 goto out_disconnect_admin_queue;
3091
3092         /* sanity checks */
3093
3094         /* FC-NVME does not have other data in the capsule */
3095         if (ctrl->ctrl.icdoff) {
3096                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3097                                 ctrl->ctrl.icdoff);
3098                 goto out_disconnect_admin_queue;
3099         }
3100
3101         /* FC-NVME supports normal SGL Data Block Descriptors */
3102         if (!(ctrl->ctrl.sgls & ((1 << 0) | (1 << 1)))) {
3103                 dev_err(ctrl->ctrl.device,
3104                         "Mandatory sgls are not supported!\n");
3105                 goto out_disconnect_admin_queue;
3106         }
3107
3108         if (opts->queue_size > ctrl->ctrl.maxcmd) {
3109                 /* warn if maxcmd is lower than queue_size */
3110                 dev_warn(ctrl->ctrl.device,
3111                         "queue_size %zu > ctrl maxcmd %u, reducing "
3112                         "to maxcmd\n",
3113                         opts->queue_size, ctrl->ctrl.maxcmd);
3114                 opts->queue_size = ctrl->ctrl.maxcmd;
3115         }
3116
3117         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
3118                 /* warn if sqsize is lower than queue_size */
3119                 dev_warn(ctrl->ctrl.device,
3120                         "queue_size %zu > ctrl sqsize %u, reducing "
3121                         "to sqsize\n",
3122                         opts->queue_size, ctrl->ctrl.sqsize + 1);
3123                 opts->queue_size = ctrl->ctrl.sqsize + 1;
3124         }
3125
3126         ret = nvme_fc_init_aen_ops(ctrl);
3127         if (ret)
3128                 goto out_term_aen_ops;
3129
3130         /*
3131          * Create the io queues
3132          */
3133
3134         if (ctrl->ctrl.queue_count > 1) {
3135                 if (!ctrl->ioq_live)
3136                         ret = nvme_fc_create_io_queues(ctrl);
3137                 else
3138                         ret = nvme_fc_recreate_io_queues(ctrl);
3139         }
3140         if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3141                 goto out_term_aen_ops;
3142
3143         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3144
3145         ctrl->ctrl.nr_reconnects = 0;
3146
3147         if (changed)
3148                 nvme_start_ctrl(&ctrl->ctrl);
3149
3150         return 0;       /* Success */
3151
3152 out_term_aen_ops:
3153         nvme_fc_term_aen_ops(ctrl);
3154 out_disconnect_admin_queue:
3155         /* send a Disconnect(association) LS to fc-nvme target */
3156         nvme_fc_xmt_disconnect_assoc(ctrl);
3157         spin_lock_irqsave(&ctrl->lock, flags);
3158         ctrl->association_id = 0;
3159         disls = ctrl->rcv_disconn;
3160         ctrl->rcv_disconn = NULL;
3161         spin_unlock_irqrestore(&ctrl->lock, flags);
3162         if (disls)
3163                 nvme_fc_xmt_ls_rsp(disls);
3164 out_delete_hw_queue:
3165         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3166 out_free_queue:
3167         nvme_fc_free_queue(&ctrl->queues[0]);
3168         clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3169         nvme_fc_ctlr_inactive_on_rport(ctrl);
3170
3171         return ret;
3172 }
3173
3174
3175 /*
3176  * This routine stops operation of the controller on the host side.
3177  * On the host os stack side: Admin and IO queues are stopped,
3178  *   outstanding ios on them terminated via FC ABTS.
3179  * On the link side: the association is terminated.
