lightnvm: flatten nvm_id_group into nvm_id
[linux-2.6-microblaze.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 enum nvme_fc_queue_flags {
34         NVME_FC_Q_CONNECTED = 0,
35         NVME_FC_Q_LIVE,
36 };
37
38 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
39
40 struct nvme_fc_queue {
41         struct nvme_fc_ctrl     *ctrl;
42         struct device           *dev;
43         struct blk_mq_hw_ctx    *hctx;
44         void                    *lldd_handle;
45         size_t                  cmnd_capsule_len;
46         u32                     qnum;
47         u32                     rqcnt;
48         u32                     seqno;
49
50         u64                     connection_id;
51         atomic_t                csn;
52
53         unsigned long           flags;
54 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
55
56 enum nvme_fcop_flags {
57         FCOP_FLAGS_TERMIO       = (1 << 0),
58         FCOP_FLAGS_AEN          = (1 << 1),
59 };
60
61 struct nvmefc_ls_req_op {
62         struct nvmefc_ls_req    ls_req;
63
64         struct nvme_fc_rport    *rport;
65         struct nvme_fc_queue    *queue;
66         struct request          *rq;
67         u32                     flags;
68
69         int                     ls_error;
70         struct completion       ls_done;
71         struct list_head        lsreq_list;     /* rport->ls_req_list */
72         bool                    req_queued;
73 };
74
75 enum nvme_fcpop_state {
76         FCPOP_STATE_UNINIT      = 0,
77         FCPOP_STATE_IDLE        = 1,
78         FCPOP_STATE_ACTIVE      = 2,
79         FCPOP_STATE_ABORTED     = 3,
80         FCPOP_STATE_COMPLETE    = 4,
81 };
82
83 struct nvme_fc_fcp_op {
84         struct nvme_request     nreq;           /*
85                                                  * nvme/host/core.c
86                                                  * requires this to be
87                                                  * the 1st element in the
88                                                  * private structure
89                                                  * associated with the
90                                                  * request.
91                                                  */
92         struct nvmefc_fcp_req   fcp_req;
93
94         struct nvme_fc_ctrl     *ctrl;
95         struct nvme_fc_queue    *queue;
96         struct request          *rq;
97
98         atomic_t                state;
99         u32                     flags;
100         u32                     rqno;
101         u32                     nents;
102
103         struct nvme_fc_cmd_iu   cmd_iu;
104         struct nvme_fc_ersp_iu  rsp_iu;
105 };
106
107 struct nvme_fc_lport {
108         struct nvme_fc_local_port       localport;
109
110         struct ida                      endp_cnt;
111         struct list_head                port_list;      /* nvme_fc_port_list */
112         struct list_head                endp_list;
113         struct device                   *dev;   /* physical device for dma */
114         struct nvme_fc_port_template    *ops;
115         struct kref                     ref;
116         atomic_t                        act_rport_cnt;
117 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
118
119 struct nvme_fc_rport {
120         struct nvme_fc_remote_port      remoteport;
121
122         struct list_head                endp_list; /* for lport->endp_list */
123         struct list_head                ctrl_list;
124         struct list_head                ls_req_list;
125         struct device                   *dev;   /* physical device for dma */
126         struct nvme_fc_lport            *lport;
127         spinlock_t                      lock;
128         struct kref                     ref;
129         atomic_t                        act_ctrl_cnt;
130         unsigned long                   dev_loss_end;
131 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
132
133 enum nvme_fcctrl_flags {
134         FCCTRL_TERMIO           = (1 << 0),
135 };
136
137 struct nvme_fc_ctrl {
138         spinlock_t              lock;
139         struct nvme_fc_queue    *queues;
140         struct device           *dev;
141         struct nvme_fc_lport    *lport;
142         struct nvme_fc_rport    *rport;
143         u32                     cnum;
144
145         bool                    assoc_active;
146         u64                     association_id;
147
148         struct list_head        ctrl_list;      /* rport->ctrl_list */
149
150         struct blk_mq_tag_set   admin_tag_set;
151         struct blk_mq_tag_set   tag_set;
152
153         struct delayed_work     connect_work;
154
155         struct kref             ref;
156         u32                     flags;
157         u32                     iocnt;
158         wait_queue_head_t       ioabort_wait;
159
160         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
161
162         struct nvme_ctrl        ctrl;
163 };
164
165 static inline struct nvme_fc_ctrl *
166 to_fc_ctrl(struct nvme_ctrl *ctrl)
167 {
168         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
169 }
170
171 static inline struct nvme_fc_lport *
172 localport_to_lport(struct nvme_fc_local_port *portptr)
173 {
174         return container_of(portptr, struct nvme_fc_lport, localport);
175 }
176
177 static inline struct nvme_fc_rport *
178 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
179 {
180         return container_of(portptr, struct nvme_fc_rport, remoteport);
181 }
182
183 static inline struct nvmefc_ls_req_op *
184 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
185 {
186         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
187 }
188
189 static inline struct nvme_fc_fcp_op *
190 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
191 {
192         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
193 }
194
195
196
197 /* *************************** Globals **************************** */
198
199
200 static DEFINE_SPINLOCK(nvme_fc_lock);
201
202 static LIST_HEAD(nvme_fc_lport_list);
203 static DEFINE_IDA(nvme_fc_local_port_cnt);
204 static DEFINE_IDA(nvme_fc_ctrl_cnt);
205
206
207
208 /*
209  * These items are short-term. They will eventually be moved into
210  * a generic FC class. See comments in module init.
211  */
212 static struct class *fc_class;
213 static struct device *fc_udev_device;
214
215
216 /* *********************** FC-NVME Port Management ************************ */
217
218 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
219                         struct nvme_fc_queue *, unsigned int);
220
221 static void
222 nvme_fc_free_lport(struct kref *ref)
223 {
224         struct nvme_fc_lport *lport =
225                 container_of(ref, struct nvme_fc_lport, ref);
226         unsigned long flags;
227
228         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
229         WARN_ON(!list_empty(&lport->endp_list));
230
231         /* remove from transport list */
232         spin_lock_irqsave(&nvme_fc_lock, flags);
233         list_del(&lport->port_list);
234         spin_unlock_irqrestore(&nvme_fc_lock, flags);
235
236         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
237         ida_destroy(&lport->endp_cnt);
238
239         put_device(lport->dev);
240
241         kfree(lport);
242 }
243
244 static void
245 nvme_fc_lport_put(struct nvme_fc_lport *lport)
246 {
247         kref_put(&lport->ref, nvme_fc_free_lport);
248 }
249
250 static int
251 nvme_fc_lport_get(struct nvme_fc_lport *lport)
252 {
253         return kref_get_unless_zero(&lport->ref);
254 }
255
256
257 static struct nvme_fc_lport *
258 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
259                         struct nvme_fc_port_template *ops,
260                         struct device *dev)
261 {
262         struct nvme_fc_lport *lport;
263         unsigned long flags;
264
265         spin_lock_irqsave(&nvme_fc_lock, flags);
266
267         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
268                 if (lport->localport.node_name != pinfo->node_name ||
269                     lport->localport.port_name != pinfo->port_name)
270                         continue;
271
272                 if (lport->dev != dev) {
273                         lport = ERR_PTR(-EXDEV);
274                         goto out_done;
275                 }
276
277                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
278                         lport = ERR_PTR(-EEXIST);
279                         goto out_done;
280                 }
281
282                 if (!nvme_fc_lport_get(lport)) {
283                         /*
284                          * fails if ref cnt already 0. If so,
285                          * act as if lport already deleted
286                          */
287                         lport = NULL;
288                         goto out_done;
289                 }
290
291                 /* resume the lport */
292
293                 lport->ops = ops;
294                 lport->localport.port_role = pinfo->port_role;
295                 lport->localport.port_id = pinfo->port_id;
296                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
297
298                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
299
300                 return lport;
301         }
302
303         lport = NULL;
304
305 out_done:
306         spin_unlock_irqrestore(&nvme_fc_lock, flags);
307
308         return lport;
309 }
310
311 /**
312  * nvme_fc_register_localport - transport entry point called by an
313  *                              LLDD to register the existence of a NVME
314  *                              host FC port.
315  * @pinfo:     pointer to information about the port to be registered
316  * @template:  LLDD entrypoints and operational parameters for the port
317  * @dev:       physical hardware device node port corresponds to. Will be
318  *             used for DMA mappings
319  * @lport_p:   pointer to a local port pointer. Upon success, the routine
320  *             will allocate a nvme_fc_local_port structure and place its
321  *             address in the local port pointer. Upon failure, local port
322  *             pointer will be set to 0.
323  *
324  * Returns:
325  * a completion status. Must be 0 upon success; a negative errno
326  * (ex: -ENXIO) upon failure.
327  */
328 int
329 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
330                         struct nvme_fc_port_template *template,
331                         struct device *dev,
332                         struct nvme_fc_local_port **portptr)
333 {
334         struct nvme_fc_lport *newrec;
335         unsigned long flags;
336         int ret, idx;
337
338         if (!template->localport_delete || !template->remoteport_delete ||
339             !template->ls_req || !template->fcp_io ||
340             !template->ls_abort || !template->fcp_abort ||
341             !template->max_hw_queues || !template->max_sgl_segments ||
342             !template->max_dif_sgl_segments || !template->dma_boundary) {
343                 ret = -EINVAL;
344                 goto out_reghost_failed;
345         }
346
347         /*
348          * look to see if there is already a localport that had been
349          * deregistered and in the process of waiting for all the
350          * references to fully be removed.  If the references haven't
351          * expired, we can simply re-enable the localport. Remoteports
352          * and controller reconnections should resume naturally.
353          */
354         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
355
356         /* found an lport, but something about its state is bad */
357         if (IS_ERR(newrec)) {
358                 ret = PTR_ERR(newrec);
359                 goto out_reghost_failed;
360
361         /* found existing lport, which was resumed */
362         } else if (newrec) {
363                 *portptr = &newrec->localport;
364                 return 0;
365         }
366
367         /* nothing found - allocate a new localport struct */
368
369         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
370                          GFP_KERNEL);
371         if (!newrec) {
372                 ret = -ENOMEM;
373                 goto out_reghost_failed;
374         }
375
376         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
377         if (idx < 0) {
378                 ret = -ENOSPC;
379                 goto out_fail_kfree;
380         }
381
382         if (!get_device(dev) && dev) {
383                 ret = -ENODEV;
384                 goto out_ida_put;
385         }
386
387         INIT_LIST_HEAD(&newrec->port_list);
388         INIT_LIST_HEAD(&newrec->endp_list);
389         kref_init(&newrec->ref);
390         atomic_set(&newrec->act_rport_cnt, 0);
391         newrec->ops = template;
392         newrec->dev = dev;
393         ida_init(&newrec->endp_cnt);
394         newrec->localport.private = &newrec[1];
395         newrec->localport.node_name = pinfo->node_name;
396         newrec->localport.port_name = pinfo->port_name;
397         newrec->localport.port_role = pinfo->port_role;
398         newrec->localport.port_id = pinfo->port_id;
399         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
400         newrec->localport.port_num = idx;
401
402         spin_lock_irqsave(&nvme_fc_lock, flags);
403         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
404         spin_unlock_irqrestore(&nvme_fc_lock, flags);
405
406         if (dev)
407                 dma_set_seg_boundary(dev, template->dma_boundary);
408
409         *portptr = &newrec->localport;
410         return 0;
411
412 out_ida_put:
413         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
414 out_fail_kfree:
415         kfree(newrec);
416 out_reghost_failed:
417         *portptr = NULL;
418
419         return ret;
420 }
421 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
422
423 /**
424  * nvme_fc_unregister_localport - transport entry point called by an
425  *                              LLDD to deregister/remove a previously
426  *                              registered a NVME host FC port.
427  * @localport: pointer to the (registered) local port that is to be
428  *             deregistered.
429  *
430  * Returns:
431  * a completion status. Must be 0 upon success; a negative errno
432  * (ex: -ENXIO) upon failure.
