Merge tag 'memory-controller-drv-5.12-2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94                                            unsigned nsid);
95
96 /*
97  * Prepare a queue for teardown.
98  *
99  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100  * the capacity to 0 after that to avoid blocking dispatchers that may be
101  * holding bd_butex.  This will end buffered writers dirtying pages that can't
102  * be synced.
103  */
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
105 {
106         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107                 return;
108
109         blk_set_queue_dying(ns->queue);
110         blk_mq_unquiesce_queue(ns->queue);
111
112         set_capacity_and_notify(ns->disk, 0);
113 }
114
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117         /*
118          * Only new queue scan work when admin and IO queues are both alive
119          */
120         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121                 queue_work(nvme_wq, &ctrl->scan_work);
122 }
123
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132         if (ctrl->state != NVME_CTRL_RESETTING)
133                 return -EBUSY;
134         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135                 return -EBUSY;
136         return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139
140 static void nvme_failfast_work(struct work_struct *work)
141 {
142         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143                         struct nvme_ctrl, failfast_work);
144
145         if (ctrl->state != NVME_CTRL_CONNECTING)
146                 return;
147
148         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149         dev_info(ctrl->device, "failfast expired\n");
150         nvme_kick_requeue_lists(ctrl);
151 }
152
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
154 {
155         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156                 return;
157
158         schedule_delayed_work(&ctrl->failfast_work,
159                               ctrl->opts->fast_io_fail_tmo * HZ);
160 }
161
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
163 {
164         if (!ctrl->opts)
165                 return;
166
167         cancel_delayed_work_sync(&ctrl->failfast_work);
168         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
169 }
170
171
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
173 {
174         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175                 return -EBUSY;
176         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177                 return -EBUSY;
178         return 0;
179 }
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
181
182 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
183 {
184         int ret;
185
186         ret = nvme_reset_ctrl(ctrl);
187         if (!ret) {
188                 flush_work(&ctrl->reset_work);
189                 if (ctrl->state != NVME_CTRL_LIVE)
190                         ret = -ENETRESET;
191         }
192
193         return ret;
194 }
195
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198         dev_info(ctrl->device,
199                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
200
201         flush_work(&ctrl->reset_work);
202         nvme_stop_ctrl(ctrl);
203         nvme_remove_namespaces(ctrl);
204         ctrl->ops->delete_ctrl(ctrl);
205         nvme_uninit_ctrl(ctrl);
206 }
207
208 static void nvme_delete_ctrl_work(struct work_struct *work)
209 {
210         struct nvme_ctrl *ctrl =
211                 container_of(work, struct nvme_ctrl, delete_work);
212
213         nvme_do_delete_ctrl(ctrl);
214 }
215
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
217 {
218         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219                 return -EBUSY;
220         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221                 return -EBUSY;
222         return 0;
223 }
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
225
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
227 {
228         /*
229          * Keep a reference until nvme_do_delete_ctrl() complete,
230          * since ->delete_ctrl can free the controller.
231          */
232         nvme_get_ctrl(ctrl);
233         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234                 nvme_do_delete_ctrl(ctrl);
235         nvme_put_ctrl(ctrl);
236 }
237
238 static blk_status_t nvme_error_status(u16 status)
239 {
240         switch (status & 0x7ff) {
241         case NVME_SC_SUCCESS:
242                 return BLK_STS_OK;
243         case NVME_SC_CAP_EXCEEDED:
244                 return BLK_STS_NOSPC;
245         case NVME_SC_LBA_RANGE:
246         case NVME_SC_CMD_INTERRUPTED:
247         case NVME_SC_NS_NOT_READY:
248                 return BLK_STS_TARGET;
249         case NVME_SC_BAD_ATTRIBUTES:
250         case NVME_SC_ONCS_NOT_SUPPORTED:
251         case NVME_SC_INVALID_OPCODE:
252         case NVME_SC_INVALID_FIELD:
253         case NVME_SC_INVALID_NS:
254                 return BLK_STS_NOTSUPP;
255         case NVME_SC_WRITE_FAULT:
256         case NVME_SC_READ_ERROR:
257         case NVME_SC_UNWRITTEN_BLOCK:
258         case NVME_SC_ACCESS_DENIED:
259         case NVME_SC_READ_ONLY:
260         case NVME_SC_COMPARE_FAILED:
261                 return BLK_STS_MEDIUM;
262         case NVME_SC_GUARD_CHECK:
263         case NVME_SC_APPTAG_CHECK:
264         case NVME_SC_REFTAG_CHECK:
265         case NVME_SC_INVALID_PI:
266                 return BLK_STS_PROTECTION;
267         case NVME_SC_RESERVATION_CONFLICT:
268                 return BLK_STS_NEXUS;
269         case NVME_SC_HOST_PATH_ERROR:
270                 return BLK_STS_TRANSPORT;
271         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
273         case NVME_SC_ZONE_TOO_MANY_OPEN:
274                 return BLK_STS_ZONE_OPEN_RESOURCE;
275         default:
276                 return BLK_STS_IOERR;
277         }
278 }
279
280 static void nvme_retry_req(struct request *req)
281 {
282         struct nvme_ns *ns = req->q->queuedata;
283         unsigned long delay = 0;
284         u16 crd;
285
286         /* The mask and shift result must be <= 3 */
287         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
288         if (ns && crd)
289                 delay = ns->ctrl->crdt[crd - 1] * 100;
290
291         nvme_req(req)->retries++;
292         blk_mq_requeue_request(req, false);
293         blk_mq_delay_kick_requeue_list(req->q, delay);
294 }
295
296 enum nvme_disposition {
297         COMPLETE,
298         RETRY,
299         FAILOVER,
300 };
301
302 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
303 {
304         if (likely(nvme_req(req)->status == 0))
305                 return COMPLETE;
306
307         if (blk_noretry_request(req) ||
308             (nvme_req(req)->status & NVME_SC_DNR) ||
309             nvme_req(req)->retries >= nvme_max_retries)
310                 return COMPLETE;
311
312         if (req->cmd_flags & REQ_NVME_MPATH) {
313                 if (nvme_is_path_error(nvme_req(req)->status) ||
314                     blk_queue_dying(req->q))
315                         return FAILOVER;
316         } else {
317                 if (blk_queue_dying(req->q))
318                         return COMPLETE;
319         }
320
321         return RETRY;
322 }
323
324 static inline void nvme_end_req(struct request *req)
325 {
326         blk_status_t status = nvme_error_status(nvme_req(req)->status);
327
328         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
329             req_op(req) == REQ_OP_ZONE_APPEND)
330                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
331                         le64_to_cpu(nvme_req(req)->result.u64));
332
333         nvme_trace_bio_complete(req);
334         blk_mq_end_request(req, status);
335 }
336
337 void nvme_complete_rq(struct request *req)
338 {
339         trace_nvme_complete_rq(req);
340         nvme_cleanup_cmd(req);
341
342         if (nvme_req(req)->ctrl->kas)
343                 nvme_req(req)->ctrl->comp_seen = true;
344
345         switch (nvme_decide_disposition(req)) {
346         case COMPLETE:
347                 nvme_end_req(req);
348                 return;
349         case RETRY:
350                 nvme_retry_req(req);
351                 return;
352         case FAILOVER:
353                 nvme_failover_req(req);
354                 return;
355         }
356 }
357 EXPORT_SYMBOL_GPL(nvme_complete_rq);
358
359 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
360 {
361         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
362                                 "Cancelling I/O %d", req->tag);
363
364         /* don't abort one completed request */
365         if (blk_mq_request_completed(req))
366                 return true;
367
368         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
369         blk_mq_complete_request(req);
370         return true;
371 }
372 EXPORT_SYMBOL_GPL(nvme_cancel_request);
373
374 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
375                 enum nvme_ctrl_state new_state)
376 {
377         enum nvme_ctrl_state old_state;
378         unsigned long flags;
379         bool changed = false;
380
381         spin_lock_irqsave(&ctrl->lock, flags);
382
383         old_state = ctrl->state;
384         switch (new_state) {
385         case NVME_CTRL_LIVE:
386                 switch (old_state) {
387                 case NVME_CTRL_NEW:
388                 case NVME_CTRL_RESETTING:
389                 case NVME_CTRL_CONNECTING:
390                         changed = true;
391                         fallthrough;
392                 default:
393                         break;
394                 }
395                 break;
396         case NVME_CTRL_RESETTING:
397                 switch (old_state) {
398                 case NVME_CTRL_NEW:
399                 case NVME_CTRL_LIVE:
400                         changed = true;
401                         fallthrough;
402                 default:
403                         break;
404                 }
405                 break;
406         case NVME_CTRL_CONNECTING:
407                 switch (old_state) {
408                 case NVME_CTRL_NEW:
409                 case NVME_CTRL_RESETTING:
410                         changed = true;
411                         fallthrough;
412                 default:
413                         break;
414                 }
415                 break;
416         case NVME_CTRL_DELETING:
417                 switch (old_state) {
418                 case NVME_CTRL_LIVE:
419                 case NVME_CTRL_RESETTING:
420                 case NVME_CTRL_CONNECTING:
421                         changed = true;
422                         fallthrough;
423                 default:
424                         break;
425                 }
426                 break;
427         case NVME_CTRL_DELETING_NOIO:
428                 switch (old_state) {
429                 case NVME_CTRL_DELETING:
430                 case NVME_CTRL_DEAD:
431                         changed = true;
432                         fallthrough;
433                 default:
434                         break;
435                 }
436                 break;
437         case NVME_CTRL_DEAD:
438                 switch (old_state) {
439                 case NVME_CTRL_DELETING:
440                         changed = true;
441                         fallthrough;
442                 default:
443                         break;
444                 }
445                 break;
446         default:
447                 break;
448         }
449
450         if (changed) {
451                 ctrl->state = new_state;
452                 wake_up_all(&ctrl->state_wq);
453         }
454
455         spin_unlock_irqrestore(&ctrl->lock, flags);
456         if (!changed)
457                 return false;
458
459         if (ctrl->state == NVME_CTRL_LIVE) {
460                 if (old_state == NVME_CTRL_CONNECTING)
461                         nvme_stop_failfast_work(ctrl);
462                 nvme_kick_requeue_lists(ctrl);
463         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
464                 old_state == NVME_CTRL_RESETTING) {
465                 nvme_start_failfast_work(ctrl);
466         }
467         return changed;
468 }
469 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
470
471 /*
472  * Returns true for sink states that can't ever transition back to live.
473  */
474 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
475 {
476         switch (ctrl->state) {
477         case NVME_CTRL_NEW:
478         case NVME_CTRL_LIVE:
479         case NVME_CTRL_RESETTING:
480         case NVME_CTRL_CONNECTING:
481                 return false;
482         case NVME_CTRL_DELETING:
483         case NVME_CTRL_DELETING_NOIO:
484         case NVME_CTRL_DEAD:
485                 return true;
486         default:
487                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
488                 return true;
489         }
490 }
491
492 /*
493  * Waits for the controller state to be resetting, or returns false if it is
494  * not possible to ever transition to that state.
495  */
496 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
497 {
498         wait_event(ctrl->state_wq,
499                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
500                    nvme_state_terminal(ctrl));
501         return ctrl->state == NVME_CTRL_RESETTING;
502 }
503 EXPORT_SYMBOL_GPL(nvme_wait_reset);
504
505 static void nvme_free_ns_head(struct kref *ref)
506 {
507         struct nvme_ns_head *head =
508                 container_of(ref, struct nvme_ns_head, ref);
509
510         nvme_mpath_remove_disk(head);
511         ida_simple_remove(&head->subsys->ns_ida, head->instance);
512         cleanup_srcu_struct(&head->srcu);
513         nvme_put_subsystem(head->subsys);
514         kfree(head);
515 }
516
517 static void nvme_put_ns_head(struct nvme_ns_head *head)
518 {
519         kref_put(&head->ref, nvme_free_ns_head);
520 }
521
522 static void nvme_free_ns(struct kref *kref)
523 {
524         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
525
526         if (ns->ndev)
527                 nvme_nvm_unregister(ns);
528
529         put_disk(ns->disk);
530         nvme_put_ns_head(ns->head);
531         nvme_put_ctrl(ns->ctrl);
532         kfree(ns);
533 }
534
535 void nvme_put_ns(struct nvme_ns *ns)
536 {
537         kref_put(&ns->kref, nvme_free_ns);
538 }
539 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
540
541 static inline void nvme_clear_nvme_request(struct request *req)
542 {
543         if (!(req->rq_flags & RQF_DONTPREP)) {
544                 nvme_req(req)->retries = 0;
545                 nvme_req(req)->flags = 0;
546                 req->rq_flags |= RQF_DONTPREP;
547         }
548 }
549
550 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
551 {
552         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
553 }
554
555 static inline void nvme_init_request(struct request *req,
556                 struct nvme_command *cmd)
557 {
558         if (req->q->queuedata)
559                 req->timeout = NVME_IO_TIMEOUT;
560         else /* no queuedata implies admin queue */
561                 req->timeout = NVME_ADMIN_TIMEOUT;
562
563         req->cmd_flags |= REQ_FAILFAST_DRIVER;
564         nvme_clear_nvme_request(req);
565         nvme_req(req)->cmd = cmd;
566 }
567
568 struct request *nvme_alloc_request(struct request_queue *q,
569                 struct nvme_command *cmd, blk_mq_req_flags_t flags)
570 {
571         struct request *req;
572
573         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
574         if (!IS_ERR(req))
575                 nvme_init_request(req, cmd);
576         return req;
577 }
578 EXPORT_SYMBOL_GPL(nvme_alloc_request);
579
580 static struct request *nvme_alloc_request_qid(struct request_queue *q,
581                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
582 {
583         struct request *req;
584
585         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
586                         qid ? qid - 1 : 0);
587         if (!IS_ERR(req))
588                 nvme_init_request(req, cmd);
589         return req;
590 }
591
592 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
593 {
594         struct nvme_command c;
595
596         memset(&c, 0, sizeof(c));
597
598         c.directive.opcode = nvme_admin_directive_send;
599         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
600         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
601         c.directive.dtype = NVME_DIR_IDENTIFY;
602         c.directive.tdtype = NVME_DIR_STREAMS;
603         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
604
605         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
606 }
607
608 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
609 {
610         return nvme_toggle_streams(ctrl, false);
611 }
612
613 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
614 {
615         return nvme_toggle_streams(ctrl, true);
616 }
617
618 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
619                                   struct streams_directive_params *s, u32 nsid)
620 {
621         struct nvme_command c;
622
623         memset(&c, 0, sizeof(c));
624         memset(s, 0, sizeof(*s));
625
626         c.directive.opcode = nvme_admin_directive_recv;
627         c.directive.nsid = cpu_to_le32(nsid);
628         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
629         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
630         c.directive.dtype = NVME_DIR_STREAMS;
631
632         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
633 }
634
635 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
636 {
637         struct streams_directive_params s;
638         int ret;
639
640         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
641                 return 0;
642         if (!streams)
643                 return 0;
644
645         ret = nvme_enable_streams(ctrl);
646         if (ret)
647                 return ret;
648
649         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
650         if (ret)
651                 goto out_disable_stream;
652
653         ctrl->nssa = le16_to_cpu(s.nssa);
654         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
655                 dev_info(ctrl->device, "too few streams (%u) available\n",
656                                         ctrl->nssa);
657                 goto out_disable_stream;
658         }
659
660         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
661         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
662         return 0;
663
664 out_disable_stream:
665         nvme_disable_streams(ctrl);
666         return ret;
667 }
668
669 /*
670  * Check if 'req' has a write hint associated with it. If it does, assign
671  * a valid namespace stream to the write.
672  */
673 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
674                                      struct request *req, u16 *control,
675                                      u32 *dsmgmt)
676 {
677         enum rw_hint streamid = req->write_hint;
678
679         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
680                 streamid = 0;
681         else {
682                 streamid--;
683                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
684                         return;
685
686                 *control |= NVME_RW_DTYPE_STREAMS;
687                 *dsmgmt |= streamid << 16;
688         }
689
690         if (streamid < ARRAY_SIZE(req->q->write_hints))
691                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
692 }
693
694 static void nvme_setup_passthrough(struct request *req,
695                 struct nvme_command *cmd)
696 {
697         memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
698         /* passthru commands should let the driver set the SGL flags */
699         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
700 }
701
702 static inline void nvme_setup_flush(struct nvme_ns *ns,
703                 struct nvme_command *cmnd)
704 {
705         cmnd->common.opcode = nvme_cmd_flush;
706         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
707 }
708
709 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
710                 struct nvme_command *cmnd)
711 {
712         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
713         struct nvme_dsm_range *range;
714         struct bio *bio;
715
716         /*
717          * Some devices do not consider the DSM 'Number of Ranges' field when
718          * determining how much data to DMA. Always allocate memory for maximum
719          * number of segments to prevent device reading beyond end of buffer.
