nvme-fc nvmet-fc: refactor for common LS definitions
[linux-2.6-microblaze.git] / drivers / nvme / host / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 enum nvme_fc_queue_flags {
24         NVME_FC_Q_CONNECTED = 0,
25         NVME_FC_Q_LIVE,
26 };
27
28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
29
30 struct nvme_fc_queue {
31         struct nvme_fc_ctrl     *ctrl;
32         struct device           *dev;
33         struct blk_mq_hw_ctx    *hctx;
34         void                    *lldd_handle;
35         size_t                  cmnd_capsule_len;
36         u32                     qnum;
37         u32                     rqcnt;
38         u32                     seqno;
39
40         u64                     connection_id;
41         atomic_t                csn;
42
43         unsigned long           flags;
44 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
45
46 enum nvme_fcop_flags {
47         FCOP_FLAGS_TERMIO       = (1 << 0),
48         FCOP_FLAGS_AEN          = (1 << 1),
49 };
50
51 struct nvmefc_ls_req_op {
52         struct nvmefc_ls_req    ls_req;
53
54         struct nvme_fc_rport    *rport;
55         struct nvme_fc_queue    *queue;
56         struct request          *rq;
57         u32                     flags;
58
59         int                     ls_error;
60         struct completion       ls_done;
61         struct list_head        lsreq_list;     /* rport->ls_req_list */
62         bool                    req_queued;
63 };
64
65 enum nvme_fcpop_state {
66         FCPOP_STATE_UNINIT      = 0,
67         FCPOP_STATE_IDLE        = 1,
68         FCPOP_STATE_ACTIVE      = 2,
69         FCPOP_STATE_ABORTED     = 3,
70         FCPOP_STATE_COMPLETE    = 4,
71 };
72
73 struct nvme_fc_fcp_op {
74         struct nvme_request     nreq;           /*
75                                                  * nvme/host/core.c
76                                                  * requires this to be
77                                                  * the 1st element in the
78                                                  * private structure
79                                                  * associated with the
80                                                  * request.
81                                                  */
82         struct nvmefc_fcp_req   fcp_req;
83
84         struct nvme_fc_ctrl     *ctrl;
85         struct nvme_fc_queue    *queue;
86         struct request          *rq;
87
88         atomic_t                state;
89         u32                     flags;
90         u32                     rqno;
91         u32                     nents;
92
93         struct nvme_fc_cmd_iu   cmd_iu;
94         struct nvme_fc_ersp_iu  rsp_iu;
95 };
96
97 struct nvme_fcp_op_w_sgl {
98         struct nvme_fc_fcp_op   op;
99         struct scatterlist      sgl[NVME_INLINE_SG_CNT];
100         uint8_t                 priv[0];
101 };
102
103 struct nvme_fc_lport {
104         struct nvme_fc_local_port       localport;
105
106         struct ida                      endp_cnt;
107         struct list_head                port_list;      /* nvme_fc_port_list */
108         struct list_head                endp_list;
109         struct device                   *dev;   /* physical device for dma */
110         struct nvme_fc_port_template    *ops;
111         struct kref                     ref;
112         atomic_t                        act_rport_cnt;
113 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
114
115 struct nvme_fc_rport {
116         struct nvme_fc_remote_port      remoteport;
117
118         struct list_head                endp_list; /* for lport->endp_list */
119         struct list_head                ctrl_list;
120         struct list_head                ls_req_list;
121         struct list_head                disc_list;
122         struct device                   *dev;   /* physical device for dma */
123         struct nvme_fc_lport            *lport;
124         spinlock_t                      lock;
125         struct kref                     ref;
126         atomic_t                        act_ctrl_cnt;
127         unsigned long                   dev_loss_end;
128 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
129
130 enum nvme_fcctrl_flags {
131         FCCTRL_TERMIO           = (1 << 0),
132 };
133
134 struct nvme_fc_ctrl {
135         spinlock_t              lock;
136         struct nvme_fc_queue    *queues;
137         struct device           *dev;
138         struct nvme_fc_lport    *lport;
139         struct nvme_fc_rport    *rport;
140         u32                     cnum;
141
142         bool                    ioq_live;
143         bool                    assoc_active;
144         atomic_t                err_work_active;
145         u64                     association_id;
146
147         struct list_head        ctrl_list;      /* rport->ctrl_list */
148
149         struct blk_mq_tag_set   admin_tag_set;
150         struct blk_mq_tag_set   tag_set;
151
152         struct delayed_work     connect_work;
153         struct work_struct      err_work;
154
155         struct kref             ref;
156         u32                     flags;
157         u32                     iocnt;
158         wait_queue_head_t       ioabort_wait;
159
160         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
161
162         struct nvme_ctrl        ctrl;
163 };
164
165 static inline struct nvme_fc_ctrl *
166 to_fc_ctrl(struct nvme_ctrl *ctrl)
167 {
168         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
169 }
170
171 static inline struct nvme_fc_lport *
172 localport_to_lport(struct nvme_fc_local_port *portptr)
173 {
174         return container_of(portptr, struct nvme_fc_lport, localport);
175 }
176
177 static inline struct nvme_fc_rport *
178 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
179 {
180         return container_of(portptr, struct nvme_fc_rport, remoteport);
181 }
182
183 static inline struct nvmefc_ls_req_op *
184 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
185 {
186         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
187 }
188
189 static inline struct nvme_fc_fcp_op *
190 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
191 {
192         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
193 }
194
195
196
197 /* *************************** Globals **************************** */
198
199
200 static DEFINE_SPINLOCK(nvme_fc_lock);
201
202 static LIST_HEAD(nvme_fc_lport_list);
203 static DEFINE_IDA(nvme_fc_local_port_cnt);
204 static DEFINE_IDA(nvme_fc_ctrl_cnt);
205
206 static struct workqueue_struct *nvme_fc_wq;
207
208 static bool nvme_fc_waiting_to_unload;
209 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
210
211 /*
212  * These items are short-term. They will eventually be moved into
213  * a generic FC class. See comments in module init.
214  */
215 static struct device *fc_udev_device;
216
217
218 /* *********************** FC-NVME Port Management ************************ */
219
220 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
221                         struct nvme_fc_queue *, unsigned int);
222
223 static void
224 nvme_fc_free_lport(struct kref *ref)
225 {
226         struct nvme_fc_lport *lport =
227                 container_of(ref, struct nvme_fc_lport, ref);
228         unsigned long flags;
229
230         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
231         WARN_ON(!list_empty(&lport->endp_list));
232
233         /* remove from transport list */
234         spin_lock_irqsave(&nvme_fc_lock, flags);
235         list_del(&lport->port_list);
236         if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
237                 complete(&nvme_fc_unload_proceed);
238         spin_unlock_irqrestore(&nvme_fc_lock, flags);
239
240         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
241         ida_destroy(&lport->endp_cnt);
242
243         put_device(lport->dev);
244
245         kfree(lport);
246 }
247
248 static void
249 nvme_fc_lport_put(struct nvme_fc_lport *lport)
250 {
251         kref_put(&lport->ref, nvme_fc_free_lport);
252 }
253
254 static int
255 nvme_fc_lport_get(struct nvme_fc_lport *lport)
256 {
257         return kref_get_unless_zero(&lport->ref);
258 }
259
260
261 static struct nvme_fc_lport *
262 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
263                         struct nvme_fc_port_template *ops,
264                         struct device *dev)
265 {
266         struct nvme_fc_lport *lport;
267         unsigned long flags;
268
269         spin_lock_irqsave(&nvme_fc_lock, flags);
270
271         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
272                 if (lport->localport.node_name != pinfo->node_name ||
273                     lport->localport.port_name != pinfo->port_name)
274                         continue;
275
276                 if (lport->dev != dev) {
277                         lport = ERR_PTR(-EXDEV);
278                         goto out_done;
279                 }
280
281                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
282                         lport = ERR_PTR(-EEXIST);
283                         goto out_done;
284                 }
285
286                 if (!nvme_fc_lport_get(lport)) {
287                         /*
288                          * fails if ref cnt already 0. If so,
289                          * act as if lport already deleted
290                          */
291                         lport = NULL;
292                         goto out_done;
293                 }
294
295                 /* resume the lport */
296
297                 lport->ops = ops;
298                 lport->localport.port_role = pinfo->port_role;
299                 lport->localport.port_id = pinfo->port_id;
300                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
301
302                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
303
304                 return lport;
305         }
306
307         lport = NULL;
308
309 out_done:
310         spin_unlock_irqrestore(&nvme_fc_lock, flags);
311
312         return lport;
313 }
314
315 /**
316  * nvme_fc_register_localport - transport entry point called by an
317  *                              LLDD to register the existence of a NVME
318  *                              host FC port.
319  * @pinfo:     pointer to information about the port to be registered
320  * @template:  LLDD entrypoints and operational parameters for the port
321  * @dev:       physical hardware device node port corresponds to. Will be
322  *             used for DMA mappings
323  * @portptr:   pointer to a local port pointer. Upon success, the routine
324  *             will allocate a nvme_fc_local_port structure and place its
325  *             address in the local port pointer. Upon failure, local port
326  *             pointer will be set to 0.
327  *
328  * Returns:
329  * a completion status. Must be 0 upon success; a negative errno
330  * (ex: -ENXIO) upon failure.
331  */
332 int
333 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
334                         struct nvme_fc_port_template *template,
335                         struct device *dev,
336                         struct nvme_fc_local_port **portptr)
337 {
338         struct nvme_fc_lport *newrec;
339         unsigned long flags;
340         int ret, idx;
341
342         if (!template->localport_delete || !template->remoteport_delete ||
343             !template->ls_req || !template->fcp_io ||
344             !template->ls_abort || !template->fcp_abort ||
345             !template->max_hw_queues || !template->max_sgl_segments ||
346             !template->max_dif_sgl_segments || !template->dma_boundary) {
347                 ret = -EINVAL;
348                 goto out_reghost_failed;
349         }
350
351         /*
352          * look to see if there is already a localport that had been
353          * deregistered and in the process of waiting for all the
354          * references to fully be removed.  If the references haven't
355          * expired, we can simply re-enable the localport. Remoteports
356          * and controller reconnections should resume naturally.
357          */
358         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
359
360         /* found an lport, but something about its state is bad */
361         if (IS_ERR(newrec)) {
362                 ret = PTR_ERR(newrec);
363                 goto out_reghost_failed;
364
365         /* found existing lport, which was resumed */
366         } else if (newrec) {
367                 *portptr = &newrec->localport;
368                 return 0;
369         }
370
371         /* nothing found - allocate a new localport struct */
372
373         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
374                          GFP_KERNEL);
375         if (!newrec) {
376                 ret = -ENOMEM;
377                 goto out_reghost_failed;
378         }
379
380         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
381         if (idx < 0) {
382                 ret = -ENOSPC;
383                 goto out_fail_kfree;
384         }
385
386         if (!get_device(dev) && dev) {
387                 ret = -ENODEV;
388                 goto out_ida_put;
389         }
390
391         INIT_LIST_HEAD(&newrec->port_list);
392         INIT_LIST_HEAD(&newrec->endp_list);
393         kref_init(&newrec->ref);
394         atomic_set(&newrec->act_rport_cnt, 0);
395         newrec->ops = template;
396         newrec->dev = dev;
397         ida_init(&newrec->endp_cnt);
398         newrec->localport.private = &newrec[1];
399         newrec->localport.node_name = pinfo->node_name;
400         newrec->localport.port_name = pinfo->port_name;
401         newrec->localport.port_role = pinfo->port_role;
402         newrec->localport.port_id = pinfo->port_id;
403         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
404         newrec->localport.port_num = idx;
405
406         spin_lock_irqsave(&nvme_fc_lock, flags);
407         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
408         spin_unlock_irqrestore(&nvme_fc_lock, flags);
409
410         if (dev)
411                 dma_set_seg_boundary(dev, template->dma_boundary);
412
413         *portptr = &newrec->localport;
414         return 0;
415
416 out_ida_put:
417         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
418 out_fail_kfree:
419         kfree(newrec);
420 out_reghost_failed:
421         *portptr = NULL;
422
423         return ret;
424 }
425 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
426
427 /**
428  * nvme_fc_unregister_localport - transport entry point called by an
429  *                              LLDD to deregister/remove a previously
430  *                              registered a NVME host FC port.
431  * @portptr: pointer to the (registered) local port that is to be deregistered.
432  *
433  * Returns:
434  * a completion status. Must be 0 upon success; a negative errno
435  * (ex: -ENXIO) upon failure.