433  */
434 int
435 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
436 {
437         struct nvme_fc_lport *lport = localport_to_lport(portptr);
438         unsigned long flags;
439
440         if (!portptr)
441                 return -EINVAL;
442
443         spin_lock_irqsave(&nvme_fc_lock, flags);
444
445         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
446                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
447                 return -EINVAL;
448         }
449         portptr->port_state = FC_OBJSTATE_DELETED;
450
451         spin_unlock_irqrestore(&nvme_fc_lock, flags);
452
453         if (atomic_read(&lport->act_rport_cnt) == 0)
454                 lport->ops->localport_delete(&lport->localport);
455
456         nvme_fc_lport_put(lport);
457
458         return 0;
459 }
460 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
461
462 /*
463  * TRADDR strings, per FC-NVME are fixed format:
464  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
465  * udev event will only differ by prefix of what field is
466  * being specified:
467  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
468  *  19 + 43 + null_fudge = 64 characters
469  */
470 #define FCNVME_TRADDR_LENGTH            64
471
472 static void
473 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
474                 struct nvme_fc_rport *rport)
475 {
476         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
477         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
478         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
479
480         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
481                 return;
482
483         snprintf(hostaddr, sizeof(hostaddr),
484                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
485                 lport->localport.node_name, lport->localport.port_name);
486         snprintf(tgtaddr, sizeof(tgtaddr),
487                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
488                 rport->remoteport.node_name, rport->remoteport.port_name);
489         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
490 }
491
492 static void
493 nvme_fc_free_rport(struct kref *ref)
494 {
495         struct nvme_fc_rport *rport =
496                 container_of(ref, struct nvme_fc_rport, ref);
497         struct nvme_fc_lport *lport =
498                         localport_to_lport(rport->remoteport.localport);
499         unsigned long flags;
500
501         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
502         WARN_ON(!list_empty(&rport->ctrl_list));
503
504         /* remove from lport list */
505         spin_lock_irqsave(&nvme_fc_lock, flags);
506         list_del(&rport->endp_list);
507         spin_unlock_irqrestore(&nvme_fc_lock, flags);
508
509         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
510
511         kfree(rport);
512
513         nvme_fc_lport_put(lport);
514 }
515
516 static void
517 nvme_fc_rport_put(struct nvme_fc_rport *rport)
518 {
519         kref_put(&rport->ref, nvme_fc_free_rport);
520 }
521
522 static int
523 nvme_fc_rport_get(struct nvme_fc_rport *rport)
524 {
525         return kref_get_unless_zero(&rport->ref);
526 }
527
528 static void
529 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
530 {
531         switch (ctrl->ctrl.state) {
532         case NVME_CTRL_NEW:
533         case NVME_CTRL_CONNECTING:
534                 /*
535                  * As all reconnects were suppressed, schedule a
536                  * connect.
537                  */
538                 dev_info(ctrl->ctrl.device,
539                         "NVME-FC{%d}: connectivity re-established. "
540                         "Attempting reconnect\n", ctrl->cnum);
541
542                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
543                 break;
544
545         case NVME_CTRL_RESETTING:
546                 /*
547                  * Controller is already in the process of terminating the
548                  * association. No need to do anything further. The reconnect
549                  * step will naturally occur after the reset completes.
550                  */
551                 break;
552
553         default:
554                 /* no action to take - let it delete */
555                 break;
556         }
557 }
558
559 static struct nvme_fc_rport *
560 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
561                                 struct nvme_fc_port_info *pinfo)
562 {
563         struct nvme_fc_rport *rport;
564         struct nvme_fc_ctrl *ctrl;
565         unsigned long flags;
566
567         spin_lock_irqsave(&nvme_fc_lock, flags);
568
569         list_for_each_entry(rport, &lport->endp_list, endp_list) {
570                 if (rport->remoteport.node_name != pinfo->node_name ||
571                     rport->remoteport.port_name != pinfo->port_name)
572                         continue;
573
574                 if (!nvme_fc_rport_get(rport)) {
575                         rport = ERR_PTR(-ENOLCK);
576                         goto out_done;
577                 }
578
579                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
580
581                 spin_lock_irqsave(&rport->lock, flags);
582
583                 /* has it been unregistered */
584                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
585                         /* means lldd called us twice */
586                         spin_unlock_irqrestore(&rport->lock, flags);
587                         nvme_fc_rport_put(rport);
588                         return ERR_PTR(-ESTALE);
589                 }
590
591                 rport->remoteport.port_role = pinfo->port_role;
592                 rport->remoteport.port_id = pinfo->port_id;
593                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
594                 rport->dev_loss_end = 0;
595
596                 /*
597                  * kick off a reconnect attempt on all associations to the
598                  * remote port. A successful reconnects will resume i/o.
599                  */
600                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
601                         nvme_fc_resume_controller(ctrl);
602
603                 spin_unlock_irqrestore(&rport->lock, flags);
604
605                 return rport;
606         }
607
608         rport = NULL;
609
610 out_done:
611         spin_unlock_irqrestore(&nvme_fc_lock, flags);
612
613         return rport;
614 }
615
616 static inline void
617 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
618                         struct nvme_fc_port_info *pinfo)
619 {
620         if (pinfo->dev_loss_tmo)
621                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
622         else
623                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
624 }
625
626 /**
627  * nvme_fc_register_remoteport - transport entry point called by an
628  *                              LLDD to register the existence of a NVME
629  *                              subsystem FC port on its fabric.
630  * @localport: pointer to the (registered) local port that the remote
631  *             subsystem port is connected to.
632  * @pinfo:     pointer to information about the port to be registered
633  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
634  *             will allocate a nvme_fc_remote_port structure and place its
635  *             address in the remote port pointer. Upon failure, remote port
636  *             pointer will be set to 0.
637  *
638  * Returns:
639  * a completion status. Must be 0 upon success; a negative errno
640  * (ex: -ENXIO) upon failure.
641  */
642 int
643 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
644                                 struct nvme_fc_port_info *pinfo,
645                                 struct nvme_fc_remote_port **portptr)
646 {
647         struct nvme_fc_lport *lport = localport_to_lport(localport);
648         struct nvme_fc_rport *newrec;
649         unsigned long flags;
650         int ret, idx;
651
652         if (!nvme_fc_lport_get(lport)) {
653                 ret = -ESHUTDOWN;
654                 goto out_reghost_failed;
655         }
656
657         /*
658          * look to see if there is already a remoteport that is waiting
659          * for a reconnect (within dev_loss_tmo) with the same WWN's.
660          * If so, transition to it and reconnect.
661          */
662         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
663
664         /* found an rport, but something about its state is bad */
665         if (IS_ERR(newrec)) {
666                 ret = PTR_ERR(newrec);
667                 goto out_lport_put;
668
669         /* found existing rport, which was resumed */
670         } else if (newrec) {
671                 nvme_fc_lport_put(lport);
672                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
673                 nvme_fc_signal_discovery_scan(lport, newrec);
674                 *portptr = &newrec->remoteport;
675                 return 0;
676         }
677
678         /* nothing found - allocate a new remoteport struct */
679
680         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
681                          GFP_KERNEL);
682         if (!newrec) {
683                 ret = -ENOMEM;
684                 goto out_lport_put;
685         }
686
687         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
688         if (idx < 0) {
689                 ret = -ENOSPC;
690                 goto out_kfree_rport;
691         }
692
693         INIT_LIST_HEAD(&newrec->endp_list);
694         INIT_LIST_HEAD(&newrec->ctrl_list);
695         INIT_LIST_HEAD(&newrec->ls_req_list);
696         kref_init(&newrec->ref);
697         atomic_set(&newrec->act_ctrl_cnt, 0);
698         spin_lock_init(&newrec->lock);
699         newrec->remoteport.localport = &lport->localport;
700         newrec->dev = lport->dev;
701         newrec->lport = lport;
702         newrec->remoteport.private = &newrec[1];
703         newrec->remoteport.port_role = pinfo->port_role;
704         newrec->remoteport.node_name = pinfo->node_name;
705         newrec->remoteport.port_name = pinfo->port_name;
706         newrec->remoteport.port_id = pinfo->port_id;
707         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
708         newrec->remoteport.port_num = idx;
709         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
710
711         spin_lock_irqsave(&nvme_fc_lock, flags);
712         list_add_tail(&newrec->endp_list, &lport->endp_list);
713         spin_unlock_irqrestore(&nvme_fc_lock, flags);
714
715         nvme_fc_signal_discovery_scan(lport, newrec);
716
717         *portptr = &newrec->remoteport;
718         return 0;
719
720 out_kfree_rport:
721         kfree(newrec);
722 out_lport_put:
723         nvme_fc_lport_put(lport);
724 out_reghost_failed:
725         *portptr = NULL;
726         return ret;
727 }
728 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
729
730 static int
731 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
732 {
733         struct nvmefc_ls_req_op *lsop;
734         unsigned long flags;
735
736 restart:
737         spin_lock_irqsave(&rport->lock, flags);
738
739         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
740                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
741                         lsop->flags |= FCOP_FLAGS_TERMIO;
742                         spin_unlock_irqrestore(&rport->lock, flags);
743                         rport->lport->ops->ls_abort(&rport->lport->localport,
744                                                 &rport->remoteport,
745                                                 &lsop->ls_req);
746                         goto restart;
747                 }
748         }
749         spin_unlock_irqrestore(&rport->lock, flags);
750
751         return 0;
752 }
753
754 static void
755 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
756 {
757         dev_info(ctrl->ctrl.device,
758                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
759                 "Reconnect", ctrl->cnum);
760
761         switch (ctrl->ctrl.state) {
762         case NVME_CTRL_NEW:
763         case NVME_CTRL_LIVE:
764                 /*
765                  * Schedule a controller reset. The reset will terminate the
766                  * association and schedule the reconnect timer.  Reconnects
767                  * will be attempted until either the ctlr_loss_tmo
768                  * (max_retries * connect_delay) expires or the remoteport's
769                  * dev_loss_tmo expires.
770                  */
771                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
772                         dev_warn(ctrl->ctrl.device,
773                                 "NVME-FC{%d}: Couldn't schedule reset.\n",
774                                 ctrl->cnum);
775                         nvme_delete_ctrl(&ctrl->ctrl);
776                 }
777                 break;
778
779         case NVME_CTRL_CONNECTING:
780                 /*
781                  * The association has already been terminated and the
782                  * controller is attempting reconnects.  No need to do anything
783                  * futher.  Reconnects will be attempted until either the
784                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
785                  * remoteport's dev_loss_tmo expires.
786                  */
787                 break;
788
789         case NVME_CTRL_RESETTING:
790                 /*
791                  * Controller is already in the process of terminating the
792                  * association.  No need to do anything further. The reconnect
793                  * step will kick in naturally after the association is
794                  * terminated.
795                  */
796                 break;
797
798         case NVME_CTRL_DELETING:
799         default:
800                 /* no action to take - let it delete */
801                 break;
802         }
803 }
804
805 /**
806  * nvme_fc_unregister_remoteport - transport entry point called by an
807  *                              LLDD to deregister/remove a previously
808  *                              registered a NVME subsystem FC port.
809  * @remoteport: pointer to the (registered) remote port that is to be
810  *              deregistered.
811  *
812  * Returns:
813  * a completion status. Must be 0 upon success; a negative errno
814  * (ex: -ENXIO) upon failure.
815  */
816 int
817 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
818 {
819         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
820         struct nvme_fc_ctrl *ctrl;
821         unsigned long flags;
822
823         if (!portptr)
824                 return -EINVAL;
825
826         spin_lock_irqsave(&rport->lock, flags);
827
828         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
829                 spin_unlock_irqrestore(&rport->lock, flags);
830                 return -EINVAL;
831         }
832         portptr->port_state = FC_OBJSTATE_DELETED;
833
834         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
835
836         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
837                 /* if dev_loss_tmo==0, dev loss is immediate */
838                 if (!portptr->dev_loss_tmo) {
839                         dev_warn(ctrl->ctrl.device,
840                                 "NVME-FC{%d}: controller connectivity lost.\n",
841                                 ctrl->cnum);
842                         nvme_delete_ctrl(&ctrl->ctrl);
843                 } else
844                         nvme_fc_ctrl_connectivity_loss(ctrl);
845         }
846
847         spin_unlock_irqrestore(&rport->lock, flags);
848
849         nvme_fc_abort_lsops(rport);
850
851         if (atomic_read(&rport->act_ctrl_cnt) == 0)
852                 rport->lport->ops->remoteport_delete(portptr);
853
854         /*
855          * release the reference, which will allow, if all controllers
856          * go away, which should only occur after dev_loss_tmo occurs,
857          * for the rport to be torn down.
