1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
28 #define CREATE_TRACE_POINTS
31 #define NVME_MINORS (1U << MINORBITS)
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
65 * nvme_wq - hosts nvme related works that are not reset or delete
66 * nvme_reset_wq - hosts nvme reset works
67 * nvme_delete_wq - hosts nvme delete works
69 * nvme_wq will host works such as scan, aen handling, fw activation,
70 * keep-alive, periodic reconnects etc. nvme_reset_wq
71 * runs reset works which also flush works hosted on nvme_wq for
72 * serialization purposes. nvme_delete_wq host controller deletion
73 * works which flush reset works for serialization.
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
92 static DEFINE_IDA(nvme_ns_chr_minor_ida);
93 static dev_t nvme_ns_chr_devt;
94 static struct class *nvme_ns_chr_class;
96 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
97 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
101 * Prepare a queue for teardown.
103 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
104 * the capacity to 0 after that to avoid blocking dispatchers that may be
105 * holding bd_butex. This will end buffered writers dirtying pages that can't
108 static void nvme_set_queue_dying(struct nvme_ns *ns)
110 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
113 blk_set_queue_dying(ns->queue);
114 blk_mq_unquiesce_queue(ns->queue);
116 set_capacity_and_notify(ns->disk, 0);
119 void nvme_queue_scan(struct nvme_ctrl *ctrl)
122 * Only new queue scan work when admin and IO queues are both alive
124 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
125 queue_work(nvme_wq, &ctrl->scan_work);
129 * Use this function to proceed with scheduling reset_work for a controller
130 * that had previously been set to the resetting state. This is intended for
131 * code paths that can't be interrupted by other reset attempts. A hot removal
132 * may prevent this from succeeding.
134 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
136 if (ctrl->state != NVME_CTRL_RESETTING)
138 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
142 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
144 static void nvme_failfast_work(struct work_struct *work)
146 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
147 struct nvme_ctrl, failfast_work);
149 if (ctrl->state != NVME_CTRL_CONNECTING)
152 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
153 dev_info(ctrl->device, "failfast expired\n");
154 nvme_kick_requeue_lists(ctrl);
157 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
159 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
162 schedule_delayed_work(&ctrl->failfast_work,
163 ctrl->opts->fast_io_fail_tmo * HZ);
166 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
171 cancel_delayed_work_sync(&ctrl->failfast_work);
172 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
176 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
178 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
180 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
184 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
186 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
190 ret = nvme_reset_ctrl(ctrl);
192 flush_work(&ctrl->reset_work);
193 if (ctrl->state != NVME_CTRL_LIVE)
200 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
202 dev_info(ctrl->device,
203 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
205 flush_work(&ctrl->reset_work);
206 nvme_stop_ctrl(ctrl);
207 nvme_remove_namespaces(ctrl);
208 ctrl->ops->delete_ctrl(ctrl);
209 nvme_uninit_ctrl(ctrl);
212 static void nvme_delete_ctrl_work(struct work_struct *work)
214 struct nvme_ctrl *ctrl =
215 container_of(work, struct nvme_ctrl, delete_work);
217 nvme_do_delete_ctrl(ctrl);
220 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
222 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
224 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
228 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
230 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
233 * Keep a reference until nvme_do_delete_ctrl() complete,
234 * since ->delete_ctrl can free the controller.
237 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
238 nvme_do_delete_ctrl(ctrl);
242 static blk_status_t nvme_error_status(u16 status)
244 switch (status & 0x7ff) {
245 case NVME_SC_SUCCESS:
247 case NVME_SC_CAP_EXCEEDED:
248 return BLK_STS_NOSPC;
249 case NVME_SC_LBA_RANGE:
250 case NVME_SC_CMD_INTERRUPTED:
251 case NVME_SC_NS_NOT_READY:
252 return BLK_STS_TARGET;
253 case NVME_SC_BAD_ATTRIBUTES:
254 case NVME_SC_ONCS_NOT_SUPPORTED:
255 case NVME_SC_INVALID_OPCODE:
256 case NVME_SC_INVALID_FIELD:
257 case NVME_SC_INVALID_NS:
258 return BLK_STS_NOTSUPP;
259 case NVME_SC_WRITE_FAULT:
260 case NVME_SC_READ_ERROR:
261 case NVME_SC_UNWRITTEN_BLOCK:
262 case NVME_SC_ACCESS_DENIED:
263 case NVME_SC_READ_ONLY:
264 case NVME_SC_COMPARE_FAILED:
265 return BLK_STS_MEDIUM;
266 case NVME_SC_GUARD_CHECK:
267 case NVME_SC_APPTAG_CHECK:
268 case NVME_SC_REFTAG_CHECK:
269 case NVME_SC_INVALID_PI:
270 return BLK_STS_PROTECTION;
271 case NVME_SC_RESERVATION_CONFLICT:
272 return BLK_STS_NEXUS;
273 case NVME_SC_HOST_PATH_ERROR:
274 return BLK_STS_TRANSPORT;
275 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
276 return BLK_STS_ZONE_ACTIVE_RESOURCE;
277 case NVME_SC_ZONE_TOO_MANY_OPEN:
278 return BLK_STS_ZONE_OPEN_RESOURCE;
280 return BLK_STS_IOERR;
284 static void nvme_retry_req(struct request *req)
286 unsigned long delay = 0;
289 /* The mask and shift result must be <= 3 */
290 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
292 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
294 nvme_req(req)->retries++;
295 blk_mq_requeue_request(req, false);
296 blk_mq_delay_kick_requeue_list(req->q, delay);
299 enum nvme_disposition {
305 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
307 if (likely(nvme_req(req)->status == 0))
310 if (blk_noretry_request(req) ||
311 (nvme_req(req)->status & NVME_SC_DNR) ||
312 nvme_req(req)->retries >= nvme_max_retries)
315 if (req->cmd_flags & REQ_NVME_MPATH) {
316 if (nvme_is_path_error(nvme_req(req)->status) ||
317 blk_queue_dying(req->q))
320 if (blk_queue_dying(req->q))
327 static inline void nvme_end_req(struct request *req)
329 blk_status_t status = nvme_error_status(nvme_req(req)->status);
331 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
332 req_op(req) == REQ_OP_ZONE_APPEND)
333 req->__sector = nvme_lba_to_sect(req->q->queuedata,
334 le64_to_cpu(nvme_req(req)->result.u64));
336 nvme_trace_bio_complete(req);
337 blk_mq_end_request(req, status);
340 void nvme_complete_rq(struct request *req)
342 trace_nvme_complete_rq(req);
343 nvme_cleanup_cmd(req);
345 if (nvme_req(req)->ctrl->kas)
346 nvme_req(req)->ctrl->comp_seen = true;
348 switch (nvme_decide_disposition(req)) {
356 nvme_failover_req(req);
360 EXPORT_SYMBOL_GPL(nvme_complete_rq);
363 * Called to unwind from ->queue_rq on a failed command submission so that the
364 * multipathing code gets called to potentially failover to another path.
365 * The caller needs to unwind all transport specific resource allocations and
366 * must return propagate the return value.
368 blk_status_t nvme_host_path_error(struct request *req)
370 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
371 blk_mq_set_request_complete(req);
372 nvme_complete_rq(req);
375 EXPORT_SYMBOL_GPL(nvme_host_path_error);
377 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
379 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
380 "Cancelling I/O %d", req->tag);
382 /* don't abort one completed request */
383 if (blk_mq_request_completed(req))
386 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
387 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
388 blk_mq_complete_request(req);
391 EXPORT_SYMBOL_GPL(nvme_cancel_request);
393 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
396 blk_mq_tagset_busy_iter(ctrl->tagset,
397 nvme_cancel_request, ctrl);
398 blk_mq_tagset_wait_completed_request(ctrl->tagset);
401 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
403 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
405 if (ctrl->admin_tagset) {
406 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
407 nvme_cancel_request, ctrl);
408 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
411 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
413 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
414 enum nvme_ctrl_state new_state)
416 enum nvme_ctrl_state old_state;
418 bool changed = false;
420 spin_lock_irqsave(&ctrl->lock, flags);
422 old_state = ctrl->state;
427 case NVME_CTRL_RESETTING:
428 case NVME_CTRL_CONNECTING:
435 case NVME_CTRL_RESETTING:
445 case NVME_CTRL_CONNECTING:
448 case NVME_CTRL_RESETTING:
455 case NVME_CTRL_DELETING:
458 case NVME_CTRL_RESETTING:
459 case NVME_CTRL_CONNECTING:
466 case NVME_CTRL_DELETING_NOIO:
468 case NVME_CTRL_DELETING:
478 case NVME_CTRL_DELETING:
490 ctrl->state = new_state;
491 wake_up_all(&ctrl->state_wq);
494 spin_unlock_irqrestore(&ctrl->lock, flags);
498 if (ctrl->state == NVME_CTRL_LIVE) {
499 if (old_state == NVME_CTRL_CONNECTING)
500 nvme_stop_failfast_work(ctrl);
501 nvme_kick_requeue_lists(ctrl);
502 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
503 old_state == NVME_CTRL_RESETTING) {
504 nvme_start_failfast_work(ctrl);
508 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
511 * Returns true for sink states that can't ever transition back to live.
513 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
515 switch (ctrl->state) {
518 case NVME_CTRL_RESETTING:
519 case NVME_CTRL_CONNECTING:
521 case NVME_CTRL_DELETING:
522 case NVME_CTRL_DELETING_NOIO:
526 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
532 * Waits for the controller state to be resetting, or returns false if it is
533 * not possible to ever transition to that state.
535 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
537 wait_event(ctrl->state_wq,
538 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
539 nvme_state_terminal(ctrl));
540 return ctrl->state == NVME_CTRL_RESETTING;
542 EXPORT_SYMBOL_GPL(nvme_wait_reset);
544 static void nvme_free_ns_head(struct kref *ref)
546 struct nvme_ns_head *head =
547 container_of(ref, struct nvme_ns_head, ref);
549 nvme_mpath_remove_disk(head);
550 ida_simple_remove(&head->subsys->ns_ida, head->instance);
551 cleanup_srcu_struct(&head->srcu);
552 nvme_put_subsystem(head->subsys);
556 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
558 return kref_get_unless_zero(&head->ref);
561 void nvme_put_ns_head(struct nvme_ns_head *head)
563 kref_put(&head->ref, nvme_free_ns_head);
566 static void nvme_free_ns(struct kref *kref)
568 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
571 nvme_nvm_unregister(ns);
574 nvme_put_ns_head(ns->head);
575 nvme_put_ctrl(ns->ctrl);
579 void nvme_put_ns(struct nvme_ns *ns)
581 kref_put(&ns->kref, nvme_free_ns);
583 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
585 static inline void nvme_clear_nvme_request(struct request *req)
587 struct nvme_command *cmd = nvme_req(req)->cmd;
589 memset(cmd, 0, sizeof(*cmd));
590 nvme_req(req)->retries = 0;
591 nvme_req(req)->flags = 0;
592 req->rq_flags |= RQF_DONTPREP;
595 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
597 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
600 static inline void nvme_init_request(struct request *req,
601 struct nvme_command *cmd)
603 if (req->q->queuedata)
604 req->timeout = NVME_IO_TIMEOUT;
605 else /* no queuedata implies admin queue */
606 req->timeout = NVME_ADMIN_TIMEOUT;
608 /* passthru commands should let the driver set the SGL flags */
609 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
611 req->cmd_flags |= REQ_FAILFAST_DRIVER;
612 nvme_clear_nvme_request(req);
613 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
616 struct request *nvme_alloc_request(struct request_queue *q,
617 struct nvme_command *cmd, blk_mq_req_flags_t flags)
621 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
623 nvme_init_request(req, cmd);
626 EXPORT_SYMBOL_GPL(nvme_alloc_request);
628 static struct request *nvme_alloc_request_qid(struct request_queue *q,
629 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
633 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
636 nvme_init_request(req, cmd);
640 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
642 struct nvme_command c;
644 memset(&c, 0, sizeof(c));
646 c.directive.opcode = nvme_admin_directive_send;
647 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
648 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
649 c.directive.dtype = NVME_DIR_IDENTIFY;
650 c.directive.tdtype = NVME_DIR_STREAMS;
651 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
653 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
656 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
658 return nvme_toggle_streams(ctrl, false);
661 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
663 return nvme_toggle_streams(ctrl, true);
666 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
667 struct streams_directive_params *s, u32 nsid)
669 struct nvme_command c;
671 memset(&c, 0, sizeof(c));
672 memset(s, 0, sizeof(*s));
674 c.directive.opcode = nvme_admin_directive_recv;
675 c.directive.nsid = cpu_to_le32(nsid);
676 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
677 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
678 c.directive.dtype = NVME_DIR_STREAMS;
680 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
683 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
685 struct streams_directive_params s;
688 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
693 ret = nvme_enable_streams(ctrl);
697 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
699 goto out_disable_stream;
701 ctrl->nssa = le16_to_cpu(s.nssa);
702 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
703 dev_info(ctrl->device, "too few streams (%u) available\n",
705 goto out_disable_stream;
708 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
709 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
713 nvme_disable_streams(ctrl);
718 * Check if 'req' has a write hint associated with it. If it does, assign
719 * a valid namespace stream to the write.
