Merge tag 'staging-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63         "primary APST timeout in ms");
64
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68         "secondary APST timeout in ms");
69
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73         "primary APST latency tolerance in us");
74
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78         "secondary APST latency tolerance in us");
79
80 static bool streams;
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83
84 /*
85  * nvme_wq - hosts nvme related works that are not reset or delete
86  * nvme_reset_wq - hosts nvme reset works
87  * nvme_delete_wq - hosts nvme delete works
88  *
89  * nvme_wq will host works such as scan, aen handling, fw activation,
90  * keep-alive, periodic reconnects etc. nvme_reset_wq
91  * runs reset works which also flush works hosted on nvme_wq for
92  * serialization purposes. nvme_delete_wq host controller deletion
93  * works which flush reset works for serialization.
94  */
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
97
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
100
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
103
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
106
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
111
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
115
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118                                            unsigned nsid);
119
120 /*
121  * Prepare a queue for teardown.
122  *
123  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
124  * the capacity to 0 after that to avoid blocking dispatchers that may be
125  * holding bd_butex.  This will end buffered writers dirtying pages that can't
126  * be synced.
127  */
128 static void nvme_set_queue_dying(struct nvme_ns *ns)
129 {
130         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
131                 return;
132
133         blk_set_queue_dying(ns->queue);
134         blk_mq_unquiesce_queue(ns->queue);
135
136         set_capacity_and_notify(ns->disk, 0);
137 }
138
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141         /*
142          * Only new queue scan work when admin and IO queues are both alive
143          */
144         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
145                 queue_work(nvme_wq, &ctrl->scan_work);
146 }
147
148 /*
149  * Use this function to proceed with scheduling reset_work for a controller
150  * that had previously been set to the resetting state. This is intended for
151  * code paths that can't be interrupted by other reset attempts. A hot removal
152  * may prevent this from succeeding.
153  */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156         if (ctrl->state != NVME_CTRL_RESETTING)
157                 return -EBUSY;
158         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159                 return -EBUSY;
160         return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167                         struct nvme_ctrl, failfast_work);
168
169         if (ctrl->state != NVME_CTRL_CONNECTING)
170                 return;
171
172         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173         dev_info(ctrl->device, "failfast expired\n");
174         nvme_kick_requeue_lists(ctrl);
175 }
176
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180                 return;
181
182         schedule_delayed_work(&ctrl->failfast_work,
183                               ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188         if (!ctrl->opts)
189                 return;
190
191         cancel_delayed_work_sync(&ctrl->failfast_work);
192         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194
195
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199                 return -EBUSY;
200         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201                 return -EBUSY;
202         return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208         int ret;
209
210         ret = nvme_reset_ctrl(ctrl);
211         if (!ret) {
212                 flush_work(&ctrl->reset_work);
213                 if (ctrl->state != NVME_CTRL_LIVE)
214                         ret = -ENETRESET;
215         }
216
217         return ret;
218 }
219
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222         dev_info(ctrl->device,
223                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
224
225         flush_work(&ctrl->reset_work);
226         nvme_stop_ctrl(ctrl);
227         nvme_remove_namespaces(ctrl);
228         ctrl->ops->delete_ctrl(ctrl);
229         nvme_uninit_ctrl(ctrl);
230 }
231
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234         struct nvme_ctrl *ctrl =
235                 container_of(work, struct nvme_ctrl, delete_work);
236
237         nvme_do_delete_ctrl(ctrl);
238 }
239
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243                 return -EBUSY;
244         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245                 return -EBUSY;
246         return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249
250 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252         /*
253          * Keep a reference until nvme_do_delete_ctrl() complete,
254          * since ->delete_ctrl can free the controller.
255          */
256         nvme_get_ctrl(ctrl);
257         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258                 nvme_do_delete_ctrl(ctrl);
259         nvme_put_ctrl(ctrl);
260 }
261
262 static blk_status_t nvme_error_status(u16 status)
263 {
264         switch (status & 0x7ff) {
265         case NVME_SC_SUCCESS:
266                 return BLK_STS_OK;
267         case NVME_SC_CAP_EXCEEDED:
268                 return BLK_STS_NOSPC;
269         case NVME_SC_LBA_RANGE:
270         case NVME_SC_CMD_INTERRUPTED:
271         case NVME_SC_NS_NOT_READY:
272                 return BLK_STS_TARGET;
273         case NVME_SC_BAD_ATTRIBUTES:
274         case NVME_SC_ONCS_NOT_SUPPORTED:
275         case NVME_SC_INVALID_OPCODE:
276         case NVME_SC_INVALID_FIELD:
277         case NVME_SC_INVALID_NS:
278                 return BLK_STS_NOTSUPP;
279         case NVME_SC_WRITE_FAULT:
280         case NVME_SC_READ_ERROR:
281         case NVME_SC_UNWRITTEN_BLOCK:
282         case NVME_SC_ACCESS_DENIED:
283         case NVME_SC_READ_ONLY:
284         case NVME_SC_COMPARE_FAILED:
285                 return BLK_STS_MEDIUM;
286         case NVME_SC_GUARD_CHECK:
287         case NVME_SC_APPTAG_CHECK:
288         case NVME_SC_REFTAG_CHECK:
289         case NVME_SC_INVALID_PI:
290                 return BLK_STS_PROTECTION;
291         case NVME_SC_RESERVATION_CONFLICT:
292                 return BLK_STS_NEXUS;
293         case NVME_SC_HOST_PATH_ERROR:
294                 return BLK_STS_TRANSPORT;
295         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
297         case NVME_SC_ZONE_TOO_MANY_OPEN:
298                 return BLK_STS_ZONE_OPEN_RESOURCE;
299         default:
300                 return BLK_STS_IOERR;
301         }
302 }
303
304 static void nvme_retry_req(struct request *req)
305 {
306         unsigned long delay = 0;
307         u16 crd;
308
309         /* The mask and shift result must be <= 3 */
310         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
311         if (crd)
312                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313
314         nvme_req(req)->retries++;
315         blk_mq_requeue_request(req, false);
316         blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318
319 enum nvme_disposition {
320         COMPLETE,
321         RETRY,
322         FAILOVER,
323 };
324
325 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
326 {
327         if (likely(nvme_req(req)->status == 0))
328                 return COMPLETE;
329
330         if (blk_noretry_request(req) ||
331             (nvme_req(req)->status & NVME_SC_DNR) ||
332             nvme_req(req)->retries >= nvme_max_retries)
333                 return COMPLETE;
334
335         if (req->cmd_flags & REQ_NVME_MPATH) {
336                 if (nvme_is_path_error(nvme_req(req)->status) ||
337                     blk_queue_dying(req->q))
338                         return FAILOVER;
339         } else {
340                 if (blk_queue_dying(req->q))
341                         return COMPLETE;
342         }
343
344         return RETRY;
345 }
346
347 static inline void nvme_end_req(struct request *req)
348 {
349         blk_status_t status = nvme_error_status(nvme_req(req)->status);
350
351         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
352             req_op(req) == REQ_OP_ZONE_APPEND)
353                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
354                         le64_to_cpu(nvme_req(req)->result.u64));
355
356         nvme_trace_bio_complete(req);
357         blk_mq_end_request(req, status);
358 }
359
360 void nvme_complete_rq(struct request *req)
361 {
362         trace_nvme_complete_rq(req);
363         nvme_cleanup_cmd(req);
364
365         if (nvme_req(req)->ctrl->kas)
366                 nvme_req(req)->ctrl->comp_seen = true;
367
368         switch (nvme_decide_disposition(req)) {
369         case COMPLETE:
370                 nvme_end_req(req);
371                 return;
372         case RETRY:
373                 nvme_retry_req(req);
374                 return;
375         case FAILOVER:
376                 nvme_failover_req(req);
377                 return;
378         }
379 }
380 EXPORT_SYMBOL_GPL(nvme_complete_rq);
381
382 /*
383  * Called to unwind from ->queue_rq on a failed command submission so that the
384  * multipathing code gets called to potentially failover to another path.
385  * The caller needs to unwind all transport specific resource allocations and
386  * must return propagate the return value.