858          */
859         nvme_fc_rport_put(rport);
860
861         return 0;
862 }
863 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
864
865 /**
866  * nvme_fc_rescan_remoteport - transport entry point called by an
867  *                              LLDD to request a nvme device rescan.
868  * @remoteport: pointer to the (registered) remote port that is to be
869  *              rescanned.
870  *
871  * Returns: N/A
872  */
873 void
874 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
875 {
876         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
877
878         nvme_fc_signal_discovery_scan(rport->lport, rport);
879 }
880 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
881
882 int
883 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
884                         u32 dev_loss_tmo)
885 {
886         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
887         unsigned long flags;
888
889         spin_lock_irqsave(&rport->lock, flags);
890
891         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
892                 spin_unlock_irqrestore(&rport->lock, flags);
893                 return -EINVAL;
894         }
895
896         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
897         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
898
899         spin_unlock_irqrestore(&rport->lock, flags);
900
901         return 0;
902 }
903 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
904
905
906 /* *********************** FC-NVME DMA Handling **************************** */
907
908 /*
909  * The fcloop device passes in a NULL device pointer. Real LLD's will
910  * pass in a valid device pointer. If NULL is passed to the dma mapping
911  * routines, depending on the platform, it may or may not succeed, and
912  * may crash.
913  *
914  * As such:
915  * Wrapper all the dma routines and check the dev pointer.
916  *
917  * If simple mappings (return just a dma address, we'll noop them,
918  * returning a dma address of 0.
919  *
920  * On more complex mappings (dma_map_sg), a pseudo routine fills
921  * in the scatter list, setting all dma addresses to 0.
922  */
923
924 static inline dma_addr_t
925 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
926                 enum dma_data_direction dir)
927 {
928         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
929 }
930
931 static inline int
932 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
933 {
934         return dev ? dma_mapping_error(dev, dma_addr) : 0;
935 }
936
937 static inline void
938 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
939         enum dma_data_direction dir)
940 {
941         if (dev)
942                 dma_unmap_single(dev, addr, size, dir);
943 }
944
945 static inline void
946 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
947                 enum dma_data_direction dir)
948 {
949         if (dev)
950                 dma_sync_single_for_cpu(dev, addr, size, dir);
951 }
952
953 static inline void
954 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
955                 enum dma_data_direction dir)
956 {
957         if (dev)
958                 dma_sync_single_for_device(dev, addr, size, dir);
959 }
960
961 /* pseudo dma_map_sg call */
962 static int
963 fc_map_sg(struct scatterlist *sg, int nents)
964 {
965         struct scatterlist *s;
966         int i;
967
968         WARN_ON(nents == 0 || sg[0].length == 0);
969
970         for_each_sg(sg, s, nents, i) {
971                 s->dma_address = 0L;
972 #ifdef CONFIG_NEED_SG_DMA_LENGTH
973                 s->dma_length = s->length;
974 #endif
975         }
976         return nents;
977 }
978
979 static inline int
980 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
981                 enum dma_data_direction dir)
982 {
983         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
984 }
985
986 static inline void
987 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
988                 enum dma_data_direction dir)
989 {
990         if (dev)
991                 dma_unmap_sg(dev, sg, nents, dir);
992 }
993
994 /* *********************** FC-NVME LS Handling **************************** */
995
996 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
997 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
998
999
1000 static void
1001 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1002 {
1003         struct nvme_fc_rport *rport = lsop->rport;
1004         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1005         unsigned long flags;
1006
1007         spin_lock_irqsave(&rport->lock, flags);
1008
1009         if (!lsop->req_queued) {
1010                 spin_unlock_irqrestore(&rport->lock, flags);
1011                 return;
1012         }
1013
1014         list_del(&lsop->lsreq_list);
1015
1016         lsop->req_queued = false;
1017
1018         spin_unlock_irqrestore(&rport->lock, flags);
1019
1020         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1021                                   (lsreq->rqstlen + lsreq->rsplen),
1022                                   DMA_BIDIRECTIONAL);
1023
1024         nvme_fc_rport_put(rport);
1025 }
1026
1027 static int
1028 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1029                 struct nvmefc_ls_req_op *lsop,
1030                 void (*done)(struct nvmefc_ls_req *req, int status))
1031 {
1032         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1033         unsigned long flags;
1034         int ret = 0;
1035
1036         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1037                 return -ECONNREFUSED;
1038
1039         if (!nvme_fc_rport_get(rport))
1040                 return -ESHUTDOWN;
1041
1042         lsreq->done = done;
1043         lsop->rport = rport;
1044         lsop->req_queued = false;
1045         INIT_LIST_HEAD(&lsop->lsreq_list);
1046         init_completion(&lsop->ls_done);
1047
1048         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1049                                   lsreq->rqstlen + lsreq->rsplen,
1050                                   DMA_BIDIRECTIONAL);
1051         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1052                 ret = -EFAULT;
1053                 goto out_putrport;
1054         }
1055         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1056
1057         spin_lock_irqsave(&rport->lock, flags);
1058
1059         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1060
1061         lsop->req_queued = true;
1062
1063         spin_unlock_irqrestore(&rport->lock, flags);
1064
1065         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1066                                         &rport->remoteport, lsreq);
1067         if (ret)
1068                 goto out_unlink;
1069
1070         return 0;
1071
1072 out_unlink:
1073         lsop->ls_error = ret;
1074         spin_lock_irqsave(&rport->lock, flags);
1075         lsop->req_queued = false;
1076         list_del(&lsop->lsreq_list);
1077         spin_unlock_irqrestore(&rport->lock, flags);
1078         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1079                                   (lsreq->rqstlen + lsreq->rsplen),
1080                                   DMA_BIDIRECTIONAL);
1081 out_putrport:
1082         nvme_fc_rport_put(rport);
1083
1084         return ret;
1085 }
1086
1087 static void
1088 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1089 {
1090         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1091
1092         lsop->ls_error = status;
1093         complete(&lsop->ls_done);
1094 }
1095
1096 static int
1097 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1098 {
1099         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1100         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1101         int ret;
1102
1103         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1104
1105         if (!ret) {
1106                 /*
1107                  * No timeout/not interruptible as we need the struct
1108                  * to exist until the lldd calls us back. Thus mandate
1109                  * wait until driver calls back. lldd responsible for
1110                  * the timeout action
1111                  */
1112                 wait_for_completion(&lsop->ls_done);
1113
1114                 __nvme_fc_finish_ls_req(lsop);
1115
1116                 ret = lsop->ls_error;
1117         }
1118
1119         if (ret)
1120                 return ret;
1121
1122         /* ACC or RJT payload ? */
1123         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1124                 return -ENXIO;
1125
1126         return 0;
1127 }
1128
1129 static int
1130 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1131                 struct nvmefc_ls_req_op *lsop,
1132                 void (*done)(struct nvmefc_ls_req *req, int status))
1133 {
1134         /* don't wait for completion */
1135
1136         return __nvme_fc_send_ls_req(rport, lsop, done);
1137 }
1138
1139 /* Validation Error indexes into the string table below */
1140 enum {
1141         VERR_NO_ERROR           = 0,
1142         VERR_LSACC              = 1,
1143         VERR_LSDESC_RQST        = 2,
1144         VERR_LSDESC_RQST_LEN    = 3,
1145         VERR_ASSOC_ID           = 4,
1146         VERR_ASSOC_ID_LEN       = 5,
1147         VERR_CONN_ID            = 6,
1148         VERR_CONN_ID_LEN        = 7,
1149         VERR_CR_ASSOC           = 8,
1150         VERR_CR_ASSOC_ACC_LEN   = 9,
1151         VERR_CR_CONN            = 10,
1152         VERR_CR_CONN_ACC_LEN    = 11,
1153         VERR_DISCONN            = 12,
1154         VERR_DISCONN_ACC_LEN    = 13,
1155 };
1156
1157 static char *validation_errors[] = {
1158         "OK",
1159         "Not LS_ACC",
1160         "Not LSDESC_RQST",
1161         "Bad LSDESC_RQST Length",
1162         "Not Association ID",
1163         "Bad Association ID Length",
1164         "Not Connection ID",
1165         "Bad Connection ID Length",
1166         "Not CR_ASSOC Rqst",
1167         "Bad CR_ASSOC ACC Length",
1168         "Not CR_CONN Rqst",
1169         "Bad CR_CONN ACC Length",
1170         "Not Disconnect Rqst",
1171         "Bad Disconnect ACC Length",
1172 };
1173
1174 static int
1175 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1176         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1177 {
1178         struct nvmefc_ls_req_op *lsop;
1179         struct nvmefc_ls_req *lsreq;
1180         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1181         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1182         int ret, fcret = 0;
1183
1184         lsop = kzalloc((sizeof(*lsop) +
1185                          ctrl->lport->ops->lsrqst_priv_sz +
1186                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1187         if (!lsop) {
1188                 ret = -ENOMEM;
1189                 goto out_no_memory;
1190         }
1191         lsreq = &lsop->ls_req;
1192
1193         lsreq->private = (void *)&lsop[1];
1194         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1195                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1196         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1197
1198         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1199         assoc_rqst->desc_list_len =
1200                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1201
1202         assoc_rqst->assoc_cmd.desc_tag =
1203                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1204         assoc_rqst->assoc_cmd.desc_len =
1205                         fcnvme_lsdesc_len(
1206                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1207
1208         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1209         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
1210         /* Linux supports only Dynamic controllers */
1211         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1212         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1213         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1214                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1215         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1216                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1217
1218         lsop->queue = queue;
1219         lsreq->rqstaddr = assoc_rqst;
1220         lsreq->rqstlen = sizeof(*assoc_rqst);
1221         lsreq->rspaddr = assoc_acc;
1222         lsreq->rsplen = sizeof(*assoc_acc);
1223         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1224
1225         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1226         if (ret)
1227                 goto out_free_buffer;
1228
1229         /* process connect LS completion */
1230
1231         /* validate the ACC response */
1232         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1233                 fcret = VERR_LSACC;
1234         else if (assoc_acc->hdr.desc_list_len !=
1235                         fcnvme_lsdesc_len(
1236                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1237                 fcret = VERR_CR_ASSOC_ACC_LEN;
1238         else if (assoc_acc->hdr.rqst.desc_tag !=
1239                         cpu_to_be32(FCNVME_LSDESC_RQST))
1240                 fcret = VERR_LSDESC_RQST;
1241         else if (assoc_acc->hdr.rqst.desc_len !=
1242                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1243                 fcret = VERR_LSDESC_RQST_LEN;
1244         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1245                 fcret = VERR_CR_ASSOC;
1246         else if (assoc_acc->associd.desc_tag !=
1247                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1248                 fcret = VERR_ASSOC_ID;
1249         else if (assoc_acc->associd.desc_len !=
1250                         fcnvme_lsdesc_len(
1251                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1252                 fcret = VERR_ASSOC_ID_LEN;
1253         else if (assoc_acc->connectid.desc_tag !=
1254                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1255                 fcret = VERR_CONN_ID;
1256         else if (assoc_acc->connectid.desc_len !=
1257                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1258                 fcret = VERR_CONN_ID_LEN;
1259
1260         if (fcret) {
1261                 ret = -EBADF;
1262                 dev_err(ctrl->dev,
1263                         "q %d connect failed: %s\n",
1264                         queue->qnum, validation_errors[fcret]);
1265         } else {
1266                 ctrl->association_id =
1267                         be64_to_cpu(assoc_acc->associd.association_id);
1268                 queue->connection_id =
1269                         be64_to_cpu(assoc_acc->connectid.connection_id);
1270                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1271         }
1272
1273 out_free_buffer:
1274         kfree(lsop);
1275 out_no_memory:
1276         if (ret)
1277                 dev_err(ctrl->dev,
1278                         "queue %d connect admin queue failed (%d).\n",
1279                         queue->qnum, ret);
1280         return ret;
1281 }
1282
1283 static int
1284 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1285                         u16 qsize, u16 ersp_ratio)
1286 {
1287         struct nvmefc_ls_req_op *lsop;
1288         struct nvmefc_ls_req *lsreq;
1289         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1290         struct fcnvme_ls_cr_conn_acc *conn_acc;
1291         int ret, fcret = 0;
1292
1293         lsop = kzalloc((sizeof(*lsop) +
1294                          ctrl->lport->ops->lsrqst_priv_sz +
1295                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1296         if (!lsop) {
1297                 ret = -ENOMEM;
1298                 goto out_no_memory;
1299         }
1300         lsreq = &lsop->ls_req;
1301
1302         lsreq->private = (void *)&lsop[1];
1303         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1304                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1305         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1306
1307         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1308         conn_rqst->desc_list_len = cpu_to_be32(
1309                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1310                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1311
1312         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1313         conn_rqst->associd.desc_len =
1314                         fcnvme_lsdesc_len(
1315                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1316         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1317         conn_rqst->connect_cmd.desc_tag =
1318                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1319         conn_rqst->connect_cmd.desc_len =
1320                         fcnvme_lsdesc_len(
1321                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1322         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1323         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1324         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1325
1326         lsop->queue = queue;
1327         lsreq->rqstaddr = conn_rqst;
1328         lsreq->rqstlen = sizeof(*conn_rqst);
1329         lsreq->rspaddr = conn_acc;
1330         lsreq->rsplen = sizeof(*conn_acc);
1331         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1332
1333         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1334         if (ret)
1335                 goto out_free_buffer;
1336
1337         /* process connect LS completion */
1338
1339         /* validate the ACC response */
1340         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1341                 fcret = VERR_LSACC;
1342         else if (conn_acc->hdr.desc_list_len !=
1343                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1344                 fcret = VERR_CR_CONN_ACC_LEN;
1345         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1346                 fcret = VERR_LSDESC_RQST;
1347         else if (conn_acc->hdr.rqst.desc_len !=
1348                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1349                 fcret = VERR_LSDESC_RQST_LEN;
1350         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1351                 fcret = VERR_CR_CONN;
1352         else if (conn_acc->connectid.desc_tag !=
1353                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1354                 fcret = VERR_CONN_ID;
1355         else if (conn_acc->connectid.desc_len !=
1356                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1357                 fcret = VERR_CONN_ID_LEN;
1358
1359         if (fcret) {
1360                 ret = -EBADF;
1361                 dev_err(ctrl->dev,
1362                         "q %d connect failed: %s\n",
1363                         queue->qnum, validation_errors[fcret]);
1364         } else {
1365                 queue->connection_id =
1366                         be64_to_cpu(conn_acc->connectid.connection_id);
1367                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1368         }
1369
1370 out_free_buffer:
1371         kfree(lsop);
1372 out_no_memory:
1373         if (ret)
1374                 dev_err(ctrl->dev,
1375                         "queue %d connect command failed (%d).\n",
1376                         queue->qnum, ret);
1377         return ret;
1378 }
1379
1380 static void
1381 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1382 {
1383         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1384
1385         __nvme_fc_finish_ls_req(lsop);
1386
1387         /* fc-nvme iniator doesn't care about success or failure of cmd */
1388
1389         kfree(lsop);
1390 }
1391
1392 /*
1393  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1394  * the FC-NVME Association.  Terminating the association also
1395  * terminates the FC-NVME connections (per queue, both admin and io
1396  * queues) that are part of the association. E.g. things are torn
1397  * down, and the related FC-NVME Association ID and Connection IDs
1398  * become invalid.
