Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 enum nvme_fc_queue_flags {
34         NVME_FC_Q_CONNECTED = 0,
35         NVME_FC_Q_LIVE,
36 };
37
38 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
39
40 struct nvme_fc_queue {
41         struct nvme_fc_ctrl     *ctrl;
42         struct device           *dev;
43         struct blk_mq_hw_ctx    *hctx;
44         void                    *lldd_handle;
45         size_t                  cmnd_capsule_len;
46         u32                     qnum;
47         u32                     rqcnt;
48         u32                     seqno;
49
50         u64                     connection_id;
51         atomic_t                csn;
52
53         unsigned long           flags;
54 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
55
56 enum nvme_fcop_flags {
57         FCOP_FLAGS_TERMIO       = (1 << 0),
58         FCOP_FLAGS_AEN          = (1 << 1),
59 };
60
61 struct nvmefc_ls_req_op {
62         struct nvmefc_ls_req    ls_req;
63
64         struct nvme_fc_rport    *rport;
65         struct nvme_fc_queue    *queue;
66         struct request          *rq;
67         u32                     flags;
68
69         int                     ls_error;
70         struct completion       ls_done;
71         struct list_head        lsreq_list;     /* rport->ls_req_list */
72         bool                    req_queued;
73 };
74
75 enum nvme_fcpop_state {
76         FCPOP_STATE_UNINIT      = 0,
77         FCPOP_STATE_IDLE        = 1,
78         FCPOP_STATE_ACTIVE      = 2,
79         FCPOP_STATE_ABORTED     = 3,
80         FCPOP_STATE_COMPLETE    = 4,
81 };
82
83 struct nvme_fc_fcp_op {
84         struct nvme_request     nreq;           /*
85                                                  * nvme/host/core.c
86                                                  * requires this to be
87                                                  * the 1st element in the
88                                                  * private structure
89                                                  * associated with the
90                                                  * request.
91                                                  */
92         struct nvmefc_fcp_req   fcp_req;
93
94         struct nvme_fc_ctrl     *ctrl;
95         struct nvme_fc_queue    *queue;
96         struct request          *rq;
97
98         atomic_t                state;
99         u32                     flags;
100         u32                     rqno;
101         u32                     nents;
102
103         struct nvme_fc_cmd_iu   cmd_iu;
104         struct nvme_fc_ersp_iu  rsp_iu;
105 };
106
107 struct nvme_fc_lport {
108         struct nvme_fc_local_port       localport;
109
110         struct ida                      endp_cnt;
111         struct list_head                port_list;      /* nvme_fc_port_list */
112         struct list_head                endp_list;
113         struct device                   *dev;   /* physical device for dma */
114         struct nvme_fc_port_template    *ops;
115         struct kref                     ref;
116         atomic_t                        act_rport_cnt;
117 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
118
119 struct nvme_fc_rport {
120         struct nvme_fc_remote_port      remoteport;
121
122         struct list_head                endp_list; /* for lport->endp_list */
123         struct list_head                ctrl_list;
124         struct list_head                ls_req_list;
125         struct device                   *dev;   /* physical device for dma */
126         struct nvme_fc_lport            *lport;
127         spinlock_t                      lock;
128         struct kref                     ref;
129         atomic_t                        act_ctrl_cnt;
130         unsigned long                   dev_loss_end;
131 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
132
133 enum nvme_fcctrl_flags {
134         FCCTRL_TERMIO           = (1 << 0),
135 };
136
137 struct nvme_fc_ctrl {
138         spinlock_t              lock;
139         struct nvme_fc_queue    *queues;
140         struct device           *dev;
141         struct nvme_fc_lport    *lport;
142         struct nvme_fc_rport    *rport;
143         u32                     cnum;
144
145         bool                    assoc_active;
146         u64                     association_id;
147
148         struct list_head        ctrl_list;      /* rport->ctrl_list */
149
150         struct blk_mq_tag_set   admin_tag_set;
151         struct blk_mq_tag_set   tag_set;
152
153         struct delayed_work     connect_work;
154
155         struct kref             ref;
156         u32                     flags;
157         u32                     iocnt;
158         wait_queue_head_t       ioabort_wait;
159
160         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
161
162         struct nvme_ctrl        ctrl;
163 };
164
165 static inline struct nvme_fc_ctrl *
166 to_fc_ctrl(struct nvme_ctrl *ctrl)
167 {
168         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
169 }
170
171 static inline struct nvme_fc_lport *
172 localport_to_lport(struct nvme_fc_local_port *portptr)
173 {
174         return container_of(portptr, struct nvme_fc_lport, localport);
175 }
176
177 static inline struct nvme_fc_rport *
178 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
179 {
180         return container_of(portptr, struct nvme_fc_rport, remoteport);
181 }
182
183 static inline struct nvmefc_ls_req_op *
184 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
185 {
186         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
187 }
188
189 static inline struct nvme_fc_fcp_op *
190 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
191 {
192         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
193 }
194
195
196
197 /* *************************** Globals **************************** */
198
199
200 static DEFINE_SPINLOCK(nvme_fc_lock);
201
202 static LIST_HEAD(nvme_fc_lport_list);
203 static DEFINE_IDA(nvme_fc_local_port_cnt);
204 static DEFINE_IDA(nvme_fc_ctrl_cnt);
205
206
207
208 /*
209  * These items are short-term. They will eventually be moved into
210  * a generic FC class. See comments in module init.
211  */
212 static struct class *fc_class;
213 static struct device *fc_udev_device;
214
215
216 /* *********************** FC-NVME Port Management ************************ */
217
218 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
219                         struct nvme_fc_queue *, unsigned int);
220
221 static void
222 nvme_fc_free_lport(struct kref *ref)
223 {
224         struct nvme_fc_lport *lport =
225                 container_of(ref, struct nvme_fc_lport, ref);
226         unsigned long flags;
227
228         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
229         WARN_ON(!list_empty(&lport->endp_list));
230
231         /* remove from transport list */
232         spin_lock_irqsave(&nvme_fc_lock, flags);
233         list_del(&lport->port_list);
234         spin_unlock_irqrestore(&nvme_fc_lock, flags);
235
236         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
237         ida_destroy(&lport->endp_cnt);
238
239         put_device(lport->dev);
240
241         kfree(lport);
242 }
243
244 static void
245 nvme_fc_lport_put(struct nvme_fc_lport *lport)
246 {
247         kref_put(&lport->ref, nvme_fc_free_lport);
248 }
249
250 static int
251 nvme_fc_lport_get(struct nvme_fc_lport *lport)
252 {
253         return kref_get_unless_zero(&lport->ref);
254 }
255
256
257 static struct nvme_fc_lport *
258 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
259                         struct nvme_fc_port_template *ops,
260                         struct device *dev)
261 {
262         struct nvme_fc_lport *lport;
263         unsigned long flags;
264
265         spin_lock_irqsave(&nvme_fc_lock, flags);
266
267         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
268                 if (lport->localport.node_name != pinfo->node_name ||
269                     lport->localport.port_name != pinfo->port_name)
270                         continue;
271
272                 if (lport->dev != dev) {
273                         lport = ERR_PTR(-EXDEV);
274                         goto out_done;
275                 }
276
277                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
278                         lport = ERR_PTR(-EEXIST);
279                         goto out_done;
280                 }
281
282                 if (!nvme_fc_lport_get(lport)) {
283                         /*
284                          * fails if ref cnt already 0. If so,
285                          * act as if lport already deleted
286                          */
287                         lport = NULL;
288                         goto out_done;
289                 }
290
291                 /* resume the lport */
292
293                 lport->ops = ops;
294                 lport->localport.port_role = pinfo->port_role;
295                 lport->localport.port_id = pinfo->port_id;
296                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
297
298                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
299
300                 return lport;
301         }
302
303         lport = NULL;
304
305 out_done:
306         spin_unlock_irqrestore(&nvme_fc_lock, flags);
307
308         return lport;
309 }
310
311 /**
312  * nvme_fc_register_localport - transport entry point called by an
313  *                              LLDD to register the existence of a NVME
314  *                              host FC port.
315  * @pinfo:     pointer to information about the port to be registered
316  * @template:  LLDD entrypoints and operational parameters for the port
317  * @dev:       physical hardware device node port corresponds to. Will be
318  *             used for DMA mappings
319  * @lport_p:   pointer to a local port pointer. Upon success, the routine
320  *             will allocate a nvme_fc_local_port structure and place its
321  *             address in the local port pointer. Upon failure, local port
322  *             pointer will be set to 0.
323  *
324  * Returns:
325  * a completion status. Must be 0 upon success; a negative errno
326  * (ex: -ENXIO) upon failure.
327  */
328 int
329 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
330                         struct nvme_fc_port_template *template,
331                         struct device *dev,
332                         struct nvme_fc_local_port **portptr)
333 {
334         struct nvme_fc_lport *newrec;
335         unsigned long flags;
336         int ret, idx;
337
338         if (!template->localport_delete || !template->remoteport_delete ||
339             !template->ls_req || !template->fcp_io ||
340             !template->ls_abort || !template->fcp_abort ||
341             !template->max_hw_queues || !template->max_sgl_segments ||
342             !template->max_dif_sgl_segments || !template->dma_boundary) {
343                 ret = -EINVAL;
344                 goto out_reghost_failed;
345         }
346
347         /*
348          * look to see if there is already a localport that had been
349          * deregistered and in the process of waiting for all the
350          * references to fully be removed.  If the references haven't
351          * expired, we can simply re-enable the localport. Remoteports
352          * and controller reconnections should resume naturally.
353          */
354         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
355
356         /* found an lport, but something about its state is bad */
357         if (IS_ERR(newrec)) {
358                 ret = PTR_ERR(newrec);
359                 goto out_reghost_failed;
360
361         /* found existing lport, which was resumed */
362         } else if (newrec) {
363                 *portptr = &newrec->localport;
364                 return 0;
365         }
366
367         /* nothing found - allocate a new localport struct */
368
369         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
370                          GFP_KERNEL);
371         if (!newrec) {
372                 ret = -ENOMEM;
373                 goto out_reghost_failed;
374         }
375
376         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
377         if (idx < 0) {
378                 ret = -ENOSPC;
379                 goto out_fail_kfree;
380         }
381
382         if (!get_device(dev) && dev) {
383                 ret = -ENODEV;
384                 goto out_ida_put;
385         }
386
387         INIT_LIST_HEAD(&newrec->port_list);
388         INIT_LIST_HEAD(&newrec->endp_list);
389         kref_init(&newrec->ref);
390         atomic_set(&newrec->act_rport_cnt, 0);
391         newrec->ops = template;
392         newrec->dev = dev;
393         ida_init(&newrec->endp_cnt);
394         newrec->localport.private = &newrec[1];
395         newrec->localport.node_name = pinfo->node_name;
396         newrec->localport.port_name = pinfo->port_name;
397         newrec->localport.port_role = pinfo->port_role;
398         newrec->localport.port_id = pinfo->port_id;
399         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
400         newrec->localport.port_num = idx;
401
402         spin_lock_irqsave(&nvme_fc_lock, flags);
403         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
404         spin_unlock_irqrestore(&nvme_fc_lock, flags);
405
406         if (dev)
407                 dma_set_seg_boundary(dev, template->dma_boundary);
408
409         *portptr = &newrec->localport;
410         return 0;
411
412 out_ida_put:
413         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
414 out_fail_kfree:
415         kfree(newrec);
416 out_reghost_failed:
417         *portptr = NULL;
418
419         return ret;
420 }
421 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
422
423 /**
424  * nvme_fc_unregister_localport - transport entry point called by an
425  *                              LLDD to deregister/remove a previously
426  *                              registered a NVME host FC port.
427  * @localport: pointer to the (registered) local port that is to be
428  *             deregistered.
429  *
430  * Returns:
431  * a completion status. Must be 0 upon success; a negative errno
432  * (ex: -ENXIO) upon failure.