387  */
388 blk_status_t nvme_host_path_error(struct request *req)
389 {
390         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
391         blk_mq_set_request_complete(req);
392         nvme_complete_rq(req);
393         return BLK_STS_OK;
394 }
395 EXPORT_SYMBOL_GPL(nvme_host_path_error);
396
397 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
398 {
399         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
400                                 "Cancelling I/O %d", req->tag);
401
402         /* don't abort one completed request */
403         if (blk_mq_request_completed(req))
404                 return true;
405
406         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
407         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
408         blk_mq_complete_request(req);
409         return true;
410 }
411 EXPORT_SYMBOL_GPL(nvme_cancel_request);
412
413 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
414 {
415         if (ctrl->tagset) {
416                 blk_mq_tagset_busy_iter(ctrl->tagset,
417                                 nvme_cancel_request, ctrl);
418                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
419         }
420 }
421 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
422
423 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
424 {
425         if (ctrl->admin_tagset) {
426                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
427                                 nvme_cancel_request, ctrl);
428                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
429         }
430 }
431 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
432
433 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
434                 enum nvme_ctrl_state new_state)
435 {
436         enum nvme_ctrl_state old_state;
437         unsigned long flags;
438         bool changed = false;
439
440         spin_lock_irqsave(&ctrl->lock, flags);
441
442         old_state = ctrl->state;
443         switch (new_state) {
444         case NVME_CTRL_LIVE:
445                 switch (old_state) {
446                 case NVME_CTRL_NEW:
447                 case NVME_CTRL_RESETTING:
448                 case NVME_CTRL_CONNECTING:
449                         changed = true;
450                         fallthrough;
451                 default:
452                         break;
453                 }
454                 break;
455         case NVME_CTRL_RESETTING:
456                 switch (old_state) {
457                 case NVME_CTRL_NEW:
458                 case NVME_CTRL_LIVE:
459                         changed = true;
460                         fallthrough;
461                 default:
462                         break;
463                 }
464                 break;
465         case NVME_CTRL_CONNECTING:
466                 switch (old_state) {
467                 case NVME_CTRL_NEW:
468                 case NVME_CTRL_RESETTING:
469                         changed = true;
470                         fallthrough;
471                 default:
472                         break;
473                 }
474                 break;
475         case NVME_CTRL_DELETING:
476                 switch (old_state) {
477                 case NVME_CTRL_LIVE:
478                 case NVME_CTRL_RESETTING:
479                 case NVME_CTRL_CONNECTING:
480                         changed = true;
481                         fallthrough;
482                 default:
483                         break;
484                 }
485                 break;
486         case NVME_CTRL_DELETING_NOIO:
487                 switch (old_state) {
488                 case NVME_CTRL_DELETING:
489                 case NVME_CTRL_DEAD:
490                         changed = true;
491                         fallthrough;
492                 default:
493                         break;
494                 }
495                 break;
496         case NVME_CTRL_DEAD:
497                 switch (old_state) {
498                 case NVME_CTRL_DELETING:
499                         changed = true;
500                         fallthrough;
501                 default:
502                         break;
503                 }
504                 break;
505         default:
506                 break;
507         }
508
509         if (changed) {
510                 ctrl->state = new_state;
511                 wake_up_all(&ctrl->state_wq);
512         }
513
514         spin_unlock_irqrestore(&ctrl->lock, flags);
515         if (!changed)
516                 return false;
517
518         if (ctrl->state == NVME_CTRL_LIVE) {
519                 if (old_state == NVME_CTRL_CONNECTING)
520                         nvme_stop_failfast_work(ctrl);
521                 nvme_kick_requeue_lists(ctrl);
522         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
523                 old_state == NVME_CTRL_RESETTING) {
524                 nvme_start_failfast_work(ctrl);
525         }
526         return changed;
527 }
528 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
529
530 /*
531  * Returns true for sink states that can't ever transition back to live.
532  */
533 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
534 {
535         switch (ctrl->state) {
536         case NVME_CTRL_NEW:
537         case NVME_CTRL_LIVE:
538         case NVME_CTRL_RESETTING:
539         case NVME_CTRL_CONNECTING:
540                 return false;
541         case NVME_CTRL_DELETING:
542         case NVME_CTRL_DELETING_NOIO:
543         case NVME_CTRL_DEAD:
544                 return true;
545         default:
546                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
547                 return true;
548         }
549 }
550
551 /*
552  * Waits for the controller state to be resetting, or returns false if it is
553  * not possible to ever transition to that state.
554  */
555 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
556 {
557         wait_event(ctrl->state_wq,
558                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
559                    nvme_state_terminal(ctrl));
560         return ctrl->state == NVME_CTRL_RESETTING;
561 }
562 EXPORT_SYMBOL_GPL(nvme_wait_reset);
563
564 static void nvme_free_ns_head(struct kref *ref)
565 {
566         struct nvme_ns_head *head =
567                 container_of(ref, struct nvme_ns_head, ref);
568
569         nvme_mpath_remove_disk(head);
570         ida_simple_remove(&head->subsys->ns_ida, head->instance);
571         cleanup_srcu_struct(&head->srcu);
572         nvme_put_subsystem(head->subsys);
573         kfree(head);
574 }
575
576 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
577 {
578         return kref_get_unless_zero(&head->ref);
579 }
580
581 void nvme_put_ns_head(struct nvme_ns_head *head)
582 {
583         kref_put(&head->ref, nvme_free_ns_head);
584 }
585
586 static void nvme_free_ns(struct kref *kref)
587 {
588         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
589
590         if (ns->ndev)
591                 nvme_nvm_unregister(ns);
592
593         put_disk(ns->disk);
594         nvme_put_ns_head(ns->head);
595         nvme_put_ctrl(ns->ctrl);
596         kfree(ns);
597 }
598
599 static inline bool nvme_get_ns(struct nvme_ns *ns)
600 {
601         return kref_get_unless_zero(&ns->kref);
602 }
603
604 void nvme_put_ns(struct nvme_ns *ns)
605 {
606         kref_put(&ns->kref, nvme_free_ns);
607 }
608 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
609
610 static inline void nvme_clear_nvme_request(struct request *req)
611 {
612         nvme_req(req)->retries = 0;
613         nvme_req(req)->flags = 0;
614         req->rq_flags |= RQF_DONTPREP;
615 }
616
617 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
618 {
619         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
620 }
621
622 static inline void nvme_init_request(struct request *req,
623                 struct nvme_command *cmd)
624 {
625         if (req->q->queuedata)
626                 req->timeout = NVME_IO_TIMEOUT;
627         else /* no queuedata implies admin queue */
628                 req->timeout = NVME_ADMIN_TIMEOUT;
629
630         /* passthru commands should let the driver set the SGL flags */
631         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
632
633         req->cmd_flags |= REQ_FAILFAST_DRIVER;
634         nvme_clear_nvme_request(req);
635         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
636 }
637
638 struct request *nvme_alloc_request(struct request_queue *q,
639                 struct nvme_command *cmd, blk_mq_req_flags_t flags)
640 {
641         struct request *req;
642
643         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
644         if (!IS_ERR(req))
645                 nvme_init_request(req, cmd);
646         return req;
647 }
648 EXPORT_SYMBOL_GPL(nvme_alloc_request);
649
650 static struct request *nvme_alloc_request_qid(struct request_queue *q,
651                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
652 {
653         struct request *req;
654
655         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
656                         qid ? qid - 1 : 0);
657         if (!IS_ERR(req))
658                 nvme_init_request(req, cmd);
659         return req;
660 }
661
662 /*
663  * For something we're not in a state to send to the device the default action
664  * is to busy it and retry it after the controller state is recovered.  However,
665  * if the controller is deleting or if anything is marked for failfast or
666  * nvme multipath it is immediately failed.
667  *
668  * Note: commands used to initialize the controller will be marked for failfast.
669  * Note: nvme cli/ioctl commands are marked for failfast.
670  */
671 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
672                 struct request *rq)
673 {
674         if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
675             ctrl->state != NVME_CTRL_DEAD &&
676             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
677             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
678                 return BLK_STS_RESOURCE;
679         return nvme_host_path_error(rq);
680 }
681 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
682
683 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
684                 bool queue_live)
685 {
686         struct nvme_request *req = nvme_req(rq);
687
688         /*
689          * currently we have a problem sending passthru commands
690          * on the admin_q if the controller is not LIVE because we can't
691          * make sure that they are going out after the admin connect,
692          * controller enable and/or other commands in the initialization
693          * sequence. until the controller will be LIVE, fail with
694          * BLK_STS_RESOURCE so that they will be rescheduled.
695          */
696         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
697                 return false;
698
699         if (ctrl->ops->flags & NVME_F_FABRICS) {
700                 /*
701                  * Only allow commands on a live queue, except for the connect
702                  * command, which is require to set the queue live in the
703                  * appropinquate states.
704                  */
705                 switch (ctrl->state) {
706                 case NVME_CTRL_CONNECTING:
707                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
708                             req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
709                                 return true;
710                         break;
711                 default:
712                         break;
713                 case NVME_CTRL_DEAD:
714                         return false;
715                 }
716         }
717
718         return queue_live;
719 }
720 EXPORT_SYMBOL_GPL(__nvme_check_ready);
721
722 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
723 {
724         struct nvme_command c = { };
725
726         c.directive.opcode = nvme_admin_directive_send;
727         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
728         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
729         c.directive.dtype = NVME_DIR_IDENTIFY;
730         c.directive.tdtype = NVME_DIR_STREAMS;
731         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
732
733         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
734 }
735
736 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
737 {
738         return nvme_toggle_streams(ctrl, false);
739 }
740
741 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
742 {
743         return nvme_toggle_streams(ctrl, true);
744 }
745
746 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
747                                   struct streams_directive_params *s, u32 nsid)
748 {
749         struct nvme_command c = { };
750
751         memset(s, 0, sizeof(*s));
752
753         c.directive.opcode = nvme_admin_directive_recv;
754         c.directive.nsid = cpu_to_le32(nsid);
755         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
756         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
757         c.directive.dtype = NVME_DIR_STREAMS;
758
759         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
760 }
761
762 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
763 {
764         struct streams_directive_params s;
765         int ret;
766
767         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
768                 return 0;
769         if (!streams)
770                 return 0;
771
772         ret = nvme_enable_streams(ctrl);
773         if (ret)
774                 return ret;
775
776         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
777         if (ret)
778                 goto out_disable_stream;
779
780         ctrl->nssa = le16_to_cpu(s.nssa);
781         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
782                 dev_info(ctrl->device, "too few streams (%u) available\n",
783                                         ctrl->nssa);
784                 goto out_disable_stream;
785         }
786
787         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
788         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
789         return 0;
790
791 out_disable_stream:
792         nvme_disable_streams(ctrl);
793         return ret;
794 }
795
796 /*
797  * Check if 'req' has a write hint associated with it. If it does, assign
798  * a valid namespace stream to the write.