1399  *
1400  * The behavior of the fc-nvme initiator is such that it's
1401  * understanding of the association and connections will implicitly
1402  * be torn down. The action is implicit as it may be due to a loss of
1403  * connectivity with the fc-nvme target, so you may never get a
1404  * response even if you tried.  As such, the action of this routine
1405  * is to asynchronously send the LS, ignore any results of the LS, and
1406  * continue on with terminating the association. If the fc-nvme target
1407  * is present and receives the LS, it too can tear down.
1408  */
1409 static void
1410 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1411 {
1412         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1413         struct fcnvme_ls_disconnect_acc *discon_acc;
1414         struct nvmefc_ls_req_op *lsop;
1415         struct nvmefc_ls_req *lsreq;
1416         int ret;
1417
1418         lsop = kzalloc((sizeof(*lsop) +
1419                          ctrl->lport->ops->lsrqst_priv_sz +
1420                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1421                         GFP_KERNEL);
1422         if (!lsop)
1423                 /* couldn't sent it... too bad */
1424                 return;
1425
1426         lsreq = &lsop->ls_req;
1427
1428         lsreq->private = (void *)&lsop[1];
1429         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1430                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1431         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1432
1433         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1434         discon_rqst->desc_list_len = cpu_to_be32(
1435                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1436                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1437
1438         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1439         discon_rqst->associd.desc_len =
1440                         fcnvme_lsdesc_len(
1441                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1442
1443         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1444
1445         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1446                                                 FCNVME_LSDESC_DISCONN_CMD);
1447         discon_rqst->discon_cmd.desc_len =
1448                         fcnvme_lsdesc_len(
1449                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1450         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1451         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1452
1453         lsreq->rqstaddr = discon_rqst;
1454         lsreq->rqstlen = sizeof(*discon_rqst);
1455         lsreq->rspaddr = discon_acc;
1456         lsreq->rsplen = sizeof(*discon_acc);
1457         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1458
1459         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1460                                 nvme_fc_disconnect_assoc_done);
1461         if (ret)
1462                 kfree(lsop);
1463
1464         /* only meaningful part to terminating the association */
1465         ctrl->association_id = 0;
1466 }
1467
1468
1469 /* *********************** NVME Ctrl Routines **************************** */
1470
1471 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1472
1473 static int
1474 nvme_fc_reinit_request(void *data, struct request *rq)
1475 {
1476         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1477         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1478
1479         memset(cmdiu, 0, sizeof(*cmdiu));
1480         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1481         cmdiu->fc_id = NVME_CMD_FC_ID;
1482         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1483         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1484
1485         return 0;
1486 }
1487
1488 static void
1489 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1490                 struct nvme_fc_fcp_op *op)
1491 {
1492         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1493                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1494         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1495                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1496
1497         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1498 }
1499
1500 static void
1501 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1502                 unsigned int hctx_idx)
1503 {
1504         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1505
1506         return __nvme_fc_exit_request(set->driver_data, op);
1507 }
1508
1509 static int
1510 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1511 {
1512         unsigned long flags;
1513         int opstate;
1514
1515         spin_lock_irqsave(&ctrl->lock, flags);
1516         opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1517         if (opstate != FCPOP_STATE_ACTIVE)
1518                 atomic_set(&op->state, opstate);
1519         else if (ctrl->flags & FCCTRL_TERMIO)
1520                 ctrl->iocnt++;
1521         spin_unlock_irqrestore(&ctrl->lock, flags);
1522
1523         if (opstate != FCPOP_STATE_ACTIVE)
1524                 return -ECANCELED;
1525
1526         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1527                                         &ctrl->rport->remoteport,
1528                                         op->queue->lldd_handle,
1529                                         &op->fcp_req);
1530
1531         return 0;
1532 }
1533
1534 static void
1535 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1536 {
1537         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1538         int i;
1539
1540         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1541                 __nvme_fc_abort_op(ctrl, aen_op);
1542 }
1543
1544 static inline void
1545 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1546                 struct nvme_fc_fcp_op *op, int opstate)
1547 {
1548         unsigned long flags;
1549
1550         if (opstate == FCPOP_STATE_ABORTED) {
1551                 spin_lock_irqsave(&ctrl->lock, flags);
1552                 if (ctrl->flags & FCCTRL_TERMIO) {
1553                         if (!--ctrl->iocnt)
1554                                 wake_up(&ctrl->ioabort_wait);
1555                 }
1556                 spin_unlock_irqrestore(&ctrl->lock, flags);
1557         }
1558 }
1559
1560 static void
1561 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1562 {
1563         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1564         struct request *rq = op->rq;
1565         struct nvmefc_fcp_req *freq = &op->fcp_req;
1566         struct nvme_fc_ctrl *ctrl = op->ctrl;
1567         struct nvme_fc_queue *queue = op->queue;
1568         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1569         struct nvme_command *sqe = &op->cmd_iu.sqe;
1570         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1571         union nvme_result result;
1572         bool terminate_assoc = true;
1573         int opstate;
1574
1575         /*
1576          * WARNING:
1577          * The current linux implementation of a nvme controller
1578          * allocates a single tag set for all io queues and sizes
1579          * the io queues to fully hold all possible tags. Thus, the
1580          * implementation does not reference or care about the sqhd
1581          * value as it never needs to use the sqhd/sqtail pointers
1582          * for submission pacing.
1583          *
1584          * This affects the FC-NVME implementation in two ways:
1585          * 1) As the value doesn't matter, we don't need to waste
1586          *    cycles extracting it from ERSPs and stamping it in the
1587          *    cases where the transport fabricates CQEs on successful
1588          *    completions.
1589          * 2) The FC-NVME implementation requires that delivery of
1590          *    ERSP completions are to go back to the nvme layer in order
1591          *    relative to the rsn, such that the sqhd value will always
1592          *    be "in order" for the nvme layer. As the nvme layer in
1593          *    linux doesn't care about sqhd, there's no need to return
1594          *    them in order.
1595          *
1596          * Additionally:
1597          * As the core nvme layer in linux currently does not look at
1598          * every field in the cqe - in cases where the FC transport must
1599          * fabricate a CQE, the following fields will not be set as they
1600          * are not referenced:
1601          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1602          *
1603          * Failure or error of an individual i/o, in a transport
1604          * detected fashion unrelated to the nvme completion status,
1605          * potentially cause the initiator and target sides to get out
1606          * of sync on SQ head/tail (aka outstanding io count allowed).
1607          * Per FC-NVME spec, failure of an individual command requires
1608          * the connection to be terminated, which in turn requires the
1609          * association to be terminated.
1610          */
1611
1612         opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1613
1614         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1615                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1616
1617         if (opstate == FCPOP_STATE_ABORTED)
1618                 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1619         else if (freq->status)
1620                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1621
1622         /*
1623          * For the linux implementation, if we have an unsuccesful
1624          * status, they blk-mq layer can typically be called with the
1625          * non-zero status and the content of the cqe isn't important.
1626          */
1627         if (status)
1628                 goto done;
1629
1630         /*
1631          * command completed successfully relative to the wire
1632          * protocol. However, validate anything received and
1633          * extract the status and result from the cqe (create it
1634          * where necessary).
1635          */
1636
1637         switch (freq->rcv_rsplen) {
1638
1639         case 0:
1640         case NVME_FC_SIZEOF_ZEROS_RSP:
1641                 /*
1642                  * No response payload or 12 bytes of payload (which
1643                  * should all be zeros) are considered successful and
1644                  * no payload in the CQE by the transport.
1645                  */
1646                 if (freq->transferred_length !=
1647                         be32_to_cpu(op->cmd_iu.data_len)) {
1648                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1649                         goto done;
1650                 }
1651                 result.u64 = 0;
1652                 break;
1653
1654         case sizeof(struct nvme_fc_ersp_iu):
1655                 /*
1656                  * The ERSP IU contains a full completion with CQE.
1657                  * Validate ERSP IU and look at cqe.