433  */
434 int
435 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
436 {
437         struct nvme_fc_lport *lport = localport_to_lport(portptr);
438         unsigned long flags;
439
440         if (!portptr)
441                 return -EINVAL;
442
443         spin_lock_irqsave(&nvme_fc_lock, flags);
444
445         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
446                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
447                 return -EINVAL;
448         }
449         portptr->port_state = FC_OBJSTATE_DELETED;
450
451         spin_unlock_irqrestore(&nvme_fc_lock, flags);
452
453         if (atomic_read(&lport->act_rport_cnt) == 0)
454                 lport->ops->localport_delete(&lport->localport);
455
456         nvme_fc_lport_put(lport);
457
458         return 0;
459 }
460 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
461
462 /*
463  * TRADDR strings, per FC-NVME are fixed format:
464  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
465  * udev event will only differ by prefix of what field is
466  * being specified:
467  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
468  *  19 + 43 + null_fudge = 64 characters
469  */
470 #define FCNVME_TRADDR_LENGTH            64
471
472 static void
473 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
474                 struct nvme_fc_rport *rport)
475 {
476         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
477         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
478         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
479
480         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
481                 return;
482
483         snprintf(hostaddr, sizeof(hostaddr),
484                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
485                 lport->localport.node_name, lport->localport.port_name);
486         snprintf(tgtaddr, sizeof(tgtaddr),
487                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
488                 rport->remoteport.node_name, rport->remoteport.port_name);
489         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
490 }
491
492 static void
493 nvme_fc_free_rport(struct kref *ref)
494 {
495         struct nvme_fc_rport *rport =
496                 container_of(ref, struct nvme_fc_rport, ref);
497         struct nvme_fc_lport *lport =
498                         localport_to_lport(rport->remoteport.localport);
499         unsigned long flags;
500
501         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
502         WARN_ON(!list_empty(&rport->ctrl_list));
503
504         /* remove from lport list */
505         spin_lock_irqsave(&nvme_fc_lock, flags);
506         list_del(&rport->endp_list);
507         spin_unlock_irqrestore(&nvme_fc_lock, flags);
508
509         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
510
511         kfree(rport);
512
513         nvme_fc_lport_put(lport);
514 }
515
516 static void
517 nvme_fc_rport_put(struct nvme_fc_rport *rport)
518 {
519         kref_put(&rport->ref, nvme_fc_free_rport);
520 }
521
522 static int
523 nvme_fc_rport_get(struct nvme_fc_rport *rport)
524 {
525         return kref_get_unless_zero(&rport->ref);
526 }
527
528 static void
529 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
530 {
531         switch (ctrl->ctrl.state) {
532         case NVME_CTRL_NEW:
533         case NVME_CTRL_CONNECTING:
534                 /*
535                  * As all reconnects were suppressed, schedule a
536                  * connect.
537                  */
538                 dev_info(ctrl->ctrl.device,
539                         "NVME-FC{%d}: connectivity re-established. "
540                         "Attempting reconnect\n", ctrl->cnum);
541
542                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
543                 break;
544
545         case NVME_CTRL_RESETTING:
546                 /*
547                  * Controller is already in the process of terminating the
548                  * association. No need to do anything further. The reconnect
549                  * step will naturally occur after the reset completes.
550                  */
551                 break;
552
553         default:
554                 /* no action to take - let it delete */
555                 break;
556         }
557 }
558
559 static struct nvme_fc_rport *
560 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
561                                 struct nvme_fc_port_info *pinfo)
562 {
563         struct nvme_fc_rport *rport;
564         struct nvme_fc_ctrl *ctrl;
565         unsigned long flags;
566
567         spin_lock_irqsave(&nvme_fc_lock, flags);
568
569         list_for_each_entry(rport, &lport->endp_list, endp_list) {
570                 if (rport->remoteport.node_name != pinfo->node_name ||
571                     rport->remoteport.port_name != pinfo->port_name)
572                         continue;
573
574                 if (!nvme_fc_rport_get(rport)) {
575                         rport = ERR_PTR(-ENOLCK);
576                         goto out_done;
577                 }
578
579                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
580
581                 spin_lock_irqsave(&rport->lock, flags);
582
583                 /* has it been unregistered */
584                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
585                         /* means lldd called us twice */
586                         spin_unlock_irqrestore(&rport->lock, flags);
587                         nvme_fc_rport_put(rport);
588                         return ERR_PTR(-ESTALE);
589                 }
590
591                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
592                 rport->dev_loss_end = 0;
593
594                 /*
595                  * kick off a reconnect attempt on all associations to the
596                  * remote port. A successful reconnects will resume i/o.
597                  */
598                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
599                         nvme_fc_resume_controller(ctrl);
600
601                 spin_unlock_irqrestore(&rport->lock, flags);
602
603                 return rport;
604         }
605
606         rport = NULL;
607
608 out_done:
609         spin_unlock_irqrestore(&nvme_fc_lock, flags);
610
611         return rport;
612 }
613
614 static inline void
615 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
616                         struct nvme_fc_port_info *pinfo)
617 {
618         if (pinfo->dev_loss_tmo)
619                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
620         else
621                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
622 }
623
624 /**
625  * nvme_fc_register_remoteport - transport entry point called by an
626  *                              LLDD to register the existence of a NVME
627  *                              subsystem FC port on its fabric.
628  * @localport: pointer to the (registered) local port that the remote
629  *             subsystem port is connected to.
630  * @pinfo:     pointer to information about the port to be registered
631  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
632  *             will allocate a nvme_fc_remote_port structure and place its
633  *             address in the remote port pointer. Upon failure, remote port
634  *             pointer will be set to 0.
635  *
636  * Returns:
637  * a completion status. Must be 0 upon success; a negative errno
638  * (ex: -ENXIO) upon failure.
639  */
640 int
641 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
642                                 struct nvme_fc_port_info *pinfo,
643                                 struct nvme_fc_remote_port **portptr)
644 {
645         struct nvme_fc_lport *lport = localport_to_lport(localport);
646         struct nvme_fc_rport *newrec;
647         unsigned long flags;
648         int ret, idx;
649
650         if (!nvme_fc_lport_get(lport)) {
651                 ret = -ESHUTDOWN;
652                 goto out_reghost_failed;
653         }
654
655         /*
656          * look to see if there is already a remoteport that is waiting
657          * for a reconnect (within dev_loss_tmo) with the same WWN's.
658          * If so, transition to it and reconnect.
659          */
660         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
661
662         /* found an rport, but something about its state is bad */
663         if (IS_ERR(newrec)) {
664                 ret = PTR_ERR(newrec);
665                 goto out_lport_put;
666
667         /* found existing rport, which was resumed */
668         } else if (newrec) {
669                 nvme_fc_lport_put(lport);
670                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
671                 nvme_fc_signal_discovery_scan(lport, newrec);
672                 *portptr = &newrec->remoteport;
673                 return 0;
674         }
675
676         /* nothing found - allocate a new remoteport struct */
677
678         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
679                          GFP_KERNEL);
680         if (!newrec) {
681                 ret = -ENOMEM;
682                 goto out_lport_put;
683         }
684
685         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
686         if (idx < 0) {
687                 ret = -ENOSPC;
688                 goto out_kfree_rport;
689         }
690
691         INIT_LIST_HEAD(&newrec->endp_list);
692         INIT_LIST_HEAD(&newrec->ctrl_list);
693         INIT_LIST_HEAD(&newrec->ls_req_list);
694         kref_init(&newrec->ref);
695         atomic_set(&newrec->act_ctrl_cnt, 0);
696         spin_lock_init(&newrec->lock);
697         newrec->remoteport.localport = &lport->localport;
698         newrec->dev = lport->dev;
699         newrec->lport = lport;
700         newrec->remoteport.private = &newrec[1];
701         newrec->remoteport.port_role = pinfo->port_role;
702         newrec->remoteport.node_name = pinfo->node_name;
703         newrec->remoteport.port_name = pinfo->port_name;
704         newrec->remoteport.port_id = pinfo->port_id;
705         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
706         newrec->remoteport.port_num = idx;
707         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
708
709         spin_lock_irqsave(&nvme_fc_lock, flags);
710         list_add_tail(&newrec->endp_list, &lport->endp_list);
711         spin_unlock_irqrestore(&nvme_fc_lock, flags);
712
713         nvme_fc_signal_discovery_scan(lport, newrec);
714
715         *portptr = &newrec->remoteport;
716         return 0;
717
718 out_kfree_rport:
719         kfree(newrec);
720 out_lport_put:
721         nvme_fc_lport_put(lport);
722 out_reghost_failed:
723         *portptr = NULL;
724         return ret;
725 }
726 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
727
728 static int
729 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
730 {
731         struct nvmefc_ls_req_op *lsop;
732         unsigned long flags;
733
734 restart:
735         spin_lock_irqsave(&rport->lock, flags);
736
737         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
738                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
739                         lsop->flags |= FCOP_FLAGS_TERMIO;
740                         spin_unlock_irqrestore(&rport->lock, flags);
741                         rport->lport->ops->ls_abort(&rport->lport->localport,
742                                                 &rport->remoteport,
743                                                 &lsop->ls_req);
744                         goto restart;
745                 }
746         }
747         spin_unlock_irqrestore(&rport->lock, flags);
748
749         return 0;
750 }
751
752 static void
753 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
754 {
755         dev_info(ctrl->ctrl.device,
756                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
757                 "Reconnect", ctrl->cnum);
758
759         switch (ctrl->ctrl.state) {
760         case NVME_CTRL_NEW:
761         case NVME_CTRL_LIVE:
762                 /*
763                  * Schedule a controller reset. The reset will terminate the
764                  * association and schedule the reconnect timer.  Reconnects
765                  * will be attempted until either the ctlr_loss_tmo
766                  * (max_retries * connect_delay) expires or the remoteport's
767                  * dev_loss_tmo expires.
768                  */
769                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
770                         dev_warn(ctrl->ctrl.device,
771                                 "NVME-FC{%d}: Couldn't schedule reset. "
772                                 "Deleting controller.\n",
773                                 ctrl->cnum);
774                         nvme_delete_ctrl(&ctrl->ctrl);
775                 }
776                 break;
777
778         case NVME_CTRL_CONNECTING:
779                 /*
780                  * The association has already been terminated and the
781                  * controller is attempting reconnects.  No need to do anything
782                  * futher.  Reconnects will be attempted until either the
783                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
784                  * remoteport's dev_loss_tmo expires.
785                  */
786                 break;
787
788         case NVME_CTRL_RESETTING:
789                 /*
790                  * Controller is already in the process of terminating the
791                  * association.  No need to do anything further. The reconnect
792                  * step will kick in naturally after the association is
793                  * terminated.
794                  */
795                 break;
796
797         case NVME_CTRL_DELETING:
798         default:
799                 /* no action to take - let it delete */
800                 break;
801         }
802 }
803
804 /**
805  * nvme_fc_unregister_remoteport - transport entry point called by an
806  *                              LLDD to deregister/remove a previously
807  *                              registered a NVME subsystem FC port.
808  * @remoteport: pointer to the (registered) remote port that is to be
809  *              deregistered.
810  *
811  * Returns:
812  * a completion status. Must be 0 upon success; a negative errno
813  * (ex: -ENXIO) upon failure.
814  */
815 int
816 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
817 {
818         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
819         struct nvme_fc_ctrl *ctrl;
820         unsigned long flags;
821
822         if (!portptr)
823                 return -EINVAL;
824
825         spin_lock_irqsave(&rport->lock, flags);
826
827         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
828                 spin_unlock_irqrestore(&rport->lock, flags);
829                 return -EINVAL;
830         }
831         portptr->port_state = FC_OBJSTATE_DELETED;
832
833         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
834
835         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
836                 /* if dev_loss_tmo==0, dev loss is immediate */
837                 if (!portptr->dev_loss_tmo) {
838                         dev_warn(ctrl->ctrl.device,
839                                 "NVME-FC{%d}: controller connectivity lost. "
840                                 "Deleting controller.\n",
841                                 ctrl->cnum);
842                         nvme_delete_ctrl(&ctrl->ctrl);
843                 } else
844                         nvme_fc_ctrl_connectivity_loss(ctrl);
845         }
846
847         spin_unlock_irqrestore(&rport->lock, flags);
848
849         nvme_fc_abort_lsops(rport);
850
851         if (atomic_read(&rport->act_ctrl_cnt) == 0)
852                 rport->lport->ops->remoteport_delete(portptr);
853
854         /*
855          * release the reference, which will allow, if all controllers
856          * go away, which should only occur after dev_loss_tmo occurs,
857          * for the rport to be torn down.