436  */
437 int
438 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
439 {
440         struct nvme_fc_lport *lport = localport_to_lport(portptr);
441         unsigned long flags;
442
443         if (!portptr)
444                 return -EINVAL;
445
446         spin_lock_irqsave(&nvme_fc_lock, flags);
447
448         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
449                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
450                 return -EINVAL;
451         }
452         portptr->port_state = FC_OBJSTATE_DELETED;
453
454         spin_unlock_irqrestore(&nvme_fc_lock, flags);
455
456         if (atomic_read(&lport->act_rport_cnt) == 0)
457                 lport->ops->localport_delete(&lport->localport);
458
459         nvme_fc_lport_put(lport);
460
461         return 0;
462 }
463 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
464
465 /*
466  * TRADDR strings, per FC-NVME are fixed format:
467  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
468  * udev event will only differ by prefix of what field is
469  * being specified:
470  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
471  *  19 + 43 + null_fudge = 64 characters
472  */
473 #define FCNVME_TRADDR_LENGTH            64
474
475 static void
476 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
477                 struct nvme_fc_rport *rport)
478 {
479         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
480         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
481         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
482
483         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
484                 return;
485
486         snprintf(hostaddr, sizeof(hostaddr),
487                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
488                 lport->localport.node_name, lport->localport.port_name);
489         snprintf(tgtaddr, sizeof(tgtaddr),
490                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
491                 rport->remoteport.node_name, rport->remoteport.port_name);
492         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
493 }
494
495 static void
496 nvme_fc_free_rport(struct kref *ref)
497 {
498         struct nvme_fc_rport *rport =
499                 container_of(ref, struct nvme_fc_rport, ref);
500         struct nvme_fc_lport *lport =
501                         localport_to_lport(rport->remoteport.localport);
502         unsigned long flags;
503
504         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
505         WARN_ON(!list_empty(&rport->ctrl_list));
506
507         /* remove from lport list */
508         spin_lock_irqsave(&nvme_fc_lock, flags);
509         list_del(&rport->endp_list);
510         spin_unlock_irqrestore(&nvme_fc_lock, flags);
511
512         WARN_ON(!list_empty(&rport->disc_list));
513         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
514
515         kfree(rport);
516
517         nvme_fc_lport_put(lport);
518 }
519
520 static void
521 nvme_fc_rport_put(struct nvme_fc_rport *rport)
522 {
523         kref_put(&rport->ref, nvme_fc_free_rport);
524 }
525
526 static int
527 nvme_fc_rport_get(struct nvme_fc_rport *rport)
528 {
529         return kref_get_unless_zero(&rport->ref);
530 }
531
532 static void
533 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
534 {
535         switch (ctrl->ctrl.state) {
536         case NVME_CTRL_NEW:
537         case NVME_CTRL_CONNECTING:
538                 /*
539                  * As all reconnects were suppressed, schedule a
540                  * connect.
541                  */
542                 dev_info(ctrl->ctrl.device,
543                         "NVME-FC{%d}: connectivity re-established. "
544                         "Attempting reconnect\n", ctrl->cnum);
545
546                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
547                 break;
548
549         case NVME_CTRL_RESETTING:
550                 /*
551                  * Controller is already in the process of terminating the
552                  * association. No need to do anything further. The reconnect
553                  * step will naturally occur after the reset completes.
554                  */
555                 break;
556
557         default:
558                 /* no action to take - let it delete */
559                 break;
560         }
561 }
562
563 static struct nvme_fc_rport *
564 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
565                                 struct nvme_fc_port_info *pinfo)
566 {
567         struct nvme_fc_rport *rport;
568         struct nvme_fc_ctrl *ctrl;
569         unsigned long flags;
570
571         spin_lock_irqsave(&nvme_fc_lock, flags);
572
573         list_for_each_entry(rport, &lport->endp_list, endp_list) {
574                 if (rport->remoteport.node_name != pinfo->node_name ||
575                     rport->remoteport.port_name != pinfo->port_name)
576                         continue;
577
578                 if (!nvme_fc_rport_get(rport)) {
579                         rport = ERR_PTR(-ENOLCK);
580                         goto out_done;
581                 }
582
583                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
584
585                 spin_lock_irqsave(&rport->lock, flags);
586
587                 /* has it been unregistered */
588                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
589                         /* means lldd called us twice */
590                         spin_unlock_irqrestore(&rport->lock, flags);
591                         nvme_fc_rport_put(rport);
592                         return ERR_PTR(-ESTALE);
593                 }
594
595                 rport->remoteport.port_role = pinfo->port_role;
596                 rport->remoteport.port_id = pinfo->port_id;
597                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
598                 rport->dev_loss_end = 0;
599
600                 /*
601                  * kick off a reconnect attempt on all associations to the
602                  * remote port. A successful reconnects will resume i/o.
603                  */
604                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
605                         nvme_fc_resume_controller(ctrl);
606
607                 spin_unlock_irqrestore(&rport->lock, flags);
608
609                 return rport;
610         }
611
612         rport = NULL;
613
614 out_done:
615         spin_unlock_irqrestore(&nvme_fc_lock, flags);
616
617         return rport;
618 }
619
620 static inline void
621 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
622                         struct nvme_fc_port_info *pinfo)
623 {
624         if (pinfo->dev_loss_tmo)
625                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
626         else
627                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
628 }
629
630 /**
631  * nvme_fc_register_remoteport - transport entry point called by an
632  *                              LLDD to register the existence of a NVME
633  *                              subsystem FC port on its fabric.
634  * @localport: pointer to the (registered) local port that the remote
635  *             subsystem port is connected to.
636  * @pinfo:     pointer to information about the port to be registered
637  * @portptr:   pointer to a remote port pointer. Upon success, the routine
638  *             will allocate a nvme_fc_remote_port structure and place its
639  *             address in the remote port pointer. Upon failure, remote port
640  *             pointer will be set to 0.
641  *
642  * Returns:
643  * a completion status. Must be 0 upon success; a negative errno
644  * (ex: -ENXIO) upon failure.
645  */
646 int
647 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
648                                 struct nvme_fc_port_info *pinfo,
649                                 struct nvme_fc_remote_port **portptr)
650 {
651         struct nvme_fc_lport *lport = localport_to_lport(localport);
652         struct nvme_fc_rport *newrec;
653         unsigned long flags;
654         int ret, idx;
655
656         if (!nvme_fc_lport_get(lport)) {
657                 ret = -ESHUTDOWN;
658                 goto out_reghost_failed;
659         }
660
661         /*
662          * look to see if there is already a remoteport that is waiting
663          * for a reconnect (within dev_loss_tmo) with the same WWN's.
664          * If so, transition to it and reconnect.
665          */
666         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
667
668         /* found an rport, but something about its state is bad */
669         if (IS_ERR(newrec)) {
670                 ret = PTR_ERR(newrec);
671                 goto out_lport_put;
672
673         /* found existing rport, which was resumed */
674         } else if (newrec) {
675                 nvme_fc_lport_put(lport);
676                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
677                 nvme_fc_signal_discovery_scan(lport, newrec);
678                 *portptr = &newrec->remoteport;
679                 return 0;
680         }
681
682         /* nothing found - allocate a new remoteport struct */
683
684         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
685                          GFP_KERNEL);
686         if (!newrec) {
687                 ret = -ENOMEM;
688                 goto out_lport_put;
689         }
690
691         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
692         if (idx < 0) {
693                 ret = -ENOSPC;
694                 goto out_kfree_rport;
695         }
696
697         INIT_LIST_HEAD(&newrec->endp_list);
698         INIT_LIST_HEAD(&newrec->ctrl_list);
699         INIT_LIST_HEAD(&newrec->ls_req_list);
700         INIT_LIST_HEAD(&newrec->disc_list);
701         kref_init(&newrec->ref);
702         atomic_set(&newrec->act_ctrl_cnt, 0);
703         spin_lock_init(&newrec->lock);
704         newrec->remoteport.localport = &lport->localport;
705         newrec->dev = lport->dev;
706         newrec->lport = lport;
707         newrec->remoteport.private = &newrec[1];
708         newrec->remoteport.port_role = pinfo->port_role;
709         newrec->remoteport.node_name = pinfo->node_name;
710         newrec->remoteport.port_name = pinfo->port_name;
711         newrec->remoteport.port_id = pinfo->port_id;
712         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
713         newrec->remoteport.port_num = idx;
714         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
715
716         spin_lock_irqsave(&nvme_fc_lock, flags);
717         list_add_tail(&newrec->endp_list, &lport->endp_list);
718         spin_unlock_irqrestore(&nvme_fc_lock, flags);
719
720         nvme_fc_signal_discovery_scan(lport, newrec);
721
722         *portptr = &newrec->remoteport;
723         return 0;
724
725 out_kfree_rport:
726         kfree(newrec);
727 out_lport_put:
728         nvme_fc_lport_put(lport);
729 out_reghost_failed:
730         *portptr = NULL;
731         return ret;
732 }
733 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
734
735 static int
736 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
737 {
738         struct nvmefc_ls_req_op *lsop;
739         unsigned long flags;
740
741 restart:
742         spin_lock_irqsave(&rport->lock, flags);
743
744         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
745                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
746                         lsop->flags |= FCOP_FLAGS_TERMIO;
747                         spin_unlock_irqrestore(&rport->lock, flags);
748                         rport->lport->ops->ls_abort(&rport->lport->localport,
749                                                 &rport->remoteport,
750                                                 &lsop->ls_req);
751                         goto restart;
752                 }
753         }
754         spin_unlock_irqrestore(&rport->lock, flags);
755
756         return 0;
757 }
758
759 static void
760 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
761 {
762         dev_info(ctrl->ctrl.device,
763                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
764                 "Reconnect", ctrl->cnum);
765
766         switch (ctrl->ctrl.state) {
767         case NVME_CTRL_NEW:
768         case NVME_CTRL_LIVE:
769                 /*
770                  * Schedule a controller reset. The reset will terminate the
771                  * association and schedule the reconnect timer.  Reconnects
772                  * will be attempted until either the ctlr_loss_tmo
773                  * (max_retries * connect_delay) expires or the remoteport's
774                  * dev_loss_tmo expires.
775                  */
776                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
777                         dev_warn(ctrl->ctrl.device,
778                                 "NVME-FC{%d}: Couldn't schedule reset.\n",
779                                 ctrl->cnum);
780                         nvme_delete_ctrl(&ctrl->ctrl);
781                 }
782                 break;
783
784         case NVME_CTRL_CONNECTING:
785                 /*
786                  * The association has already been terminated and the
787                  * controller is attempting reconnects.  No need to do anything
788                  * futher.  Reconnects will be attempted until either the
789                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
790                  * remoteport's dev_loss_tmo expires.
791                  */
792                 break;
793
794         case NVME_CTRL_RESETTING:
795                 /*
796                  * Controller is already in the process of terminating the
797                  * association.  No need to do anything further. The reconnect
798                  * step will kick in naturally after the association is
799                  * terminated.
800                  */
801                 break;
802
803         case NVME_CTRL_DELETING:
804         default:
805                 /* no action to take - let it delete */
806                 break;
807         }
808 }
809
810 /**
811  * nvme_fc_unregister_remoteport - transport entry point called by an
812  *                              LLDD to deregister/remove a previously
813  *                              registered a NVME subsystem FC port.
814  * @portptr: pointer to the (registered) remote port that is to be
815  *           deregistered.
816  *
817  * Returns:
818  * a completion status. Must be 0 upon success; a negative errno
819  * (ex: -ENXIO) upon failure.
820  */
821 int
822 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
823 {
824         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
825         struct nvme_fc_ctrl *ctrl;
826         unsigned long flags;
827
828         if (!portptr)
829                 return -EINVAL;
830
831         spin_lock_irqsave(&rport->lock, flags);
832
833         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
834                 spin_unlock_irqrestore(&rport->lock, flags);
835                 return -EINVAL;
836         }
837         portptr->port_state = FC_OBJSTATE_DELETED;
838
839         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
840
841         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
842                 /* if dev_loss_tmo==0, dev loss is immediate */
843                 if (!portptr->dev_loss_tmo) {
844                         dev_warn(ctrl->ctrl.device,
845                                 "NVME-FC{%d}: controller connectivity lost.\n",
846                                 ctrl->cnum);
847                         nvme_delete_ctrl(&ctrl->ctrl);
848                 } else
849                         nvme_fc_ctrl_connectivity_loss(ctrl);
850         }
851
852         spin_unlock_irqrestore(&rport->lock, flags);
853
854         nvme_fc_abort_lsops(rport);
855
856         if (atomic_read(&rport->act_ctrl_cnt) == 0)
857                 rport->lport->ops->remoteport_delete(portptr);
858
859         /*
860          * release the reference, which will allow, if all controllers
861          * go away, which should only occur after dev_loss_tmo occurs,
862          * for the rport to be torn down.
863          */
864         nvme_fc_rport_put(rport);
865
866         return 0;
867 }
868 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
869
870 /**
871  * nvme_fc_rescan_remoteport - transport entry point called by an
872  *                              LLDD to request a nvme device rescan.
873  * @remoteport: pointer to the (registered) remote port that is to be
874  *              rescanned.
875  *
876  * Returns: N/A
877  */
878 void
879 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
880 {
881         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
882
883         nvme_fc_signal_discovery_scan(rport->lport, rport);
884 }
885 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
886
887 int
888 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
889                         u32 dev_loss_tmo)
890 {
891         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
892         unsigned long flags;
893
894         spin_lock_irqsave(&rport->lock, flags);
895
896         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
897                 spin_unlock_irqrestore(&rport->lock, flags);
898                 return -EINVAL;
899         }
900
901         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
902         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
903
904         spin_unlock_irqrestore(&rport->lock, flags);
905
906         return 0;
907 }
908 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
909
910
911 /* *********************** FC-NVME DMA Handling **************************** */
912
913 /*
914  * The fcloop device passes in a NULL device pointer. Real LLD's will
915  * pass in a valid device pointer. If NULL is passed to the dma mapping
916  * routines, depending on the platform, it may or may not succeed, and
917  * may crash.