720          */
721         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
722
723         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
724         if (!range) {
725                 /*
726                  * If we fail allocation our range, fallback to the controller
727                  * discard page. If that's also busy, it's safe to return
728                  * busy, as we know we can make progress once that's freed.
729                  */
730                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
731                         return BLK_STS_RESOURCE;
732
733                 range = page_address(ns->ctrl->discard_page);
734         }
735
736         __rq_for_each_bio(bio, req) {
737                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
738                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
739
740                 if (n < segments) {
741                         range[n].cattr = cpu_to_le32(0);
742                         range[n].nlb = cpu_to_le32(nlb);
743                         range[n].slba = cpu_to_le64(slba);
744                 }
745                 n++;
746         }
747
748         if (WARN_ON_ONCE(n != segments)) {
749                 if (virt_to_page(range) == ns->ctrl->discard_page)
750                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
751                 else
752                         kfree(range);
753                 return BLK_STS_IOERR;
754         }
755
756         cmnd->dsm.opcode = nvme_cmd_dsm;
757         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
758         cmnd->dsm.nr = cpu_to_le32(segments - 1);
759         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
760
761         req->special_vec.bv_page = virt_to_page(range);
762         req->special_vec.bv_offset = offset_in_page(range);
763         req->special_vec.bv_len = alloc_size;
764         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
765
766         return BLK_STS_OK;
767 }
768
769 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
770                 struct request *req, struct nvme_command *cmnd)
771 {
772         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
773                 return nvme_setup_discard(ns, req, cmnd);
774
775         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
776         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
777         cmnd->write_zeroes.slba =
778                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
779         cmnd->write_zeroes.length =
780                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
781         cmnd->write_zeroes.control = 0;
782         return BLK_STS_OK;
783 }
784
785 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
786                 struct request *req, struct nvme_command *cmnd,
787                 enum nvme_opcode op)
788 {
789         struct nvme_ctrl *ctrl = ns->ctrl;
790         u16 control = 0;
791         u32 dsmgmt = 0;
792
793         if (req->cmd_flags & REQ_FUA)
794                 control |= NVME_RW_FUA;
795         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
796                 control |= NVME_RW_LR;
797
798         if (req->cmd_flags & REQ_RAHEAD)
799                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
800
801         cmnd->rw.opcode = op;
802         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
803         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
804         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
805
806         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
807                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
808
809         if (ns->ms) {
810                 /*
811                  * If formated with metadata, the block layer always provides a
812                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
813                  * we enable the PRACT bit for protection information or set the
814                  * namespace capacity to zero to prevent any I/O.
815                  */
816                 if (!blk_integrity_rq(req)) {
817                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
818                                 return BLK_STS_NOTSUPP;
819                         control |= NVME_RW_PRINFO_PRACT;
820                 }
821
822                 switch (ns->pi_type) {
823                 case NVME_NS_DPS_PI_TYPE3:
824                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
825                         break;
826                 case NVME_NS_DPS_PI_TYPE1:
827                 case NVME_NS_DPS_PI_TYPE2:
828                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
829                                         NVME_RW_PRINFO_PRCHK_REF;
830                         if (op == nvme_cmd_zone_append)
831                                 control |= NVME_RW_APPEND_PIREMAP;
832                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
833                         break;
834                 }
835         }
836
837         cmnd->rw.control = cpu_to_le16(control);
838         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
839         return 0;
840 }
841
842 void nvme_cleanup_cmd(struct request *req)
843 {
844         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
845                 struct nvme_ns *ns = req->rq_disk->private_data;
846                 struct page *page = req->special_vec.bv_page;
847
848                 if (page == ns->ctrl->discard_page)
849                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
850                 else
851                         kfree(page_address(page) + req->special_vec.bv_offset);
852         }
853 }
854 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
855
856 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
857                 struct nvme_command *cmd)
858 {
859         blk_status_t ret = BLK_STS_OK;
860
861         nvme_clear_nvme_request(req);
862
863         memset(cmd, 0, sizeof(*cmd));
864         switch (req_op(req)) {
865         case REQ_OP_DRV_IN:
866         case REQ_OP_DRV_OUT:
867                 nvme_setup_passthrough(req, cmd);
868                 break;
869         case REQ_OP_FLUSH:
870                 nvme_setup_flush(ns, cmd);
871                 break;
872         case REQ_OP_ZONE_RESET_ALL:
873         case REQ_OP_ZONE_RESET:
874                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
875                 break;
876         case REQ_OP_ZONE_OPEN:
877                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
878                 break;
879         case REQ_OP_ZONE_CLOSE:
880                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
881                 break;
882         case REQ_OP_ZONE_FINISH:
883                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
884                 break;
885         case REQ_OP_WRITE_ZEROES:
886                 ret = nvme_setup_write_zeroes(ns, req, cmd);
887                 break;
888         case REQ_OP_DISCARD:
889                 ret = nvme_setup_discard(ns, req, cmd);
890                 break;
891         case REQ_OP_READ:
892                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
893                 break;
894         case REQ_OP_WRITE:
895                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
896                 break;
897         case REQ_OP_ZONE_APPEND:
898                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
899                 break;
900         default:
901                 WARN_ON_ONCE(1);
902                 return BLK_STS_IOERR;
903         }
904
905         cmd->common.command_id = req->tag;
906         trace_nvme_setup_cmd(req, cmd);
907         return ret;
908 }
909 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
910
911 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
912 {
913         struct completion *waiting = rq->end_io_data;
914
915         rq->end_io_data = NULL;
916         complete(waiting);
917 }
918
919 static void nvme_execute_rq_polled(struct request_queue *q,
920                 struct gendisk *bd_disk, struct request *rq, int at_head)
921 {
922         DECLARE_COMPLETION_ONSTACK(wait);
923
924         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
925
926         rq->cmd_flags |= REQ_HIPRI;
927         rq->end_io_data = &wait;
928         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
929
930         while (!completion_done(&wait)) {
931                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
932                 cond_resched();
933         }
934 }
935
936 /*
937  * Returns 0 on success.  If the result is negative, it's a Linux error code;
938  * if the result is positive, it's an NVM Express status code
939  */
940 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
941                 union nvme_result *result, void *buffer, unsigned bufflen,
942                 unsigned timeout, int qid, int at_head,
943                 blk_mq_req_flags_t flags, bool poll)
944 {
945         struct request *req;
946         int ret;
947
948         if (qid == NVME_QID_ANY)
949                 req = nvme_alloc_request(q, cmd, flags);
950         else
951                 req = nvme_alloc_request_qid(q, cmd, flags, qid);
952         if (IS_ERR(req))
953                 return PTR_ERR(req);
954
955         if (timeout)
956                 req->timeout = timeout;
957
958         if (buffer && bufflen) {
959                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
960                 if (ret)
961                         goto out;
962         }
963
964         if (poll)
965                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
966         else
967                 blk_execute_rq(req->q, NULL, req, at_head);
968         if (result)
969                 *result = nvme_req(req)->result;
970         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
971                 ret = -EINTR;
972         else
973                 ret = nvme_req(req)->status;
974  out:
975         blk_mq_free_request(req);
976         return ret;
977 }
978 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
979
980 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
981                 void *buffer, unsigned bufflen)
982 {
983         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
984                         NVME_QID_ANY, 0, 0, false);
985 }
986 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
987
988 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
989                 unsigned len, u32 seed, bool write)
990 {
991         struct bio_integrity_payload *bip;
992         int ret = -ENOMEM;
993         void *buf;
994
995         buf = kmalloc(len, GFP_KERNEL);
996         if (!buf)
997                 goto out;
998
999         ret = -EFAULT;
1000         if (write && copy_from_user(buf, ubuf, len))
1001                 goto out_free_meta;
1002
1003         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
1004         if (IS_ERR(bip)) {
1005                 ret = PTR_ERR(bip);
1006                 goto out_free_meta;
1007         }
1008
1009         bip->bip_iter.bi_size = len;
1010         bip->bip_iter.bi_sector = seed;
1011         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
1012                         offset_in_page(buf));
1013         if (ret == len)
1014                 return buf;
1015         ret = -ENOMEM;
1016 out_free_meta:
1017         kfree(buf);
1018 out:
1019         return ERR_PTR(ret);
1020 }
1021
1022 static u32 nvme_known_admin_effects(u8 opcode)
1023 {
1024         switch (opcode) {
1025         case nvme_admin_format_nvm:
1026                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1027                         NVME_CMD_EFFECTS_CSE_MASK;
1028         case nvme_admin_sanitize_nvm:
1029                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1030         default:
1031                 break;
1032         }
1033         return 0;
1034 }
1035
1036 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1037 {
1038         u32 effects = 0;
1039
1040         if (ns) {
1041                 if (ns->head->effects)
1042                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1043                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1044                         dev_warn(ctrl->device,
1045                                  "IO command:%02x has unhandled effects:%08x\n",
1046                                  opcode, effects);
1047                 return 0;
1048         }
1049
1050         if (ctrl->effects)
1051                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1052         effects |= nvme_known_admin_effects(opcode);
1053
1054         return effects;
1055 }
1056 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1057
1058 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1059                                u8 opcode)
1060 {
1061         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1062
1063         /*
1064          * For simplicity, IO to all namespaces is quiesced even if the command
1065          * effects say only one namespace is affected.
1066          */
1067         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1068                 mutex_lock(&ctrl->scan_lock);
1069                 mutex_lock(&ctrl->subsys->lock);
1070                 nvme_mpath_start_freeze(ctrl->subsys);
1071                 nvme_mpath_wait_freeze(ctrl->subsys);
1072                 nvme_start_freeze(ctrl);
1073                 nvme_wait_freeze(ctrl);
1074         }
1075         return effects;
1076 }
1077
1078 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1079 {
1080         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1081                 nvme_unfreeze(ctrl);
1082                 nvme_mpath_unfreeze(ctrl->subsys);
1083                 mutex_unlock(&ctrl->subsys->lock);
1084                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1085                 mutex_unlock(&ctrl->scan_lock);
1086         }
1087         if (effects & NVME_CMD_EFFECTS_CCC)
1088                 nvme_init_identify(ctrl);
1089         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1090                 nvme_queue_scan(ctrl);
1091                 flush_work(&ctrl->scan_work);
1092         }
1093 }
1094
1095 void nvme_execute_passthru_rq(struct request *rq)
1096 {
1097         struct nvme_command *cmd = nvme_req(rq)->cmd;
1098         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1099         struct nvme_ns *ns = rq->q->queuedata;
1100         struct gendisk *disk = ns ? ns->disk : NULL;
1101         u32 effects;
1102
1103         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1104         blk_execute_rq(rq->q, disk, rq, 0);
1105         nvme_passthru_end(ctrl, effects);
1106 }
1107 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1108
1109 static int nvme_submit_user_cmd(struct request_queue *q,
1110                 struct nvme_command *cmd, void __user *ubuffer,
1111                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1112                 u32 meta_seed, u64 *result, unsigned timeout)
1113 {
1114         bool write = nvme_is_write(cmd);
1115         struct nvme_ns *ns = q->queuedata;
1116         struct gendisk *disk = ns ? ns->disk : NULL;
1117         struct request *req;
1118         struct bio *bio = NULL;
1119         void *meta = NULL;
1120         int ret;
1121
1122         req = nvme_alloc_request(q, cmd, 0);
1123         if (IS_ERR(req))
1124                 return PTR_ERR(req);
1125
1126         if (timeout)
1127                 req->timeout = timeout;
1128         nvme_req(req)->flags |= NVME_REQ_USERCMD;
1129
1130         if (ubuffer && bufflen) {
1131                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1132                                 GFP_KERNEL);
1133                 if (ret)
1134                         goto out;
1135                 bio = req->bio;
1136                 bio->bi_disk = disk;
1137                 if (disk && meta_buffer && meta_len) {
1138                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1139                                         meta_seed, write);
1140                         if (IS_ERR(meta)) {
1141                                 ret = PTR_ERR(meta);
1142                                 goto out_unmap;
1143                         }
1144                         req->cmd_flags |= REQ_INTEGRITY;
1145                 }
1146         }
1147
1148         nvme_execute_passthru_rq(req);
1149         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1150                 ret = -EINTR;
1151         else
1152                 ret = nvme_req(req)->status;
1153         if (result)
1154                 *result = le64_to_cpu(nvme_req(req)->result.u64);
1155         if (meta && !ret && !write) {
1156                 if (copy_to_user(meta_buffer, meta, meta_len))
1157                         ret = -EFAULT;
1158         }
1159         kfree(meta);
1160  out_unmap:
1161         if (bio)
1162                 blk_rq_unmap_user(bio);
1163  out:
1164         blk_mq_free_request(req);
1165         return ret;
1166 }
1167
1168 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1169 {
1170         struct nvme_ctrl *ctrl = rq->end_io_data;
1171         unsigned long flags;
1172         bool startka = false;
1173
1174         blk_mq_free_request(rq);
1175
1176         if (status) {
1177                 dev_err(ctrl->device,
1178                         "failed nvme_keep_alive_end_io error=%d\n",
1179                                 status);
1180                 return;
1181         }
1182
1183         ctrl->comp_seen = false;
1184         spin_lock_irqsave(&ctrl->lock, flags);
1185         if (ctrl->state == NVME_CTRL_LIVE ||
1186             ctrl->state == NVME_CTRL_CONNECTING)
1187                 startka = true;
1188         spin_unlock_irqrestore(&ctrl->lock, flags);
1189         if (startka)
1190                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1191 }
1192
1193 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1194 {
1195         struct request *rq;
1196
1197         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1198                         BLK_MQ_REQ_RESERVED);
1199         if (IS_ERR(rq))
1200                 return PTR_ERR(rq);
1201
1202         rq->timeout = ctrl->kato * HZ;
1203         rq->end_io_data = ctrl;
1204
1205         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1206
1207         return 0;
1208 }
1209
1210 static void nvme_keep_alive_work(struct work_struct *work)
1211 {
1212         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1213                         struct nvme_ctrl, ka_work);
1214         bool comp_seen = ctrl->comp_seen;
1215
1216         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1217                 dev_dbg(ctrl->device,
1218                         "reschedule traffic based keep-alive timer\n");
1219                 ctrl->comp_seen = false;
1220                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1221                 return;
1222         }
1223
1224         if (nvme_keep_alive(ctrl)) {
1225                 /* allocation failure, reset the controller */
1226                 dev_err(ctrl->device, "keep-alive failed\n");
1227                 nvme_reset_ctrl(ctrl);
1228                 return;
1229         }
1230 }
1231
1232 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1233 {
1234         if (unlikely(ctrl->kato == 0))
1235                 return;
1236
1237         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1238 }
1239
1240 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1241 {
1242         if (unlikely(ctrl->kato == 0))
1243                 return;
1244
1245         cancel_delayed_work_sync(&ctrl->ka_work);
1246 }
1247 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1248
1249 /*
1250  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1251  * flag, thus sending any new CNS opcodes has a big chance of not working.
1252  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1253  * (but not for any later version).