858          */
859         nvme_fc_rport_put(rport);
860
861         return 0;
862 }
863 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
864
865 /**
866  * nvme_fc_rescan_remoteport - transport entry point called by an
867  *                              LLDD to request a nvme device rescan.
868  * @remoteport: pointer to the (registered) remote port that is to be
869  *              rescanned.
870  *
871  * Returns: N/A
872  */
873 void
874 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
875 {
876         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
877
878         nvme_fc_signal_discovery_scan(rport->lport, rport);
879 }
880 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
881
882 int
883 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
884                         u32 dev_loss_tmo)
885 {
886         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
887         unsigned long flags;
888
889         spin_lock_irqsave(&rport->lock, flags);
890
891         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
892                 spin_unlock_irqrestore(&rport->lock, flags);
893                 return -EINVAL;
894         }
895
896         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
897         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
898
899         spin_unlock_irqrestore(&rport->lock, flags);
900
901         return 0;
902 }
903 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
904
905
906 /* *********************** FC-NVME DMA Handling **************************** */
907
908 /*
909  * The fcloop device passes in a NULL device pointer. Real LLD's will
910  * pass in a valid device pointer. If NULL is passed to the dma mapping
911  * routines, depending on the platform, it may or may not succeed, and
912  * may crash.
913  *
914  * As such:
915  * Wrapper all the dma routines and check the dev pointer.
916  *
917  * If simple mappings (return just a dma address, we'll noop them,
918  * returning a dma address of 0.
919  *
920  * On more complex mappings (dma_map_sg), a pseudo routine fills
921  * in the scatter list, setting all dma addresses to 0.
922  */
923
924 static inline dma_addr_t
925 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
926                 enum dma_data_direction dir)
927 {
928         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
929 }
930
931 static inline int
932 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
933 {
934         return dev ? dma_mapping_error(dev, dma_addr) : 0;
935 }
936
937 static inline void
938 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
939         enum dma_data_direction dir)
940 {
941         if (dev)
942                 dma_unmap_single(dev, addr, size, dir);
943 }
944
945 static inline void
946 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
947                 enum dma_data_direction dir)
948 {
949         if (dev)
950                 dma_sync_single_for_cpu(dev, addr, size, dir);
951 }
952
953 static inline void
954 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
955                 enum dma_data_direction dir)
956 {
957         if (dev)
958                 dma_sync_single_for_device(dev, addr, size, dir);
959 }
960
961 /* pseudo dma_map_sg call */
962 static int
963 fc_map_sg(struct scatterlist *sg, int nents)
964 {
965         struct scatterlist *s;
966         int i;
967
968         WARN_ON(nents == 0 || sg[0].length == 0);
969
970         for_each_sg(sg, s, nents, i) {
971                 s->dma_address = 0L;
972 #ifdef CONFIG_NEED_SG_DMA_LENGTH
973                 s->dma_length = s->length;
974 #endif
975         }
976         return nents;
977 }
978
979 static inline int
980 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
981                 enum dma_data_direction dir)
982 {
983         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
984 }
985
986 static inline void
987 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
988                 enum dma_data_direction dir)
989 {
990         if (dev)
991                 dma_unmap_sg(dev, sg, nents, dir);
992 }
993
994 /* *********************** FC-NVME LS Handling **************************** */
995
996 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
997 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
998
999
1000 static void
1001 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1002 {
1003         struct nvme_fc_rport *rport = lsop->rport;
1004         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1005         unsigned long flags;
1006
1007         spin_lock_irqsave(&rport->lock, flags);
1008
1009         if (!lsop->req_queued) {
1010                 spin_unlock_irqrestore(&rport->lock, flags);
1011                 return;
1012         }
1013
1014         list_del(&lsop->lsreq_list);
1015
1016         lsop->req_queued = false;
1017
1018         spin_unlock_irqrestore(&rport->lock, flags);
1019
1020         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1021                                   (lsreq->rqstlen + lsreq->rsplen),
1022                                   DMA_BIDIRECTIONAL);
1023
1024         nvme_fc_rport_put(rport);
1025 }
1026
1027 static int
1028 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1029                 struct nvmefc_ls_req_op *lsop,
1030                 void (*done)(struct nvmefc_ls_req *req, int status))
1031 {
1032         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1033         unsigned long flags;
1034         int ret = 0;
1035
1036         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1037                 return -ECONNREFUSED;
1038
1039         if (!nvme_fc_rport_get(rport))
1040                 return -ESHUTDOWN;
1041
1042         lsreq->done = done;
1043         lsop->rport = rport;
1044         lsop->req_queued = false;
1045         INIT_LIST_HEAD(&lsop->lsreq_list);
1046         init_completion(&lsop->ls_done);
1047
1048         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1049                                   lsreq->rqstlen + lsreq->rsplen,
1050                                   DMA_BIDIRECTIONAL);
1051         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1052                 ret = -EFAULT;
1053                 goto out_putrport;
1054         }
1055         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1056
1057         spin_lock_irqsave(&rport->lock, flags);
1058
1059         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1060
1061         lsop->req_queued = true;
1062
1063         spin_unlock_irqrestore(&rport->lock, flags);
1064
1065         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1066                                         &rport->remoteport, lsreq);
1067         if (ret)
1068                 goto out_unlink;
1069
1070         return 0;
1071
1072 out_unlink:
1073         lsop->ls_error = ret;
1074         spin_lock_irqsave(&rport->lock, flags);
1075         lsop->req_queued = false;
1076         list_del(&lsop->lsreq_list);
1077         spin_unlock_irqrestore(&rport->lock, flags);
1078         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1079                                   (lsreq->rqstlen + lsreq->rsplen),
1080                                   DMA_BIDIRECTIONAL);
1081 out_putrport:
1082         nvme_fc_rport_put(rport);
1083
1084         return ret;
1085 }
1086
1087 static void
1088 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1089 {
1090         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1091
1092         lsop->ls_error = status;
1093         complete(&lsop->ls_done);
1094 }
1095
1096 static int
1097 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1098 {
1099         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1100         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1101         int ret;
1102
1103         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1104
1105         if (!ret) {
1106                 /*
1107                  * No timeout/not interruptible as we need the struct
1108                  * to exist until the lldd calls us back. Thus mandate
1109                  * wait until driver calls back. lldd responsible for
1110                  * the timeout action
1111                  */
1112                 wait_for_completion(&lsop->ls_done);
1113
1114                 __nvme_fc_finish_ls_req(lsop);
1115
1116                 ret = lsop->ls_error;
1117         }
1118
1119         if (ret)
1120                 return ret;
1121
1122         /* ACC or RJT payload ? */
1123         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1124                 return -ENXIO;
1125
1126         return 0;
1127 }
1128
1129 static int
1130 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1131                 struct nvmefc_ls_req_op *lsop,
1132                 void (*done)(struct nvmefc_ls_req *req, int status))
1133 {
1134         /* don't wait for completion */
1135
1136         return __nvme_fc_send_ls_req(rport, lsop, done);
1137 }
1138
1139 /* Validation Error indexes into the string table below */
1140 enum {
1141         VERR_NO_ERROR           = 0,
1142         VERR_LSACC              = 1,
1143         VERR_LSDESC_RQST        = 2,
1144         VERR_LSDESC_RQST_LEN    = 3,
1145         VERR_ASSOC_ID           = 4,
1146         VERR_ASSOC_ID_LEN       = 5,
1147         VERR_CONN_ID            = 6,
1148         VERR_CONN_ID_LEN        = 7,
1149         VERR_CR_ASSOC           = 8,
1150         VERR_CR_ASSOC_ACC_LEN   = 9,
1151         VERR_CR_CONN            = 10,
1152         VERR_CR_CONN_ACC_LEN    = 11,
1153         VERR_DISCONN            = 12,
1154         VERR_DISCONN_ACC_LEN    = 13,
1155 };
1156
1157 static char *validation_errors[] = {
1158         "OK",
1159         "Not LS_ACC",
1160         "Not LSDESC_RQST",
1161         "Bad LSDESC_RQST Length",
1162         "Not Association ID",
1163         "Bad Association ID Length",
1164         "Not Connection ID",
1165         "Bad Connection ID Length",
1166         "Not CR_ASSOC Rqst",
1167         "Bad CR_ASSOC ACC Length",
1168         "Not CR_CONN Rqst",
1169         "Bad CR_CONN ACC Length",
1170         "Not Disconnect Rqst",
1171         "Bad Disconnect ACC Length",
1172 };
1173
1174 static int
1175 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1176         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1177 {
1178         struct nvmefc_ls_req_op *lsop;
1179         struct nvmefc_ls_req *lsreq;
1180         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1181         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1182         int ret, fcret = 0;
1183
1184         lsop = kzalloc((sizeof(*lsop) +
1185                          ctrl->lport->ops->lsrqst_priv_sz +
1186                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1187         if (!lsop) {
1188                 ret = -ENOMEM;
1189                 goto out_no_memory;
1190         }
1191         lsreq = &lsop->ls_req;
1192
1193         lsreq->private = (void *)&lsop[1];
1194         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1195                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1196         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1197
1198         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1199         assoc_rqst->desc_list_len =
1200                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1201
1202         assoc_rqst->assoc_cmd.desc_tag =
1203                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1204         assoc_rqst->assoc_cmd.desc_len =
1205                         fcnvme_lsdesc_len(
1206                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1207
1208         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1209         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
1210         /* Linux supports only Dynamic controllers */
1211         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1212         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1213         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1214                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1215         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1216                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1217
1218         lsop->queue = queue;
1219         lsreq->rqstaddr = assoc_rqst;
1220         lsreq->rqstlen = sizeof(*assoc_rqst);
1221         lsreq->rspaddr = assoc_acc;
1222         lsreq->rsplen = sizeof(*assoc_acc);
1223         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1224
1225         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1226         if (ret)
1227                 goto out_free_buffer;
1228
1229         /* process connect LS completion */
1230
1231         /* validate the ACC response */
1232         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1233                 fcret = VERR_LSACC;
1234         else if (assoc_acc->hdr.desc_list_len !=
1235                         fcnvme_lsdesc_len(
1236                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1237                 fcret = VERR_CR_ASSOC_ACC_LEN;
1238         else if (assoc_acc->hdr.rqst.desc_tag !=
1239                         cpu_to_be32(FCNVME_LSDESC_RQST))
1240                 fcret = VERR_LSDESC_RQST;
1241         else if (assoc_acc->hdr.rqst.desc_len !=
1242                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1243                 fcret = VERR_LSDESC_RQST_LEN;
1244         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1245                 fcret = VERR_CR_ASSOC;
1246         else if (assoc_acc->associd.desc_tag !=
1247                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1248                 fcret = VERR_ASSOC_ID;
1249         else if (assoc_acc->associd.desc_len !=
1250                         fcnvme_lsdesc_len(
1251                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1252                 fcret = VERR_ASSOC_ID_LEN;
1253         else if (assoc_acc->connectid.desc_tag !=
1254                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1255                 fcret = VERR_CONN_ID;
1256         else if (assoc_acc->connectid.desc_len !=
1257                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1258                 fcret = VERR_CONN_ID_LEN;
1259
1260         if (fcret) {
1261                 ret = -EBADF;
1262                 dev_err(ctrl->dev,
1263                         "q %d connect failed: %s\n",
1264                         queue->qnum, validation_errors[fcret]);
1265         } else {
1266                 ctrl->association_id =
1267                         be64_to_cpu(assoc_acc->associd.association_id);
1268                 queue->connection_id =
1269                         be64_to_cpu(assoc_acc->connectid.connection_id);
1270                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1271         }
1272
1273 out_free_buffer:
1274         kfree(lsop);
1275 out_no_memory:
1276         if (ret)
1277                 dev_err(ctrl->dev,
1278                         "queue %d connect admin queue failed (%d).\n",
1279                         queue->qnum, ret);
1280         return ret;
1281 }
1282
1283 static int
1284 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1285                         u16 qsize, u16 ersp_ratio)
1286 {
1287         struct nvmefc_ls_req_op *lsop;
1288         struct nvmefc_ls_req *lsreq;
1289         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1290         struct fcnvme_ls_cr_conn_acc *conn_acc;
1291         int ret, fcret = 0;
1292
1293         lsop = kzalloc((sizeof(*lsop) +
1294                          ctrl->lport->ops->lsrqst_priv_sz +
1295                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1296         if (!lsop) {
1297                 ret = -ENOMEM;
1298                 goto out_no_memory;
1299         }
1300         lsreq = &lsop->ls_req;
1301
1302         lsreq->private = (void *)&lsop[1];
1303         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1304                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1305         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1306
1307         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1308         conn_rqst->desc_list_len = cpu_to_be32(
1309                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1310                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1311
1312         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1313         conn_rqst->associd.desc_len =
1314                         fcnvme_lsdesc_len(
1315                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1316         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1317         conn_rqst->connect_cmd.desc_tag =
1318                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1319         conn_rqst->connect_cmd.desc_len =
1320                         fcnvme_lsdesc_len(
1321                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1322         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1323         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1324         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1325
1326         lsop->queue = queue;
1327         lsreq->rqstaddr = conn_rqst;
1328         lsreq->rqstlen = sizeof(*conn_rqst);
1329         lsreq->rspaddr = conn_acc;
1330         lsreq->rsplen = sizeof(*conn_acc);
1331         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1332
1333         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1334         if (ret)
1335                 goto out_free_buffer;
1336
1337         /* process connect LS completion */
1338
1339         /* validate the ACC response */
1340         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1341                 fcret = VERR_LSACC;
1342         else if (conn_acc->hdr.desc_list_len !=
1343                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1344                 fcret = VERR_CR_CONN_ACC_LEN;
1345         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1346                 fcret = VERR_LSDESC_RQST;
1347         else if (conn_acc->hdr.rqst.desc_len !=
1348                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1349                 fcret = VERR_LSDESC_RQST_LEN;
1350         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1351                 fcret = VERR_CR_CONN;
1352         else if (conn_acc->connectid.desc_tag !=
1353                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1354                 fcret = VERR_CONN_ID;
1355         else if (conn_acc->connectid.desc_len !=
1356                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1357                 fcret = VERR_CONN_ID_LEN;
1358
1359         if (fcret) {
1360                 ret = -EBADF;
1361                 dev_err(ctrl->dev,
1362                         "q %d connect failed: %s\n",
1363                         queue->qnum, validation_errors[fcret]);
1364         } else {
1365                 queue->connection_id =
1366                         be64_to_cpu(conn_acc->connectid.connection_id);
1367                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1368         }
1369
1370 out_free_buffer:
1371         kfree(lsop);
1372 out_no_memory:
1373         if (ret)
1374                 dev_err(ctrl->dev,
1375                         "queue %d connect command failed (%d).\n",
1376                         queue->qnum, ret);
1377         return ret;
1378 }
1379
1380 static void
1381 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1382 {
1383         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1384
1385         __nvme_fc_finish_ls_req(lsop);
1386
1387         /* fc-nvme iniator doesn't care about success or failure of cmd */
1388
1389         kfree(lsop);
1390 }
1391
1392 /*
1393  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1394  * the FC-NVME Association.  Terminating the association also
1395  * terminates the FC-NVME connections (per queue, both admin and io
1396  * queues) that are part of the association. E.g. things are torn
1397  * down, and the related FC-NVME Association ID and Connection IDs
1398  * become invalid.