799  */
800 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
801                                      struct request *req, u16 *control,
802                                      u32 *dsmgmt)
803 {
804         enum rw_hint streamid = req->write_hint;
805
806         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
807                 streamid = 0;
808         else {
809                 streamid--;
810                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
811                         return;
812
813                 *control |= NVME_RW_DTYPE_STREAMS;
814                 *dsmgmt |= streamid << 16;
815         }
816
817         if (streamid < ARRAY_SIZE(req->q->write_hints))
818                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
819 }
820
821 static inline void nvme_setup_flush(struct nvme_ns *ns,
822                 struct nvme_command *cmnd)
823 {
824         cmnd->common.opcode = nvme_cmd_flush;
825         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
826 }
827
828 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
829                 struct nvme_command *cmnd)
830 {
831         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
832         struct nvme_dsm_range *range;
833         struct bio *bio;
834
835         /*
836          * Some devices do not consider the DSM 'Number of Ranges' field when
837          * determining how much data to DMA. Always allocate memory for maximum
838          * number of segments to prevent device reading beyond end of buffer.
839          */
840         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
841
842         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
843         if (!range) {
844                 /*
845                  * If we fail allocation our range, fallback to the controller
846                  * discard page. If that's also busy, it's safe to return
847                  * busy, as we know we can make progress once that's freed.
848                  */
849                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
850                         return BLK_STS_RESOURCE;
851
852                 range = page_address(ns->ctrl->discard_page);
853         }
854
855         __rq_for_each_bio(bio, req) {
856                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
857                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
858
859                 if (n < segments) {
860                         range[n].cattr = cpu_to_le32(0);
861                         range[n].nlb = cpu_to_le32(nlb);
862                         range[n].slba = cpu_to_le64(slba);
863                 }
864                 n++;
865         }
866
867         if (WARN_ON_ONCE(n != segments)) {
868                 if (virt_to_page(range) == ns->ctrl->discard_page)
869                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
870                 else
871                         kfree(range);
872                 return BLK_STS_IOERR;
873         }
874
875         cmnd->dsm.opcode = nvme_cmd_dsm;
876         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
877         cmnd->dsm.nr = cpu_to_le32(segments - 1);
878         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
879
880         req->special_vec.bv_page = virt_to_page(range);
881         req->special_vec.bv_offset = offset_in_page(range);
882         req->special_vec.bv_len = alloc_size;
883         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
884
885         return BLK_STS_OK;
886 }
887
888 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
889                 struct request *req, struct nvme_command *cmnd)
890 {
891         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
892                 return nvme_setup_discard(ns, req, cmnd);
893
894         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
895         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
896         cmnd->write_zeroes.slba =
897                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
898         cmnd->write_zeroes.length =
899                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
900         cmnd->write_zeroes.control = 0;
901         return BLK_STS_OK;
902 }
903
904 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
905                 struct request *req, struct nvme_command *cmnd,
906                 enum nvme_opcode op)
907 {
908         struct nvme_ctrl *ctrl = ns->ctrl;
909         u16 control = 0;
910         u32 dsmgmt = 0;
911
912         if (req->cmd_flags & REQ_FUA)
913                 control |= NVME_RW_FUA;
914         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
915                 control |= NVME_RW_LR;
916
917         if (req->cmd_flags & REQ_RAHEAD)
918                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
919
920         cmnd->rw.opcode = op;
921         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
922         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
923         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
924
925         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
926                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
927
928         if (ns->ms) {
929                 /*
930                  * If formated with metadata, the block layer always provides a
931                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
932                  * we enable the PRACT bit for protection information or set the
933                  * namespace capacity to zero to prevent any I/O.
934                  */
935                 if (!blk_integrity_rq(req)) {
936                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
937                                 return BLK_STS_NOTSUPP;
938                         control |= NVME_RW_PRINFO_PRACT;
939                 }
940
941                 switch (ns->pi_type) {
942                 case NVME_NS_DPS_PI_TYPE3:
943                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
944                         break;
945                 case NVME_NS_DPS_PI_TYPE1:
946                 case NVME_NS_DPS_PI_TYPE2:
947                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
948                                         NVME_RW_PRINFO_PRCHK_REF;
949                         if (op == nvme_cmd_zone_append)
950                                 control |= NVME_RW_APPEND_PIREMAP;
951                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
952                         break;
953                 }
954         }
955
956         cmnd->rw.control = cpu_to_le16(control);
957         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
958         return 0;
959 }
960
961 void nvme_cleanup_cmd(struct request *req)
962 {
963         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
964                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
965                 struct page *page = req->special_vec.bv_page;
966
967                 if (page == ctrl->discard_page)
968                         clear_bit_unlock(0, &ctrl->discard_page_busy);
969                 else
970                         kfree(page_address(page) + req->special_vec.bv_offset);
971         }
972 }
973 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
974
975 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
976 {
977         struct nvme_command *cmd = nvme_req(req)->cmd;
978         blk_status_t ret = BLK_STS_OK;
979
980         if (!(req->rq_flags & RQF_DONTPREP)) {
981                 nvme_clear_nvme_request(req);
982                 memset(cmd, 0, sizeof(*cmd));
983         }
984
985         switch (req_op(req)) {
986         case REQ_OP_DRV_IN:
987         case REQ_OP_DRV_OUT:
988                 /* these are setup prior to execution in nvme_init_request() */
989                 break;
990         case REQ_OP_FLUSH:
991                 nvme_setup_flush(ns, cmd);
992                 break;
993         case REQ_OP_ZONE_RESET_ALL:
994         case REQ_OP_ZONE_RESET:
995                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
996                 break;
997         case REQ_OP_ZONE_OPEN:
998                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
999                 break;
1000         case REQ_OP_ZONE_CLOSE:
1001                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1002                 break;
1003         case REQ_OP_ZONE_FINISH:
1004                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1005                 break;
1006         case REQ_OP_WRITE_ZEROES:
1007                 ret = nvme_setup_write_zeroes(ns, req, cmd);
1008                 break;
1009         case REQ_OP_DISCARD:
1010                 ret = nvme_setup_discard(ns, req, cmd);
1011                 break;
1012         case REQ_OP_READ:
1013                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1014                 break;
1015         case REQ_OP_WRITE:
1016                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1017                 break;
1018         case REQ_OP_ZONE_APPEND:
1019                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1020                 break;
1021         default:
1022                 WARN_ON_ONCE(1);
1023                 return BLK_STS_IOERR;
1024         }
1025
1026         cmd->common.command_id = req->tag;
1027         trace_nvme_setup_cmd(req, cmd);
1028         return ret;
1029 }
1030 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1031
1032 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
1033 {
1034         struct completion *waiting = rq->end_io_data;
1035
1036         rq->end_io_data = NULL;
1037         complete(waiting);
1038 }
1039
1040 static void nvme_execute_rq_polled(struct request_queue *q,
1041                 struct gendisk *bd_disk, struct request *rq, int at_head)
1042 {
1043         DECLARE_COMPLETION_ONSTACK(wait);
1044
1045         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
1046
1047         rq->cmd_flags |= REQ_HIPRI;
1048         rq->end_io_data = &wait;
1049         blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
1050
1051         while (!completion_done(&wait)) {
1052                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
1053                 cond_resched();
1054         }
1055 }
1056
1057 /*
1058  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1059  * if the result is positive, it's an NVM Express status code
1060  */
1061 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1062                 union nvme_result *result, void *buffer, unsigned bufflen,
1063                 unsigned timeout, int qid, int at_head,
1064                 blk_mq_req_flags_t flags, bool poll)
1065 {
1066         struct request *req;
1067         int ret;
1068
1069         if (qid == NVME_QID_ANY)
1070                 req = nvme_alloc_request(q, cmd, flags);
1071         else
1072                 req = nvme_alloc_request_qid(q, cmd, flags, qid);
1073         if (IS_ERR(req))
1074                 return PTR_ERR(req);
1075
1076         if (timeout)
1077                 req->timeout = timeout;
1078
1079         if (buffer && bufflen) {
1080                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1081                 if (ret)
1082                         goto out;
1083         }
1084
1085         if (poll)
1086                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
1087         else
1088                 blk_execute_rq(NULL, req, at_head);
1089         if (result)
1090                 *result = nvme_req(req)->result;
1091         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1092                 ret = -EINTR;
1093         else
1094                 ret = nvme_req(req)->status;
1095  out:
1096         blk_mq_free_request(req);
1097         return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1100
1101 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1102                 void *buffer, unsigned bufflen)
1103 {
1104         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1105                         NVME_QID_ANY, 0, 0, false);
1106 }
1107 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1108
1109 static u32 nvme_known_admin_effects(u8 opcode)
1110 {
1111         switch (opcode) {
1112         case nvme_admin_format_nvm:
1113                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1114                         NVME_CMD_EFFECTS_CSE_MASK;
1115         case nvme_admin_sanitize_nvm:
1116                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1117         default:
1118                 break;
1119         }
1120         return 0;
1121 }
1122
1123 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1124 {
1125         u32 effects = 0;
1126
1127         if (ns) {
1128                 if (ns->head->effects)
1129                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1130                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1131                         dev_warn_once(ctrl->device,
1132                                 "IO command:%02x has unhandled effects:%08x\n",
1133                                 opcode, effects);
1134                 return 0;
1135         }
1136
1137         if (ctrl->effects)
1138                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1139         effects |= nvme_known_admin_effects(opcode);
1140
1141         return effects;
1142 }
1143 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1144
1145 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1146                                u8 opcode)
1147 {
1148         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1149
1150         /*
1151          * For simplicity, IO to all namespaces is quiesced even if the command
1152          * effects say only one namespace is affected.