1658                  */
1659                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1660                                         (freq->rcv_rsplen / 4) ||
1661                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1662                                         freq->transferred_length ||
1663                              op->rsp_iu.status_code ||
1664                              sqe->common.command_id != cqe->command_id)) {
1665                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1666                         goto done;
1667                 }
1668                 result = cqe->result;
1669                 status = cqe->status;
1670                 break;
1671
1672         default:
1673                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1674                 goto done;
1675         }
1676
1677         terminate_assoc = false;
1678
1679 done:
1680         if (op->flags & FCOP_FLAGS_AEN) {
1681                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1682                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1683                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1684                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1685                 nvme_fc_ctrl_put(ctrl);
1686                 goto check_error;
1687         }
1688
1689         /*
1690          * Force failures of commands if we're killing the controller
1691          * or have an error on a command used to create an new association
1692          */
1693         if (status &&
1694             (blk_queue_dying(rq->q) ||
1695              ctrl->ctrl.state == NVME_CTRL_NEW ||
1696              ctrl->ctrl.state == NVME_CTRL_CONNECTING))
1697                 status |= cpu_to_le16(NVME_SC_DNR << 1);
1698
1699         __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1700         nvme_end_request(rq, status, result);
1701
1702 check_error:
1703         if (terminate_assoc)
1704                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1705 }
1706
1707 static int
1708 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1709                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1710                 struct request *rq, u32 rqno)
1711 {
1712         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1713         int ret = 0;
1714
1715         memset(op, 0, sizeof(*op));
1716         op->fcp_req.cmdaddr = &op->cmd_iu;
1717         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1718         op->fcp_req.rspaddr = &op->rsp_iu;
1719         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1720         op->fcp_req.done = nvme_fc_fcpio_done;
1721         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1722         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1723         op->ctrl = ctrl;
1724         op->queue = queue;
1725         op->rq = rq;
1726         op->rqno = rqno;
1727
1728         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1729         cmdiu->fc_id = NVME_CMD_FC_ID;
1730         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1731
1732         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1733                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1734         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1735                 dev_err(ctrl->dev,
1736                         "FCP Op failed - cmdiu dma mapping failed.\n");
1737                 ret = EFAULT;
1738                 goto out_on_error;
1739         }
1740
1741         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1742                                 &op->rsp_iu, sizeof(op->rsp_iu),
1743                                 DMA_FROM_DEVICE);
1744         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1745                 dev_err(ctrl->dev,
1746                         "FCP Op failed - rspiu dma mapping failed.\n");
1747                 ret = EFAULT;
1748         }
1749
1750         atomic_set(&op->state, FCPOP_STATE_IDLE);
1751 out_on_error:
1752         return ret;
1753 }
1754
1755 static int
1756 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1757                 unsigned int hctx_idx, unsigned int numa_node)
1758 {
1759         struct nvme_fc_ctrl *ctrl = set->driver_data;
1760         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1761         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1762         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1763
1764         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1765 }
1766
1767 static int
1768 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1769 {
1770         struct nvme_fc_fcp_op *aen_op;
1771         struct nvme_fc_cmd_iu *cmdiu;
1772         struct nvme_command *sqe;
1773         void *private;
1774         int i, ret;
1775
1776         aen_op = ctrl->aen_ops;
1777         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1778                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1779                                                 GFP_KERNEL);
1780                 if (!private)
1781                         return -ENOMEM;
1782
1783                 cmdiu = &aen_op->cmd_iu;
1784                 sqe = &cmdiu->sqe;
1785                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1786                                 aen_op, (struct request *)NULL,
1787                                 (NVME_AQ_BLK_MQ_DEPTH + i));
1788                 if (ret) {
1789                         kfree(private);
1790                         return ret;
1791                 }
1792
1793                 aen_op->flags = FCOP_FLAGS_AEN;
1794                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1795                 aen_op->fcp_req.private = private;
1796
1797                 memset(sqe, 0, sizeof(*sqe));
1798                 sqe->common.opcode = nvme_admin_async_event;
1799                 /* Note: core layer may overwrite the sqe.command_id value */
1800                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1801         }
1802         return 0;
1803 }
1804
1805 static void
1806 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1807 {
1808         struct nvme_fc_fcp_op *aen_op;
1809         int i;
1810
1811         aen_op = ctrl->aen_ops;
1812         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1813                 if (!aen_op->fcp_req.private)
1814                         continue;
1815
1816                 __nvme_fc_exit_request(ctrl, aen_op);
1817
1818                 kfree(aen_op->fcp_req.private);
1819                 aen_op->fcp_req.private = NULL;
1820         }
1821 }
1822
1823 static inline void
1824 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1825                 unsigned int qidx)
1826 {
1827         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1828
1829         hctx->driver_data = queue;
1830         queue->hctx = hctx;
1831 }
1832
1833 static int
1834 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1835                 unsigned int hctx_idx)
1836 {
1837         struct nvme_fc_ctrl *ctrl = data;
1838
1839         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1840
1841         return 0;
1842 }
1843
1844 static int
1845 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1846                 unsigned int hctx_idx)
1847 {
1848         struct nvme_fc_ctrl *ctrl = data;
1849
1850         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1851
1852         return 0;
1853 }
1854
1855 static void
1856 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1857 {
1858         struct nvme_fc_queue *queue;
1859
1860         queue = &ctrl->queues[idx];
1861         memset(queue, 0, sizeof(*queue));
1862         queue->ctrl = ctrl;
1863         queue->qnum = idx;
1864         atomic_set(&queue->csn, 1);
1865         queue->dev = ctrl->dev;
1866
1867         if (idx > 0)
1868                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1869         else
1870                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1871
1872         /*
1873          * Considered whether we should allocate buffers for all SQEs
1874          * and CQEs and dma map them - mapping their respective entries
1875          * into the request structures (kernel vm addr and dma address)
1876          * thus the driver could use the buffers/mappings directly.
1877          * It only makes sense if the LLDD would use them for its
1878          * messaging api. It's very unlikely most adapter api's would use
1879          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1880          * structures were used instead.
1881          */
1882 }
1883
1884 /*
1885  * This routine terminates a queue at the transport level.
1886  * The transport has already ensured that all outstanding ios on
1887  * the queue have been terminated.
1888  * The transport will send a Disconnect LS request to terminate
1889  * the queue's connection. Termination of the admin queue will also
1890  * terminate the association at the target.
1891  */
1892 static void
1893 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1894 {
1895         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1896                 return;
1897
1898         clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1899         /*
1900          * Current implementation never disconnects a single queue.
1901          * It always terminates a whole association. So there is never
1902          * a disconnect(queue) LS sent to the target.
1903          */
1904
1905         queue->connection_id = 0;
1906 }
1907
1908 static void
1909 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1910         struct nvme_fc_queue *queue, unsigned int qidx)
1911 {
1912         if (ctrl->lport->ops->delete_queue)
1913                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1914                                 queue->lldd_handle);
1915         queue->lldd_handle = NULL;
1916 }
1917
1918 static void
1919 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1920 {
1921         int i;
1922
1923         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1924                 nvme_fc_free_queue(&ctrl->queues[i]);
1925 }
1926
1927 static int
1928 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1929         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1930 {
1931         int ret = 0;
1932
1933         queue->lldd_handle = NULL;
1934         if (ctrl->lport->ops->create_queue)
1935                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1936                                 qidx, qsize, &queue->lldd_handle);
1937
1938         return ret;
1939 }
1940
1941 static void
1942 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1943 {
1944         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1945         int i;
1946
1947         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1948                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1949 }
1950
1951 static int
1952 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1953 {
1954         struct nvme_fc_queue *queue = &ctrl->queues[1];
1955         int i, ret;
1956
1957         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1958                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1959                 if (ret)
1960                         goto delete_queues;
1961         }
1962
1963         return 0;
1964
1965 delete_queues:
1966         for (; i >= 0; i--)
1967                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1968         return ret;
1969 }
1970
1971 static int
1972 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1973 {
1974         int i, ret = 0;
1975
1976         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1977                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1978                                         (qsize / 5));
1979                 if (ret)
1980                         break;
1981                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1982                 if (ret)
1983                         break;
1984
1985                 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1986         }
1987
1988         return ret;
1989 }
1990
1991 static void
1992 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1993 {
1994         int i;
1995
1996         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1997                 nvme_fc_init_queue(ctrl, i);
1998 }
1999
2000 static void
2001 nvme_fc_ctrl_free(struct kref *ref)
2002 {
2003         struct nvme_fc_ctrl *ctrl =
2004                 container_of(ref, struct nvme_fc_ctrl, ref);
2005         unsigned long flags;
2006
2007         if (ctrl->ctrl.tagset) {
2008                 blk_cleanup_queue(ctrl->ctrl.connect_q);
2009                 blk_mq_free_tag_set(&ctrl->tag_set);
2010         }
2011
2012         /* remove from rport list */
2013         spin_lock_irqsave(&ctrl->rport->lock, flags);
2014         list_del(&ctrl->ctrl_list);
2015         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2016
2017         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2018         blk_cleanup_queue(ctrl->ctrl.admin_q);
2019         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2020
2021         kfree(ctrl->queues);
2022
2023         put_device(ctrl->dev);
2024         nvme_fc_rport_put(ctrl->rport);
2025
2026         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2027         if (ctrl->ctrl.opts)
2028                 nvmf_free_options(ctrl->ctrl.opts);
2029         kfree(ctrl);
2030 }
2031
2032 static void
2033 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2034 {
2035         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2036 }
2037
2038 static int
2039 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2040 {
2041         return kref_get_unless_zero(&ctrl->ref);
2042 }
2043
2044 /*
2045  * All accesses from nvme core layer done - can now free the
2046  * controller. Called after last nvme_put_ctrl() call
2047  */
2048 static void
2049 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2050 {
2051         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2052
2053         WARN_ON(nctrl != &ctrl->ctrl);
2054
2055         nvme_fc_ctrl_put(ctrl);
2056 }
2057
2058 static void
2059 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2060 {
2061         /* only proceed if in LIVE state - e.g. on first error */
2062         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2063                 return;
2064
2065         dev_warn(ctrl->ctrl.device,
2066                 "NVME-FC{%d}: transport association error detected: %s\n",
2067                 ctrl->cnum, errmsg);
2068         dev_warn(ctrl->ctrl.device,
2069                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2070
2071         nvme_reset_ctrl(&ctrl->ctrl);
2072 }
2073
2074 static enum blk_eh_timer_return
2075 nvme_fc_timeout(struct request *rq, bool reserved)
2076 {
2077         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2078         struct nvme_fc_ctrl *ctrl = op->ctrl;
2079
2080         /*
2081          * we can't individually ABTS an io without affecting the queue,
2082          * thus killing the queue, and thus the association.
2083          * So resolve by performing a controller reset, which will stop
2084          * the host/io stack, terminate the association on the link,
2085          * and recreate an association on the link.
2086          */
2087         nvme_fc_error_recovery(ctrl, "io timeout error");
2088
2089         /*
2090          * the io abort has been initiated. Have the reset timer
2091          * restarted and the abort completion will complete the io
2092          * shortly. Avoids a synchronous wait while the abort finishes.
2093          */
2094         return BLK_EH_RESET_TIMER;
2095 }
2096
2097 static int
2098 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2099                 struct nvme_fc_fcp_op *op)
2100 {
2101         struct nvmefc_fcp_req *freq = &op->fcp_req;
2102         enum dma_data_direction dir;
2103         int ret;
2104
2105         freq->sg_cnt = 0;
2106
2107         if (!blk_rq_payload_bytes(rq))
2108                 return 0;
2109
2110         freq->sg_table.sgl = freq->first_sgl;
2111         ret = sg_alloc_table_chained(&freq->sg_table,
2112                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2113         if (ret)
2114                 return -ENOMEM;
2115
2116         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2117         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2118         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2119         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2120                                 op->nents, dir);
2121         if (unlikely(freq->sg_cnt <= 0)) {
2122                 sg_free_table_chained(&freq->sg_table, true);
2123                 freq->sg_cnt = 0;
2124                 return -EFAULT;
2125         }
2126
2127         /*
2128          * TODO: blk_integrity_rq(rq)  for DIF
2129          */
2130         return 0;
2131 }
2132
2133 static void
2134 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2135                 struct nvme_fc_fcp_op *op)
2136 {
2137         struct nvmefc_fcp_req *freq = &op->fcp_req;
2138
2139         if (!freq->sg_cnt)
2140                 return;
2141
2142         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2143                                 ((rq_data_dir(rq) == WRITE) ?
2144                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
2145
2146         nvme_cleanup_cmd(rq);
2147
2148         sg_free_table_chained(&freq->sg_table, true);
2149
2150         freq->sg_cnt = 0;
2151 }
2152
2153 /*
2154  * In FC, the queue is a logical thing. At transport connect, the target
2155  * creates its "queue" and returns a handle that is to be given to the
2156  * target whenever it posts something to the corresponding SQ.  When an
2157  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2158  * command contained within the SQE, an io, and assigns a FC exchange
2159  * to it. The SQE and the associated SQ handle are sent in the initial
2160  * CMD IU sents on the exchange. All transfers relative to the io occur
2161  * as part of the exchange.  The CQE is the last thing for the io,
2162  * which is transferred (explicitly or implicitly) with the RSP IU
2163  * sent on the exchange. After the CQE is received, the FC exchange is
2164  * terminaed and the Exchange may be used on a different io.