1254  */
1255 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1256 {
1257         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1258                 return ctrl->vs < NVME_VS(1, 2, 0);
1259         return ctrl->vs < NVME_VS(1, 1, 0);
1260 }
1261
1262 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1263 {
1264         struct nvme_command c = { };
1265         int error;
1266
1267         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1268         c.identify.opcode = nvme_admin_identify;
1269         c.identify.cns = NVME_ID_CNS_CTRL;
1270
1271         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1272         if (!*id)
1273                 return -ENOMEM;
1274
1275         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1276                         sizeof(struct nvme_id_ctrl));
1277         if (error)
1278                 kfree(*id);
1279         return error;
1280 }
1281
1282 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1283 {
1284         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1285 }
1286
1287 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1288                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1289 {
1290         const char *warn_str = "ctrl returned bogus length:";
1291         void *data = cur;
1292
1293         switch (cur->nidt) {
1294         case NVME_NIDT_EUI64:
1295                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1296                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1297                                  warn_str, cur->nidl);
1298                         return -1;
1299                 }
1300                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1301                 return NVME_NIDT_EUI64_LEN;
1302         case NVME_NIDT_NGUID:
1303                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1304                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1305                                  warn_str, cur->nidl);
1306                         return -1;
1307                 }
1308                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1309                 return NVME_NIDT_NGUID_LEN;
1310         case NVME_NIDT_UUID:
1311                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1312                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1313                                  warn_str, cur->nidl);
1314                         return -1;
1315                 }
1316                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1317                 return NVME_NIDT_UUID_LEN;
1318         case NVME_NIDT_CSI:
1319                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1320                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1321                                  warn_str, cur->nidl);
1322                         return -1;
1323                 }
1324                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1325                 *csi_seen = true;
1326                 return NVME_NIDT_CSI_LEN;
1327         default:
1328                 /* Skip unknown types */
1329                 return cur->nidl;
1330         }
1331 }
1332
1333 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1334                 struct nvme_ns_ids *ids)
1335 {
1336         struct nvme_command c = { };
1337         bool csi_seen = false;
1338         int status, pos, len;
1339         void *data;
1340
1341         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1342                 return 0;
1343         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1344                 return 0;
1345
1346         c.identify.opcode = nvme_admin_identify;
1347         c.identify.nsid = cpu_to_le32(nsid);
1348         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1349
1350         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1351         if (!data)
1352                 return -ENOMEM;
1353
1354         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1355                                       NVME_IDENTIFY_DATA_SIZE);
1356         if (status) {
1357                 dev_warn(ctrl->device,
1358                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1359                         nsid, status);
1360                 goto free_data;
1361         }
1362
1363         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1364                 struct nvme_ns_id_desc *cur = data + pos;
1365
1366                 if (cur->nidl == 0)
1367                         break;
1368
1369                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1370                 if (len < 0)
1371                         break;
1372
1373                 len += sizeof(*cur);
1374         }
1375
1376         if (nvme_multi_css(ctrl) && !csi_seen) {
1377                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1378                          nsid);
1379                 status = -EINVAL;
1380         }
1381
1382 free_data:
1383         kfree(data);
1384         return status;
1385 }
1386
1387 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1388                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1389 {
1390         struct nvme_command c = { };
1391         int error;
1392
1393         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1394         c.identify.opcode = nvme_admin_identify;
1395         c.identify.nsid = cpu_to_le32(nsid);
1396         c.identify.cns = NVME_ID_CNS_NS;
1397
1398         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1399         if (!*id)
1400                 return -ENOMEM;
1401
1402         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1403         if (error) {
1404                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1405                 goto out_free_id;
1406         }
1407
1408         error = -ENODEV;
1409         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1410                 goto out_free_id;
1411
1412         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1413             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1414                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1415         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1416             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1417                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1418
1419         return 0;
1420
1421 out_free_id:
1422         kfree(*id);
1423         return error;
1424 }
1425
1426 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1427                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1428 {
1429         union nvme_result res = { 0 };
1430         struct nvme_command c;
1431         int ret;
1432
1433         memset(&c, 0, sizeof(c));
1434         c.features.opcode = op;
1435         c.features.fid = cpu_to_le32(fid);
1436         c.features.dword11 = cpu_to_le32(dword11);
1437
1438         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1439                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1440         if (ret >= 0 && result)
1441                 *result = le32_to_cpu(res.u32);
1442         return ret;
1443 }
1444
1445 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1446                       unsigned int dword11, void *buffer, size_t buflen,
1447                       u32 *result)
1448 {
1449         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1450                              buflen, result);
1451 }
1452 EXPORT_SYMBOL_GPL(nvme_set_features);
1453
1454 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1455                       unsigned int dword11, void *buffer, size_t buflen,
1456                       u32 *result)
1457 {
1458         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1459                              buflen, result);
1460 }
1461 EXPORT_SYMBOL_GPL(nvme_get_features);
1462
1463 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1464 {
1465         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1466         u32 result;
1467         int status, nr_io_queues;
1468
1469         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1470                         &result);
1471         if (status < 0)
1472                 return status;
1473
1474         /*
1475          * Degraded controllers might return an error when setting the queue
1476          * count.  We still want to be able to bring them online and offer
1477          * access to the admin queue, as that might be only way to fix them up.
1478          */
1479         if (status > 0) {
1480                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1481                 *count = 0;
1482         } else {
1483                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1484                 *count = min(*count, nr_io_queues);
1485         }
1486
1487         return 0;
1488 }
1489 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1490
1491 #define NVME_AEN_SUPPORTED \
1492         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1493          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1494
1495 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1496 {
1497         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1498         int status;
1499
1500         if (!supported_aens)
1501                 return;
1502
1503         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1504                         NULL, 0, &result);
1505         if (status)
1506                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1507                          supported_aens);
1508
1509         queue_work(nvme_wq, &ctrl->async_event_work);
1510 }
1511
1512 /*
1513  * Convert integer values from ioctl structures to user pointers, silently
1514  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1515  * kernels.
1516  */
1517 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1518 {
1519         if (in_compat_syscall())
1520                 ptrval = (compat_uptr_t)ptrval;
1521         return (void __user *)ptrval;
1522 }
1523
1524 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1525 {
1526         struct nvme_user_io io;
1527         struct nvme_command c;
1528         unsigned length, meta_len;
1529         void __user *metadata;
1530
1531         if (copy_from_user(&io, uio, sizeof(io)))
1532                 return -EFAULT;
1533         if (io.flags)
1534                 return -EINVAL;
1535
1536         switch (io.opcode) {
1537         case nvme_cmd_write:
1538         case nvme_cmd_read:
1539         case nvme_cmd_compare:
1540                 break;
1541         default:
1542                 return -EINVAL;
1543         }
1544
1545         length = (io.nblocks + 1) << ns->lba_shift;
1546         meta_len = (io.nblocks + 1) * ns->ms;
1547         metadata = nvme_to_user_ptr(io.metadata);
1548
1549         if (ns->features & NVME_NS_EXT_LBAS) {
1550                 length += meta_len;
1551                 meta_len = 0;
1552         } else if (meta_len) {
1553                 if ((io.metadata & 3) || !io.metadata)
1554                         return -EINVAL;
1555         }
1556
1557         memset(&c, 0, sizeof(c));
1558         c.rw.opcode = io.opcode;
1559         c.rw.flags = io.flags;
1560         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1561         c.rw.slba = cpu_to_le64(io.slba);
1562         c.rw.length = cpu_to_le16(io.nblocks);
1563         c.rw.control = cpu_to_le16(io.control);
1564         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1565         c.rw.reftag = cpu_to_le32(io.reftag);
1566         c.rw.apptag = cpu_to_le16(io.apptag);
1567         c.rw.appmask = cpu_to_le16(io.appmask);
1568
1569         return nvme_submit_user_cmd(ns->queue, &c,
1570                         nvme_to_user_ptr(io.addr), length,
1571                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1572 }
1573
1574 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1575                         struct nvme_passthru_cmd __user *ucmd)
1576 {
1577         struct nvme_passthru_cmd cmd;
1578         struct nvme_command c;
1579         unsigned timeout = 0;
1580         u64 result;
1581         int status;
1582
1583         if (!capable(CAP_SYS_ADMIN))
1584                 return -EACCES;
1585         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1586                 return -EFAULT;
1587         if (cmd.flags)
1588                 return -EINVAL;
1589
1590         memset(&c, 0, sizeof(c));
1591         c.common.opcode = cmd.opcode;
1592         c.common.flags = cmd.flags;
1593         c.common.nsid = cpu_to_le32(cmd.nsid);
1594         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1595         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1596         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1597         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1598         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1599         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1600         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1601         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1602
1603         if (cmd.timeout_ms)
1604                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1605
1606         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1607                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1608                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1609                         0, &result, timeout);
1610
1611         if (status >= 0) {
1612                 if (put_user(result, &ucmd->result))
1613                         return -EFAULT;
1614         }
1615
1616         return status;
1617 }
1618
1619 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1620                         struct nvme_passthru_cmd64 __user *ucmd)
1621 {
1622         struct nvme_passthru_cmd64 cmd;
1623         struct nvme_command c;
1624         unsigned timeout = 0;
1625         int status;
1626
1627         if (!capable(CAP_SYS_ADMIN))
1628                 return -EACCES;
1629         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1630                 return -EFAULT;
1631         if (cmd.flags)
1632                 return -EINVAL;
1633
1634         memset(&c, 0, sizeof(c));
1635         c.common.opcode = cmd.opcode;
1636         c.common.flags = cmd.flags;
1637         c.common.nsid = cpu_to_le32(cmd.nsid);
1638         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1639         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1640         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1641         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1642         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1643         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1644         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1645         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1646
1647         if (cmd.timeout_ms)
1648                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1649
1650         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1651                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1652                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1653                         0, &cmd.result, timeout);
1654
1655         if (status >= 0) {
1656                 if (put_user(cmd.result, &ucmd->result))
1657                         return -EFAULT;
1658         }
1659
1660         return status;
1661 }
1662
1663 /*
1664  * Issue ioctl requests on the first available path.  Note that unlike normal
1665  * block layer requests we will not retry failed request on another controller.
1666  */
1667 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1668                 struct nvme_ns_head **head, int *srcu_idx)
1669 {
1670 #ifdef CONFIG_NVME_MULTIPATH
1671         if (disk->fops == &nvme_ns_head_ops) {
1672                 struct nvme_ns *ns;
1673
1674                 *head = disk->private_data;
1675                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1676                 ns = nvme_find_path(*head);
1677                 if (!ns)
1678                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1679                 return ns;
1680         }
1681 #endif
1682         *head = NULL;
1683         *srcu_idx = -1;
1684         return disk->private_data;
1685 }
1686
1687 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1688 {
1689         if (head)
1690                 srcu_read_unlock(&head->srcu, idx);
1691 }
1692
1693 static bool is_ctrl_ioctl(unsigned int cmd)
1694 {
1695         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1696                 return true;
1697         if (is_sed_ioctl(cmd))
1698                 return true;
1699         return false;
1700 }
1701
1702 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1703                                   void __user *argp,
1704                                   struct nvme_ns_head *head,
1705                                   int srcu_idx)
1706 {
1707         struct nvme_ctrl *ctrl = ns->ctrl;
1708         int ret;
1709
1710         nvme_get_ctrl(ns->ctrl);
1711         nvme_put_ns_from_disk(head, srcu_idx);
1712
1713         switch (cmd) {
1714         case NVME_IOCTL_ADMIN_CMD:
1715                 ret = nvme_user_cmd(ctrl, NULL, argp);
1716                 break;
1717         case NVME_IOCTL_ADMIN64_CMD:
1718                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1719                 break;
1720         default:
1721                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1722                 break;
1723         }
1724         nvme_put_ctrl(ctrl);
1725         return ret;
1726 }
1727
1728 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1729                 unsigned int cmd, unsigned long arg)
1730 {
1731         struct nvme_ns_head *head = NULL;
1732         void __user *argp = (void __user *)arg;
1733         struct nvme_ns *ns;
1734         int srcu_idx, ret;
1735
1736         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1737         if (unlikely(!ns))
1738                 return -EWOULDBLOCK;
1739
1740         /*
1741          * Handle ioctls that apply to the controller instead of the namespace
1742          * seperately and drop the ns SRCU reference early.  This avoids a
1743          * deadlock when deleting namespaces using the passthrough interface.
1744          */
1745         if (is_ctrl_ioctl(cmd))
1746                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1747
1748         switch (cmd) {
1749         case NVME_IOCTL_ID:
1750                 force_successful_syscall_return();
1751                 ret = ns->head->ns_id;
1752                 break;
1753         case NVME_IOCTL_IO_CMD:
1754                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1755                 break;
1756         case NVME_IOCTL_SUBMIT_IO:
1757                 ret = nvme_submit_io(ns, argp);
1758                 break;
1759         case NVME_IOCTL_IO64_CMD:
1760                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1761                 break;
1762         default:
1763                 if (ns->ndev)
1764                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1765                 else
1766                         ret = -ENOTTY;
1767         }
1768
1769         nvme_put_ns_from_disk(head, srcu_idx);
1770         return ret;
1771 }
1772
1773 #ifdef CONFIG_COMPAT
1774 struct nvme_user_io32 {
1775         __u8    opcode;
1776         __u8    flags;
1777         __u16   control;
1778         __u16   nblocks;
1779         __u16   rsvd;
1780         __u64   metadata;
1781         __u64   addr;
1782         __u64   slba;
1783         __u32   dsmgmt;
1784         __u32   reftag;
1785         __u16   apptag;
1786         __u16   appmask;
1787 } __attribute__((__packed__));
1788
1789 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1790
1791 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1792                 unsigned int cmd, unsigned long arg)
1793 {
1794         /*
1795          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1796          * between 32 bit programs and 64 bit kernel.
1797          * The cause is that the results of sizeof(struct nvme_user_io),
1798          * which is used to define NVME_IOCTL_SUBMIT_IO,
1799          * are not same between 32 bit compiler and 64 bit compiler.
1800          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1801          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1802          * Other IOCTL numbers are same between 32 bit and 64 bit.
1803          * So there is nothing to do regarding to other IOCTL numbers.
1804          */
1805         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1806                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1807
1808         return nvme_ioctl(bdev, mode, cmd, arg);
1809 }
1810 #else
1811 #define nvme_compat_ioctl       NULL
1812 #endif /* CONFIG_COMPAT */
1813
1814 static int nvme_open(struct block_device *bdev, fmode_t mode)
1815 {
1816         struct nvme_ns *ns = bdev->bd_disk->private_data;
1817
1818 #ifdef CONFIG_NVME_MULTIPATH
1819         /* should never be called due to GENHD_FL_HIDDEN */
1820         if (WARN_ON_ONCE(ns->head->disk))
1821                 goto fail;
1822 #endif
1823         if (!kref_get_unless_zero(&ns->kref))
1824                 goto fail;
1825         if (!try_module_get(ns->ctrl->ops->module))
1826                 goto fail_put_ns;
1827
1828         return 0;
1829
1830 fail_put_ns:
1831         nvme_put_ns(ns);
1832 fail:
1833         return -ENXIO;
1834 }
1835
1836 static void nvme_release(struct gendisk *disk, fmode_t mode)
1837 {
1838         struct nvme_ns *ns = disk->private_data;
1839
1840         module_put(ns->ctrl->ops->module);
1841         nvme_put_ns(ns);
1842 }
1843
1844 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1845 {
1846         /* some standard values */
1847         geo->heads = 1 << 6;
1848         geo->sectors = 1 << 5;
1849         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1850         return 0;
1851 }
1852
1853 #ifdef CONFIG_BLK_DEV_INTEGRITY
1854 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1855                                 u32 max_integrity_segments)
1856 {
1857         struct blk_integrity integrity;
1858
1859         memset(&integrity, 0, sizeof(integrity));
1860         switch (pi_type) {
1861         case NVME_NS_DPS_PI_TYPE3:
1862                 integrity.profile = &t10_pi_type3_crc;
1863                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1864                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1865                 break;
1866         case NVME_NS_DPS_PI_TYPE1:
1867         case NVME_NS_DPS_PI_TYPE2:
1868                 integrity.profile = &t10_pi_type1_crc;
1869                 integrity.tag_size = sizeof(u16);
1870                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1871                 break;
1872         default:
1873                 integrity.profile = NULL;
1874                 break;
1875         }
1876         integrity.tuple_size = ms;
1877         blk_integrity_register(disk, &integrity);
1878         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1879 }
1880 #else
1881 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1882                                 u32 max_integrity_segments)
1883 {
1884 }
1885 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1886
1887 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1888 {
1889         struct nvme_ctrl *ctrl = ns->ctrl;
1890         struct request_queue *queue = disk->queue;
1891         u32 size = queue_logical_block_size(queue);
1892
1893         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1894                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1895                 return;
1896         }
1897
1898         if (ctrl->nr_streams && ns->sws && ns->sgs)
1899                 size *= ns->sws * ns->sgs;
1900
1901         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1902                         NVME_DSM_MAX_RANGES);
1903
1904         queue->limits.discard_alignment = 0;
1905         queue->limits.discard_granularity = size;
1906
1907         /* If discard is already enabled, don't reset queue limits */
1908         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1909                 return;
1910
1911         blk_queue_max_discard_sectors(queue, UINT_MAX);
1912         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1913
1914         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1915                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1916 }
1917
1918 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1919 {
1920         u64 max_blocks;
1921
1922         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1923             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1924                 return;
1925         /*
1926          * Even though NVMe spec explicitly states that MDTS is not
1927          * applicable to the write-zeroes:- "The restriction does not apply to
1928          * commands that do not transfer data between the host and the
1929          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1930          * In order to be more cautious use controller's max_hw_sectors value
1931          * to configure the maximum sectors for the write-zeroes which is
1932          * configured based on the controller's MDTS field in the
1933          * nvme_init_identify() if available.