1153          */
1154         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1155                 mutex_lock(&ctrl->scan_lock);
1156                 mutex_lock(&ctrl->subsys->lock);
1157                 nvme_mpath_start_freeze(ctrl->subsys);
1158                 nvme_mpath_wait_freeze(ctrl->subsys);
1159                 nvme_start_freeze(ctrl);
1160                 nvme_wait_freeze(ctrl);
1161         }
1162         return effects;
1163 }
1164
1165 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1166 {
1167         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1168                 nvme_unfreeze(ctrl);
1169                 nvme_mpath_unfreeze(ctrl->subsys);
1170                 mutex_unlock(&ctrl->subsys->lock);
1171                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1172                 mutex_unlock(&ctrl->scan_lock);
1173         }
1174         if (effects & NVME_CMD_EFFECTS_CCC)
1175                 nvme_init_ctrl_finish(ctrl);
1176         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1177                 nvme_queue_scan(ctrl);
1178                 flush_work(&ctrl->scan_work);
1179         }
1180 }
1181
1182 void nvme_execute_passthru_rq(struct request *rq)
1183 {
1184         struct nvme_command *cmd = nvme_req(rq)->cmd;
1185         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1186         struct nvme_ns *ns = rq->q->queuedata;
1187         struct gendisk *disk = ns ? ns->disk : NULL;
1188         u32 effects;
1189
1190         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1191         blk_execute_rq(disk, rq, 0);
1192         if (effects) /* nothing to be done for zero cmd effects */
1193                 nvme_passthru_end(ctrl, effects);
1194 }
1195 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1196
1197 /*
1198  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1199  * 
1200  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1201  *   accounting for transport roundtrip times [..].
1202  */
1203 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1204 {
1205         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1206 }
1207
1208 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1209 {
1210         struct nvme_ctrl *ctrl = rq->end_io_data;
1211         unsigned long flags;
1212         bool startka = false;
1213
1214         blk_mq_free_request(rq);
1215
1216         if (status) {
1217                 dev_err(ctrl->device,
1218                         "failed nvme_keep_alive_end_io error=%d\n",
1219                                 status);
1220                 return;
1221         }
1222
1223         ctrl->comp_seen = false;
1224         spin_lock_irqsave(&ctrl->lock, flags);
1225         if (ctrl->state == NVME_CTRL_LIVE ||
1226             ctrl->state == NVME_CTRL_CONNECTING)
1227                 startka = true;
1228         spin_unlock_irqrestore(&ctrl->lock, flags);
1229         if (startka)
1230                 nvme_queue_keep_alive_work(ctrl);
1231 }
1232
1233 static void nvme_keep_alive_work(struct work_struct *work)
1234 {
1235         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1236                         struct nvme_ctrl, ka_work);
1237         bool comp_seen = ctrl->comp_seen;
1238         struct request *rq;
1239
1240         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1241                 dev_dbg(ctrl->device,
1242                         "reschedule traffic based keep-alive timer\n");
1243                 ctrl->comp_seen = false;
1244                 nvme_queue_keep_alive_work(ctrl);
1245                 return;
1246         }
1247
1248         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1249                                 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1250         if (IS_ERR(rq)) {
1251                 /* allocation failure, reset the controller */
1252                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1253                 nvme_reset_ctrl(ctrl);
1254                 return;
1255         }
1256
1257         rq->timeout = ctrl->kato * HZ;
1258         rq->end_io_data = ctrl;
1259         blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1260 }
1261
1262 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1263 {
1264         if (unlikely(ctrl->kato == 0))
1265                 return;
1266
1267         nvme_queue_keep_alive_work(ctrl);
1268 }
1269
1270 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1271 {
1272         if (unlikely(ctrl->kato == 0))
1273                 return;
1274
1275         cancel_delayed_work_sync(&ctrl->ka_work);
1276 }
1277 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1278
1279 /*
1280  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1281  * flag, thus sending any new CNS opcodes has a big chance of not working.
1282  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1283  * (but not for any later version).
1284  */
1285 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1286 {
1287         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1288                 return ctrl->vs < NVME_VS(1, 2, 0);
1289         return ctrl->vs < NVME_VS(1, 1, 0);
1290 }
1291
1292 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1293 {
1294         struct nvme_command c = { };
1295         int error;
1296
1297         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1298         c.identify.opcode = nvme_admin_identify;
1299         c.identify.cns = NVME_ID_CNS_CTRL;
1300
1301         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1302         if (!*id)
1303                 return -ENOMEM;
1304
1305         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1306                         sizeof(struct nvme_id_ctrl));
1307         if (error)
1308                 kfree(*id);
1309         return error;
1310 }
1311
1312 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1313 {
1314         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1315 }
1316
1317 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1318                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1319 {
1320         const char *warn_str = "ctrl returned bogus length:";
1321         void *data = cur;
1322
1323         switch (cur->nidt) {
1324         case NVME_NIDT_EUI64:
1325                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1326                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1327                                  warn_str, cur->nidl);
1328                         return -1;
1329                 }
1330                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1331                 return NVME_NIDT_EUI64_LEN;
1332         case NVME_NIDT_NGUID:
1333                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1334                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1335                                  warn_str, cur->nidl);
1336                         return -1;
1337                 }
1338                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1339                 return NVME_NIDT_NGUID_LEN;
1340         case NVME_NIDT_UUID:
1341                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1342                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1343                                  warn_str, cur->nidl);
1344                         return -1;
1345                 }
1346                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1347                 return NVME_NIDT_UUID_LEN;
1348         case NVME_NIDT_CSI:
1349                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1350                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1351                                  warn_str, cur->nidl);
1352                         return -1;
1353                 }
1354                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1355                 *csi_seen = true;
1356                 return NVME_NIDT_CSI_LEN;
1357         default:
1358                 /* Skip unknown types */
1359                 return cur->nidl;
1360         }
1361 }
1362
1363 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1364                 struct nvme_ns_ids *ids)
1365 {
1366         struct nvme_command c = { };
1367         bool csi_seen = false;
1368         int status, pos, len;
1369         void *data;
1370
1371         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1372                 return 0;
1373         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1374                 return 0;
1375
1376         c.identify.opcode = nvme_admin_identify;
1377         c.identify.nsid = cpu_to_le32(nsid);
1378         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1379
1380         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1381         if (!data)
1382                 return -ENOMEM;
1383
1384         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1385                                       NVME_IDENTIFY_DATA_SIZE);
1386         if (status) {
1387                 dev_warn(ctrl->device,
1388                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1389                         nsid, status);
1390                 goto free_data;
1391         }
1392
1393         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1394                 struct nvme_ns_id_desc *cur = data + pos;
1395
1396                 if (cur->nidl == 0)
1397                         break;
1398
1399                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1400                 if (len < 0)
1401                         break;
1402
1403                 len += sizeof(*cur);
1404         }
1405
1406         if (nvme_multi_css(ctrl) && !csi_seen) {
1407                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1408                          nsid);
1409                 status = -EINVAL;
1410         }
1411
1412 free_data:
1413         kfree(data);
1414         return status;
1415 }
1416
1417 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1418                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1419 {
1420         struct nvme_command c = { };
1421         int error;
1422
1423         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1424         c.identify.opcode = nvme_admin_identify;
1425         c.identify.nsid = cpu_to_le32(nsid);
1426         c.identify.cns = NVME_ID_CNS_NS;
1427
1428         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1429         if (!*id)
1430                 return -ENOMEM;
1431
1432         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1433         if (error) {
1434                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1435                 goto out_free_id;
1436         }
1437
1438         error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1439         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1440                 goto out_free_id;
1441
1442         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1443             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1444                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1445         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1446             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1447                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1448
1449         return 0;
1450
1451 out_free_id:
1452         kfree(*id);
1453         return error;
1454 }
1455
1456 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1457                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1458 {
1459         union nvme_result res = { 0 };
1460         struct nvme_command c = { };
1461         int ret;
1462
1463         c.features.opcode = op;
1464         c.features.fid = cpu_to_le32(fid);
1465         c.features.dword11 = cpu_to_le32(dword11);
1466
1467         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1468                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1469         if (ret >= 0 && result)
1470                 *result = le32_to_cpu(res.u32);
1471         return ret;
1472 }
1473
1474 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1475                       unsigned int dword11, void *buffer, size_t buflen,
1476                       u32 *result)
1477 {
1478         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1479                              buflen, result);
1480 }
1481 EXPORT_SYMBOL_GPL(nvme_set_features);
1482
1483 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1484                       unsigned int dword11, void *buffer, size_t buflen,
1485                       u32 *result)
1486 {
1487         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1488                              buflen, result);
1489 }
1490 EXPORT_SYMBOL_GPL(nvme_get_features);
1491
1492 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1493 {
1494         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1495         u32 result;
1496         int status, nr_io_queues;
1497
1498         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1499                         &result);
1500         if (status < 0)
1501                 return status;
1502
1503         /*
1504          * Degraded controllers might return an error when setting the queue
1505          * count.  We still want to be able to bring them online and offer
1506          * access to the admin queue, as that might be only way to fix them up.