721 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
722 struct request *req, u16 *control,
725 enum rw_hint streamid = req->write_hint;
727 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
731 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
734 *control |= NVME_RW_DTYPE_STREAMS;
735 *dsmgmt |= streamid << 16;
738 if (streamid < ARRAY_SIZE(req->q->write_hints))
739 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
742 static inline void nvme_setup_flush(struct nvme_ns *ns,
743 struct nvme_command *cmnd)
745 cmnd->common.opcode = nvme_cmd_flush;
746 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
749 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
750 struct nvme_command *cmnd)
752 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
753 struct nvme_dsm_range *range;
757 * Some devices do not consider the DSM 'Number of Ranges' field when
758 * determining how much data to DMA. Always allocate memory for maximum
759 * number of segments to prevent device reading beyond end of buffer.
761 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
763 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
766 * If we fail allocation our range, fallback to the controller
767 * discard page. If that's also busy, it's safe to return
768 * busy, as we know we can make progress once that's freed.
770 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
771 return BLK_STS_RESOURCE;
773 range = page_address(ns->ctrl->discard_page);
776 __rq_for_each_bio(bio, req) {
777 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
778 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
781 range[n].cattr = cpu_to_le32(0);
782 range[n].nlb = cpu_to_le32(nlb);
783 range[n].slba = cpu_to_le64(slba);
788 if (WARN_ON_ONCE(n != segments)) {
789 if (virt_to_page(range) == ns->ctrl->discard_page)
790 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
793 return BLK_STS_IOERR;
796 cmnd->dsm.opcode = nvme_cmd_dsm;
797 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
798 cmnd->dsm.nr = cpu_to_le32(segments - 1);
799 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
801 req->special_vec.bv_page = virt_to_page(range);
802 req->special_vec.bv_offset = offset_in_page(range);
803 req->special_vec.bv_len = alloc_size;
804 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
809 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
810 struct request *req, struct nvme_command *cmnd)
812 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
813 return nvme_setup_discard(ns, req, cmnd);
815 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
816 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
817 cmnd->write_zeroes.slba =
818 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
819 cmnd->write_zeroes.length =
820 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
821 cmnd->write_zeroes.control = 0;
825 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
826 struct request *req, struct nvme_command *cmnd,
829 struct nvme_ctrl *ctrl = ns->ctrl;
833 if (req->cmd_flags & REQ_FUA)
834 control |= NVME_RW_FUA;
835 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
836 control |= NVME_RW_LR;
838 if (req->cmd_flags & REQ_RAHEAD)
839 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
841 cmnd->rw.opcode = op;
842 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
843 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
844 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
846 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
847 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
851 * If formated with metadata, the block layer always provides a
852 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
853 * we enable the PRACT bit for protection information or set the
854 * namespace capacity to zero to prevent any I/O.
856 if (!blk_integrity_rq(req)) {
857 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
858 return BLK_STS_NOTSUPP;
859 control |= NVME_RW_PRINFO_PRACT;
862 switch (ns->pi_type) {
863 case NVME_NS_DPS_PI_TYPE3:
864 control |= NVME_RW_PRINFO_PRCHK_GUARD;
866 case NVME_NS_DPS_PI_TYPE1:
867 case NVME_NS_DPS_PI_TYPE2:
868 control |= NVME_RW_PRINFO_PRCHK_GUARD |
869 NVME_RW_PRINFO_PRCHK_REF;
870 if (op == nvme_cmd_zone_append)
871 control |= NVME_RW_APPEND_PIREMAP;
872 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
877 cmnd->rw.control = cpu_to_le16(control);
878 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
882 void nvme_cleanup_cmd(struct request *req)
884 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
885 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
886 struct page *page = req->special_vec.bv_page;
888 if (page == ctrl->discard_page)
889 clear_bit_unlock(0, &ctrl->discard_page_busy);
891 kfree(page_address(page) + req->special_vec.bv_offset);
894 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
896 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
898 struct nvme_command *cmd = nvme_req(req)->cmd;
899 blk_status_t ret = BLK_STS_OK;
901 if (!(req->rq_flags & RQF_DONTPREP))
902 nvme_clear_nvme_request(req);
904 switch (req_op(req)) {
907 /* these are setup prior to execution in nvme_init_request() */
910 nvme_setup_flush(ns, cmd);
912 case REQ_OP_ZONE_RESET_ALL:
913 case REQ_OP_ZONE_RESET:
914 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
916 case REQ_OP_ZONE_OPEN:
917 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
919 case REQ_OP_ZONE_CLOSE:
920 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
922 case REQ_OP_ZONE_FINISH:
923 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
925 case REQ_OP_WRITE_ZEROES:
926 ret = nvme_setup_write_zeroes(ns, req, cmd);
929 ret = nvme_setup_discard(ns, req, cmd);
932 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
935 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
937 case REQ_OP_ZONE_APPEND:
938 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
942 return BLK_STS_IOERR;
945 cmd->common.command_id = req->tag;
946 trace_nvme_setup_cmd(req, cmd);
949 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
951 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
953 struct completion *waiting = rq->end_io_data;
955 rq->end_io_data = NULL;
959 static void nvme_execute_rq_polled(struct request_queue *q,
960 struct gendisk *bd_disk, struct request *rq, int at_head)
962 DECLARE_COMPLETION_ONSTACK(wait);
964 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
966 rq->cmd_flags |= REQ_HIPRI;
967 rq->end_io_data = &wait;
968 blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
970 while (!completion_done(&wait)) {
971 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
977 * Returns 0 on success. If the result is negative, it's a Linux error code;
978 * if the result is positive, it's an NVM Express status code
980 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
981 union nvme_result *result, void *buffer, unsigned bufflen,
982 unsigned timeout, int qid, int at_head,
983 blk_mq_req_flags_t flags, bool poll)
988 if (qid == NVME_QID_ANY)
989 req = nvme_alloc_request(q, cmd, flags);
991 req = nvme_alloc_request_qid(q, cmd, flags, qid);
996 req->timeout = timeout;
998 if (buffer && bufflen) {
999 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1005 nvme_execute_rq_polled(req->q, NULL, req, at_head);
1007 blk_execute_rq(NULL, req, at_head);
1009 *result = nvme_req(req)->result;
1010 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1013 ret = nvme_req(req)->status;
1015 blk_mq_free_request(req);
1018 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1020 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1021 void *buffer, unsigned bufflen)
1023 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1024 NVME_QID_ANY, 0, 0, false);
1026 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1028 static u32 nvme_known_admin_effects(u8 opcode)
1031 case nvme_admin_format_nvm:
1032 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1033 NVME_CMD_EFFECTS_CSE_MASK;
1034 case nvme_admin_sanitize_nvm:
1035 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1042 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1047 if (ns->head->effects)
1048 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1049 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1050 dev_warn_once(ctrl->device,
1051 "IO command:%02x has unhandled effects:%08x\n",
1057 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1058 effects |= nvme_known_admin_effects(opcode);
1062 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1064 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1067 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1070 * For simplicity, IO to all namespaces is quiesced even if the command
1071 * effects say only one namespace is affected.
1073 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1074 mutex_lock(&ctrl->scan_lock);
1075 mutex_lock(&ctrl->subsys->lock);
1076 nvme_mpath_start_freeze(ctrl->subsys);
1077 nvme_mpath_wait_freeze(ctrl->subsys);
1078 nvme_start_freeze(ctrl);
1079 nvme_wait_freeze(ctrl);
1084 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1086 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1087 nvme_unfreeze(ctrl);
1088 nvme_mpath_unfreeze(ctrl->subsys);
1089 mutex_unlock(&ctrl->subsys->lock);
1090 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1091 mutex_unlock(&ctrl->scan_lock);
1093 if (effects & NVME_CMD_EFFECTS_CCC)
1094 nvme_init_ctrl_finish(ctrl);
1095 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1096 nvme_queue_scan(ctrl);
1097 flush_work(&ctrl->scan_work);
1101 void nvme_execute_passthru_rq(struct request *rq)
1103 struct nvme_command *cmd = nvme_req(rq)->cmd;
1104 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1105 struct nvme_ns *ns = rq->q->queuedata;
1106 struct gendisk *disk = ns ? ns->disk : NULL;
1109 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1110 blk_execute_rq(disk, rq, 0);
1111 if (effects) /* nothing to be done for zero cmd effects */
1112 nvme_passthru_end(ctrl, effects);
1114 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1117 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1119 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1120 * accounting for transport roundtrip times [..].
1122 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1124 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1127 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1129 struct nvme_ctrl *ctrl = rq->end_io_data;
1130 unsigned long flags;
1131 bool startka = false;
1133 blk_mq_free_request(rq);
1136 dev_err(ctrl->device,
1137 "failed nvme_keep_alive_end_io error=%d\n",
1142 ctrl->comp_seen = false;
1143 spin_lock_irqsave(&ctrl->lock, flags);
1144 if (ctrl->state == NVME_CTRL_LIVE ||
1145 ctrl->state == NVME_CTRL_CONNECTING)
1147 spin_unlock_irqrestore(&ctrl->lock, flags);
1149 nvme_queue_keep_alive_work(ctrl);
1152 static void nvme_keep_alive_work(struct work_struct *work)
1154 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1155 struct nvme_ctrl, ka_work);
1156 bool comp_seen = ctrl->comp_seen;
1159 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1160 dev_dbg(ctrl->device,
1161 "reschedule traffic based keep-alive timer\n");
1162 ctrl->comp_seen = false;
1163 nvme_queue_keep_alive_work(ctrl);
1167 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1168 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1170 /* allocation failure, reset the controller */
1171 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1172 nvme_reset_ctrl(ctrl);
1176 rq->timeout = ctrl->kato * HZ;
1177 rq->end_io_data = ctrl;
1178 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1181 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1183 if (unlikely(ctrl->kato == 0))
1186 nvme_queue_keep_alive_work(ctrl);
1189 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1191 if (unlikely(ctrl->kato == 0))
1194 cancel_delayed_work_sync(&ctrl->ka_work);
1196 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1199 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1200 * flag, thus sending any new CNS opcodes has a big chance of not working.