1934          */
1935         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1936                 max_blocks = (u64)USHRT_MAX + 1;
1937         else
1938                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1939
1940         blk_queue_max_write_zeroes_sectors(disk->queue,
1941                                            nvme_lba_to_sect(ns, max_blocks));
1942 }
1943
1944 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1945 {
1946         return !uuid_is_null(&ids->uuid) ||
1947                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1948                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1949 }
1950
1951 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1952 {
1953         return uuid_equal(&a->uuid, &b->uuid) &&
1954                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1955                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1956                 a->csi == b->csi;
1957 }
1958
1959 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1960                                  u32 *phys_bs, u32 *io_opt)
1961 {
1962         struct streams_directive_params s;
1963         int ret;
1964
1965         if (!ctrl->nr_streams)
1966                 return 0;
1967
1968         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1969         if (ret)
1970                 return ret;
1971
1972         ns->sws = le32_to_cpu(s.sws);
1973         ns->sgs = le16_to_cpu(s.sgs);
1974
1975         if (ns->sws) {
1976                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1977                 if (ns->sgs)
1978                         *io_opt = *phys_bs * ns->sgs;
1979         }
1980
1981         return 0;
1982 }
1983
1984 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1985 {
1986         struct nvme_ctrl *ctrl = ns->ctrl;
1987
1988         /*
1989          * The PI implementation requires the metadata size to be equal to the
1990          * t10 pi tuple size.
1991          */
1992         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1993         if (ns->ms == sizeof(struct t10_pi_tuple))
1994                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1995         else
1996                 ns->pi_type = 0;
1997
1998         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1999         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
2000                 return 0;
2001         if (ctrl->ops->flags & NVME_F_FABRICS) {
2002                 /*
2003                  * The NVMe over Fabrics specification only supports metadata as
2004                  * part of the extended data LBA.  We rely on HCA/HBA support to
2005                  * remap the separate metadata buffer from the block layer.
2006                  */
2007                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2008                         return -EINVAL;
2009                 if (ctrl->max_integrity_segments)
2010                         ns->features |=
2011                                 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2012         } else {
2013                 /*
2014                  * For PCIe controllers, we can't easily remap the separate
2015                  * metadata buffer from the block layer and thus require a
2016                  * separate metadata buffer for block layer metadata/PI support.
2017                  * We allow extended LBAs for the passthrough interface, though.
2018                  */
2019                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2020                         ns->features |= NVME_NS_EXT_LBAS;
2021                 else
2022                         ns->features |= NVME_NS_METADATA_SUPPORTED;
2023         }
2024
2025         return 0;
2026 }
2027
2028 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2029                 struct request_queue *q)
2030 {
2031         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2032
2033         if (ctrl->max_hw_sectors) {
2034                 u32 max_segments =
2035                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2036
2037                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2038                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2039                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2040         }
2041         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2042         blk_queue_dma_alignment(q, 7);
2043         blk_queue_write_cache(q, vwc, vwc);
2044 }
2045
2046 static void nvme_update_disk_info(struct gendisk *disk,
2047                 struct nvme_ns *ns, struct nvme_id_ns *id)
2048 {
2049         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2050         unsigned short bs = 1 << ns->lba_shift;
2051         u32 atomic_bs, phys_bs, io_opt = 0;
2052
2053         /*
2054          * The block layer can't support LBA sizes larger than the page size
2055          * yet, so catch this early and don't allow block I/O.
2056          */
2057         if (ns->lba_shift > PAGE_SHIFT) {
2058                 capacity = 0;
2059                 bs = (1 << 9);
2060         }
2061
2062         blk_integrity_unregister(disk);
2063
2064         atomic_bs = phys_bs = bs;
2065         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2066         if (id->nabo == 0) {
2067                 /*
2068                  * Bit 1 indicates whether NAWUPF is defined for this namespace
2069                  * and whether it should be used instead of AWUPF. If NAWUPF ==
2070                  * 0 then AWUPF must be used instead.
2071                  */
2072                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2073                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2074                 else
2075                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2076         }
2077
2078         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2079                 /* NPWG = Namespace Preferred Write Granularity */
2080                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2081                 /* NOWS = Namespace Optimal Write Size */
2082                 io_opt = bs * (1 + le16_to_cpu(id->nows));
2083         }
2084
2085         blk_queue_logical_block_size(disk->queue, bs);
2086         /*
2087          * Linux filesystems assume writing a single physical block is
2088          * an atomic operation. Hence limit the physical block size to the
2089          * value of the Atomic Write Unit Power Fail parameter.
2090          */
2091         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2092         blk_queue_io_min(disk->queue, phys_bs);
2093         blk_queue_io_opt(disk->queue, io_opt);
2094
2095         /*
2096          * Register a metadata profile for PI, or the plain non-integrity NVMe
2097          * metadata masquerading as Type 0 if supported, otherwise reject block
2098          * I/O to namespaces with metadata except when the namespace supports
2099          * PI, as it can strip/insert in that case.
2100          */
2101         if (ns->ms) {
2102                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2103                     (ns->features & NVME_NS_METADATA_SUPPORTED))
2104                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
2105                                             ns->ctrl->max_integrity_segments);
2106                 else if (!nvme_ns_has_pi(ns))
2107                         capacity = 0;
2108         }
2109
2110         set_capacity_and_notify(disk, capacity);
2111
2112         nvme_config_discard(disk, ns);
2113         nvme_config_write_zeroes(disk, ns);
2114
2115         if ((id->nsattr & NVME_NS_ATTR_RO) ||
2116             test_bit(NVME_NS_FORCE_RO, &ns->flags))
2117                 set_disk_ro(disk, true);
2118 }
2119
2120 static inline bool nvme_first_scan(struct gendisk *disk)
2121 {
2122         /* nvme_alloc_ns() scans the disk prior to adding it */
2123         return !(disk->flags & GENHD_FL_UP);
2124 }
2125
2126 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2127 {
2128         struct nvme_ctrl *ctrl = ns->ctrl;
2129         u32 iob;
2130
2131         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2132             is_power_of_2(ctrl->max_hw_sectors))
2133                 iob = ctrl->max_hw_sectors;
2134         else
2135                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2136
2137         if (!iob)
2138                 return;
2139
2140         if (!is_power_of_2(iob)) {
2141                 if (nvme_first_scan(ns->disk))
2142                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2143                                 ns->disk->disk_name, iob);
2144                 return;
2145         }
2146
2147         if (blk_queue_is_zoned(ns->disk->queue)) {
2148                 if (nvme_first_scan(ns->disk))
2149                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
2150                                 ns->disk->disk_name);
2151                 return;
2152         }
2153
2154         blk_queue_chunk_sectors(ns->queue, iob);
2155 }
2156
2157 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2158 {
2159         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2160         int ret;
2161
2162         blk_mq_freeze_queue(ns->disk->queue);
2163         ns->lba_shift = id->lbaf[lbaf].ds;
2164         nvme_set_queue_limits(ns->ctrl, ns->queue);
2165
2166         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2167                 ret = nvme_update_zone_info(ns, lbaf);
2168                 if (ret)
2169                         goto out_unfreeze;
2170         }
2171
2172         ret = nvme_configure_metadata(ns, id);
2173         if (ret)
2174                 goto out_unfreeze;
2175         nvme_set_chunk_sectors(ns, id);
2176         nvme_update_disk_info(ns->disk, ns, id);
2177         blk_mq_unfreeze_queue(ns->disk->queue);
2178
2179         if (blk_queue_is_zoned(ns->queue)) {
2180                 ret = nvme_revalidate_zones(ns);
2181                 if (ret && !nvme_first_scan(ns->disk))
2182                         return ret;
2183         }
2184
2185 #ifdef CONFIG_NVME_MULTIPATH
2186         if (ns->head->disk) {
2187                 blk_mq_freeze_queue(ns->head->disk->queue);
2188                 nvme_update_disk_info(ns->head->disk, ns, id);
2189                 blk_stack_limits(&ns->head->disk->queue->limits,
2190                                  &ns->queue->limits, 0);
2191                 blk_queue_update_readahead(ns->head->disk->queue);
2192                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2193         }
2194 #endif
2195         return 0;
2196
2197 out_unfreeze:
2198         blk_mq_unfreeze_queue(ns->disk->queue);
2199         return ret;
2200 }
2201
2202 static char nvme_pr_type(enum pr_type type)
2203 {
2204         switch (type) {
2205         case PR_WRITE_EXCLUSIVE:
2206                 return 1;
2207         case PR_EXCLUSIVE_ACCESS:
2208                 return 2;
2209         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2210                 return 3;
2211         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2212                 return 4;
2213         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2214                 return 5;
2215         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2216                 return 6;
2217         default:
2218                 return 0;
2219         }
2220 };
2221
2222 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2223                                 u64 key, u64 sa_key, u8 op)
2224 {
2225         struct nvme_ns_head *head = NULL;
2226         struct nvme_ns *ns;
2227         struct nvme_command c;
2228         int srcu_idx, ret;
2229         u8 data[16] = { 0, };
2230
2231         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2232         if (unlikely(!ns))
2233                 return -EWOULDBLOCK;
2234
2235         put_unaligned_le64(key, &data[0]);
2236         put_unaligned_le64(sa_key, &data[8]);
2237
2238         memset(&c, 0, sizeof(c));
2239         c.common.opcode = op;
2240         c.common.nsid = cpu_to_le32(ns->head->ns_id);
2241         c.common.cdw10 = cpu_to_le32(cdw10);
2242
2243         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2244         nvme_put_ns_from_disk(head, srcu_idx);
2245         return ret;
2246 }
2247
2248 static int nvme_pr_register(struct block_device *bdev, u64 old,
2249                 u64 new, unsigned flags)
2250 {
2251         u32 cdw10;
2252
2253         if (flags & ~PR_FL_IGNORE_KEY)
2254                 return -EOPNOTSUPP;
2255
2256         cdw10 = old ? 2 : 0;
2257         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2258         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2259         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2260 }
2261
2262 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2263                 enum pr_type type, unsigned flags)
2264 {
2265         u32 cdw10;
2266
2267         if (flags & ~PR_FL_IGNORE_KEY)
2268                 return -EOPNOTSUPP;
2269
2270         cdw10 = nvme_pr_type(type) << 8;
2271         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2272         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2273 }
2274
2275 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2276                 enum pr_type type, bool abort)
2277 {
2278         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2279         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2280 }
2281
2282 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2283 {
2284         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2285         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2286 }
2287
2288 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2289 {
2290         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2291         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2292 }
2293
2294 static const struct pr_ops nvme_pr_ops = {
2295         .pr_register    = nvme_pr_register,
2296         .pr_reserve     = nvme_pr_reserve,
2297         .pr_release     = nvme_pr_release,
2298         .pr_preempt     = nvme_pr_preempt,
2299         .pr_clear       = nvme_pr_clear,
2300 };
2301
2302 #ifdef CONFIG_BLK_SED_OPAL
2303 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2304                 bool send)
2305 {
2306         struct nvme_ctrl *ctrl = data;
2307         struct nvme_command cmd;
2308
2309         memset(&cmd, 0, sizeof(cmd));
2310         if (send)
2311                 cmd.common.opcode = nvme_admin_security_send;
2312         else
2313                 cmd.common.opcode = nvme_admin_security_recv;
2314         cmd.common.nsid = 0;
2315         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2316         cmd.common.cdw11 = cpu_to_le32(len);
2317
2318         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2319                         NVME_QID_ANY, 1, 0, false);
2320 }
2321 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2322 #endif /* CONFIG_BLK_SED_OPAL */
2323
2324 static const struct block_device_operations nvme_bdev_ops = {
2325         .owner          = THIS_MODULE,
2326         .ioctl          = nvme_ioctl,
2327         .compat_ioctl   = nvme_compat_ioctl,
2328         .open           = nvme_open,
2329         .release        = nvme_release,
2330         .getgeo         = nvme_getgeo,
2331         .report_zones   = nvme_report_zones,
2332         .pr_ops         = &nvme_pr_ops,
2333 };
2334
2335 #ifdef CONFIG_NVME_MULTIPATH
2336 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2337 {
2338         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2339
2340         if (!kref_get_unless_zero(&head->ref))
2341                 return -ENXIO;
2342         return 0;
2343 }
2344
2345 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2346 {
2347         nvme_put_ns_head(disk->private_data);
2348 }
2349
2350 const struct block_device_operations nvme_ns_head_ops = {
2351         .owner          = THIS_MODULE,
2352         .submit_bio     = nvme_ns_head_submit_bio,
2353         .open           = nvme_ns_head_open,
2354         .release        = nvme_ns_head_release,
2355         .ioctl          = nvme_ioctl,
2356         .compat_ioctl   = nvme_compat_ioctl,
2357         .getgeo         = nvme_getgeo,
2358         .report_zones   = nvme_report_zones,
2359         .pr_ops         = &nvme_pr_ops,
2360 };
2361 #endif /* CONFIG_NVME_MULTIPATH */
2362
2363 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2364 {
2365         unsigned long timeout =
2366                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2367         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2368         int ret;
2369
2370         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2371                 if (csts == ~0)
2372                         return -ENODEV;
2373                 if ((csts & NVME_CSTS_RDY) == bit)
2374                         break;
2375
2376                 usleep_range(1000, 2000);
2377                 if (fatal_signal_pending(current))
2378                         return -EINTR;
2379                 if (time_after(jiffies, timeout)) {
2380                         dev_err(ctrl->device,
2381                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2382                                 enabled ? "initialisation" : "reset", csts);
2383                         return -ENODEV;
2384                 }
2385         }
2386
2387         return ret;
2388 }
2389
2390 /*
2391  * If the device has been passed off to us in an enabled state, just clear
2392  * the enabled bit.  The spec says we should set the 'shutdown notification
2393  * bits', but doing so may cause the device to complete commands to the
2394  * admin queue ... and we don't know what memory that might be pointing at!
2395  */
2396 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2397 {
2398         int ret;
2399
2400         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2401         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2402
2403         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2404         if (ret)
2405                 return ret;
2406
2407         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2408                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2409
2410         return nvme_wait_ready(ctrl, ctrl->cap, false);
2411 }
2412 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2413
2414 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2415 {
2416         unsigned dev_page_min;
2417         int ret;
2418
2419         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2420         if (ret) {
2421                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2422                 return ret;
2423         }
2424         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2425
2426         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2427                 dev_err(ctrl->device,
2428                         "Minimum device page size %u too large for host (%u)\n",
2429                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2430                 return -ENODEV;
2431         }
2432
2433         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2434                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2435         else
2436                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2437         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2438         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2439         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2440         ctrl->ctrl_config |= NVME_CC_ENABLE;
2441
2442         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2443         if (ret)
2444                 return ret;
2445         return nvme_wait_ready(ctrl, ctrl->cap, true);
2446 }
2447 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2448
2449 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2450 {
2451         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2452         u32 csts;
2453         int ret;
2454
2455         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2456         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2457
2458         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2459         if (ret)
2460                 return ret;
2461
2462         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2463                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2464                         break;
2465
2466                 msleep(100);
2467                 if (fatal_signal_pending(current))
2468                         return -EINTR;
2469                 if (time_after(jiffies, timeout)) {
2470                         dev_err(ctrl->device,
2471                                 "Device shutdown incomplete; abort shutdown\n");
2472                         return -ENODEV;
2473                 }
2474         }
2475
2476         return ret;
2477 }
2478 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2479
2480 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2481 {
2482         __le64 ts;
2483         int ret;
2484
2485         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2486                 return 0;
2487
2488         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2489         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2490                         NULL);
2491         if (ret)
2492                 dev_warn_once(ctrl->device,
2493                         "could not set timestamp (%d)\n", ret);
2494         return ret;
2495 }
2496
2497 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2498 {
2499         struct nvme_feat_host_behavior *host;
2500         int ret;
2501
2502         /* Don't bother enabling the feature if retry delay is not reported */
2503         if (!ctrl->crdt[0])
2504                 return 0;
2505
2506         host = kzalloc(sizeof(*host), GFP_KERNEL);
2507         if (!host)
2508                 return 0;
2509
2510         host->acre = NVME_ENABLE_ACRE;
2511         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2512                                 host, sizeof(*host), NULL);
2513         kfree(host);
2514         return ret;
2515 }
2516
2517 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2518 {
2519         /*
2520          * APST (Autonomous Power State Transition) lets us program a
2521          * table of power state transitions that the controller will
2522          * perform automatically.  We configure it with a simple
2523          * heuristic: we are willing to spend at most 2% of the time
2524          * transitioning between power states.  Therefore, when running
2525          * in any given state, we will enter the next lower-power
2526          * non-operational state after waiting 50 * (enlat + exlat)
2527          * microseconds, as long as that state's exit latency is under
2528          * the requested maximum latency.
