Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94                                            unsigned nsid);
95
96 /*
97  * Prepare a queue for teardown.
98  *
99  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100  * the capacity to 0 after that to avoid blocking dispatchers that may be
101  * holding bd_butex.  This will end buffered writers dirtying pages that can't
102  * be synced.
103  */
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
105 {
106         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107                 return;
108
109         blk_set_queue_dying(ns->queue);
110         blk_mq_unquiesce_queue(ns->queue);
111
112         set_capacity_and_notify(ns->disk, 0);
113 }
114
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117         /*
118          * Only new queue scan work when admin and IO queues are both alive
119          */
120         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121                 queue_work(nvme_wq, &ctrl->scan_work);
122 }
123
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132         if (ctrl->state != NVME_CTRL_RESETTING)
133                 return -EBUSY;
134         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135                 return -EBUSY;
136         return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139
140 static void nvme_failfast_work(struct work_struct *work)
141 {
142         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143                         struct nvme_ctrl, failfast_work);
144
145         if (ctrl->state != NVME_CTRL_CONNECTING)
146                 return;
147
148         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149         dev_info(ctrl->device, "failfast expired\n");
150         nvme_kick_requeue_lists(ctrl);
151 }
152
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
154 {
155         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156                 return;
157
158         schedule_delayed_work(&ctrl->failfast_work,
159                               ctrl->opts->fast_io_fail_tmo * HZ);
160 }
161
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
163 {
164         if (!ctrl->opts)
165                 return;
166
167         cancel_delayed_work_sync(&ctrl->failfast_work);
168         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
169 }
170
171
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
173 {
174         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175                 return -EBUSY;
176         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177                 return -EBUSY;
178         return 0;
179 }
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
181
182 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
183 {
184         int ret;
185
186         ret = nvme_reset_ctrl(ctrl);
187         if (!ret) {
188                 flush_work(&ctrl->reset_work);
189                 if (ctrl->state != NVME_CTRL_LIVE)
190                         ret = -ENETRESET;
191         }
192
193         return ret;
194 }
195
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198         dev_info(ctrl->device,
199                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
200
201         flush_work(&ctrl->reset_work);
202         nvme_stop_ctrl(ctrl);
203         nvme_remove_namespaces(ctrl);
204         ctrl->ops->delete_ctrl(ctrl);
205         nvme_uninit_ctrl(ctrl);
206 }
207
208 static void nvme_delete_ctrl_work(struct work_struct *work)
209 {
210         struct nvme_ctrl *ctrl =
211                 container_of(work, struct nvme_ctrl, delete_work);
212
213         nvme_do_delete_ctrl(ctrl);
214 }
215
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
217 {
218         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219                 return -EBUSY;
220         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221                 return -EBUSY;
222         return 0;
223 }
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
225
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
227 {
228         /*
229          * Keep a reference until nvme_do_delete_ctrl() complete,
230          * since ->delete_ctrl can free the controller.
231          */
232         nvme_get_ctrl(ctrl);
233         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234                 nvme_do_delete_ctrl(ctrl);
235         nvme_put_ctrl(ctrl);
236 }
237
238 static blk_status_t nvme_error_status(u16 status)
239 {
240         switch (status & 0x7ff) {
241         case NVME_SC_SUCCESS:
242                 return BLK_STS_OK;
243         case NVME_SC_CAP_EXCEEDED:
244                 return BLK_STS_NOSPC;
245         case NVME_SC_LBA_RANGE:
246         case NVME_SC_CMD_INTERRUPTED:
247         case NVME_SC_NS_NOT_READY:
248                 return BLK_STS_TARGET;
249         case NVME_SC_BAD_ATTRIBUTES:
250         case NVME_SC_ONCS_NOT_SUPPORTED:
251         case NVME_SC_INVALID_OPCODE:
252         case NVME_SC_INVALID_FIELD:
253         case NVME_SC_INVALID_NS:
254                 return BLK_STS_NOTSUPP;
255         case NVME_SC_WRITE_FAULT:
256         case NVME_SC_READ_ERROR:
257         case NVME_SC_UNWRITTEN_BLOCK:
258         case NVME_SC_ACCESS_DENIED:
259         case NVME_SC_READ_ONLY:
260         case NVME_SC_COMPARE_FAILED:
261                 return BLK_STS_MEDIUM;
262         case NVME_SC_GUARD_CHECK:
263         case NVME_SC_APPTAG_CHECK:
264         case NVME_SC_REFTAG_CHECK:
265         case NVME_SC_INVALID_PI:
266                 return BLK_STS_PROTECTION;
267         case NVME_SC_RESERVATION_CONFLICT:
268                 return BLK_STS_NEXUS;
269         case NVME_SC_HOST_PATH_ERROR:
270                 return BLK_STS_TRANSPORT;
271         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
273         case NVME_SC_ZONE_TOO_MANY_OPEN:
274                 return BLK_STS_ZONE_OPEN_RESOURCE;
275         default:
276                 return BLK_STS_IOERR;
277         }
278 }
279
280 static void nvme_retry_req(struct request *req)
281 {
282         unsigned long delay = 0;
283         u16 crd;
284
285         /* The mask and shift result must be <= 3 */
286         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
287         if (crd)
288                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
289
290         nvme_req(req)->retries++;
291         blk_mq_requeue_request(req, false);
292         blk_mq_delay_kick_requeue_list(req->q, delay);
293 }
294
295 enum nvme_disposition {
296         COMPLETE,
297         RETRY,
298         FAILOVER,
299 };
300
301 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
302 {
303         if (likely(nvme_req(req)->status == 0))
304                 return COMPLETE;
305
306         if (blk_noretry_request(req) ||
307             (nvme_req(req)->status & NVME_SC_DNR) ||
308             nvme_req(req)->retries >= nvme_max_retries)
309                 return COMPLETE;
310
311         if (req->cmd_flags & REQ_NVME_MPATH) {
312                 if (nvme_is_path_error(nvme_req(req)->status) ||
313                     blk_queue_dying(req->q))
314                         return FAILOVER;
315         } else {
316                 if (blk_queue_dying(req->q))
317                         return COMPLETE;
318         }
319
320         return RETRY;
321 }
322
323 static inline void nvme_end_req(struct request *req)
324 {
325         blk_status_t status = nvme_error_status(nvme_req(req)->status);
326
327         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
328             req_op(req) == REQ_OP_ZONE_APPEND)
329                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
330                         le64_to_cpu(nvme_req(req)->result.u64));
331
332         nvme_trace_bio_complete(req);
333         blk_mq_end_request(req, status);
334 }
335
336 void nvme_complete_rq(struct request *req)
337 {
338         trace_nvme_complete_rq(req);
339         nvme_cleanup_cmd(req);
340
341         if (nvme_req(req)->ctrl->kas)
342                 nvme_req(req)->ctrl->comp_seen = true;
343
344         switch (nvme_decide_disposition(req)) {
345         case COMPLETE:
346                 nvme_end_req(req);
347                 return;
348         case RETRY:
349                 nvme_retry_req(req);
350                 return;
351         case FAILOVER:
352                 nvme_failover_req(req);
353                 return;
354         }
355 }
356 EXPORT_SYMBOL_GPL(nvme_complete_rq);
357
358 /*
359  * Called to unwind from ->queue_rq on a failed command submission so that the
360  * multipathing code gets called to potentially failover to another path.
361  * The caller needs to unwind all transport specific resource allocations and
362  * must return propagate the return value.
363  */
364 blk_status_t nvme_host_path_error(struct request *req)
365 {
366         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
367         blk_mq_set_request_complete(req);
368         nvme_complete_rq(req);
369         return BLK_STS_OK;
370 }
371 EXPORT_SYMBOL_GPL(nvme_host_path_error);
372
373 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
374 {
375         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
376                                 "Cancelling I/O %d", req->tag);
377
378         /* don't abort one completed request */
379         if (blk_mq_request_completed(req))
380                 return true;
381
382         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
383         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
384         blk_mq_complete_request(req);
385         return true;
386 }
387 EXPORT_SYMBOL_GPL(nvme_cancel_request);
388
389 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
390 {
391         if (ctrl->tagset) {
392                 blk_mq_tagset_busy_iter(ctrl->tagset,
393                                 nvme_cancel_request, ctrl);
394                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
395         }
396 }
397 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
398
399 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
400 {
401         if (ctrl->admin_tagset) {
402                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
403                                 nvme_cancel_request, ctrl);
404                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
405         }
406 }
407 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
408
409 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
410                 enum nvme_ctrl_state new_state)
411 {
412         enum nvme_ctrl_state old_state;
413         unsigned long flags;
414         bool changed = false;
415
416         spin_lock_irqsave(&ctrl->lock, flags);
417
418         old_state = ctrl->state;
419         switch (new_state) {
420         case NVME_CTRL_LIVE:
421                 switch (old_state) {
422                 case NVME_CTRL_NEW:
423                 case NVME_CTRL_RESETTING:
424                 case NVME_CTRL_CONNECTING:
425                         changed = true;
426                         fallthrough;
427                 default:
428                         break;
429                 }
430                 break;
431         case NVME_CTRL_RESETTING:
432                 switch (old_state) {
433                 case NVME_CTRL_NEW:
434                 case NVME_CTRL_LIVE:
435                         changed = true;
436                         fallthrough;
437                 default:
438                         break;
439                 }
440                 break;
441         case NVME_CTRL_CONNECTING:
442                 switch (old_state) {
443                 case NVME_CTRL_NEW:
444                 case NVME_CTRL_RESETTING:
445                         changed = true;
446                         fallthrough;
447                 default:
448                         break;
449                 }
450                 break;
451         case NVME_CTRL_DELETING:
452                 switch (old_state) {
453                 case NVME_CTRL_LIVE:
454                 case NVME_CTRL_RESETTING:
455                 case NVME_CTRL_CONNECTING:
456                         changed = true;
457                         fallthrough;
458                 default:
459                         break;
460                 }
461                 break;
462         case NVME_CTRL_DELETING_NOIO:
463                 switch (old_state) {
464                 case NVME_CTRL_DELETING:
465                 case NVME_CTRL_DEAD:
466                         changed = true;
467                         fallthrough;
468                 default:
469                         break;
470                 }
471                 break;
472         case NVME_CTRL_DEAD:
473                 switch (old_state) {
474                 case NVME_CTRL_DELETING:
475                         changed = true;
476                         fallthrough;
477                 default:
478                         break;
479                 }
480                 break;
481         default:
482                 break;
483         }
484
485         if (changed) {
486                 ctrl->state = new_state;
487                 wake_up_all(&ctrl->state_wq);
488         }
489
490         spin_unlock_irqrestore(&ctrl->lock, flags);
491         if (!changed)
492                 return false;
493
494         if (ctrl->state == NVME_CTRL_LIVE) {
495                 if (old_state == NVME_CTRL_CONNECTING)
496                         nvme_stop_failfast_work(ctrl);
497                 nvme_kick_requeue_lists(ctrl);
498         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
499                 old_state == NVME_CTRL_RESETTING) {
500                 nvme_start_failfast_work(ctrl);
501         }
502         return changed;
503 }
504 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
505
506 /*
507  * Returns true for sink states that can't ever transition back to live.
508  */
509 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
510 {
511         switch (ctrl->state) {
512         case NVME_CTRL_NEW:
513         case NVME_CTRL_LIVE:
514         case NVME_CTRL_RESETTING:
515         case NVME_CTRL_CONNECTING:
516                 return false;
517         case NVME_CTRL_DELETING:
518         case NVME_CTRL_DELETING_NOIO:
519         case NVME_CTRL_DEAD:
520                 return true;
521         default:
522                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
523                 return true;
524         }
525 }
526
527 /*
528  * Waits for the controller state to be resetting, or returns false if it is
529  * not possible to ever transition to that state.
530  */
531 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
532 {
533         wait_event(ctrl->state_wq,
534                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
535                    nvme_state_terminal(ctrl));
536         return ctrl->state == NVME_CTRL_RESETTING;
537 }
538 EXPORT_SYMBOL_GPL(nvme_wait_reset);
539
540 static void nvme_free_ns_head(struct kref *ref)
541 {
542         struct nvme_ns_head *head =
543                 container_of(ref, struct nvme_ns_head, ref);
544
545         nvme_mpath_remove_disk(head);
546         ida_simple_remove(&head->subsys->ns_ida, head->instance);
547         cleanup_srcu_struct(&head->srcu);
548         nvme_put_subsystem(head->subsys);
549         kfree(head);
550 }
551
552 static void nvme_put_ns_head(struct nvme_ns_head *head)
553 {
554         kref_put(&head->ref, nvme_free_ns_head);
555 }
556
557 static void nvme_free_ns(struct kref *kref)
558 {
559         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
560
561         if (ns->ndev)
562                 nvme_nvm_unregister(ns);
563
564         put_disk(ns->disk);
565         nvme_put_ns_head(ns->head);
566         nvme_put_ctrl(ns->ctrl);
567         kfree(ns);
568 }
569
570 void nvme_put_ns(struct nvme_ns *ns)
571 {
572         kref_put(&ns->kref, nvme_free_ns);
573 }
574 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
575
576 static inline void nvme_clear_nvme_request(struct request *req)
577 {
578         if (!(req->rq_flags & RQF_DONTPREP)) {
579                 nvme_req(req)->retries = 0;
580                 nvme_req(req)->flags = 0;
581                 req->rq_flags |= RQF_DONTPREP;
582         }
583 }
584
585 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
586 {
587         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
588 }
589
590 static inline void nvme_init_request(struct request *req,
591                 struct nvme_command *cmd)
592 {
593         if (req->q->queuedata)
594                 req->timeout = NVME_IO_TIMEOUT;
595         else /* no queuedata implies admin queue */
596                 req->timeout = NVME_ADMIN_TIMEOUT;
597
598         req->cmd_flags |= REQ_FAILFAST_DRIVER;
599         nvme_clear_nvme_request(req);
600         nvme_req(req)->cmd = cmd;
601 }
602
603 struct request *nvme_alloc_request(struct request_queue *q,
604                 struct nvme_command *cmd, blk_mq_req_flags_t flags)
605 {
606         struct request *req;
607
608         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
609         if (!IS_ERR(req))
610                 nvme_init_request(req, cmd);
611         return req;
612 }
613 EXPORT_SYMBOL_GPL(nvme_alloc_request);
614
615 static struct request *nvme_alloc_request_qid(struct request_queue *q,
616                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
617 {
618         struct request *req;
619
620         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
621                         qid ? qid - 1 : 0);
622         if (!IS_ERR(req))
623                 nvme_init_request(req, cmd);
624         return req;
625 }
626
627 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
628 {
629         struct nvme_command c;
630
631         memset(&c, 0, sizeof(c));
632
633         c.directive.opcode = nvme_admin_directive_send;
634         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
635         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
636         c.directive.dtype = NVME_DIR_IDENTIFY;
637         c.directive.tdtype = NVME_DIR_STREAMS;
638         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
639
640         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
641 }
642
643 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
644 {
645         return nvme_toggle_streams(ctrl, false);
646 }
647
648 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
649 {
650         return nvme_toggle_streams(ctrl, true);
651 }
652
653 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
654                                   struct streams_directive_params *s, u32 nsid)
655 {
656         struct nvme_command c;
657
658         memset(&c, 0, sizeof(c));
659         memset(s, 0, sizeof(*s));
660
661         c.directive.opcode = nvme_admin_directive_recv;
662         c.directive.nsid = cpu_to_le32(nsid);
663         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
664         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
665         c.directive.dtype = NVME_DIR_STREAMS;
666
667         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
668 }
669
670 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
671 {
672         struct streams_directive_params s;
673         int ret;
674
675         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
676                 return 0;
677         if (!streams)
678                 return 0;
679
680         ret = nvme_enable_streams(ctrl);
681         if (ret)
682                 return ret;
683
684         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
685         if (ret)
686                 goto out_disable_stream;
687
688         ctrl->nssa = le16_to_cpu(s.nssa);
689         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
690                 dev_info(ctrl->device, "too few streams (%u) available\n",
691                                         ctrl->nssa);
692                 goto out_disable_stream;
693         }
694
695         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
696         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
697         return 0;
698
699 out_disable_stream:
700         nvme_disable_streams(ctrl);
701         return ret;
702 }
703
704 /*
705  * Check if 'req' has a write hint associated with it. If it does, assign
706  * a valid namespace stream to the write.