1201 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1202 * (but not for any later version).
1204 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1206 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1207 return ctrl->vs < NVME_VS(1, 2, 0);
1208 return ctrl->vs < NVME_VS(1, 1, 0);
1211 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1213 struct nvme_command c = { };
1216 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1217 c.identify.opcode = nvme_admin_identify;
1218 c.identify.cns = NVME_ID_CNS_CTRL;
1220 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1224 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1225 sizeof(struct nvme_id_ctrl));
1231 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1233 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1236 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1237 struct nvme_ns_id_desc *cur, bool *csi_seen)
1239 const char *warn_str = "ctrl returned bogus length:";
1242 switch (cur->nidt) {
1243 case NVME_NIDT_EUI64:
1244 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1245 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1246 warn_str, cur->nidl);
1249 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1250 return NVME_NIDT_EUI64_LEN;
1251 case NVME_NIDT_NGUID:
1252 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1253 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1254 warn_str, cur->nidl);
1257 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1258 return NVME_NIDT_NGUID_LEN;
1259 case NVME_NIDT_UUID:
1260 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1261 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1262 warn_str, cur->nidl);
1265 uuid_copy(&ids->uuid, data + sizeof(*cur));
1266 return NVME_NIDT_UUID_LEN;
1268 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1269 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1270 warn_str, cur->nidl);
1273 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1275 return NVME_NIDT_CSI_LEN;
1277 /* Skip unknown types */
1282 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1283 struct nvme_ns_ids *ids)
1285 struct nvme_command c = { };
1286 bool csi_seen = false;
1287 int status, pos, len;
1290 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1292 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1295 c.identify.opcode = nvme_admin_identify;
1296 c.identify.nsid = cpu_to_le32(nsid);
1297 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1299 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1303 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1304 NVME_IDENTIFY_DATA_SIZE);
1306 dev_warn(ctrl->device,
1307 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1312 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1313 struct nvme_ns_id_desc *cur = data + pos;
1318 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1322 len += sizeof(*cur);
1325 if (nvme_multi_css(ctrl) && !csi_seen) {
1326 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1336 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1337 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1339 struct nvme_command c = { };
1342 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1343 c.identify.opcode = nvme_admin_identify;
1344 c.identify.nsid = cpu_to_le32(nsid);
1345 c.identify.cns = NVME_ID_CNS_NS;
1347 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1351 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1353 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1357 error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1358 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1361 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1362 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1363 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1364 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1365 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1366 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1375 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1376 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1378 union nvme_result res = { 0 };
1379 struct nvme_command c;
1382 memset(&c, 0, sizeof(c));
1383 c.features.opcode = op;
1384 c.features.fid = cpu_to_le32(fid);
1385 c.features.dword11 = cpu_to_le32(dword11);
1387 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1388 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1389 if (ret >= 0 && result)
1390 *result = le32_to_cpu(res.u32);
1394 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1395 unsigned int dword11, void *buffer, size_t buflen,
1398 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1401 EXPORT_SYMBOL_GPL(nvme_set_features);
1403 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1404 unsigned int dword11, void *buffer, size_t buflen,
1407 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1410 EXPORT_SYMBOL_GPL(nvme_get_features);
1412 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1414 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1416 int status, nr_io_queues;
1418 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1424 * Degraded controllers might return an error when setting the queue
1425 * count. We still want to be able to bring them online and offer
1426 * access to the admin queue, as that might be only way to fix them up.
1429 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1432 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1433 *count = min(*count, nr_io_queues);
1438 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1440 #define NVME_AEN_SUPPORTED \
1441 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1442 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1444 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1446 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1449 if (!supported_aens)
1452 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1455 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1458 queue_work(nvme_wq, &ctrl->async_event_work);
1462 * Issue ioctl requests on the first available path. Note that unlike normal
1463 * block layer requests we will not retry failed request on another controller.
1465 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1466 struct nvme_ns_head **head, int *srcu_idx)
1468 #ifdef CONFIG_NVME_MULTIPATH
1469 if (disk->fops == &nvme_ns_head_ops) {
1472 *head = disk->private_data;
1473 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1474 ns = nvme_find_path(*head);
1476 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1482 return disk->private_data;
1485 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1488 srcu_read_unlock(&head->srcu, idx);
1491 static int nvme_ns_open(struct nvme_ns *ns)
1494 /* should never be called due to GENHD_FL_HIDDEN */
1495 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1497 if (!kref_get_unless_zero(&ns->kref))
1499 if (!try_module_get(ns->ctrl->ops->module))
1510 static void nvme_ns_release(struct nvme_ns *ns)
1513 module_put(ns->ctrl->ops->module);
1517 static int nvme_open(struct block_device *bdev, fmode_t mode)
1519 return nvme_ns_open(bdev->bd_disk->private_data);
1522 static void nvme_release(struct gendisk *disk, fmode_t mode)
1524 nvme_ns_release(disk->private_data);
1527 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1529 /* some standard values */
1530 geo->heads = 1 << 6;
1531 geo->sectors = 1 << 5;
1532 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1536 #ifdef CONFIG_BLK_DEV_INTEGRITY
1537 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1538 u32 max_integrity_segments)
1540 struct blk_integrity integrity;
1542 memset(&integrity, 0, sizeof(integrity));
1544 case NVME_NS_DPS_PI_TYPE3:
1545 integrity.profile = &t10_pi_type3_crc;
1546 integrity.tag_size = sizeof(u16) + sizeof(u32);
1547 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1549 case NVME_NS_DPS_PI_TYPE1:
1550 case NVME_NS_DPS_PI_TYPE2:
1551 integrity.profile = &t10_pi_type1_crc;
1552 integrity.tag_size = sizeof(u16);
1553 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1556 integrity.profile = NULL;
1559 integrity.tuple_size = ms;
1560 blk_integrity_register(disk, &integrity);
1561 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1564 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1565 u32 max_integrity_segments)
1568 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1570 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1572 struct nvme_ctrl *ctrl = ns->ctrl;
1573 struct request_queue *queue = disk->queue;
1574 u32 size = queue_logical_block_size(queue);
1576 if (ctrl->max_discard_sectors == 0) {
1577 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1581 if (ctrl->nr_streams && ns->sws && ns->sgs)
1582 size *= ns->sws * ns->sgs;
1584 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1585 NVME_DSM_MAX_RANGES);
1587 queue->limits.discard_alignment = 0;
1588 queue->limits.discard_granularity = size;
1590 /* If discard is already enabled, don't reset queue limits */
1591 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1594 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1595 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1597 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1598 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1601 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1603 return !uuid_is_null(&ids->uuid) ||
1604 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1605 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1608 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1610 return uuid_equal(&a->uuid, &b->uuid) &&
1611 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1612 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1616 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1617 u32 *phys_bs, u32 *io_opt)
1619 struct streams_directive_params s;
1622 if (!ctrl->nr_streams)
1625 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1629 ns->sws = le32_to_cpu(s.sws);
1630 ns->sgs = le16_to_cpu(s.sgs);
1633 *phys_bs = ns->sws * (1 << ns->lba_shift);
1635 *io_opt = *phys_bs * ns->sgs;
1641 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1643 struct nvme_ctrl *ctrl = ns->ctrl;
1646 * The PI implementation requires the metadata size to be equal to the
1647 * t10 pi tuple size.
1649 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1650 if (ns->ms == sizeof(struct t10_pi_tuple))
1651 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1655 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1656 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1658 if (ctrl->ops->flags & NVME_F_FABRICS) {
1660 * The NVMe over Fabrics specification only supports metadata as
1661 * part of the extended data LBA. We rely on HCA/HBA support to
1662 * remap the separate metadata buffer from the block layer.
1664 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1666 if (ctrl->max_integrity_segments)
1668 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1671 * For PCIe controllers, we can't easily remap the separate
1672 * metadata buffer from the block layer and thus require a
1673 * separate metadata buffer for block layer metadata/PI support.
1674 * We allow extended LBAs for the passthrough interface, though.
1676 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1677 ns->features |= NVME_NS_EXT_LBAS;
1679 ns->features |= NVME_NS_METADATA_SUPPORTED;
1685 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1686 struct request_queue *q)
1688 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1690 if (ctrl->max_hw_sectors) {
1692 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1694 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1695 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1696 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1698 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1699 blk_queue_dma_alignment(q, 7);
1700 blk_queue_write_cache(q, vwc, vwc);
1703 static void nvme_update_disk_info(struct gendisk *disk,
1704 struct nvme_ns *ns, struct nvme_id_ns *id)
1706 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1707 unsigned short bs = 1 << ns->lba_shift;
1708 u32 atomic_bs, phys_bs, io_opt = 0;
1711 * The block layer can't support LBA sizes larger than the page size
1712 * yet, so catch this early and don't allow block I/O.
1714 if (ns->lba_shift > PAGE_SHIFT) {
1719 blk_integrity_unregister(disk);
1721 atomic_bs = phys_bs = bs;
1722 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1723 if (id->nabo == 0) {
1725 * Bit 1 indicates whether NAWUPF is defined for this namespace
1726 * and whether it should be used instead of AWUPF. If NAWUPF ==
1727 * 0 then AWUPF must be used instead.
1729 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1730 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1732 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1735 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1736 /* NPWG = Namespace Preferred Write Granularity */
1737 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1738 /* NOWS = Namespace Optimal Write Size */
1739 io_opt = bs * (1 + le16_to_cpu(id->nows));
1742 blk_queue_logical_block_size(disk->queue, bs);
1744 * Linux filesystems assume writing a single physical block is
1745 * an atomic operation. Hence limit the physical block size to the
1746 * value of the Atomic Write Unit Power Fail parameter.
1748 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1749 blk_queue_io_min(disk->queue, phys_bs);
1750 blk_queue_io_opt(disk->queue, io_opt);
1753 * Register a metadata profile for PI, or the plain non-integrity NVMe
1754 * metadata masquerading as Type 0 if supported, otherwise reject block
1755 * I/O to namespaces with metadata except when the namespace supports
1756 * PI, as it can strip/insert in that case.