1399  *
1400  * The behavior of the fc-nvme initiator is such that it's
1401  * understanding of the association and connections will implicitly
1402  * be torn down. The action is implicit as it may be due to a loss of
1403  * connectivity with the fc-nvme target, so you may never get a
1404  * response even if you tried.  As such, the action of this routine
1405  * is to asynchronously send the LS, ignore any results of the LS, and
1406  * continue on with terminating the association. If the fc-nvme target
1407  * is present and receives the LS, it too can tear down.
1408  */
1409 static void
1410 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1411 {
1412         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1413         struct fcnvme_ls_disconnect_acc *discon_acc;
1414         struct nvmefc_ls_req_op *lsop;
1415         struct nvmefc_ls_req *lsreq;
1416         int ret;
1417
1418         lsop = kzalloc((sizeof(*lsop) +
1419                          ctrl->lport->ops->lsrqst_priv_sz +
1420                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1421                         GFP_KERNEL);
1422         if (!lsop)
1423                 /* couldn't sent it... too bad */
1424                 return;
1425
1426         lsreq = &lsop->ls_req;
1427
1428         lsreq->private = (void *)&lsop[1];
1429         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1430                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1431         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1432
1433         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1434         discon_rqst->desc_list_len = cpu_to_be32(
1435                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1436                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1437
1438         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1439         discon_rqst->associd.desc_len =
1440                         fcnvme_lsdesc_len(
1441                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1442
1443         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1444
1445         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1446                                                 FCNVME_LSDESC_DISCONN_CMD);
1447         discon_rqst->discon_cmd.desc_len =
1448                         fcnvme_lsdesc_len(
1449                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1450         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1451         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1452
1453         lsreq->rqstaddr = discon_rqst;
1454         lsreq->rqstlen = sizeof(*discon_rqst);
1455         lsreq->rspaddr = discon_acc;
1456         lsreq->rsplen = sizeof(*discon_acc);
1457         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1458
1459         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1460                                 nvme_fc_disconnect_assoc_done);
1461         if (ret)
1462                 kfree(lsop);
1463
1464         /* only meaningful part to terminating the association */
1465         ctrl->association_id = 0;
1466 }
1467
1468
1469 /* *********************** NVME Ctrl Routines **************************** */
1470
1471 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1472
1473 static int
1474 nvme_fc_reinit_request(void *data, struct request *rq)
1475 {
1476         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1477         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1478
1479         memset(cmdiu, 0, sizeof(*cmdiu));
1480         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1481         cmdiu->fc_id = NVME_CMD_FC_ID;
1482         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1483         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1484
1485         return 0;
1486 }
1487
1488 static void
1489 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1490                 struct nvme_fc_fcp_op *op)
1491 {
1492         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1493                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1494         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1495                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1496
1497         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1498 }
1499
1500 static void
1501 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1502                 unsigned int hctx_idx)
1503 {
1504         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1505
1506         return __nvme_fc_exit_request(set->driver_data, op);
1507 }
1508
1509 static int
1510 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1511 {
1512         unsigned long flags;
1513         int opstate;
1514
1515         spin_lock_irqsave(&ctrl->lock, flags);
1516         opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1517         if (opstate != FCPOP_STATE_ACTIVE)
1518                 atomic_set(&op->state, opstate);
1519         else if (ctrl->flags & FCCTRL_TERMIO)
1520                 ctrl->iocnt++;
1521         spin_unlock_irqrestore(&ctrl->lock, flags);
1522
1523         if (opstate != FCPOP_STATE_ACTIVE)
1524                 return -ECANCELED;
1525
1526         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1527                                         &ctrl->rport->remoteport,
1528                                         op->queue->lldd_handle,
1529                                         &op->fcp_req);
1530
1531         return 0;
1532 }
1533
1534 static void
1535 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1536 {
1537         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1538         int i;
1539
1540         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1541                 __nvme_fc_abort_op(ctrl, aen_op);
1542 }
1543
1544 static inline void
1545 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1546                 struct nvme_fc_fcp_op *op, int opstate)
1547 {
1548         unsigned long flags;
1549
1550         if (opstate == FCPOP_STATE_ABORTED) {
1551                 spin_lock_irqsave(&ctrl->lock, flags);
1552                 if (ctrl->flags & FCCTRL_TERMIO) {
1553                         if (!--ctrl->iocnt)
1554                                 wake_up(&ctrl->ioabort_wait);
1555                 }
1556                 spin_unlock_irqrestore(&ctrl->lock, flags);
1557         }
1558 }
1559
1560 static void
1561 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1562 {
1563         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1564         struct request *rq = op->rq;
1565         struct nvmefc_fcp_req *freq = &op->fcp_req;
1566         struct nvme_fc_ctrl *ctrl = op->ctrl;
1567         struct nvme_fc_queue *queue = op->queue;
1568         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1569         struct nvme_command *sqe = &op->cmd_iu.sqe;
1570         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1571         union nvme_result result;
1572         bool terminate_assoc = true;
1573         int opstate;
1574
1575         /*
1576          * WARNING:
1577          * The current linux implementation of a nvme controller
1578          * allocates a single tag set for all io queues and sizes
1579          * the io queues to fully hold all possible tags. Thus, the
1580          * implementation does not reference or care about the sqhd
1581          * value as it never needs to use the sqhd/sqtail pointers
1582          * for submission pacing.
1583          *
1584          * This affects the FC-NVME implementation in two ways:
1585          * 1) As the value doesn't matter, we don't need to waste
1586          *    cycles extracting it from ERSPs and stamping it in the
1587          *    cases where the transport fabricates CQEs on successful
1588          *    completions.
1589          * 2) The FC-NVME implementation requires that delivery of
1590          *    ERSP completions are to go back to the nvme layer in order
1591          *    relative to the rsn, such that the sqhd value will always
1592          *    be "in order" for the nvme layer. As the nvme layer in
1593          *    linux doesn't care about sqhd, there's no need to return
1594          *    them in order.
1595          *
1596          * Additionally:
1597          * As the core nvme layer in linux currently does not look at
1598          * every field in the cqe - in cases where the FC transport must
1599          * fabricate a CQE, the following fields will not be set as they
1600          * are not referenced:
1601          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1602          *
1603          * Failure or error of an individual i/o, in a transport
1604          * detected fashion unrelated to the nvme completion status,
1605          * potentially cause the initiator and target sides to get out
1606          * of sync on SQ head/tail (aka outstanding io count allowed).
1607          * Per FC-NVME spec, failure of an individual command requires
1608          * the connection to be terminated, which in turn requires the
1609          * association to be terminated.
1610          */
1611
1612         opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1613
1614         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1615                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1616
1617         if (opstate == FCPOP_STATE_ABORTED)
1618                 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1619         else if (freq->status)
1620                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1621
1622         /*
1623          * For the linux implementation, if we have an unsuccesful
1624          * status, they blk-mq layer can typically be called with the
1625          * non-zero status and the content of the cqe isn't important.
1626          */
1627         if (status)
1628                 goto done;
1629
1630         /*
1631          * command completed successfully relative to the wire
1632          * protocol. However, validate anything received and
1633          * extract the status and result from the cqe (create it
1634          * where necessary).
1635          */
1636
1637         switch (freq->rcv_rsplen) {
1638
1639         case 0:
1640         case NVME_FC_SIZEOF_ZEROS_RSP:
1641                 /*
1642                  * No response payload or 12 bytes of payload (which
1643                  * should all be zeros) are considered successful and
1644                  * no payload in the CQE by the transport.
1645                  */
1646                 if (freq->transferred_length !=
1647                         be32_to_cpu(op->cmd_iu.data_len)) {
1648                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1649                         goto done;
1650                 }
1651                 result.u64 = 0;
1652                 break;
1653
1654         case sizeof(struct nvme_fc_ersp_iu):
1655                 /*
1656                  * The ERSP IU contains a full completion with CQE.
1657                  * Validate ERSP IU and look at cqe.