707  */
708 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
709                                      struct request *req, u16 *control,
710                                      u32 *dsmgmt)
711 {
712         enum rw_hint streamid = req->write_hint;
713
714         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
715                 streamid = 0;
716         else {
717                 streamid--;
718                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
719                         return;
720
721                 *control |= NVME_RW_DTYPE_STREAMS;
722                 *dsmgmt |= streamid << 16;
723         }
724
725         if (streamid < ARRAY_SIZE(req->q->write_hints))
726                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
727 }
728
729 static void nvme_setup_passthrough(struct request *req,
730                 struct nvme_command *cmd)
731 {
732         memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
733         /* passthru commands should let the driver set the SGL flags */
734         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
735 }
736
737 static inline void nvme_setup_flush(struct nvme_ns *ns,
738                 struct nvme_command *cmnd)
739 {
740         cmnd->common.opcode = nvme_cmd_flush;
741         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
742 }
743
744 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
745                 struct nvme_command *cmnd)
746 {
747         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
748         struct nvme_dsm_range *range;
749         struct bio *bio;
750
751         /*
752          * Some devices do not consider the DSM 'Number of Ranges' field when
753          * determining how much data to DMA. Always allocate memory for maximum
754          * number of segments to prevent device reading beyond end of buffer.
755          */
756         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
757
758         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
759         if (!range) {
760                 /*
761                  * If we fail allocation our range, fallback to the controller
762                  * discard page. If that's also busy, it's safe to return
763                  * busy, as we know we can make progress once that's freed.
764                  */
765                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
766                         return BLK_STS_RESOURCE;
767
768                 range = page_address(ns->ctrl->discard_page);
769         }
770
771         __rq_for_each_bio(bio, req) {
772                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
773                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
774
775                 if (n < segments) {
776                         range[n].cattr = cpu_to_le32(0);
777                         range[n].nlb = cpu_to_le32(nlb);
778                         range[n].slba = cpu_to_le64(slba);
779                 }
780                 n++;
781         }
782
783         if (WARN_ON_ONCE(n != segments)) {
784                 if (virt_to_page(range) == ns->ctrl->discard_page)
785                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
786                 else
787                         kfree(range);
788                 return BLK_STS_IOERR;
789         }
790
791         cmnd->dsm.opcode = nvme_cmd_dsm;
792         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
793         cmnd->dsm.nr = cpu_to_le32(segments - 1);
794         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
795
796         req->special_vec.bv_page = virt_to_page(range);
797         req->special_vec.bv_offset = offset_in_page(range);
798         req->special_vec.bv_len = alloc_size;
799         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
800
801         return BLK_STS_OK;
802 }
803
804 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
805                 struct request *req, struct nvme_command *cmnd)
806 {
807         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
808                 return nvme_setup_discard(ns, req, cmnd);
809
810         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
811         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
812         cmnd->write_zeroes.slba =
813                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
814         cmnd->write_zeroes.length =
815                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
816         cmnd->write_zeroes.control = 0;
817         return BLK_STS_OK;
818 }
819
820 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
821                 struct request *req, struct nvme_command *cmnd,
822                 enum nvme_opcode op)
823 {
824         struct nvme_ctrl *ctrl = ns->ctrl;
825         u16 control = 0;
826         u32 dsmgmt = 0;
827
828         if (req->cmd_flags & REQ_FUA)
829                 control |= NVME_RW_FUA;
830         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
831                 control |= NVME_RW_LR;
832
833         if (req->cmd_flags & REQ_RAHEAD)
834                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
835
836         cmnd->rw.opcode = op;
837         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
838         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
839         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
840
841         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
842                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
843
844         if (ns->ms) {
845                 /*
846                  * If formated with metadata, the block layer always provides a
847                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
848                  * we enable the PRACT bit for protection information or set the
849                  * namespace capacity to zero to prevent any I/O.
850                  */
851                 if (!blk_integrity_rq(req)) {
852                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
853                                 return BLK_STS_NOTSUPP;
854                         control |= NVME_RW_PRINFO_PRACT;
855                 }
856
857                 switch (ns->pi_type) {
858                 case NVME_NS_DPS_PI_TYPE3:
859                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
860                         break;
861                 case NVME_NS_DPS_PI_TYPE1:
862                 case NVME_NS_DPS_PI_TYPE2:
863                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
864                                         NVME_RW_PRINFO_PRCHK_REF;
865                         if (op == nvme_cmd_zone_append)
866                                 control |= NVME_RW_APPEND_PIREMAP;
867                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
868                         break;
869                 }
870         }
871
872         cmnd->rw.control = cpu_to_le16(control);
873         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
874         return 0;
875 }
876
877 void nvme_cleanup_cmd(struct request *req)
878 {
879         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
880                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
881                 struct page *page = req->special_vec.bv_page;
882
883                 if (page == ctrl->discard_page)
884                         clear_bit_unlock(0, &ctrl->discard_page_busy);
885                 else
886                         kfree(page_address(page) + req->special_vec.bv_offset);
887         }
888 }
889 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
890
891 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
892                 struct nvme_command *cmd)
893 {
894         blk_status_t ret = BLK_STS_OK;
895
896         nvme_clear_nvme_request(req);
897
898         memset(cmd, 0, sizeof(*cmd));
899         switch (req_op(req)) {
900         case REQ_OP_DRV_IN:
901         case REQ_OP_DRV_OUT:
902                 nvme_setup_passthrough(req, cmd);
903                 break;
904         case REQ_OP_FLUSH:
905                 nvme_setup_flush(ns, cmd);
906                 break;
907         case REQ_OP_ZONE_RESET_ALL:
908         case REQ_OP_ZONE_RESET:
909                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
910                 break;
911         case REQ_OP_ZONE_OPEN:
912                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
913                 break;
914         case REQ_OP_ZONE_CLOSE:
915                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
916                 break;
917         case REQ_OP_ZONE_FINISH:
918                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
919                 break;
920         case REQ_OP_WRITE_ZEROES:
921                 ret = nvme_setup_write_zeroes(ns, req, cmd);
922                 break;
923         case REQ_OP_DISCARD:
924                 ret = nvme_setup_discard(ns, req, cmd);
925                 break;
926         case REQ_OP_READ:
927                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
928                 break;
929         case REQ_OP_WRITE:
930                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
931                 break;
932         case REQ_OP_ZONE_APPEND:
933                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
934                 break;
935         default:
936                 WARN_ON_ONCE(1);
937                 return BLK_STS_IOERR;
938         }
939
940         cmd->common.command_id = req->tag;
941         trace_nvme_setup_cmd(req, cmd);
942         return ret;
943 }
944 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
945
946 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
947 {
948         struct completion *waiting = rq->end_io_data;
949
950         rq->end_io_data = NULL;
951         complete(waiting);
952 }
953
954 static void nvme_execute_rq_polled(struct request_queue *q,
955                 struct gendisk *bd_disk, struct request *rq, int at_head)
956 {
957         DECLARE_COMPLETION_ONSTACK(wait);
958
959         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
960
961         rq->cmd_flags |= REQ_HIPRI;
962         rq->end_io_data = &wait;
963         blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
964
965         while (!completion_done(&wait)) {
966                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
967                 cond_resched();
968         }
969 }
970
971 /*
972  * Returns 0 on success.  If the result is negative, it's a Linux error code;
973  * if the result is positive, it's an NVM Express status code
974  */
975 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
976                 union nvme_result *result, void *buffer, unsigned bufflen,
977                 unsigned timeout, int qid, int at_head,
978                 blk_mq_req_flags_t flags, bool poll)
979 {
980         struct request *req;
981         int ret;
982
983         if (qid == NVME_QID_ANY)
984                 req = nvme_alloc_request(q, cmd, flags);
985         else
986                 req = nvme_alloc_request_qid(q, cmd, flags, qid);
987         if (IS_ERR(req))
988                 return PTR_ERR(req);
989
990         if (timeout)
991                 req->timeout = timeout;
992
993         if (buffer && bufflen) {
994                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
995                 if (ret)
996                         goto out;
997         }
998
999         if (poll)
1000                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
1001         else
1002                 blk_execute_rq(NULL, req, at_head);
1003         if (result)
1004                 *result = nvme_req(req)->result;
1005         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1006                 ret = -EINTR;
1007         else
1008                 ret = nvme_req(req)->status;
1009  out:
1010         blk_mq_free_request(req);
1011         return ret;
1012 }
1013 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1014
1015 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1016                 void *buffer, unsigned bufflen)
1017 {
1018         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1019                         NVME_QID_ANY, 0, 0, false);
1020 }
1021 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1022
1023 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
1024                 unsigned len, u32 seed, bool write)
1025 {
1026         struct bio_integrity_payload *bip;
1027         int ret = -ENOMEM;
1028         void *buf;
1029
1030         buf = kmalloc(len, GFP_KERNEL);
1031         if (!buf)
1032                 goto out;
1033
1034         ret = -EFAULT;
1035         if (write && copy_from_user(buf, ubuf, len))
1036                 goto out_free_meta;
1037
1038         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
1039         if (IS_ERR(bip)) {
1040                 ret = PTR_ERR(bip);
1041                 goto out_free_meta;
1042         }
1043
1044         bip->bip_iter.bi_size = len;
1045         bip->bip_iter.bi_sector = seed;
1046         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
1047                         offset_in_page(buf));
1048         if (ret == len)
1049                 return buf;
1050         ret = -ENOMEM;
1051 out_free_meta:
1052         kfree(buf);
1053 out:
1054         return ERR_PTR(ret);
1055 }
1056
1057 static u32 nvme_known_admin_effects(u8 opcode)
1058 {
1059         switch (opcode) {
1060         case nvme_admin_format_nvm:
1061                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1062                         NVME_CMD_EFFECTS_CSE_MASK;
1063         case nvme_admin_sanitize_nvm:
1064                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1065         default:
1066                 break;
1067         }
1068         return 0;
1069 }
1070
1071 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1072 {
1073         u32 effects = 0;
1074
1075         if (ns) {
1076                 if (ns->head->effects)
1077                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1078                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1079                         dev_warn(ctrl->device,
1080                                  "IO command:%02x has unhandled effects:%08x\n",
1081                                  opcode, effects);
1082                 return 0;
1083         }
1084
1085         if (ctrl->effects)
1086                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1087         effects |= nvme_known_admin_effects(opcode);
1088
1089         return effects;
1090 }
1091 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1092
1093 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1094                                u8 opcode)
1095 {
1096         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1097
1098         /*
1099          * For simplicity, IO to all namespaces is quiesced even if the command
1100          * effects say only one namespace is affected.
1101          */
1102         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1103                 mutex_lock(&ctrl->scan_lock);
1104                 mutex_lock(&ctrl->subsys->lock);
1105                 nvme_mpath_start_freeze(ctrl->subsys);
1106                 nvme_mpath_wait_freeze(ctrl->subsys);
1107                 nvme_start_freeze(ctrl);
1108                 nvme_wait_freeze(ctrl);
1109         }
1110         return effects;
1111 }
1112
1113 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1114 {
1115         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1116                 nvme_unfreeze(ctrl);
1117                 nvme_mpath_unfreeze(ctrl->subsys);
1118                 mutex_unlock(&ctrl->subsys->lock);
1119                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1120                 mutex_unlock(&ctrl->scan_lock);
1121         }
1122         if (effects & NVME_CMD_EFFECTS_CCC)
1123                 nvme_init_identify(ctrl);
1124         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1125                 nvme_queue_scan(ctrl);
1126                 flush_work(&ctrl->scan_work);
1127         }
1128 }
1129
1130 void nvme_execute_passthru_rq(struct request *rq)
1131 {
1132         struct nvme_command *cmd = nvme_req(rq)->cmd;
1133         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1134         struct nvme_ns *ns = rq->q->queuedata;
1135         struct gendisk *disk = ns ? ns->disk : NULL;
1136         u32 effects;
1137
1138         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1139         blk_execute_rq(disk, rq, 0);
1140         nvme_passthru_end(ctrl, effects);
1141 }
1142 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1143
1144 static int nvme_submit_user_cmd(struct request_queue *q,
1145                 struct nvme_command *cmd, void __user *ubuffer,
1146                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1147                 u32 meta_seed, u64 *result, unsigned timeout)
1148 {
1149         bool write = nvme_is_write(cmd);
1150         struct nvme_ns *ns = q->queuedata;
1151         struct block_device *bdev = ns ? ns->disk->part0 : NULL;
1152         struct request *req;
1153         struct bio *bio = NULL;
1154         void *meta = NULL;
1155         int ret;
1156
1157         req = nvme_alloc_request(q, cmd, 0);
1158         if (IS_ERR(req))
1159                 return PTR_ERR(req);
1160
1161         if (timeout)
1162                 req->timeout = timeout;
1163         nvme_req(req)->flags |= NVME_REQ_USERCMD;
1164
1165         if (ubuffer && bufflen) {
1166                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1167                                 GFP_KERNEL);
1168                 if (ret)
1169                         goto out;
1170                 bio = req->bio;
1171                 if (bdev)
1172                         bio_set_dev(bio, bdev);
1173                 if (bdev && meta_buffer && meta_len) {
1174                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1175                                         meta_seed, write);
1176                         if (IS_ERR(meta)) {
1177                                 ret = PTR_ERR(meta);
1178                                 goto out_unmap;
1179                         }
1180                         req->cmd_flags |= REQ_INTEGRITY;
1181                 }
1182         }
1183
1184         nvme_execute_passthru_rq(req);
1185         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1186                 ret = -EINTR;
1187         else
1188                 ret = nvme_req(req)->status;
1189         if (result)
1190                 *result = le64_to_cpu(nvme_req(req)->result.u64);
1191         if (meta && !ret && !write) {
1192                 if (copy_to_user(meta_buffer, meta, meta_len))
1193                         ret = -EFAULT;
1194         }
1195         kfree(meta);
1196  out_unmap:
1197         if (bio)
1198                 blk_rq_unmap_user(bio);
1199  out:
1200         blk_mq_free_request(req);
1201         return ret;
1202 }
1203
1204 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1205 {
1206         struct nvme_ctrl *ctrl = rq->end_io_data;
1207         unsigned long flags;
1208         bool startka = false;
1209
1210         blk_mq_free_request(rq);
1211
1212         if (status) {
1213                 dev_err(ctrl->device,
1214                         "failed nvme_keep_alive_end_io error=%d\n",
1215                                 status);
1216                 return;
1217         }
1218
1219         ctrl->comp_seen = false;
1220         spin_lock_irqsave(&ctrl->lock, flags);
1221         if (ctrl->state == NVME_CTRL_LIVE ||
1222             ctrl->state == NVME_CTRL_CONNECTING)
1223                 startka = true;
1224         spin_unlock_irqrestore(&ctrl->lock, flags);
1225         if (startka)
1226                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1227 }
1228
1229 static void nvme_keep_alive_work(struct work_struct *work)
1230 {
1231         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1232                         struct nvme_ctrl, ka_work);
1233         bool comp_seen = ctrl->comp_seen;
1234         struct request *rq;
1235
1236         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1237                 dev_dbg(ctrl->device,
1238                         "reschedule traffic based keep-alive timer\n");
1239                 ctrl->comp_seen = false;
1240                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1241                 return;
1242         }
1243
1244         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1245                                 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1246         if (IS_ERR(rq)) {
1247                 /* allocation failure, reset the controller */
1248                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1249                 nvme_reset_ctrl(ctrl);
1250                 return;
1251         }
1252
1253         rq->timeout = ctrl->kato * HZ;
1254         rq->end_io_data = ctrl;
1255         blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1256 }
1257
1258 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1259 {
1260         if (unlikely(ctrl->kato == 0))
1261                 return;
1262
1263         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1264 }
1265
1266 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1267 {
1268         if (unlikely(ctrl->kato == 0))
1269                 return;
1270
1271         cancel_delayed_work_sync(&ctrl->ka_work);
1272 }
1273 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1274
1275 /*
1276  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1277  * flag, thus sending any new CNS opcodes has a big chance of not working.
1278  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1279  * (but not for any later version).