1759 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1760 (ns->features & NVME_NS_METADATA_SUPPORTED))
1761 nvme_init_integrity(disk, ns->ms, ns->pi_type,
1762 ns->ctrl->max_integrity_segments);
1763 else if (!nvme_ns_has_pi(ns))
1767 set_capacity_and_notify(disk, capacity);
1769 nvme_config_discard(disk, ns);
1770 blk_queue_max_write_zeroes_sectors(disk->queue,
1771 ns->ctrl->max_zeroes_sectors);
1773 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1774 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1777 static inline bool nvme_first_scan(struct gendisk *disk)
1779 /* nvme_alloc_ns() scans the disk prior to adding it */
1780 return !(disk->flags & GENHD_FL_UP);
1783 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1785 struct nvme_ctrl *ctrl = ns->ctrl;
1788 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1789 is_power_of_2(ctrl->max_hw_sectors))
1790 iob = ctrl->max_hw_sectors;
1792 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1797 if (!is_power_of_2(iob)) {
1798 if (nvme_first_scan(ns->disk))
1799 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1800 ns->disk->disk_name, iob);
1804 if (blk_queue_is_zoned(ns->disk->queue)) {
1805 if (nvme_first_scan(ns->disk))
1806 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1807 ns->disk->disk_name);
1811 blk_queue_chunk_sectors(ns->queue, iob);
1814 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1816 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1819 blk_mq_freeze_queue(ns->disk->queue);
1820 ns->lba_shift = id->lbaf[lbaf].ds;
1821 nvme_set_queue_limits(ns->ctrl, ns->queue);
1823 ret = nvme_configure_metadata(ns, id);
1826 nvme_set_chunk_sectors(ns, id);
1827 nvme_update_disk_info(ns->disk, ns, id);
1829 if (ns->head->ids.csi == NVME_CSI_ZNS) {
1830 ret = nvme_update_zone_info(ns, lbaf);
1835 blk_mq_unfreeze_queue(ns->disk->queue);
1837 if (blk_queue_is_zoned(ns->queue)) {
1838 ret = nvme_revalidate_zones(ns);
1839 if (ret && !nvme_first_scan(ns->disk))
1843 if (nvme_ns_head_multipath(ns->head)) {
1844 blk_mq_freeze_queue(ns->head->disk->queue);
1845 nvme_update_disk_info(ns->head->disk, ns, id);
1846 blk_stack_limits(&ns->head->disk->queue->limits,
1847 &ns->queue->limits, 0);
1848 blk_queue_update_readahead(ns->head->disk->queue);
1849 blk_mq_unfreeze_queue(ns->head->disk->queue);
1854 blk_mq_unfreeze_queue(ns->disk->queue);
1857 * If probing fails due an unsupported feature, hide the block device,
1858 * but still allow other access.
1860 if (ret == -ENODEV) {
1861 ns->disk->flags |= GENHD_FL_HIDDEN;
1867 static char nvme_pr_type(enum pr_type type)
1870 case PR_WRITE_EXCLUSIVE:
1872 case PR_EXCLUSIVE_ACCESS:
1874 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1876 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1878 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1880 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1887 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1888 u64 key, u64 sa_key, u8 op)
1890 struct nvme_ns_head *head = NULL;
1892 struct nvme_command c;
1894 u8 data[16] = { 0, };
1896 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1898 return -EWOULDBLOCK;
1900 put_unaligned_le64(key, &data[0]);
1901 put_unaligned_le64(sa_key, &data[8]);
1903 memset(&c, 0, sizeof(c));
1904 c.common.opcode = op;
1905 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1906 c.common.cdw10 = cpu_to_le32(cdw10);
1908 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1909 nvme_put_ns_from_disk(head, srcu_idx);
1913 static int nvme_pr_register(struct block_device *bdev, u64 old,
1914 u64 new, unsigned flags)
1918 if (flags & ~PR_FL_IGNORE_KEY)
1921 cdw10 = old ? 2 : 0;
1922 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1923 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1924 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1927 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1928 enum pr_type type, unsigned flags)
1932 if (flags & ~PR_FL_IGNORE_KEY)
1935 cdw10 = nvme_pr_type(type) << 8;
1936 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1937 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1940 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1941 enum pr_type type, bool abort)
1943 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1945 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1948 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1950 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1952 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1955 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1957 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1959 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1962 const struct pr_ops nvme_pr_ops = {
1963 .pr_register = nvme_pr_register,
1964 .pr_reserve = nvme_pr_reserve,
1965 .pr_release = nvme_pr_release,
1966 .pr_preempt = nvme_pr_preempt,
1967 .pr_clear = nvme_pr_clear,
1970 #ifdef CONFIG_BLK_SED_OPAL
1971 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1974 struct nvme_ctrl *ctrl = data;
1975 struct nvme_command cmd;
1977 memset(&cmd, 0, sizeof(cmd));
1979 cmd.common.opcode = nvme_admin_security_send;
1981 cmd.common.opcode = nvme_admin_security_recv;
1982 cmd.common.nsid = 0;
1983 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1984 cmd.common.cdw11 = cpu_to_le32(len);
1986 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
1987 NVME_QID_ANY, 1, 0, false);
1989 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1990 #endif /* CONFIG_BLK_SED_OPAL */
1992 static const struct block_device_operations nvme_bdev_ops = {
1993 .owner = THIS_MODULE,
1994 .ioctl = nvme_ioctl,
1996 .release = nvme_release,
1997 .getgeo = nvme_getgeo,
1998 .report_zones = nvme_report_zones,
1999 .pr_ops = &nvme_pr_ops,
2002 #ifdef CONFIG_NVME_MULTIPATH
2003 struct nvme_ctrl *nvme_find_get_live_ctrl(struct nvme_subsystem *subsys)
2005 struct nvme_ctrl *ctrl;
2008 ret = mutex_lock_killable(&nvme_subsystems_lock);
2010 return ERR_PTR(ret);
2011 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2012 if (ctrl->state == NVME_CTRL_LIVE)
2015 mutex_unlock(&nvme_subsystems_lock);
2016 return ERR_PTR(-EWOULDBLOCK);
2018 nvme_get_ctrl(ctrl);
2019 mutex_unlock(&nvme_subsystems_lock);
2022 #endif /* CONFIG_NVME_MULTIPATH */
2024 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2026 unsigned long timeout =
2027 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2028 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2031 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2034 if ((csts & NVME_CSTS_RDY) == bit)
2037 usleep_range(1000, 2000);
2038 if (fatal_signal_pending(current))
2040 if (time_after(jiffies, timeout)) {
2041 dev_err(ctrl->device,
2042 "Device not ready; aborting %s, CSTS=0x%x\n",
2043 enabled ? "initialisation" : "reset", csts);
2052 * If the device has been passed off to us in an enabled state, just clear
2053 * the enabled bit. The spec says we should set the 'shutdown notification
2054 * bits', but doing so may cause the device to complete commands to the
2055 * admin queue ... and we don't know what memory that might be pointing at!
2057 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2061 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2062 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2064 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2068 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2069 msleep(NVME_QUIRK_DELAY_AMOUNT);
2071 return nvme_wait_ready(ctrl, ctrl->cap, false);
2073 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2075 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2077 unsigned dev_page_min;
2080 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2082 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2085 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2087 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2088 dev_err(ctrl->device,
2089 "Minimum device page size %u too large for host (%u)\n",
2090 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2094 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2095 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2097 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2098 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2099 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2100 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2101 ctrl->ctrl_config |= NVME_CC_ENABLE;
2103 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2106 return nvme_wait_ready(ctrl, ctrl->cap, true);
2108 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2110 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2112 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2116 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2117 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2119 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2123 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2124 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2128 if (fatal_signal_pending(current))
2130 if (time_after(jiffies, timeout)) {
2131 dev_err(ctrl->device,
2132 "Device shutdown incomplete; abort shutdown\n");
2139 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2141 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2146 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2149 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2150 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2153 dev_warn_once(ctrl->device,
2154 "could not set timestamp (%d)\n", ret);
2158 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2160 struct nvme_feat_host_behavior *host;
2163 /* Don't bother enabling the feature if retry delay is not reported */
2167 host = kzalloc(sizeof(*host), GFP_KERNEL);
2171 host->acre = NVME_ENABLE_ACRE;
2172 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2173 host, sizeof(*host), NULL);
2179 * APST (Autonomous Power State Transition) lets us program a table of power
2180 * state transitions that the controller will perform automatically.
2181 * We configure it with a simple heuristic: we are willing to spend at most 2%
2182 * of the time transitioning between power states. Therefore, when running in
2183 * any given state, we will enter the next lower-power non-operational state
2184 * after waiting 50 * (enlat + exlat) microseconds, as long as that state's exit
2185 * latency is under the requested maximum latency.
2187 * We will not autonomously enter any non-operational state for which the total
2188 * latency exceeds ps_max_latency_us.
2190 * Users can set ps_max_latency_us to zero to turn off APST.
2192 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2194 struct nvme_feat_auto_pst *table;
2203 * If APST isn't supported or if we haven't been initialized yet,
2204 * then don't do anything.
2209 if (ctrl->npss > 31) {
2210 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2214 table = kzalloc(sizeof(*table), GFP_KERNEL);
2218 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2219 /* Turn off APST. */
2220 dev_dbg(ctrl->device, "APST disabled\n");
2225 * Walk through all states from lowest- to highest-power.
2226 * According to the spec, lower-numbered states use more power. NPSS,
2227 * despite the name, is the index of the lowest-power state, not the
2230 for (state = (int)ctrl->npss; state >= 0; state--) {
2231 u64 total_latency_us, exit_latency_us, transition_ms;
2234 table->entries[state] = target;
2237 * Don't allow transitions to the deepest state if it's quirked
2240 if (state == ctrl->npss &&
2241 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2245 * Is this state a useful non-operational state for higher-power
2246 * states to autonomously transition to?
2248 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2251 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2252 if (exit_latency_us > ctrl->ps_max_latency_us)
2255 total_latency_us = exit_latency_us +
2256 le32_to_cpu(ctrl->psd[state].entry_lat);
2259 * This state is good. Use it as the APST idle target for
2260 * higher power states.
2262 transition_ms = total_latency_us + 19;
2263 do_div(transition_ms, 20);
2264 if (transition_ms > (1 << 24) - 1)
2265 transition_ms = (1 << 24) - 1;
2267 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2270 if (total_latency_us > max_lat_us)
2271 max_lat_us = total_latency_us;
2275 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2277 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2278 max_ps, max_lat_us, (int)sizeof(*table), table);
2282 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2283 table, sizeof(*table), NULL);
2285 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2290 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2292 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2296 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2297 case PM_QOS_LATENCY_ANY:
2305 if (ctrl->ps_max_latency_us != latency) {
2306 ctrl->ps_max_latency_us = latency;
2307 if (ctrl->state == NVME_CTRL_LIVE)
2308 nvme_configure_apst(ctrl);
2312 struct nvme_core_quirk_entry {
2314 * NVMe model and firmware strings are padded with spaces. For
2315 * simplicity, strings in the quirk table are padded with NULLs
2321 unsigned long quirks;
2324 static const struct nvme_core_quirk_entry core_quirks[] = {
2327 * This Toshiba device seems to die using any APST states. See:
2328 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2331 .mn = "THNSF5256GPUK TOSHIBA",
2332 .quirks = NVME_QUIRK_NO_APST,
2336 * This LiteON CL1-3D*-Q11 firmware version has a race
2337 * condition associated with actions related to suspend to idle
2338 * LiteON has resolved the problem in future firmware
2342 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2346 /* match is null-terminated but idstr is space-padded. */
2347 static bool string_matches(const char *idstr, const char *match, size_t len)
2354 matchlen = strlen(match);
2355 WARN_ON_ONCE(matchlen > len);
2357 if (memcmp(idstr, match, matchlen))
2360 for (; matchlen < len; matchlen++)
2361 if (idstr[matchlen] != ' ')
2367 static bool quirk_matches(const struct nvme_id_ctrl *id,
2368 const struct nvme_core_quirk_entry *q)
2370 return q->vid == le16_to_cpu(id->vid) &&
2371 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2372 string_matches(id->fr, q->fr, sizeof(id->fr));
2375 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2376 struct nvme_id_ctrl *id)
2381 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2382 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2383 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2384 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2388 if (ctrl->vs >= NVME_VS(1, 2, 1))
2389 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2392 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2393 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2394 "nqn.2014.08.org.nvmexpress:%04x%04x",
2395 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2396 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2397 off += sizeof(id->sn);
2398 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2399 off += sizeof(id->mn);
2400 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2403 static void nvme_release_subsystem(struct device *dev)
2405 struct nvme_subsystem *subsys =
2406 container_of(dev, struct nvme_subsystem, dev);
2408 if (subsys->instance >= 0)
2409 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2413 static void nvme_destroy_subsystem(struct kref *ref)
2415 struct nvme_subsystem *subsys =
2416 container_of(ref, struct nvme_subsystem, ref);
2418 mutex_lock(&nvme_subsystems_lock);
2419 list_del(&subsys->entry);
2420 mutex_unlock(&nvme_subsystems_lock);
2422 ida_destroy(&subsys->ns_ida);
2423 device_del(&subsys->dev);
2424 put_device(&subsys->dev);
2427 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2429 kref_put(&subsys->ref, nvme_destroy_subsystem);
2432 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2434 struct nvme_subsystem *subsys;
2436 lockdep_assert_held(&nvme_subsystems_lock);
2439 * Fail matches for discovery subsystems. This results
2440 * in each discovery controller bound to a unique subsystem.