2165  *
2166  * The transport to LLDD api has the transport making a request for a
2167  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2168  * resource and transfers the command. The LLDD will then process all
2169  * steps to complete the io. Upon completion, the transport done routine
2170  * is called.
2171  *
2172  * So - while the operation is outstanding to the LLDD, there is a link
2173  * level FC exchange resource that is also outstanding. This must be
2174  * considered in all cleanup operations.
2175  */
2176 static blk_status_t
2177 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2178         struct nvme_fc_fcp_op *op, u32 data_len,
2179         enum nvmefc_fcp_datadir io_dir)
2180 {
2181         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2182         struct nvme_command *sqe = &cmdiu->sqe;
2183         u32 csn;
2184         int ret, opstate;
2185
2186         /*
2187          * before attempting to send the io, check to see if we believe
2188          * the target device is present
2189          */
2190         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2191                 return BLK_STS_RESOURCE;
2192
2193         if (!nvme_fc_ctrl_get(ctrl))
2194                 return BLK_STS_IOERR;
2195
2196         /* format the FC-NVME CMD IU and fcp_req */
2197         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2198         csn = atomic_inc_return(&queue->csn);
2199         cmdiu->csn = cpu_to_be32(csn);
2200         cmdiu->data_len = cpu_to_be32(data_len);
2201         switch (io_dir) {
2202         case NVMEFC_FCP_WRITE:
2203                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2204                 break;
2205         case NVMEFC_FCP_READ:
2206                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2207                 break;
2208         case NVMEFC_FCP_NODATA:
2209                 cmdiu->flags = 0;
2210                 break;
2211         }
2212         op->fcp_req.payload_length = data_len;
2213         op->fcp_req.io_dir = io_dir;
2214         op->fcp_req.transferred_length = 0;
2215         op->fcp_req.rcv_rsplen = 0;
2216         op->fcp_req.status = NVME_SC_SUCCESS;
2217         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2218
2219         /*
2220          * validate per fabric rules, set fields mandated by fabric spec
2221          * as well as those by FC-NVME spec.
2222          */
2223         WARN_ON_ONCE(sqe->common.metadata);
2224         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2225
2226         /*
2227          * format SQE DPTR field per FC-NVME rules:
2228          *    type=0x5     Transport SGL Data Block Descriptor
2229          *    subtype=0xA  Transport-specific value
2230          *    address=0
2231          *    length=length of the data series
2232          */
2233         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2234                                         NVME_SGL_FMT_TRANSPORT_A;
2235         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2236         sqe->rw.dptr.sgl.addr = 0;
2237
2238         if (!(op->flags & FCOP_FLAGS_AEN)) {
2239                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2240                 if (ret < 0) {
2241                         nvme_cleanup_cmd(op->rq);
2242                         nvme_fc_ctrl_put(ctrl);
2243                         if (ret == -ENOMEM || ret == -EAGAIN)
2244                                 return BLK_STS_RESOURCE;
2245                         return BLK_STS_IOERR;
2246                 }
2247         }
2248
2249         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2250                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2251
2252         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2253
2254         if (!(op->flags & FCOP_FLAGS_AEN))
2255                 blk_mq_start_request(op->rq);
2256
2257         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2258                                         &ctrl->rport->remoteport,
2259                                         queue->lldd_handle, &op->fcp_req);
2260
2261         if (ret) {
2262                 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2263                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2264
2265                 if (!(op->flags & FCOP_FLAGS_AEN))
2266                         nvme_fc_unmap_data(ctrl, op->rq, op);
2267
2268                 nvme_fc_ctrl_put(ctrl);
2269
2270                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2271                                 ret != -EBUSY)
2272                         return BLK_STS_IOERR;
2273
2274                 return BLK_STS_RESOURCE;
2275         }
2276
2277         return BLK_STS_OK;
2278 }
2279
2280 static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue,
2281                 struct request *rq)
2282 {
2283         if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags)))
2284                 return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
2285         return BLK_STS_OK;
2286 }
2287
2288 static blk_status_t
2289 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2290                         const struct blk_mq_queue_data *bd)
2291 {
2292         struct nvme_ns *ns = hctx->queue->queuedata;
2293         struct nvme_fc_queue *queue = hctx->driver_data;
2294         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2295         struct request *rq = bd->rq;
2296         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2297         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2298         struct nvme_command *sqe = &cmdiu->sqe;
2299         enum nvmefc_fcp_datadir io_dir;
2300         u32 data_len;
2301         blk_status_t ret;
2302
2303         ret = nvme_fc_is_ready(queue, rq);
2304         if (unlikely(ret))
2305                 return ret;
2306
2307         ret = nvme_setup_cmd(ns, rq, sqe);
2308         if (ret)
2309                 return ret;
2310
2311         data_len = blk_rq_payload_bytes(rq);
2312         if (data_len)
2313                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2314                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2315         else
2316                 io_dir = NVMEFC_FCP_NODATA;
2317
2318         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2319 }
2320
2321 static struct blk_mq_tags *
2322 nvme_fc_tagset(struct nvme_fc_queue *queue)
2323 {
2324         if (queue->qnum == 0)
2325                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2326
2327         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2328 }
2329
2330 static int
2331 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2332
2333 {
2334         struct nvme_fc_queue *queue = hctx->driver_data;
2335         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2336         struct request *req;
2337         struct nvme_fc_fcp_op *op;
2338
2339         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2340         if (!req)
2341                 return 0;
2342
2343         op = blk_mq_rq_to_pdu(req);
2344
2345         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2346                  (ctrl->lport->ops->poll_queue))
2347                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2348                                                  queue->lldd_handle);
2349
2350         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2351 }
2352
2353 static void
2354 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2355 {
2356         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2357         struct nvme_fc_fcp_op *aen_op;
2358         unsigned long flags;
2359         bool terminating = false;
2360         blk_status_t ret;
2361
2362         spin_lock_irqsave(&ctrl->lock, flags);
2363         if (ctrl->flags & FCCTRL_TERMIO)
2364                 terminating = true;
2365         spin_unlock_irqrestore(&ctrl->lock, flags);
2366
2367         if (terminating)
2368                 return;
2369
2370         aen_op = &ctrl->aen_ops[0];
2371
2372         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2373                                         NVMEFC_FCP_NODATA);
2374         if (ret)
2375                 dev_err(ctrl->ctrl.device,
2376                         "failed async event work\n");
2377 }
2378
2379 static void
2380 nvme_fc_complete_rq(struct request *rq)
2381 {
2382         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2383         struct nvme_fc_ctrl *ctrl = op->ctrl;
2384
2385         atomic_set(&op->state, FCPOP_STATE_IDLE);
2386
2387         nvme_fc_unmap_data(ctrl, rq, op);
2388         nvme_complete_rq(rq);
2389         nvme_fc_ctrl_put(ctrl);
2390 }
2391
2392 /*
2393  * This routine is used by the transport when it needs to find active
2394  * io on a queue that is to be terminated. The transport uses
2395  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2396  * this routine to kill them on a 1 by 1 basis.
2397  *
2398  * As FC allocates FC exchange for each io, the transport must contact
2399  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2400  * After terminating the exchange the LLDD will call the transport's
2401  * normal io done path for the request, but it will have an aborted
2402  * status. The done path will return the io request back to the block
2403  * layer with an error status.
2404  */
2405 static void
2406 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2407 {
2408         struct nvme_ctrl *nctrl = data;
2409         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2410         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2411
2412         if (!blk_mq_request_started(req))
2413                 return;
2414
2415         __nvme_fc_abort_op(ctrl, op);
2416 }
2417
2418
2419 static const struct blk_mq_ops nvme_fc_mq_ops = {
2420         .queue_rq       = nvme_fc_queue_rq,
2421         .complete       = nvme_fc_complete_rq,
2422         .init_request   = nvme_fc_init_request,
2423         .exit_request   = nvme_fc_exit_request,
2424         .init_hctx      = nvme_fc_init_hctx,
2425         .poll           = nvme_fc_poll,
2426         .timeout        = nvme_fc_timeout,
2427 };
2428
2429 static int
2430 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2431 {
2432         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2433         unsigned int nr_io_queues;
2434         int ret;
2435
2436         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2437                                 ctrl->lport->ops->max_hw_queues);
2438         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2439         if (ret) {
2440                 dev_info(ctrl->ctrl.device,
2441                         "set_queue_count failed: %d\n", ret);
2442                 return ret;
2443         }
2444
2445         ctrl->ctrl.queue_count = nr_io_queues + 1;
2446         if (!nr_io_queues)
2447                 return 0;
2448
2449         nvme_fc_init_io_queues(ctrl);
2450
2451         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2452         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2453         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2454         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2455         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2456         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2457         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2458                                         (SG_CHUNK_SIZE *
2459                                                 sizeof(struct scatterlist)) +
2460                                         ctrl->lport->ops->fcprqst_priv_sz;
2461         ctrl->tag_set.driver_data = ctrl;
2462         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2463         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2464
2465         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2466         if (ret)
2467                 return ret;
2468
2469         ctrl->ctrl.tagset = &ctrl->tag_set;
2470
2471         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2472         if (IS_ERR(ctrl->ctrl.connect_q)) {
2473                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2474                 goto out_free_tag_set;
2475         }
2476
2477         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2478         if (ret)
2479                 goto out_cleanup_blk_queue;
2480
2481         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2482         if (ret)
2483                 goto out_delete_hw_queues;
2484
2485         return 0;
2486
2487 out_delete_hw_queues:
2488         nvme_fc_delete_hw_io_queues(ctrl);
2489 out_cleanup_blk_queue:
2490         blk_cleanup_queue(ctrl->ctrl.connect_q);
2491 out_free_tag_set:
2492         blk_mq_free_tag_set(&ctrl->tag_set);
2493         nvme_fc_free_io_queues(ctrl);
2494
2495         /* force put free routine to ignore io queues */
2496         ctrl->ctrl.tagset = NULL;
2497
2498         return ret;
2499 }
2500
2501 static int
2502 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2503 {
2504         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2505         unsigned int nr_io_queues;
2506         int ret;
2507
2508         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2509                                 ctrl->lport->ops->max_hw_queues);
2510         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2511         if (ret) {
2512                 dev_info(ctrl->ctrl.device,
2513                         "set_queue_count failed: %d\n", ret);
2514                 return ret;
2515         }
2516
2517         ctrl->ctrl.queue_count = nr_io_queues + 1;
2518         /* check for io queues existing */
2519         if (ctrl->ctrl.queue_count == 1)
2520                 return 0;
2521
2522         nvme_fc_init_io_queues(ctrl);
2523
2524         ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
2525         if (ret)
2526                 goto out_free_io_queues;
2527
2528         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2529         if (ret)
2530                 goto out_free_io_queues;
2531
2532         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2533         if (ret)
2534                 goto out_delete_hw_queues;
2535
2536         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2537
2538         return 0;
2539
2540 out_delete_hw_queues:
2541         nvme_fc_delete_hw_io_queues(ctrl);
2542 out_free_io_queues:
2543         nvme_fc_free_io_queues(ctrl);
2544         return ret;
2545 }
2546
2547 static void
2548 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2549 {
2550         struct nvme_fc_lport *lport = rport->lport;
2551
2552         atomic_inc(&lport->act_rport_cnt);
2553 }
2554
2555 static void
2556 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2557 {
2558         struct nvme_fc_lport *lport = rport->lport;
2559         u32 cnt;
2560
2561         cnt = atomic_dec_return(&lport->act_rport_cnt);
2562         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2563                 lport->ops->localport_delete(&lport->localport);
2564 }
2565
2566 static int
2567 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2568 {
2569         struct nvme_fc_rport *rport = ctrl->rport;
2570         u32 cnt;
2571
2572         if (ctrl->assoc_active)
2573                 return 1;
2574
2575         ctrl->assoc_active = true;
2576         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2577         if (cnt == 1)
2578                 nvme_fc_rport_active_on_lport(rport);
2579
2580         return 0;
2581 }
2582
2583 static int
2584 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2585 {
2586         struct nvme_fc_rport *rport = ctrl->rport;
2587         struct nvme_fc_lport *lport = rport->lport;
2588         u32 cnt;
2589
2590         /* ctrl->assoc_active=false will be set independently */
2591
2592         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2593         if (cnt == 0) {
2594                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2595                         lport->ops->remoteport_delete(&rport->remoteport);
2596                 nvme_fc_rport_inactive_on_lport(rport);
2597         }
2598
2599         return 0;
2600 }
2601
2602 /*
2603  * This routine restarts the controller on the host side, and
2604  * on the link side, recreates the controller association.