1507          */
1508         if (status > 0) {
1509                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1510                 *count = 0;
1511         } else {
1512                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1513                 *count = min(*count, nr_io_queues);
1514         }
1515
1516         return 0;
1517 }
1518 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1519
1520 #define NVME_AEN_SUPPORTED \
1521         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1522          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1523
1524 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1525 {
1526         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1527         int status;
1528
1529         if (!supported_aens)
1530                 return;
1531
1532         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1533                         NULL, 0, &result);
1534         if (status)
1535                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1536                          supported_aens);
1537
1538         queue_work(nvme_wq, &ctrl->async_event_work);
1539 }
1540
1541 static int nvme_ns_open(struct nvme_ns *ns)
1542 {
1543
1544         /* should never be called due to GENHD_FL_HIDDEN */
1545         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1546                 goto fail;
1547         if (!nvme_get_ns(ns))
1548                 goto fail;
1549         if (!try_module_get(ns->ctrl->ops->module))
1550                 goto fail_put_ns;
1551
1552         return 0;
1553
1554 fail_put_ns:
1555         nvme_put_ns(ns);
1556 fail:
1557         return -ENXIO;
1558 }
1559
1560 static void nvme_ns_release(struct nvme_ns *ns)
1561 {
1562
1563         module_put(ns->ctrl->ops->module);
1564         nvme_put_ns(ns);
1565 }
1566
1567 static int nvme_open(struct block_device *bdev, fmode_t mode)
1568 {
1569         return nvme_ns_open(bdev->bd_disk->private_data);
1570 }
1571
1572 static void nvme_release(struct gendisk *disk, fmode_t mode)
1573 {
1574         nvme_ns_release(disk->private_data);
1575 }
1576
1577 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1578 {
1579         /* some standard values */
1580         geo->heads = 1 << 6;
1581         geo->sectors = 1 << 5;
1582         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1583         return 0;
1584 }
1585
1586 #ifdef CONFIG_BLK_DEV_INTEGRITY
1587 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1588                                 u32 max_integrity_segments)
1589 {
1590         struct blk_integrity integrity = { };
1591
1592         switch (pi_type) {
1593         case NVME_NS_DPS_PI_TYPE3:
1594                 integrity.profile = &t10_pi_type3_crc;
1595                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1596                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1597                 break;
1598         case NVME_NS_DPS_PI_TYPE1:
1599         case NVME_NS_DPS_PI_TYPE2:
1600                 integrity.profile = &t10_pi_type1_crc;
1601                 integrity.tag_size = sizeof(u16);
1602                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1603                 break;
1604         default:
1605                 integrity.profile = NULL;
1606                 break;
1607         }
1608         integrity.tuple_size = ms;
1609         blk_integrity_register(disk, &integrity);
1610         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1611 }
1612 #else
1613 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1614                                 u32 max_integrity_segments)
1615 {
1616 }
1617 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1618
1619 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1620 {
1621         struct nvme_ctrl *ctrl = ns->ctrl;
1622         struct request_queue *queue = disk->queue;
1623         u32 size = queue_logical_block_size(queue);
1624
1625         if (ctrl->max_discard_sectors == 0) {
1626                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1627                 return;
1628         }
1629
1630         if (ctrl->nr_streams && ns->sws && ns->sgs)
1631                 size *= ns->sws * ns->sgs;
1632
1633         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1634                         NVME_DSM_MAX_RANGES);
1635
1636         queue->limits.discard_alignment = 0;
1637         queue->limits.discard_granularity = size;
1638
1639         /* If discard is already enabled, don't reset queue limits */
1640         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1641                 return;
1642
1643         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1644         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1645
1646         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1647                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1648 }
1649
1650 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1651 {
1652         return !uuid_is_null(&ids->uuid) ||
1653                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1654                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1655 }
1656
1657 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1658 {
1659         return uuid_equal(&a->uuid, &b->uuid) &&
1660                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1661                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1662                 a->csi == b->csi;
1663 }
1664
1665 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1666                                  u32 *phys_bs, u32 *io_opt)
1667 {
1668         struct streams_directive_params s;
1669         int ret;
1670
1671         if (!ctrl->nr_streams)
1672                 return 0;
1673
1674         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1675         if (ret)
1676                 return ret;
1677
1678         ns->sws = le32_to_cpu(s.sws);
1679         ns->sgs = le16_to_cpu(s.sgs);
1680
1681         if (ns->sws) {
1682                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1683                 if (ns->sgs)
1684                         *io_opt = *phys_bs * ns->sgs;
1685         }
1686
1687         return 0;
1688 }
1689
1690 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1691 {
1692         struct nvme_ctrl *ctrl = ns->ctrl;
1693
1694         /*
1695          * The PI implementation requires the metadata size to be equal to the
1696          * t10 pi tuple size.
1697          */
1698         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1699         if (ns->ms == sizeof(struct t10_pi_tuple))
1700                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1701         else
1702                 ns->pi_type = 0;
1703
1704         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1705         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1706                 return 0;
1707         if (ctrl->ops->flags & NVME_F_FABRICS) {
1708                 /*
1709                  * The NVMe over Fabrics specification only supports metadata as
1710                  * part of the extended data LBA.  We rely on HCA/HBA support to
1711                  * remap the separate metadata buffer from the block layer.
1712                  */
1713                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1714                         return -EINVAL;
1715                 if (ctrl->max_integrity_segments)
1716                         ns->features |=
1717                                 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1718         } else {
1719                 /*
1720                  * For PCIe controllers, we can't easily remap the separate
1721                  * metadata buffer from the block layer and thus require a
1722                  * separate metadata buffer for block layer metadata/PI support.
1723                  * We allow extended LBAs for the passthrough interface, though.
1724                  */
1725                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1726                         ns->features |= NVME_NS_EXT_LBAS;
1727                 else
1728                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1729         }
1730
1731         return 0;
1732 }
1733
1734 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1735                 struct request_queue *q)
1736 {
1737         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1738
1739         if (ctrl->max_hw_sectors) {
1740                 u32 max_segments =
1741                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1742
1743                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1744                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1745                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1746         }
1747         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1748         blk_queue_dma_alignment(q, 7);
1749         blk_queue_write_cache(q, vwc, vwc);
1750 }
1751
1752 static void nvme_update_disk_info(struct gendisk *disk,
1753                 struct nvme_ns *ns, struct nvme_id_ns *id)
1754 {
1755         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1756         unsigned short bs = 1 << ns->lba_shift;
1757         u32 atomic_bs, phys_bs, io_opt = 0;
1758
1759         /*
1760          * The block layer can't support LBA sizes larger than the page size
1761          * yet, so catch this early and don't allow block I/O.
1762          */
1763         if (ns->lba_shift > PAGE_SHIFT) {
1764                 capacity = 0;
1765                 bs = (1 << 9);
1766         }
1767
1768         blk_integrity_unregister(disk);
1769
1770         atomic_bs = phys_bs = bs;
1771         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1772         if (id->nabo == 0) {
1773                 /*
1774                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1775                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1776                  * 0 then AWUPF must be used instead.
1777                  */
1778                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1779                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1780                 else
1781                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1782         }
1783
1784         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1785                 /* NPWG = Namespace Preferred Write Granularity */
1786                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1787                 /* NOWS = Namespace Optimal Write Size */
1788                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1789         }
1790
1791         blk_queue_logical_block_size(disk->queue, bs);
1792         /*
1793          * Linux filesystems assume writing a single physical block is
1794          * an atomic operation. Hence limit the physical block size to the
1795          * value of the Atomic Write Unit Power Fail parameter.