2441 * This avoids issues with validating controller values
2442 * that can only be true when there is a single unique subsystem.
2443 * There may be multiple and completely independent entities
2444 * that provide discovery controllers.
2446 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2449 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2450 if (strcmp(subsys->subnqn, subsysnqn))
2452 if (!kref_get_unless_zero(&subsys->ref))
2460 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2461 struct device_attribute subsys_attr_##_name = \
2462 __ATTR(_name, _mode, _show, NULL)
2464 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2465 struct device_attribute *attr,
2468 struct nvme_subsystem *subsys =
2469 container_of(dev, struct nvme_subsystem, dev);
2471 return sysfs_emit(buf, "%s\n", subsys->subnqn);
2473 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2475 #define nvme_subsys_show_str_function(field) \
2476 static ssize_t subsys_##field##_show(struct device *dev, \
2477 struct device_attribute *attr, char *buf) \
2479 struct nvme_subsystem *subsys = \
2480 container_of(dev, struct nvme_subsystem, dev); \
2481 return sysfs_emit(buf, "%.*s\n", \
2482 (int)sizeof(subsys->field), subsys->field); \
2484 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2486 nvme_subsys_show_str_function(model);
2487 nvme_subsys_show_str_function(serial);
2488 nvme_subsys_show_str_function(firmware_rev);
2490 static struct attribute *nvme_subsys_attrs[] = {
2491 &subsys_attr_model.attr,
2492 &subsys_attr_serial.attr,
2493 &subsys_attr_firmware_rev.attr,
2494 &subsys_attr_subsysnqn.attr,
2495 #ifdef CONFIG_NVME_MULTIPATH
2496 &subsys_attr_iopolicy.attr,
2501 static const struct attribute_group nvme_subsys_attrs_group = {
2502 .attrs = nvme_subsys_attrs,
2505 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2506 &nvme_subsys_attrs_group,
2510 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2512 return ctrl->opts && ctrl->opts->discovery_nqn;
2515 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2516 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2518 struct nvme_ctrl *tmp;
2520 lockdep_assert_held(&nvme_subsystems_lock);
2522 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2523 if (nvme_state_terminal(tmp))
2526 if (tmp->cntlid == ctrl->cntlid) {
2527 dev_err(ctrl->device,
2528 "Duplicate cntlid %u with %s, rejecting\n",
2529 ctrl->cntlid, dev_name(tmp->device));
2533 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2534 nvme_discovery_ctrl(ctrl))
2537 dev_err(ctrl->device,
2538 "Subsystem does not support multiple controllers\n");
2545 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2547 struct nvme_subsystem *subsys, *found;
2550 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2554 subsys->instance = -1;
2555 mutex_init(&subsys->lock);
2556 kref_init(&subsys->ref);
2557 INIT_LIST_HEAD(&subsys->ctrls);
2558 INIT_LIST_HEAD(&subsys->nsheads);
2559 nvme_init_subnqn(subsys, ctrl, id);
2560 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2561 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2562 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2563 subsys->vendor_id = le16_to_cpu(id->vid);
2564 subsys->cmic = id->cmic;
2565 subsys->awupf = le16_to_cpu(id->awupf);
2566 #ifdef CONFIG_NVME_MULTIPATH
2567 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2570 subsys->dev.class = nvme_subsys_class;
2571 subsys->dev.release = nvme_release_subsystem;
2572 subsys->dev.groups = nvme_subsys_attrs_groups;
2573 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2574 device_initialize(&subsys->dev);
2576 mutex_lock(&nvme_subsystems_lock);
2577 found = __nvme_find_get_subsystem(subsys->subnqn);
2579 put_device(&subsys->dev);
2582 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2584 goto out_put_subsystem;
2587 ret = device_add(&subsys->dev);
2589 dev_err(ctrl->device,
2590 "failed to register subsystem device.\n");
2591 put_device(&subsys->dev);
2594 ida_init(&subsys->ns_ida);
2595 list_add_tail(&subsys->entry, &nvme_subsystems);
2598 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2599 dev_name(ctrl->device));
2601 dev_err(ctrl->device,
2602 "failed to create sysfs link from subsystem.\n");
2603 goto out_put_subsystem;
2607 subsys->instance = ctrl->instance;
2608 ctrl->subsys = subsys;
2609 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2610 mutex_unlock(&nvme_subsystems_lock);
2614 nvme_put_subsystem(subsys);
2616 mutex_unlock(&nvme_subsystems_lock);
2620 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2621 void *log, size_t size, u64 offset)
2623 struct nvme_command c = { };
2624 u32 dwlen = nvme_bytes_to_numd(size);
2626 c.get_log_page.opcode = nvme_admin_get_log_page;
2627 c.get_log_page.nsid = cpu_to_le32(nsid);
2628 c.get_log_page.lid = log_page;
2629 c.get_log_page.lsp = lsp;
2630 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2631 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2632 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2633 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2634 c.get_log_page.csi = csi;
2636 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2639 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2640 struct nvme_effects_log **log)
2642 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2648 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2652 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2653 cel, sizeof(*cel), 0);
2659 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2665 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2667 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2669 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2674 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2676 struct nvme_command c = { };
2677 struct nvme_id_ctrl_nvm *id;
2680 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2681 ctrl->max_discard_sectors = UINT_MAX;
2682 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2684 ctrl->max_discard_sectors = 0;
2685 ctrl->max_discard_segments = 0;
2689 * Even though NVMe spec explicitly states that MDTS is not applicable
2690 * to the write-zeroes, we are cautious and limit the size to the
2691 * controllers max_hw_sectors value, which is based on the MDTS field
2692 * and possibly other limiting factors.
2694 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2695 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2696 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2698 ctrl->max_zeroes_sectors = 0;
2700 if (nvme_ctrl_limited_cns(ctrl))
2703 id = kzalloc(sizeof(*id), GFP_KERNEL);
2707 c.identify.opcode = nvme_admin_identify;
2708 c.identify.cns = NVME_ID_CNS_CS_CTRL;
2709 c.identify.csi = NVME_CSI_NVM;
2711 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2716 ctrl->max_discard_segments = id->dmrl;
2718 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2720 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2727 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2729 struct nvme_id_ctrl *id;
2731 bool prev_apst_enabled;
2734 ret = nvme_identify_ctrl(ctrl, &id);
2736 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2740 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2741 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2746 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2747 ctrl->cntlid = le16_to_cpu(id->cntlid);
2749 if (!ctrl->identified) {
2752 ret = nvme_init_subsystem(ctrl, id);
2757 * Check for quirks. Quirk can depend on firmware version,
2758 * so, in principle, the set of quirks present can change
2759 * across a reset. As a possible future enhancement, we
2760 * could re-scan for quirks every time we reinitialize
2761 * the device, but we'd have to make sure that the driver
2762 * behaves intelligently if the quirks change.
2764 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2765 if (quirk_matches(id, &core_quirks[i]))
2766 ctrl->quirks |= core_quirks[i].quirks;
2770 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2771 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2772 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2775 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2776 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2777 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2779 ctrl->oacs = le16_to_cpu(id->oacs);
2780 ctrl->oncs = le16_to_cpu(id->oncs);
2781 ctrl->mtfa = le16_to_cpu(id->mtfa);
2782 ctrl->oaes = le32_to_cpu(id->oaes);
2783 ctrl->wctemp = le16_to_cpu(id->wctemp);
2784 ctrl->cctemp = le16_to_cpu(id->cctemp);
2786 atomic_set(&ctrl->abort_limit, id->acl + 1);
2787 ctrl->vwc = id->vwc;
2789 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2791 max_hw_sectors = UINT_MAX;
2792 ctrl->max_hw_sectors =
2793 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2795 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2796 ctrl->sgls = le32_to_cpu(id->sgls);
2797 ctrl->kas = le16_to_cpu(id->kas);
2798 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2799 ctrl->ctratt = le32_to_cpu(id->ctratt);
2803 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2805 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2806 shutdown_timeout, 60);
2808 if (ctrl->shutdown_timeout != shutdown_timeout)
2809 dev_info(ctrl->device,
2810 "Shutdown timeout set to %u seconds\n",
2811 ctrl->shutdown_timeout);
2813 ctrl->shutdown_timeout = shutdown_timeout;
2815 ctrl->npss = id->npss;
2816 ctrl->apsta = id->apsta;
2817 prev_apst_enabled = ctrl->apst_enabled;
2818 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2819 if (force_apst && id->apsta) {
2820 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2821 ctrl->apst_enabled = true;
2823 ctrl->apst_enabled = false;
2826 ctrl->apst_enabled = id->apsta;
2828 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2830 if (ctrl->ops->flags & NVME_F_FABRICS) {
2831 ctrl->icdoff = le16_to_cpu(id->icdoff);
2832 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2833 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2834 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2837 * In fabrics we need to verify the cntlid matches the
2840 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2841 dev_err(ctrl->device,
2842 "Mismatching cntlid: Connect %u vs Identify "
2844 ctrl->cntlid, le16_to_cpu(id->cntlid));
2849 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2850 dev_err(ctrl->device,
2851 "keep-alive support is mandatory for fabrics\n");
2856 ctrl->hmpre = le32_to_cpu(id->hmpre);
2857 ctrl->hmmin = le32_to_cpu(id->hmmin);
2858 ctrl->hmminds = le32_to_cpu(id->hmminds);
2859 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2862 ret = nvme_mpath_init(ctrl, id);
2866 if (ctrl->apst_enabled && !prev_apst_enabled)
2867 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2868 else if (!ctrl->apst_enabled && prev_apst_enabled)
2869 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2877 * Initialize the cached copies of the Identify data and various controller
2878 * register in our nvme_ctrl structure. This should be called as soon as
2879 * the admin queue is fully up and running.