2529          *
2530          * We will not autonomously enter any non-operational state for
2531          * which the total latency exceeds ps_max_latency_us.  Users
2532          * can set ps_max_latency_us to zero to turn off APST.
2533          */
2534
2535         unsigned apste;
2536         struct nvme_feat_auto_pst *table;
2537         u64 max_lat_us = 0;
2538         int max_ps = -1;
2539         int ret;
2540
2541         /*
2542          * If APST isn't supported or if we haven't been initialized yet,
2543          * then don't do anything.
2544          */
2545         if (!ctrl->apsta)
2546                 return 0;
2547
2548         if (ctrl->npss > 31) {
2549                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2550                 return 0;
2551         }
2552
2553         table = kzalloc(sizeof(*table), GFP_KERNEL);
2554         if (!table)
2555                 return 0;
2556
2557         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2558                 /* Turn off APST. */
2559                 apste = 0;
2560                 dev_dbg(ctrl->device, "APST disabled\n");
2561         } else {
2562                 __le64 target = cpu_to_le64(0);
2563                 int state;
2564
2565                 /*
2566                  * Walk through all states from lowest- to highest-power.
2567                  * According to the spec, lower-numbered states use more
2568                  * power.  NPSS, despite the name, is the index of the
2569                  * lowest-power state, not the number of states.
2570                  */
2571                 for (state = (int)ctrl->npss; state >= 0; state--) {
2572                         u64 total_latency_us, exit_latency_us, transition_ms;
2573
2574                         if (target)
2575                                 table->entries[state] = target;
2576
2577                         /*
2578                          * Don't allow transitions to the deepest state
2579                          * if it's quirked off.
2580                          */
2581                         if (state == ctrl->npss &&
2582                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2583                                 continue;
2584
2585                         /*
2586                          * Is this state a useful non-operational state for
2587                          * higher-power states to autonomously transition to?
2588                          */
2589                         if (!(ctrl->psd[state].flags &
2590                               NVME_PS_FLAGS_NON_OP_STATE))
2591                                 continue;
2592
2593                         exit_latency_us =
2594                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2595                         if (exit_latency_us > ctrl->ps_max_latency_us)
2596                                 continue;
2597
2598                         total_latency_us =
2599                                 exit_latency_us +
2600                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2601
2602                         /*
2603                          * This state is good.  Use it as the APST idle
2604                          * target for higher power states.
2605                          */
2606                         transition_ms = total_latency_us + 19;
2607                         do_div(transition_ms, 20);
2608                         if (transition_ms > (1 << 24) - 1)
2609                                 transition_ms = (1 << 24) - 1;
2610
2611                         target = cpu_to_le64((state << 3) |
2612                                              (transition_ms << 8));
2613
2614                         if (max_ps == -1)
2615                                 max_ps = state;
2616
2617                         if (total_latency_us > max_lat_us)
2618                                 max_lat_us = total_latency_us;
2619                 }
2620
2621                 apste = 1;
2622
2623                 if (max_ps == -1) {
2624                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2625                 } else {
2626                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2627                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2628                 }
2629         }
2630
2631         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2632                                 table, sizeof(*table), NULL);
2633         if (ret)
2634                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2635
2636         kfree(table);
2637         return ret;
2638 }
2639
2640 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2641 {
2642         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2643         u64 latency;
2644
2645         switch (val) {
2646         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2647         case PM_QOS_LATENCY_ANY:
2648                 latency = U64_MAX;
2649                 break;
2650
2651         default:
2652                 latency = val;
2653         }
2654
2655         if (ctrl->ps_max_latency_us != latency) {
2656                 ctrl->ps_max_latency_us = latency;
2657                 nvme_configure_apst(ctrl);
2658         }
2659 }
2660
2661 struct nvme_core_quirk_entry {
2662         /*
2663          * NVMe model and firmware strings are padded with spaces.  For
2664          * simplicity, strings in the quirk table are padded with NULLs
2665          * instead.
2666          */
2667         u16 vid;
2668         const char *mn;
2669         const char *fr;
2670         unsigned long quirks;
2671 };
2672
2673 static const struct nvme_core_quirk_entry core_quirks[] = {
2674         {
2675                 /*
2676                  * This Toshiba device seems to die using any APST states.  See:
2677                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2678                  */
2679                 .vid = 0x1179,
2680                 .mn = "THNSF5256GPUK TOSHIBA",
2681                 .quirks = NVME_QUIRK_NO_APST,
2682         },
2683         {
2684                 /*
2685                  * This LiteON CL1-3D*-Q11 firmware version has a race
2686                  * condition associated with actions related to suspend to idle
2687                  * LiteON has resolved the problem in future firmware
2688                  */
2689                 .vid = 0x14a4,
2690                 .fr = "22301111",
2691                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2692         }
2693 };
2694
2695 /* match is null-terminated but idstr is space-padded. */
2696 static bool string_matches(const char *idstr, const char *match, size_t len)
2697 {
2698         size_t matchlen;
2699
2700         if (!match)
2701                 return true;
2702
2703         matchlen = strlen(match);
2704         WARN_ON_ONCE(matchlen > len);
2705
2706         if (memcmp(idstr, match, matchlen))
2707                 return false;
2708
2709         for (; matchlen < len; matchlen++)
2710                 if (idstr[matchlen] != ' ')
2711                         return false;
2712
2713         return true;
2714 }
2715
2716 static bool quirk_matches(const struct nvme_id_ctrl *id,
2717                           const struct nvme_core_quirk_entry *q)
2718 {
2719         return q->vid == le16_to_cpu(id->vid) &&
2720                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2721                 string_matches(id->fr, q->fr, sizeof(id->fr));
2722 }
2723
2724 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2725                 struct nvme_id_ctrl *id)
2726 {
2727         size_t nqnlen;
2728         int off;
2729
2730         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2731                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2732                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2733                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2734                         return;
2735                 }
2736
2737                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2738                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2739         }
2740
2741         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2742         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2743                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2744                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2745         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2746         off += sizeof(id->sn);
2747         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2748         off += sizeof(id->mn);
2749         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2750 }
2751
2752 static void nvme_release_subsystem(struct device *dev)
2753 {
2754         struct nvme_subsystem *subsys =
2755                 container_of(dev, struct nvme_subsystem, dev);
2756
2757         if (subsys->instance >= 0)
2758                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2759         kfree(subsys);
2760 }
2761
2762 static void nvme_destroy_subsystem(struct kref *ref)
2763 {
2764         struct nvme_subsystem *subsys =
2765                         container_of(ref, struct nvme_subsystem, ref);
2766
2767         mutex_lock(&nvme_subsystems_lock);
2768         list_del(&subsys->entry);
2769         mutex_unlock(&nvme_subsystems_lock);
2770
2771         ida_destroy(&subsys->ns_ida);
2772         device_del(&subsys->dev);
2773         put_device(&subsys->dev);
2774 }
2775
2776 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2777 {
2778         kref_put(&subsys->ref, nvme_destroy_subsystem);
2779 }
2780
2781 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2782 {
2783         struct nvme_subsystem *subsys;
2784
2785         lockdep_assert_held(&nvme_subsystems_lock);
2786
2787         /*
2788          * Fail matches for discovery subsystems. This results
2789          * in each discovery controller bound to a unique subsystem.
2790          * This avoids issues with validating controller values
2791          * that can only be true when there is a single unique subsystem.
2792          * There may be multiple and completely independent entities
2793          * that provide discovery controllers.
2794          */
2795         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2796                 return NULL;
2797
2798         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2799                 if (strcmp(subsys->subnqn, subsysnqn))
2800                         continue;
2801                 if (!kref_get_unless_zero(&subsys->ref))
2802                         continue;
2803                 return subsys;
2804         }
2805
2806         return NULL;
2807 }
2808
2809 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2810         struct device_attribute subsys_attr_##_name = \
2811                 __ATTR(_name, _mode, _show, NULL)
2812
2813 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2814                                     struct device_attribute *attr,
2815                                     char *buf)
2816 {
2817         struct nvme_subsystem *subsys =
2818                 container_of(dev, struct nvme_subsystem, dev);
2819
2820         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2821 }
2822 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2823
2824 #define nvme_subsys_show_str_function(field)                            \
2825 static ssize_t subsys_##field##_show(struct device *dev,                \
2826                             struct device_attribute *attr, char *buf)   \
2827 {                                                                       \
2828         struct nvme_subsystem *subsys =                                 \
2829                 container_of(dev, struct nvme_subsystem, dev);          \
2830         return sprintf(buf, "%.*s\n",                                   \
2831                        (int)sizeof(subsys->field), subsys->field);      \
2832 }                                                                       \
2833 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2834
2835 nvme_subsys_show_str_function(model);
2836 nvme_subsys_show_str_function(serial);
2837 nvme_subsys_show_str_function(firmware_rev);
2838
2839 static struct attribute *nvme_subsys_attrs[] = {
2840         &subsys_attr_model.attr,
2841         &subsys_attr_serial.attr,
2842         &subsys_attr_firmware_rev.attr,
2843         &subsys_attr_subsysnqn.attr,
2844 #ifdef CONFIG_NVME_MULTIPATH
2845         &subsys_attr_iopolicy.attr,
2846 #endif
2847         NULL,
2848 };
2849
2850 static struct attribute_group nvme_subsys_attrs_group = {
2851         .attrs = nvme_subsys_attrs,
2852 };
2853
2854 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2855         &nvme_subsys_attrs_group,
2856         NULL,
2857 };
2858
2859 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2860                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2861 {
2862         struct nvme_ctrl *tmp;
2863
2864         lockdep_assert_held(&nvme_subsystems_lock);
2865
2866         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2867                 if (nvme_state_terminal(tmp))
2868                         continue;
2869
2870                 if (tmp->cntlid == ctrl->cntlid) {
2871                         dev_err(ctrl->device,
2872                                 "Duplicate cntlid %u with %s, rejecting\n",
2873                                 ctrl->cntlid, dev_name(tmp->device));
2874                         return false;
2875                 }
2876
2877                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2878                     (ctrl->opts && ctrl->opts->discovery_nqn))
2879                         continue;
2880
2881                 dev_err(ctrl->device,
2882                         "Subsystem does not support multiple controllers\n");
2883                 return false;
2884         }
2885
2886         return true;
2887 }
2888
2889 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2890 {
2891         struct nvme_subsystem *subsys, *found;
2892         int ret;
2893
2894         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2895         if (!subsys)
2896                 return -ENOMEM;
2897
2898         subsys->instance = -1;
2899         mutex_init(&subsys->lock);
2900         kref_init(&subsys->ref);
2901         INIT_LIST_HEAD(&subsys->ctrls);
2902         INIT_LIST_HEAD(&subsys->nsheads);
2903         nvme_init_subnqn(subsys, ctrl, id);
2904         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2905         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2906         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2907         subsys->vendor_id = le16_to_cpu(id->vid);
2908         subsys->cmic = id->cmic;
2909         subsys->awupf = le16_to_cpu(id->awupf);
2910 #ifdef CONFIG_NVME_MULTIPATH
2911         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2912 #endif
2913
2914         subsys->dev.class = nvme_subsys_class;
2915         subsys->dev.release = nvme_release_subsystem;
2916         subsys->dev.groups = nvme_subsys_attrs_groups;
2917         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2918         device_initialize(&subsys->dev);
2919
2920         mutex_lock(&nvme_subsystems_lock);
2921         found = __nvme_find_get_subsystem(subsys->subnqn);
2922         if (found) {
2923                 put_device(&subsys->dev);
2924                 subsys = found;
2925
2926                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2927                         ret = -EINVAL;
2928                         goto out_put_subsystem;
2929                 }
2930         } else {
2931                 ret = device_add(&subsys->dev);
2932                 if (ret) {
2933                         dev_err(ctrl->device,
2934                                 "failed to register subsystem device.\n");
2935                         put_device(&subsys->dev);
2936                         goto out_unlock;
2937                 }
2938                 ida_init(&subsys->ns_ida);
2939                 list_add_tail(&subsys->entry, &nvme_subsystems);
2940         }
2941
2942         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2943                                 dev_name(ctrl->device));
2944         if (ret) {
2945                 dev_err(ctrl->device,
2946                         "failed to create sysfs link from subsystem.\n");
2947                 goto out_put_subsystem;
2948         }
2949
2950         if (!found)
2951                 subsys->instance = ctrl->instance;
2952         ctrl->subsys = subsys;
2953         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2954         mutex_unlock(&nvme_subsystems_lock);
2955         return 0;
2956
2957 out_put_subsystem:
2958         nvme_put_subsystem(subsys);
2959 out_unlock:
2960         mutex_unlock(&nvme_subsystems_lock);
2961         return ret;
2962 }
2963
2964 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2965                 void *log, size_t size, u64 offset)
2966 {
2967         struct nvme_command c = { };
2968         u32 dwlen = nvme_bytes_to_numd(size);
2969
2970         c.get_log_page.opcode = nvme_admin_get_log_page;
2971         c.get_log_page.nsid = cpu_to_le32(nsid);
2972         c.get_log_page.lid = log_page;
2973         c.get_log_page.lsp = lsp;
2974         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2975         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2976         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2977         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2978         c.get_log_page.csi = csi;
2979
2980         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2981 }
2982
2983 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2984                                 struct nvme_effects_log **log)
2985 {
2986         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2987         int ret;
2988
2989         if (cel)
2990                 goto out;
2991
2992         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2993         if (!cel)
2994                 return -ENOMEM;
2995
2996         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2997                         cel, sizeof(*cel), 0);
2998         if (ret) {
2999                 kfree(cel);
3000                 return ret;
3001         }
3002
3003         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3004 out:
3005         *log = cel;
3006         return 0;
3007 }
3008
3009 /*
3010  * Initialize the cached copies of the Identify data and various controller
3011  * register in our nvme_ctrl structure.  This should be called as soon as
3012  * the admin queue is fully up and running.
3013  */
3014 int nvme_init_identify(struct nvme_ctrl *ctrl)
3015 {
3016         struct nvme_id_ctrl *id;
3017         int ret, page_shift;
3018         u32 max_hw_sectors;
3019         bool prev_apst_enabled;
3020
3021         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3022         if (ret) {
3023                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3024                 return ret;
3025         }
3026         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3027         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3028
3029         if (ctrl->vs >= NVME_VS(1, 1, 0))
3030                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3031
3032         ret = nvme_identify_ctrl(ctrl, &id);
3033         if (ret) {
3034                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3035                 return -EIO;
3036         }
3037
3038         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3039                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3040                 if (ret < 0)
3041                         goto out_free;
3042         }
3043
3044         if (!(ctrl->ops->flags & NVME_F_FABRICS))
3045                 ctrl->cntlid = le16_to_cpu(id->cntlid);
3046
3047         if (!ctrl->identified) {
3048                 int i;
3049
3050                 ret = nvme_init_subsystem(ctrl, id);
3051                 if (ret)
3052                         goto out_free;
3053
3054                 /*
3055                  * Check for quirks.  Quirk can depend on firmware version,
3056                  * so, in principle, the set of quirks present can change
3057                  * across a reset.  As a possible future enhancement, we
3058                  * could re-scan for quirks every time we reinitialize
3059                  * the device, but we'd have to make sure that the driver
3060                  * behaves intelligently if the quirks change.