1658                  */
1659                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1660                                         (freq->rcv_rsplen / 4) ||
1661                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1662                                         freq->transferred_length ||
1663                              op->rsp_iu.status_code ||
1664                              sqe->common.command_id != cqe->command_id)) {
1665                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1666                         goto done;
1667                 }
1668                 result = cqe->result;
1669                 status = cqe->status;
1670                 break;
1671
1672         default:
1673                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1674                 goto done;
1675         }
1676
1677         terminate_assoc = false;
1678
1679 done:
1680         if (op->flags & FCOP_FLAGS_AEN) {
1681                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1682                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1683                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1684                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1685                 nvme_fc_ctrl_put(ctrl);
1686                 goto check_error;
1687         }
1688
1689         /*
1690          * Force failures of commands if we're killing the controller
1691          * or have an error on a command used to create an new association
1692          */
1693         if (status &&
1694             (blk_queue_dying(rq->q) ||
1695              ctrl->ctrl.state == NVME_CTRL_NEW ||
1696              ctrl->ctrl.state == NVME_CTRL_CONNECTING))
1697                 status |= cpu_to_le16(NVME_SC_DNR << 1);
1698
1699         __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1700         nvme_end_request(rq, status, result);
1701
1702 check_error:
1703         if (terminate_assoc)
1704                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1705 }
1706
1707 static int
1708 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1709                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1710                 struct request *rq, u32 rqno)
1711 {
1712         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1713         int ret = 0;
1714
1715         memset(op, 0, sizeof(*op));
1716         op->fcp_req.cmdaddr = &op->cmd_iu;
1717         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1718         op->fcp_req.rspaddr = &op->rsp_iu;
1719         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1720         op->fcp_req.done = nvme_fc_fcpio_done;
1721         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1722         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1723         op->ctrl = ctrl;
1724         op->queue = queue;
1725         op->rq = rq;
1726         op->rqno = rqno;
1727
1728         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1729         cmdiu->fc_id = NVME_CMD_FC_ID;
1730         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1731
1732         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1733                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1734         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1735                 dev_err(ctrl->dev,
1736                         "FCP Op failed - cmdiu dma mapping failed.\n");
1737                 ret = EFAULT;
1738                 goto out_on_error;
1739         }
1740
1741         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1742                                 &op->rsp_iu, sizeof(op->rsp_iu),
1743                                 DMA_FROM_DEVICE);
1744         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1745                 dev_err(ctrl->dev,
1746                         "FCP Op failed - rspiu dma mapping failed.\n");
1747                 ret = EFAULT;
1748         }
1749
1750         atomic_set(&op->state, FCPOP_STATE_IDLE);
1751 out_on_error:
1752         return ret;
1753 }
1754
1755 static int
1756 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1757                 unsigned int hctx_idx, unsigned int numa_node)
1758 {
1759         struct nvme_fc_ctrl *ctrl = set->driver_data;
1760         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1761         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1762         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1763
1764         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1765 }
1766
1767 static int
1768 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1769 {
1770         struct nvme_fc_fcp_op *aen_op;
1771         struct nvme_fc_cmd_iu *cmdiu;
1772         struct nvme_command *sqe;
1773         void *private;
1774         int i, ret;
1775
1776         aen_op = ctrl->aen_ops;
1777         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1778                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1779                                                 GFP_KERNEL);
1780                 if (!private)
1781                         return -ENOMEM;
1782
1783                 cmdiu = &aen_op->cmd_iu;
1784                 sqe = &cmdiu->sqe;
1785                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1786                                 aen_op, (struct request *)NULL,
1787                                 (NVME_AQ_BLK_MQ_DEPTH + i));
1788                 if (ret) {
1789                         kfree(private);
1790                         return ret;
1791                 }
1792
1793                 aen_op->flags = FCOP_FLAGS_AEN;
1794                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1795                 aen_op->fcp_req.private = private;
1796
1797                 memset(sqe, 0, sizeof(*sqe));
1798                 sqe->common.opcode = nvme_admin_async_event;
1799                 /* Note: core layer may overwrite the sqe.command_id value */
1800                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1801         }
1802         return 0;
1803 }
1804
1805 static void
1806 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1807 {
1808         struct nvme_fc_fcp_op *aen_op;
1809         int i;
1810
1811         aen_op = ctrl->aen_ops;
1812         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1813                 if (!aen_op->fcp_req.private)
1814                         continue;
1815
1816                 __nvme_fc_exit_request(ctrl, aen_op);
1817
1818                 kfree(aen_op->fcp_req.private);
1819                 aen_op->fcp_req.private = NULL;
1820         }
1821 }
1822
1823 static inline void
1824 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1825                 unsigned int qidx)
1826 {
1827         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1828
1829         hctx->driver_data = queue;
1830         queue->hctx = hctx;
1831 }
1832
1833 static int
1834 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1835                 unsigned int hctx_idx)
1836 {
1837         struct nvme_fc_ctrl *ctrl = data;
1838
1839         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1840
1841         return 0;
1842 }
1843
1844 static int
1845 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1846                 unsigned int hctx_idx)
1847 {
1848         struct nvme_fc_ctrl *ctrl = data;
1849
1850         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1851
1852         return 0;
1853 }
1854
1855 static void
1856 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1857 {
1858         struct nvme_fc_queue *queue;
1859
1860         queue = &ctrl->queues[idx];
1861         memset(queue, 0, sizeof(*queue));
1862         queue->ctrl = ctrl;
1863         queue->qnum = idx;
1864         atomic_set(&queue->csn, 1);
1865         queue->dev = ctrl->dev;
1866
1867         if (idx > 0)
1868                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1869         else
1870                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1871
1872         /*
1873          * Considered whether we should allocate buffers for all SQEs
1874          * and CQEs and dma map them - mapping their respective entries
1875          * into the request structures (kernel vm addr and dma address)
1876          * thus the driver could use the buffers/mappings directly.
1877          * It only makes sense if the LLDD would use them for its
1878          * messaging api. It's very unlikely most adapter api's would use
1879          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1880          * structures were used instead.
1881          */
1882 }
1883
1884 /*
1885  * This routine terminates a queue at the transport level.
1886  * The transport has already ensured that all outstanding ios on
1887  * the queue have been terminated.
1888  * The transport will send a Disconnect LS request to terminate
1889  * the queue's connection. Termination of the admin queue will also
1890  * terminate the association at the target.
1891  */
1892 static void
1893 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1894 {
1895         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1896                 return;
1897
1898         clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1899         /*
1900          * Current implementation never disconnects a single queue.
1901          * It always terminates a whole association. So there is never
1902          * a disconnect(queue) LS sent to the target.
1903          */
1904
1905         queue->connection_id = 0;
1906 }
1907
1908 static void
1909 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1910         struct nvme_fc_queue *queue, unsigned int qidx)
1911 {
1912         if (ctrl->lport->ops->delete_queue)
1913                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1914                                 queue->lldd_handle);
1915         queue->lldd_handle = NULL;
1916 }
1917
1918 static void
1919 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1920 {
1921         int i;
1922
1923         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1924                 nvme_fc_free_queue(&ctrl->queues[i]);
1925 }
1926
1927 static int
1928 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1929         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1930 {
1931         int ret = 0;
1932
1933         queue->lldd_handle = NULL;
1934         if (ctrl->lport->ops->create_queue)
1935                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1936                                 qidx, qsize, &queue->lldd_handle);
1937
1938         return ret;
1939 }
1940
1941 static void
1942 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1943 {
1944         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1945         int i;
1946
1947         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1948                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1949 }
1950
1951 static int
1952 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1953 {
1954         struct nvme_fc_queue *queue = &ctrl->queues[1];
1955         int i, ret;
1956
1957         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1958                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1959                 if (ret)
1960                         goto delete_queues;
1961         }
1962
1963         return 0;
1964
1965 delete_queues:
1966         for (; i >= 0; i--)
1967                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1968         return ret;
1969 }
1970
1971 static int
1972 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1973 {
1974         int i, ret = 0;
1975
1976         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1977                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1978                                         (qsize / 5));
1979                 if (ret)
1980                         break;
1981                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1982                 if (ret)
1983                         break;
1984
1985                 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1986         }
1987
1988         return ret;
1989 }
1990
1991 static void
1992 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1993 {
1994         int i;
1995
1996         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1997                 nvme_fc_init_queue(ctrl, i);
1998 }
1999
2000 static void
2001 nvme_fc_ctrl_free(struct kref *ref)
2002 {
2003         struct nvme_fc_ctrl *ctrl =
2004                 container_of(ref, struct nvme_fc_ctrl, ref);
2005         unsigned long flags;
2006
2007         if (ctrl->ctrl.tagset) {
2008                 blk_cleanup_queue(ctrl->ctrl.connect_q);
2009                 blk_mq_free_tag_set(&ctrl->tag_set);
2010         }
2011
2012         /* remove from rport list */
2013         spin_lock_irqsave(&ctrl->rport->lock, flags);
2014         list_del(&ctrl->ctrl_list);
2015         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2016
2017         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2018         blk_cleanup_queue(ctrl->ctrl.admin_q);
2019         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2020
2021         kfree(ctrl->queues);
2022
2023         put_device(ctrl->dev);
2024         nvme_fc_rport_put(ctrl->rport);
2025
2026         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2027         if (ctrl->ctrl.opts)
2028                 nvmf_free_options(ctrl->ctrl.opts);
2029         kfree(ctrl);
2030 }
2031
2032 static void
2033 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2034 {
2035         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2036 }
2037
2038 static int
2039 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2040 {
2041         return kref_get_unless_zero(&ctrl->ref);
2042 }
2043
2044 /*
2045  * All accesses from nvme core layer done - can now free the
2046  * controller. Called after last nvme_put_ctrl() call
2047  */
2048 static void
2049 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2050 {
2051         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2052
2053         WARN_ON(nctrl != &ctrl->ctrl);
2054
2055         nvme_fc_ctrl_put(ctrl);
2056 }
2057
2058 static void
2059 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2060 {
2061         /* only proceed if in LIVE state - e.g. on first error */
2062         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2063                 return;
2064
2065         dev_warn(ctrl->ctrl.device,
2066                 "NVME-FC{%d}: transport association error detected: %s\n",
2067                 ctrl->cnum, errmsg);
2068         dev_warn(ctrl->ctrl.device,
2069                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2070
2071         nvme_reset_ctrl(&ctrl->ctrl);
2072 }
2073
2074 static enum blk_eh_timer_return
2075 nvme_fc_timeout(struct request *rq, bool reserved)
2076 {
2077         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2078         struct nvme_fc_ctrl *ctrl = op->ctrl;
2079         int ret;
2080
2081         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2082                         atomic_read(&op->state) == FCPOP_STATE_ABORTED)
2083                 return BLK_EH_RESET_TIMER;
2084
2085         ret = __nvme_fc_abort_op(ctrl, op);
2086         if (ret)
2087                 /* io wasn't active to abort */
2088                 return BLK_EH_NOT_HANDLED;
2089
2090         /*
2091          * we can't individually ABTS an io without affecting the queue,
2092          * thus killing the queue, adn thus the association.
2093          * So resolve by performing a controller reset, which will stop
2094          * the host/io stack, terminate the association on the link,
2095          * and recreate an association on the link.
2096          */
2097         nvme_fc_error_recovery(ctrl, "io timeout error");
2098
2099         /*
2100          * the io abort has been initiated. Have the reset timer
2101          * restarted and the abort completion will complete the io
2102          * shortly. Avoids a synchronous wait while the abort finishes.
2103          */
2104         return BLK_EH_RESET_TIMER;
2105 }
2106
2107 static int
2108 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2109                 struct nvme_fc_fcp_op *op)
2110 {
2111         struct nvmefc_fcp_req *freq = &op->fcp_req;
2112         enum dma_data_direction dir;
2113         int ret;
2114
2115         freq->sg_cnt = 0;
2116
2117         if (!blk_rq_payload_bytes(rq))
2118                 return 0;
2119
2120         freq->sg_table.sgl = freq->first_sgl;
2121         ret = sg_alloc_table_chained(&freq->sg_table,
2122                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2123         if (ret)
2124                 return -ENOMEM;
2125
2126         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2127         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2128         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2129         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2130                                 op->nents, dir);
2131         if (unlikely(freq->sg_cnt <= 0)) {
2132                 sg_free_table_chained(&freq->sg_table, true);
2133                 freq->sg_cnt = 0;
2134                 return -EFAULT;
2135         }
2136
2137         /*
2138          * TODO: blk_integrity_rq(rq)  for DIF
2139          */
2140         return 0;
2141 }
2142
2143 static void
2144 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2145                 struct nvme_fc_fcp_op *op)
2146 {
2147         struct nvmefc_fcp_req *freq = &op->fcp_req;
2148
2149         if (!freq->sg_cnt)
2150                 return;
2151
2152         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2153                                 ((rq_data_dir(rq) == WRITE) ?