2881 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
2885 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2887 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2891 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2893 if (ctrl->vs >= NVME_VS(1, 1, 0))
2894 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2896 ret = nvme_init_identify(ctrl);
2900 ret = nvme_init_non_mdts_limits(ctrl);
2904 ret = nvme_configure_apst(ctrl);
2908 ret = nvme_configure_timestamp(ctrl);
2912 ret = nvme_configure_directives(ctrl);
2916 ret = nvme_configure_acre(ctrl);
2920 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
2921 ret = nvme_hwmon_init(ctrl);
2926 ctrl->identified = true;
2930 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
2932 static int nvme_dev_open(struct inode *inode, struct file *file)
2934 struct nvme_ctrl *ctrl =
2935 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2937 switch (ctrl->state) {
2938 case NVME_CTRL_LIVE:
2941 return -EWOULDBLOCK;
2944 nvme_get_ctrl(ctrl);
2945 if (!try_module_get(ctrl->ops->module)) {
2946 nvme_put_ctrl(ctrl);
2950 file->private_data = ctrl;
2954 static int nvme_dev_release(struct inode *inode, struct file *file)
2956 struct nvme_ctrl *ctrl =
2957 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2959 module_put(ctrl->ops->module);
2960 nvme_put_ctrl(ctrl);
2964 static const struct file_operations nvme_dev_fops = {
2965 .owner = THIS_MODULE,
2966 .open = nvme_dev_open,
2967 .release = nvme_dev_release,
2968 .unlocked_ioctl = nvme_dev_ioctl,
2969 .compat_ioctl = compat_ptr_ioctl,
2972 static ssize_t nvme_sysfs_reset(struct device *dev,
2973 struct device_attribute *attr, const char *buf,
2976 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2979 ret = nvme_reset_ctrl_sync(ctrl);
2984 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2986 static ssize_t nvme_sysfs_rescan(struct device *dev,
2987 struct device_attribute *attr, const char *buf,
2990 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2992 nvme_queue_scan(ctrl);
2995 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2997 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2999 struct gendisk *disk = dev_to_disk(dev);
3001 if (disk->fops == &nvme_bdev_ops)
3002 return nvme_get_ns_from_dev(dev)->head;
3004 return disk->private_data;
3007 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3010 struct nvme_ns_head *head = dev_to_ns_head(dev);
3011 struct nvme_ns_ids *ids = &head->ids;
3012 struct nvme_subsystem *subsys = head->subsys;
3013 int serial_len = sizeof(subsys->serial);
3014 int model_len = sizeof(subsys->model);
3016 if (!uuid_is_null(&ids->uuid))
3017 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3019 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3020 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3022 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3023 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3025 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3026 subsys->serial[serial_len - 1] == '\0'))
3028 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3029 subsys->model[model_len - 1] == '\0'))
3032 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3033 serial_len, subsys->serial, model_len, subsys->model,
3036 static DEVICE_ATTR_RO(wwid);
3038 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3041 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3043 static DEVICE_ATTR_RO(nguid);
3045 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3048 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3050 /* For backward compatibility expose the NGUID to userspace if
3051 * we have no UUID set
3053 if (uuid_is_null(&ids->uuid)) {
3054 printk_ratelimited(KERN_WARNING
3055 "No UUID available providing old NGUID\n");
3056 return sysfs_emit(buf, "%pU\n", ids->nguid);
3058 return sysfs_emit(buf, "%pU\n", &ids->uuid);
3060 static DEVICE_ATTR_RO(uuid);
3062 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3065 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3067 static DEVICE_ATTR_RO(eui);
3069 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3072 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3074 static DEVICE_ATTR_RO(nsid);
3076 static struct attribute *nvme_ns_id_attrs[] = {
3077 &dev_attr_wwid.attr,
3078 &dev_attr_uuid.attr,
3079 &dev_attr_nguid.attr,
3081 &dev_attr_nsid.attr,
3082 #ifdef CONFIG_NVME_MULTIPATH
3083 &dev_attr_ana_grpid.attr,
3084 &dev_attr_ana_state.attr,
3089 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3090 struct attribute *a, int n)
3092 struct device *dev = container_of(kobj, struct device, kobj);
3093 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3095 if (a == &dev_attr_uuid.attr) {
3096 if (uuid_is_null(&ids->uuid) &&
3097 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3100 if (a == &dev_attr_nguid.attr) {
3101 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3104 if (a == &dev_attr_eui.attr) {
3105 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3108 #ifdef CONFIG_NVME_MULTIPATH
3109 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3110 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3112 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3119 static const struct attribute_group nvme_ns_id_attr_group = {
3120 .attrs = nvme_ns_id_attrs,
3121 .is_visible = nvme_ns_id_attrs_are_visible,
3124 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3125 &nvme_ns_id_attr_group,
3127 &nvme_nvm_attr_group,
3132 #define nvme_show_str_function(field) \
3133 static ssize_t field##_show(struct device *dev, \
3134 struct device_attribute *attr, char *buf) \
3136 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3137 return sysfs_emit(buf, "%.*s\n", \
3138 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3140 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3142 nvme_show_str_function(model);
3143 nvme_show_str_function(serial);
3144 nvme_show_str_function(firmware_rev);
3146 #define nvme_show_int_function(field) \
3147 static ssize_t field##_show(struct device *dev, \
3148 struct device_attribute *attr, char *buf) \
3150 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3151 return sysfs_emit(buf, "%d\n", ctrl->field); \
3153 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3155 nvme_show_int_function(cntlid);
3156 nvme_show_int_function(numa_node);
3157 nvme_show_int_function(queue_count);
3158 nvme_show_int_function(sqsize);
3159 nvme_show_int_function(kato);
3161 static ssize_t nvme_sysfs_delete(struct device *dev,
3162 struct device_attribute *attr, const char *buf,
3165 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3167 if (device_remove_file_self(dev, attr))
3168 nvme_delete_ctrl_sync(ctrl);
3171 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3173 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3174 struct device_attribute *attr,
3177 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3179 return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3181 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3183 static ssize_t nvme_sysfs_show_state(struct device *dev,
3184 struct device_attribute *attr,
3187 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3188 static const char *const state_name[] = {
3189 [NVME_CTRL_NEW] = "new",
3190 [NVME_CTRL_LIVE] = "live",
3191 [NVME_CTRL_RESETTING] = "resetting",
3192 [NVME_CTRL_CONNECTING] = "connecting",
3193 [NVME_CTRL_DELETING] = "deleting",
3194 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3195 [NVME_CTRL_DEAD] = "dead",
3198 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3199 state_name[ctrl->state])
3200 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3202 return sysfs_emit(buf, "unknown state\n");
3205 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3207 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3208 struct device_attribute *attr,
3211 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3213 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3215 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3217 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3218 struct device_attribute *attr,
3221 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3223 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3225 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3227 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3228 struct device_attribute *attr,
3231 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3233 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3235 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3237 static ssize_t nvme_sysfs_show_address(struct device *dev,
3238 struct device_attribute *attr,
3241 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3243 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3245 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3247 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3248 struct device_attribute *attr, char *buf)
3250 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3251 struct nvmf_ctrl_options *opts = ctrl->opts;
3253 if (ctrl->opts->max_reconnects == -1)
3254 return sysfs_emit(buf, "off\n");
3255 return sysfs_emit(buf, "%d\n",
3256 opts->max_reconnects * opts->reconnect_delay);
3259 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3260 struct device_attribute *attr, const char *buf, size_t count)
3262 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3263 struct nvmf_ctrl_options *opts = ctrl->opts;
3264 int ctrl_loss_tmo, err;
3266 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3270 if (ctrl_loss_tmo < 0)
3271 opts->max_reconnects = -1;
3273 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3274 opts->reconnect_delay);
3277 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3278 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3280 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3281 struct device_attribute *attr, char *buf)
3283 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3285 if (ctrl->opts->reconnect_delay == -1)
3286 return sysfs_emit(buf, "off\n");
3287 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3290 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3291 struct device_attribute *attr, const char *buf, size_t count)
3293 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3297 err = kstrtou32(buf, 10, &v);
3301 ctrl->opts->reconnect_delay = v;
3304 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3305 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3307 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3308 struct device_attribute *attr, char *buf)
3310 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3312 if (ctrl->opts->fast_io_fail_tmo == -1)
3313 return sysfs_emit(buf, "off\n");
3314 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3317 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3318 struct device_attribute *attr, const char *buf, size_t count)
3320 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3321 struct nvmf_ctrl_options *opts = ctrl->opts;
3322 int fast_io_fail_tmo, err;
3324 err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3328 if (fast_io_fail_tmo < 0)
3329 opts->fast_io_fail_tmo = -1;
3331 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3334 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3335 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3337 static struct attribute *nvme_dev_attrs[] = {
3338 &dev_attr_reset_controller.attr,
3339 &dev_attr_rescan_controller.attr,
3340 &dev_attr_model.attr,
3341 &dev_attr_serial.attr,
3342 &dev_attr_firmware_rev.attr,
3343 &dev_attr_cntlid.attr,
3344 &dev_attr_delete_controller.attr,
3345 &dev_attr_transport.attr,
3346 &dev_attr_subsysnqn.attr,
3347 &dev_attr_address.attr,
3348 &dev_attr_state.attr,
3349 &dev_attr_numa_node.attr,
3350 &dev_attr_queue_count.attr,
3351 &dev_attr_sqsize.attr,
3352 &dev_attr_hostnqn.attr,
3353 &dev_attr_hostid.attr,
3354 &dev_attr_ctrl_loss_tmo.attr,
3355 &dev_attr_reconnect_delay.attr,
3356 &dev_attr_fast_io_fail_tmo.attr,
3357 &dev_attr_kato.attr,
3361 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3362 struct attribute *a, int n)
3364 struct device *dev = container_of(kobj, struct device, kobj);
3365 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3367 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3369 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3371 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3373 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3375 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3377 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3379 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3385 static const struct attribute_group nvme_dev_attrs_group = {
3386 .attrs = nvme_dev_attrs,
3387 .is_visible = nvme_dev_attrs_are_visible,
3390 static const struct attribute_group *nvme_dev_attr_groups[] = {
3391 &nvme_dev_attrs_group,
3395 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3398 struct nvme_ns_head *h;
3400 lockdep_assert_held(&subsys->lock);
3402 list_for_each_entry(h, &subsys->nsheads, entry) {
3403 if (h->ns_id == nsid && nvme_tryget_ns_head(h))
3410 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3411 struct nvme_ns_head *new)
3413 struct nvme_ns_head *h;
3415 lockdep_assert_held(&subsys->lock);
3417 list_for_each_entry(h, &subsys->nsheads, entry) {
3418 if (nvme_ns_ids_valid(&new->ids) &&
3419 nvme_ns_ids_equal(&new->ids, &h->ids))
3426 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3428 cdev_device_del(cdev, cdev_device);
3429 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt));
3432 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3433 const struct file_operations *fops, struct module *owner)
3437 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3440 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3441 cdev_device->class = nvme_ns_chr_class;
3442 device_initialize(cdev_device);
3443 cdev_init(cdev, fops);
3444 cdev->owner = owner;
3445 ret = cdev_device_add(cdev, cdev_device);
3447 ida_simple_remove(&nvme_ns_chr_minor_ida, minor);
3451 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3453 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3456 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3458 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3462 static const struct file_operations nvme_ns_chr_fops = {
3463 .owner = THIS_MODULE,
3464 .open = nvme_ns_chr_open,
3465 .release = nvme_ns_chr_release,
3466 .unlocked_ioctl = nvme_ns_chr_ioctl,
3467 .compat_ioctl = compat_ptr_ioctl,
3470 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3474 ns->cdev_device.parent = ns->ctrl->device;
3475 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3476 ns->ctrl->instance, ns->head->instance);
3479 ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3480 ns->ctrl->ops->module);
3482 kfree_const(ns->cdev_device.kobj.name);
3486 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3487 unsigned nsid, struct nvme_ns_ids *ids)
3489 struct nvme_ns_head *head;
3490 size_t size = sizeof(*head);
3493 #ifdef CONFIG_NVME_MULTIPATH
3494 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3497 head = kzalloc(size, GFP_KERNEL);
3500 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3503 head->instance = ret;
3504 INIT_LIST_HEAD(&head->list);
3505 ret = init_srcu_struct(&head->srcu);
3507 goto out_ida_remove;
3508 head->subsys = ctrl->subsys;
3511 kref_init(&head->ref);
3513 ret = __nvme_check_ids(ctrl->subsys, head);
3515 dev_err(ctrl->device,
3516 "duplicate IDs for nsid %d\n", nsid);
3517 goto out_cleanup_srcu;
3520 if (head->ids.csi) {
3521 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3523 goto out_cleanup_srcu;
3525 head->effects = ctrl->effects;
3527 ret = nvme_mpath_alloc_disk(ctrl, head);
3529 goto out_cleanup_srcu;
3531 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3533 kref_get(&ctrl->subsys->ref);
3537 cleanup_srcu_struct(&head->srcu);
3539 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3544 ret = blk_status_to_errno(nvme_error_status(ret));
3545 return ERR_PTR(ret);
3548 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3549 struct nvme_ns_ids *ids, bool is_shared)
3551 struct nvme_ctrl *ctrl = ns->ctrl;
3552 struct nvme_ns_head *head = NULL;
3555 mutex_lock(&ctrl->subsys->lock);
3556 head = nvme_find_ns_head(ctrl->subsys, nsid);
3558 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3560 ret = PTR_ERR(head);
3563 head->shared = is_shared;
3566 if (!is_shared || !head->shared) {
3567 dev_err(ctrl->device,
3568 "Duplicate unshared namespace %d\n", nsid);
3569 goto out_put_ns_head;
3571 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3572 dev_err(ctrl->device,
3573 "IDs don't match for shared namespace %d\n",
3575 goto out_put_ns_head;
3579 list_add_tail_rcu(&ns->siblings, &head->list);
3581 mutex_unlock(&ctrl->subsys->lock);
3585 nvme_put_ns_head(head);
3587 mutex_unlock(&ctrl->subsys->lock);
3591 static int ns_cmp(void *priv, const struct list_head *a,
3592 const struct list_head *b)
3594 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3595 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3597 return nsa->head->ns_id - nsb->head->ns_id;
3600 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3602 struct nvme_ns *ns, *ret = NULL;
3604 down_read(&ctrl->namespaces_rwsem);
3605 list_for_each_entry(ns, &ctrl->namespaces, list) {
3606 if (ns->head->ns_id == nsid) {
3607 if (!kref_get_unless_zero(&ns->kref))
3612 if (ns->head->ns_id > nsid)
3615 up_read(&ctrl->namespaces_rwsem);
3618 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3620 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3621 struct nvme_ns_ids *ids)
3624 struct gendisk *disk;
3625 struct nvme_id_ns *id;
3626 int node = ctrl->numa_node;
3628 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3631 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3635 ns->queue = blk_mq_init_queue(ctrl->tagset);
3636 if (IS_ERR(ns->queue))
3639 if (ctrl->opts && ctrl->opts->data_digest)
3640 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3642 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3643 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3644 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3646 ns->queue->queuedata = ns;
3648 kref_init(&ns->kref);
3650 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3651 goto out_free_queue;
3653 disk = alloc_disk_node(0, node);
3657 disk->fops = &nvme_bdev_ops;
3658 disk->private_data = ns;
3659 disk->queue = ns->queue;
3660 disk->flags = GENHD_FL_EXT_DEVT;
3662 * Without the multipath code enabled, multiple controller per
3663 * subsystems are visible as devices and thus we cannot use the
3664 * subsystem instance.