3061                  */
3062                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3063                         if (quirk_matches(id, &core_quirks[i]))
3064                                 ctrl->quirks |= core_quirks[i].quirks;
3065                 }
3066         }
3067
3068         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3069                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3070                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3071         }
3072
3073         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3074         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3075         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3076
3077         ctrl->oacs = le16_to_cpu(id->oacs);
3078         ctrl->oncs = le16_to_cpu(id->oncs);
3079         ctrl->mtfa = le16_to_cpu(id->mtfa);
3080         ctrl->oaes = le32_to_cpu(id->oaes);
3081         ctrl->wctemp = le16_to_cpu(id->wctemp);
3082         ctrl->cctemp = le16_to_cpu(id->cctemp);
3083
3084         atomic_set(&ctrl->abort_limit, id->acl + 1);
3085         ctrl->vwc = id->vwc;
3086         if (id->mdts)
3087                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3088         else
3089                 max_hw_sectors = UINT_MAX;
3090         ctrl->max_hw_sectors =
3091                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3092
3093         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3094         ctrl->sgls = le32_to_cpu(id->sgls);
3095         ctrl->kas = le16_to_cpu(id->kas);
3096         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3097         ctrl->ctratt = le32_to_cpu(id->ctratt);
3098
3099         if (id->rtd3e) {
3100                 /* us -> s */
3101                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3102
3103                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3104                                                  shutdown_timeout, 60);
3105
3106                 if (ctrl->shutdown_timeout != shutdown_timeout)
3107                         dev_info(ctrl->device,
3108                                  "Shutdown timeout set to %u seconds\n",
3109                                  ctrl->shutdown_timeout);
3110         } else
3111                 ctrl->shutdown_timeout = shutdown_timeout;
3112
3113         ctrl->npss = id->npss;
3114         ctrl->apsta = id->apsta;
3115         prev_apst_enabled = ctrl->apst_enabled;
3116         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3117                 if (force_apst && id->apsta) {
3118                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3119                         ctrl->apst_enabled = true;
3120                 } else {
3121                         ctrl->apst_enabled = false;
3122                 }
3123         } else {
3124                 ctrl->apst_enabled = id->apsta;
3125         }
3126         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3127
3128         if (ctrl->ops->flags & NVME_F_FABRICS) {
3129                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3130                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3131                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3132                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3133
3134                 /*
3135                  * In fabrics we need to verify the cntlid matches the
3136                  * admin connect
3137                  */
3138                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3139                         dev_err(ctrl->device,
3140                                 "Mismatching cntlid: Connect %u vs Identify "
3141                                 "%u, rejecting\n",
3142                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3143                         ret = -EINVAL;
3144                         goto out_free;
3145                 }
3146
3147                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3148                         dev_err(ctrl->device,
3149                                 "keep-alive support is mandatory for fabrics\n");
3150                         ret = -EINVAL;
3151                         goto out_free;
3152                 }
3153         } else {
3154                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3155                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3156                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3157                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3158         }
3159
3160         ret = nvme_mpath_init(ctrl, id);
3161         kfree(id);
3162
3163         if (ret < 0)
3164                 return ret;
3165
3166         if (ctrl->apst_enabled && !prev_apst_enabled)
3167                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3168         else if (!ctrl->apst_enabled && prev_apst_enabled)
3169                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3170
3171         ret = nvme_configure_apst(ctrl);
3172         if (ret < 0)
3173                 return ret;
3174         
3175         ret = nvme_configure_timestamp(ctrl);
3176         if (ret < 0)
3177                 return ret;
3178
3179         ret = nvme_configure_directives(ctrl);
3180         if (ret < 0)
3181                 return ret;
3182
3183         ret = nvme_configure_acre(ctrl);
3184         if (ret < 0)
3185                 return ret;
3186
3187         if (!ctrl->identified) {
3188                 ret = nvme_hwmon_init(ctrl);
3189                 if (ret < 0)
3190                         return ret;
3191         }
3192
3193         ctrl->identified = true;
3194
3195         return 0;
3196
3197 out_free:
3198         kfree(id);
3199         return ret;
3200 }
3201 EXPORT_SYMBOL_GPL(nvme_init_identify);
3202
3203 static int nvme_dev_open(struct inode *inode, struct file *file)
3204 {
3205         struct nvme_ctrl *ctrl =
3206                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3207
3208         switch (ctrl->state) {
3209         case NVME_CTRL_LIVE:
3210                 break;
3211         default:
3212                 return -EWOULDBLOCK;
3213         }
3214
3215         nvme_get_ctrl(ctrl);
3216         if (!try_module_get(ctrl->ops->module)) {
3217                 nvme_put_ctrl(ctrl);
3218                 return -EINVAL;
3219         }
3220
3221         file->private_data = ctrl;
3222         return 0;
3223 }
3224
3225 static int nvme_dev_release(struct inode *inode, struct file *file)
3226 {
3227         struct nvme_ctrl *ctrl =
3228                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3229
3230         module_put(ctrl->ops->module);
3231         nvme_put_ctrl(ctrl);
3232         return 0;
3233 }
3234
3235 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3236 {
3237         struct nvme_ns *ns;
3238         int ret;
3239
3240         down_read(&ctrl->namespaces_rwsem);
3241         if (list_empty(&ctrl->namespaces)) {
3242                 ret = -ENOTTY;
3243                 goto out_unlock;
3244         }
3245
3246         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3247         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3248                 dev_warn(ctrl->device,
3249                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3250                 ret = -EINVAL;
3251                 goto out_unlock;
3252         }
3253
3254         dev_warn(ctrl->device,
3255                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3256         kref_get(&ns->kref);
3257         up_read(&ctrl->namespaces_rwsem);
3258
3259         ret = nvme_user_cmd(ctrl, ns, argp);
3260         nvme_put_ns(ns);
3261         return ret;
3262
3263 out_unlock:
3264         up_read(&ctrl->namespaces_rwsem);
3265         return ret;
3266 }
3267
3268 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3269                 unsigned long arg)
3270 {
3271         struct nvme_ctrl *ctrl = file->private_data;
3272         void __user *argp = (void __user *)arg;
3273
3274         switch (cmd) {
3275         case NVME_IOCTL_ADMIN_CMD:
3276                 return nvme_user_cmd(ctrl, NULL, argp);
3277         case NVME_IOCTL_ADMIN64_CMD:
3278                 return nvme_user_cmd64(ctrl, NULL, argp);
3279         case NVME_IOCTL_IO_CMD:
3280                 return nvme_dev_user_cmd(ctrl, argp);
3281         case NVME_IOCTL_RESET:
3282                 dev_warn(ctrl->device, "resetting controller\n");
3283                 return nvme_reset_ctrl_sync(ctrl);
3284         case NVME_IOCTL_SUBSYS_RESET:
3285                 return nvme_reset_subsystem(ctrl);
3286         case NVME_IOCTL_RESCAN:
3287                 nvme_queue_scan(ctrl);
3288                 return 0;
3289         default:
3290                 return -ENOTTY;
3291         }
3292 }
3293
3294 static const struct file_operations nvme_dev_fops = {
3295         .owner          = THIS_MODULE,
3296         .open           = nvme_dev_open,
3297         .release        = nvme_dev_release,
3298         .unlocked_ioctl = nvme_dev_ioctl,
3299         .compat_ioctl   = compat_ptr_ioctl,
3300 };
3301
3302 static ssize_t nvme_sysfs_reset(struct device *dev,
3303                                 struct device_attribute *attr, const char *buf,
3304                                 size_t count)
3305 {
3306         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3307         int ret;
3308
3309         ret = nvme_reset_ctrl_sync(ctrl);
3310         if (ret < 0)
3311                 return ret;
3312         return count;
3313 }
3314 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3315
3316 static ssize_t nvme_sysfs_rescan(struct device *dev,
3317                                 struct device_attribute *attr, const char *buf,
3318                                 size_t count)
3319 {
3320         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3321
3322         nvme_queue_scan(ctrl);
3323         return count;
3324 }
3325 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3326
3327 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3328 {
3329         struct gendisk *disk = dev_to_disk(dev);
3330
3331         if (disk->fops == &nvme_bdev_ops)
3332                 return nvme_get_ns_from_dev(dev)->head;
3333         else
3334                 return disk->private_data;
3335 }
3336
3337 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3338                 char *buf)
3339 {
3340         struct nvme_ns_head *head = dev_to_ns_head(dev);
3341         struct nvme_ns_ids *ids = &head->ids;
3342         struct nvme_subsystem *subsys = head->subsys;
3343         int serial_len = sizeof(subsys->serial);
3344         int model_len = sizeof(subsys->model);
3345
3346         if (!uuid_is_null(&ids->uuid))
3347                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3348
3349         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3350                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3351
3352         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3353                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3354
3355         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3356                                   subsys->serial[serial_len - 1] == '\0'))
3357                 serial_len--;
3358         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3359                                  subsys->model[model_len - 1] == '\0'))
3360                 model_len--;
3361
3362         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3363                 serial_len, subsys->serial, model_len, subsys->model,
3364                 head->ns_id);
3365 }
3366 static DEVICE_ATTR_RO(wwid);
3367
3368 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3369                 char *buf)
3370 {
3371         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3372 }
3373 static DEVICE_ATTR_RO(nguid);
3374
3375 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3376                 char *buf)
3377 {
3378         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3379
3380         /* For backward compatibility expose the NGUID to userspace if
3381          * we have no UUID set
3382          */
3383         if (uuid_is_null(&ids->uuid)) {
3384                 printk_ratelimited(KERN_WARNING
3385                                    "No UUID available providing old NGUID\n");
3386                 return sprintf(buf, "%pU\n", ids->nguid);
3387         }
3388         return sprintf(buf, "%pU\n", &ids->uuid);
3389 }
3390 static DEVICE_ATTR_RO(uuid);
3391
3392 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3393                 char *buf)
3394 {
3395         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3396 }
3397 static DEVICE_ATTR_RO(eui);
3398
3399 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3400                 char *buf)
3401 {
3402         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3403 }
3404 static DEVICE_ATTR_RO(nsid);
3405
3406 static struct attribute *nvme_ns_id_attrs[] = {
3407         &dev_attr_wwid.attr,
3408         &dev_attr_uuid.attr,
3409         &dev_attr_nguid.attr,
3410         &dev_attr_eui.attr,
3411         &dev_attr_nsid.attr,
3412 #ifdef CONFIG_NVME_MULTIPATH
3413         &dev_attr_ana_grpid.attr,
3414         &dev_attr_ana_state.attr,
3415 #endif
3416         NULL,
3417 };
3418
3419 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3420                 struct attribute *a, int n)
3421 {
3422         struct device *dev = container_of(kobj, struct device, kobj);
3423         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3424
3425         if (a == &dev_attr_uuid.attr) {
3426                 if (uuid_is_null(&ids->uuid) &&
3427                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3428                         return 0;
3429         }
3430         if (a == &dev_attr_nguid.attr) {
3431                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3432                         return 0;
3433         }
3434         if (a == &dev_attr_eui.attr) {
3435                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3436                         return 0;
3437         }
3438 #ifdef CONFIG_NVME_MULTIPATH
3439         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3440                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3441                         return 0;
3442                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3443                         return 0;
3444         }
3445 #endif
3446         return a->mode;
3447 }
3448
3449 static const struct attribute_group nvme_ns_id_attr_group = {
3450         .attrs          = nvme_ns_id_attrs,
3451         .is_visible     = nvme_ns_id_attrs_are_visible,
3452 };
3453
3454 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3455         &nvme_ns_id_attr_group,
3456 #ifdef CONFIG_NVM
3457         &nvme_nvm_attr_group,
3458 #endif
3459         NULL,
3460 };
3461
3462 #define nvme_show_str_function(field)                                           \
3463 static ssize_t  field##_show(struct device *dev,                                \
3464                             struct device_attribute *attr, char *buf)           \
3465 {                                                                               \
3466         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3467         return sprintf(buf, "%.*s\n",                                           \
3468                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3469 }                                                                               \
3470 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3471
3472 nvme_show_str_function(model);
3473 nvme_show_str_function(serial);
3474 nvme_show_str_function(firmware_rev);
3475
3476 #define nvme_show_int_function(field)                                           \
3477 static ssize_t  field##_show(struct device *dev,                                \
3478                             struct device_attribute *attr, char *buf)           \
3479 {                                                                               \
3480         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3481         return sprintf(buf, "%d\n", ctrl->field);       \
3482 }                                                                               \
3483 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3484
3485 nvme_show_int_function(cntlid);
3486 nvme_show_int_function(numa_node);
3487 nvme_show_int_function(queue_count);
3488 nvme_show_int_function(sqsize);
3489
3490 static ssize_t nvme_sysfs_delete(struct device *dev,
3491                                 struct device_attribute *attr, const char *buf,
3492                                 size_t count)
3493 {
3494         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3495
3496         if (device_remove_file_self(dev, attr))
3497                 nvme_delete_ctrl_sync(ctrl);
3498         return count;
3499 }
3500 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3501
3502 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3503                                          struct device_attribute *attr,
3504                                          char *buf)
3505 {
3506         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3507
3508         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3509 }
3510 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3511
3512 static ssize_t nvme_sysfs_show_state(struct device *dev,
3513                                      struct device_attribute *attr,
3514                                      char *buf)
3515 {
3516         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3517         static const char *const state_name[] = {
3518                 [NVME_CTRL_NEW]         = "new",
3519                 [NVME_CTRL_LIVE]        = "live",
3520                 [NVME_CTRL_RESETTING]   = "resetting",
3521                 [NVME_CTRL_CONNECTING]  = "connecting",
3522                 [NVME_CTRL_DELETING]    = "deleting",
3523                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3524                 [NVME_CTRL_DEAD]        = "dead",
3525         };
3526
3527         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3528             state_name[ctrl->state])
3529                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3530
3531         return sprintf(buf, "unknown state\n");
3532 }
3533
3534 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3535
3536 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3537                                          struct device_attribute *attr,
3538                                          char *buf)
3539 {
3540         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3541
3542         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3543 }
3544 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3545
3546 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3547                                         struct device_attribute *attr,
3548                                         char *buf)
3549 {
3550         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3551
3552         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3553 }
3554 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3555
3556 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3557                                         struct device_attribute *attr,
3558                                         char *buf)
3559 {
3560         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3561
3562         return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3563 }
3564 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3565
3566 static ssize_t nvme_sysfs_show_address(struct device *dev,
3567                                          struct device_attribute *attr,
3568                                          char *buf)
3569 {
3570         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3571
3572         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3573 }
3574 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3575
3576 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3577                 struct device_attribute *attr, char *buf)
3578 {
3579         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3580         struct nvmf_ctrl_options *opts = ctrl->opts;
3581
3582         if (ctrl->opts->max_reconnects == -1)
3583                 return sprintf(buf, "off\n");
3584         return sprintf(buf, "%d\n",
3585                         opts->max_reconnects * opts->reconnect_delay);
3586 }
3587
3588 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3589                 struct device_attribute *attr, const char *buf, size_t count)
3590 {
3591         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3592         struct nvmf_ctrl_options *opts = ctrl->opts;
3593         int ctrl_loss_tmo, err;
3594
3595         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3596         if (err)
3597                 return -EINVAL;
3598
3599         else if (ctrl_loss_tmo < 0)
3600                 opts->max_reconnects = -1;
3601         else
3602                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3603                                                 opts->reconnect_delay);
3604         return count;
3605 }