2154                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
2155
2156         nvme_cleanup_cmd(rq);
2157
2158         sg_free_table_chained(&freq->sg_table, true);
2159
2160         freq->sg_cnt = 0;
2161 }
2162
2163 /*
2164  * In FC, the queue is a logical thing. At transport connect, the target
2165  * creates its "queue" and returns a handle that is to be given to the
2166  * target whenever it posts something to the corresponding SQ.  When an
2167  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2168  * command contained within the SQE, an io, and assigns a FC exchange
2169  * to it. The SQE and the associated SQ handle are sent in the initial
2170  * CMD IU sents on the exchange. All transfers relative to the io occur
2171  * as part of the exchange.  The CQE is the last thing for the io,
2172  * which is transferred (explicitly or implicitly) with the RSP IU
2173  * sent on the exchange. After the CQE is received, the FC exchange is
2174  * terminaed and the Exchange may be used on a different io.
2175  *
2176  * The transport to LLDD api has the transport making a request for a
2177  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2178  * resource and transfers the command. The LLDD will then process all
2179  * steps to complete the io. Upon completion, the transport done routine
2180  * is called.
2181  *
2182  * So - while the operation is outstanding to the LLDD, there is a link
2183  * level FC exchange resource that is also outstanding. This must be
2184  * considered in all cleanup operations.
2185  */
2186 static blk_status_t
2187 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2188         struct nvme_fc_fcp_op *op, u32 data_len,
2189         enum nvmefc_fcp_datadir io_dir)
2190 {
2191         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2192         struct nvme_command *sqe = &cmdiu->sqe;
2193         u32 csn;
2194         int ret;
2195
2196         /*
2197          * before attempting to send the io, check to see if we believe
2198          * the target device is present
2199          */
2200         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2201                 return BLK_STS_RESOURCE;
2202
2203         if (!nvme_fc_ctrl_get(ctrl))
2204                 return BLK_STS_IOERR;
2205
2206         /* format the FC-NVME CMD IU and fcp_req */
2207         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2208         csn = atomic_inc_return(&queue->csn);
2209         cmdiu->csn = cpu_to_be32(csn);
2210         cmdiu->data_len = cpu_to_be32(data_len);
2211         switch (io_dir) {
2212         case NVMEFC_FCP_WRITE:
2213                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2214                 break;
2215         case NVMEFC_FCP_READ:
2216                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2217                 break;
2218         case NVMEFC_FCP_NODATA:
2219                 cmdiu->flags = 0;
2220                 break;
2221         }
2222         op->fcp_req.payload_length = data_len;
2223         op->fcp_req.io_dir = io_dir;
2224         op->fcp_req.transferred_length = 0;
2225         op->fcp_req.rcv_rsplen = 0;
2226         op->fcp_req.status = NVME_SC_SUCCESS;
2227         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2228
2229         /*
2230          * validate per fabric rules, set fields mandated by fabric spec
2231          * as well as those by FC-NVME spec.
2232          */
2233         WARN_ON_ONCE(sqe->common.metadata);
2234         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2235
2236         /*
2237          * format SQE DPTR field per FC-NVME rules:
2238          *    type=0x5     Transport SGL Data Block Descriptor
2239          *    subtype=0xA  Transport-specific value
2240          *    address=0
2241          *    length=length of the data series
2242          */
2243         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2244                                         NVME_SGL_FMT_TRANSPORT_A;
2245         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2246         sqe->rw.dptr.sgl.addr = 0;
2247
2248         if (!(op->flags & FCOP_FLAGS_AEN)) {
2249                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2250                 if (ret < 0) {
2251                         nvme_cleanup_cmd(op->rq);
2252                         nvme_fc_ctrl_put(ctrl);
2253                         if (ret == -ENOMEM || ret == -EAGAIN)
2254                                 return BLK_STS_RESOURCE;
2255                         return BLK_STS_IOERR;
2256                 }
2257         }
2258
2259         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2260                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2261
2262         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2263
2264         if (!(op->flags & FCOP_FLAGS_AEN))
2265                 blk_mq_start_request(op->rq);
2266
2267         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2268                                         &ctrl->rport->remoteport,
2269                                         queue->lldd_handle, &op->fcp_req);
2270
2271         if (ret) {
2272                 if (!(op->flags & FCOP_FLAGS_AEN))
2273                         nvme_fc_unmap_data(ctrl, op->rq, op);
2274
2275                 nvme_fc_ctrl_put(ctrl);
2276
2277                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2278                                 ret != -EBUSY)
2279                         return BLK_STS_IOERR;
2280
2281                 return BLK_STS_RESOURCE;
2282         }
2283
2284         return BLK_STS_OK;
2285 }
2286
2287 static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue,
2288                 struct request *rq)
2289 {
2290         if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags)))
2291                 return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
2292         return BLK_STS_OK;
2293 }
2294
2295 static blk_status_t
2296 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2297                         const struct blk_mq_queue_data *bd)
2298 {
2299         struct nvme_ns *ns = hctx->queue->queuedata;
2300         struct nvme_fc_queue *queue = hctx->driver_data;
2301         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2302         struct request *rq = bd->rq;
2303         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2304         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2305         struct nvme_command *sqe = &cmdiu->sqe;
2306         enum nvmefc_fcp_datadir io_dir;
2307         u32 data_len;
2308         blk_status_t ret;
2309
2310         ret = nvme_fc_is_ready(queue, rq);
2311         if (unlikely(ret))
2312                 return ret;
2313
2314         ret = nvme_setup_cmd(ns, rq, sqe);
2315         if (ret)
2316                 return ret;
2317
2318         data_len = blk_rq_payload_bytes(rq);
2319         if (data_len)
2320                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2321                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2322         else
2323                 io_dir = NVMEFC_FCP_NODATA;
2324
2325         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2326 }
2327
2328 static struct blk_mq_tags *
2329 nvme_fc_tagset(struct nvme_fc_queue *queue)
2330 {
2331         if (queue->qnum == 0)
2332                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2333
2334         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2335 }
2336
2337 static int
2338 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2339
2340 {
2341         struct nvme_fc_queue *queue = hctx->driver_data;
2342         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2343         struct request *req;
2344         struct nvme_fc_fcp_op *op;
2345
2346         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2347         if (!req)
2348                 return 0;
2349
2350         op = blk_mq_rq_to_pdu(req);
2351
2352         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2353                  (ctrl->lport->ops->poll_queue))
2354                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2355                                                  queue->lldd_handle);
2356
2357         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2358 }
2359
2360 static void
2361 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2362 {
2363         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2364         struct nvme_fc_fcp_op *aen_op;
2365         unsigned long flags;
2366         bool terminating = false;
2367         blk_status_t ret;
2368
2369         spin_lock_irqsave(&ctrl->lock, flags);
2370         if (ctrl->flags & FCCTRL_TERMIO)
2371                 terminating = true;
2372         spin_unlock_irqrestore(&ctrl->lock, flags);
2373
2374         if (terminating)
2375                 return;
2376
2377         aen_op = &ctrl->aen_ops[0];
2378
2379         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2380                                         NVMEFC_FCP_NODATA);
2381         if (ret)
2382                 dev_err(ctrl->ctrl.device,
2383                         "failed async event work\n");
2384 }
2385
2386 static void
2387 nvme_fc_complete_rq(struct request *rq)
2388 {
2389         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2390         struct nvme_fc_ctrl *ctrl = op->ctrl;
2391
2392         atomic_set(&op->state, FCPOP_STATE_IDLE);
2393
2394         nvme_fc_unmap_data(ctrl, rq, op);
2395         nvme_complete_rq(rq);
2396         nvme_fc_ctrl_put(ctrl);
2397 }
2398
2399 /*
2400  * This routine is used by the transport when it needs to find active
2401  * io on a queue that is to be terminated. The transport uses
2402  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2403  * this routine to kill them on a 1 by 1 basis.
2404  *
2405  * As FC allocates FC exchange for each io, the transport must contact
2406  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2407  * After terminating the exchange the LLDD will call the transport's
2408  * normal io done path for the request, but it will have an aborted
2409  * status. The done path will return the io request back to the block
2410  * layer with an error status.
2411  */
2412 static void
2413 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2414 {
2415         struct nvme_ctrl *nctrl = data;
2416         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2417         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2418
2419         if (!blk_mq_request_started(req))
2420                 return;
2421
2422         __nvme_fc_abort_op(ctrl, op);
2423 }
2424
2425
2426 static const struct blk_mq_ops nvme_fc_mq_ops = {
2427         .queue_rq       = nvme_fc_queue_rq,
2428         .complete       = nvme_fc_complete_rq,
2429         .init_request   = nvme_fc_init_request,
2430         .exit_request   = nvme_fc_exit_request,
2431         .init_hctx      = nvme_fc_init_hctx,
2432         .poll           = nvme_fc_poll,
2433         .timeout        = nvme_fc_timeout,
2434 };
2435
2436 static int
2437 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2438 {
2439         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2440         unsigned int nr_io_queues;
2441         int ret;
2442
2443         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2444                                 ctrl->lport->ops->max_hw_queues);
2445         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2446         if (ret) {
2447                 dev_info(ctrl->ctrl.device,
2448                         "set_queue_count failed: %d\n", ret);
2449                 return ret;
2450         }
2451
2452         ctrl->ctrl.queue_count = nr_io_queues + 1;
2453         if (!nr_io_queues)
2454                 return 0;
2455
2456         nvme_fc_init_io_queues(ctrl);
2457
2458         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2459         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2460         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2461         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2462         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2463         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2464         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2465                                         (SG_CHUNK_SIZE *
2466                                                 sizeof(struct scatterlist)) +
2467                                         ctrl->lport->ops->fcprqst_priv_sz;
2468         ctrl->tag_set.driver_data = ctrl;
2469         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2470         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2471
2472         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2473         if (ret)
2474                 return ret;
2475
2476         ctrl->ctrl.tagset = &ctrl->tag_set;
2477
2478         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2479         if (IS_ERR(ctrl->ctrl.connect_q)) {
2480                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2481                 goto out_free_tag_set;
2482         }
2483
2484         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2485         if (ret)
2486                 goto out_cleanup_blk_queue;
2487
2488         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2489         if (ret)
2490                 goto out_delete_hw_queues;
2491
2492         return 0;
2493
2494 out_delete_hw_queues:
2495         nvme_fc_delete_hw_io_queues(ctrl);
2496 out_cleanup_blk_queue:
2497         blk_cleanup_queue(ctrl->ctrl.connect_q);
2498 out_free_tag_set:
2499         blk_mq_free_tag_set(&ctrl->tag_set);
2500         nvme_fc_free_io_queues(ctrl);
2501
2502         /* force put free routine to ignore io queues */
2503         ctrl->ctrl.tagset = NULL;
2504
2505         return ret;
2506 }
2507
2508 static int
2509 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2510 {
2511         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2512         unsigned int nr_io_queues;
2513         int ret;
2514
2515         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2516                                 ctrl->lport->ops->max_hw_queues);
2517         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2518         if (ret) {
2519                 dev_info(ctrl->ctrl.device,
2520                         "set_queue_count failed: %d\n", ret);
2521                 return ret;
2522         }
2523
2524         ctrl->ctrl.queue_count = nr_io_queues + 1;
2525         /* check for io queues existing */
2526         if (ctrl->ctrl.queue_count == 1)
2527                 return 0;
2528
2529         nvme_fc_init_io_queues(ctrl);
2530
2531         ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
2532         if (ret)
2533                 goto out_free_io_queues;
2534
2535         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2536         if (ret)
2537                 goto out_free_io_queues;
2538
2539         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2540         if (ret)
2541                 goto out_delete_hw_queues;
2542
2543         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2544
2545         return 0;
2546
2547 out_delete_hw_queues:
2548         nvme_fc_delete_hw_io_queues(ctrl);
2549 out_free_io_queues:
2550         nvme_fc_free_io_queues(ctrl);
2551         return ret;
2552 }
2553
2554 static void
2555 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2556 {
2557         struct nvme_fc_lport *lport = rport->lport;
2558
2559         atomic_inc(&lport->act_rport_cnt);
2560 }
2561
2562 static void
2563 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2564 {
2565         struct nvme_fc_lport *lport = rport->lport;
2566         u32 cnt;
2567
2568         cnt = atomic_dec_return(&lport->act_rport_cnt);
2569         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2570                 lport->ops->localport_delete(&lport->localport);
2571 }
2572
2573 static int
2574 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2575 {
2576         struct nvme_fc_rport *rport = ctrl->rport;
2577         u32 cnt;
2578
2579         if (ctrl->assoc_active)
2580                 return 1;
2581
2582         ctrl->assoc_active = true;
2583         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2584         if (cnt == 1)
2585                 nvme_fc_rport_active_on_lport(rport);
2586
2587         return 0;
2588 }
2589
2590 static int
2591 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2592 {
2593         struct nvme_fc_rport *rport = ctrl->rport;
2594         struct nvme_fc_lport *lport = rport->lport;
2595         u32 cnt;
2596
2597         /* ctrl->assoc_active=false will be set independently */
2598
2599         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2600         if (cnt == 0) {
2601                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2602                         lport->ops->remoteport_delete(&rport->remoteport);
2603                 nvme_fc_rport_inactive_on_lport(rport);
2604         }
2605
2606         return 0;
2607 }
2608
2609 /*
2610  * This routine restarts the controller on the host side, and
2611  * on the link side, recreates the controller association.