918  *
919  * As such:
920  * Wrapper all the dma routines and check the dev pointer.
921  *
922  * If simple mappings (return just a dma address, we'll noop them,
923  * returning a dma address of 0.
924  *
925  * On more complex mappings (dma_map_sg), a pseudo routine fills
926  * in the scatter list, setting all dma addresses to 0.
927  */
928
929 static inline dma_addr_t
930 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
931                 enum dma_data_direction dir)
932 {
933         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
934 }
935
936 static inline int
937 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
938 {
939         return dev ? dma_mapping_error(dev, dma_addr) : 0;
940 }
941
942 static inline void
943 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
944         enum dma_data_direction dir)
945 {
946         if (dev)
947                 dma_unmap_single(dev, addr, size, dir);
948 }
949
950 static inline void
951 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
952                 enum dma_data_direction dir)
953 {
954         if (dev)
955                 dma_sync_single_for_cpu(dev, addr, size, dir);
956 }
957
958 static inline void
959 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
960                 enum dma_data_direction dir)
961 {
962         if (dev)
963                 dma_sync_single_for_device(dev, addr, size, dir);
964 }
965
966 /* pseudo dma_map_sg call */
967 static int
968 fc_map_sg(struct scatterlist *sg, int nents)
969 {
970         struct scatterlist *s;
971         int i;
972
973         WARN_ON(nents == 0 || sg[0].length == 0);
974
975         for_each_sg(sg, s, nents, i) {
976                 s->dma_address = 0L;
977 #ifdef CONFIG_NEED_SG_DMA_LENGTH
978                 s->dma_length = s->length;
979 #endif
980         }
981         return nents;
982 }
983
984 static inline int
985 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
986                 enum dma_data_direction dir)
987 {
988         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
989 }
990
991 static inline void
992 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
993                 enum dma_data_direction dir)
994 {
995         if (dev)
996                 dma_unmap_sg(dev, sg, nents, dir);
997 }
998
999 /* *********************** FC-NVME LS Handling **************************** */
1000
1001 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1002 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1003
1004
1005 static void
1006 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1007 {
1008         struct nvme_fc_rport *rport = lsop->rport;
1009         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1010         unsigned long flags;
1011
1012         spin_lock_irqsave(&rport->lock, flags);
1013
1014         if (!lsop->req_queued) {
1015                 spin_unlock_irqrestore(&rport->lock, flags);
1016                 return;
1017         }
1018
1019         list_del(&lsop->lsreq_list);
1020
1021         lsop->req_queued = false;
1022
1023         spin_unlock_irqrestore(&rport->lock, flags);
1024
1025         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1026                                   (lsreq->rqstlen + lsreq->rsplen),
1027                                   DMA_BIDIRECTIONAL);
1028
1029         nvme_fc_rport_put(rport);
1030 }
1031
1032 static int
1033 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1034                 struct nvmefc_ls_req_op *lsop,
1035                 void (*done)(struct nvmefc_ls_req *req, int status))
1036 {
1037         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1038         unsigned long flags;
1039         int ret = 0;
1040
1041         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1042                 return -ECONNREFUSED;
1043
1044         if (!nvme_fc_rport_get(rport))
1045                 return -ESHUTDOWN;
1046
1047         lsreq->done = done;
1048         lsop->rport = rport;
1049         lsop->req_queued = false;
1050         INIT_LIST_HEAD(&lsop->lsreq_list);
1051         init_completion(&lsop->ls_done);
1052
1053         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1054                                   lsreq->rqstlen + lsreq->rsplen,
1055                                   DMA_BIDIRECTIONAL);
1056         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1057                 ret = -EFAULT;
1058                 goto out_putrport;
1059         }
1060         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1061
1062         spin_lock_irqsave(&rport->lock, flags);
1063
1064         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1065
1066         lsop->req_queued = true;
1067
1068         spin_unlock_irqrestore(&rport->lock, flags);
1069
1070         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1071                                         &rport->remoteport, lsreq);
1072         if (ret)
1073                 goto out_unlink;
1074
1075         return 0;
1076
1077 out_unlink:
1078         lsop->ls_error = ret;
1079         spin_lock_irqsave(&rport->lock, flags);
1080         lsop->req_queued = false;
1081         list_del(&lsop->lsreq_list);
1082         spin_unlock_irqrestore(&rport->lock, flags);
1083         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1084                                   (lsreq->rqstlen + lsreq->rsplen),
1085                                   DMA_BIDIRECTIONAL);
1086 out_putrport:
1087         nvme_fc_rport_put(rport);
1088
1089         return ret;
1090 }
1091
1092 static void
1093 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1094 {
1095         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1096
1097         lsop->ls_error = status;
1098         complete(&lsop->ls_done);
1099 }
1100
1101 static int
1102 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1103 {
1104         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1105         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1106         int ret;
1107
1108         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1109
1110         if (!ret) {
1111                 /*
1112                  * No timeout/not interruptible as we need the struct
1113                  * to exist until the lldd calls us back. Thus mandate
1114                  * wait until driver calls back. lldd responsible for
1115                  * the timeout action
1116                  */
1117                 wait_for_completion(&lsop->ls_done);
1118
1119                 __nvme_fc_finish_ls_req(lsop);
1120
1121                 ret = lsop->ls_error;
1122         }
1123
1124         if (ret)
1125                 return ret;
1126
1127         /* ACC or RJT payload ? */
1128         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1129                 return -ENXIO;
1130
1131         return 0;
1132 }
1133
1134 static int
1135 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1136                 struct nvmefc_ls_req_op *lsop,
1137                 void (*done)(struct nvmefc_ls_req *req, int status))
1138 {
1139         /* don't wait for completion */
1140
1141         return __nvme_fc_send_ls_req(rport, lsop, done);
1142 }
1143
1144 static int
1145 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1146         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1147 {
1148         struct nvmefc_ls_req_op *lsop;
1149         struct nvmefc_ls_req *lsreq;
1150         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1151         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1152         int ret, fcret = 0;
1153
1154         lsop = kzalloc((sizeof(*lsop) +
1155                          ctrl->lport->ops->lsrqst_priv_sz +
1156                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1157         if (!lsop) {
1158                 ret = -ENOMEM;
1159                 goto out_no_memory;
1160         }
1161         lsreq = &lsop->ls_req;
1162
1163         lsreq->private = (void *)&lsop[1];
1164         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1165                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1166         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1167
1168         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1169         assoc_rqst->desc_list_len =
1170                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1171
1172         assoc_rqst->assoc_cmd.desc_tag =
1173                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1174         assoc_rqst->assoc_cmd.desc_len =
1175                         fcnvme_lsdesc_len(
1176                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1177
1178         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1179         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1180         /* Linux supports only Dynamic controllers */
1181         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1182         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1183         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1184                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1185         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1186                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1187
1188         lsop->queue = queue;
1189         lsreq->rqstaddr = assoc_rqst;
1190         lsreq->rqstlen = sizeof(*assoc_rqst);
1191         lsreq->rspaddr = assoc_acc;
1192         lsreq->rsplen = sizeof(*assoc_acc);
1193         lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1194
1195         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1196         if (ret)
1197                 goto out_free_buffer;
1198
1199         /* process connect LS completion */
1200
1201         /* validate the ACC response */
1202         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1203                 fcret = VERR_LSACC;
1204         else if (assoc_acc->hdr.desc_list_len !=
1205                         fcnvme_lsdesc_len(
1206                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1207                 fcret = VERR_CR_ASSOC_ACC_LEN;
1208         else if (assoc_acc->hdr.rqst.desc_tag !=
1209                         cpu_to_be32(FCNVME_LSDESC_RQST))
1210                 fcret = VERR_LSDESC_RQST;
1211         else if (assoc_acc->hdr.rqst.desc_len !=
1212                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1213                 fcret = VERR_LSDESC_RQST_LEN;
1214         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1215                 fcret = VERR_CR_ASSOC;
1216         else if (assoc_acc->associd.desc_tag !=
1217                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1218                 fcret = VERR_ASSOC_ID;
1219         else if (assoc_acc->associd.desc_len !=
1220                         fcnvme_lsdesc_len(
1221                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1222                 fcret = VERR_ASSOC_ID_LEN;
1223         else if (assoc_acc->connectid.desc_tag !=
1224                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1225                 fcret = VERR_CONN_ID;
1226         else if (assoc_acc->connectid.desc_len !=
1227                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1228                 fcret = VERR_CONN_ID_LEN;
1229
1230         if (fcret) {
1231                 ret = -EBADF;
1232                 dev_err(ctrl->dev,
1233                         "q %d Create Association LS failed: %s\n",
1234                         queue->qnum, validation_errors[fcret]);
1235         } else {
1236                 ctrl->association_id =
1237                         be64_to_cpu(assoc_acc->associd.association_id);
1238                 queue->connection_id =
1239                         be64_to_cpu(assoc_acc->connectid.connection_id);
1240                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1241         }
1242
1243 out_free_buffer:
1244         kfree(lsop);
1245 out_no_memory:
1246         if (ret)
1247                 dev_err(ctrl->dev,
1248                         "queue %d connect admin queue failed (%d).\n",
1249                         queue->qnum, ret);
1250         return ret;
1251 }
1252
1253 static int
1254 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1255                         u16 qsize, u16 ersp_ratio)
1256 {
1257         struct nvmefc_ls_req_op *lsop;
1258         struct nvmefc_ls_req *lsreq;
1259         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1260         struct fcnvme_ls_cr_conn_acc *conn_acc;
1261         int ret, fcret = 0;
1262
1263         lsop = kzalloc((sizeof(*lsop) +
1264                          ctrl->lport->ops->lsrqst_priv_sz +
1265                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1266         if (!lsop) {
1267                 ret = -ENOMEM;
1268                 goto out_no_memory;
1269         }
1270         lsreq = &lsop->ls_req;
1271
1272         lsreq->private = (void *)&lsop[1];
1273         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1274                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1275         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1276
1277         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1278         conn_rqst->desc_list_len = cpu_to_be32(
1279                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1280                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1281
1282         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1283         conn_rqst->associd.desc_len =
1284                         fcnvme_lsdesc_len(
1285                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1286         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1287         conn_rqst->connect_cmd.desc_tag =
1288                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1289         conn_rqst->connect_cmd.desc_len =
1290                         fcnvme_lsdesc_len(
1291                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1292         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1293         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1294         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1295
1296         lsop->queue = queue;
1297         lsreq->rqstaddr = conn_rqst;
1298         lsreq->rqstlen = sizeof(*conn_rqst);
1299         lsreq->rspaddr = conn_acc;
1300         lsreq->rsplen = sizeof(*conn_acc);
1301         lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1302
1303         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1304         if (ret)
1305                 goto out_free_buffer;
1306
1307         /* process connect LS completion */
1308
1309         /* validate the ACC response */
1310         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1311                 fcret = VERR_LSACC;
1312         else if (conn_acc->hdr.desc_list_len !=
1313                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1314                 fcret = VERR_CR_CONN_ACC_LEN;
1315         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1316                 fcret = VERR_LSDESC_RQST;
1317         else if (conn_acc->hdr.rqst.desc_len !=
1318                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1319                 fcret = VERR_LSDESC_RQST_LEN;
1320         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1321                 fcret = VERR_CR_CONN;
1322         else if (conn_acc->connectid.desc_tag !=
1323                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1324                 fcret = VERR_CONN_ID;
1325         else if (conn_acc->connectid.desc_len !=
1326                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1327                 fcret = VERR_CONN_ID_LEN;
1328
1329         if (fcret) {
1330                 ret = -EBADF;
1331                 dev_err(ctrl->dev,
1332                         "q %d Create I/O Connection LS failed: %s\n",
1333                         queue->qnum, validation_errors[fcret]);
1334         } else {
1335                 queue->connection_id =
1336                         be64_to_cpu(conn_acc->connectid.connection_id);
1337                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1338         }
1339
1340 out_free_buffer:
1341         kfree(lsop);
1342 out_no_memory:
1343         if (ret)
1344                 dev_err(ctrl->dev,
1345                         "queue %d connect I/O queue failed (%d).\n",
1346                         queue->qnum, ret);
1347         return ret;
1348 }
1349
1350 static void
1351 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1352 {
1353         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1354
1355         __nvme_fc_finish_ls_req(lsop);
1356
1357         /* fc-nvme initiator doesn't care about success or failure of cmd */
1358
1359         kfree(lsop);
1360 }
1361
1362 /*
1363  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1364  * the FC-NVME Association.  Terminating the association also
1365  * terminates the FC-NVME connections (per queue, both admin and io
1366  * queues) that are part of the association. E.g. things are torn
1367  * down, and the related FC-NVME Association ID and Connection IDs
1368  * become invalid.