3180  */
3181 static void
3182 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3183 {
3184         struct nvmefc_ls_rcv_op *disls = NULL;
3185         unsigned long flags;
3186
3187         if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3188                 return;
3189
3190         spin_lock_irqsave(&ctrl->lock, flags);
3191         set_bit(FCCTRL_TERMIO, &ctrl->flags);
3192         ctrl->iocnt = 0;
3193         spin_unlock_irqrestore(&ctrl->lock, flags);
3194
3195         __nvme_fc_abort_outstanding_ios(ctrl, false);
3196
3197         /* kill the aens as they are a separate path */
3198         nvme_fc_abort_aen_ops(ctrl);
3199
3200         /* wait for all io that had to be aborted */
3201         spin_lock_irq(&ctrl->lock);
3202         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3203         clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3204         spin_unlock_irq(&ctrl->lock);
3205
3206         nvme_fc_term_aen_ops(ctrl);
3207
3208         /*
3209          * send a Disconnect(association) LS to fc-nvme target
3210          * Note: could have been sent at top of process, but
3211          * cleaner on link traffic if after the aborts complete.
3212          * Note: if association doesn't exist, association_id will be 0
3213          */
3214         if (ctrl->association_id)
3215                 nvme_fc_xmt_disconnect_assoc(ctrl);
3216
3217         spin_lock_irqsave(&ctrl->lock, flags);
3218         ctrl->association_id = 0;
3219         disls = ctrl->rcv_disconn;
3220         ctrl->rcv_disconn = NULL;
3221         spin_unlock_irqrestore(&ctrl->lock, flags);
3222         if (disls)
3223                 /*
3224                  * if a Disconnect Request was waiting for a response, send
3225                  * now that all ABTS's have been issued (and are complete).
3226                  */
3227                 nvme_fc_xmt_ls_rsp(disls);
3228
3229         if (ctrl->ctrl.tagset) {
3230                 nvme_fc_delete_hw_io_queues(ctrl);
3231                 nvme_fc_free_io_queues(ctrl);
3232         }
3233
3234         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3235         nvme_fc_free_queue(&ctrl->queues[0]);
3236
3237         /* re-enable the admin_q so anything new can fast fail */
3238         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
3239
3240         /* resume the io queues so that things will fast fail */
3241         nvme_start_queues(&ctrl->ctrl);
3242
3243         nvme_fc_ctlr_inactive_on_rport(ctrl);
3244 }
3245
3246 static void
3247 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3248 {
3249         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3250
3251         cancel_work_sync(&ctrl->ioerr_work);
3252         cancel_delayed_work_sync(&ctrl->connect_work);
3253         /*
3254          * kill the association on the link side.  this will block
3255          * waiting for io to terminate
3256          */
3257         nvme_fc_delete_association(ctrl);
3258 }
3259
3260 static void
3261 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3262 {
3263         struct nvme_fc_rport *rport = ctrl->rport;
3264         struct nvme_fc_remote_port *portptr = &rport->remoteport;
3265         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3266         bool recon = true;
3267
3268         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
3269                 return;
3270
3271         if (portptr->port_state == FC_OBJSTATE_ONLINE)
3272                 dev_info(ctrl->ctrl.device,
3273                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3274                         ctrl->cnum, status);
3275         else if (time_after_eq(jiffies, rport->dev_loss_end))
3276                 recon = false;
3277
3278         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3279                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3280                         dev_info(ctrl->ctrl.device,
3281                                 "NVME-FC{%d}: Reconnect attempt in %ld "
3282                                 "seconds\n",
3283                                 ctrl->cnum, recon_delay / HZ);
3284                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3285                         recon_delay = rport->dev_loss_end - jiffies;
3286
3287                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3288         } else {
3289                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3290                         dev_warn(ctrl->ctrl.device,
3291                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
3292                                 "reached.\n",
3293                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3294                 else
3295                         dev_warn(ctrl->ctrl.device,
3296                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3297                                 "while waiting for remoteport connectivity.\n",
3298                                 ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3299                                         (ctrl->ctrl.opts->max_reconnects *
3300                                          ctrl->ctrl.opts->reconnect_delay)));