3666 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3667 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3668 ns->head->instance);
3671 if (nvme_update_ns_info(ns, id))
3674 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3675 if (nvme_nvm_register(ns, disk->disk_name, node)) {
3676 dev_warn(ctrl->device, "LightNVM init failure\n");
3681 down_write(&ctrl->namespaces_rwsem);
3682 list_add_tail(&ns->list, &ctrl->namespaces);
3683 up_write(&ctrl->namespaces_rwsem);
3685 nvme_get_ctrl(ctrl);
3687 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3688 if (!nvme_ns_head_multipath(ns->head))
3689 nvme_add_ns_cdev(ns);
3691 nvme_mpath_add_disk(ns, id);
3692 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3697 /* prevent double queue cleanup */
3698 ns->disk->queue = NULL;
3701 mutex_lock(&ctrl->subsys->lock);
3702 list_del_rcu(&ns->siblings);
3703 if (list_empty(&ns->head->list))
3704 list_del_init(&ns->head->entry);
3705 mutex_unlock(&ctrl->subsys->lock);
3706 nvme_put_ns_head(ns->head);
3708 blk_cleanup_queue(ns->queue);
3715 static void nvme_ns_remove(struct nvme_ns *ns)
3717 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3720 set_capacity(ns->disk, 0);
3721 nvme_fault_inject_fini(&ns->fault_inject);
3723 mutex_lock(&ns->ctrl->subsys->lock);
3724 list_del_rcu(&ns->siblings);
3725 if (list_empty(&ns->head->list))
3726 list_del_init(&ns->head->entry);
3727 mutex_unlock(&ns->ctrl->subsys->lock);
3729 synchronize_rcu(); /* guarantee not available in head->list */
3730 nvme_mpath_clear_current_path(ns);
3731 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3733 if (ns->disk->flags & GENHD_FL_UP) {
3734 if (!nvme_ns_head_multipath(ns->head))
3735 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3736 del_gendisk(ns->disk);
3737 blk_cleanup_queue(ns->queue);
3738 if (blk_get_integrity(ns->disk))
3739 blk_integrity_unregister(ns->disk);
3742 down_write(&ns->ctrl->namespaces_rwsem);
3743 list_del_init(&ns->list);
3744 up_write(&ns->ctrl->namespaces_rwsem);
3746 nvme_mpath_check_last_path(ns);
3750 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3752 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3760 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3762 struct nvme_id_ns *id;
3763 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3765 if (test_bit(NVME_NS_DEAD, &ns->flags))
3768 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3772 ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3773 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3774 dev_err(ns->ctrl->device,
3775 "identifiers changed for nsid %d\n", ns->head->ns_id);
3779 ret = nvme_update_ns_info(ns, id);
3785 * Only remove the namespace if we got a fatal error back from the
3786 * device, otherwise ignore the error and just move on.
3788 * TODO: we should probably schedule a delayed retry here.
3790 if (ret > 0 && (ret & NVME_SC_DNR))
3794 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3796 struct nvme_ns_ids ids = { };
3799 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3802 ns = nvme_find_get_ns(ctrl, nsid);
3804 nvme_validate_ns(ns, &ids);
3811 nvme_alloc_ns(ctrl, nsid, &ids);
3814 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3815 dev_warn(ctrl->device,
3816 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3820 if (!nvme_multi_css(ctrl)) {
3821 dev_warn(ctrl->device,
3822 "command set not reported for nsid: %d\n",
3826 nvme_alloc_ns(ctrl, nsid, &ids);
3829 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3835 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3838 struct nvme_ns *ns, *next;
3841 down_write(&ctrl->namespaces_rwsem);
3842 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3843 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3844 list_move_tail(&ns->list, &rm_list);
3846 up_write(&ctrl->namespaces_rwsem);
3848 list_for_each_entry_safe(ns, next, &rm_list, list)
3853 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3855 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3860 if (nvme_ctrl_limited_cns(ctrl))
3863 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3868 struct nvme_command cmd = {
3869 .identify.opcode = nvme_admin_identify,
3870 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
3871 .identify.nsid = cpu_to_le32(prev),
3874 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3875 NVME_IDENTIFY_DATA_SIZE);
3877 dev_warn(ctrl->device,
3878 "Identify NS List failed (status=0x%x)\n", ret);
3882 for (i = 0; i < nr_entries; i++) {
3883 u32 nsid = le32_to_cpu(ns_list[i]);
3885 if (!nsid) /* end of the list? */
3887 nvme_validate_or_alloc_ns(ctrl, nsid);
3888 while (++prev < nsid)
3889 nvme_ns_remove_by_nsid(ctrl, prev);
3893 nvme_remove_invalid_namespaces(ctrl, prev);
3899 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3901 struct nvme_id_ctrl *id;
3904 if (nvme_identify_ctrl(ctrl, &id))
3906 nn = le32_to_cpu(id->nn);
3909 for (i = 1; i <= nn; i++)
3910 nvme_validate_or_alloc_ns(ctrl, i);
3912 nvme_remove_invalid_namespaces(ctrl, nn);
3915 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3917 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3921 log = kzalloc(log_size, GFP_KERNEL);
3926 * We need to read the log to clear the AEN, but we don't want to rely
3927 * on it for the changed namespace information as userspace could have
3928 * raced with us in reading the log page, which could cause us to miss
3931 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3932 NVME_CSI_NVM, log, log_size, 0);
3934 dev_warn(ctrl->device,
3935 "reading changed ns log failed: %d\n", error);
3940 static void nvme_scan_work(struct work_struct *work)
3942 struct nvme_ctrl *ctrl =
3943 container_of(work, struct nvme_ctrl, scan_work);
3945 /* No tagset on a live ctrl means IO queues could not created */
3946 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3949 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3950 dev_info(ctrl->device, "rescanning namespaces.\n");
3951 nvme_clear_changed_ns_log(ctrl);
3954 mutex_lock(&ctrl->scan_lock);
3955 if (nvme_scan_ns_list(ctrl) != 0)
3956 nvme_scan_ns_sequential(ctrl);
3957 mutex_unlock(&ctrl->scan_lock);
3959 down_write(&ctrl->namespaces_rwsem);
3960 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3961 up_write(&ctrl->namespaces_rwsem);
3965 * This function iterates the namespace list unlocked to allow recovery from
3966 * controller failure. It is up to the caller to ensure the namespace list is
3967 * not modified by scan work while this function is executing.
3969 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3971 struct nvme_ns *ns, *next;
3975 * make sure to requeue I/O to all namespaces as these
3976 * might result from the scan itself and must complete
3977 * for the scan_work to make progress
3979 nvme_mpath_clear_ctrl_paths(ctrl);
3981 /* prevent racing with ns scanning */
3982 flush_work(&ctrl->scan_work);
3985 * The dead states indicates the controller was not gracefully
3986 * disconnected. In that case, we won't be able to flush any data while
3987 * removing the namespaces' disks; fail all the queues now to avoid
3988 * potentially having to clean up the failed sync later.