3606 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3607         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3608
3609 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3610                 struct device_attribute *attr, char *buf)
3611 {
3612         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3613
3614         if (ctrl->opts->reconnect_delay == -1)
3615                 return sprintf(buf, "off\n");
3616         return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3617 }
3618
3619 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3620                 struct device_attribute *attr, const char *buf, size_t count)
3621 {
3622         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3623         unsigned int v;
3624         int err;
3625
3626         err = kstrtou32(buf, 10, &v);
3627         if (err)
3628                 return err;
3629
3630         ctrl->opts->reconnect_delay = v;
3631         return count;
3632 }
3633 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3634         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3635
3636 static struct attribute *nvme_dev_attrs[] = {
3637         &dev_attr_reset_controller.attr,
3638         &dev_attr_rescan_controller.attr,
3639         &dev_attr_model.attr,
3640         &dev_attr_serial.attr,
3641         &dev_attr_firmware_rev.attr,
3642         &dev_attr_cntlid.attr,
3643         &dev_attr_delete_controller.attr,
3644         &dev_attr_transport.attr,
3645         &dev_attr_subsysnqn.attr,
3646         &dev_attr_address.attr,
3647         &dev_attr_state.attr,
3648         &dev_attr_numa_node.attr,
3649         &dev_attr_queue_count.attr,
3650         &dev_attr_sqsize.attr,
3651         &dev_attr_hostnqn.attr,
3652         &dev_attr_hostid.attr,
3653         &dev_attr_ctrl_loss_tmo.attr,
3654         &dev_attr_reconnect_delay.attr,
3655         NULL
3656 };
3657
3658 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3659                 struct attribute *a, int n)
3660 {
3661         struct device *dev = container_of(kobj, struct device, kobj);
3662         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3663
3664         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3665                 return 0;
3666         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3667                 return 0;
3668         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3669                 return 0;
3670         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3671                 return 0;
3672         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3673                 return 0;
3674         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3675                 return 0;
3676
3677         return a->mode;
3678 }
3679
3680 static struct attribute_group nvme_dev_attrs_group = {
3681         .attrs          = nvme_dev_attrs,
3682         .is_visible     = nvme_dev_attrs_are_visible,
3683 };
3684
3685 static const struct attribute_group *nvme_dev_attr_groups[] = {
3686         &nvme_dev_attrs_group,
3687         NULL,
3688 };
3689
3690 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3691                 unsigned nsid)
3692 {
3693         struct nvme_ns_head *h;
3694
3695         lockdep_assert_held(&subsys->lock);
3696
3697         list_for_each_entry(h, &subsys->nsheads, entry) {
3698                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3699                         return h;
3700         }
3701
3702         return NULL;
3703 }
3704
3705 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3706                 struct nvme_ns_head *new)
3707 {
3708         struct nvme_ns_head *h;
3709
3710         lockdep_assert_held(&subsys->lock);
3711
3712         list_for_each_entry(h, &subsys->nsheads, entry) {
3713                 if (nvme_ns_ids_valid(&new->ids) &&
3714                     nvme_ns_ids_equal(&new->ids, &h->ids))
3715                         return -EINVAL;
3716         }
3717
3718         return 0;
3719 }
3720
3721 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3722                 unsigned nsid, struct nvme_ns_ids *ids)
3723 {
3724         struct nvme_ns_head *head;
3725         size_t size = sizeof(*head);
3726         int ret = -ENOMEM;
3727
3728 #ifdef CONFIG_NVME_MULTIPATH
3729         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3730 #endif
3731
3732         head = kzalloc(size, GFP_KERNEL);
3733         if (!head)
3734                 goto out;
3735         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3736         if (ret < 0)
3737                 goto out_free_head;
3738         head->instance = ret;
3739         INIT_LIST_HEAD(&head->list);
3740         ret = init_srcu_struct(&head->srcu);
3741         if (ret)
3742                 goto out_ida_remove;
3743         head->subsys = ctrl->subsys;
3744         head->ns_id = nsid;
3745         head->ids = *ids;
3746         kref_init(&head->ref);
3747
3748         ret = __nvme_check_ids(ctrl->subsys, head);
3749         if (ret) {
3750                 dev_err(ctrl->device,
3751                         "duplicate IDs for nsid %d\n", nsid);
3752                 goto out_cleanup_srcu;
3753         }
3754
3755         if (head->ids.csi) {
3756                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3757                 if (ret)
3758                         goto out_cleanup_srcu;
3759         } else
3760                 head->effects = ctrl->effects;
3761
3762         ret = nvme_mpath_alloc_disk(ctrl, head);
3763         if (ret)
3764                 goto out_cleanup_srcu;
3765
3766         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3767
3768         kref_get(&ctrl->subsys->ref);
3769
3770         return head;
3771 out_cleanup_srcu:
3772         cleanup_srcu_struct(&head->srcu);
3773 out_ida_remove:
3774         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3775 out_free_head:
3776         kfree(head);
3777 out:
3778         if (ret > 0)
3779                 ret = blk_status_to_errno(nvme_error_status(ret));
3780         return ERR_PTR(ret);
3781 }
3782
3783 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3784                 struct nvme_ns_ids *ids, bool is_shared)
3785 {
3786         struct nvme_ctrl *ctrl = ns->ctrl;
3787         struct nvme_ns_head *head = NULL;
3788         int ret = 0;
3789
3790         mutex_lock(&ctrl->subsys->lock);
3791         head = nvme_find_ns_head(ctrl->subsys, nsid);
3792         if (!head) {
3793                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3794                 if (IS_ERR(head)) {
3795                         ret = PTR_ERR(head);
3796                         goto out_unlock;
3797                 }
3798                 head->shared = is_shared;
3799         } else {
3800                 ret = -EINVAL;
3801                 if (!is_shared || !head->shared) {
3802                         dev_err(ctrl->device,
3803                                 "Duplicate unshared namespace %d\n", nsid);
3804                         goto out_put_ns_head;
3805                 }
3806                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3807                         dev_err(ctrl->device,
3808                                 "IDs don't match for shared namespace %d\n",
3809                                         nsid);
3810                         goto out_put_ns_head;
3811                 }
3812         }
3813
3814         list_add_tail(&ns->siblings, &head->list);
3815         ns->head = head;
3816         mutex_unlock(&ctrl->subsys->lock);
3817         return 0;
3818
3819 out_put_ns_head:
3820         nvme_put_ns_head(head);
3821 out_unlock:
3822         mutex_unlock(&ctrl->subsys->lock);
3823         return ret;
3824 }
3825
3826 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3827 {
3828         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3829         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3830
3831         return nsa->head->ns_id - nsb->head->ns_id;
3832 }
3833
3834 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3835 {
3836         struct nvme_ns *ns, *ret = NULL;
3837
3838         down_read(&ctrl->namespaces_rwsem);
3839         list_for_each_entry(ns, &ctrl->namespaces, list) {
3840                 if (ns->head->ns_id == nsid) {
3841                         if (!kref_get_unless_zero(&ns->kref))
3842                                 continue;
3843                         ret = ns;
3844                         break;
3845                 }
3846                 if (ns->head->ns_id > nsid)
3847                         break;
3848         }
3849         up_read(&ctrl->namespaces_rwsem);
3850         return ret;
3851 }
3852 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3853
3854 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3855                 struct nvme_ns_ids *ids)
3856 {
3857         struct nvme_ns *ns;
3858         struct gendisk *disk;
3859         struct nvme_id_ns *id;
3860         char disk_name[DISK_NAME_LEN];
3861         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3862
3863         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3864                 return;
3865
3866         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3867         if (!ns)
3868                 goto out_free_id;
3869
3870         ns->queue = blk_mq_init_queue(ctrl->tagset);
3871         if (IS_ERR(ns->queue))
3872                 goto out_free_ns;
3873
3874         if (ctrl->opts && ctrl->opts->data_digest)
3875                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3876
3877         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3878         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3879                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3880
3881         ns->queue->queuedata = ns;
3882         ns->ctrl = ctrl;
3883         kref_init(&ns->kref);
3884
3885         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3886                 goto out_free_queue;
3887         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3888
3889         disk = alloc_disk_node(0, node);
3890         if (!disk)
3891                 goto out_unlink_ns;
3892
3893         disk->fops = &nvme_bdev_ops;
3894         disk->private_data = ns;
3895         disk->queue = ns->queue;
3896         disk->flags = flags;
3897         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3898         ns->disk = disk;
3899
3900         if (nvme_update_ns_info(ns, id))
3901                 goto out_put_disk;
3902
3903         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3904                 if (nvme_nvm_register(ns, disk_name, node)) {
3905                         dev_warn(ctrl->device, "LightNVM init failure\n");
3906                         goto out_put_disk;
3907                 }
3908         }
3909
3910         down_write(&ctrl->namespaces_rwsem);
3911         list_add_tail(&ns->list, &ctrl->namespaces);
3912         up_write(&ctrl->namespaces_rwsem);
3913
3914         nvme_get_ctrl(ctrl);
3915
3916         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3917
3918         nvme_mpath_add_disk(ns, id);
3919         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3920         kfree(id);
3921
3922         return;
3923  out_put_disk:
3924         /* prevent double queue cleanup */
3925         ns->disk->queue = NULL;
3926         put_disk(ns->disk);
3927  out_unlink_ns:
3928         mutex_lock(&ctrl->subsys->lock);
3929         list_del_rcu(&ns->siblings);
3930         if (list_empty(&ns->head->list))
3931                 list_del_init(&ns->head->entry);
3932         mutex_unlock(&ctrl->subsys->lock);
3933         nvme_put_ns_head(ns->head);
3934  out_free_queue:
3935         blk_cleanup_queue(ns->queue);
3936  out_free_ns:
3937         kfree(ns);
3938  out_free_id:
3939         kfree(id);
3940 }
3941
3942 static void nvme_ns_remove(struct nvme_ns *ns)
3943 {
3944         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3945                 return;
3946
3947         set_capacity(ns->disk, 0);
3948         nvme_fault_inject_fini(&ns->fault_inject);
3949
3950         mutex_lock(&ns->ctrl->subsys->lock);
3951         list_del_rcu(&ns->siblings);
3952         if (list_empty(&ns->head->list))
3953                 list_del_init(&ns->head->entry);
3954         mutex_unlock(&ns->ctrl->subsys->lock);
3955
3956         synchronize_rcu(); /* guarantee not available in head->list */
3957         nvme_mpath_clear_current_path(ns);
3958         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3959
3960         if (ns->disk->flags & GENHD_FL_UP) {
3961                 del_gendisk(ns->disk);
3962                 blk_cleanup_queue(ns->queue);
3963                 if (blk_get_integrity(ns->disk))
3964                         blk_integrity_unregister(ns->disk);
3965         }
3966
3967         down_write(&ns->ctrl->namespaces_rwsem);
3968         list_del_init(&ns->list);
3969         up_write(&ns->ctrl->namespaces_rwsem);
3970
3971         nvme_mpath_check_last_path(ns);
3972         nvme_put_ns(ns);
3973 }
3974
3975 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3976 {
3977         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3978
3979         if (ns) {
3980                 nvme_ns_remove(ns);
3981                 nvme_put_ns(ns);
3982         }
3983 }
3984
3985 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3986 {
3987         struct nvme_id_ns *id;
3988         int ret = -ENODEV;
3989
3990         if (test_bit(NVME_NS_DEAD, &ns->flags))
3991                 goto out;
3992
3993         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3994         if (ret)
3995                 goto out;
3996
3997         ret = -ENODEV;
3998         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3999                 dev_err(ns->ctrl->device,
4000                         "identifiers changed for nsid %d\n", ns->head->ns_id);
4001                 goto out_free_id;
4002         }
4003
4004         ret = nvme_update_ns_info(ns, id);
4005
4006 out_free_id:
4007         kfree(id);
4008 out:
4009         /*
4010          * Only remove the namespace if we got a fatal error back from the
4011          * device, otherwise ignore the error and just move on.
4012          *
4013          * TODO: we should probably schedule a delayed retry here.
4014          */
4015         if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
4016                 nvme_ns_remove(ns);
4017 }
4018
4019 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4020 {
4021         struct nvme_ns_ids ids = { };
4022         struct nvme_ns *ns;
4023
4024         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4025                 return;
4026
4027         ns = nvme_find_get_ns(ctrl, nsid);
4028         if (ns) {
4029                 nvme_validate_ns(ns, &ids);
4030                 nvme_put_ns(ns);
4031                 return;
4032         }
4033
4034         switch (ids.csi) {
4035         case NVME_CSI_NVM:
4036                 nvme_alloc_ns(ctrl, nsid, &ids);
4037                 break;
4038         case NVME_CSI_ZNS:
4039                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4040                         dev_warn(ctrl->device,
4041                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4042                                 nsid);
4043                         break;
4044                 }
4045                 nvme_alloc_ns(ctrl, nsid, &ids);
4046                 break;
4047         default:
4048                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4049                         ids.csi, nsid);
4050                 break;
4051         }
4052 }
4053
4054 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4055                                         unsigned nsid)
4056 {
4057         struct nvme_ns *ns, *next;
4058         LIST_HEAD(rm_list);
4059
4060         down_write(&ctrl->namespaces_rwsem);
4061         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4062                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4063                         list_move_tail(&ns->list, &rm_list);
4064         }
4065         up_write(&ctrl->namespaces_rwsem);
4066
4067         list_for_each_entry_safe(ns, next, &rm_list, list)
4068                 nvme_ns_remove(ns);
4069
4070 }
4071
4072 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4073 {
4074         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4075         __le32 *ns_list;
4076         u32 prev = 0;
4077         int ret = 0, i;
4078
4079         if (nvme_ctrl_limited_cns(ctrl))
4080                 return -EOPNOTSUPP;
4081
4082         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4083         if (!ns_list)
4084                 return -ENOMEM;
4085
4086         for (;;) {
4087                 struct nvme_command cmd = {
4088                         .identify.opcode        = nvme_admin_identify,
4089                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4090                         .identify.nsid          = cpu_to_le32(prev),
4091                 };
4092
4093                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4094                                             NVME_IDENTIFY_DATA_SIZE);
4095                 if (ret) {
4096                         dev_warn(ctrl->device,
4097                                 "Identify NS List failed (status=0x%x)\n", ret);
4098                         goto free;
4099                 }
4100
4101                 for (i = 0; i < nr_entries; i++) {
4102                         u32 nsid = le32_to_cpu(ns_list[i]);
4103
4104                         if (!nsid)      /* end of the list? */
4105                                 goto out;
4106                         nvme_validate_or_alloc_ns(ctrl, nsid);
4107                         while (++prev < nsid)
4108                                 nvme_ns_remove_by_nsid(ctrl, prev);
4109                 }
4110         }
4111  out:
4112         nvme_remove_invalid_namespaces(ctrl, prev);
4113  free:
4114         kfree(ns_list);
4115         return ret;
4116 }
4117
4118 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4119 {
4120         struct nvme_id_ctrl *id;
4121         u32 nn, i;
4122
4123         if (nvme_identify_ctrl(ctrl, &id))
4124                 return;
4125         nn = le32_to_cpu(id->nn);
4126         kfree(id);
4127
4128         for (i = 1; i <= nn; i++)
4129                 nvme_validate_or_alloc_ns(ctrl, i);
4130
4131         nvme_remove_invalid_namespaces(ctrl, nn);
4132 }
4133
4134 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4135 {
4136         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4137         __le32 *log;
4138         int error;
4139
4140         log = kzalloc(log_size, GFP_KERNEL);
4141         if (!log)
4142                 return;
4143
4144         /*
4145          * We need to read the log to clear the AEN, but we don't want to rely
4146          * on it for the changed namespace information as userspace could have
4147          * raced with us in reading the log page, which could cause us to miss
4148          * updates.
4149          */
4150         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4151                         NVME_CSI_NVM, log, log_size, 0);
4152         if (error)
4153                 dev_warn(ctrl->device,
4154                         "reading changed ns log failed: %d\n", error);
4155
4156         kfree(log);
4157 }
4158
4159 static void nvme_scan_work(struct work_struct *work)
4160 {
4161         struct nvme_ctrl *ctrl =
4162                 container_of(work, struct nvme_ctrl, scan_work);
4163
4164         /* No tagset on a live ctrl means IO queues could not created */
4165         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4166                 return;
4167
4168         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4169                 dev_info(ctrl->device, "rescanning namespaces.\n");
4170                 nvme_clear_changed_ns_log(ctrl);
4171         }
4172
4173         mutex_lock(&ctrl->scan_lock);
4174         if (nvme_scan_ns_list(ctrl) != 0)
4175                 nvme_scan_ns_sequential(ctrl);
4176         mutex_unlock(&ctrl->scan_lock);
4177
4178         down_write(&ctrl->namespaces_rwsem);
4179         list_sort(NULL, &ctrl->namespaces, ns_cmp);
4180         up_write(&ctrl->namespaces_rwsem);
4181 }
4182
4183 /*
4184  * This function iterates the namespace list unlocked to allow recovery from
4185  * controller failure. It is up to the caller to ensure the namespace list is
4186  * not modified by scan work while this function is executing.
4187  */
4188 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4189 {
4190         struct nvme_ns *ns, *next;
4191         LIST_HEAD(ns_list);
4192
4193         /*
4194          * make sure to requeue I/O to all namespaces as these
4195          * might result from the scan itself and must complete
4196          * for the scan_work to make progress
4197          */
4198         nvme_mpath_clear_ctrl_paths(ctrl);
4199
4200         /* prevent racing with ns scanning */
4201         flush_work(&ctrl->scan_work);
4202
4203         /*
4204          * The dead states indicates the controller was not gracefully
4205          * disconnected. In that case, we won't be able to flush any data while
4206          * removing the namespaces' disks; fail all the queues now to avoid
4207          * potentially having to clean up the failed sync later.