1369  *
1370  * The behavior of the fc-nvme initiator is such that it's
1371  * understanding of the association and connections will implicitly
1372  * be torn down. The action is implicit as it may be due to a loss of
1373  * connectivity with the fc-nvme target, so you may never get a
1374  * response even if you tried.  As such, the action of this routine
1375  * is to asynchronously send the LS, ignore any results of the LS, and
1376  * continue on with terminating the association. If the fc-nvme target
1377  * is present and receives the LS, it too can tear down.
1378  */
1379 static void
1380 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1381 {
1382         struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1383         struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1384         struct nvmefc_ls_req_op *lsop;
1385         struct nvmefc_ls_req *lsreq;
1386         int ret;
1387
1388         lsop = kzalloc((sizeof(*lsop) +
1389                          ctrl->lport->ops->lsrqst_priv_sz +
1390                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1391                         GFP_KERNEL);
1392         if (!lsop)
1393                 /* couldn't sent it... too bad */
1394                 return;
1395
1396         lsreq = &lsop->ls_req;
1397
1398         lsreq->private = (void *)&lsop[1];
1399         discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)
1400                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1401         discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1402
1403         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT_ASSOC;
1404         discon_rqst->desc_list_len = cpu_to_be32(
1405                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1406                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1407
1408         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1409         discon_rqst->associd.desc_len =
1410                         fcnvme_lsdesc_len(
1411                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1412
1413         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1414
1415         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1416                                                 FCNVME_LSDESC_DISCONN_CMD);
1417         discon_rqst->discon_cmd.desc_len =
1418                         fcnvme_lsdesc_len(
1419                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1420
1421         lsreq->rqstaddr = discon_rqst;
1422         lsreq->rqstlen = sizeof(*discon_rqst);
1423         lsreq->rspaddr = discon_acc;
1424         lsreq->rsplen = sizeof(*discon_acc);
1425         lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1426
1427         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1428                                 nvme_fc_disconnect_assoc_done);
1429         if (ret)
1430                 kfree(lsop);
1431 }
1432
1433 /**
1434  * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1435  *                       upon the reception of a NVME LS request.
1436  *
1437  * The nvme-fc layer will copy payload to an internal structure for
1438  * processing.  As such, upon completion of the routine, the LLDD may
1439  * immediately free/reuse the LS request buffer passed in the call.
1440  *
1441  * If this routine returns error, the LLDD should abort the exchange.
1442  *
1443  * @remoteport: pointer to the (registered) remote port that the LS
1444  *              was received from. The remoteport is associated with
1445  *              a specific localport.
1446  * @lsrsp:      pointer to a nvmefc_ls_rsp response structure to be
1447  *              used to reference the exchange corresponding to the LS
1448  *              when issuing an ls response.
1449  * @lsreqbuf:   pointer to the buffer containing the LS Request
1450  * @lsreqbuf_len: length, in bytes, of the received LS request
1451  */
1452 int
1453 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1454                         struct nvmefc_ls_rsp *lsrsp,
1455                         void *lsreqbuf, u32 lsreqbuf_len)
1456 {
1457         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1458         struct nvme_fc_lport *lport = rport->lport;
1459
1460         /* validate there's a routine to transmit a response */
1461         if (!lport->ops->xmt_ls_rsp)
1462                 return(-EINVAL);
1463
1464         return 0;
1465 }
1466 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1467
1468
1469 /* *********************** NVME Ctrl Routines **************************** */
1470
1471 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1472
1473 static void
1474 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1475                 struct nvme_fc_fcp_op *op)
1476 {
1477         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1478                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1479         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1480                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1481
1482         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1483 }
1484
1485 static void
1486 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1487                 unsigned int hctx_idx)
1488 {
1489         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1490
1491         return __nvme_fc_exit_request(set->driver_data, op);
1492 }
1493
1494 static int
1495 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1496 {
1497         unsigned long flags;
1498         int opstate;
1499
1500         spin_lock_irqsave(&ctrl->lock, flags);
1501         opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1502         if (opstate != FCPOP_STATE_ACTIVE)
1503                 atomic_set(&op->state, opstate);
1504         else if (ctrl->flags & FCCTRL_TERMIO)
1505                 ctrl->iocnt++;
1506         spin_unlock_irqrestore(&ctrl->lock, flags);
1507
1508         if (opstate != FCPOP_STATE_ACTIVE)
1509                 return -ECANCELED;
1510
1511         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1512                                         &ctrl->rport->remoteport,
1513                                         op->queue->lldd_handle,
1514                                         &op->fcp_req);
1515
1516         return 0;
1517 }
1518
1519 static void
1520 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1521 {
1522         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1523         int i;
1524
1525         /* ensure we've initialized the ops once */
1526         if (!(aen_op->flags & FCOP_FLAGS_AEN))
1527                 return;
1528
1529         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1530                 __nvme_fc_abort_op(ctrl, aen_op);
1531 }
1532
1533 static inline void
1534 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1535                 struct nvme_fc_fcp_op *op, int opstate)
1536 {
1537         unsigned long flags;
1538
1539         if (opstate == FCPOP_STATE_ABORTED) {
1540                 spin_lock_irqsave(&ctrl->lock, flags);
1541                 if (ctrl->flags & FCCTRL_TERMIO) {
1542                         if (!--ctrl->iocnt)
1543                                 wake_up(&ctrl->ioabort_wait);
1544                 }
1545                 spin_unlock_irqrestore(&ctrl->lock, flags);
1546         }
1547 }
1548
1549 static void
1550 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1551 {
1552         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1553         struct request *rq = op->rq;
1554         struct nvmefc_fcp_req *freq = &op->fcp_req;
1555         struct nvme_fc_ctrl *ctrl = op->ctrl;
1556         struct nvme_fc_queue *queue = op->queue;
1557         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1558         struct nvme_command *sqe = &op->cmd_iu.sqe;
1559         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1560         union nvme_result result;
1561         bool terminate_assoc = true;
1562         int opstate;
1563
1564         /*
1565          * WARNING:
1566          * The current linux implementation of a nvme controller
1567          * allocates a single tag set for all io queues and sizes
1568          * the io queues to fully hold all possible tags. Thus, the
1569          * implementation does not reference or care about the sqhd
1570          * value as it never needs to use the sqhd/sqtail pointers
1571          * for submission pacing.
1572          *
1573          * This affects the FC-NVME implementation in two ways:
1574          * 1) As the value doesn't matter, we don't need to waste
1575          *    cycles extracting it from ERSPs and stamping it in the
1576          *    cases where the transport fabricates CQEs on successful
1577          *    completions.
1578          * 2) The FC-NVME implementation requires that delivery of
1579          *    ERSP completions are to go back to the nvme layer in order
1580          *    relative to the rsn, such that the sqhd value will always
1581          *    be "in order" for the nvme layer. As the nvme layer in
1582          *    linux doesn't care about sqhd, there's no need to return
1583          *    them in order.
1584          *
1585          * Additionally:
1586          * As the core nvme layer in linux currently does not look at
1587          * every field in the cqe - in cases where the FC transport must
1588          * fabricate a CQE, the following fields will not be set as they
1589          * are not referenced:
1590          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1591          *
1592          * Failure or error of an individual i/o, in a transport
1593          * detected fashion unrelated to the nvme completion status,
1594          * potentially cause the initiator and target sides to get out
1595          * of sync on SQ head/tail (aka outstanding io count allowed).
1596          * Per FC-NVME spec, failure of an individual command requires
1597          * the connection to be terminated, which in turn requires the
1598          * association to be terminated.
1599          */
1600
1601         opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1602
1603         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1604                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1605
1606         if (opstate == FCPOP_STATE_ABORTED)
1607                 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1608         else if (freq->status) {
1609                 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1610                 dev_info(ctrl->ctrl.device,
1611                         "NVME-FC{%d}: io failed due to lldd error %d\n",
1612                         ctrl->cnum, freq->status);
1613         }
1614
1615         /*
1616          * For the linux implementation, if we have an unsuccesful
1617          * status, they blk-mq layer can typically be called with the
1618          * non-zero status and the content of the cqe isn't important.
1619          */
1620         if (status)
1621                 goto done;
1622
1623         /*
1624          * command completed successfully relative to the wire
1625          * protocol. However, validate anything received and
1626          * extract the status and result from the cqe (create it
1627          * where necessary).
1628          */
1629
1630         switch (freq->rcv_rsplen) {
1631
1632         case 0:
1633         case NVME_FC_SIZEOF_ZEROS_RSP:
1634                 /*
1635                  * No response payload or 12 bytes of payload (which
1636                  * should all be zeros) are considered successful and
1637                  * no payload in the CQE by the transport.
1638                  */
1639                 if (freq->transferred_length !=
1640                     be32_to_cpu(op->cmd_iu.data_len)) {
1641                         status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1642                         dev_info(ctrl->ctrl.device,
1643                                 "NVME-FC{%d}: io failed due to bad transfer "
1644                                 "length: %d vs expected %d\n",
1645                                 ctrl->cnum, freq->transferred_length,
1646                                 be32_to_cpu(op->cmd_iu.data_len));
1647                         goto done;
1648                 }
1649                 result.u64 = 0;
1650                 break;
1651
1652         case sizeof(struct nvme_fc_ersp_iu):
1653                 /*
1654                  * The ERSP IU contains a full completion with CQE.
1655                  * Validate ERSP IU and look at cqe.
1656                  */
1657                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1658                                         (freq->rcv_rsplen / 4) ||
1659                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1660                                         freq->transferred_length ||
1661                              op->rsp_iu.ersp_result ||
1662                              sqe->common.command_id != cqe->command_id)) {
1663                         status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1664                         dev_info(ctrl->ctrl.device,
1665                                 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
1666                                 "iu len %d, xfr len %d vs %d, status code "
1667                                 "%d, cmdid %d vs %d\n",
1668                                 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
1669                                 be32_to_cpu(op->rsp_iu.xfrd_len),
1670                                 freq->transferred_length,
1671                                 op->rsp_iu.ersp_result,
1672                                 sqe->common.command_id,
1673                                 cqe->command_id);
1674                         goto done;
1675                 }
1676                 result = cqe->result;
1677                 status = cqe->status;
1678                 break;
1679
1680         default:
1681                 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1682                 dev_info(ctrl->ctrl.device,
1683                         "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
1684                         "len %d\n",
1685                         ctrl->cnum, freq->rcv_rsplen);
1686                 goto done;
1687         }
1688
1689         terminate_assoc = false;
1690
1691 done:
1692         if (op->flags & FCOP_FLAGS_AEN) {
1693                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1694                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1695                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1696                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1697                 nvme_fc_ctrl_put(ctrl);
1698                 goto check_error;
1699         }
1700
1701         __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1702         nvme_end_request(rq, status, result);
1703
1704 check_error:
1705         if (terminate_assoc)
1706                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1707 }
1708
1709 static int
1710 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1711                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1712                 struct request *rq, u32 rqno)
1713 {
1714         struct nvme_fcp_op_w_sgl *op_w_sgl =
1715                 container_of(op, typeof(*op_w_sgl), op);
1716         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1717         int ret = 0;
1718
1719         memset(op, 0, sizeof(*op));
1720         op->fcp_req.cmdaddr = &op->cmd_iu;
1721         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1722         op->fcp_req.rspaddr = &op->rsp_iu;
1723         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1724         op->fcp_req.done = nvme_fc_fcpio_done;
1725         op->ctrl = ctrl;
1726         op->queue = queue;
1727         op->rq = rq;
1728         op->rqno = rqno;
1729
1730         cmdiu->format_id = NVME_CMD_FORMAT_ID;
1731         cmdiu->fc_id = NVME_CMD_FC_ID;
1732         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1733         if (queue->qnum)
1734                 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
1735                                         (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
1736         else
1737                 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
1738
1739         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1740                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1741         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1742                 dev_err(ctrl->dev,
1743                         "FCP Op failed - cmdiu dma mapping failed.\n");
1744                 ret = EFAULT;
1745                 goto out_on_error;
1746         }
1747
1748         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1749                                 &op->rsp_iu, sizeof(op->rsp_iu),
1750                                 DMA_FROM_DEVICE);
1751         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1752                 dev_err(ctrl->dev,
1753                         "FCP Op failed - rspiu dma mapping failed.\n");
1754                 ret = EFAULT;
1755         }
1756
1757         atomic_set(&op->state, FCPOP_STATE_IDLE);
1758 out_on_error:
1759         return ret;
1760 }
1761
1762 static int
1763 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1764                 unsigned int hctx_idx, unsigned int numa_node)
1765 {
1766         struct nvme_fc_ctrl *ctrl = set->driver_data;
1767         struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1768         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1769         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1770         int res;
1771
1772         res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1773         if (res)
1774                 return res;
1775         op->op.fcp_req.first_sgl = &op->sgl[0];
1776         op->op.fcp_req.private = &op->priv[0];
1777         nvme_req(rq)->ctrl = &ctrl->ctrl;
1778         return res;
1779 }
1780
1781 static int
1782 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1783 {
1784         struct nvme_fc_fcp_op *aen_op;
1785         struct nvme_fc_cmd_iu *cmdiu;
1786         struct nvme_command *sqe;
1787         void *private;
1788         int i, ret;
1789
1790         aen_op = ctrl->aen_ops;
1791         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1792                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1793                                                 GFP_KERNEL);
1794                 if (!private)
1795                         return -ENOMEM;
1796
1797                 cmdiu = &aen_op->cmd_iu;
1798                 sqe = &cmdiu->sqe;
1799                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1800                                 aen_op, (struct request *)NULL,
1801                                 (NVME_AQ_BLK_MQ_DEPTH + i));
1802                 if (ret) {
1803                         kfree(private);
1804                         return ret;
1805                 }
1806
1807                 aen_op->flags = FCOP_FLAGS_AEN;
1808                 aen_op->fcp_req.private = private;
1809
1810                 memset(sqe, 0, sizeof(*sqe));
1811                 sqe->common.opcode = nvme_admin_async_event;
1812                 /* Note: core layer may overwrite the sqe.command_id value */
1813                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1814         }
1815         return 0;
1816 }
1817
1818 static void
1819 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1820 {
1821         struct nvme_fc_fcp_op *aen_op;
1822         int i;
1823
1824         aen_op = ctrl->aen_ops;
1825         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1826                 if (!aen_op->fcp_req.private)
1827                         continue;
1828
1829                 __nvme_fc_exit_request(ctrl, aen_op);
1830
1831                 kfree(aen_op->fcp_req.private);
1832                 aen_op->fcp_req.private = NULL;
1833         }
1834 }
1835
1836 static inline void
1837 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1838                 unsigned int qidx)
1839 {
1840         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1841
1842         hctx->driver_data = queue;
1843         queue->hctx = hctx;
1844 }
1845
1846 static int
1847 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1848                 unsigned int hctx_idx)
1849 {
1850         struct nvme_fc_ctrl *ctrl = data;
1851
1852         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1853
1854         return 0;
1855 }
1856
1857 static int
1858 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1859                 unsigned int hctx_idx)
1860 {
1861         struct nvme_fc_ctrl *ctrl = data;
1862
1863         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1864
1865         return 0;
1866 }
1867
1868 static void
1869 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1870 {
1871         struct nvme_fc_queue *queue;
1872
1873         queue = &ctrl->queues[idx];
1874         memset(queue, 0, sizeof(*queue));
1875         queue->ctrl = ctrl;
1876         queue->qnum = idx;
1877         atomic_set(&queue->csn, 0);
1878         queue->dev = ctrl->dev;
1879
1880         if (idx > 0)
1881                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1882         else
1883                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1884
1885         /*
1886          * Considered whether we should allocate buffers for all SQEs
1887          * and CQEs and dma map them - mapping their respective entries
1888          * into the request structures (kernel vm addr and dma address)
1889          * thus the driver could use the buffers/mappings directly.