1280  */
1281 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1282 {
1283         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1284                 return ctrl->vs < NVME_VS(1, 2, 0);
1285         return ctrl->vs < NVME_VS(1, 1, 0);
1286 }
1287
1288 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1289 {
1290         struct nvme_command c = { };
1291         int error;
1292
1293         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1294         c.identify.opcode = nvme_admin_identify;
1295         c.identify.cns = NVME_ID_CNS_CTRL;
1296
1297         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1298         if (!*id)
1299                 return -ENOMEM;
1300
1301         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1302                         sizeof(struct nvme_id_ctrl));
1303         if (error)
1304                 kfree(*id);
1305         return error;
1306 }
1307
1308 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1309 {
1310         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1311 }
1312
1313 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1314                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1315 {
1316         const char *warn_str = "ctrl returned bogus length:";
1317         void *data = cur;
1318
1319         switch (cur->nidt) {
1320         case NVME_NIDT_EUI64:
1321                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1322                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1323                                  warn_str, cur->nidl);
1324                         return -1;
1325                 }
1326                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1327                 return NVME_NIDT_EUI64_LEN;
1328         case NVME_NIDT_NGUID:
1329                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1330                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1331                                  warn_str, cur->nidl);
1332                         return -1;
1333                 }
1334                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1335                 return NVME_NIDT_NGUID_LEN;
1336         case NVME_NIDT_UUID:
1337                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1338                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1339                                  warn_str, cur->nidl);
1340                         return -1;
1341                 }
1342                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1343                 return NVME_NIDT_UUID_LEN;
1344         case NVME_NIDT_CSI:
1345                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1346                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1347                                  warn_str, cur->nidl);
1348                         return -1;
1349                 }
1350                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1351                 *csi_seen = true;
1352                 return NVME_NIDT_CSI_LEN;
1353         default:
1354                 /* Skip unknown types */
1355                 return cur->nidl;
1356         }
1357 }
1358
1359 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1360                 struct nvme_ns_ids *ids)
1361 {
1362         struct nvme_command c = { };
1363         bool csi_seen = false;
1364         int status, pos, len;
1365         void *data;
1366
1367         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1368                 return 0;
1369         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1370                 return 0;
1371
1372         c.identify.opcode = nvme_admin_identify;
1373         c.identify.nsid = cpu_to_le32(nsid);
1374         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1375
1376         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1377         if (!data)
1378                 return -ENOMEM;
1379
1380         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1381                                       NVME_IDENTIFY_DATA_SIZE);
1382         if (status) {
1383                 dev_warn(ctrl->device,
1384                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1385                         nsid, status);
1386                 goto free_data;
1387         }
1388
1389         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1390                 struct nvme_ns_id_desc *cur = data + pos;
1391
1392                 if (cur->nidl == 0)
1393                         break;
1394
1395                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1396                 if (len < 0)
1397                         break;
1398
1399                 len += sizeof(*cur);
1400         }
1401
1402         if (nvme_multi_css(ctrl) && !csi_seen) {
1403                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1404                          nsid);
1405                 status = -EINVAL;
1406         }
1407
1408 free_data:
1409         kfree(data);
1410         return status;
1411 }
1412
1413 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1414                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1415 {
1416         struct nvme_command c = { };
1417         int error;
1418
1419         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1420         c.identify.opcode = nvme_admin_identify;
1421         c.identify.nsid = cpu_to_le32(nsid);
1422         c.identify.cns = NVME_ID_CNS_NS;
1423
1424         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1425         if (!*id)
1426                 return -ENOMEM;
1427
1428         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1429         if (error) {
1430                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1431                 goto out_free_id;
1432         }
1433
1434         error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1435         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1436                 goto out_free_id;
1437
1438         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1439             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1440                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1441         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1442             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1443                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1444
1445         return 0;
1446
1447 out_free_id:
1448         kfree(*id);
1449         return error;
1450 }
1451
1452 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1453                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1454 {
1455         union nvme_result res = { 0 };
1456         struct nvme_command c;
1457         int ret;
1458
1459         memset(&c, 0, sizeof(c));
1460         c.features.opcode = op;
1461         c.features.fid = cpu_to_le32(fid);
1462         c.features.dword11 = cpu_to_le32(dword11);
1463
1464         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1465                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1466         if (ret >= 0 && result)
1467                 *result = le32_to_cpu(res.u32);
1468         return ret;
1469 }
1470
1471 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1472                       unsigned int dword11, void *buffer, size_t buflen,
1473                       u32 *result)
1474 {
1475         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1476                              buflen, result);
1477 }
1478 EXPORT_SYMBOL_GPL(nvme_set_features);
1479
1480 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1481                       unsigned int dword11, void *buffer, size_t buflen,
1482                       u32 *result)
1483 {
1484         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1485                              buflen, result);
1486 }
1487 EXPORT_SYMBOL_GPL(nvme_get_features);
1488
1489 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1490 {
1491         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1492         u32 result;
1493         int status, nr_io_queues;
1494
1495         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1496                         &result);
1497         if (status < 0)
1498                 return status;
1499
1500         /*
1501          * Degraded controllers might return an error when setting the queue
1502          * count.  We still want to be able to bring them online and offer
1503          * access to the admin queue, as that might be only way to fix them up.
1504          */
1505         if (status > 0) {
1506                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1507                 *count = 0;
1508         } else {
1509                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1510                 *count = min(*count, nr_io_queues);
1511         }
1512
1513         return 0;
1514 }
1515 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1516
1517 #define NVME_AEN_SUPPORTED \
1518         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1519          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1520
1521 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1522 {
1523         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1524         int status;
1525
1526         if (!supported_aens)
1527                 return;
1528
1529         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1530                         NULL, 0, &result);
1531         if (status)
1532                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1533                          supported_aens);
1534
1535         queue_work(nvme_wq, &ctrl->async_event_work);
1536 }
1537
1538 /*
1539  * Convert integer values from ioctl structures to user pointers, silently
1540  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1541  * kernels.
1542  */
1543 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1544 {
1545         if (in_compat_syscall())
1546                 ptrval = (compat_uptr_t)ptrval;
1547         return (void __user *)ptrval;
1548 }
1549
1550 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1551 {
1552         struct nvme_user_io io;
1553         struct nvme_command c;
1554         unsigned length, meta_len;
1555         void __user *metadata;
1556
1557         if (copy_from_user(&io, uio, sizeof(io)))
1558                 return -EFAULT;
1559         if (io.flags)
1560                 return -EINVAL;
1561
1562         switch (io.opcode) {
1563         case nvme_cmd_write:
1564         case nvme_cmd_read:
1565         case nvme_cmd_compare:
1566                 break;
1567         default:
1568                 return -EINVAL;
1569         }
1570
1571         length = (io.nblocks + 1) << ns->lba_shift;
1572
1573         if ((io.control & NVME_RW_PRINFO_PRACT) &&
1574             ns->ms == sizeof(struct t10_pi_tuple)) {
1575                 /*
1576                  * Protection information is stripped/inserted by the
1577                  * controller.
1578                  */
1579                 if (nvme_to_user_ptr(io.metadata))
1580                         return -EINVAL;
1581                 meta_len = 0;
1582                 metadata = NULL;
1583         } else {
1584                 meta_len = (io.nblocks + 1) * ns->ms;
1585                 metadata = nvme_to_user_ptr(io.metadata);
1586         }
1587
1588         if (ns->features & NVME_NS_EXT_LBAS) {
1589                 length += meta_len;
1590                 meta_len = 0;
1591         } else if (meta_len) {
1592                 if ((io.metadata & 3) || !io.metadata)
1593                         return -EINVAL;
1594         }
1595
1596         memset(&c, 0, sizeof(c));
1597         c.rw.opcode = io.opcode;
1598         c.rw.flags = io.flags;
1599         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1600         c.rw.slba = cpu_to_le64(io.slba);
1601         c.rw.length = cpu_to_le16(io.nblocks);
1602         c.rw.control = cpu_to_le16(io.control);
1603         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1604         c.rw.reftag = cpu_to_le32(io.reftag);
1605         c.rw.apptag = cpu_to_le16(io.apptag);
1606         c.rw.appmask = cpu_to_le16(io.appmask);
1607
1608         return nvme_submit_user_cmd(ns->queue, &c,
1609                         nvme_to_user_ptr(io.addr), length,
1610                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1611 }
1612
1613 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1614                         struct nvme_passthru_cmd __user *ucmd)
1615 {
1616         struct nvme_passthru_cmd cmd;
1617         struct nvme_command c;
1618         unsigned timeout = 0;
1619         u64 result;
1620         int status;
1621
1622         if (!capable(CAP_SYS_ADMIN))
1623                 return -EACCES;
1624         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1625                 return -EFAULT;
1626         if (cmd.flags)
1627                 return -EINVAL;
1628
1629         memset(&c, 0, sizeof(c));
1630         c.common.opcode = cmd.opcode;
1631         c.common.flags = cmd.flags;
1632         c.common.nsid = cpu_to_le32(cmd.nsid);
1633         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1634         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1635         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1636         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1637         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1638         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1639         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1640         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1641
1642         if (cmd.timeout_ms)
1643                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1644
1645         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1646                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1647                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1648                         0, &result, timeout);
1649
1650         if (status >= 0) {
1651                 if (put_user(result, &ucmd->result))
1652                         return -EFAULT;
1653         }
1654
1655         return status;
1656 }
1657
1658 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1659                         struct nvme_passthru_cmd64 __user *ucmd)
1660 {
1661         struct nvme_passthru_cmd64 cmd;
1662         struct nvme_command c;
1663         unsigned timeout = 0;
1664         int status;
1665
1666         if (!capable(CAP_SYS_ADMIN))
1667                 return -EACCES;
1668         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1669                 return -EFAULT;
1670         if (cmd.flags)
1671                 return -EINVAL;
1672
1673         memset(&c, 0, sizeof(c));
1674         c.common.opcode = cmd.opcode;
1675         c.common.flags = cmd.flags;
1676         c.common.nsid = cpu_to_le32(cmd.nsid);
1677         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1678         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1679         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1680         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1681         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1682         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1683         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1684         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1685
1686         if (cmd.timeout_ms)
1687                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1688
1689         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1690                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1691                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1692                         0, &cmd.result, timeout);
1693
1694         if (status >= 0) {
1695                 if (put_user(cmd.result, &ucmd->result))
1696                         return -EFAULT;
1697         }
1698
1699         return status;
1700 }
1701
1702 /*
1703  * Issue ioctl requests on the first available path.  Note that unlike normal
1704  * block layer requests we will not retry failed request on another controller.
1705  */
1706 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1707                 struct nvme_ns_head **head, int *srcu_idx)
1708 {
1709 #ifdef CONFIG_NVME_MULTIPATH
1710         if (disk->fops == &nvme_ns_head_ops) {
1711                 struct nvme_ns *ns;
1712
1713                 *head = disk->private_data;
1714                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1715                 ns = nvme_find_path(*head);
1716                 if (!ns)
1717                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1718                 return ns;
1719         }
1720 #endif
1721         *head = NULL;
1722         *srcu_idx = -1;
1723         return disk->private_data;
1724 }
1725
1726 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1727 {
1728         if (head)
1729                 srcu_read_unlock(&head->srcu, idx);
1730 }
1731
1732 static bool is_ctrl_ioctl(unsigned int cmd)
1733 {
1734         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1735                 return true;
1736         if (is_sed_ioctl(cmd))
1737                 return true;
1738         return false;
1739 }
1740
1741 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1742                                   void __user *argp,
1743                                   struct nvme_ns_head *head,
1744                                   int srcu_idx)
1745 {
1746         struct nvme_ctrl *ctrl = ns->ctrl;
1747         int ret;
1748
1749         nvme_get_ctrl(ns->ctrl);
1750         nvme_put_ns_from_disk(head, srcu_idx);
1751
1752         switch (cmd) {
1753         case NVME_IOCTL_ADMIN_CMD:
1754                 ret = nvme_user_cmd(ctrl, NULL, argp);
1755                 break;
1756         case NVME_IOCTL_ADMIN64_CMD:
1757                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1758                 break;
1759         default:
1760                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1761                 break;
1762         }
1763         nvme_put_ctrl(ctrl);
1764         return ret;
1765 }
1766
1767 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1768                 unsigned int cmd, unsigned long arg)
1769 {
1770         struct nvme_ns_head *head = NULL;
1771         void __user *argp = (void __user *)arg;
1772         struct nvme_ns *ns;
1773         int srcu_idx, ret;
1774
1775         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1776         if (unlikely(!ns))
1777                 return -EWOULDBLOCK;
1778
1779         /*
1780          * Handle ioctls that apply to the controller instead of the namespace
1781          * seperately and drop the ns SRCU reference early.  This avoids a
1782          * deadlock when deleting namespaces using the passthrough interface.
1783          */
1784         if (is_ctrl_ioctl(cmd))
1785                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1786
1787         switch (cmd) {
1788         case NVME_IOCTL_ID:
1789                 force_successful_syscall_return();
1790                 ret = ns->head->ns_id;
1791                 break;
1792         case NVME_IOCTL_IO_CMD:
1793                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1794                 break;
1795         case NVME_IOCTL_SUBMIT_IO:
1796                 ret = nvme_submit_io(ns, argp);
1797                 break;
1798         case NVME_IOCTL_IO64_CMD:
1799                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1800                 break;
1801         default:
1802                 if (ns->ndev)
1803                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1804                 else
1805                         ret = -ENOTTY;
1806         }
1807
1808         nvme_put_ns_from_disk(head, srcu_idx);
1809         return ret;
1810 }
1811
1812 #ifdef CONFIG_COMPAT
1813 struct nvme_user_io32 {
1814         __u8    opcode;
1815         __u8    flags;
1816         __u16   control;
1817         __u16   nblocks;
1818         __u16   rsvd;
1819         __u64   metadata;
1820         __u64   addr;
1821         __u64   slba;
1822         __u32   dsmgmt;
1823         __u32   reftag;
1824         __u16   apptag;
1825         __u16   appmask;
1826 } __attribute__((__packed__));
1827
1828 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1829
1830 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1831                 unsigned int cmd, unsigned long arg)
1832 {
1833         /*
1834          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1835          * between 32 bit programs and 64 bit kernel.
1836          * The cause is that the results of sizeof(struct nvme_user_io),
1837          * which is used to define NVME_IOCTL_SUBMIT_IO,
1838          * are not same between 32 bit compiler and 64 bit compiler.
1839          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1840          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1841          * Other IOCTL numbers are same between 32 bit and 64 bit.
1842          * So there is nothing to do regarding to other IOCTL numbers.
1843          */
1844         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1845                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1846
1847         return nvme_ioctl(bdev, mode, cmd, arg);
1848 }
1849 #else
1850 #define nvme_compat_ioctl       NULL
1851 #endif /* CONFIG_COMPAT */
1852
1853 static int nvme_open(struct block_device *bdev, fmode_t mode)
1854 {
1855         struct nvme_ns *ns = bdev->bd_disk->private_data;
1856
1857 #ifdef CONFIG_NVME_MULTIPATH
1858         /* should never be called due to GENHD_FL_HIDDEN */
1859         if (WARN_ON_ONCE(ns->head->disk))
1860                 goto fail;
1861 #endif
1862         if (!kref_get_unless_zero(&ns->kref))
1863                 goto fail;
1864         if (!try_module_get(ns->ctrl->ops->module))
1865                 goto fail_put_ns;
1866
1867         return 0;
1868
1869 fail_put_ns:
1870         nvme_put_ns(ns);
1871 fail:
1872         return -ENXIO;
1873 }
1874
1875 static void nvme_release(struct gendisk *disk, fmode_t mode)
1876 {
1877         struct nvme_ns *ns = disk->private_data;
1878
1879         module_put(ns->ctrl->ops->module);
1880         nvme_put_ns(ns);
1881 }
1882
1883 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1884 {
1885         /* some standard values */
1886         geo->heads = 1 << 6;
1887         geo->sectors = 1 << 5;
1888         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1889         return 0;
1890 }
1891
1892 #ifdef CONFIG_BLK_DEV_INTEGRITY
1893 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1894                                 u32 max_integrity_segments)
1895 {
1896         struct blk_integrity integrity;
1897
1898         memset(&integrity, 0, sizeof(integrity));
1899         switch (pi_type) {
1900         case NVME_NS_DPS_PI_TYPE3:
1901                 integrity.profile = &t10_pi_type3_crc;
1902                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1903                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1904                 break;
1905         case NVME_NS_DPS_PI_TYPE1:
1906         case NVME_NS_DPS_PI_TYPE2:
1907                 integrity.profile = &t10_pi_type1_crc;
1908                 integrity.tag_size = sizeof(u16);
1909                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1910                 break;
1911         default:
1912                 integrity.profile = NULL;
1913                 break;
1914         }
1915         integrity.tuple_size = ms;
1916         blk_integrity_register(disk, &integrity);
1917         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1918 }
1919 #else
1920 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1921                                 u32 max_integrity_segments)
1922 {
1923 }
1924 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1925
1926 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1927 {
1928         struct nvme_ctrl *ctrl = ns->ctrl;
1929         struct request_queue *queue = disk->queue;
1930         u32 size = queue_logical_block_size(queue);
1931
1932         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1933                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1934                 return;
1935         }
1936
1937         if (ctrl->nr_streams && ns->sws && ns->sgs)
1938                 size *= ns->sws * ns->sgs;
1939
1940         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1941                         NVME_DSM_MAX_RANGES);
1942
1943         queue->limits.discard_alignment = 0;
1944         queue->limits.discard_granularity = size;
1945
1946         /* If discard is already enabled, don't reset queue limits */
1947         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1948                 return;
1949
1950         blk_queue_max_discard_sectors(queue, UINT_MAX);
1951         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1952
1953         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1954                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1955 }
1956
1957 /*
1958  * Even though NVMe spec explicitly states that MDTS is not applicable to the
1959  * write-zeroes, we are cautious and limit the size to the controllers
1960  * max_hw_sectors value, which is based on the MDTS field and possibly other
1961  * limiting factors.