2612  */
2613 static int
2614 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2615 {
2616         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2617         int ret;
2618         bool changed;
2619
2620         ++ctrl->ctrl.nr_reconnects;
2621
2622         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2623                 return -ENODEV;
2624
2625         if (nvme_fc_ctlr_active_on_rport(ctrl))
2626                 return -ENOTUNIQ;
2627
2628         /*
2629          * Create the admin queue
2630          */
2631
2632         nvme_fc_init_queue(ctrl, 0);
2633
2634         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2635                                 NVME_AQ_BLK_MQ_DEPTH);
2636         if (ret)
2637                 goto out_free_queue;
2638
2639         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2640                                 NVME_AQ_BLK_MQ_DEPTH,
2641                                 (NVME_AQ_BLK_MQ_DEPTH / 4));
2642         if (ret)
2643                 goto out_delete_hw_queue;
2644
2645         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2646                 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2647
2648         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2649         if (ret)
2650                 goto out_disconnect_admin_queue;
2651
2652         set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2653
2654         /*
2655          * Check controller capabilities
2656          *
2657          * todo:- add code to check if ctrl attributes changed from
2658          * prior connection values
2659          */
2660
2661         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2662         if (ret) {
2663                 dev_err(ctrl->ctrl.device,
2664                         "prop_get NVME_REG_CAP failed\n");
2665                 goto out_disconnect_admin_queue;
2666         }
2667
2668         ctrl->ctrl.sqsize =
2669                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2670
2671         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2672         if (ret)
2673                 goto out_disconnect_admin_queue;
2674
2675         ctrl->ctrl.max_hw_sectors =
2676                 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2677
2678         ret = nvme_init_identify(&ctrl->ctrl);
2679         if (ret)
2680                 goto out_disconnect_admin_queue;
2681
2682         /* sanity checks */
2683
2684         /* FC-NVME does not have other data in the capsule */
2685         if (ctrl->ctrl.icdoff) {
2686                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2687                                 ctrl->ctrl.icdoff);
2688                 goto out_disconnect_admin_queue;
2689         }
2690
2691         /* FC-NVME supports normal SGL Data Block Descriptors */
2692
2693         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2694                 /* warn if maxcmd is lower than queue_size */
2695                 dev_warn(ctrl->ctrl.device,
2696                         "queue_size %zu > ctrl maxcmd %u, reducing "
2697                         "to queue_size\n",
2698                         opts->queue_size, ctrl->ctrl.maxcmd);
2699                 opts->queue_size = ctrl->ctrl.maxcmd;
2700         }
2701
2702         ret = nvme_fc_init_aen_ops(ctrl);
2703         if (ret)
2704                 goto out_term_aen_ops;
2705
2706         /*
2707          * Create the io queues
2708          */
2709
2710         if (ctrl->ctrl.queue_count > 1) {
2711                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2712                         ret = nvme_fc_create_io_queues(ctrl);
2713                 else
2714                         ret = nvme_fc_reinit_io_queues(ctrl);
2715                 if (ret)
2716                         goto out_term_aen_ops;
2717         }
2718
2719         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2720
2721         ctrl->ctrl.nr_reconnects = 0;
2722
2723         if (changed)
2724                 nvme_start_ctrl(&ctrl->ctrl);
2725
2726         return 0;       /* Success */
2727
2728 out_term_aen_ops:
2729         nvme_fc_term_aen_ops(ctrl);
2730 out_disconnect_admin_queue:
2731         /* send a Disconnect(association) LS to fc-nvme target */
2732         nvme_fc_xmt_disconnect_assoc(ctrl);
2733 out_delete_hw_queue:
2734         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2735 out_free_queue:
2736         nvme_fc_free_queue(&ctrl->queues[0]);
2737         ctrl->assoc_active = false;
2738         nvme_fc_ctlr_inactive_on_rport(ctrl);
2739
2740         return ret;
2741 }
2742
2743 /*
2744  * This routine stops operation of the controller on the host side.
2745  * On the host os stack side: Admin and IO queues are stopped,
2746  *   outstanding ios on them terminated via FC ABTS.
2747  * On the link side: the association is terminated.
2748  */
2749 static void
2750 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2751 {
2752         unsigned long flags;
2753
2754         if (!ctrl->assoc_active)
2755                 return;
2756         ctrl->assoc_active = false;
2757
2758         spin_lock_irqsave(&ctrl->lock, flags);
2759         ctrl->flags |= FCCTRL_TERMIO;
2760         ctrl->iocnt = 0;
2761         spin_unlock_irqrestore(&ctrl->lock, flags);
2762
2763         /*
2764          * If io queues are present, stop them and terminate all outstanding
2765          * ios on them. As FC allocates FC exchange for each io, the
2766          * transport must contact the LLDD to terminate the exchange,
2767          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2768          * to tell us what io's are busy and invoke a transport routine
2769          * to kill them with the LLDD.  After terminating the exchange
2770          * the LLDD will call the transport's normal io done path, but it
2771          * will have an aborted status. The done path will return the
2772          * io requests back to the block layer as part of normal completions
2773          * (but with error status).
2774          */
2775         if (ctrl->ctrl.queue_count > 1) {
2776                 nvme_stop_queues(&ctrl->ctrl);
2777                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2778                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2779         }
2780
2781         /*
2782          * Other transports, which don't have link-level contexts bound
2783          * to sqe's, would try to gracefully shutdown the controller by
2784          * writing the registers for shutdown and polling (call
2785          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2786          * just aborted and we will wait on those contexts, and given
2787          * there was no indication of how live the controlelr is on the
2788          * link, don't send more io to create more contexts for the
2789          * shutdown. Let the controller fail via keepalive failure if
2790          * its still present.
2791          */
2792
2793         /*
2794          * clean up the admin queue. Same thing as above.
2795          * use blk_mq_tagset_busy_itr() and the transport routine to
2796          * terminate the exchanges.
2797          */
2798         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2799                 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2800         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2801                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2802
2803         /* kill the aens as they are a separate path */
2804         nvme_fc_abort_aen_ops(ctrl);
2805
2806         /* wait for all io that had to be aborted */
2807         spin_lock_irq(&ctrl->lock);
2808         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2809         ctrl->flags &= ~FCCTRL_TERMIO;
2810         spin_unlock_irq(&ctrl->lock);
2811
2812         nvme_fc_term_aen_ops(ctrl);
2813
2814         /*
2815          * send a Disconnect(association) LS to fc-nvme target
2816          * Note: could have been sent at top of process, but
2817          * cleaner on link traffic if after the aborts complete.
2818          * Note: if association doesn't exist, association_id will be 0
2819          */
2820         if (ctrl->association_id)
2821                 nvme_fc_xmt_disconnect_assoc(ctrl);
2822
2823         if (ctrl->ctrl.tagset) {
2824                 nvme_fc_delete_hw_io_queues(ctrl);
2825                 nvme_fc_free_io_queues(ctrl);
2826         }
2827
2828         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2829         nvme_fc_free_queue(&ctrl->queues[0]);
2830
2831         /* re-enable the admin_q so anything new can fast fail */
2832         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2833
2834         nvme_fc_ctlr_inactive_on_rport(ctrl);
2835 }
2836
2837 static void
2838 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2839 {
2840         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2841
2842         cancel_delayed_work_sync(&ctrl->connect_work);
2843         /*
2844          * kill the association on the link side.  this will block
2845          * waiting for io to terminate
2846          */
2847         nvme_fc_delete_association(ctrl);
2848
2849         /* resume the io queues so that things will fast fail */
2850         nvme_start_queues(nctrl);
2851 }
2852
2853 static void
2854 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2855 {
2856         struct nvme_fc_rport *rport = ctrl->rport;
2857         struct nvme_fc_remote_port *portptr = &rport->remoteport;
2858         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2859         bool recon = true;
2860
2861         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2862                 return;
2863
2864         if (portptr->port_state == FC_OBJSTATE_ONLINE)
2865                 dev_info(ctrl->ctrl.device,
2866                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2867                         ctrl->cnum, status);
2868         else if (time_after_eq(jiffies, rport->dev_loss_end))
2869                 recon = false;
2870
2871         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2872                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2873                         dev_info(ctrl->ctrl.device,
2874                                 "NVME-FC{%d}: Reconnect attempt in %ld "
2875                                 "seconds\n",
2876                                 ctrl->cnum, recon_delay / HZ);
2877                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2878                         recon_delay = rport->dev_loss_end - jiffies;
2879
2880                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2881         } else {
2882                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2883                         dev_warn(ctrl->ctrl.device,
2884                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2885                                 "reached. Removing controller\n",
2886                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2887                 else
2888                         dev_warn(ctrl->ctrl.device,
2889                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2890                                 "while waiting for remoteport connectivity. "
2891                                 "Removing controller\n", ctrl->cnum,
2892                                 portptr->dev_loss_tmo);
2893                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2894         }
2895 }
2896
2897 static void
2898 nvme_fc_reset_ctrl_work(struct work_struct *work)
2899 {
2900         struct nvme_fc_ctrl *ctrl =
2901                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2902         int ret;
2903
2904         nvme_stop_ctrl(&ctrl->ctrl);
2905
2906         /* will block will waiting for io to terminate */
2907         nvme_fc_delete_association(ctrl);
2908
2909         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2910                 dev_err(ctrl->ctrl.device,
2911                         "NVME-FC{%d}: error_recovery: Couldn't change state "
2912                         "to CONNECTING\n", ctrl->cnum);
2913                 return;
2914         }
2915
2916         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2917                 ret = nvme_fc_create_association(ctrl);
2918         else
2919                 ret = -ENOTCONN;
2920
2921         if (ret)
2922                 nvme_fc_reconnect_or_delete(ctrl, ret);
2923         else
2924                 dev_info(ctrl->ctrl.device,
2925                         "NVME-FC{%d}: controller reset complete\n",
2926                         ctrl->cnum);
2927 }
2928
2929 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2930         .name                   = "fc",
2931         .module                 = THIS_MODULE,
2932         .flags                  = NVME_F_FABRICS,
2933         .reg_read32             = nvmf_reg_read32,
2934         .reg_read64             = nvmf_reg_read64,
2935         .reg_write32            = nvmf_reg_write32,
2936         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2937         .submit_async_event     = nvme_fc_submit_async_event,
2938         .delete_ctrl            = nvme_fc_delete_ctrl,
2939         .get_address            = nvmf_get_address,
2940         .reinit_request         = nvme_fc_reinit_request,
2941 };
2942
2943 static void
2944 nvme_fc_connect_ctrl_work(struct work_struct *work)
2945 {
2946         int ret;
2947
2948         struct nvme_fc_ctrl *ctrl =
2949                         container_of(to_delayed_work(work),
2950                                 struct nvme_fc_ctrl, connect_work);
2951
2952         ret = nvme_fc_create_association(ctrl);
2953         if (ret)
2954                 nvme_fc_reconnect_or_delete(ctrl, ret);
2955         else
2956                 dev_info(ctrl->ctrl.device,
2957                         "NVME-FC{%d}: controller reconnect complete\n",
2958                         ctrl->cnum);
2959 }
2960
2961
2962 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2963         .queue_rq       = nvme_fc_queue_rq,
2964         .complete       = nvme_fc_complete_rq,
2965         .init_request   = nvme_fc_init_request,
2966         .exit_request   = nvme_fc_exit_request,
2967         .init_hctx      = nvme_fc_init_admin_hctx,
2968         .timeout        = nvme_fc_timeout,
2969 };
2970
2971
2972 /*
2973  * Fails a controller request if it matches an existing controller
2974  * (association) with the same tuple:
2975  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2976  *
2977  * The ports don't need to be compared as they are intrinsically
2978  * already matched by the port pointers supplied.