1890          * It only makes sense if the LLDD would use them for its
1891          * messaging api. It's very unlikely most adapter api's would use
1892          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1893          * structures were used instead.
1894          */
1895 }
1896
1897 /*
1898  * This routine terminates a queue at the transport level.
1899  * The transport has already ensured that all outstanding ios on
1900  * the queue have been terminated.
1901  * The transport will send a Disconnect LS request to terminate
1902  * the queue's connection. Termination of the admin queue will also
1903  * terminate the association at the target.
1904  */
1905 static void
1906 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1907 {
1908         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1909                 return;
1910
1911         clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1912         /*
1913          * Current implementation never disconnects a single queue.
1914          * It always terminates a whole association. So there is never
1915          * a disconnect(queue) LS sent to the target.
1916          */
1917
1918         queue->connection_id = 0;
1919         atomic_set(&queue->csn, 0);
1920 }
1921
1922 static void
1923 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1924         struct nvme_fc_queue *queue, unsigned int qidx)
1925 {
1926         if (ctrl->lport->ops->delete_queue)
1927                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1928                                 queue->lldd_handle);
1929         queue->lldd_handle = NULL;
1930 }
1931
1932 static void
1933 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1934 {
1935         int i;
1936
1937         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1938                 nvme_fc_free_queue(&ctrl->queues[i]);
1939 }
1940
1941 static int
1942 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1943         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1944 {
1945         int ret = 0;
1946
1947         queue->lldd_handle = NULL;
1948         if (ctrl->lport->ops->create_queue)
1949                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1950                                 qidx, qsize, &queue->lldd_handle);
1951
1952         return ret;
1953 }
1954
1955 static void
1956 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1957 {
1958         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1959         int i;
1960
1961         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1962                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1963 }
1964
1965 static int
1966 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1967 {
1968         struct nvme_fc_queue *queue = &ctrl->queues[1];
1969         int i, ret;
1970
1971         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1972                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1973                 if (ret)
1974                         goto delete_queues;
1975         }
1976
1977         return 0;
1978
1979 delete_queues:
1980         for (; i >= 0; i--)
1981                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1982         return ret;
1983 }
1984
1985 static int
1986 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1987 {
1988         int i, ret = 0;
1989
1990         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1991                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1992                                         (qsize / 5));
1993                 if (ret)
1994                         break;
1995                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1996                 if (ret)
1997                         break;
1998
1999                 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2000         }
2001
2002         return ret;
2003 }
2004
2005 static void
2006 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2007 {
2008         int i;
2009
2010         for (i = 1; i < ctrl->ctrl.queue_count; i++)
2011                 nvme_fc_init_queue(ctrl, i);
2012 }
2013
2014 static void
2015 nvme_fc_ctrl_free(struct kref *ref)
2016 {
2017         struct nvme_fc_ctrl *ctrl =
2018                 container_of(ref, struct nvme_fc_ctrl, ref);
2019         unsigned long flags;
2020
2021         if (ctrl->ctrl.tagset) {
2022                 blk_cleanup_queue(ctrl->ctrl.connect_q);
2023                 blk_mq_free_tag_set(&ctrl->tag_set);
2024         }
2025
2026         /* remove from rport list */
2027         spin_lock_irqsave(&ctrl->rport->lock, flags);
2028         list_del(&ctrl->ctrl_list);
2029         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2030
2031         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2032         blk_cleanup_queue(ctrl->ctrl.admin_q);
2033         blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2034         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2035
2036         kfree(ctrl->queues);
2037
2038         put_device(ctrl->dev);
2039         nvme_fc_rport_put(ctrl->rport);
2040
2041         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2042         if (ctrl->ctrl.opts)
2043                 nvmf_free_options(ctrl->ctrl.opts);
2044         kfree(ctrl);
2045 }
2046
2047 static void
2048 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2049 {
2050         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2051 }
2052
2053 static int
2054 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2055 {
2056         return kref_get_unless_zero(&ctrl->ref);
2057 }
2058
2059 /*
2060  * All accesses from nvme core layer done - can now free the
2061  * controller. Called after last nvme_put_ctrl() call
2062  */
2063 static void
2064 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2065 {
2066         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2067
2068         WARN_ON(nctrl != &ctrl->ctrl);
2069
2070         nvme_fc_ctrl_put(ctrl);
2071 }
2072
2073 static void
2074 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2075 {
2076         int active;
2077
2078         /*
2079          * if an error (io timeout, etc) while (re)connecting,
2080          * it's an error on creating the new association.
2081          * Start the error recovery thread if it hasn't already
2082          * been started. It is expected there could be multiple
2083          * ios hitting this path before things are cleaned up.
2084          */
2085         if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2086                 active = atomic_xchg(&ctrl->err_work_active, 1);
2087                 if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2088                         atomic_set(&ctrl->err_work_active, 0);
2089                         WARN_ON(1);
2090                 }
2091                 return;
2092         }
2093
2094         /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2095         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2096                 return;
2097
2098         dev_warn(ctrl->ctrl.device,
2099                 "NVME-FC{%d}: transport association error detected: %s\n",
2100                 ctrl->cnum, errmsg);
2101         dev_warn(ctrl->ctrl.device,
2102                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2103
2104         nvme_reset_ctrl(&ctrl->ctrl);
2105 }
2106
2107 static enum blk_eh_timer_return
2108 nvme_fc_timeout(struct request *rq, bool reserved)
2109 {
2110         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2111         struct nvme_fc_ctrl *ctrl = op->ctrl;
2112
2113         /*
2114          * we can't individually ABTS an io without affecting the queue,
2115          * thus killing the queue, and thus the association.
2116          * So resolve by performing a controller reset, which will stop
2117          * the host/io stack, terminate the association on the link,
2118          * and recreate an association on the link.
2119          */
2120         nvme_fc_error_recovery(ctrl, "io timeout error");
2121
2122         /*
2123          * the io abort has been initiated. Have the reset timer
2124          * restarted and the abort completion will complete the io
2125          * shortly. Avoids a synchronous wait while the abort finishes.
2126          */
2127         return BLK_EH_RESET_TIMER;
2128 }
2129
2130 static int
2131 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2132                 struct nvme_fc_fcp_op *op)
2133 {
2134         struct nvmefc_fcp_req *freq = &op->fcp_req;
2135         int ret;
2136
2137         freq->sg_cnt = 0;
2138
2139         if (!blk_rq_nr_phys_segments(rq))
2140                 return 0;
2141
2142         freq->sg_table.sgl = freq->first_sgl;
2143         ret = sg_alloc_table_chained(&freq->sg_table,
2144                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2145                         NVME_INLINE_SG_CNT);
2146         if (ret)
2147                 return -ENOMEM;
2148
2149         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2150         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2151         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2152                                 op->nents, rq_dma_dir(rq));
2153         if (unlikely(freq->sg_cnt <= 0)) {
2154                 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2155                 freq->sg_cnt = 0;
2156                 return -EFAULT;
2157         }
2158
2159         /*
2160          * TODO: blk_integrity_rq(rq)  for DIF
2161          */
2162         return 0;
2163 }
2164
2165 static void
2166 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2167                 struct nvme_fc_fcp_op *op)
2168 {
2169         struct nvmefc_fcp_req *freq = &op->fcp_req;
2170
2171         if (!freq->sg_cnt)
2172                 return;
2173
2174         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2175                         rq_dma_dir(rq));
2176
2177         sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2178
2179         freq->sg_cnt = 0;
2180 }
2181
2182 /*
2183  * In FC, the queue is a logical thing. At transport connect, the target
2184  * creates its "queue" and returns a handle that is to be given to the
2185  * target whenever it posts something to the corresponding SQ.  When an
2186  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2187  * command contained within the SQE, an io, and assigns a FC exchange
2188  * to it. The SQE and the associated SQ handle are sent in the initial
2189  * CMD IU sents on the exchange. All transfers relative to the io occur
2190  * as part of the exchange.  The CQE is the last thing for the io,
2191  * which is transferred (explicitly or implicitly) with the RSP IU
2192  * sent on the exchange. After the CQE is received, the FC exchange is
2193  * terminaed and the Exchange may be used on a different io.
2194  *
2195  * The transport to LLDD api has the transport making a request for a
2196  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2197  * resource and transfers the command. The LLDD will then process all
2198  * steps to complete the io. Upon completion, the transport done routine
2199  * is called.
2200  *
2201  * So - while the operation is outstanding to the LLDD, there is a link
2202  * level FC exchange resource that is also outstanding. This must be
2203  * considered in all cleanup operations.
2204  */
2205 static blk_status_t
2206 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2207         struct nvme_fc_fcp_op *op, u32 data_len,
2208         enum nvmefc_fcp_datadir io_dir)
2209 {
2210         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2211         struct nvme_command *sqe = &cmdiu->sqe;
2212         int ret, opstate;
2213
2214         /*
2215          * before attempting to send the io, check to see if we believe
2216          * the target device is present
2217          */
2218         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2219                 return BLK_STS_RESOURCE;
2220
2221         if (!nvme_fc_ctrl_get(ctrl))
2222                 return BLK_STS_IOERR;
2223
2224         /* format the FC-NVME CMD IU and fcp_req */
2225         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2226         cmdiu->data_len = cpu_to_be32(data_len);
2227         switch (io_dir) {
2228         case NVMEFC_FCP_WRITE:
2229                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2230                 break;
2231         case NVMEFC_FCP_READ:
2232                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2233                 break;
2234         case NVMEFC_FCP_NODATA:
2235                 cmdiu->flags = 0;
2236                 break;
2237         }
2238         op->fcp_req.payload_length = data_len;
2239         op->fcp_req.io_dir = io_dir;
2240         op->fcp_req.transferred_length = 0;
2241         op->fcp_req.rcv_rsplen = 0;
2242         op->fcp_req.status = NVME_SC_SUCCESS;
2243         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2244
2245         /*
2246          * validate per fabric rules, set fields mandated by fabric spec
2247          * as well as those by FC-NVME spec.