1962  */
1963 static void nvme_config_write_zeroes(struct request_queue *q,
1964                 struct nvme_ctrl *ctrl)
1965 {
1966         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
1967             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1968                 blk_queue_max_write_zeroes_sectors(q, ctrl->max_hw_sectors);
1969 }
1970
1971 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1972 {
1973         return !uuid_is_null(&ids->uuid) ||
1974                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1975                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1976 }
1977
1978 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1979 {
1980         return uuid_equal(&a->uuid, &b->uuid) &&
1981                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1982                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1983                 a->csi == b->csi;
1984 }
1985
1986 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1987                                  u32 *phys_bs, u32 *io_opt)
1988 {
1989         struct streams_directive_params s;
1990         int ret;
1991
1992         if (!ctrl->nr_streams)
1993                 return 0;
1994
1995         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1996         if (ret)
1997                 return ret;
1998
1999         ns->sws = le32_to_cpu(s.sws);
2000         ns->sgs = le16_to_cpu(s.sgs);
2001
2002         if (ns->sws) {
2003                 *phys_bs = ns->sws * (1 << ns->lba_shift);
2004                 if (ns->sgs)
2005                         *io_opt = *phys_bs * ns->sgs;
2006         }
2007
2008         return 0;
2009 }
2010
2011 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
2012 {
2013         struct nvme_ctrl *ctrl = ns->ctrl;
2014
2015         /*
2016          * The PI implementation requires the metadata size to be equal to the
2017          * t10 pi tuple size.
2018          */
2019         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
2020         if (ns->ms == sizeof(struct t10_pi_tuple))
2021                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2022         else
2023                 ns->pi_type = 0;
2024
2025         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2026         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
2027                 return 0;
2028         if (ctrl->ops->flags & NVME_F_FABRICS) {
2029                 /*
2030                  * The NVMe over Fabrics specification only supports metadata as
2031                  * part of the extended data LBA.  We rely on HCA/HBA support to
2032                  * remap the separate metadata buffer from the block layer.
2033                  */
2034                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2035                         return -EINVAL;
2036                 if (ctrl->max_integrity_segments)
2037                         ns->features |=
2038                                 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2039         } else {
2040                 /*
2041                  * For PCIe controllers, we can't easily remap the separate
2042                  * metadata buffer from the block layer and thus require a
2043                  * separate metadata buffer for block layer metadata/PI support.
2044                  * We allow extended LBAs for the passthrough interface, though.
2045                  */
2046                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2047                         ns->features |= NVME_NS_EXT_LBAS;
2048                 else
2049                         ns->features |= NVME_NS_METADATA_SUPPORTED;
2050         }
2051
2052         return 0;
2053 }
2054
2055 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2056                 struct request_queue *q)
2057 {
2058         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2059
2060         if (ctrl->max_hw_sectors) {
2061                 u32 max_segments =
2062                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2063
2064                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2065                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2066                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2067         }
2068         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2069         blk_queue_dma_alignment(q, 7);
2070         blk_queue_write_cache(q, vwc, vwc);
2071 }
2072
2073 static void nvme_update_disk_info(struct gendisk *disk,
2074                 struct nvme_ns *ns, struct nvme_id_ns *id)
2075 {
2076         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2077         unsigned short bs = 1 << ns->lba_shift;
2078         u32 atomic_bs, phys_bs, io_opt = 0;
2079
2080         /*
2081          * The block layer can't support LBA sizes larger than the page size
2082          * yet, so catch this early and don't allow block I/O.
2083          */
2084         if (ns->lba_shift > PAGE_SHIFT) {
2085                 capacity = 0;
2086                 bs = (1 << 9);
2087         }
2088
2089         blk_integrity_unregister(disk);
2090
2091         atomic_bs = phys_bs = bs;
2092         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2093         if (id->nabo == 0) {
2094                 /*
2095                  * Bit 1 indicates whether NAWUPF is defined for this namespace
2096                  * and whether it should be used instead of AWUPF. If NAWUPF ==
2097                  * 0 then AWUPF must be used instead.
2098                  */
2099                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2100                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2101                 else
2102                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2103         }
2104
2105         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2106                 /* NPWG = Namespace Preferred Write Granularity */
2107                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2108                 /* NOWS = Namespace Optimal Write Size */
2109                 io_opt = bs * (1 + le16_to_cpu(id->nows));
2110         }
2111
2112         blk_queue_logical_block_size(disk->queue, bs);
2113         /*
2114          * Linux filesystems assume writing a single physical block is
2115          * an atomic operation. Hence limit the physical block size to the
2116          * value of the Atomic Write Unit Power Fail parameter.
2117          */
2118         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2119         blk_queue_io_min(disk->queue, phys_bs);
2120         blk_queue_io_opt(disk->queue, io_opt);
2121
2122         /*
2123          * Register a metadata profile for PI, or the plain non-integrity NVMe
2124          * metadata masquerading as Type 0 if supported, otherwise reject block
2125          * I/O to namespaces with metadata except when the namespace supports
2126          * PI, as it can strip/insert in that case.
2127          */
2128         if (ns->ms) {
2129                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2130                     (ns->features & NVME_NS_METADATA_SUPPORTED))
2131                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
2132                                             ns->ctrl->max_integrity_segments);
2133                 else if (!nvme_ns_has_pi(ns))
2134                         capacity = 0;
2135         }
2136
2137         set_capacity_and_notify(disk, capacity);
2138
2139         nvme_config_discard(disk, ns);
2140         nvme_config_write_zeroes(disk->queue, ns->ctrl);
2141
2142         set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
2143                 test_bit(NVME_NS_FORCE_RO, &ns->flags));
2144 }
2145
2146 static inline bool nvme_first_scan(struct gendisk *disk)
2147 {
2148         /* nvme_alloc_ns() scans the disk prior to adding it */
2149         return !(disk->flags & GENHD_FL_UP);
2150 }
2151
2152 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2153 {
2154         struct nvme_ctrl *ctrl = ns->ctrl;
2155         u32 iob;
2156
2157         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2158             is_power_of_2(ctrl->max_hw_sectors))
2159                 iob = ctrl->max_hw_sectors;
2160         else
2161                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2162
2163         if (!iob)
2164                 return;
2165
2166         if (!is_power_of_2(iob)) {
2167                 if (nvme_first_scan(ns->disk))
2168                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2169                                 ns->disk->disk_name, iob);
2170                 return;
2171         }
2172
2173         if (blk_queue_is_zoned(ns->disk->queue)) {
2174                 if (nvme_first_scan(ns->disk))
2175                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
2176                                 ns->disk->disk_name);
2177                 return;
2178         }
2179
2180         blk_queue_chunk_sectors(ns->queue, iob);
2181 }
2182
2183 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2184 {
2185         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2186         int ret;
2187
2188         blk_mq_freeze_queue(ns->disk->queue);
2189         ns->lba_shift = id->lbaf[lbaf].ds;
2190         nvme_set_queue_limits(ns->ctrl, ns->queue);
2191
2192         ret = nvme_configure_metadata(ns, id);
2193         if (ret)
2194                 goto out_unfreeze;
2195         nvme_set_chunk_sectors(ns, id);
2196         nvme_update_disk_info(ns->disk, ns, id);
2197
2198         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2199                 ret = nvme_update_zone_info(ns, lbaf);
2200                 if (ret)
2201                         goto out_unfreeze;
2202         }
2203
2204         blk_mq_unfreeze_queue(ns->disk->queue);
2205
2206         if (blk_queue_is_zoned(ns->queue)) {
2207                 ret = nvme_revalidate_zones(ns);
2208                 if (ret && !nvme_first_scan(ns->disk))
2209                         return ret;
2210         }
2211
2212 #ifdef CONFIG_NVME_MULTIPATH
2213         if (ns->head->disk) {
2214                 blk_mq_freeze_queue(ns->head->disk->queue);
2215                 nvme_update_disk_info(ns->head->disk, ns, id);
2216                 blk_stack_limits(&ns->head->disk->queue->limits,
2217                                  &ns->queue->limits, 0);
2218                 blk_queue_update_readahead(ns->head->disk->queue);
2219                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2220         }
2221 #endif
2222         return 0;
2223
2224 out_unfreeze:
2225         blk_mq_unfreeze_queue(ns->disk->queue);
2226         return ret;
2227 }
2228
2229 static char nvme_pr_type(enum pr_type type)
2230 {
2231         switch (type) {
2232         case PR_WRITE_EXCLUSIVE:
2233                 return 1;
2234         case PR_EXCLUSIVE_ACCESS:
2235                 return 2;
2236         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2237                 return 3;
2238         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2239                 return 4;
2240         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2241                 return 5;
2242         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2243                 return 6;
2244         default:
2245                 return 0;
2246         }
2247 };
2248
2249 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2250                                 u64 key, u64 sa_key, u8 op)
2251 {
2252         struct nvme_ns_head *head = NULL;
2253         struct nvme_ns *ns;
2254         struct nvme_command c;
2255         int srcu_idx, ret;
2256         u8 data[16] = { 0, };
2257
2258         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2259         if (unlikely(!ns))
2260                 return -EWOULDBLOCK;
2261
2262         put_unaligned_le64(key, &data[0]);
2263         put_unaligned_le64(sa_key, &data[8]);
2264
2265         memset(&c, 0, sizeof(c));
2266         c.common.opcode = op;
2267         c.common.nsid = cpu_to_le32(ns->head->ns_id);
2268         c.common.cdw10 = cpu_to_le32(cdw10);
2269
2270         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2271         nvme_put_ns_from_disk(head, srcu_idx);
2272         return ret;
2273 }
2274
2275 static int nvme_pr_register(struct block_device *bdev, u64 old,
2276                 u64 new, unsigned flags)
2277 {
2278         u32 cdw10;
2279
2280         if (flags & ~PR_FL_IGNORE_KEY)
2281                 return -EOPNOTSUPP;
2282
2283         cdw10 = old ? 2 : 0;
2284         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2285         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2286         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2287 }
2288
2289 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2290                 enum pr_type type, unsigned flags)
2291 {
2292         u32 cdw10;
2293
2294         if (flags & ~PR_FL_IGNORE_KEY)
2295                 return -EOPNOTSUPP;
2296
2297         cdw10 = nvme_pr_type(type) << 8;
2298         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2299         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2300 }
2301
2302 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2303                 enum pr_type type, bool abort)
2304 {
2305         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2306         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2307 }
2308
2309 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2310 {
2311         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2312         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2313 }
2314
2315 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2316 {
2317         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2318         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2319 }
2320
2321 static const struct pr_ops nvme_pr_ops = {
2322         .pr_register    = nvme_pr_register,
2323         .pr_reserve     = nvme_pr_reserve,
2324         .pr_release     = nvme_pr_release,
2325         .pr_preempt     = nvme_pr_preempt,
2326         .pr_clear       = nvme_pr_clear,
2327 };
2328
2329 #ifdef CONFIG_BLK_SED_OPAL
2330 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2331                 bool send)
2332 {
2333         struct nvme_ctrl *ctrl = data;
2334         struct nvme_command cmd;
2335
2336         memset(&cmd, 0, sizeof(cmd));
2337         if (send)
2338                 cmd.common.opcode = nvme_admin_security_send;
2339         else
2340                 cmd.common.opcode = nvme_admin_security_recv;
2341         cmd.common.nsid = 0;
2342         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2343         cmd.common.cdw11 = cpu_to_le32(len);
2344
2345         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2346                         NVME_QID_ANY, 1, 0, false);
2347 }
2348 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2349 #endif /* CONFIG_BLK_SED_OPAL */
2350
2351 static const struct block_device_operations nvme_bdev_ops = {
2352         .owner          = THIS_MODULE,
2353         .ioctl          = nvme_ioctl,
2354         .compat_ioctl   = nvme_compat_ioctl,
2355         .open           = nvme_open,
2356         .release        = nvme_release,
2357         .getgeo         = nvme_getgeo,
2358         .report_zones   = nvme_report_zones,
2359         .pr_ops         = &nvme_pr_ops,
2360 };
2361
2362 #ifdef CONFIG_NVME_MULTIPATH
2363 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2364 {
2365         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2366
2367         if (!kref_get_unless_zero(&head->ref))
2368                 return -ENXIO;
2369         return 0;
2370 }
2371
2372 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2373 {
2374         nvme_put_ns_head(disk->private_data);
2375 }
2376
2377 const struct block_device_operations nvme_ns_head_ops = {
2378         .owner          = THIS_MODULE,
2379         .submit_bio     = nvme_ns_head_submit_bio,
2380         .open           = nvme_ns_head_open,
2381         .release        = nvme_ns_head_release,
2382         .ioctl          = nvme_ioctl,
2383         .compat_ioctl   = nvme_compat_ioctl,
2384         .getgeo         = nvme_getgeo,
2385         .report_zones   = nvme_report_zones,
2386         .pr_ops         = &nvme_pr_ops,
2387 };
2388 #endif /* CONFIG_NVME_MULTIPATH */
2389
2390 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2391 {
2392         unsigned long timeout =
2393                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2394         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2395         int ret;
2396
2397         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2398                 if (csts == ~0)
2399                         return -ENODEV;
2400                 if ((csts & NVME_CSTS_RDY) == bit)
2401                         break;
2402
2403                 usleep_range(1000, 2000);
2404                 if (fatal_signal_pending(current))
2405                         return -EINTR;
2406                 if (time_after(jiffies, timeout)) {
2407                         dev_err(ctrl->device,
2408                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2409                                 enabled ? "initialisation" : "reset", csts);
2410                         return -ENODEV;
2411                 }
2412         }
2413
2414         return ret;
2415 }
2416
2417 /*
2418  * If the device has been passed off to us in an enabled state, just clear
2419  * the enabled bit.  The spec says we should set the 'shutdown notification
2420  * bits', but doing so may cause the device to complete commands to the
2421  * admin queue ... and we don't know what memory that might be pointing at!
2422  */
2423 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2424 {
2425         int ret;
2426
2427         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2428         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2429
2430         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2431         if (ret)
2432                 return ret;
2433
2434         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2435                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2436
2437         return nvme_wait_ready(ctrl, ctrl->cap, false);
2438 }
2439 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2440
2441 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2442 {
2443         unsigned dev_page_min;
2444         int ret;
2445
2446         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2447         if (ret) {
2448                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2449                 return ret;
2450         }
2451         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2452
2453         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2454                 dev_err(ctrl->device,
2455                         "Minimum device page size %u too large for host (%u)\n",
2456                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2457                 return -ENODEV;
2458         }
2459
2460         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2461                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2462         else
2463                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2464         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2465         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2466         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2467         ctrl->ctrl_config |= NVME_CC_ENABLE;
2468
2469         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2470         if (ret)
2471                 return ret;
2472         return nvme_wait_ready(ctrl, ctrl->cap, true);
2473 }
2474 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2475
2476 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2477 {
2478         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2479         u32 csts;
2480         int ret;
2481
2482         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2483         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2484
2485         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2486         if (ret)
2487                 return ret;
2488
2489         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2490                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2491                         break;
2492
2493                 msleep(100);
2494                 if (fatal_signal_pending(current))
2495                         return -EINTR;
2496                 if (time_after(jiffies, timeout)) {
2497                         dev_err(ctrl->device,
2498                                 "Device shutdown incomplete; abort shutdown\n");
2499                         return -ENODEV;
2500                 }
2501         }
2502
2503         return ret;
2504 }
2505 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2506
2507 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2508 {
2509         __le64 ts;
2510         int ret;
2511
2512         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2513                 return 0;
2514
2515         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2516         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2517                         NULL);
2518         if (ret)
2519                 dev_warn_once(ctrl->device,
2520                         "could not set timestamp (%d)\n", ret);
2521         return ret;
2522 }
2523
2524 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2525 {
2526         struct nvme_feat_host_behavior *host;
2527         int ret;
2528
2529         /* Don't bother enabling the feature if retry delay is not reported */
2530         if (!ctrl->crdt[0])
2531                 return 0;
2532
2533         host = kzalloc(sizeof(*host), GFP_KERNEL);
2534         if (!host)
2535                 return 0;
2536
2537         host->acre = NVME_ENABLE_ACRE;
2538         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2539                                 host, sizeof(*host), NULL);
2540         kfree(host);
2541         return ret;
2542 }
2543
2544 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2545 {
2546         /*
2547          * APST (Autonomous Power State Transition) lets us program a
2548          * table of power state transitions that the controller will
2549          * perform automatically.  We configure it with a simple
2550          * heuristic: we are willing to spend at most 2% of the time
2551          * transitioning between power states.  Therefore, when running
2552          * in any given state, we will enter the next lower-power
2553          * non-operational state after waiting 50 * (enlat + exlat)
2554          * microseconds, as long as that state's exit latency is under
2555          * the requested maximum latency.