4208          */
4209         if (ctrl->state == NVME_CTRL_DEAD)
4210                 nvme_kill_queues(ctrl);
4211
4212         /* this is a no-op when called from the controller reset handler */
4213         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4214
4215         down_write(&ctrl->namespaces_rwsem);
4216         list_splice_init(&ctrl->namespaces, &ns_list);
4217         up_write(&ctrl->namespaces_rwsem);
4218
4219         list_for_each_entry_safe(ns, next, &ns_list, list)
4220                 nvme_ns_remove(ns);
4221 }
4222 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4223
4224 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4225 {
4226         struct nvme_ctrl *ctrl =
4227                 container_of(dev, struct nvme_ctrl, ctrl_device);
4228         struct nvmf_ctrl_options *opts = ctrl->opts;
4229         int ret;
4230
4231         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4232         if (ret)
4233                 return ret;
4234
4235         if (opts) {
4236                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4237                 if (ret)
4238                         return ret;
4239
4240                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4241                                 opts->trsvcid ?: "none");
4242                 if (ret)
4243                         return ret;
4244
4245                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4246                                 opts->host_traddr ?: "none");
4247         }
4248         return ret;
4249 }
4250
4251 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4252 {
4253         char *envp[2] = { NULL, NULL };
4254         u32 aen_result = ctrl->aen_result;
4255
4256         ctrl->aen_result = 0;
4257         if (!aen_result)
4258                 return;
4259
4260         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4261         if (!envp[0])
4262                 return;
4263         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4264         kfree(envp[0]);
4265 }
4266
4267 static void nvme_async_event_work(struct work_struct *work)
4268 {
4269         struct nvme_ctrl *ctrl =
4270                 container_of(work, struct nvme_ctrl, async_event_work);
4271
4272         nvme_aen_uevent(ctrl);
4273         ctrl->ops->submit_async_event(ctrl);
4274 }
4275
4276 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4277 {
4278
4279         u32 csts;
4280
4281         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4282                 return false;
4283
4284         if (csts == ~0)
4285                 return false;
4286
4287         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4288 }
4289
4290 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4291 {
4292         struct nvme_fw_slot_info_log *log;
4293
4294         log = kmalloc(sizeof(*log), GFP_KERNEL);
4295         if (!log)
4296                 return;
4297
4298         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4299                         log, sizeof(*log), 0))
4300                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4301         kfree(log);
4302 }
4303
4304 static void nvme_fw_act_work(struct work_struct *work)
4305 {
4306         struct nvme_ctrl *ctrl = container_of(work,
4307                                 struct nvme_ctrl, fw_act_work);
4308         unsigned long fw_act_timeout;
4309
4310         if (ctrl->mtfa)
4311                 fw_act_timeout = jiffies +
4312                                 msecs_to_jiffies(ctrl->mtfa * 100);
4313         else
4314                 fw_act_timeout = jiffies +
4315                                 msecs_to_jiffies(admin_timeout * 1000);
4316
4317         nvme_stop_queues(ctrl);
4318         while (nvme_ctrl_pp_status(ctrl)) {
4319                 if (time_after(jiffies, fw_act_timeout)) {
4320                         dev_warn(ctrl->device,
4321                                 "Fw activation timeout, reset controller\n");
4322                         nvme_try_sched_reset(ctrl);
4323                         return;
4324                 }
4325                 msleep(100);
4326         }
4327
4328         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4329                 return;
4330
4331         nvme_start_queues(ctrl);
4332         /* read FW slot information to clear the AER */
4333         nvme_get_fw_slot_info(ctrl);
4334 }
4335
4336 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4337 {
4338         u32 aer_notice_type = (result & 0xff00) >> 8;
4339
4340         trace_nvme_async_event(ctrl, aer_notice_type);
4341
4342         switch (aer_notice_type) {
4343         case NVME_AER_NOTICE_NS_CHANGED:
4344                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4345                 nvme_queue_scan(ctrl);
4346                 break;
4347         case NVME_AER_NOTICE_FW_ACT_STARTING:
4348                 /*
4349                  * We are (ab)using the RESETTING state to prevent subsequent
4350                  * recovery actions from interfering with the controller's
4351                  * firmware activation.
4352                  */
4353                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4354                         queue_work(nvme_wq, &ctrl->fw_act_work);
4355                 break;
4356 #ifdef CONFIG_NVME_MULTIPATH
4357         case NVME_AER_NOTICE_ANA:
4358                 if (!ctrl->ana_log_buf)
4359                         break;
4360                 queue_work(nvme_wq, &ctrl->ana_work);
4361                 break;
4362 #endif
4363         case NVME_AER_NOTICE_DISC_CHANGED:
4364                 ctrl->aen_result = result;
4365                 break;
4366         default:
4367                 dev_warn(ctrl->device, "async event result %08x\n", result);
4368         }
4369 }
4370
4371 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4372                 volatile union nvme_result *res)
4373 {
4374         u32 result = le32_to_cpu(res->u32);
4375         u32 aer_type = result & 0x07;
4376
4377         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4378                 return;
4379
4380         switch (aer_type) {
4381         case NVME_AER_NOTICE:
4382                 nvme_handle_aen_notice(ctrl, result);
4383                 break;
4384         case NVME_AER_ERROR:
4385         case NVME_AER_SMART:
4386         case NVME_AER_CSS:
4387         case NVME_AER_VS:
4388                 trace_nvme_async_event(ctrl, aer_type);
4389                 ctrl->aen_result = result;
4390                 break;
4391         default:
4392                 break;
4393         }
4394         queue_work(nvme_wq, &ctrl->async_event_work);
4395 }
4396 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4397
4398 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4399 {
4400         nvme_mpath_stop(ctrl);
4401         nvme_stop_keep_alive(ctrl);
4402         nvme_stop_failfast_work(ctrl);
4403         flush_work(&ctrl->async_event_work);
4404         cancel_work_sync(&ctrl->fw_act_work);
4405 }
4406 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4407
4408 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4409 {
4410         nvme_start_keep_alive(ctrl);
4411
4412         nvme_enable_aen(ctrl);
4413
4414         if (ctrl->queue_count > 1) {
4415                 nvme_queue_scan(ctrl);
4416                 nvme_start_queues(ctrl);
4417         }
4418 }
4419 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4420
4421 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4422 {
4423         nvme_fault_inject_fini(&ctrl->fault_inject);
4424         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4425         cdev_device_del(&ctrl->cdev, ctrl->device);
4426         nvme_put_ctrl(ctrl);
4427 }
4428 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4429
4430 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4431 {
4432         struct nvme_effects_log *cel;
4433         unsigned long i;
4434
4435         xa_for_each (&ctrl->cels, i, cel) {
4436                 xa_erase(&ctrl->cels, i);
4437                 kfree(cel);
4438         }
4439
4440         xa_destroy(&ctrl->cels);
4441 }
4442
4443 static void nvme_free_ctrl(struct device *dev)
4444 {
4445         struct nvme_ctrl *ctrl =
4446                 container_of(dev, struct nvme_ctrl, ctrl_device);
4447         struct nvme_subsystem *subsys = ctrl->subsys;
4448
4449         if (!subsys || ctrl->instance != subsys->instance)
4450                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4451
4452         nvme_free_cels(ctrl);
4453         nvme_mpath_uninit(ctrl);
4454         __free_page(ctrl->discard_page);
4455
4456         if (subsys) {
4457                 mutex_lock(&nvme_subsystems_lock);
4458                 list_del(&ctrl->subsys_entry);
4459                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4460                 mutex_unlock(&nvme_subsystems_lock);
4461         }
4462
4463         ctrl->ops->free_ctrl(ctrl);
4464
4465         if (subsys)
4466                 nvme_put_subsystem(subsys);
4467 }
4468
4469 /*
4470  * Initialize a NVMe controller structures.  This needs to be called during
4471  * earliest initialization so that we have the initialized structured around
4472  * during probing.
4473  */
4474 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4475                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4476 {
4477         int ret;
4478
4479         ctrl->state = NVME_CTRL_NEW;
4480         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4481         spin_lock_init(&ctrl->lock);
4482         mutex_init(&ctrl->scan_lock);
4483         INIT_LIST_HEAD(&ctrl->namespaces);
4484         xa_init(&ctrl->cels);
4485         init_rwsem(&ctrl->namespaces_rwsem);
4486         ctrl->dev = dev;
4487         ctrl->ops = ops;
4488         ctrl->quirks = quirks;
4489         ctrl->numa_node = NUMA_NO_NODE;
4490         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4491         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4492         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4493         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4494         init_waitqueue_head(&ctrl->state_wq);
4495
4496         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4497         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4498         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4499         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4500
4501         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4502                         PAGE_SIZE);
4503         ctrl->discard_page = alloc_page(GFP_KERNEL);
4504         if (!ctrl->discard_page) {
4505                 ret = -ENOMEM;
4506                 goto out;
4507         }
4508
4509         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4510         if (ret < 0)
4511                 goto out;
4512         ctrl->instance = ret;
4513
4514         device_initialize(&ctrl->ctrl_device);
4515         ctrl->device = &ctrl->ctrl_device;
4516         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4517                         ctrl->instance);
4518         ctrl->device->class = nvme_class;
4519         ctrl->device->parent = ctrl->dev;
4520         ctrl->device->groups = nvme_dev_attr_groups;
4521         ctrl->device->release = nvme_free_ctrl;
4522         dev_set_drvdata(ctrl->device, ctrl);
4523         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4524         if (ret)
4525                 goto out_release_instance;
4526
4527         nvme_get_ctrl(ctrl);
4528         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4529         ctrl->cdev.owner = ops->module;
4530         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4531         if (ret)
4532                 goto out_free_name;
4533
4534         /*
4535          * Initialize latency tolerance controls.  The sysfs files won't
4536          * be visible to userspace unless the device actually supports APST.
4537          */
4538         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4539         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4540                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4541
4542         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4543
4544         return 0;
4545 out_free_name:
4546         nvme_put_ctrl(ctrl);
4547         kfree_const(ctrl->device->kobj.name);
4548 out_release_instance:
4549         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4550 out:
4551         if (ctrl->discard_page)
4552                 __free_page(ctrl->discard_page);
4553         return ret;
4554 }
4555 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4556
4557 /**
4558  * nvme_kill_queues(): Ends all namespace queues
4559  * @ctrl: the dead controller that needs to end
4560  *
4561  * Call this function when the driver determines it is unable to get the
4562  * controller in a state capable of servicing IO.
4563  */
4564 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4565 {
4566         struct nvme_ns *ns;
4567
4568         down_read(&ctrl->namespaces_rwsem);
4569
4570         /* Forcibly unquiesce queues to avoid blocking dispatch */
4571         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4572                 blk_mq_unquiesce_queue(ctrl->admin_q);
4573
4574         list_for_each_entry(ns, &ctrl->namespaces, list)
4575                 nvme_set_queue_dying(ns);
4576
4577         up_read(&ctrl->namespaces_rwsem);
4578 }
4579 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4580
4581 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4582 {
4583         struct nvme_ns *ns;
4584
4585         down_read(&ctrl->namespaces_rwsem);
4586         list_for_each_entry(ns, &ctrl->namespaces, list)
4587                 blk_mq_unfreeze_queue(ns->queue);
4588         up_read(&ctrl->namespaces_rwsem);
4589 }
4590 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4591
4592 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4593 {
4594         struct nvme_ns *ns;
4595
4596         down_read(&ctrl->namespaces_rwsem);
4597         list_for_each_entry(ns, &ctrl->namespaces, list) {
4598                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4599                 if (timeout <= 0)
4600                         break;
4601         }
4602         up_read(&ctrl->namespaces_rwsem);
4603         return timeout;
4604 }
4605 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4606
4607 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4608 {
4609         struct nvme_ns *ns;
4610
4611         down_read(&ctrl->namespaces_rwsem);
4612         list_for_each_entry(ns, &ctrl->namespaces, list)
4613                 blk_mq_freeze_queue_wait(ns->queue);
4614         up_read(&ctrl->namespaces_rwsem);
4615 }
4616 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4617
4618 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4619 {
4620         struct nvme_ns *ns;
4621
4622         down_read(&ctrl->namespaces_rwsem);
4623         list_for_each_entry(ns, &ctrl->namespaces, list)
4624                 blk_freeze_queue_start(ns->queue);
4625         up_read(&ctrl->namespaces_rwsem);
4626 }
4627 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4628
4629 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4630 {
4631         struct nvme_ns *ns;
4632
4633         down_read(&ctrl->namespaces_rwsem);
4634         list_for_each_entry(ns, &ctrl->namespaces, list)
4635                 blk_mq_quiesce_queue(ns->queue);
4636         up_read(&ctrl->namespaces_rwsem);
4637 }
4638 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4639
4640 void nvme_start_queues(struct nvme_ctrl *ctrl)
4641 {
4642         struct nvme_ns *ns;
4643
4644         down_read(&ctrl->namespaces_rwsem);
4645         list_for_each_entry(ns, &ctrl->namespaces, list)
4646                 blk_mq_unquiesce_queue(ns->queue);
4647         up_read(&ctrl->namespaces_rwsem);
4648 }
4649 EXPORT_SYMBOL_GPL(nvme_start_queues);
4650
4651 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4652 {
4653         struct nvme_ns *ns;
4654
4655         down_read(&ctrl->namespaces_rwsem);
4656         list_for_each_entry(ns, &ctrl->namespaces, list)
4657                 blk_sync_queue(ns->queue);
4658         up_read(&ctrl->namespaces_rwsem);
4659 }
4660 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4661
4662 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4663 {
4664         nvme_sync_io_queues(ctrl);
4665         if (ctrl->admin_q)
4666                 blk_sync_queue(ctrl->admin_q);
4667 }
4668 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4669
4670 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4671 {
4672         if (file->f_op != &nvme_dev_fops)
4673                 return NULL;
4674         return file->private_data;
4675 }
4676 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4677
4678 /*
4679  * Check we didn't inadvertently grow the command structure sizes:
4680  */
4681 static inline void _nvme_check_size(void)
4682 {
4683         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4684         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4685         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4686         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4687         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4688         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4689         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4690         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4691         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4692         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4693         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4694         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4695         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4696         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4697         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4698         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4699         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4700         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4701         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4702 }
4703
4704
4705 static int __init nvme_core_init(void)
4706 {
4707         int result = -ENOMEM;
4708
4709         _nvme_check_size();
4710
4711         nvme_wq = alloc_workqueue("nvme-wq",
4712                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4713         if (!nvme_wq)
4714                 goto out;
4715
4716         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4717                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4718         if (!nvme_reset_wq)
4719                 goto destroy_wq;
4720
4721         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4722                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4723         if (!nvme_delete_wq)
4724                 goto destroy_reset_wq;
4725
4726         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4727                         NVME_MINORS, "nvme");
4728         if (result < 0)
4729                 goto destroy_delete_wq;
4730
4731         nvme_class = class_create(THIS_MODULE, "nvme");
4732         if (IS_ERR(nvme_class)) {
4733                 result = PTR_ERR(nvme_class);
4734                 goto unregister_chrdev;
4735         }
4736         nvme_class->dev_uevent = nvme_class_uevent;
4737
4738         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4739         if (IS_ERR(nvme_subsys_class)) {
4740                 result = PTR_ERR(nvme_subsys_class);
4741                 goto destroy_class;
4742         }
4743         return 0;
4744
4745 destroy_class:
4746         class_destroy(nvme_class);
4747 unregister_chrdev:
4748         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4749 destroy_delete_wq:
4750         destroy_workqueue(nvme_delete_wq);
4751 destroy_reset_wq:
4752         destroy_workqueue(nvme_reset_wq);
4753 destroy_wq:
4754         destroy_workqueue(nvme_wq);
4755 out:
4756         return result;
4757 }
4758
4759 static void __exit nvme_core_exit(void)
4760 {
4761         class_destroy(nvme_subsys_class);
4762         class_destroy(nvme_class);
4763         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4764         destroy_workqueue(nvme_delete_wq);
4765         destroy_workqueue(nvme_reset_wq);
4766         destroy_workqueue(nvme_wq);
4767         ida_destroy(&nvme_instance_ida);
4768 }
4769
4770 MODULE_LICENSE("GPL");
4771 MODULE_VERSION("1.0");
4772 module_init(nvme_core_init);
4773 module_exit(nvme_core_exit);