1796          */
1797         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1798         blk_queue_io_min(disk->queue, phys_bs);
1799         blk_queue_io_opt(disk->queue, io_opt);
1800
1801         /*
1802          * Register a metadata profile for PI, or the plain non-integrity NVMe
1803          * metadata masquerading as Type 0 if supported, otherwise reject block
1804          * I/O to namespaces with metadata except when the namespace supports
1805          * PI, as it can strip/insert in that case.
1806          */
1807         if (ns->ms) {
1808                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1809                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1810                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
1811                                             ns->ctrl->max_integrity_segments);
1812                 else if (!nvme_ns_has_pi(ns))
1813                         capacity = 0;
1814         }
1815
1816         set_capacity_and_notify(disk, capacity);
1817
1818         nvme_config_discard(disk, ns);
1819         blk_queue_max_write_zeroes_sectors(disk->queue,
1820                                            ns->ctrl->max_zeroes_sectors);
1821
1822         set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1823                 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1824 }
1825
1826 static inline bool nvme_first_scan(struct gendisk *disk)
1827 {
1828         /* nvme_alloc_ns() scans the disk prior to adding it */
1829         return !(disk->flags & GENHD_FL_UP);
1830 }
1831
1832 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1833 {
1834         struct nvme_ctrl *ctrl = ns->ctrl;
1835         u32 iob;
1836
1837         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1838             is_power_of_2(ctrl->max_hw_sectors))
1839                 iob = ctrl->max_hw_sectors;
1840         else
1841                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1842
1843         if (!iob)
1844                 return;
1845
1846         if (!is_power_of_2(iob)) {
1847                 if (nvme_first_scan(ns->disk))
1848                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1849                                 ns->disk->disk_name, iob);
1850                 return;
1851         }
1852
1853         if (blk_queue_is_zoned(ns->disk->queue)) {
1854                 if (nvme_first_scan(ns->disk))
1855                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1856                                 ns->disk->disk_name);
1857                 return;
1858         }
1859
1860         blk_queue_chunk_sectors(ns->queue, iob);
1861 }
1862
1863 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1864 {
1865         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1866         int ret;
1867
1868         blk_mq_freeze_queue(ns->disk->queue);
1869         ns->lba_shift = id->lbaf[lbaf].ds;
1870         nvme_set_queue_limits(ns->ctrl, ns->queue);
1871
1872         ret = nvme_configure_metadata(ns, id);
1873         if (ret)
1874                 goto out_unfreeze;
1875         nvme_set_chunk_sectors(ns, id);
1876         nvme_update_disk_info(ns->disk, ns, id);
1877
1878         if (ns->head->ids.csi == NVME_CSI_ZNS) {
1879                 ret = nvme_update_zone_info(ns, lbaf);
1880                 if (ret)
1881                         goto out_unfreeze;
1882         }
1883
1884         blk_mq_unfreeze_queue(ns->disk->queue);
1885
1886         if (blk_queue_is_zoned(ns->queue)) {
1887                 ret = nvme_revalidate_zones(ns);
1888                 if (ret && !nvme_first_scan(ns->disk))
1889                         goto out;
1890         }
1891
1892         if (nvme_ns_head_multipath(ns->head)) {
1893                 blk_mq_freeze_queue(ns->head->disk->queue);
1894                 nvme_update_disk_info(ns->head->disk, ns, id);
1895                 blk_stack_limits(&ns->head->disk->queue->limits,
1896                                  &ns->queue->limits, 0);
1897                 blk_queue_update_readahead(ns->head->disk->queue);
1898                 blk_mq_unfreeze_queue(ns->head->disk->queue);
1899         }
1900         return 0;
1901
1902 out_unfreeze:
1903         blk_mq_unfreeze_queue(ns->disk->queue);
1904 out:
1905         /*
1906          * If probing fails due an unsupported feature, hide the block device,
1907          * but still allow other access.
1908          */
1909         if (ret == -ENODEV) {
1910                 ns->disk->flags |= GENHD_FL_HIDDEN;
1911                 ret = 0;
1912         }
1913         return ret;
1914 }
1915
1916 static char nvme_pr_type(enum pr_type type)
1917 {
1918         switch (type) {
1919         case PR_WRITE_EXCLUSIVE:
1920                 return 1;
1921         case PR_EXCLUSIVE_ACCESS:
1922                 return 2;
1923         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1924                 return 3;
1925         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1926                 return 4;
1927         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1928                 return 5;
1929         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1930                 return 6;
1931         default:
1932                 return 0;
1933         }
1934 };
1935
1936 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1937                 struct nvme_command *c, u8 data[16])
1938 {
1939         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1940         int srcu_idx = srcu_read_lock(&head->srcu);
1941         struct nvme_ns *ns = nvme_find_path(head);
1942         int ret = -EWOULDBLOCK;
1943
1944         if (ns) {
1945                 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1946                 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1947         }
1948         srcu_read_unlock(&head->srcu, srcu_idx);
1949         return ret;
1950 }
1951         
1952 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1953                 u8 data[16])
1954 {
1955         c->common.nsid = cpu_to_le32(ns->head->ns_id);
1956         return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1957 }
1958
1959 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1960                                 u64 key, u64 sa_key, u8 op)
1961 {
1962         struct nvme_command c = { };
1963         u8 data[16] = { 0, };
1964
1965         put_unaligned_le64(key, &data[0]);
1966         put_unaligned_le64(sa_key, &data[8]);
1967
1968         c.common.opcode = op;
1969         c.common.cdw10 = cpu_to_le32(cdw10);
1970
1971         if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
1972             bdev->bd_disk->fops == &nvme_ns_head_ops)
1973                 return nvme_send_ns_head_pr_command(bdev, &c, data);
1974         return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
1975 }
1976
1977 static int nvme_pr_register(struct block_device *bdev, u64 old,
1978                 u64 new, unsigned flags)
1979 {
1980         u32 cdw10;
1981
1982         if (flags & ~PR_FL_IGNORE_KEY)
1983                 return -EOPNOTSUPP;
1984
1985         cdw10 = old ? 2 : 0;
1986         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1987         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1988         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1989 }
1990
1991 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1992                 enum pr_type type, unsigned flags)
1993 {
1994         u32 cdw10;
1995
1996         if (flags & ~PR_FL_IGNORE_KEY)
1997                 return -EOPNOTSUPP;
1998
1999         cdw10 = nvme_pr_type(type) << 8;
2000         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2001         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2002 }
2003
2004 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2005                 enum pr_type type, bool abort)
2006 {
2007         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2008
2009         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2010 }
2011
2012 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2013 {
2014         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2015
2016         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2017 }
2018
2019 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2020 {
2021         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2022
2023         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2024 }
2025
2026 const struct pr_ops nvme_pr_ops = {
2027         .pr_register    = nvme_pr_register,
2028         .pr_reserve     = nvme_pr_reserve,
2029         .pr_release     = nvme_pr_release,
2030         .pr_preempt     = nvme_pr_preempt,
2031         .pr_clear       = nvme_pr_clear,
2032 };
2033
2034 #ifdef CONFIG_BLK_SED_OPAL
2035 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2036                 bool send)
2037 {
2038         struct nvme_ctrl *ctrl = data;
2039         struct nvme_command cmd = { };
2040
2041         if (send)
2042                 cmd.common.opcode = nvme_admin_security_send;
2043         else
2044                 cmd.common.opcode = nvme_admin_security_recv;
2045         cmd.common.nsid = 0;
2046         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2047         cmd.common.cdw11 = cpu_to_le32(len);
2048
2049         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2050                         NVME_QID_ANY, 1, 0, false);
2051 }
2052 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2053 #endif /* CONFIG_BLK_SED_OPAL */
2054
2055 #ifdef CONFIG_BLK_DEV_ZONED
2056 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2057                 unsigned int nr_zones, report_zones_cb cb, void *data)
2058 {
2059         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2060                         data);
2061 }
2062 #else
2063 #define nvme_report_zones       NULL
2064 #endif /* CONFIG_BLK_DEV_ZONED */
2065
2066 static const struct block_device_operations nvme_bdev_ops = {
2067         .owner          = THIS_MODULE,
2068         .ioctl          = nvme_ioctl,
2069         .open           = nvme_open,
2070         .release        = nvme_release,
2071         .getgeo         = nvme_getgeo,
2072         .report_zones   = nvme_report_zones,
2073         .pr_ops         = &nvme_pr_ops,
2074 };
2075
2076 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2077 {
2078         unsigned long timeout =
2079                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2080         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2081         int ret;
2082
2083         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2084                 if (csts == ~0)
2085                         return -ENODEV;
2086                 if ((csts & NVME_CSTS_RDY) == bit)
2087                         break;
2088
2089                 usleep_range(1000, 2000);
2090                 if (fatal_signal_pending(current))
2091                         return -EINTR;
2092                 if (time_after(jiffies, timeout)) {
2093                         dev_err(ctrl->device,
2094                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2095                                 enabled ? "initialisation" : "reset", csts);
2096                         return -ENODEV;
2097                 }
2098         }
2099
2100         return ret;
2101 }
2102
2103 /*
2104  * If the device has been passed off to us in an enabled state, just clear
2105  * the enabled bit.  The spec says we should set the 'shutdown notification
2106  * bits', but doing so may cause the device to complete commands to the
2107  * admin queue ... and we don't know what memory that might be pointing at!