3301                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3302         }
3303 }
3304
3305 static void
3306 nvme_fc_reset_ctrl_work(struct work_struct *work)
3307 {
3308         struct nvme_fc_ctrl *ctrl =
3309                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3310
3311         nvme_stop_ctrl(&ctrl->ctrl);
3312
3313         /* will block will waiting for io to terminate */
3314         nvme_fc_delete_association(ctrl);
3315
3316         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3317                 dev_err(ctrl->ctrl.device,
3318                         "NVME-FC{%d}: error_recovery: Couldn't change state "
3319                         "to CONNECTING\n", ctrl->cnum);
3320
3321         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3322                 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3323                         dev_err(ctrl->ctrl.device,
3324                                 "NVME-FC{%d}: failed to schedule connect "
3325                                 "after reset\n", ctrl->cnum);
3326                 } else {
3327                         flush_delayed_work(&ctrl->connect_work);
3328                 }
3329         } else {
3330                 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3331         }
3332 }
3333
3334
3335 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3336         .name                   = "fc",
3337         .module                 = THIS_MODULE,
3338         .flags                  = NVME_F_FABRICS,
3339         .reg_read32             = nvmf_reg_read32,
3340         .reg_read64             = nvmf_reg_read64,
3341         .reg_write32            = nvmf_reg_write32,
3342         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
3343         .submit_async_event     = nvme_fc_submit_async_event,
3344         .delete_ctrl            = nvme_fc_delete_ctrl,
3345         .get_address            = nvmf_get_address,
3346 };
3347
3348 static void
3349 nvme_fc_connect_ctrl_work(struct work_struct *work)
3350 {
3351         int ret;
3352
3353         struct nvme_fc_ctrl *ctrl =
3354                         container_of(to_delayed_work(work),
3355                                 struct nvme_fc_ctrl, connect_work);
3356
3357         ret = nvme_fc_create_association(ctrl);
3358         if (ret)
3359                 nvme_fc_reconnect_or_delete(ctrl, ret);
3360         else
3361                 dev_info(ctrl->ctrl.device,
3362                         "NVME-FC{%d}: controller connect complete\n",
3363                         ctrl->cnum);
3364 }
3365
3366
3367 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3368         .queue_rq       = nvme_fc_queue_rq,
3369         .complete       = nvme_fc_complete_rq,
3370         .init_request   = nvme_fc_init_request,
3371         .exit_request   = nvme_fc_exit_request,
3372         .init_hctx      = nvme_fc_init_admin_hctx,
3373         .timeout        = nvme_fc_timeout,
3374 };
3375
3376
3377 /*
3378  * Fails a controller request if it matches an existing controller
3379  * (association) with the same tuple:
3380  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3381  *
3382  * The ports don't need to be compared as they are intrinsically
3383  * already matched by the port pointers supplied.
3384  */
3385 static bool
3386 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3387                 struct nvmf_ctrl_options *opts)
3388 {
3389         struct nvme_fc_ctrl *ctrl;
3390         unsigned long flags;
3391         bool found = false;
3392
3393         spin_lock_irqsave(&rport->lock, flags);
3394         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3395                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3396                 if (found)
3397                         break;
3398         }
3399         spin_unlock_irqrestore(&rport->lock, flags);
3400
3401         return found;
3402 }
3403
3404 static struct nvme_ctrl *
3405 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3406         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3407 {
3408         struct nvme_fc_ctrl *ctrl;
3409         unsigned long flags;
3410         int ret, idx, ctrl_loss_tmo;
3411
3412         if (!(rport->remoteport.port_role &
3413             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3414                 ret = -EBADR;
3415                 goto out_fail;
3416         }
3417
3418         if (!opts->duplicate_connect &&
3419             nvme_fc_existing_controller(rport, opts)) {
3420                 ret = -EALREADY;
3421                 goto out_fail;
3422         }
3423
3424         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3425         if (!ctrl) {
3426                 ret = -ENOMEM;
3427                 goto out_fail;
3428         }
3429
3430         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3431         if (idx < 0) {
3432                 ret = -ENOSPC;
3433                 goto out_free_ctrl;
3434         }
3435
3436         /*
3437          * if ctrl_loss_tmo is being enforced and the default reconnect delay
3438          * is being used, change to a shorter reconnect delay for FC.