2979  */
2980 static bool
2981 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
2982                 struct nvmf_ctrl_options *opts)
2983 {
2984         struct nvme_fc_ctrl *ctrl;
2985         unsigned long flags;
2986         bool found = false;
2987
2988         spin_lock_irqsave(&rport->lock, flags);
2989         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
2990                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
2991                 if (found)
2992                         break;
2993         }
2994         spin_unlock_irqrestore(&rport->lock, flags);
2995
2996         return found;
2997 }
2998
2999 static struct nvme_ctrl *
3000 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3001         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3002 {
3003         struct nvme_fc_ctrl *ctrl;
3004         unsigned long flags;
3005         int ret, idx, retry;
3006
3007         if (!(rport->remoteport.port_role &
3008             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3009                 ret = -EBADR;
3010                 goto out_fail;
3011         }
3012
3013         if (!opts->duplicate_connect &&
3014             nvme_fc_existing_controller(rport, opts)) {
3015                 ret = -EALREADY;
3016                 goto out_fail;
3017         }
3018
3019         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3020         if (!ctrl) {
3021                 ret = -ENOMEM;
3022                 goto out_fail;
3023         }
3024
3025         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3026         if (idx < 0) {
3027                 ret = -ENOSPC;
3028                 goto out_free_ctrl;
3029         }
3030
3031         ctrl->ctrl.opts = opts;
3032         INIT_LIST_HEAD(&ctrl->ctrl_list);
3033         ctrl->lport = lport;
3034         ctrl->rport = rport;
3035         ctrl->dev = lport->dev;
3036         ctrl->cnum = idx;
3037         ctrl->assoc_active = false;
3038         init_waitqueue_head(&ctrl->ioabort_wait);
3039
3040         get_device(ctrl->dev);
3041         kref_init(&ctrl->ref);
3042
3043         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3044         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3045         spin_lock_init(&ctrl->lock);
3046
3047         /* io queue count */
3048         ctrl->ctrl.queue_count = min_t(unsigned int,
3049                                 opts->nr_io_queues,
3050                                 lport->ops->max_hw_queues);
3051         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3052
3053         ctrl->ctrl.sqsize = opts->queue_size - 1;
3054         ctrl->ctrl.kato = opts->kato;
3055
3056         ret = -ENOMEM;
3057         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3058                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3059         if (!ctrl->queues)
3060                 goto out_free_ida;
3061
3062         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3063         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3064         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3065         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3066         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3067         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3068                                         (SG_CHUNK_SIZE *
3069                                                 sizeof(struct scatterlist)) +
3070                                         ctrl->lport->ops->fcprqst_priv_sz;
3071         ctrl->admin_tag_set.driver_data = ctrl;
3072         ctrl->admin_tag_set.nr_hw_queues = 1;
3073         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3074         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3075
3076         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3077         if (ret)
3078                 goto out_free_queues;
3079         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3080
3081         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3082         if (IS_ERR(ctrl->ctrl.admin_q)) {
3083                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3084                 goto out_free_admin_tag_set;
3085         }
3086
3087         /*
3088          * Would have been nice to init io queues tag set as well.
3089          * However, we require interaction from the controller
3090          * for max io queue count before we can do so.
3091          * Defer this to the connect path.
3092          */
3093
3094         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3095         if (ret)
3096                 goto out_cleanup_admin_q;
3097
3098         /* at this point, teardown path changes to ref counting on nvme ctrl */
3099
3100         spin_lock_irqsave(&rport->lock, flags);
3101         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3102         spin_unlock_irqrestore(&rport->lock, flags);
3103
3104         /*
3105          * It's possible that transactions used to create the association
3106          * may fail. Examples: CreateAssociation LS or CreateIOConnection
3107          * LS gets dropped/corrupted/fails; or a frame gets dropped or a
3108          * command times out for one of the actions to init the controller
3109          * (Connect, Get/Set_Property, Set_Features, etc). Many of these
3110          * transport errors (frame drop, LS failure) inherently must kill
3111          * the association. The transport is coded so that any command used
3112          * to create the association (prior to a LIVE state transition
3113          * while NEW or CONNECTING) will fail if it completes in error or
3114          * times out.
3115          *
3116          * As such: as the connect request was mostly likely due to a
3117          * udev event that discovered the remote port, meaning there is
3118          * not an admin or script there to restart if the connect
3119          * request fails, retry the initial connection creation up to
3120          * three times before giving up and declaring failure.
3121          */
3122         for (retry = 0; retry < 3; retry++) {
3123                 ret = nvme_fc_create_association(ctrl);
3124                 if (!ret)
3125                         break;
3126         }
3127
3128         if (ret) {
3129                 /* couldn't schedule retry - fail out */
3130                 dev_err(ctrl->ctrl.device,
3131                         "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
3132
3133                 ctrl->ctrl.opts = NULL;
3134
3135                 /* initiate nvme ctrl ref counting teardown */
3136                 nvme_uninit_ctrl(&ctrl->ctrl);
3137
3138                 /* Remove core ctrl ref. */
3139                 nvme_put_ctrl(&ctrl->ctrl);
3140
3141                 /* as we're past the point where we transition to the ref
3142                  * counting teardown path, if we return a bad pointer here,
3143                  * the calling routine, thinking it's prior to the
3144                  * transition, will do an rport put. Since the teardown
3145                  * path also does a rport put, we do an extra get here to
3146                  * so proper order/teardown happens.
3147                  */
3148                 nvme_fc_rport_get(rport);
3149
3150                 if (ret > 0)
3151                         ret = -EIO;
3152                 return ERR_PTR(ret);
3153         }
3154
3155         nvme_get_ctrl(&ctrl->ctrl);
3156
3157         dev_info(ctrl->ctrl.device,
3158                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3159                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3160
3161         return &ctrl->ctrl;
3162
3163 out_cleanup_admin_q:
3164         blk_cleanup_queue(ctrl->ctrl.admin_q);
3165 out_free_admin_tag_set:
3166         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3167 out_free_queues:
3168         kfree(ctrl->queues);
3169 out_free_ida:
3170         put_device(ctrl->dev);
3171         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3172 out_free_ctrl:
3173         kfree(ctrl);
3174 out_fail:
3175         /* exit via here doesn't follow ctlr ref points */
3176         return ERR_PTR(ret);
3177 }
3178
3179
3180 struct nvmet_fc_traddr {
3181         u64     nn;
3182         u64     pn;
3183 };
3184
3185 static int
3186 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3187 {
3188         u64 token64;
3189
3190         if (match_u64(sstr, &token64))
3191                 return -EINVAL;
3192         *val = token64;
3193
3194         return 0;
3195 }
3196
3197 /*
3198  * This routine validates and extracts the WWN's from the TRADDR string.
3199  * As kernel parsers need the 0x to determine number base, universally
3200  * build string to parse with 0x prefix before parsing name strings.
3201  */
3202 static int
3203 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3204 {
3205         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3206         substring_t wwn = { name, &name[sizeof(name)-1] };
3207         int nnoffset, pnoffset;
3208
3209         /* validate it string one of the 2 allowed formats */
3210         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3211                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3212                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3213                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3214                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3215                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3216                                                 NVME_FC_TRADDR_OXNNLEN;
3217         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3218                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3219                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3220                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3221                 nnoffset = NVME_FC_TRADDR_NNLEN;
3222                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3223         } else
3224                 goto out_einval;
3225
3226         name[0] = '0';
3227         name[1] = 'x';
3228         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3229
3230         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3231         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3232                 goto out_einval;
3233
3234         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3235         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3236                 goto out_einval;
3237
3238         return 0;
3239
3240 out_einval:
3241         pr_warn("%s: bad traddr string\n", __func__);
3242         return -EINVAL;
3243 }
3244
3245 static struct nvme_ctrl *
3246 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3247 {
3248         struct nvme_fc_lport *lport;
3249         struct nvme_fc_rport *rport;
3250         struct nvme_ctrl *ctrl;
3251         struct nvmet_fc_traddr laddr = { 0L, 0L };
3252         struct nvmet_fc_traddr raddr = { 0L, 0L };
3253         unsigned long flags;
3254         int ret;
3255
3256         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3257         if (ret || !raddr.nn || !raddr.pn)
3258                 return ERR_PTR(-EINVAL);
3259
3260         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3261         if (ret || !laddr.nn || !laddr.pn)
3262                 return ERR_PTR(-EINVAL);
3263
3264         /* find the host and remote ports to connect together */
3265         spin_lock_irqsave(&nvme_fc_lock, flags);
3266         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3267                 if (lport->localport.node_name != laddr.nn ||
3268                     lport->localport.port_name != laddr.pn)
3269                         continue;
3270
3271                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3272                         if (rport->remoteport.node_name != raddr.nn ||
3273                             rport->remoteport.port_name != raddr.pn)
3274                                 continue;
3275
3276                         /* if fail to get reference fall through. Will error */
3277                         if (!nvme_fc_rport_get(rport))
3278                                 break;
3279
3280                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3281
3282                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3283                         if (IS_ERR(ctrl))
3284                                 nvme_fc_rport_put(rport);
3285                         return ctrl;
3286                 }
3287         }
3288         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3289
3290         return ERR_PTR(-ENOENT);
3291 }
3292
3293
3294 static struct nvmf_transport_ops nvme_fc_transport = {
3295         .name           = "fc",
3296         .module         = THIS_MODULE,
3297         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3298         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3299         .create_ctrl    = nvme_fc_create_ctrl,
3300 };
3301
3302 static int __init nvme_fc_init_module(void)
3303 {
3304         int ret;
3305
3306         /*
3307          * NOTE:
3308          * It is expected that in the future the kernel will combine
3309          * the FC-isms that are currently under scsi and now being
3310          * added to by NVME into a new standalone FC class. The SCSI
3311          * and NVME protocols and their devices would be under this
3312          * new FC class.
3313          *
3314          * As we need something to post FC-specific udev events to,
3315          * specifically for nvme probe events, start by creating the
3316          * new device class.  When the new standalone FC class is
3317          * put in place, this code will move to a more generic
3318          * location for the class.
3319          */
3320         fc_class = class_create(THIS_MODULE, "fc");
3321         if (IS_ERR(fc_class)) {
3322                 pr_err("couldn't register class fc\n");
3323                 return PTR_ERR(fc_class);
3324         }
3325
3326         /*
3327          * Create a device for the FC-centric udev events
3328          */
3329         fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3330                                 "fc_udev_device");
3331         if (IS_ERR(fc_udev_device)) {
3332                 pr_err("couldn't create fc_udev device!\n");
3333                 ret = PTR_ERR(fc_udev_device);
3334                 goto out_destroy_class;
3335         }
3336
3337         ret = nvmf_register_transport(&nvme_fc_transport);
3338         if (ret)
3339                 goto out_destroy_device;
3340
3341         return 0;
3342
3343 out_destroy_device:
3344         device_destroy(fc_class, MKDEV(0, 0));
3345 out_destroy_class:
3346         class_destroy(fc_class);
3347         return ret;
3348 }
3349
3350 static void __exit nvme_fc_exit_module(void)
3351 {
3352         /* sanity check - all lports should be removed */
3353         if (!list_empty(&nvme_fc_lport_list))
3354                 pr_warn("%s: localport list not empty\n", __func__);
3355
3356         nvmf_unregister_transport(&nvme_fc_transport);
3357
3358         ida_destroy(&nvme_fc_local_port_cnt);
3359         ida_destroy(&nvme_fc_ctrl_cnt);
3360
3361         device_destroy(fc_class, MKDEV(0, 0));
3362         class_destroy(fc_class);
3363 }
3364
3365 module_init(nvme_fc_init_module);
3366 module_exit(nvme_fc_exit_module);
3367
3368 MODULE_LICENSE("GPL v2");