2556          *
2557          * We will not autonomously enter any non-operational state for
2558          * which the total latency exceeds ps_max_latency_us.  Users
2559          * can set ps_max_latency_us to zero to turn off APST.
2560          */
2561
2562         unsigned apste;
2563         struct nvme_feat_auto_pst *table;
2564         u64 max_lat_us = 0;
2565         int max_ps = -1;
2566         int ret;
2567
2568         /*
2569          * If APST isn't supported or if we haven't been initialized yet,
2570          * then don't do anything.
2571          */
2572         if (!ctrl->apsta)
2573                 return 0;
2574
2575         if (ctrl->npss > 31) {
2576                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2577                 return 0;
2578         }
2579
2580         table = kzalloc(sizeof(*table), GFP_KERNEL);
2581         if (!table)
2582                 return 0;
2583
2584         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2585                 /* Turn off APST. */
2586                 apste = 0;
2587                 dev_dbg(ctrl->device, "APST disabled\n");
2588         } else {
2589                 __le64 target = cpu_to_le64(0);
2590                 int state;
2591
2592                 /*
2593                  * Walk through all states from lowest- to highest-power.
2594                  * According to the spec, lower-numbered states use more
2595                  * power.  NPSS, despite the name, is the index of the
2596                  * lowest-power state, not the number of states.
2597                  */
2598                 for (state = (int)ctrl->npss; state >= 0; state--) {
2599                         u64 total_latency_us, exit_latency_us, transition_ms;
2600
2601                         if (target)
2602                                 table->entries[state] = target;
2603
2604                         /*
2605                          * Don't allow transitions to the deepest state
2606                          * if it's quirked off.
2607                          */
2608                         if (state == ctrl->npss &&
2609                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2610                                 continue;
2611
2612                         /*
2613                          * Is this state a useful non-operational state for
2614                          * higher-power states to autonomously transition to?
2615                          */
2616                         if (!(ctrl->psd[state].flags &
2617                               NVME_PS_FLAGS_NON_OP_STATE))
2618                                 continue;
2619
2620                         exit_latency_us =
2621                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2622                         if (exit_latency_us > ctrl->ps_max_latency_us)
2623                                 continue;
2624
2625                         total_latency_us =
2626                                 exit_latency_us +
2627                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2628
2629                         /*
2630                          * This state is good.  Use it as the APST idle
2631                          * target for higher power states.
2632                          */
2633                         transition_ms = total_latency_us + 19;
2634                         do_div(transition_ms, 20);
2635                         if (transition_ms > (1 << 24) - 1)
2636                                 transition_ms = (1 << 24) - 1;
2637
2638                         target = cpu_to_le64((state << 3) |
2639                                              (transition_ms << 8));
2640
2641                         if (max_ps == -1)
2642                                 max_ps = state;
2643
2644                         if (total_latency_us > max_lat_us)
2645                                 max_lat_us = total_latency_us;
2646                 }
2647
2648                 apste = 1;
2649
2650                 if (max_ps == -1) {
2651                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2652                 } else {
2653                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2654                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2655                 }
2656         }
2657
2658         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2659                                 table, sizeof(*table), NULL);
2660         if (ret)
2661                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2662
2663         kfree(table);
2664         return ret;
2665 }
2666
2667 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2668 {
2669         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2670         u64 latency;
2671
2672         switch (val) {
2673         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2674         case PM_QOS_LATENCY_ANY:
2675                 latency = U64_MAX;
2676                 break;
2677
2678         default:
2679                 latency = val;
2680         }
2681
2682         if (ctrl->ps_max_latency_us != latency) {
2683                 ctrl->ps_max_latency_us = latency;
2684                 nvme_configure_apst(ctrl);
2685         }
2686 }
2687
2688 struct nvme_core_quirk_entry {
2689         /*
2690          * NVMe model and firmware strings are padded with spaces.  For
2691          * simplicity, strings in the quirk table are padded with NULLs
2692          * instead.
2693          */
2694         u16 vid;
2695         const char *mn;
2696         const char *fr;
2697         unsigned long quirks;
2698 };
2699
2700 static const struct nvme_core_quirk_entry core_quirks[] = {
2701         {
2702                 /*
2703                  * This Toshiba device seems to die using any APST states.  See:
2704                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2705                  */
2706                 .vid = 0x1179,
2707                 .mn = "THNSF5256GPUK TOSHIBA",
2708                 .quirks = NVME_QUIRK_NO_APST,
2709         },
2710         {
2711                 /*
2712                  * This LiteON CL1-3D*-Q11 firmware version has a race
2713                  * condition associated with actions related to suspend to idle
2714                  * LiteON has resolved the problem in future firmware
2715                  */
2716                 .vid = 0x14a4,
2717                 .fr = "22301111",
2718                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2719         }
2720 };
2721
2722 /* match is null-terminated but idstr is space-padded. */
2723 static bool string_matches(const char *idstr, const char *match, size_t len)
2724 {
2725         size_t matchlen;
2726
2727         if (!match)
2728                 return true;
2729
2730         matchlen = strlen(match);
2731         WARN_ON_ONCE(matchlen > len);
2732
2733         if (memcmp(idstr, match, matchlen))
2734                 return false;
2735
2736         for (; matchlen < len; matchlen++)
2737                 if (idstr[matchlen] != ' ')
2738                         return false;
2739
2740         return true;
2741 }
2742
2743 static bool quirk_matches(const struct nvme_id_ctrl *id,
2744                           const struct nvme_core_quirk_entry *q)
2745 {
2746         return q->vid == le16_to_cpu(id->vid) &&
2747                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2748                 string_matches(id->fr, q->fr, sizeof(id->fr));
2749 }
2750
2751 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2752                 struct nvme_id_ctrl *id)
2753 {
2754         size_t nqnlen;
2755         int off;
2756
2757         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2758                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2759                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2760                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2761                         return;
2762                 }
2763
2764                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2765                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2766         }
2767
2768         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2769         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2770                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2771                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2772         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2773         off += sizeof(id->sn);
2774         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2775         off += sizeof(id->mn);
2776         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2777 }
2778
2779 static void nvme_release_subsystem(struct device *dev)
2780 {
2781         struct nvme_subsystem *subsys =
2782                 container_of(dev, struct nvme_subsystem, dev);
2783
2784         if (subsys->instance >= 0)
2785                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2786         kfree(subsys);
2787 }
2788
2789 static void nvme_destroy_subsystem(struct kref *ref)
2790 {
2791         struct nvme_subsystem *subsys =
2792                         container_of(ref, struct nvme_subsystem, ref);
2793
2794         mutex_lock(&nvme_subsystems_lock);
2795         list_del(&subsys->entry);
2796         mutex_unlock(&nvme_subsystems_lock);
2797
2798         ida_destroy(&subsys->ns_ida);
2799         device_del(&subsys->dev);
2800         put_device(&subsys->dev);
2801 }
2802
2803 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2804 {
2805         kref_put(&subsys->ref, nvme_destroy_subsystem);
2806 }
2807
2808 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2809 {
2810         struct nvme_subsystem *subsys;
2811
2812         lockdep_assert_held(&nvme_subsystems_lock);
2813
2814         /*
2815          * Fail matches for discovery subsystems. This results
2816          * in each discovery controller bound to a unique subsystem.
2817          * This avoids issues with validating controller values
2818          * that can only be true when there is a single unique subsystem.
2819          * There may be multiple and completely independent entities
2820          * that provide discovery controllers.
2821          */
2822         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2823                 return NULL;
2824
2825         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2826                 if (strcmp(subsys->subnqn, subsysnqn))
2827                         continue;
2828                 if (!kref_get_unless_zero(&subsys->ref))
2829                         continue;
2830                 return subsys;
2831         }
2832
2833         return NULL;
2834 }
2835
2836 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2837         struct device_attribute subsys_attr_##_name = \
2838                 __ATTR(_name, _mode, _show, NULL)
2839
2840 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2841                                     struct device_attribute *attr,
2842                                     char *buf)
2843 {
2844         struct nvme_subsystem *subsys =
2845                 container_of(dev, struct nvme_subsystem, dev);
2846
2847         return sysfs_emit(buf, "%s\n", subsys->subnqn);
2848 }
2849 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2850
2851 #define nvme_subsys_show_str_function(field)                            \
2852 static ssize_t subsys_##field##_show(struct device *dev,                \
2853                             struct device_attribute *attr, char *buf)   \
2854 {                                                                       \
2855         struct nvme_subsystem *subsys =                                 \
2856                 container_of(dev, struct nvme_subsystem, dev);          \
2857         return sprintf(buf, "%.*s\n",                                   \
2858                        (int)sizeof(subsys->field), subsys->field);      \
2859 }                                                                       \
2860 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2861
2862 nvme_subsys_show_str_function(model);
2863 nvme_subsys_show_str_function(serial);
2864 nvme_subsys_show_str_function(firmware_rev);
2865
2866 static struct attribute *nvme_subsys_attrs[] = {
2867         &subsys_attr_model.attr,
2868         &subsys_attr_serial.attr,
2869         &subsys_attr_firmware_rev.attr,
2870         &subsys_attr_subsysnqn.attr,
2871 #ifdef CONFIG_NVME_MULTIPATH
2872         &subsys_attr_iopolicy.attr,
2873 #endif
2874         NULL,
2875 };
2876
2877 static const struct attribute_group nvme_subsys_attrs_group = {
2878         .attrs = nvme_subsys_attrs,
2879 };
2880
2881 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2882         &nvme_subsys_attrs_group,
2883         NULL,
2884 };
2885
2886 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2887 {
2888         return ctrl->opts && ctrl->opts->discovery_nqn;
2889 }
2890
2891 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2892                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2893 {
2894         struct nvme_ctrl *tmp;
2895
2896         lockdep_assert_held(&nvme_subsystems_lock);
2897
2898         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2899                 if (nvme_state_terminal(tmp))
2900                         continue;
2901
2902                 if (tmp->cntlid == ctrl->cntlid) {
2903                         dev_err(ctrl->device,
2904                                 "Duplicate cntlid %u with %s, rejecting\n",
2905                                 ctrl->cntlid, dev_name(tmp->device));
2906                         return false;
2907                 }
2908
2909                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2910                     nvme_discovery_ctrl(ctrl))
2911                         continue;
2912
2913                 dev_err(ctrl->device,
2914                         "Subsystem does not support multiple controllers\n");
2915                 return false;
2916         }
2917
2918         return true;
2919 }
2920
2921 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2922 {
2923         struct nvme_subsystem *subsys, *found;
2924         int ret;
2925
2926         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2927         if (!subsys)
2928                 return -ENOMEM;
2929
2930         subsys->instance = -1;
2931         mutex_init(&subsys->lock);
2932         kref_init(&subsys->ref);
2933         INIT_LIST_HEAD(&subsys->ctrls);
2934         INIT_LIST_HEAD(&subsys->nsheads);
2935         nvme_init_subnqn(subsys, ctrl, id);
2936         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2937         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2938         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2939         subsys->vendor_id = le16_to_cpu(id->vid);
2940         subsys->cmic = id->cmic;
2941         subsys->awupf = le16_to_cpu(id->awupf);
2942 #ifdef CONFIG_NVME_MULTIPATH
2943         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2944 #endif
2945
2946         subsys->dev.class = nvme_subsys_class;
2947         subsys->dev.release = nvme_release_subsystem;
2948         subsys->dev.groups = nvme_subsys_attrs_groups;
2949         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2950         device_initialize(&subsys->dev);
2951
2952         mutex_lock(&nvme_subsystems_lock);
2953         found = __nvme_find_get_subsystem(subsys->subnqn);
2954         if (found) {
2955                 put_device(&subsys->dev);
2956                 subsys = found;
2957
2958                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2959                         ret = -EINVAL;
2960                         goto out_put_subsystem;
2961                 }
2962         } else {
2963                 ret = device_add(&subsys->dev);
2964                 if (ret) {
2965                         dev_err(ctrl->device,
2966                                 "failed to register subsystem device.\n");
2967                         put_device(&subsys->dev);
2968                         goto out_unlock;
2969                 }
2970                 ida_init(&subsys->ns_ida);
2971                 list_add_tail(&subsys->entry, &nvme_subsystems);
2972         }
2973
2974         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2975                                 dev_name(ctrl->device));
2976         if (ret) {
2977                 dev_err(ctrl->device,
2978                         "failed to create sysfs link from subsystem.\n");
2979                 goto out_put_subsystem;
2980         }
2981
2982         if (!found)
2983                 subsys->instance = ctrl->instance;
2984         ctrl->subsys = subsys;
2985         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2986         mutex_unlock(&nvme_subsystems_lock);
2987         return 0;
2988
2989 out_put_subsystem:
2990         nvme_put_subsystem(subsys);
2991 out_unlock:
2992         mutex_unlock(&nvme_subsystems_lock);
2993         return ret;
2994 }
2995
2996 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2997                 void *log, size_t size, u64 offset)
2998 {
2999         struct nvme_command c = { };
3000         u32 dwlen = nvme_bytes_to_numd(size);
3001
3002         c.get_log_page.opcode = nvme_admin_get_log_page;
3003         c.get_log_page.nsid = cpu_to_le32(nsid);
3004         c.get_log_page.lid = log_page;
3005         c.get_log_page.lsp = lsp;
3006         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3007         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3008         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3009         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3010         c.get_log_page.csi = csi;
3011
3012         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3013 }
3014
3015 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3016                                 struct nvme_effects_log **log)
3017 {
3018         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
3019         int ret;
3020
3021         if (cel)
3022                 goto out;
3023
3024         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3025         if (!cel)
3026                 return -ENOMEM;
3027
3028         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3029                         cel, sizeof(*cel), 0);
3030         if (ret) {
3031                 kfree(cel);
3032                 return ret;
3033         }
3034
3035         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3036 out:
3037         *log = cel;
3038         return 0;
3039 }
3040
3041 /*
3042  * Initialize the cached copies of the Identify data and various controller
3043  * register in our nvme_ctrl structure.  This should be called as soon as
3044  * the admin queue is fully up and running.
3045  */
3046 int nvme_init_identify(struct nvme_ctrl *ctrl)
3047 {
3048         struct nvme_id_ctrl *id;
3049         int ret, page_shift;
3050         u32 max_hw_sectors;
3051         bool prev_apst_enabled;
3052
3053         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3054         if (ret) {
3055                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3056                 return ret;
3057         }
3058         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3059         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3060
3061         if (ctrl->vs >= NVME_VS(1, 1, 0))
3062                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3063
3064         ret = nvme_identify_ctrl(ctrl, &id);
3065         if (ret) {
3066                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3067                 return -EIO;
3068         }
3069
3070         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3071                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3072                 if (ret < 0)
3073                         goto out_free;
3074         }
3075
3076         if (!(ctrl->ops->flags & NVME_F_FABRICS))
3077                 ctrl->cntlid = le16_to_cpu(id->cntlid);
3078
3079         if (!ctrl->identified) {
3080                 int i;
3081
3082                 ret = nvme_init_subsystem(ctrl, id);
3083                 if (ret)
3084                         goto out_free;
3085
3086                 /*
3087                  * Check for quirks.  Quirk can depend on firmware version,
3088                  * so, in principle, the set of quirks present can change
3089                  * across a reset.  As a possible future enhancement, we
3090                  * could re-scan for quirks every time we reinitialize
3091                  * the device, but we'd have to make sure that the driver
3092                  * behaves intelligently if the quirks change.