2108  */
2109 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2110 {
2111         int ret;
2112
2113         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2114         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2115
2116         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2117         if (ret)
2118                 return ret;
2119
2120         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2121                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2122
2123         return nvme_wait_ready(ctrl, ctrl->cap, false);
2124 }
2125 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2126
2127 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2128 {
2129         unsigned dev_page_min;
2130         int ret;
2131
2132         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2133         if (ret) {
2134                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2135                 return ret;
2136         }
2137         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2138
2139         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2140                 dev_err(ctrl->device,
2141                         "Minimum device page size %u too large for host (%u)\n",
2142                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2143                 return -ENODEV;
2144         }
2145
2146         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2147                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2148         else
2149                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2150         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2151         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2152         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2153         ctrl->ctrl_config |= NVME_CC_ENABLE;
2154
2155         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2156         if (ret)
2157                 return ret;
2158         return nvme_wait_ready(ctrl, ctrl->cap, true);
2159 }
2160 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2161
2162 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2163 {
2164         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2165         u32 csts;
2166         int ret;
2167
2168         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2169         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2170
2171         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2172         if (ret)
2173                 return ret;
2174
2175         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2176                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2177                         break;
2178
2179                 msleep(100);
2180                 if (fatal_signal_pending(current))
2181                         return -EINTR;
2182                 if (time_after(jiffies, timeout)) {
2183                         dev_err(ctrl->device,
2184                                 "Device shutdown incomplete; abort shutdown\n");
2185                         return -ENODEV;
2186                 }
2187         }
2188
2189         return ret;
2190 }
2191 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2192
2193 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2194 {
2195         __le64 ts;
2196         int ret;
2197
2198         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2199                 return 0;
2200
2201         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2202         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2203                         NULL);
2204         if (ret)
2205                 dev_warn_once(ctrl->device,
2206                         "could not set timestamp (%d)\n", ret);
2207         return ret;
2208 }
2209
2210 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2211 {
2212         struct nvme_feat_host_behavior *host;
2213         int ret;
2214
2215         /* Don't bother enabling the feature if retry delay is not reported */
2216         if (!ctrl->crdt[0])
2217                 return 0;
2218
2219         host = kzalloc(sizeof(*host), GFP_KERNEL);
2220         if (!host)
2221                 return 0;
2222
2223         host->acre = NVME_ENABLE_ACRE;
2224         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2225                                 host, sizeof(*host), NULL);
2226         kfree(host);
2227         return ret;
2228 }
2229
2230 /*
2231  * The function checks whether the given total (exlat + enlat) latency of
2232  * a power state allows the latter to be used as an APST transition target.
2233  * It does so by comparing the latency to the primary and secondary latency
2234  * tolerances defined by module params. If there's a match, the corresponding
2235  * timeout value is returned and the matching tolerance index (1 or 2) is
2236  * reported.
2237  */
2238 static bool nvme_apst_get_transition_time(u64 total_latency,
2239                 u64 *transition_time, unsigned *last_index)
2240 {
2241         if (total_latency <= apst_primary_latency_tol_us) {
2242                 if (*last_index == 1)
2243                         return false;
2244                 *last_index = 1;
2245                 *transition_time = apst_primary_timeout_ms;
2246                 return true;
2247         }
2248         if (apst_secondary_timeout_ms &&
2249                 total_latency <= apst_secondary_latency_tol_us) {
2250                 if (*last_index <= 2)
2251                         return false;
2252                 *last_index = 2;
2253                 *transition_time = apst_secondary_timeout_ms;
2254                 return true;
2255         }
2256         return false;
2257 }
2258
2259 /*
2260  * APST (Autonomous Power State Transition) lets us program a table of power
2261  * state transitions that the controller will perform automatically.
2262  *
2263  * Depending on module params, one of the two supported techniques will be used:
2264  *
2265  * - If the parameters provide explicit timeouts and tolerances, they will be
2266  *   used to build a table with up to 2 non-operational states to transition to.
2267  *   The default parameter values were selected based on the values used by
2268  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2269  *   regeneration of the APST table in the event of switching between external
2270  *   and battery power, the timeouts and tolerances reflect a compromise
2271  *   between values used by Microsoft for AC and battery scenarios.
2272  * - If not, we'll configure the table with a simple heuristic: we are willing
2273  *   to spend at most 2% of the time transitioning between power states.
2274  *   Therefore, when running in any given state, we will enter the next
2275  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2276  *   microseconds, as long as that state's exit latency is under the requested
2277  *   maximum latency.
2278  *
2279  * We will not autonomously enter any non-operational state for which the total
2280  * latency exceeds ps_max_latency_us.
2281  *
2282  * Users can set ps_max_latency_us to zero to turn off APST.
2283  */
2284 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2285 {
2286         struct nvme_feat_auto_pst *table;
2287         unsigned apste = 0;
2288         u64 max_lat_us = 0;
2289         __le64 target = 0;
2290         int max_ps = -1;
2291         int state;
2292         int ret;
2293         unsigned last_lt_index = UINT_MAX;
2294
2295         /*
2296          * If APST isn't supported or if we haven't been initialized yet,
2297          * then don't do anything.
2298          */
2299         if (!ctrl->apsta)
2300                 return 0;
2301
2302         if (ctrl->npss > 31) {
2303                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2304                 return 0;
2305         }
2306
2307         table = kzalloc(sizeof(*table), GFP_KERNEL);
2308         if (!table)
2309                 return 0;
2310
2311         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2312                 /* Turn off APST. */
2313                 dev_dbg(ctrl->device, "APST disabled\n");
2314                 goto done;
2315         }
2316
2317         /*
2318          * Walk through all states from lowest- to highest-power.
2319          * According to the spec, lower-numbered states use more power.  NPSS,
2320          * despite the name, is the index of the lowest-power state, not the
2321          * number of states.
2322          */
2323         for (state = (int)ctrl->npss; state >= 0; state--) {
2324                 u64 total_latency_us, exit_latency_us, transition_ms;
2325
2326                 if (target)
2327                         table->entries[state] = target;
2328
2329                 /*
2330                  * Don't allow transitions to the deepest state if it's quirked
2331                  * off.
2332                  */
2333                 if (state == ctrl->npss &&
2334                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2335                         continue;
2336
2337                 /*
2338                  * Is this state a useful non-operational state for higher-power
2339                  * states to autonomously transition to?
2340                  */
2341                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2342                         continue;
2343
2344                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2345                 if (exit_latency_us > ctrl->ps_max_latency_us)
2346                         continue;
2347
2348                 total_latency_us = exit_latency_us +
2349                         le32_to_cpu(ctrl->psd[state].entry_lat);
2350
2351                 /*
2352                  * This state is good. It can be used as the APST idle target
2353                  * for higher power states.
2354                  */
2355                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2356                         if (!nvme_apst_get_transition_time(total_latency_us,
2357                                         &transition_ms, &last_lt_index))
2358                                 continue;
2359                 } else {
2360                         transition_ms = total_latency_us + 19;
2361                         do_div(transition_ms, 20);
2362                         if (transition_ms > (1 << 24) - 1)
2363                                 transition_ms = (1 << 24) - 1;
2364                 }
2365
2366                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2367                 if (max_ps == -1)
2368                         max_ps = state;
2369                 if (total_latency_us > max_lat_us)
2370                         max_lat_us = total_latency_us;
2371         }
2372
2373         if (max_ps == -1)
2374                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2375         else
2376                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2377                         max_ps, max_lat_us, (int)sizeof(*table), table);
2378         apste = 1;
2379
2380 done:
2381         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2382                                 table, sizeof(*table), NULL);
2383         if (ret)
2384                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2385         kfree(table);
2386         return ret;
2387 }
2388
2389 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2390 {
2391         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2392         u64 latency;
2393
2394         switch (val) {
2395         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2396         case PM_QOS_LATENCY_ANY:
2397                 latency = U64_MAX;
2398                 break;
2399
2400         default:
2401                 latency = val;
2402         }
2403
2404         if (ctrl->ps_max_latency_us != latency) {
2405                 ctrl->ps_max_latency_us = latency;
2406                 if (ctrl->state == NVME_CTRL_LIVE)
2407                         nvme_configure_apst(ctrl);
2408         }
2409 }
2410
2411 struct nvme_core_quirk_entry {
2412         /*
2413          * NVMe model and firmware strings are padded with spaces.  For
2414          * simplicity, strings in the quirk table are padded with NULLs
2415          * instead.