3990 if (ctrl->state == NVME_CTRL_DEAD)
3991 nvme_kill_queues(ctrl);
3993 /* this is a no-op when called from the controller reset handler */
3994 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3996 down_write(&ctrl->namespaces_rwsem);
3997 list_splice_init(&ctrl->namespaces, &ns_list);
3998 up_write(&ctrl->namespaces_rwsem);
4000 list_for_each_entry_safe(ns, next, &ns_list, list)
4003 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4005 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4007 struct nvme_ctrl *ctrl =
4008 container_of(dev, struct nvme_ctrl, ctrl_device);
4009 struct nvmf_ctrl_options *opts = ctrl->opts;
4012 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4017 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4021 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4022 opts->trsvcid ?: "none");
4026 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4027 opts->host_traddr ?: "none");
4032 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4034 char *envp[2] = { NULL, NULL };
4035 u32 aen_result = ctrl->aen_result;
4037 ctrl->aen_result = 0;
4041 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4044 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4048 static void nvme_async_event_work(struct work_struct *work)
4050 struct nvme_ctrl *ctrl =
4051 container_of(work, struct nvme_ctrl, async_event_work);
4053 nvme_aen_uevent(ctrl);
4054 ctrl->ops->submit_async_event(ctrl);
4057 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4062 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4068 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4071 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4073 struct nvme_fw_slot_info_log *log;
4075 log = kmalloc(sizeof(*log), GFP_KERNEL);
4079 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4080 log, sizeof(*log), 0))
4081 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4085 static void nvme_fw_act_work(struct work_struct *work)
4087 struct nvme_ctrl *ctrl = container_of(work,
4088 struct nvme_ctrl, fw_act_work);
4089 unsigned long fw_act_timeout;
4092 fw_act_timeout = jiffies +
4093 msecs_to_jiffies(ctrl->mtfa * 100);
4095 fw_act_timeout = jiffies +
4096 msecs_to_jiffies(admin_timeout * 1000);
4098 nvme_stop_queues(ctrl);
4099 while (nvme_ctrl_pp_status(ctrl)) {
4100 if (time_after(jiffies, fw_act_timeout)) {
4101 dev_warn(ctrl->device,
4102 "Fw activation timeout, reset controller\n");
4103 nvme_try_sched_reset(ctrl);
4109 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4112 nvme_start_queues(ctrl);
4113 /* read FW slot information to clear the AER */
4114 nvme_get_fw_slot_info(ctrl);
4117 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4119 u32 aer_notice_type = (result & 0xff00) >> 8;
4121 trace_nvme_async_event(ctrl, aer_notice_type);
4123 switch (aer_notice_type) {
4124 case NVME_AER_NOTICE_NS_CHANGED:
4125 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4126 nvme_queue_scan(ctrl);
4128 case NVME_AER_NOTICE_FW_ACT_STARTING:
4130 * We are (ab)using the RESETTING state to prevent subsequent
4131 * recovery actions from interfering with the controller's
4132 * firmware activation.
4134 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4135 queue_work(nvme_wq, &ctrl->fw_act_work);
4137 #ifdef CONFIG_NVME_MULTIPATH
4138 case NVME_AER_NOTICE_ANA:
4139 if (!ctrl->ana_log_buf)
4141 queue_work(nvme_wq, &ctrl->ana_work);
4144 case NVME_AER_NOTICE_DISC_CHANGED:
4145 ctrl->aen_result = result;
4148 dev_warn(ctrl->device, "async event result %08x\n", result);
4152 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4153 volatile union nvme_result *res)
4155 u32 result = le32_to_cpu(res->u32);
4156 u32 aer_type = result & 0x07;
4158 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4162 case NVME_AER_NOTICE:
4163 nvme_handle_aen_notice(ctrl, result);
4165 case NVME_AER_ERROR:
4166 case NVME_AER_SMART:
4169 trace_nvme_async_event(ctrl, aer_type);
4170 ctrl->aen_result = result;
4175 queue_work(nvme_wq, &ctrl->async_event_work);
4177 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4179 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4181 nvme_mpath_stop(ctrl);
4182 nvme_stop_keep_alive(ctrl);
4183 nvme_stop_failfast_work(ctrl);
4184 flush_work(&ctrl->async_event_work);
4185 cancel_work_sync(&ctrl->fw_act_work);
4187 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4189 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4191 nvme_start_keep_alive(ctrl);
4193 nvme_enable_aen(ctrl);
4195 if (ctrl->queue_count > 1) {
4196 nvme_queue_scan(ctrl);
4197 nvme_start_queues(ctrl);
4200 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4202 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4204 nvme_hwmon_exit(ctrl);
4205 nvme_fault_inject_fini(&ctrl->fault_inject);
4206 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4207 cdev_device_del(&ctrl->cdev, ctrl->device);
4208 nvme_put_ctrl(ctrl);
4210 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4212 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4214 struct nvme_effects_log *cel;
4217 xa_for_each(&ctrl->cels, i, cel) {
4218 xa_erase(&ctrl->cels, i);
4222 xa_destroy(&ctrl->cels);
4225 static void nvme_free_ctrl(struct device *dev)
4227 struct nvme_ctrl *ctrl =
4228 container_of(dev, struct nvme_ctrl, ctrl_device);
4229 struct nvme_subsystem *subsys = ctrl->subsys;
4231 if (!subsys || ctrl->instance != subsys->instance)
4232 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4234 nvme_free_cels(ctrl);
4235 nvme_mpath_uninit(ctrl);
4236 __free_page(ctrl->discard_page);
4239 mutex_lock(&nvme_subsystems_lock);
4240 list_del(&ctrl->subsys_entry);
4241 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4242 mutex_unlock(&nvme_subsystems_lock);
4245 ctrl->ops->free_ctrl(ctrl);
4248 nvme_put_subsystem(subsys);
4252 * Initialize a NVMe controller structures. This needs to be called during
4253 * earliest initialization so that we have the initialized structured around
4256 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4257 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4261 ctrl->state = NVME_CTRL_NEW;
4262 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4263 spin_lock_init(&ctrl->lock);
4264 mutex_init(&ctrl->scan_lock);
4265 INIT_LIST_HEAD(&ctrl->namespaces);
4266 xa_init(&ctrl->cels);
4267 init_rwsem(&ctrl->namespaces_rwsem);
4270 ctrl->quirks = quirks;
4271 ctrl->numa_node = NUMA_NO_NODE;
4272 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4273 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4274 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4275 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4276 init_waitqueue_head(&ctrl->state_wq);
4278 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4279 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4280 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4281 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4283 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4285 ctrl->discard_page = alloc_page(GFP_KERNEL);
4286 if (!ctrl->discard_page) {
4291 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4294 ctrl->instance = ret;
4296 device_initialize(&ctrl->ctrl_device);
4297 ctrl->device = &ctrl->ctrl_device;
4298 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4300 ctrl->device->class = nvme_class;
4301 ctrl->device->parent = ctrl->dev;
4302 ctrl->device->groups = nvme_dev_attr_groups;
4303 ctrl->device->release = nvme_free_ctrl;
4304 dev_set_drvdata(ctrl->device, ctrl);
4305 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4307 goto out_release_instance;
4309 nvme_get_ctrl(ctrl);
4310 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4311 ctrl->cdev.owner = ops->module;
4312 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4317 * Initialize latency tolerance controls. The sysfs files won't
4318 * be visible to userspace unless the device actually supports APST.
4320 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4321 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4322 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4324 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4328 nvme_put_ctrl(ctrl);
4329 kfree_const(ctrl->device->kobj.name);
4330 out_release_instance:
4331 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4333 if (ctrl->discard_page)
4334 __free_page(ctrl->discard_page);
4337 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4340 * nvme_kill_queues(): Ends all namespace queues
4341 * @ctrl: the dead controller that needs to end
4343 * Call this function when the driver determines it is unable to get the
4344 * controller in a state capable of servicing IO.
4346 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4350 down_read(&ctrl->namespaces_rwsem);
4352 /* Forcibly unquiesce queues to avoid blocking dispatch */
4353 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4354 blk_mq_unquiesce_queue(ctrl->admin_q);
4356 list_for_each_entry(ns, &ctrl->namespaces, list)
4357 nvme_set_queue_dying(ns);
4359 up_read(&ctrl->namespaces_rwsem);
4361 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4363 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4367 down_read(&ctrl->namespaces_rwsem);
4368 list_for_each_entry(ns, &ctrl->namespaces, list)
4369 blk_mq_unfreeze_queue(ns->queue);
4370 up_read(&ctrl->namespaces_rwsem);
4372 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4374 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4378 down_read(&ctrl->namespaces_rwsem);
4379 list_for_each_entry(ns, &ctrl->namespaces, list) {
4380 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4384 up_read(&ctrl->namespaces_rwsem);
4387 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4389 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4393 down_read(&ctrl->namespaces_rwsem);
4394 list_for_each_entry(ns, &ctrl->namespaces, list)
4395 blk_mq_freeze_queue_wait(ns->queue);
4396 up_read(&ctrl->namespaces_rwsem);
4398 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4400 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4404 down_read(&ctrl->namespaces_rwsem);
4405 list_for_each_entry(ns, &ctrl->namespaces, list)
4406 blk_freeze_queue_start(ns->queue);
4407 up_read(&ctrl->namespaces_rwsem);
4409 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4411 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4415 down_read(&ctrl->namespaces_rwsem);
4416 list_for_each_entry(ns, &ctrl->namespaces, list)
4417 blk_mq_quiesce_queue(ns->queue);
4418 up_read(&ctrl->namespaces_rwsem);
4420 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4422 void nvme_start_queues(struct nvme_ctrl *ctrl)
4426 down_read(&ctrl->namespaces_rwsem);
4427 list_for_each_entry(ns, &ctrl->namespaces, list)
4428 blk_mq_unquiesce_queue(ns->queue);
4429 up_read(&ctrl->namespaces_rwsem);
4431 EXPORT_SYMBOL_GPL(nvme_start_queues);
4433 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4437 down_read(&ctrl->namespaces_rwsem);
4438 list_for_each_entry(ns, &ctrl->namespaces, list)
4439 blk_sync_queue(ns->queue);
4440 up_read(&ctrl->namespaces_rwsem);
4442 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4444 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4446 nvme_sync_io_queues(ctrl);
4448 blk_sync_queue(ctrl->admin_q);
4450 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4452 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4454 if (file->f_op != &nvme_dev_fops)
4456 return file->private_data;
4458 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4461 * Check we didn't inadvertently grow the command structure sizes:
4463 static inline void _nvme_check_size(void)
4465 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4466 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4467 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4468 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4469 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4470 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4471 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4472 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4473 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4474 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4475 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4476 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4477 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4478 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4479 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4480 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4481 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4482 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4483 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4484 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4488 static int __init nvme_core_init(void)
4490 int result = -ENOMEM;
4494 nvme_wq = alloc_workqueue("nvme-wq",
4495 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4499 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4500 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4504 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4505 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4506 if (!nvme_delete_wq)
4507 goto destroy_reset_wq;
4509 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4510 NVME_MINORS, "nvme");
4512 goto destroy_delete_wq;
4514 nvme_class = class_create(THIS_MODULE, "nvme");
4515 if (IS_ERR(nvme_class)) {
4516 result = PTR_ERR(nvme_class);
4517 goto unregister_chrdev;
4519 nvme_class->dev_uevent = nvme_class_uevent;
4521 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4522 if (IS_ERR(nvme_subsys_class)) {
4523 result = PTR_ERR(nvme_subsys_class);
4527 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4530 goto destroy_subsys_class;
4532 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4533 if (IS_ERR(nvme_ns_chr_class)) {
4534 result = PTR_ERR(nvme_ns_chr_class);
4535 goto unregister_generic_ns;
4540 unregister_generic_ns:
4541 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4542 destroy_subsys_class:
4543 class_destroy(nvme_subsys_class);
4545 class_destroy(nvme_class);
4547 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4549 destroy_workqueue(nvme_delete_wq);
4551 destroy_workqueue(nvme_reset_wq);
4553 destroy_workqueue(nvme_wq);
4558 static void __exit nvme_core_exit(void)
4560 class_destroy(nvme_ns_chr_class);
4561 class_destroy(nvme_subsys_class);
4562 class_destroy(nvme_class);
4563 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4564 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4565 destroy_workqueue(nvme_delete_wq);
4566 destroy_workqueue(nvme_reset_wq);
4567 destroy_workqueue(nvme_wq);
4568 ida_destroy(&nvme_ns_chr_minor_ida);
4569 ida_destroy(&nvme_instance_ida);
4572 MODULE_LICENSE("GPL");
4573 MODULE_VERSION("1.0");
4574 module_init(nvme_core_init);
4575 module_exit(nvme_core_exit);