3439          */
3440         if (opts->max_reconnects != -1 &&
3441             opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3442             opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3443                 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3444                 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3445                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3446                                                 opts->reconnect_delay);
3447         }
3448
3449         ctrl->ctrl.opts = opts;
3450         ctrl->ctrl.nr_reconnects = 0;
3451         if (lport->dev)
3452                 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3453         else
3454                 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3455         INIT_LIST_HEAD(&ctrl->ctrl_list);
3456         ctrl->lport = lport;
3457         ctrl->rport = rport;
3458         ctrl->dev = lport->dev;
3459         ctrl->cnum = idx;
3460         ctrl->ioq_live = false;
3461         init_waitqueue_head(&ctrl->ioabort_wait);
3462
3463         get_device(ctrl->dev);
3464         kref_init(&ctrl->ref);
3465
3466         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3467         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3468         INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3469         spin_lock_init(&ctrl->lock);
3470
3471         /* io queue count */
3472         ctrl->ctrl.queue_count = min_t(unsigned int,
3473                                 opts->nr_io_queues,
3474                                 lport->ops->max_hw_queues);
3475         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3476
3477         ctrl->ctrl.sqsize = opts->queue_size - 1;
3478         ctrl->ctrl.kato = opts->kato;
3479         ctrl->ctrl.cntlid = 0xffff;
3480
3481         ret = -ENOMEM;
3482         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3483                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3484         if (!ctrl->queues)
3485                 goto out_free_ida;
3486
3487         nvme_fc_init_queue(ctrl, 0);
3488
3489         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3490         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3491         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3492         ctrl->admin_tag_set.reserved_tags = NVMF_RESERVED_TAGS;
3493         ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3494         ctrl->admin_tag_set.cmd_size =
3495                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3496                             ctrl->lport->ops->fcprqst_priv_sz);
3497         ctrl->admin_tag_set.driver_data = ctrl;
3498         ctrl->admin_tag_set.nr_hw_queues = 1;
3499         ctrl->admin_tag_set.timeout = NVME_ADMIN_TIMEOUT;
3500         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3501
3502         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3503         if (ret)
3504                 goto out_free_queues;
3505         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3506
3507         ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3508         if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3509                 ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3510                 goto out_free_admin_tag_set;
3511         }
3512
3513         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3514         if (IS_ERR(ctrl->ctrl.admin_q)) {
3515                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3516                 goto out_cleanup_fabrics_q;
3517         }
3518
3519         /*
3520          * Would have been nice to init io queues tag set as well.
3521          * However, we require interaction from the controller
3522          * for max io queue count before we can do so.
3523          * Defer this to the connect path.
3524          */
3525
3526         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3527         if (ret)
3528                 goto out_cleanup_admin_q;
3529
3530         /* at this point, teardown path changes to ref counting on nvme ctrl */
3531
3532         spin_lock_irqsave(&rport->lock, flags);
3533         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3534         spin_unlock_irqrestore(&rport->lock, flags);
3535
3536         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3537             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3538                 dev_err(ctrl->ctrl.device,
3539                         "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3540                 goto fail_ctrl;
3541         }
3542
3543         if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3544                 dev_err(ctrl->ctrl.device,
3545                         "NVME-FC{%d}: failed to schedule initial connect\n",
3546                         ctrl->cnum);
3547                 goto fail_ctrl;
3548         }
3549
3550         flush_delayed_work(&ctrl->connect_work);
3551
3552         dev_info(ctrl->ctrl.device,
3553                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3554                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3555
3556         return &ctrl->ctrl;
3557
3558 fail_ctrl:
3559         nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3560         cancel_work_sync(&ctrl->ioerr_work);
3561         cancel_work_sync(&ctrl->ctrl.reset_work);
3562         cancel_delayed_work_sync(&ctrl->connect_work);
3563
3564         ctrl->ctrl.opts = NULL;
3565
3566         /* initiate nvme ctrl ref counting teardown */
3567         nvme_uninit_ctrl(&ctrl->ctrl);
3568
3569         /* Remove core ctrl ref. */
3570         nvme_put_ctrl(&ctrl->ctrl);
3571
3572         /* as we're past the point where we transition to the ref
3573          * counting teardown path, if we return a bad pointer here,
3574          * the calling routine, thinking it's prior to the
3575          * transition, will do an rport put. Since the teardown
3576          * path also does a rport put, we do an extra get here to
3577          * so proper order/teardown happens.