3093                  */
3094                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3095                         if (quirk_matches(id, &core_quirks[i]))
3096                                 ctrl->quirks |= core_quirks[i].quirks;
3097                 }
3098         }
3099
3100         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3101                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3102                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3103         }
3104
3105         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3106         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3107         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3108
3109         ctrl->oacs = le16_to_cpu(id->oacs);
3110         ctrl->oncs = le16_to_cpu(id->oncs);
3111         ctrl->mtfa = le16_to_cpu(id->mtfa);
3112         ctrl->oaes = le32_to_cpu(id->oaes);
3113         ctrl->wctemp = le16_to_cpu(id->wctemp);
3114         ctrl->cctemp = le16_to_cpu(id->cctemp);
3115
3116         atomic_set(&ctrl->abort_limit, id->acl + 1);
3117         ctrl->vwc = id->vwc;
3118         if (id->mdts)
3119                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3120         else
3121                 max_hw_sectors = UINT_MAX;
3122         ctrl->max_hw_sectors =
3123                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3124
3125         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3126         ctrl->sgls = le32_to_cpu(id->sgls);
3127         ctrl->kas = le16_to_cpu(id->kas);
3128         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3129         ctrl->ctratt = le32_to_cpu(id->ctratt);
3130
3131         if (id->rtd3e) {
3132                 /* us -> s */
3133                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3134
3135                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3136                                                  shutdown_timeout, 60);
3137
3138                 if (ctrl->shutdown_timeout != shutdown_timeout)
3139                         dev_info(ctrl->device,
3140                                  "Shutdown timeout set to %u seconds\n",
3141                                  ctrl->shutdown_timeout);
3142         } else
3143                 ctrl->shutdown_timeout = shutdown_timeout;
3144
3145         ctrl->npss = id->npss;
3146         ctrl->apsta = id->apsta;
3147         prev_apst_enabled = ctrl->apst_enabled;
3148         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3149                 if (force_apst && id->apsta) {
3150                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3151                         ctrl->apst_enabled = true;
3152                 } else {
3153                         ctrl->apst_enabled = false;
3154                 }
3155         } else {
3156                 ctrl->apst_enabled = id->apsta;
3157         }
3158         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3159
3160         if (ctrl->ops->flags & NVME_F_FABRICS) {
3161                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3162                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3163                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3164                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3165
3166                 /*
3167                  * In fabrics we need to verify the cntlid matches the
3168                  * admin connect
3169                  */
3170                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3171                         dev_err(ctrl->device,
3172                                 "Mismatching cntlid: Connect %u vs Identify "
3173                                 "%u, rejecting\n",
3174                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3175                         ret = -EINVAL;
3176                         goto out_free;
3177                 }
3178
3179                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3180                         dev_err(ctrl->device,
3181                                 "keep-alive support is mandatory for fabrics\n");
3182                         ret = -EINVAL;
3183                         goto out_free;
3184                 }
3185         } else {
3186                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3187                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3188                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3189                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3190         }
3191
3192         ret = nvme_mpath_init(ctrl, id);
3193         kfree(id);
3194
3195         if (ret < 0)
3196                 return ret;
3197
3198         if (ctrl->apst_enabled && !prev_apst_enabled)
3199                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3200         else if (!ctrl->apst_enabled && prev_apst_enabled)
3201                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3202
3203         ret = nvme_configure_apst(ctrl);
3204         if (ret < 0)
3205                 return ret;
3206         
3207         ret = nvme_configure_timestamp(ctrl);
3208         if (ret < 0)
3209                 return ret;
3210
3211         ret = nvme_configure_directives(ctrl);
3212         if (ret < 0)
3213                 return ret;
3214
3215         ret = nvme_configure_acre(ctrl);
3216         if (ret < 0)
3217                 return ret;
3218
3219         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3220                 ret = nvme_hwmon_init(ctrl);
3221                 if (ret < 0)
3222                         return ret;
3223         }
3224
3225         ctrl->identified = true;
3226
3227         return 0;
3228
3229 out_free:
3230         kfree(id);
3231         return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(nvme_init_identify);
3234
3235 static int nvme_dev_open(struct inode *inode, struct file *file)
3236 {
3237         struct nvme_ctrl *ctrl =
3238                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3239
3240         switch (ctrl->state) {
3241         case NVME_CTRL_LIVE:
3242                 break;
3243         default:
3244                 return -EWOULDBLOCK;
3245         }
3246
3247         nvme_get_ctrl(ctrl);
3248         if (!try_module_get(ctrl->ops->module)) {
3249                 nvme_put_ctrl(ctrl);
3250                 return -EINVAL;
3251         }
3252
3253         file->private_data = ctrl;
3254         return 0;
3255 }
3256
3257 static int nvme_dev_release(struct inode *inode, struct file *file)
3258 {
3259         struct nvme_ctrl *ctrl =
3260                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3261
3262         module_put(ctrl->ops->module);
3263         nvme_put_ctrl(ctrl);
3264         return 0;
3265 }
3266
3267 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3268 {
3269         struct nvme_ns *ns;
3270         int ret;
3271
3272         down_read(&ctrl->namespaces_rwsem);
3273         if (list_empty(&ctrl->namespaces)) {
3274                 ret = -ENOTTY;
3275                 goto out_unlock;
3276         }
3277
3278         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3279         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3280                 dev_warn(ctrl->device,
3281                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3282                 ret = -EINVAL;
3283                 goto out_unlock;
3284         }
3285
3286         dev_warn(ctrl->device,
3287                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3288         kref_get(&ns->kref);
3289         up_read(&ctrl->namespaces_rwsem);
3290
3291         ret = nvme_user_cmd(ctrl, ns, argp);
3292         nvme_put_ns(ns);
3293         return ret;
3294
3295 out_unlock:
3296         up_read(&ctrl->namespaces_rwsem);
3297         return ret;
3298 }
3299
3300 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3301                 unsigned long arg)
3302 {
3303         struct nvme_ctrl *ctrl = file->private_data;
3304         void __user *argp = (void __user *)arg;
3305
3306         switch (cmd) {
3307         case NVME_IOCTL_ADMIN_CMD:
3308                 return nvme_user_cmd(ctrl, NULL, argp);
3309         case NVME_IOCTL_ADMIN64_CMD:
3310                 return nvme_user_cmd64(ctrl, NULL, argp);
3311         case NVME_IOCTL_IO_CMD:
3312                 return nvme_dev_user_cmd(ctrl, argp);
3313         case NVME_IOCTL_RESET:
3314                 dev_warn(ctrl->device, "resetting controller\n");
3315                 return nvme_reset_ctrl_sync(ctrl);
3316         case NVME_IOCTL_SUBSYS_RESET:
3317                 return nvme_reset_subsystem(ctrl);
3318         case NVME_IOCTL_RESCAN:
3319                 nvme_queue_scan(ctrl);
3320                 return 0;
3321         default:
3322                 return -ENOTTY;
3323         }
3324 }
3325
3326 static const struct file_operations nvme_dev_fops = {
3327         .owner          = THIS_MODULE,
3328         .open           = nvme_dev_open,
3329         .release        = nvme_dev_release,
3330         .unlocked_ioctl = nvme_dev_ioctl,
3331         .compat_ioctl   = compat_ptr_ioctl,
3332 };
3333
3334 static ssize_t nvme_sysfs_reset(struct device *dev,
3335                                 struct device_attribute *attr, const char *buf,
3336                                 size_t count)
3337 {
3338         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3339         int ret;
3340
3341         ret = nvme_reset_ctrl_sync(ctrl);
3342         if (ret < 0)
3343                 return ret;
3344         return count;
3345 }
3346 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3347
3348 static ssize_t nvme_sysfs_rescan(struct device *dev,
3349                                 struct device_attribute *attr, const char *buf,
3350                                 size_t count)
3351 {
3352         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3353
3354         nvme_queue_scan(ctrl);
3355         return count;
3356 }
3357 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3358
3359 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3360 {
3361         struct gendisk *disk = dev_to_disk(dev);
3362
3363         if (disk->fops == &nvme_bdev_ops)
3364                 return nvme_get_ns_from_dev(dev)->head;
3365         else
3366                 return disk->private_data;
3367 }
3368
3369 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3370                 char *buf)
3371 {
3372         struct nvme_ns_head *head = dev_to_ns_head(dev);
3373         struct nvme_ns_ids *ids = &head->ids;
3374         struct nvme_subsystem *subsys = head->subsys;
3375         int serial_len = sizeof(subsys->serial);
3376         int model_len = sizeof(subsys->model);
3377
3378         if (!uuid_is_null(&ids->uuid))
3379                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3380
3381         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3382                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3383
3384         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3385                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3386
3387         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3388                                   subsys->serial[serial_len - 1] == '\0'))
3389                 serial_len--;
3390         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3391                                  subsys->model[model_len - 1] == '\0'))
3392                 model_len--;
3393
3394         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3395                 serial_len, subsys->serial, model_len, subsys->model,
3396                 head->ns_id);
3397 }
3398 static DEVICE_ATTR_RO(wwid);
3399
3400 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3401                 char *buf)
3402 {
3403         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3404 }
3405 static DEVICE_ATTR_RO(nguid);
3406
3407 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3408                 char *buf)
3409 {
3410         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3411
3412         /* For backward compatibility expose the NGUID to userspace if
3413          * we have no UUID set
3414          */
3415         if (uuid_is_null(&ids->uuid)) {
3416                 printk_ratelimited(KERN_WARNING
3417                                    "No UUID available providing old NGUID\n");
3418                 return sprintf(buf, "%pU\n", ids->nguid);
3419         }
3420         return sprintf(buf, "%pU\n", &ids->uuid);
3421 }
3422 static DEVICE_ATTR_RO(uuid);
3423
3424 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3425                 char *buf)
3426 {
3427         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3428 }
3429 static DEVICE_ATTR_RO(eui);
3430
3431 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3432                 char *buf)
3433 {
3434         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3435 }
3436 static DEVICE_ATTR_RO(nsid);
3437
3438 static struct attribute *nvme_ns_id_attrs[] = {
3439         &dev_attr_wwid.attr,
3440         &dev_attr_uuid.attr,
3441         &dev_attr_nguid.attr,
3442         &dev_attr_eui.attr,
3443         &dev_attr_nsid.attr,
3444 #ifdef CONFIG_NVME_MULTIPATH
3445         &dev_attr_ana_grpid.attr,
3446         &dev_attr_ana_state.attr,
3447 #endif
3448         NULL,
3449 };
3450
3451 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3452                 struct attribute *a, int n)
3453 {
3454         struct device *dev = container_of(kobj, struct device, kobj);
3455         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3456
3457         if (a == &dev_attr_uuid.attr) {
3458                 if (uuid_is_null(&ids->uuid) &&
3459                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3460                         return 0;
3461         }
3462         if (a == &dev_attr_nguid.attr) {
3463                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3464                         return 0;
3465         }
3466         if (a == &dev_attr_eui.attr) {
3467                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3468                         return 0;
3469         }
3470 #ifdef CONFIG_NVME_MULTIPATH
3471         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3472                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3473                         return 0;
3474                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3475                         return 0;
3476         }
3477 #endif
3478         return a->mode;
3479 }
3480
3481 static const struct attribute_group nvme_ns_id_attr_group = {
3482         .attrs          = nvme_ns_id_attrs,
3483         .is_visible     = nvme_ns_id_attrs_are_visible,
3484 };
3485
3486 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3487         &nvme_ns_id_attr_group,
3488 #ifdef CONFIG_NVM
3489         &nvme_nvm_attr_group,
3490 #endif
3491         NULL,
3492 };
3493
3494 #define nvme_show_str_function(field)                                           \
3495 static ssize_t  field##_show(struct device *dev,                                \
3496                             struct device_attribute *attr, char *buf)           \
3497 {                                                                               \
3498         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3499         return sprintf(buf, "%.*s\n",                                           \
3500                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3501 }                                                                               \
3502 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3503
3504 nvme_show_str_function(model);
3505 nvme_show_str_function(serial);
3506 nvme_show_str_function(firmware_rev);
3507
3508 #define nvme_show_int_function(field)                                           \
3509 static ssize_t  field##_show(struct device *dev,                                \
3510                             struct device_attribute *attr, char *buf)           \
3511 {                                                                               \
3512         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3513         return sprintf(buf, "%d\n", ctrl->field);       \
3514 }                                                                               \
3515 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3516
3517 nvme_show_int_function(cntlid);
3518 nvme_show_int_function(numa_node);
3519 nvme_show_int_function(queue_count);
3520 nvme_show_int_function(sqsize);
3521
3522 static ssize_t nvme_sysfs_delete(struct device *dev,
3523                                 struct device_attribute *attr, const char *buf,
3524                                 size_t count)
3525 {
3526         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3527
3528         if (device_remove_file_self(dev, attr))
3529                 nvme_delete_ctrl_sync(ctrl);
3530         return count;
3531 }
3532 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3533
3534 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3535                                          struct device_attribute *attr,
3536                                          char *buf)
3537 {
3538         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3539
3540         return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3541 }
3542 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3543
3544 static ssize_t nvme_sysfs_show_state(struct device *dev,
3545                                      struct device_attribute *attr,
3546                                      char *buf)
3547 {
3548         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3549         static const char *const state_name[] = {
3550                 [NVME_CTRL_NEW]         = "new",
3551                 [NVME_CTRL_LIVE]        = "live",
3552                 [NVME_CTRL_RESETTING]   = "resetting",
3553                 [NVME_CTRL_CONNECTING]  = "connecting",
3554                 [NVME_CTRL_DELETING]    = "deleting",
3555                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3556                 [NVME_CTRL_DEAD]        = "dead",
3557         };
3558
3559         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3560             state_name[ctrl->state])
3561                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3562
3563         return sprintf(buf, "unknown state\n");
3564 }
3565
3566 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3567
3568 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3569                                          struct device_attribute *attr,
3570                                          char *buf)
3571 {
3572         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3573
3574         return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3575 }
3576 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3577
3578 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3579                                         struct device_attribute *attr,
3580                                         char *buf)
3581 {
3582         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3583
3584         return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3585 }
3586 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3587
3588 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3589                                         struct device_attribute *attr,
3590                                         char *buf)
3591 {
3592         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3593
3594         return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3595 }
3596 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3597
3598 static ssize_t nvme_sysfs_show_address(struct device *dev,
3599                                          struct device_attribute *attr,
3600                                          char *buf)
3601 {
3602         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3603
3604         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3605 }
3606 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3607
3608 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3609                 struct device_attribute *attr, char *buf)
3610 {
3611         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3612         struct nvmf_ctrl_options *opts = ctrl->opts;
3613
3614         if (ctrl->opts->max_reconnects == -1)
3615                 return sprintf(buf, "off\n");
3616         return sprintf(buf, "%d\n",
3617                         opts->max_reconnects * opts->reconnect_delay);
3618 }
3619
3620 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3621                 struct device_attribute *attr, const char *buf, size_t count)
3622 {
3623         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3624         struct nvmf_ctrl_options *opts = ctrl->opts;
3625         int ctrl_loss_tmo, err;
3626
3627         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3628         if (err)
3629                 return -EINVAL;
3630
3631         else if (ctrl_loss_tmo < 0)
3632                 opts->max_reconnects = -1;
3633         else
3634                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3635                                                 opts->reconnect_delay);
3636         return count;
3637 }
3638 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3639         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3640