2248          */
2249         WARN_ON_ONCE(sqe->common.metadata);
2250         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2251
2252         /*
2253          * format SQE DPTR field per FC-NVME rules:
2254          *    type=0x5     Transport SGL Data Block Descriptor
2255          *    subtype=0xA  Transport-specific value
2256          *    address=0
2257          *    length=length of the data series
2258          */
2259         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2260                                         NVME_SGL_FMT_TRANSPORT_A;
2261         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2262         sqe->rw.dptr.sgl.addr = 0;
2263
2264         if (!(op->flags & FCOP_FLAGS_AEN)) {
2265                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2266                 if (ret < 0) {
2267                         nvme_cleanup_cmd(op->rq);
2268                         nvme_fc_ctrl_put(ctrl);
2269                         if (ret == -ENOMEM || ret == -EAGAIN)
2270                                 return BLK_STS_RESOURCE;
2271                         return BLK_STS_IOERR;
2272                 }
2273         }
2274
2275         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2276                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2277
2278         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2279
2280         if (!(op->flags & FCOP_FLAGS_AEN))
2281                 blk_mq_start_request(op->rq);
2282
2283         cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2284         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2285                                         &ctrl->rport->remoteport,
2286                                         queue->lldd_handle, &op->fcp_req);
2287
2288         if (ret) {
2289                 /*
2290                  * If the lld fails to send the command is there an issue with
2291                  * the csn value?  If the command that fails is the Connect,
2292                  * no - as the connection won't be live.  If it is a command
2293                  * post-connect, it's possible a gap in csn may be created.
2294                  * Does this matter?  As Linux initiators don't send fused
2295                  * commands, no.  The gap would exist, but as there's nothing
2296                  * that depends on csn order to be delivered on the target
2297                  * side, it shouldn't hurt.  It would be difficult for a
2298                  * target to even detect the csn gap as it has no idea when the
2299                  * cmd with the csn was supposed to arrive.
2300                  */
2301                 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2302                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2303
2304                 if (!(op->flags & FCOP_FLAGS_AEN))
2305                         nvme_fc_unmap_data(ctrl, op->rq, op);
2306
2307                 nvme_cleanup_cmd(op->rq);
2308                 nvme_fc_ctrl_put(ctrl);
2309
2310                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2311                                 ret != -EBUSY)
2312                         return BLK_STS_IOERR;
2313
2314                 return BLK_STS_RESOURCE;
2315         }
2316
2317         return BLK_STS_OK;
2318 }
2319
2320 static blk_status_t
2321 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2322                         const struct blk_mq_queue_data *bd)
2323 {
2324         struct nvme_ns *ns = hctx->queue->queuedata;
2325         struct nvme_fc_queue *queue = hctx->driver_data;
2326         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2327         struct request *rq = bd->rq;
2328         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2329         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2330         struct nvme_command *sqe = &cmdiu->sqe;
2331         enum nvmefc_fcp_datadir io_dir;
2332         bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2333         u32 data_len;
2334         blk_status_t ret;
2335
2336         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2337             !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2338                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2339
2340         ret = nvme_setup_cmd(ns, rq, sqe);
2341         if (ret)
2342                 return ret;
2343
2344         /*
2345          * nvme core doesn't quite treat the rq opaquely. Commands such
2346          * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2347          * there is no actual payload to be transferred.
2348          * To get it right, key data transmission on there being 1 or
2349          * more physical segments in the sg list. If there is no
2350          * physical segments, there is no payload.
2351          */
2352         if (blk_rq_nr_phys_segments(rq)) {
2353                 data_len = blk_rq_payload_bytes(rq);
2354                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2355                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2356         } else {
2357                 data_len = 0;
2358                 io_dir = NVMEFC_FCP_NODATA;
2359         }
2360
2361
2362         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2363 }
2364
2365 static void
2366 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2367 {
2368         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2369         struct nvme_fc_fcp_op *aen_op;
2370         unsigned long flags;
2371         bool terminating = false;
2372         blk_status_t ret;
2373
2374         spin_lock_irqsave(&ctrl->lock, flags);
2375         if (ctrl->flags & FCCTRL_TERMIO)
2376                 terminating = true;
2377         spin_unlock_irqrestore(&ctrl->lock, flags);
2378
2379         if (terminating)
2380                 return;
2381
2382         aen_op = &ctrl->aen_ops[0];
2383
2384         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2385                                         NVMEFC_FCP_NODATA);
2386         if (ret)
2387                 dev_err(ctrl->ctrl.device,
2388                         "failed async event work\n");
2389 }
2390
2391 static void
2392 nvme_fc_complete_rq(struct request *rq)
2393 {
2394         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2395         struct nvme_fc_ctrl *ctrl = op->ctrl;
2396
2397         atomic_set(&op->state, FCPOP_STATE_IDLE);
2398
2399         nvme_fc_unmap_data(ctrl, rq, op);
2400         nvme_complete_rq(rq);
2401         nvme_fc_ctrl_put(ctrl);
2402 }
2403
2404 /*
2405  * This routine is used by the transport when it needs to find active
2406  * io on a queue that is to be terminated. The transport uses
2407  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2408  * this routine to kill them on a 1 by 1 basis.
2409  *
2410  * As FC allocates FC exchange for each io, the transport must contact
2411  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2412  * After terminating the exchange the LLDD will call the transport's
2413  * normal io done path for the request, but it will have an aborted
2414  * status. The done path will return the io request back to the block
2415  * layer with an error status.
2416  */
2417 static bool
2418 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2419 {
2420         struct nvme_ctrl *nctrl = data;
2421         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2422         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2423
2424         __nvme_fc_abort_op(ctrl, op);
2425         return true;
2426 }
2427
2428
2429 static const struct blk_mq_ops nvme_fc_mq_ops = {
2430         .queue_rq       = nvme_fc_queue_rq,
2431         .complete       = nvme_fc_complete_rq,
2432         .init_request   = nvme_fc_init_request,
2433         .exit_request   = nvme_fc_exit_request,
2434         .init_hctx      = nvme_fc_init_hctx,
2435         .timeout        = nvme_fc_timeout,
2436 };
2437
2438 static int
2439 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2440 {
2441         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2442         unsigned int nr_io_queues;
2443         int ret;
2444
2445         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2446                                 ctrl->lport->ops->max_hw_queues);
2447         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2448         if (ret) {
2449                 dev_info(ctrl->ctrl.device,
2450                         "set_queue_count failed: %d\n", ret);
2451                 return ret;
2452         }
2453
2454         ctrl->ctrl.queue_count = nr_io_queues + 1;
2455         if (!nr_io_queues)
2456                 return 0;
2457
2458         nvme_fc_init_io_queues(ctrl);
2459
2460         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2461         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2462         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2463         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2464         ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2465         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2466         ctrl->tag_set.cmd_size =
2467                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2468                             ctrl->lport->ops->fcprqst_priv_sz);
2469         ctrl->tag_set.driver_data = ctrl;
2470         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2471         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2472
2473         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2474         if (ret)
2475                 return ret;
2476
2477         ctrl->ctrl.tagset = &ctrl->tag_set;
2478
2479         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2480         if (IS_ERR(ctrl->ctrl.connect_q)) {
2481                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2482                 goto out_free_tag_set;
2483         }
2484
2485         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2486         if (ret)
2487                 goto out_cleanup_blk_queue;
2488
2489         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2490         if (ret)
2491                 goto out_delete_hw_queues;
2492
2493         ctrl->ioq_live = true;
2494
2495         return 0;
2496
2497 out_delete_hw_queues:
2498         nvme_fc_delete_hw_io_queues(ctrl);
2499 out_cleanup_blk_queue:
2500         blk_cleanup_queue(ctrl->ctrl.connect_q);
2501 out_free_tag_set:
2502         blk_mq_free_tag_set(&ctrl->tag_set);
2503         nvme_fc_free_io_queues(ctrl);
2504
2505         /* force put free routine to ignore io queues */
2506         ctrl->ctrl.tagset = NULL;
2507
2508         return ret;
2509 }
2510
2511 static int
2512 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2513 {
2514         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2515         u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2516         unsigned int nr_io_queues;
2517         int ret;
2518
2519         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2520                                 ctrl->lport->ops->max_hw_queues);
2521         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2522         if (ret) {
2523                 dev_info(ctrl->ctrl.device,
2524                         "set_queue_count failed: %d\n", ret);
2525                 return ret;
2526         }
2527
2528         if (!nr_io_queues && prior_ioq_cnt) {
2529                 dev_info(ctrl->ctrl.device,
2530                         "Fail Reconnect: At least 1 io queue "
2531                         "required (was %d)\n", prior_ioq_cnt);
2532                 return -ENOSPC;
2533         }
2534
2535         ctrl->ctrl.queue_count = nr_io_queues + 1;
2536         /* check for io queues existing */
2537         if (ctrl->ctrl.queue_count == 1)
2538                 return 0;
2539
2540         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2541         if (ret)
2542                 goto out_free_io_queues;
2543
2544         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2545         if (ret)
2546                 goto out_delete_hw_queues;
2547
2548         if (prior_ioq_cnt != nr_io_queues)
2549                 dev_info(ctrl->ctrl.device,
2550                         "reconnect: revising io queue count from %d to %d\n",
2551                         prior_ioq_cnt, nr_io_queues);
2552         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2553
2554         return 0;
2555
2556 out_delete_hw_queues:
2557         nvme_fc_delete_hw_io_queues(ctrl);
2558 out_free_io_queues:
2559         nvme_fc_free_io_queues(ctrl);
2560         return ret;
2561 }
2562
2563 static void
2564 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2565 {
2566         struct nvme_fc_lport *lport = rport->lport;
2567
2568         atomic_inc(&lport->act_rport_cnt);
2569 }
2570
2571 static void
2572 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2573 {
2574         struct nvme_fc_lport *lport = rport->lport;
2575         u32 cnt;
2576
2577         cnt = atomic_dec_return(&lport->act_rport_cnt);
2578         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2579                 lport->ops->localport_delete(&lport->localport);
2580 }
2581
2582 static int
2583 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2584 {
2585         struct nvme_fc_rport *rport = ctrl->rport;
2586         u32 cnt;
2587
2588         if (ctrl->assoc_active)
2589                 return 1;
2590
2591         ctrl->assoc_active = true;
2592         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2593         if (cnt == 1)
2594                 nvme_fc_rport_active_on_lport(rport);
2595
2596         return 0;
2597 }
2598
2599 static int
2600 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2601 {
2602         struct nvme_fc_rport *rport = ctrl->rport;
2603         struct nvme_fc_lport *lport = rport->lport;
2604         u32 cnt;
2605
2606         /* ctrl->assoc_active=false will be set independently */
2607
2608         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2609         if (cnt == 0) {
2610                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2611                         lport->ops->remoteport_delete(&rport->remoteport);
2612                 nvme_fc_rport_inactive_on_lport(rport);
2613         }
2614
2615         return 0;
2616 }
2617
2618 /*
2619  * This routine restarts the controller on the host side, and
2620  * on the link side, recreates the controller association.
2621  */
2622 static int
2623 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2624 {
2625         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2626         int ret;
2627         bool changed;
2628
2629         ++ctrl->ctrl.nr_reconnects;
2630
2631         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2632                 return -ENODEV;
2633
2634         if (nvme_fc_ctlr_active_on_rport(ctrl))
2635                 return -ENOTUNIQ;
2636
2637         dev_info(ctrl->ctrl.device,
2638                 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
2639                 " rport wwpn 0x%016llx: NQN \"%s\"\n",
2640                 ctrl->cnum, ctrl->lport->localport.port_name,
2641                 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
2642
2643         /*
2644          * Create the admin queue
2645          */
2646
2647         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2648                                 NVME_AQ_DEPTH);
2649         if (ret)
2650                 goto out_free_queue;
2651
2652         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2653                                 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2654         if (ret)
2655                 goto out_delete_hw_queue;
2656
2657         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2658         if (ret)
2659                 goto out_disconnect_admin_queue;
2660
2661         set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2662
2663         /*
2664          * Check controller capabilities
2665          *
2666          * todo:- add code to check if ctrl attributes changed from
2667          * prior connection values
2668          */
2669
2670         ret = nvme_enable_ctrl(&ctrl->ctrl);
2671         if (ret)
2672                 goto out_disconnect_admin_queue;
2673
2674         ctrl->ctrl.max_hw_sectors =
2675                 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2676
2677         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2678
2679         ret = nvme_init_identify(&ctrl->ctrl);
2680         if (ret)
2681                 goto out_disconnect_admin_queue;
2682
2683         /* sanity checks */
2684
2685         /* FC-NVME does not have other data in the capsule */
2686         if (ctrl->ctrl.icdoff) {
2687                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2688                                 ctrl->ctrl.icdoff);
2689                 goto out_disconnect_admin_queue;
2690         }
2691
2692         /* FC-NVME supports normal SGL Data Block Descriptors */
2693
2694         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2695                 /* warn if maxcmd is lower than queue_size */
2696                 dev_warn(ctrl->ctrl.device,
2697                         "queue_size %zu > ctrl maxcmd %u, reducing "
2698                         "to maxcmd\n",
2699                         opts->queue_size, ctrl->ctrl.maxcmd);
2700                 opts->queue_size = ctrl->ctrl.maxcmd;
2701         }
2702
2703         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2704                 /* warn if sqsize is lower than queue_size */
2705                 dev_warn(ctrl->ctrl.device,
2706                         "queue_size %zu > ctrl sqsize %u, reducing "
2707                         "to sqsize\n",
2708                         opts->queue_size, ctrl->ctrl.sqsize + 1);
2709                 opts->queue_size = ctrl->ctrl.sqsize + 1;
2710         }
2711
2712         ret = nvme_fc_init_aen_ops(ctrl);
2713         if (ret)
2714                 goto out_term_aen_ops;
2715
2716         /*
2717          * Create the io queues
2718          */
2719
2720         if (ctrl->ctrl.queue_count > 1) {
2721                 if (!ctrl->ioq_live)
2722                         ret = nvme_fc_create_io_queues(ctrl);
2723                 else
2724                         ret = nvme_fc_recreate_io_queues(ctrl);
2725                 if (ret)
2726                         goto out_term_aen_ops;
2727         }
2728
2729         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2730
2731         ctrl->ctrl.nr_reconnects = 0;
2732
2733         if (changed)
2734                 nvme_start_ctrl(&ctrl->ctrl);
2735
2736         return 0;       /* Success */
2737
2738 out_term_aen_ops:
2739         nvme_fc_term_aen_ops(ctrl);
2740 out_disconnect_admin_queue:
2741         /* send a Disconnect(association) LS to fc-nvme target */
2742         nvme_fc_xmt_disconnect_assoc(ctrl);
2743         ctrl->association_id = 0;
2744 out_delete_hw_queue:
2745         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2746 out_free_queue:
2747         nvme_fc_free_queue(&ctrl->queues[0]);
2748         ctrl->assoc_active = false;
2749         nvme_fc_ctlr_inactive_on_rport(ctrl);
2750
2751         return ret;
2752 }
2753
2754 /*
2755  * This routine stops operation of the controller on the host side.