3578          */
3579         nvme_fc_rport_get(rport);
3580
3581         return ERR_PTR(-EIO);
3582
3583 out_cleanup_admin_q:
3584         blk_cleanup_queue(ctrl->ctrl.admin_q);
3585 out_cleanup_fabrics_q:
3586         blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3587 out_free_admin_tag_set:
3588         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3589 out_free_queues:
3590         kfree(ctrl->queues);
3591 out_free_ida:
3592         put_device(ctrl->dev);
3593         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3594 out_free_ctrl:
3595         kfree(ctrl);
3596 out_fail:
3597         /* exit via here doesn't follow ctlr ref points */
3598         return ERR_PTR(ret);
3599 }
3600
3601
3602 struct nvmet_fc_traddr {
3603         u64     nn;
3604         u64     pn;
3605 };
3606
3607 static int
3608 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3609 {
3610         u64 token64;
3611
3612         if (match_u64(sstr, &token64))
3613                 return -EINVAL;
3614         *val = token64;
3615
3616         return 0;
3617 }
3618
3619 /*
3620  * This routine validates and extracts the WWN's from the TRADDR string.
3621  * As kernel parsers need the 0x to determine number base, universally
3622  * build string to parse with 0x prefix before parsing name strings.
3623  */
3624 static int
3625 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3626 {
3627         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3628         substring_t wwn = { name, &name[sizeof(name)-1] };
3629         int nnoffset, pnoffset;
3630
3631         /* validate if string is one of the 2 allowed formats */
3632         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3633                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3634                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3635                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3636                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3637                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3638                                                 NVME_FC_TRADDR_OXNNLEN;
3639         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3640                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3641                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3642                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3643                 nnoffset = NVME_FC_TRADDR_NNLEN;
3644                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3645         } else
3646                 goto out_einval;
3647
3648         name[0] = '0';
3649         name[1] = 'x';
3650         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3651
3652         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3653         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3654                 goto out_einval;
3655
3656         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3657         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3658                 goto out_einval;
3659
3660         return 0;
3661
3662 out_einval:
3663         pr_warn("%s: bad traddr string\n", __func__);
3664         return -EINVAL;
3665 }
3666
3667 static struct nvme_ctrl *
3668 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3669 {
3670         struct nvme_fc_lport *lport;
3671         struct nvme_fc_rport *rport;
3672         struct nvme_ctrl *ctrl;
3673         struct nvmet_fc_traddr laddr = { 0L, 0L };
3674         struct nvmet_fc_traddr raddr = { 0L, 0L };
3675         unsigned long flags;
3676         int ret;
3677
3678         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3679         if (ret || !raddr.nn || !raddr.pn)
3680                 return ERR_PTR(-EINVAL);
3681
3682         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3683         if (ret || !laddr.nn || !laddr.pn)
3684                 return ERR_PTR(-EINVAL);
3685
3686         /* find the host and remote ports to connect together */
3687         spin_lock_irqsave(&nvme_fc_lock, flags);
3688         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3689                 if (lport->localport.node_name != laddr.nn ||
3690                     lport->localport.port_name != laddr.pn ||
3691                     lport->localport.port_state != FC_OBJSTATE_ONLINE)
3692                         continue;
3693
3694                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3695                         if (rport->remoteport.node_name != raddr.nn ||
3696                             rport->remoteport.port_name != raddr.pn ||
3697                             rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3698                                 continue;
3699
3700                         /* if fail to get reference fall through. Will error */
3701                         if (!nvme_fc_rport_get(rport))
3702                                 break;
3703
3704                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3705