2605  */
2606 static int
2607 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2608 {
2609         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2610         int ret;
2611         bool changed;
2612
2613         ++ctrl->ctrl.nr_reconnects;
2614
2615         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2616                 return -ENODEV;
2617
2618         if (nvme_fc_ctlr_active_on_rport(ctrl))
2619                 return -ENOTUNIQ;
2620
2621         /*
2622          * Create the admin queue
2623          */
2624
2625         nvme_fc_init_queue(ctrl, 0);
2626
2627         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2628                                 NVME_AQ_BLK_MQ_DEPTH);
2629         if (ret)
2630                 goto out_free_queue;
2631
2632         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2633                                 NVME_AQ_BLK_MQ_DEPTH,
2634                                 (NVME_AQ_BLK_MQ_DEPTH / 4));
2635         if (ret)
2636                 goto out_delete_hw_queue;
2637
2638         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2639                 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2640
2641         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2642         if (ret)
2643                 goto out_disconnect_admin_queue;
2644
2645         set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2646
2647         /*
2648          * Check controller capabilities
2649          *
2650          * todo:- add code to check if ctrl attributes changed from
2651          * prior connection values
2652          */
2653
2654         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2655         if (ret) {
2656                 dev_err(ctrl->ctrl.device,
2657                         "prop_get NVME_REG_CAP failed\n");
2658                 goto out_disconnect_admin_queue;
2659         }
2660
2661         ctrl->ctrl.sqsize =
2662                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2663
2664         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2665         if (ret)
2666                 goto out_disconnect_admin_queue;
2667
2668         ctrl->ctrl.max_hw_sectors =
2669                 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2670
2671         ret = nvme_init_identify(&ctrl->ctrl);
2672         if (ret)
2673                 goto out_disconnect_admin_queue;
2674
2675         /* sanity checks */
2676
2677         /* FC-NVME does not have other data in the capsule */
2678         if (ctrl->ctrl.icdoff) {
2679                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2680                                 ctrl->ctrl.icdoff);
2681                 goto out_disconnect_admin_queue;
2682         }
2683
2684         /* FC-NVME supports normal SGL Data Block Descriptors */
2685
2686         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2687                 /* warn if maxcmd is lower than queue_size */
2688                 dev_warn(ctrl->ctrl.device,
2689                         "queue_size %zu > ctrl maxcmd %u, reducing "
2690                         "to queue_size\n",
2691                         opts->queue_size, ctrl->ctrl.maxcmd);
2692                 opts->queue_size = ctrl->ctrl.maxcmd;
2693         }
2694
2695         ret = nvme_fc_init_aen_ops(ctrl);
2696         if (ret)
2697                 goto out_term_aen_ops;
2698
2699         /*
2700          * Create the io queues
2701          */
2702
2703         if (ctrl->ctrl.queue_count > 1) {
2704                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2705                         ret = nvme_fc_create_io_queues(ctrl);
2706                 else
2707                         ret = nvme_fc_reinit_io_queues(ctrl);
2708                 if (ret)
2709                         goto out_term_aen_ops;
2710         }
2711
2712         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2713
2714         ctrl->ctrl.nr_reconnects = 0;
2715
2716         if (changed)
2717                 nvme_start_ctrl(&ctrl->ctrl);
2718
2719         return 0;       /* Success */
2720
2721 out_term_aen_ops:
2722         nvme_fc_term_aen_ops(ctrl);
2723 out_disconnect_admin_queue:
2724         /* send a Disconnect(association) LS to fc-nvme target */
2725         nvme_fc_xmt_disconnect_assoc(ctrl);
2726 out_delete_hw_queue:
2727         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2728 out_free_queue:
2729         nvme_fc_free_queue(&ctrl->queues[0]);
2730         ctrl->assoc_active = false;
2731         nvme_fc_ctlr_inactive_on_rport(ctrl);
2732
2733         return ret;
2734 }
2735
2736 /*
2737  * This routine stops operation of the controller on the host side.
2738  * On the host os stack side: Admin and IO queues are stopped,
2739  *   outstanding ios on them terminated via FC ABTS.
2740  * On the link side: the association is terminated.
2741  */
2742 static void
2743 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2744 {
2745         unsigned long flags;
2746
2747         if (!ctrl->assoc_active)
2748                 return;
2749         ctrl->assoc_active = false;
2750
2751         spin_lock_irqsave(&ctrl->lock, flags);
2752         ctrl->flags |= FCCTRL_TERMIO;
2753         ctrl->iocnt = 0;
2754         spin_unlock_irqrestore(&ctrl->lock, flags);
2755
2756         /*
2757          * If io queues are present, stop them and terminate all outstanding
2758          * ios on them. As FC allocates FC exchange for each io, the
2759          * transport must contact the LLDD to terminate the exchange,
2760          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2761          * to tell us what io's are busy and invoke a transport routine
2762          * to kill them with the LLDD.  After terminating the exchange
2763          * the LLDD will call the transport's normal io done path, but it
2764          * will have an aborted status. The done path will return the
2765          * io requests back to the block layer as part of normal completions
2766          * (but with error status).
2767          */
2768         if (ctrl->ctrl.queue_count > 1) {
2769                 nvme_stop_queues(&ctrl->ctrl);
2770                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2771                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2772         }
2773
2774         /*
2775          * Other transports, which don't have link-level contexts bound
2776          * to sqe's, would try to gracefully shutdown the controller by
2777          * writing the registers for shutdown and polling (call
2778          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2779          * just aborted and we will wait on those contexts, and given
2780          * there was no indication of how live the controlelr is on the
2781          * link, don't send more io to create more contexts for the
2782          * shutdown. Let the controller fail via keepalive failure if
2783          * its still present.
2784          */
2785
2786         /*
2787          * clean up the admin queue. Same thing as above.
2788          * use blk_mq_tagset_busy_itr() and the transport routine to
2789          * terminate the exchanges.
2790          */
2791         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2792                 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2793         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2794                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2795
2796         /* kill the aens as they are a separate path */
2797         nvme_fc_abort_aen_ops(ctrl);
2798
2799         /* wait for all io that had to be aborted */
2800         spin_lock_irq(&ctrl->lock);
2801         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2802         ctrl->flags &= ~FCCTRL_TERMIO;
2803         spin_unlock_irq(&ctrl->lock);
2804
2805         nvme_fc_term_aen_ops(ctrl);
2806
2807         /*
2808          * send a Disconnect(association) LS to fc-nvme target
2809          * Note: could have been sent at top of process, but
2810          * cleaner on link traffic if after the aborts complete.
2811          * Note: if association doesn't exist, association_id will be 0
2812          */
2813         if (ctrl->association_id)
2814                 nvme_fc_xmt_disconnect_assoc(ctrl);
2815
2816         if (ctrl->ctrl.tagset) {
2817                 nvme_fc_delete_hw_io_queues(ctrl);
2818                 nvme_fc_free_io_queues(ctrl);
2819         }
2820
2821         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2822         nvme_fc_free_queue(&ctrl->queues[0]);
2823
2824         /* re-enable the admin_q so anything new can fast fail */
2825         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2826
2827         nvme_fc_ctlr_inactive_on_rport(ctrl);
2828 }
2829
2830 static void
2831 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2832 {
2833         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2834
2835         cancel_delayed_work_sync(&ctrl->connect_work);
2836         /*
2837          * kill the association on the link side.  this will block
2838          * waiting for io to terminate
2839          */
2840         nvme_fc_delete_association(ctrl);
2841
2842         /* resume the io queues so that things will fast fail */
2843         nvme_start_queues(nctrl);
2844 }
2845
2846 static void
2847 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2848 {
2849         struct nvme_fc_rport *rport = ctrl->rport;
2850         struct nvme_fc_remote_port *portptr = &rport->remoteport;
2851         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2852         bool recon = true;
2853
2854         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2855                 return;
2856
2857         if (portptr->port_state == FC_OBJSTATE_ONLINE)
2858                 dev_info(ctrl->ctrl.device,
2859                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2860                         ctrl->cnum, status);
2861         else if (time_after_eq(jiffies, rport->dev_loss_end))
2862                 recon = false;
2863
2864         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2865                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2866                         dev_info(ctrl->ctrl.device,
2867                                 "NVME-FC{%d}: Reconnect attempt in %ld "
2868                                 "seconds\n",
2869                                 ctrl->cnum, recon_delay / HZ);
2870                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2871                         recon_delay = rport->dev_loss_end - jiffies;
2872
2873                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2874         } else {
2875                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2876                         dev_warn(ctrl->ctrl.device,
2877                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2878                                 "reached.\n",
2879                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2880                 else
2881                         dev_warn(ctrl->ctrl.device,
2882                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2883                                 "while waiting for remoteport connectivity.\n",
2884                                 ctrl->cnum, portptr->dev_loss_tmo);
2885                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2886         }
2887 }
2888
2889 static void
2890 nvme_fc_reset_ctrl_work(struct work_struct *work)
2891 {
2892         struct nvme_fc_ctrl *ctrl =
2893                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2894         int ret;
2895
2896         nvme_stop_ctrl(&ctrl->ctrl);
2897
2898         /* will block will waiting for io to terminate */
2899         nvme_fc_delete_association(ctrl);
2900
2901         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2902                 dev_err(ctrl->ctrl.device,
2903                         "NVME-FC{%d}: error_recovery: Couldn't change state "
2904                         "to CONNECTING\n", ctrl->cnum);
2905                 return;
2906         }
2907
2908         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2909                 ret = nvme_fc_create_association(ctrl);
2910         else
2911                 ret = -ENOTCONN;
2912
2913         if (ret)
2914                 nvme_fc_reconnect_or_delete(ctrl, ret);
2915         else
2916                 dev_info(ctrl->ctrl.device,
2917                         "NVME-FC{%d}: controller reset complete\n",
2918                         ctrl->cnum);
2919 }
2920
2921 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2922         .name                   = "fc",
2923         .module                 = THIS_MODULE,
2924         .flags                  = NVME_F_FABRICS,
2925         .reg_read32             = nvmf_reg_read32,
2926         .reg_read64             = nvmf_reg_read64,
2927         .reg_write32            = nvmf_reg_write32,
2928         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2929         .submit_async_event     = nvme_fc_submit_async_event,
2930         .delete_ctrl            = nvme_fc_delete_ctrl,
2931         .get_address            = nvmf_get_address,
2932         .reinit_request         = nvme_fc_reinit_request,
2933 };
2934
2935 static void
2936 nvme_fc_connect_ctrl_work(struct work_struct *work)
2937 {
2938         int ret;
2939
2940         struct nvme_fc_ctrl *ctrl =
2941                         container_of(to_delayed_work(work),
2942                                 struct nvme_fc_ctrl, connect_work);
2943
2944         ret = nvme_fc_create_association(ctrl);
2945         if (ret)
2946                 nvme_fc_reconnect_or_delete(ctrl, ret);
2947         else
2948                 dev_info(ctrl->ctrl.device,
2949                         "NVME-FC{%d}: controller reconnect complete\n",
2950                         ctrl->cnum);
2951 }
2952
2953
2954 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2955         .queue_rq       = nvme_fc_queue_rq,
2956         .complete       = nvme_fc_complete_rq,
2957         .init_request   = nvme_fc_init_request,
2958         .exit_request   = nvme_fc_exit_request,
2959         .init_hctx      = nvme_fc_init_admin_hctx,
2960         .timeout        = nvme_fc_timeout,
2961 };
2962
2963
2964 /*
2965  * Fails a controller request if it matches an existing controller
2966  * (association) with the same tuple:
2967  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2968  *
2969  * The ports don't need to be compared as they are intrinsically
2970  * already matched by the port pointers supplied.