2756  * On the host os stack side: Admin and IO queues are stopped,
2757  *   outstanding ios on them terminated via FC ABTS.
2758  * On the link side: the association is terminated.
2759  */
2760 static void
2761 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2762 {
2763         unsigned long flags;
2764
2765         if (!ctrl->assoc_active)
2766                 return;
2767         ctrl->assoc_active = false;
2768
2769         spin_lock_irqsave(&ctrl->lock, flags);
2770         ctrl->flags |= FCCTRL_TERMIO;
2771         ctrl->iocnt = 0;
2772         spin_unlock_irqrestore(&ctrl->lock, flags);
2773
2774         /*
2775          * If io queues are present, stop them and terminate all outstanding
2776          * ios on them. As FC allocates FC exchange for each io, the
2777          * transport must contact the LLDD to terminate the exchange,
2778          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2779          * to tell us what io's are busy and invoke a transport routine
2780          * to kill them with the LLDD.  After terminating the exchange
2781          * the LLDD will call the transport's normal io done path, but it
2782          * will have an aborted status. The done path will return the
2783          * io requests back to the block layer as part of normal completions
2784          * (but with error status).
2785          */
2786         if (ctrl->ctrl.queue_count > 1) {
2787                 nvme_stop_queues(&ctrl->ctrl);
2788                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2789                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2790                 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2791         }
2792
2793         /*
2794          * Other transports, which don't have link-level contexts bound
2795          * to sqe's, would try to gracefully shutdown the controller by
2796          * writing the registers for shutdown and polling (call
2797          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2798          * just aborted and we will wait on those contexts, and given
2799          * there was no indication of how live the controlelr is on the
2800          * link, don't send more io to create more contexts for the
2801          * shutdown. Let the controller fail via keepalive failure if
2802          * its still present.
2803          */
2804
2805         /*
2806          * clean up the admin queue. Same thing as above.
2807          * use blk_mq_tagset_busy_itr() and the transport routine to
2808          * terminate the exchanges.
2809          */
2810         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2811         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2812                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2813         blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2814
2815         /* kill the aens as they are a separate path */
2816         nvme_fc_abort_aen_ops(ctrl);
2817
2818         /* wait for all io that had to be aborted */
2819         spin_lock_irq(&ctrl->lock);
2820         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2821         ctrl->flags &= ~FCCTRL_TERMIO;
2822         spin_unlock_irq(&ctrl->lock);
2823
2824         nvme_fc_term_aen_ops(ctrl);
2825
2826         /*
2827          * send a Disconnect(association) LS to fc-nvme target
2828          * Note: could have been sent at top of process, but
2829          * cleaner on link traffic if after the aborts complete.
2830          * Note: if association doesn't exist, association_id will be 0
2831          */
2832         if (ctrl->association_id)
2833                 nvme_fc_xmt_disconnect_assoc(ctrl);
2834
2835         ctrl->association_id = 0;
2836
2837         if (ctrl->ctrl.tagset) {
2838                 nvme_fc_delete_hw_io_queues(ctrl);
2839                 nvme_fc_free_io_queues(ctrl);
2840         }
2841
2842         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2843         nvme_fc_free_queue(&ctrl->queues[0]);
2844
2845         /* re-enable the admin_q so anything new can fast fail */
2846         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2847
2848         /* resume the io queues so that things will fast fail */
2849         nvme_start_queues(&ctrl->ctrl);
2850
2851         nvme_fc_ctlr_inactive_on_rport(ctrl);
2852 }
2853
2854 static void
2855 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2856 {
2857         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2858
2859         cancel_work_sync(&ctrl->err_work);
2860         cancel_delayed_work_sync(&ctrl->connect_work);
2861         /*
2862          * kill the association on the link side.  this will block
2863          * waiting for io to terminate
2864          */
2865         nvme_fc_delete_association(ctrl);
2866 }
2867
2868 static void
2869 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2870 {
2871         struct nvme_fc_rport *rport = ctrl->rport;
2872         struct nvme_fc_remote_port *portptr = &rport->remoteport;
2873         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2874         bool recon = true;
2875
2876         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2877                 return;
2878
2879         if (portptr->port_state == FC_OBJSTATE_ONLINE)
2880                 dev_info(ctrl->ctrl.device,
2881                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2882                         ctrl->cnum, status);
2883         else if (time_after_eq(jiffies, rport->dev_loss_end))
2884                 recon = false;
2885
2886         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2887                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2888                         dev_info(ctrl->ctrl.device,
2889                                 "NVME-FC{%d}: Reconnect attempt in %ld "
2890                                 "seconds\n",
2891                                 ctrl->cnum, recon_delay / HZ);
2892                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2893                         recon_delay = rport->dev_loss_end - jiffies;
2894
2895                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2896         } else {
2897                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2898                         dev_warn(ctrl->ctrl.device,
2899                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2900                                 "reached.\n",
2901                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2902                 else
2903                         dev_warn(ctrl->ctrl.device,
2904                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2905                                 "while waiting for remoteport connectivity.\n",
2906                                 ctrl->cnum, portptr->dev_loss_tmo);
2907                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2908         }
2909 }
2910
2911 static void
2912 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2913 {
2914         /*
2915          * if state is connecting - the error occurred as part of a
2916          * reconnect attempt. The create_association error paths will
2917          * clean up any outstanding io.
2918          *
2919          * if it's a different state - ensure all pending io is
2920          * terminated. Given this can delay while waiting for the
2921          * aborted io to return, we recheck adapter state below
2922          * before changing state.
2923          */
2924         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
2925                 nvme_stop_keep_alive(&ctrl->ctrl);
2926
2927                 /* will block will waiting for io to terminate */
2928                 nvme_fc_delete_association(ctrl);
2929         }
2930
2931         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2932             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2933                 dev_err(ctrl->ctrl.device,
2934                         "NVME-FC{%d}: error_recovery: Couldn't change state "
2935                         "to CONNECTING\n", ctrl->cnum);
2936 }
2937
2938 static void
2939 nvme_fc_reset_ctrl_work(struct work_struct *work)
2940 {
2941         struct nvme_fc_ctrl *ctrl =
2942                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2943         int ret;
2944
2945         __nvme_fc_terminate_io(ctrl);
2946
2947         nvme_stop_ctrl(&ctrl->ctrl);
2948
2949         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2950                 ret = nvme_fc_create_association(ctrl);
2951         else
2952                 ret = -ENOTCONN;
2953
2954         if (ret)
2955                 nvme_fc_reconnect_or_delete(ctrl, ret);
2956         else
2957                 dev_info(ctrl->ctrl.device,
2958                         "NVME-FC{%d}: controller reset complete\n",
2959                         ctrl->cnum);
2960 }
2961
2962 static void
2963 nvme_fc_connect_err_work(struct work_struct *work)
2964 {
2965         struct nvme_fc_ctrl *ctrl =
2966                         container_of(work, struct nvme_fc_ctrl, err_work);
2967
2968         __nvme_fc_terminate_io(ctrl);
2969
2970         atomic_set(&ctrl->err_work_active, 0);
2971
2972         /*
2973          * Rescheduling the connection after recovering
2974          * from the io error is left to the reconnect work
2975          * item, which is what should have stalled waiting on
2976          * the io that had the error that scheduled this work.
2977          */
2978 }
2979
2980 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2981         .name                   = "fc",
2982         .module                 = THIS_MODULE,
2983         .flags                  = NVME_F_FABRICS,
2984         .reg_read32             = nvmf_reg_read32,
2985         .reg_read64             = nvmf_reg_read64,
2986         .reg_write32            = nvmf_reg_write32,
2987         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2988         .submit_async_event     = nvme_fc_submit_async_event,
2989         .delete_ctrl            = nvme_fc_delete_ctrl,
2990         .get_address            = nvmf_get_address,
2991 };
2992
2993 static void
2994 nvme_fc_connect_ctrl_work(struct work_struct *work)
2995 {
2996         int ret;
2997
2998         struct nvme_fc_ctrl *ctrl =
2999                         container_of(to_delayed_work(work),
3000                                 struct nvme_fc_ctrl, connect_work);
3001
3002         ret = nvme_fc_create_association(ctrl);
3003         if (ret)
3004                 nvme_fc_reconnect_or_delete(ctrl, ret);
3005         else
3006                 dev_info(ctrl->ctrl.device,
3007                         "NVME-FC{%d}: controller connect complete\n",
3008                         ctrl->cnum);
3009 }
3010
3011
3012 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3013         .queue_rq       = nvme_fc_queue_rq,
3014         .complete       = nvme_fc_complete_rq,
3015         .init_request   = nvme_fc_init_request,
3016         .exit_request   = nvme_fc_exit_request,
3017         .init_hctx      = nvme_fc_init_admin_hctx,
3018         .timeout        = nvme_fc_timeout,
3019 };
3020
3021
3022 /*
3023  * Fails a controller request if it matches an existing controller
3024  * (association) with the same tuple:
3025  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3026  *
3027  * The ports don't need to be compared as they are intrinsically
3028  * already matched by the port pointers supplied.
3029  */
3030 static bool
3031 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3032                 struct nvmf_ctrl_options *opts)
3033 {
3034         struct nvme_fc_ctrl *ctrl;
3035         unsigned long flags;
3036         bool found = false;
3037
3038         spin_lock_irqsave(&rport->lock, flags);
3039         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3040                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3041                 if (found)
3042                         break;
3043         }
3044         spin_unlock_irqrestore(&rport->lock, flags);
3045
3046         return found;
3047 }
3048
3049 static struct nvme_ctrl *
3050 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3051         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3052 {
3053         struct nvme_fc_ctrl *ctrl;
3054         unsigned long flags;
3055         int ret, idx;
3056
3057         if (!(rport->remoteport.port_role &
3058             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3059                 ret = -EBADR;
3060                 goto out_fail;
3061         }
3062
3063         if (!opts->duplicate_connect &&
3064             nvme_fc_existing_controller(rport, opts)) {
3065                 ret = -EALREADY;
3066                 goto out_fail;
3067         }
3068
3069         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3070         if (!ctrl) {
3071                 ret = -ENOMEM;
3072                 goto out_fail;
3073         }
3074
3075         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3076         if (idx < 0) {
3077                 ret = -ENOSPC;
3078                 goto out_free_ctrl;
3079         }
3080
3081         ctrl->ctrl.opts = opts;
3082         ctrl->ctrl.nr_reconnects = 0;
3083         if (lport->dev)
3084                 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3085         else
3086                 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3087         INIT_LIST_HEAD(&ctrl->ctrl_list);
3088         ctrl->lport = lport;
3089         ctrl->rport = rport;
3090         ctrl->dev = lport->dev;
3091         ctrl->cnum = idx;
3092         ctrl->ioq_live = false;
3093         ctrl->assoc_active = false;
3094         atomic_set(&ctrl->err_work_active, 0);
3095         init_waitqueue_head(&ctrl->ioabort_wait);
3096
3097         get_device(ctrl->dev);
3098         kref_init(&ctrl->ref);
3099
3100         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3101         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3102         INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3103         spin_lock_init(&ctrl->lock);
3104
3105         /* io queue count */
3106         ctrl->ctrl.queue_count = min_t(unsigned int,
3107                                 opts->nr_io_queues,
3108                                 lport->ops->max_hw_queues);
3109         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3110
3111         ctrl->ctrl.sqsize = opts->queue_size - 1;
3112         ctrl->ctrl.kato = opts->kato;
3113         ctrl->ctrl.cntlid = 0xffff;
3114
3115         ret = -ENOMEM;
3116         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3117                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3118         if (!ctrl->queues)
3119                 goto out_free_ida;
3120
3121         nvme_fc_init_queue(ctrl, 0);
3122
3123         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3124         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3125         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3126         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3127         ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3128         ctrl->admin_tag_set.cmd_size =
3129                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3130                             ctrl->lport->ops->fcprqst_priv_sz);
3131         ctrl->admin_tag_set.driver_data = ctrl;
3132         ctrl->admin_tag_set.nr_hw_queues = 1;
3133         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3134         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3135
3136         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3137         if (ret)
3138                 goto out_free_queues;
3139         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3140
3141         ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3142         if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3143                 ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3144                 goto out_free_admin_tag_set;
3145         }
3146
3147         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3148         if (IS_ERR(ctrl->ctrl.admin_q)) {
3149                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3150                 goto out_cleanup_fabrics_q;
3151         }
3152
3153         /*
3154          * Would have been nice to init io queues tag set as well.