3706                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3707                         if (IS_ERR(ctrl))
3708                                 nvme_fc_rport_put(rport);
3709                         return ctrl;
3710                 }
3711         }
3712         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3713
3714         pr_warn("%s: %s - %s combination not found\n",
3715                 __func__, opts->traddr, opts->host_traddr);
3716         return ERR_PTR(-ENOENT);
3717 }
3718
3719
3720 static struct nvmf_transport_ops nvme_fc_transport = {
3721         .name           = "fc",
3722         .module         = THIS_MODULE,
3723         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3724         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3725         .create_ctrl    = nvme_fc_create_ctrl,
3726 };
3727
3728 /* Arbitrary successive failures max. With lots of subsystems could be high */
3729 #define DISCOVERY_MAX_FAIL      20
3730
3731 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3732                 struct device_attribute *attr, const char *buf, size_t count)
3733 {
3734         unsigned long flags;
3735         LIST_HEAD(local_disc_list);
3736         struct nvme_fc_lport *lport;
3737         struct nvme_fc_rport *rport;
3738         int failcnt = 0;
3739
3740         spin_lock_irqsave(&nvme_fc_lock, flags);
3741 restart:
3742         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3743                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3744                         if (!nvme_fc_lport_get(lport))
3745                                 continue;
3746                         if (!nvme_fc_rport_get(rport)) {
3747                                 /*
3748                                  * This is a temporary condition. Upon restart
3749                                  * this rport will be gone from the list.
3750                                  *
3751                                  * Revert the lport put and retry.  Anything
3752                                  * added to the list already will be skipped (as
3753                                  * they are no longer list_empty).  Loops should
3754                                  * resume at rports that were not yet seen.
3755                                  */
3756                                 nvme_fc_lport_put(lport);
3757
3758                                 if (failcnt++ < DISCOVERY_MAX_FAIL)
3759                                         goto restart;
3760
3761                                 pr_err("nvme_discovery: too many reference "
3762                                        "failures\n");
3763                                 goto process_local_list;
3764                         }
3765                         if (list_empty(&rport->disc_list))
3766                                 list_add_tail(&rport->disc_list,
3767                                               &local_disc_list);
3768                 }
3769         }
3770
3771 process_local_list:
3772         while (!list_empty(&local_disc_list)) {
3773                 rport = list_first_entry(&local_disc_list,
3774                                          struct nvme_fc_rport, disc_list);
3775                 list_del_init(&rport->disc_list);
3776                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3777
3778                 lport = rport->lport;
3779                 /* signal discovery. Won't hurt if it repeats */
3780                 nvme_fc_signal_discovery_scan(lport, rport);
3781                 nvme_fc_rport_put(rport);
3782                 nvme_fc_lport_put(lport);
3783
3784                 spin_lock_irqsave(&nvme_fc_lock, flags);
3785         }
3786         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3787
3788         return count;
3789 }
3790 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3791
3792 static struct attribute *nvme_fc_attrs[] = {
3793         &dev_attr_nvme_discovery.attr,
3794         NULL
3795 };
3796
3797 static const struct attribute_group nvme_fc_attr_group = {
3798         .attrs = nvme_fc_attrs,
3799 };
3800
3801 static const struct attribute_group *nvme_fc_attr_groups[] = {
3802         &nvme_fc_attr_group,
3803         NULL
3804 };
3805
3806 static struct class fc_class = {
3807         .name = "fc",
3808         .dev_groups = nvme_fc_attr_groups,
3809         .owner = THIS_MODULE,
3810 };
3811
3812 static int __init nvme_fc_init_module(void)
3813 {
3814         int ret;
3815
3816         nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3817         if (!nvme_fc_wq)
3818                 return -ENOMEM;
3819
3820         /*
3821          * NOTE:
3822          * It is expected that in the future the kernel will combine
3823          * the FC-isms that are currently under scsi and now being
3824          * added to by NVME into a new standalone FC class. The SCSI
3825          * and NVME protocols and their devices would be under this
3826          * new FC class.