3641 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3642                 struct device_attribute *attr, char *buf)
3643 {
3644         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3645
3646         if (ctrl->opts->reconnect_delay == -1)
3647                 return sprintf(buf, "off\n");
3648         return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3649 }
3650
3651 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3652                 struct device_attribute *attr, const char *buf, size_t count)
3653 {
3654         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3655         unsigned int v;
3656         int err;
3657
3658         err = kstrtou32(buf, 10, &v);
3659         if (err)
3660                 return err;
3661
3662         ctrl->opts->reconnect_delay = v;
3663         return count;
3664 }
3665 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3666         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3667
3668 static struct attribute *nvme_dev_attrs[] = {
3669         &dev_attr_reset_controller.attr,
3670         &dev_attr_rescan_controller.attr,
3671         &dev_attr_model.attr,
3672         &dev_attr_serial.attr,
3673         &dev_attr_firmware_rev.attr,
3674         &dev_attr_cntlid.attr,
3675         &dev_attr_delete_controller.attr,
3676         &dev_attr_transport.attr,
3677         &dev_attr_subsysnqn.attr,
3678         &dev_attr_address.attr,
3679         &dev_attr_state.attr,
3680         &dev_attr_numa_node.attr,
3681         &dev_attr_queue_count.attr,
3682         &dev_attr_sqsize.attr,
3683         &dev_attr_hostnqn.attr,
3684         &dev_attr_hostid.attr,
3685         &dev_attr_ctrl_loss_tmo.attr,
3686         &dev_attr_reconnect_delay.attr,
3687         NULL
3688 };
3689
3690 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3691                 struct attribute *a, int n)
3692 {
3693         struct device *dev = container_of(kobj, struct device, kobj);
3694         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3695
3696         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3697                 return 0;
3698         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3699                 return 0;
3700         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3701                 return 0;
3702         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3703                 return 0;
3704         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3705                 return 0;
3706         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3707                 return 0;
3708
3709         return a->mode;
3710 }
3711
3712 static const struct attribute_group nvme_dev_attrs_group = {
3713         .attrs          = nvme_dev_attrs,
3714         .is_visible     = nvme_dev_attrs_are_visible,
3715 };
3716
3717 static const struct attribute_group *nvme_dev_attr_groups[] = {
3718         &nvme_dev_attrs_group,
3719         NULL,
3720 };
3721
3722 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3723                 unsigned nsid)
3724 {
3725         struct nvme_ns_head *h;
3726
3727         lockdep_assert_held(&subsys->lock);
3728
3729         list_for_each_entry(h, &subsys->nsheads, entry) {
3730                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3731                         return h;
3732         }
3733
3734         return NULL;
3735 }
3736
3737 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3738                 struct nvme_ns_head *new)
3739 {
3740         struct nvme_ns_head *h;
3741
3742         lockdep_assert_held(&subsys->lock);
3743
3744         list_for_each_entry(h, &subsys->nsheads, entry) {
3745                 if (nvme_ns_ids_valid(&new->ids) &&
3746                     nvme_ns_ids_equal(&new->ids, &h->ids))
3747                         return -EINVAL;
3748         }
3749
3750         return 0;
3751 }
3752
3753 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3754                 unsigned nsid, struct nvme_ns_ids *ids)
3755 {
3756         struct nvme_ns_head *head;
3757         size_t size = sizeof(*head);
3758         int ret = -ENOMEM;
3759
3760 #ifdef CONFIG_NVME_MULTIPATH
3761         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3762 #endif
3763
3764         head = kzalloc(size, GFP_KERNEL);
3765         if (!head)
3766                 goto out;
3767         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3768         if (ret < 0)
3769                 goto out_free_head;
3770         head->instance = ret;
3771         INIT_LIST_HEAD(&head->list);
3772         ret = init_srcu_struct(&head->srcu);
3773         if (ret)
3774                 goto out_ida_remove;
3775         head->subsys = ctrl->subsys;
3776         head->ns_id = nsid;
3777         head->ids = *ids;
3778         kref_init(&head->ref);
3779
3780         ret = __nvme_check_ids(ctrl->subsys, head);
3781         if (ret) {
3782                 dev_err(ctrl->device,
3783                         "duplicate IDs for nsid %d\n", nsid);
3784                 goto out_cleanup_srcu;
3785         }
3786
3787         if (head->ids.csi) {
3788                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3789                 if (ret)
3790                         goto out_cleanup_srcu;
3791         } else
3792                 head->effects = ctrl->effects;
3793
3794         ret = nvme_mpath_alloc_disk(ctrl, head);
3795         if (ret)
3796                 goto out_cleanup_srcu;
3797
3798         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3799
3800         kref_get(&ctrl->subsys->ref);
3801
3802         return head;
3803 out_cleanup_srcu:
3804         cleanup_srcu_struct(&head->srcu);
3805 out_ida_remove:
3806         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3807 out_free_head:
3808         kfree(head);
3809 out:
3810         if (ret > 0)
3811                 ret = blk_status_to_errno(nvme_error_status(ret));
3812         return ERR_PTR(ret);
3813 }
3814
3815 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3816                 struct nvme_ns_ids *ids, bool is_shared)
3817 {
3818         struct nvme_ctrl *ctrl = ns->ctrl;
3819         struct nvme_ns_head *head = NULL;
3820         int ret = 0;
3821
3822         mutex_lock(&ctrl->subsys->lock);
3823         head = nvme_find_ns_head(ctrl->subsys, nsid);
3824         if (!head) {
3825                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3826                 if (IS_ERR(head)) {
3827                         ret = PTR_ERR(head);
3828                         goto out_unlock;
3829                 }
3830                 head->shared = is_shared;
3831         } else {
3832                 ret = -EINVAL;
3833                 if (!is_shared || !head->shared) {
3834                         dev_err(ctrl->device,
3835                                 "Duplicate unshared namespace %d\n", nsid);
3836                         goto out_put_ns_head;
3837                 }
3838                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3839                         dev_err(ctrl->device,
3840                                 "IDs don't match for shared namespace %d\n",
3841                                         nsid);
3842                         goto out_put_ns_head;
3843                 }
3844         }
3845
3846         list_add_tail_rcu(&ns->siblings, &head->list);
3847         ns->head = head;
3848         mutex_unlock(&ctrl->subsys->lock);
3849         return 0;
3850
3851 out_put_ns_head:
3852         nvme_put_ns_head(head);
3853 out_unlock:
3854         mutex_unlock(&ctrl->subsys->lock);
3855         return ret;
3856 }
3857
3858 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3859 {
3860         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3861         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3862
3863         return nsa->head->ns_id - nsb->head->ns_id;
3864 }
3865
3866 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3867 {
3868         struct nvme_ns *ns, *ret = NULL;
3869
3870         down_read(&ctrl->namespaces_rwsem);
3871         list_for_each_entry(ns, &ctrl->namespaces, list) {
3872                 if (ns->head->ns_id == nsid) {
3873                         if (!kref_get_unless_zero(&ns->kref))
3874                                 continue;
3875                         ret = ns;
3876                         break;
3877                 }
3878                 if (ns->head->ns_id > nsid)
3879                         break;
3880         }
3881         up_read(&ctrl->namespaces_rwsem);
3882         return ret;
3883 }
3884 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3885
3886 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3887                 struct nvme_ns_ids *ids)
3888 {
3889         struct nvme_ns *ns;
3890         struct gendisk *disk;
3891         struct nvme_id_ns *id;
3892         char disk_name[DISK_NAME_LEN];
3893         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3894
3895         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3896                 return;
3897
3898         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3899         if (!ns)
3900                 goto out_free_id;
3901
3902         ns->queue = blk_mq_init_queue(ctrl->tagset);
3903         if (IS_ERR(ns->queue))
3904                 goto out_free_ns;
3905
3906         if (ctrl->opts && ctrl->opts->data_digest)
3907                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3908
3909         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3910         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3911                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3912
3913         ns->queue->queuedata = ns;
3914         ns->ctrl = ctrl;
3915         kref_init(&ns->kref);
3916
3917         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3918                 goto out_free_queue;
3919         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3920
3921         disk = alloc_disk_node(0, node);
3922         if (!disk)
3923                 goto out_unlink_ns;
3924
3925         disk->fops = &nvme_bdev_ops;
3926         disk->private_data = ns;
3927         disk->queue = ns->queue;
3928         disk->flags = flags;
3929         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3930         ns->disk = disk;
3931
3932         if (nvme_update_ns_info(ns, id))
3933                 goto out_put_disk;
3934
3935         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3936                 if (nvme_nvm_register(ns, disk_name, node)) {
3937                         dev_warn(ctrl->device, "LightNVM init failure\n");
3938                         goto out_put_disk;
3939                 }
3940         }
3941
3942         down_write(&ctrl->namespaces_rwsem);
3943         list_add_tail(&ns->list, &ctrl->namespaces);
3944         up_write(&ctrl->namespaces_rwsem);
3945
3946         nvme_get_ctrl(ctrl);
3947
3948         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3949
3950         nvme_mpath_add_disk(ns, id);
3951         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3952         kfree(id);
3953
3954         return;
3955  out_put_disk:
3956         /* prevent double queue cleanup */
3957         ns->disk->queue = NULL;
3958         put_disk(ns->disk);
3959  out_unlink_ns:
3960         mutex_lock(&ctrl->subsys->lock);
3961         list_del_rcu(&ns->siblings);
3962         if (list_empty(&ns->head->list))
3963                 list_del_init(&ns->head->entry);
3964         mutex_unlock(&ctrl->subsys->lock);
3965         nvme_put_ns_head(ns->head);
3966  out_free_queue:
3967         blk_cleanup_queue(ns->queue);
3968  out_free_ns:
3969         kfree(ns);
3970  out_free_id:
3971         kfree(id);
3972 }
3973
3974 static void nvme_ns_remove(struct nvme_ns *ns)
3975 {
3976         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3977                 return;
3978
3979         set_capacity(ns->disk, 0);
3980         nvme_fault_inject_fini(&ns->fault_inject);
3981
3982         mutex_lock(&ns->ctrl->subsys->lock);
3983         list_del_rcu(&ns->siblings);
3984         if (list_empty(&ns->head->list))
3985                 list_del_init(&ns->head->entry);
3986         mutex_unlock(&ns->ctrl->subsys->lock);
3987
3988         synchronize_rcu(); /* guarantee not available in head->list */
3989         nvme_mpath_clear_current_path(ns);
3990         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3991
3992         if (ns->disk->flags & GENHD_FL_UP) {
3993                 del_gendisk(ns->disk);
3994                 blk_cleanup_queue(ns->queue);
3995                 if (blk_get_integrity(ns->disk))
3996                         blk_integrity_unregister(ns->disk);
3997         }
3998
3999         down_write(&ns->ctrl->namespaces_rwsem);
4000         list_del_init(&ns->list);
4001         up_write(&ns->ctrl->namespaces_rwsem);
4002
4003         nvme_mpath_check_last_path(ns);
4004         nvme_put_ns(ns);
4005 }
4006
4007 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4008 {
4009         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4010
4011         if (ns) {
4012                 nvme_ns_remove(ns);
4013                 nvme_put_ns(ns);
4014         }
4015 }
4016
4017 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4018 {
4019         struct nvme_id_ns *id;
4020         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4021
4022         if (test_bit(NVME_NS_DEAD, &ns->flags))
4023                 goto out;
4024
4025         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4026         if (ret)
4027                 goto out;
4028
4029         ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4030         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4031                 dev_err(ns->ctrl->device,
4032                         "identifiers changed for nsid %d\n", ns->head->ns_id);
4033                 goto out_free_id;
4034         }
4035
4036         ret = nvme_update_ns_info(ns, id);
4037
4038 out_free_id:
4039         kfree(id);
4040 out:
4041         /*
4042          * Only remove the namespace if we got a fatal error back from the
4043          * device, otherwise ignore the error and just move on.
4044          *
4045          * TODO: we should probably schedule a delayed retry here.
4046          */
4047         if (ret > 0 && (ret & NVME_SC_DNR))
4048                 nvme_ns_remove(ns);
4049 }
4050
4051 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4052 {
4053         struct nvme_ns_ids ids = { };
4054         struct nvme_ns *ns;
4055
4056         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4057                 return;
4058
4059         ns = nvme_find_get_ns(ctrl, nsid);
4060         if (ns) {
4061                 nvme_validate_ns(ns, &ids);
4062                 nvme_put_ns(ns);
4063                 return;
4064         }
4065
4066         switch (ids.csi) {
4067         case NVME_CSI_NVM:
4068                 nvme_alloc_ns(ctrl, nsid, &ids);
4069                 break;
4070         case NVME_CSI_ZNS:
4071                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4072                         dev_warn(ctrl->device,
4073                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4074                                 nsid);
4075                         break;
4076                 }
4077                 if (!nvme_multi_css(ctrl)) {
4078                         dev_warn(ctrl->device,
4079                                 "command set not reported for nsid: %d\n",
4080                                 nsid);
4081                         break;
4082                 }
4083                 nvme_alloc_ns(ctrl, nsid, &ids);
4084                 break;
4085         default:
4086                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4087                         ids.csi, nsid);
4088                 break;
4089         }
4090 }
4091
4092 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4093                                         unsigned nsid)
4094 {
4095         struct nvme_ns *ns, *next;
4096         LIST_HEAD(rm_list);
4097
4098         down_write(&ctrl->namespaces_rwsem);
4099         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4100                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4101                         list_move_tail(&ns->list, &rm_list);
4102         }
4103         up_write(&ctrl->namespaces_rwsem);
4104
4105         list_for_each_entry_safe(ns, next, &rm_list, list)
4106                 nvme_ns_remove(ns);
4107
4108 }
4109
4110 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4111 {
4112         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4113         __le32 *ns_list;
4114         u32 prev = 0;
4115         int ret = 0, i;
4116
4117         if (nvme_ctrl_limited_cns(ctrl))
4118                 return -EOPNOTSUPP;
4119
4120         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4121         if (!ns_list)
4122                 return -ENOMEM;
4123
4124         for (;;) {
4125                 struct nvme_command cmd = {
4126                         .identify.opcode        = nvme_admin_identify,
4127                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4128                         .identify.nsid          = cpu_to_le32(prev),
4129                 };
4130
4131                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4132                                             NVME_IDENTIFY_DATA_SIZE);
4133                 if (ret) {
4134                         dev_warn(ctrl->device,
4135                                 "Identify NS List failed (status=0x%x)\n", ret);
4136                         goto free;
4137                 }
4138
4139                 for (i = 0; i < nr_entries; i++) {
4140                         u32 nsid = le32_to_cpu(ns_list[i]);
4141
4142                         if (!nsid)      /* end of the list? */
4143                                 goto out;
4144                         nvme_validate_or_alloc_ns(ctrl, nsid);
4145                         while (++prev < nsid)
4146                                 nvme_ns_remove_by_nsid(ctrl, prev);
4147                 }
4148         }
4149  out:
4150         nvme_remove_invalid_namespaces(ctrl, prev);
4151  free:
4152         kfree(ns_list);
4153         return ret;
4154 }
4155
4156 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4157 {
4158         struct nvme_id_ctrl *id;
4159         u32 nn, i;
4160
4161         if (nvme_identify_ctrl(ctrl, &id))
4162                 return;
4163         nn = le32_to_cpu(id->nn);
4164         kfree(id);
4165
4166         for (i = 1; i <= nn; i++)
4167                 nvme_validate_or_alloc_ns(ctrl, i);
4168
4169         nvme_remove_invalid_namespaces(ctrl, nn);
4170 }
4171
4172 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4173 {
4174         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4175         __le32 *log;
4176         int error;
4177
4178         log = kzalloc(log_size, GFP_KERNEL);
4179         if (!log)
4180                 return;
4181
4182         /*
4183          * We need to read the log to clear the AEN, but we don't want to rely
4184          * on it for the changed namespace information as userspace could have
4185          * raced with us in reading the log page, which could cause us to miss
4186          * updates.
4187          */
4188         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4189                         NVME_CSI_NVM, log, log_size, 0);
4190         if (error)
4191                 dev_warn(ctrl->device,
4192                         "reading changed ns log failed: %d\n", error);
4193
4194         kfree(log);
4195 }
4196
4197 static void nvme_scan_work(struct work_struct *work)
4198 {
4199         struct nvme_ctrl *ctrl =
4200                 container_of(work, struct nvme_ctrl, scan_work);
4201
4202         /* No tagset on a live ctrl means IO queues could not created */
4203         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4204                 return;
4205
4206         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4207                 dev_info(ctrl->device, "rescanning namespaces.\n");
4208                 nvme_clear_changed_ns_log(ctrl);
4209         }
4210
4211         mutex_lock(&ctrl->scan_lock);
4212         if (nvme_scan_ns_list(ctrl) != 0)
4213                 nvme_scan_ns_sequential(ctrl);
4214         mutex_unlock(&ctrl->scan_lock);
4215
4216         down_write(&ctrl->namespaces_rwsem);
4217         list_sort(NULL, &ctrl->namespaces, ns_cmp);
4218         up_write(&ctrl->namespaces_rwsem);
4219 }
4220
4221 /*
4222  * This function iterates the namespace list unlocked to allow recovery from
4223  * controller failure. It is up to the caller to ensure the namespace list is
4224  * not modified by scan work while this function is executing.
4225  */
4226 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4227 {
4228         struct nvme_ns *ns, *next;
4229         LIST_HEAD(ns_list);
4230
4231         /*
4232          * make sure to requeue I/O to all namespaces as these
4233          * might result from the scan itself and must complete
4234          * for the scan_work to make progress
4235          */
4236         nvme_mpath_clear_ctrl_paths(ctrl);
4237
4238         /* prevent racing with ns scanning */
4239         flush_work(&ctrl->scan_work);
4240
4241         /*
4242          * The dead states indicates the controller was not gracefully
4243          * disconnected. In that case, we won't be able to flush any data while
4244          * removing the namespaces' disks; fail all the queues now to avoid
4245          * potentially having to clean up the failed sync later.