3155          * However, we require interaction from the controller
3156          * for max io queue count before we can do so.
3157          * Defer this to the connect path.
3158          */
3159
3160         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3161         if (ret)
3162                 goto out_cleanup_admin_q;
3163
3164         /* at this point, teardown path changes to ref counting on nvme ctrl */
3165
3166         spin_lock_irqsave(&rport->lock, flags);
3167         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3168         spin_unlock_irqrestore(&rport->lock, flags);
3169
3170         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3171             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3172                 dev_err(ctrl->ctrl.device,
3173                         "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3174                 goto fail_ctrl;
3175         }
3176
3177         if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3178                 dev_err(ctrl->ctrl.device,
3179                         "NVME-FC{%d}: failed to schedule initial connect\n",
3180                         ctrl->cnum);
3181                 goto fail_ctrl;
3182         }
3183
3184         flush_delayed_work(&ctrl->connect_work);
3185
3186         dev_info(ctrl->ctrl.device,
3187                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3188                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3189
3190         return &ctrl->ctrl;
3191
3192 fail_ctrl:
3193         nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3194         cancel_work_sync(&ctrl->ctrl.reset_work);
3195         cancel_work_sync(&ctrl->err_work);
3196         cancel_delayed_work_sync(&ctrl->connect_work);
3197
3198         ctrl->ctrl.opts = NULL;
3199
3200         /* initiate nvme ctrl ref counting teardown */
3201         nvme_uninit_ctrl(&ctrl->ctrl);
3202
3203         /* Remove core ctrl ref. */
3204         nvme_put_ctrl(&ctrl->ctrl);
3205
3206         /* as we're past the point where we transition to the ref
3207          * counting teardown path, if we return a bad pointer here,
3208          * the calling routine, thinking it's prior to the
3209          * transition, will do an rport put. Since the teardown
3210          * path also does a rport put, we do an extra get here to
3211          * so proper order/teardown happens.
3212          */
3213         nvme_fc_rport_get(rport);
3214
3215         return ERR_PTR(-EIO);
3216
3217 out_cleanup_admin_q:
3218         blk_cleanup_queue(ctrl->ctrl.admin_q);
3219 out_cleanup_fabrics_q:
3220         blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3221 out_free_admin_tag_set:
3222         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3223 out_free_queues:
3224         kfree(ctrl->queues);
3225 out_free_ida:
3226         put_device(ctrl->dev);
3227         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3228 out_free_ctrl:
3229         kfree(ctrl);
3230 out_fail:
3231         /* exit via here doesn't follow ctlr ref points */
3232         return ERR_PTR(ret);
3233 }
3234
3235
3236 struct nvmet_fc_traddr {
3237         u64     nn;
3238         u64     pn;
3239 };
3240
3241 static int
3242 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3243 {
3244         u64 token64;
3245
3246         if (match_u64(sstr, &token64))
3247                 return -EINVAL;
3248         *val = token64;
3249
3250         return 0;
3251 }
3252
3253 /*
3254  * This routine validates and extracts the WWN's from the TRADDR string.
3255  * As kernel parsers need the 0x to determine number base, universally
3256  * build string to parse with 0x prefix before parsing name strings.
3257  */
3258 static int
3259 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3260 {
3261         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3262         substring_t wwn = { name, &name[sizeof(name)-1] };
3263         int nnoffset, pnoffset;
3264
3265         /* validate if string is one of the 2 allowed formats */
3266         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3267                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3268                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3269                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3270                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3271                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3272                                                 NVME_FC_TRADDR_OXNNLEN;
3273         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3274                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3275                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3276                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3277                 nnoffset = NVME_FC_TRADDR_NNLEN;
3278                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3279         } else
3280                 goto out_einval;
3281
3282         name[0] = '0';
3283         name[1] = 'x';
3284         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3285
3286         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3287         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3288                 goto out_einval;
3289
3290         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3291         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3292                 goto out_einval;
3293
3294         return 0;
3295
3296 out_einval:
3297         pr_warn("%s: bad traddr string\n", __func__);
3298         return -EINVAL;
3299 }
3300
3301 static struct nvme_ctrl *
3302 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3303 {
3304         struct nvme_fc_lport *lport;
3305         struct nvme_fc_rport *rport;
3306         struct nvme_ctrl *ctrl;
3307         struct nvmet_fc_traddr laddr = { 0L, 0L };
3308         struct nvmet_fc_traddr raddr = { 0L, 0L };
3309         unsigned long flags;
3310         int ret;
3311
3312         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3313         if (ret || !raddr.nn || !raddr.pn)
3314                 return ERR_PTR(-EINVAL);
3315
3316         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3317         if (ret || !laddr.nn || !laddr.pn)
3318                 return ERR_PTR(-EINVAL);
3319
3320         /* find the host and remote ports to connect together */
3321         spin_lock_irqsave(&nvme_fc_lock, flags);
3322         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3323                 if (lport->localport.node_name != laddr.nn ||
3324                     lport->localport.port_name != laddr.pn)
3325                         continue;
3326
3327                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3328                         if (rport->remoteport.node_name != raddr.nn ||
3329                             rport->remoteport.port_name != raddr.pn)
3330                                 continue;
3331
3332                         /* if fail to get reference fall through. Will error */
3333                         if (!nvme_fc_rport_get(rport))
3334                                 break;
3335
3336                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3337
3338                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3339                         if (IS_ERR(ctrl))
3340                                 nvme_fc_rport_put(rport);
3341                         return ctrl;
3342                 }
3343         }
3344         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3345
3346         pr_warn("%s: %s - %s combination not found\n",
3347                 __func__, opts->traddr, opts->host_traddr);
3348         return ERR_PTR(-ENOENT);
3349 }
3350
3351
3352 static struct nvmf_transport_ops nvme_fc_transport = {
3353         .name           = "fc",
3354         .module         = THIS_MODULE,
3355         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3356         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3357         .create_ctrl    = nvme_fc_create_ctrl,
3358 };
3359
3360 /* Arbitrary successive failures max. With lots of subsystems could be high */
3361 #define DISCOVERY_MAX_FAIL      20
3362
3363 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3364                 struct device_attribute *attr, const char *buf, size_t count)
3365 {
3366         unsigned long flags;
3367         LIST_HEAD(local_disc_list);
3368         struct nvme_fc_lport *lport;
3369         struct nvme_fc_rport *rport;
3370         int failcnt = 0;
3371
3372         spin_lock_irqsave(&nvme_fc_lock, flags);
3373 restart:
3374         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3375                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3376                         if (!nvme_fc_lport_get(lport))
3377                                 continue;
3378                         if (!nvme_fc_rport_get(rport)) {
3379                                 /*
3380                                  * This is a temporary condition. Upon restart
3381                                  * this rport will be gone from the list.
3382                                  *
3383                                  * Revert the lport put and retry.  Anything
3384                                  * added to the list already will be skipped (as
3385                                  * they are no longer list_empty).  Loops should
3386                                  * resume at rports that were not yet seen.
3387                                  */
3388                                 nvme_fc_lport_put(lport);
3389
3390                                 if (failcnt++ < DISCOVERY_MAX_FAIL)
3391                                         goto restart;
3392
3393                                 pr_err("nvme_discovery: too many reference "
3394                                        "failures\n");
3395                                 goto process_local_list;
3396                         }
3397                         if (list_empty(&rport->disc_list))
3398                                 list_add_tail(&rport->disc_list,
3399                                               &local_disc_list);
3400                 }
3401         }
3402
3403 process_local_list:
3404         while (!list_empty(&local_disc_list)) {
3405                 rport = list_first_entry(&local_disc_list,
3406                                          struct nvme_fc_rport, disc_list);
3407                 list_del_init(&rport->disc_list);
3408                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3409
3410                 lport = rport->lport;
3411                 /* signal discovery. Won't hurt if it repeats */
3412                 nvme_fc_signal_discovery_scan(lport, rport);
3413                 nvme_fc_rport_put(rport);
3414                 nvme_fc_lport_put(lport);
3415
3416                 spin_lock_irqsave(&nvme_fc_lock, flags);
3417         }
3418         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3419
3420         return count;
3421 }
3422 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3423
3424 static struct attribute *nvme_fc_attrs[] = {
3425         &dev_attr_nvme_discovery.attr,
3426         NULL
3427 };
3428
3429 static struct attribute_group nvme_fc_attr_group = {
3430         .attrs = nvme_fc_attrs,
3431 };
3432
3433 static const struct attribute_group *nvme_fc_attr_groups[] = {
3434         &nvme_fc_attr_group,
3435         NULL
3436 };
3437
3438 static struct class fc_class = {
3439         .name = "fc",
3440         .dev_groups = nvme_fc_attr_groups,
3441         .owner = THIS_MODULE,
3442 };
3443
3444 static int __init nvme_fc_init_module(void)
3445 {
3446         int ret;
3447
3448         nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3449         if (!nvme_fc_wq)
3450                 return -ENOMEM;
3451
3452         /*
3453          * NOTE:
3454          * It is expected that in the future the kernel will combine
3455          * the FC-isms that are currently under scsi and now being
3456          * added to by NVME into a new standalone FC class. The SCSI
3457          * and NVME protocols and their devices would be under this
3458          * new FC class.
3459          *
3460          * As we need something to post FC-specific udev events to,
3461          * specifically for nvme probe events, start by creating the
3462          * new device class.  When the new standalone FC class is
3463          * put in place, this code will move to a more generic
3464          * location for the class.
3465          */
3466         ret = class_register(&fc_class);
3467         if (ret) {
3468                 pr_err("couldn't register class fc\n");
3469                 goto out_destroy_wq;
3470         }
3471
3472         /*
3473          * Create a device for the FC-centric udev events
3474          */
3475         fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3476                                 "fc_udev_device");
3477         if (IS_ERR(fc_udev_device)) {
3478                 pr_err("couldn't create fc_udev device!\n");
3479                 ret = PTR_ERR(fc_udev_device);
3480                 goto out_destroy_class;
3481         }
3482
3483         ret = nvmf_register_transport(&nvme_fc_transport);
3484         if (ret)
3485                 goto out_destroy_device;
3486
3487         return 0;
3488
3489 out_destroy_device:
3490         device_destroy(&fc_class, MKDEV(0, 0));
3491 out_destroy_class:
3492         class_unregister(&fc_class);
3493 out_destroy_wq:
3494         destroy_workqueue(nvme_fc_wq);
3495
3496         return ret;
3497 }
3498
3499 static void
3500 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3501 {
3502         struct nvme_fc_ctrl *ctrl;
3503
3504         spin_lock(&rport->lock);
3505         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3506                 dev_warn(ctrl->ctrl.device,
3507                         "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3508                         ctrl->cnum);
3509                 nvme_delete_ctrl(&ctrl->ctrl);
3510         }
3511         spin_unlock(&rport->lock);
3512 }
3513
3514 static void
3515 nvme_fc_cleanup_for_unload(void)
3516 {
3517         struct nvme_fc_lport *lport;
3518         struct nvme_fc_rport *rport;
3519
3520         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3521                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3522                         nvme_fc_delete_controllers(rport);
3523                 }
3524         }
3525 }
3526
3527 static void __exit nvme_fc_exit_module(void)
3528 {
3529         unsigned long flags;
3530         bool need_cleanup = false;
3531
3532         spin_lock_irqsave(&nvme_fc_lock, flags);
3533         nvme_fc_waiting_to_unload = true;
3534         if (!list_empty(&nvme_fc_lport_list)) {
3535                 need_cleanup = true;
3536                 nvme_fc_cleanup_for_unload();
3537         }
3538         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3539         if (need_cleanup) {
3540                 pr_info("%s: waiting for ctlr deletes\n", __func__);
3541                 wait_for_completion(&nvme_fc_unload_proceed);
3542                 pr_info("%s: ctrl deletes complete\n", __func__);
3543         }
3544
3545         nvmf_unregister_transport(&nvme_fc_transport);
3546
3547         ida_destroy(&nvme_fc_local_port_cnt);
3548         ida_destroy(&nvme_fc_ctrl_cnt);
3549
3550         device_destroy(&fc_class, MKDEV(0, 0));
3551         class_unregister(&fc_class);
3552         destroy_workqueue(nvme_fc_wq);
3553 }
3554
3555 module_init(nvme_fc_init_module);
3556 module_exit(nvme_fc_exit_module);
3557
3558 MODULE_LICENSE("GPL v2");