2971  */
2972 static bool
2973 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
2974                 struct nvmf_ctrl_options *opts)
2975 {
2976         struct nvme_fc_ctrl *ctrl;
2977         unsigned long flags;
2978         bool found = false;
2979
2980         spin_lock_irqsave(&rport->lock, flags);
2981         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
2982                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
2983                 if (found)
2984                         break;
2985         }
2986         spin_unlock_irqrestore(&rport->lock, flags);
2987
2988         return found;
2989 }
2990
2991 static struct nvme_ctrl *
2992 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2993         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2994 {
2995         struct nvme_fc_ctrl *ctrl;
2996         unsigned long flags;
2997         int ret, idx, retry;
2998
2999         if (!(rport->remoteport.port_role &
3000             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3001                 ret = -EBADR;
3002                 goto out_fail;
3003         }
3004
3005         if (!opts->duplicate_connect &&
3006             nvme_fc_existing_controller(rport, opts)) {
3007                 ret = -EALREADY;
3008                 goto out_fail;
3009         }
3010
3011         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3012         if (!ctrl) {
3013                 ret = -ENOMEM;
3014                 goto out_fail;
3015         }
3016
3017         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3018         if (idx < 0) {
3019                 ret = -ENOSPC;
3020                 goto out_free_ctrl;
3021         }
3022
3023         ctrl->ctrl.opts = opts;
3024         INIT_LIST_HEAD(&ctrl->ctrl_list);
3025         ctrl->lport = lport;
3026         ctrl->rport = rport;
3027         ctrl->dev = lport->dev;
3028         ctrl->cnum = idx;
3029         ctrl->assoc_active = false;
3030         init_waitqueue_head(&ctrl->ioabort_wait);
3031
3032         get_device(ctrl->dev);
3033         kref_init(&ctrl->ref);
3034
3035         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3036         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3037         spin_lock_init(&ctrl->lock);
3038
3039         /* io queue count */
3040         ctrl->ctrl.queue_count = min_t(unsigned int,
3041                                 opts->nr_io_queues,
3042                                 lport->ops->max_hw_queues);
3043         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3044
3045         ctrl->ctrl.sqsize = opts->queue_size - 1;
3046         ctrl->ctrl.kato = opts->kato;
3047
3048         ret = -ENOMEM;
3049         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3050                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3051         if (!ctrl->queues)
3052                 goto out_free_ida;
3053
3054         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3055         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3056         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3057         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3058         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3059         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3060                                         (SG_CHUNK_SIZE *
3061                                                 sizeof(struct scatterlist)) +
3062                                         ctrl->lport->ops->fcprqst_priv_sz;
3063         ctrl->admin_tag_set.driver_data = ctrl;
3064         ctrl->admin_tag_set.nr_hw_queues = 1;
3065         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3066         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3067
3068         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3069         if (ret)
3070                 goto out_free_queues;
3071         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3072
3073         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3074         if (IS_ERR(ctrl->ctrl.admin_q)) {
3075                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3076                 goto out_free_admin_tag_set;
3077         }
3078
3079         /*
3080          * Would have been nice to init io queues tag set as well.
3081          * However, we require interaction from the controller
3082          * for max io queue count before we can do so.
3083          * Defer this to the connect path.
3084          */
3085
3086         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3087         if (ret)
3088                 goto out_cleanup_admin_q;
3089
3090         /* at this point, teardown path changes to ref counting on nvme ctrl */
3091
3092         spin_lock_irqsave(&rport->lock, flags);
3093         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3094         spin_unlock_irqrestore(&rport->lock, flags);
3095
3096         /*
3097          * It's possible that transactions used to create the association
3098          * may fail. Examples: CreateAssociation LS or CreateIOConnection
3099          * LS gets dropped/corrupted/fails; or a frame gets dropped or a
3100          * command times out for one of the actions to init the controller
3101          * (Connect, Get/Set_Property, Set_Features, etc). Many of these
3102          * transport errors (frame drop, LS failure) inherently must kill
3103          * the association. The transport is coded so that any command used
3104          * to create the association (prior to a LIVE state transition
3105          * while NEW or CONNECTING) will fail if it completes in error or
3106          * times out.
3107          *
3108          * As such: as the connect request was mostly likely due to a
3109          * udev event that discovered the remote port, meaning there is
3110          * not an admin or script there to restart if the connect
3111          * request fails, retry the initial connection creation up to
3112          * three times before giving up and declaring failure.
3113          */
3114         for (retry = 0; retry < 3; retry++) {
3115                 ret = nvme_fc_create_association(ctrl);
3116                 if (!ret)
3117                         break;
3118         }
3119
3120         if (ret) {
3121                 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3122                 cancel_work_sync(&ctrl->ctrl.reset_work);
3123                 cancel_delayed_work_sync(&ctrl->connect_work);
3124
3125                 /* couldn't schedule retry - fail out */
3126                 dev_err(ctrl->ctrl.device,
3127                         "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
3128
3129                 ctrl->ctrl.opts = NULL;
3130
3131                 /* initiate nvme ctrl ref counting teardown */
3132                 nvme_uninit_ctrl(&ctrl->ctrl);
3133
3134                 /* Remove core ctrl ref. */
3135                 nvme_put_ctrl(&ctrl->ctrl);
3136
3137                 /* as we're past the point where we transition to the ref
3138                  * counting teardown path, if we return a bad pointer here,
3139                  * the calling routine, thinking it's prior to the
3140                  * transition, will do an rport put. Since the teardown
3141                  * path also does a rport put, we do an extra get here to
3142                  * so proper order/teardown happens.
3143                  */
3144                 nvme_fc_rport_get(rport);
3145
3146                 if (ret > 0)
3147                         ret = -EIO;
3148                 return ERR_PTR(ret);
3149         }
3150
3151         nvme_get_ctrl(&ctrl->ctrl);
3152
3153         dev_info(ctrl->ctrl.device,
3154                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3155                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3156
3157         return &ctrl->ctrl;
3158
3159 out_cleanup_admin_q:
3160         blk_cleanup_queue(ctrl->ctrl.admin_q);
3161 out_free_admin_tag_set:
3162         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3163 out_free_queues:
3164         kfree(ctrl->queues);
3165 out_free_ida:
3166         put_device(ctrl->dev);
3167         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3168 out_free_ctrl:
3169         kfree(ctrl);
3170 out_fail:
3171         /* exit via here doesn't follow ctlr ref points */
3172         return ERR_PTR(ret);
3173 }
3174
3175
3176 struct nvmet_fc_traddr {
3177         u64     nn;
3178         u64     pn;
3179 };
3180
3181 static int
3182 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3183 {
3184         u64 token64;
3185
3186         if (match_u64(sstr, &token64))
3187                 return -EINVAL;
3188         *val = token64;
3189
3190         return 0;
3191 }
3192
3193 /*
3194  * This routine validates and extracts the WWN's from the TRADDR string.
3195  * As kernel parsers need the 0x to determine number base, universally
3196  * build string to parse with 0x prefix before parsing name strings.
3197  */
3198 static int
3199 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3200 {
3201         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3202         substring_t wwn = { name, &name[sizeof(name)-1] };
3203         int nnoffset, pnoffset;
3204
3205         /* validate it string one of the 2 allowed formats */
3206         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3207                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3208                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3209                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3210                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3211                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3212                                                 NVME_FC_TRADDR_OXNNLEN;
3213         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3214                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3215                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3216                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3217                 nnoffset = NVME_FC_TRADDR_NNLEN;
3218                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3219         } else
3220                 goto out_einval;
3221
3222         name[0] = '0';
3223         name[1] = 'x';
3224         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3225
3226         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3227         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3228                 goto out_einval;
3229
3230         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3231         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3232                 goto out_einval;
3233
3234         return 0;
3235
3236 out_einval:
3237         pr_warn("%s: bad traddr string\n", __func__);
3238         return -EINVAL;
3239 }
3240
3241 static struct nvme_ctrl *
3242 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3243 {
3244         struct nvme_fc_lport *lport;
3245         struct nvme_fc_rport *rport;
3246         struct nvme_ctrl *ctrl;
3247         struct nvmet_fc_traddr laddr = { 0L, 0L };
3248         struct nvmet_fc_traddr raddr = { 0L, 0L };
3249         unsigned long flags;
3250         int ret;
3251
3252         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3253         if (ret || !raddr.nn || !raddr.pn)
3254                 return ERR_PTR(-EINVAL);
3255
3256         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3257         if (ret || !laddr.nn || !laddr.pn)
3258                 return ERR_PTR(-EINVAL);
3259
3260         /* find the host and remote ports to connect together */
3261         spin_lock_irqsave(&nvme_fc_lock, flags);
3262         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3263                 if (lport->localport.node_name != laddr.nn ||
3264                     lport->localport.port_name != laddr.pn)
3265                         continue;
3266
3267                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3268                         if (rport->remoteport.node_name != raddr.nn ||
3269                             rport->remoteport.port_name != raddr.pn)
3270                                 continue;
3271
3272                         /* if fail to get reference fall through. Will error */
3273                         if (!nvme_fc_rport_get(rport))
3274                                 break;
3275
3276                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3277
3278                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3279                         if (IS_ERR(ctrl))
3280                                 nvme_fc_rport_put(rport);
3281                         return ctrl;
3282                 }
3283         }
3284         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3285
3286         return ERR_PTR(-ENOENT);
3287 }
3288
3289
3290 static struct nvmf_transport_ops nvme_fc_transport = {
3291         .name           = "fc",
3292         .module         = THIS_MODULE,
3293         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3294         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3295         .create_ctrl    = nvme_fc_create_ctrl,
3296 };
3297
3298 static int __init nvme_fc_init_module(void)
3299 {
3300         int ret;
3301
3302         /*
3303          * NOTE:
3304          * It is expected that in the future the kernel will combine
3305          * the FC-isms that are currently under scsi and now being
3306          * added to by NVME into a new standalone FC class. The SCSI
3307          * and NVME protocols and their devices would be under this
3308          * new FC class.
3309          *
3310          * As we need something to post FC-specific udev events to,
3311          * specifically for nvme probe events, start by creating the
3312          * new device class.  When the new standalone FC class is
3313          * put in place, this code will move to a more generic
3314          * location for the class.
3315          */
3316         fc_class = class_create(THIS_MODULE, "fc");
3317         if (IS_ERR(fc_class)) {
3318                 pr_err("couldn't register class fc\n");
3319                 return PTR_ERR(fc_class);
3320         }
3321
3322         /*
3323          * Create a device for the FC-centric udev events
3324          */
3325         fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3326                                 "fc_udev_device");
3327         if (IS_ERR(fc_udev_device)) {
3328                 pr_err("couldn't create fc_udev device!\n");
3329                 ret = PTR_ERR(fc_udev_device);
3330                 goto out_destroy_class;
3331         }
3332
3333         ret = nvmf_register_transport(&nvme_fc_transport);
3334         if (ret)
3335                 goto out_destroy_device;
3336
3337         return 0;
3338
3339 out_destroy_device:
3340         device_destroy(fc_class, MKDEV(0, 0));
3341 out_destroy_class:
3342         class_destroy(fc_class);
3343         return ret;
3344 }
3345
3346 static void __exit nvme_fc_exit_module(void)
3347 {
3348         /* sanity check - all lports should be removed */
3349         if (!list_empty(&nvme_fc_lport_list))
3350                 pr_warn("%s: localport list not empty\n", __func__);
3351
3352         nvmf_unregister_transport(&nvme_fc_transport);
3353
3354         ida_destroy(&nvme_fc_local_port_cnt);
3355         ida_destroy(&nvme_fc_ctrl_cnt);
3356
3357         device_destroy(fc_class, MKDEV(0, 0));
3358         class_destroy(fc_class);
3359 }
3360
3361 module_init(nvme_fc_init_module);
3362 module_exit(nvme_fc_exit_module);
3363
3364 MODULE_LICENSE("GPL v2");