4246          */
4247         if (ctrl->state == NVME_CTRL_DEAD)
4248                 nvme_kill_queues(ctrl);
4249
4250         /* this is a no-op when called from the controller reset handler */
4251         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4252
4253         down_write(&ctrl->namespaces_rwsem);
4254         list_splice_init(&ctrl->namespaces, &ns_list);
4255         up_write(&ctrl->namespaces_rwsem);
4256
4257         list_for_each_entry_safe(ns, next, &ns_list, list)
4258                 nvme_ns_remove(ns);
4259 }
4260 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4261
4262 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4263 {
4264         struct nvme_ctrl *ctrl =
4265                 container_of(dev, struct nvme_ctrl, ctrl_device);
4266         struct nvmf_ctrl_options *opts = ctrl->opts;
4267         int ret;
4268
4269         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4270         if (ret)
4271                 return ret;
4272
4273         if (opts) {
4274                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4275                 if (ret)
4276                         return ret;
4277
4278                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4279                                 opts->trsvcid ?: "none");
4280                 if (ret)
4281                         return ret;
4282
4283                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4284                                 opts->host_traddr ?: "none");
4285         }
4286         return ret;
4287 }
4288
4289 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4290 {
4291         char *envp[2] = { NULL, NULL };
4292         u32 aen_result = ctrl->aen_result;
4293
4294         ctrl->aen_result = 0;
4295         if (!aen_result)
4296                 return;
4297
4298         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4299         if (!envp[0])
4300                 return;
4301         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4302         kfree(envp[0]);
4303 }
4304
4305 static void nvme_async_event_work(struct work_struct *work)
4306 {
4307         struct nvme_ctrl *ctrl =
4308                 container_of(work, struct nvme_ctrl, async_event_work);
4309
4310         nvme_aen_uevent(ctrl);
4311         ctrl->ops->submit_async_event(ctrl);
4312 }
4313
4314 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4315 {
4316
4317         u32 csts;
4318
4319         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4320                 return false;
4321
4322         if (csts == ~0)
4323                 return false;
4324
4325         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4326 }
4327
4328 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4329 {
4330         struct nvme_fw_slot_info_log *log;
4331
4332         log = kmalloc(sizeof(*log), GFP_KERNEL);
4333         if (!log)
4334                 return;
4335
4336         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4337                         log, sizeof(*log), 0))
4338                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4339         kfree(log);
4340 }
4341
4342 static void nvme_fw_act_work(struct work_struct *work)
4343 {
4344         struct nvme_ctrl *ctrl = container_of(work,
4345                                 struct nvme_ctrl, fw_act_work);
4346         unsigned long fw_act_timeout;
4347
4348         if (ctrl->mtfa)
4349                 fw_act_timeout = jiffies +
4350                                 msecs_to_jiffies(ctrl->mtfa * 100);
4351         else
4352                 fw_act_timeout = jiffies +
4353                                 msecs_to_jiffies(admin_timeout * 1000);
4354
4355         nvme_stop_queues(ctrl);
4356         while (nvme_ctrl_pp_status(ctrl)) {
4357                 if (time_after(jiffies, fw_act_timeout)) {
4358                         dev_warn(ctrl->device,
4359                                 "Fw activation timeout, reset controller\n");
4360                         nvme_try_sched_reset(ctrl);
4361                         return;
4362                 }
4363                 msleep(100);
4364         }
4365
4366         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4367                 return;
4368
4369         nvme_start_queues(ctrl);
4370         /* read FW slot information to clear the AER */
4371         nvme_get_fw_slot_info(ctrl);
4372 }
4373
4374 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4375 {
4376         u32 aer_notice_type = (result & 0xff00) >> 8;
4377
4378         trace_nvme_async_event(ctrl, aer_notice_type);
4379
4380         switch (aer_notice_type) {
4381         case NVME_AER_NOTICE_NS_CHANGED:
4382                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4383                 nvme_queue_scan(ctrl);
4384                 break;
4385         case NVME_AER_NOTICE_FW_ACT_STARTING:
4386                 /*
4387                  * We are (ab)using the RESETTING state to prevent subsequent
4388                  * recovery actions from interfering with the controller's
4389                  * firmware activation.
4390                  */
4391                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4392                         queue_work(nvme_wq, &ctrl->fw_act_work);
4393                 break;
4394 #ifdef CONFIG_NVME_MULTIPATH
4395         case NVME_AER_NOTICE_ANA:
4396                 if (!ctrl->ana_log_buf)
4397                         break;
4398                 queue_work(nvme_wq, &ctrl->ana_work);
4399                 break;
4400 #endif
4401         case NVME_AER_NOTICE_DISC_CHANGED:
4402                 ctrl->aen_result = result;
4403                 break;
4404         default:
4405                 dev_warn(ctrl->device, "async event result %08x\n", result);
4406         }
4407 }
4408
4409 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4410                 volatile union nvme_result *res)
4411 {
4412         u32 result = le32_to_cpu(res->u32);
4413         u32 aer_type = result & 0x07;
4414
4415         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4416                 return;
4417
4418         switch (aer_type) {
4419         case NVME_AER_NOTICE:
4420                 nvme_handle_aen_notice(ctrl, result);
4421                 break;
4422         case NVME_AER_ERROR:
4423         case NVME_AER_SMART:
4424         case NVME_AER_CSS:
4425         case NVME_AER_VS:
4426                 trace_nvme_async_event(ctrl, aer_type);
4427                 ctrl->aen_result = result;
4428                 break;
4429         default:
4430                 break;
4431         }
4432         queue_work(nvme_wq, &ctrl->async_event_work);
4433 }
4434 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4435
4436 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4437 {
4438         nvme_mpath_stop(ctrl);
4439         nvme_stop_keep_alive(ctrl);
4440         nvme_stop_failfast_work(ctrl);
4441         flush_work(&ctrl->async_event_work);
4442         cancel_work_sync(&ctrl->fw_act_work);
4443 }
4444 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4445
4446 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4447 {
4448         nvme_start_keep_alive(ctrl);
4449
4450         nvme_enable_aen(ctrl);
4451
4452         if (ctrl->queue_count > 1) {
4453                 nvme_queue_scan(ctrl);
4454                 nvme_start_queues(ctrl);
4455         }
4456 }
4457 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4458
4459 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4460 {
4461         nvme_hwmon_exit(ctrl);
4462         nvme_fault_inject_fini(&ctrl->fault_inject);
4463         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4464         cdev_device_del(&ctrl->cdev, ctrl->device);
4465         nvme_put_ctrl(ctrl);
4466 }
4467 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4468
4469 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4470 {
4471         struct nvme_effects_log *cel;
4472         unsigned long i;
4473
4474         xa_for_each(&ctrl->cels, i, cel) {
4475                 xa_erase(&ctrl->cels, i);
4476                 kfree(cel);
4477         }
4478
4479         xa_destroy(&ctrl->cels);
4480 }
4481
4482 static void nvme_free_ctrl(struct device *dev)
4483 {
4484         struct nvme_ctrl *ctrl =
4485                 container_of(dev, struct nvme_ctrl, ctrl_device);
4486         struct nvme_subsystem *subsys = ctrl->subsys;
4487
4488         if (!subsys || ctrl->instance != subsys->instance)
4489                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4490
4491         nvme_free_cels(ctrl);
4492         nvme_mpath_uninit(ctrl);
4493         __free_page(ctrl->discard_page);
4494
4495         if (subsys) {
4496                 mutex_lock(&nvme_subsystems_lock);
4497                 list_del(&ctrl->subsys_entry);
4498                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4499                 mutex_unlock(&nvme_subsystems_lock);
4500         }
4501
4502         ctrl->ops->free_ctrl(ctrl);
4503
4504         if (subsys)
4505                 nvme_put_subsystem(subsys);
4506 }
4507
4508 /*
4509  * Initialize a NVMe controller structures.  This needs to be called during
4510  * earliest initialization so that we have the initialized structured around
4511  * during probing.
4512  */
4513 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4514                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4515 {
4516         int ret;
4517
4518         ctrl->state = NVME_CTRL_NEW;
4519         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4520         spin_lock_init(&ctrl->lock);
4521         mutex_init(&ctrl->scan_lock);
4522         INIT_LIST_HEAD(&ctrl->namespaces);
4523         xa_init(&ctrl->cels);
4524         init_rwsem(&ctrl->namespaces_rwsem);
4525         ctrl->dev = dev;
4526         ctrl->ops = ops;
4527         ctrl->quirks = quirks;
4528         ctrl->numa_node = NUMA_NO_NODE;
4529         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4530         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4531         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4532         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4533         init_waitqueue_head(&ctrl->state_wq);
4534
4535         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4536         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4537         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4538         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4539
4540         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4541                         PAGE_SIZE);
4542         ctrl->discard_page = alloc_page(GFP_KERNEL);
4543         if (!ctrl->discard_page) {
4544                 ret = -ENOMEM;
4545                 goto out;
4546         }
4547
4548         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4549         if (ret < 0)
4550                 goto out;
4551         ctrl->instance = ret;
4552
4553         device_initialize(&ctrl->ctrl_device);
4554         ctrl->device = &ctrl->ctrl_device;
4555         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4556                         ctrl->instance);
4557         ctrl->device->class = nvme_class;
4558         ctrl->device->parent = ctrl->dev;
4559         ctrl->device->groups = nvme_dev_attr_groups;
4560         ctrl->device->release = nvme_free_ctrl;
4561         dev_set_drvdata(ctrl->device, ctrl);
4562         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4563         if (ret)
4564                 goto out_release_instance;
4565
4566         nvme_get_ctrl(ctrl);
4567         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4568         ctrl->cdev.owner = ops->module;
4569         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4570         if (ret)
4571                 goto out_free_name;
4572
4573         /*
4574          * Initialize latency tolerance controls.  The sysfs files won't
4575          * be visible to userspace unless the device actually supports APST.
4576          */
4577         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4578         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4579                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4580
4581         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4582
4583         return 0;
4584 out_free_name:
4585         nvme_put_ctrl(ctrl);
4586         kfree_const(ctrl->device->kobj.name);
4587 out_release_instance:
4588         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4589 out:
4590         if (ctrl->discard_page)
4591                 __free_page(ctrl->discard_page);
4592         return ret;
4593 }
4594 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4595
4596 /**
4597  * nvme_kill_queues(): Ends all namespace queues
4598  * @ctrl: the dead controller that needs to end
4599  *
4600  * Call this function when the driver determines it is unable to get the
4601  * controller in a state capable of servicing IO.
4602  */
4603 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4604 {
4605         struct nvme_ns *ns;
4606
4607         down_read(&ctrl->namespaces_rwsem);
4608
4609         /* Forcibly unquiesce queues to avoid blocking dispatch */
4610         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4611                 blk_mq_unquiesce_queue(ctrl->admin_q);
4612
4613         list_for_each_entry(ns, &ctrl->namespaces, list)
4614                 nvme_set_queue_dying(ns);
4615
4616         up_read(&ctrl->namespaces_rwsem);
4617 }
4618 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4619
4620 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4621 {
4622         struct nvme_ns *ns;
4623
4624         down_read(&ctrl->namespaces_rwsem);
4625         list_for_each_entry(ns, &ctrl->namespaces, list)
4626                 blk_mq_unfreeze_queue(ns->queue);
4627         up_read(&ctrl->namespaces_rwsem);
4628 }
4629 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4630
4631 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4632 {
4633         struct nvme_ns *ns;
4634
4635         down_read(&ctrl->namespaces_rwsem);
4636         list_for_each_entry(ns, &ctrl->namespaces, list) {
4637                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4638                 if (timeout <= 0)
4639                         break;
4640         }
4641         up_read(&ctrl->namespaces_rwsem);
4642         return timeout;
4643 }
4644 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4645
4646 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4647 {
4648         struct nvme_ns *ns;
4649
4650         down_read(&ctrl->namespaces_rwsem);
4651         list_for_each_entry(ns, &ctrl->namespaces, list)
4652                 blk_mq_freeze_queue_wait(ns->queue);
4653         up_read(&ctrl->namespaces_rwsem);
4654 }
4655 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4656
4657 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4658 {
4659         struct nvme_ns *ns;
4660
4661         down_read(&ctrl->namespaces_rwsem);
4662         list_for_each_entry(ns, &ctrl->namespaces, list)
4663                 blk_freeze_queue_start(ns->queue);
4664         up_read(&ctrl->namespaces_rwsem);
4665 }
4666 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4667
4668 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4669 {
4670         struct nvme_ns *ns;
4671
4672         down_read(&ctrl->namespaces_rwsem);
4673         list_for_each_entry(ns, &ctrl->namespaces, list)
4674                 blk_mq_quiesce_queue(ns->queue);
4675         up_read(&ctrl->namespaces_rwsem);
4676 }
4677 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4678
4679 void nvme_start_queues(struct nvme_ctrl *ctrl)
4680 {
4681         struct nvme_ns *ns;
4682
4683         down_read(&ctrl->namespaces_rwsem);
4684         list_for_each_entry(ns, &ctrl->namespaces, list)
4685                 blk_mq_unquiesce_queue(ns->queue);
4686         up_read(&ctrl->namespaces_rwsem);
4687 }
4688 EXPORT_SYMBOL_GPL(nvme_start_queues);
4689
4690 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4691 {
4692         struct nvme_ns *ns;
4693
4694         down_read(&ctrl->namespaces_rwsem);
4695         list_for_each_entry(ns, &ctrl->namespaces, list)
4696                 blk_sync_queue(ns->queue);
4697         up_read(&ctrl->namespaces_rwsem);
4698 }
4699 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4700
4701 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4702 {
4703         nvme_sync_io_queues(ctrl);
4704         if (ctrl->admin_q)
4705                 blk_sync_queue(ctrl->admin_q);
4706 }
4707 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4708
4709 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4710 {
4711         if (file->f_op != &nvme_dev_fops)
4712                 return NULL;
4713         return file->private_data;
4714 }
4715 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4716
4717 /*
4718  * Check we didn't inadvertently grow the command structure sizes:
4719  */
4720 static inline void _nvme_check_size(void)
4721 {
4722         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4723         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4724         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4725         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4726         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4727         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4728         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4729         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4730         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4731         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4732         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4733         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4734         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4735         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4736         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4737         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4738         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4739         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4740         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4741 }
4742
4743
4744 static int __init nvme_core_init(void)
4745 {
4746         int result = -ENOMEM;
4747
4748         _nvme_check_size();
4749
4750         nvme_wq = alloc_workqueue("nvme-wq",
4751                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4752         if (!nvme_wq)
4753                 goto out;
4754
4755         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4756                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4757         if (!nvme_reset_wq)
4758                 goto destroy_wq;
4759
4760         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4761                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4762         if (!nvme_delete_wq)
4763                 goto destroy_reset_wq;
4764
4765         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4766                         NVME_MINORS, "nvme");
4767         if (result < 0)
4768                 goto destroy_delete_wq;
4769
4770         nvme_class = class_create(THIS_MODULE, "nvme");
4771         if (IS_ERR(nvme_class)) {
4772                 result = PTR_ERR(nvme_class);
4773                 goto unregister_chrdev;
4774         }
4775         nvme_class->dev_uevent = nvme_class_uevent;
4776
4777         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4778         if (IS_ERR(nvme_subsys_class)) {
4779                 result = PTR_ERR(nvme_subsys_class);
4780                 goto destroy_class;
4781         }
4782         return 0;
4783
4784 destroy_class:
4785         class_destroy(nvme_class);
4786 unregister_chrdev:
4787         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4788 destroy_delete_wq:
4789         destroy_workqueue(nvme_delete_wq);
4790 destroy_reset_wq:
4791         destroy_workqueue(nvme_reset_wq);
4792 destroy_wq:
4793         destroy_workqueue(nvme_wq);
4794 out:
4795         return result;
4796 }
4797
4798 static void __exit nvme_core_exit(void)
4799 {
4800         class_destroy(nvme_subsys_class);
4801         class_destroy(nvme_class);
4802         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4803         destroy_workqueue(nvme_delete_wq);
4804         destroy_workqueue(nvme_reset_wq);
4805         destroy_workqueue(nvme_wq);
4806         ida_destroy(&nvme_instance_ida);
4807 }
4808
4809 MODULE_LICENSE("GPL");
4810 MODULE_VERSION("1.0");
4811 module_init(nvme_core_init);
4812 module_exit(nvme_core_exit);