3827          *
3828          * As we need something to post FC-specific udev events to,
3829          * specifically for nvme probe events, start by creating the
3830          * new device class.  When the new standalone FC class is
3831          * put in place, this code will move to a more generic
3832          * location for the class.
3833          */
3834         ret = class_register(&fc_class);
3835         if (ret) {
3836                 pr_err("couldn't register class fc\n");
3837                 goto out_destroy_wq;
3838         }
3839
3840         /*
3841          * Create a device for the FC-centric udev events
3842          */
3843         fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3844                                 "fc_udev_device");
3845         if (IS_ERR(fc_udev_device)) {
3846                 pr_err("couldn't create fc_udev device!\n");
3847                 ret = PTR_ERR(fc_udev_device);
3848                 goto out_destroy_class;
3849         }
3850
3851         ret = nvmf_register_transport(&nvme_fc_transport);
3852         if (ret)
3853                 goto out_destroy_device;
3854
3855         return 0;
3856
3857 out_destroy_device:
3858         device_destroy(&fc_class, MKDEV(0, 0));
3859 out_destroy_class:
3860         class_unregister(&fc_class);
3861 out_destroy_wq:
3862         destroy_workqueue(nvme_fc_wq);
3863
3864         return ret;
3865 }
3866
3867 static void
3868 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3869 {
3870         struct nvme_fc_ctrl *ctrl;
3871
3872         spin_lock(&rport->lock);
3873         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3874                 dev_warn(ctrl->ctrl.device,
3875                         "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3876                         ctrl->cnum);
3877                 nvme_delete_ctrl(&ctrl->ctrl);
3878         }
3879         spin_unlock(&rport->lock);
3880 }
3881
3882 static void
3883 nvme_fc_cleanup_for_unload(void)
3884 {
3885         struct nvme_fc_lport *lport;
3886         struct nvme_fc_rport *rport;
3887
3888         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3889                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3890                         nvme_fc_delete_controllers(rport);
3891                 }
3892         }
3893 }
3894
3895 static void __exit nvme_fc_exit_module(void)
3896 {
3897         unsigned long flags;
3898         bool need_cleanup = false;
3899
3900         spin_lock_irqsave(&nvme_fc_lock, flags);
3901         nvme_fc_waiting_to_unload = true;
3902         if (!list_empty(&nvme_fc_lport_list)) {
3903                 need_cleanup = true;
3904                 nvme_fc_cleanup_for_unload();
3905         }
3906         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3907         if (need_cleanup) {
3908                 pr_info("%s: waiting for ctlr deletes\n", __func__);
3909                 wait_for_completion(&nvme_fc_unload_proceed);
3910                 pr_info("%s: ctrl deletes complete\n", __func__);
3911         }
3912
3913         nvmf_unregister_transport(&nvme_fc_transport);
3914
3915         ida_destroy(&nvme_fc_local_port_cnt);
3916         ida_destroy(&nvme_fc_ctrl_cnt);
3917
3918         device_destroy(&fc_class, MKDEV(0, 0));
3919         class_unregister(&fc_class);
3920         destroy_workqueue(nvme_fc_wq);
3921 }
3922
3923 module_init(nvme_fc_init_module);
3924 module_exit(nvme_fc_exit_module);
3925
3926 MODULE_LICENSE("GPL v2");