2416          */
2417         u16 vid;
2418         const char *mn;
2419         const char *fr;
2420         unsigned long quirks;
2421 };
2422
2423 static const struct nvme_core_quirk_entry core_quirks[] = {
2424         {
2425                 /*
2426                  * This Toshiba device seems to die using any APST states.  See:
2427                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2428                  */
2429                 .vid = 0x1179,
2430                 .mn = "THNSF5256GPUK TOSHIBA",
2431                 .quirks = NVME_QUIRK_NO_APST,
2432         },
2433         {
2434                 /*
2435                  * This LiteON CL1-3D*-Q11 firmware version has a race
2436                  * condition associated with actions related to suspend to idle
2437                  * LiteON has resolved the problem in future firmware
2438                  */
2439                 .vid = 0x14a4,
2440                 .fr = "22301111",
2441                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2442         }
2443 };
2444
2445 /* match is null-terminated but idstr is space-padded. */
2446 static bool string_matches(const char *idstr, const char *match, size_t len)
2447 {
2448         size_t matchlen;
2449
2450         if (!match)
2451                 return true;
2452
2453         matchlen = strlen(match);
2454         WARN_ON_ONCE(matchlen > len);
2455
2456         if (memcmp(idstr, match, matchlen))
2457                 return false;
2458
2459         for (; matchlen < len; matchlen++)
2460                 if (idstr[matchlen] != ' ')
2461                         return false;
2462
2463         return true;
2464 }
2465
2466 static bool quirk_matches(const struct nvme_id_ctrl *id,
2467                           const struct nvme_core_quirk_entry *q)
2468 {
2469         return q->vid == le16_to_cpu(id->vid) &&
2470                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2471                 string_matches(id->fr, q->fr, sizeof(id->fr));
2472 }
2473
2474 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2475                 struct nvme_id_ctrl *id)
2476 {
2477         size_t nqnlen;
2478         int off;
2479
2480         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2481                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2482                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2483                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2484                         return;
2485                 }
2486
2487                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2488                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2489         }
2490
2491         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2492         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2493                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2494                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2495         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2496         off += sizeof(id->sn);
2497         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2498         off += sizeof(id->mn);
2499         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2500 }
2501
2502 static void nvme_release_subsystem(struct device *dev)
2503 {
2504         struct nvme_subsystem *subsys =
2505                 container_of(dev, struct nvme_subsystem, dev);
2506
2507         if (subsys->instance >= 0)
2508                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2509         kfree(subsys);
2510 }
2511
2512 static void nvme_destroy_subsystem(struct kref *ref)
2513 {
2514         struct nvme_subsystem *subsys =
2515                         container_of(ref, struct nvme_subsystem, ref);
2516
2517         mutex_lock(&nvme_subsystems_lock);
2518         list_del(&subsys->entry);
2519         mutex_unlock(&nvme_subsystems_lock);
2520
2521         ida_destroy(&subsys->ns_ida);
2522         device_del(&subsys->dev);
2523         put_device(&subsys->dev);
2524 }
2525
2526 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2527 {
2528         kref_put(&subsys->ref, nvme_destroy_subsystem);
2529 }
2530
2531 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2532 {
2533         struct nvme_subsystem *subsys;
2534
2535         lockdep_assert_held(&nvme_subsystems_lock);
2536
2537         /*
2538          * Fail matches for discovery subsystems. This results
2539          * in each discovery controller bound to a unique subsystem.
2540          * This avoids issues with validating controller values
2541          * that can only be true when there is a single unique subsystem.
2542          * There may be multiple and completely independent entities
2543          * that provide discovery controllers.
2544          */
2545         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2546                 return NULL;
2547
2548         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2549                 if (strcmp(subsys->subnqn, subsysnqn))
2550                         continue;
2551                 if (!kref_get_unless_zero(&subsys->ref))
2552                         continue;
2553                 return subsys;
2554         }
2555
2556         return NULL;
2557 }
2558
2559 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2560         struct device_attribute subsys_attr_##_name = \
2561                 __ATTR(_name, _mode, _show, NULL)
2562
2563 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2564                                     struct device_attribute *attr,
2565                                     char *buf)
2566 {
2567         struct nvme_subsystem *subsys =
2568                 container_of(dev, struct nvme_subsystem, dev);
2569
2570         return sysfs_emit(buf, "%s\n", subsys->subnqn);
2571 }
2572 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2573
2574 #define nvme_subsys_show_str_function(field)                            \
2575 static ssize_t subsys_##field##_show(struct device *dev,                \
2576                             struct device_attribute *attr, char *buf)   \
2577 {                                                                       \
2578         struct nvme_subsystem *subsys =                                 \
2579                 container_of(dev, struct nvme_subsystem, dev);          \
2580         return sysfs_emit(buf, "%.*s\n",                                \
2581                            (int)sizeof(subsys->field), subsys->field);  \
2582 }                                                                       \
2583 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2584
2585 nvme_subsys_show_str_function(model);
2586 nvme_subsys_show_str_function(serial);
2587 nvme_subsys_show_str_function(firmware_rev);
2588
2589 static struct attribute *nvme_subsys_attrs[] = {
2590         &subsys_attr_model.attr,
2591         &subsys_attr_serial.attr,
2592         &subsys_attr_firmware_rev.attr,
2593         &subsys_attr_subsysnqn.attr,
2594 #ifdef CONFIG_NVME_MULTIPATH
2595         &subsys_attr_iopolicy.attr,
2596 #endif
2597         NULL,
2598 };
2599
2600 static const struct attribute_group nvme_subsys_attrs_group = {
2601         .attrs = nvme_subsys_attrs,
2602 };
2603
2604 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2605         &nvme_subsys_attrs_group,
2606         NULL,
2607 };
2608
2609 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2610 {
2611         return ctrl->opts && ctrl->opts->discovery_nqn;
2612 }
2613
2614 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2615                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2616 {
2617         struct nvme_ctrl *tmp;
2618
2619         lockdep_assert_held(&nvme_subsystems_lock);
2620
2621         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2622                 if (nvme_state_terminal(tmp))
2623                         continue;
2624
2625                 if (tmp->cntlid == ctrl->cntlid) {
2626                         dev_err(ctrl->device,
2627                                 "Duplicate cntlid %u with %s, rejecting\n",
2628                                 ctrl->cntlid, dev_name(tmp->device));
2629                         return false;
2630                 }
2631
2632                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2633                     nvme_discovery_ctrl(ctrl))
2634                         continue;
2635
2636                 dev_err(ctrl->device,
2637                         "Subsystem does not support multiple controllers\n");
2638                 return false;
2639         }
2640
2641         return true;
2642 }
2643
2644 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2645 {
2646         struct nvme_subsystem *subsys, *found;
2647         int ret;
2648
2649         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2650         if (!subsys)
2651                 return -ENOMEM;
2652
2653         subsys->instance = -1;
2654         mutex_init(&subsys->lock);
2655         kref_init(&subsys->ref);
2656         INIT_LIST_HEAD(&subsys->ctrls);
2657         INIT_LIST_HEAD(&subsys->nsheads);
2658         nvme_init_subnqn(subsys, ctrl, id);
2659         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2660         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2661         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2662         subsys->vendor_id = le16_to_cpu(id->vid);
2663         subsys->cmic = id->cmic;
2664         subsys->awupf = le16_to_cpu(id->awupf);
2665 #ifdef CONFIG_NVME_MULTIPATH
2666         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2667 #endif
2668
2669         subsys->dev.class = nvme_subsys_class;
2670         subsys->dev.release = nvme_release_subsystem;
2671         subsys->dev.groups = nvme_subsys_attrs_groups;
2672         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2673         device_initialize(&subsys->dev);
2674
2675         mutex_lock(&nvme_subsystems_lock);
2676         found = __nvme_find_get_subsystem(subsys->subnqn);
2677         if (found) {
2678                 put_device(&subsys->dev);
2679                 subsys = found;
2680
2681                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2682                         ret = -EINVAL;
2683                         goto out_put_subsystem;
2684                 }
2685         } else {
2686                 ret = device_add(&subsys->dev);
2687                 if (ret) {
2688                         dev_err(ctrl->device,
2689                                 "failed to register subsystem device.\n");
2690                         put_device(&subsys->dev);
2691                         goto out_unlock;
2692                 }
2693                 ida_init(&subsys->ns_ida);
2694                 list_add_tail(&subsys->entry, &nvme_subsystems);
2695         }
2696
2697         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2698                                 dev_name(ctrl->device));
2699         if (ret) {
2700                 dev_err(ctrl->device,
2701                         "failed to create sysfs link from subsystem.\n");
2702                 goto out_put_subsystem;
2703         }
2704
2705         if (!found)
2706                 subsys->instance = ctrl->instance;
2707         ctrl->subsys = subsys;
2708         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2709         mutex_unlock(&nvme_subsystems_lock);
2710         return 0;
2711
2712 out_put_subsystem:
2713         nvme_put_subsystem(subsys);
2714 out_unlock:
2715         mutex_unlock(&nvme_subsystems_lock);
2716         return ret;
2717 }
2718
2719 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2720                 void *log, size_t size, u64 offset)
2721 {
2722         struct nvme_command c = { };
2723         u32 dwlen = nvme_bytes_to_numd(size);
2724
2725         c.get_log_page.opcode = nvme_admin_get_log_page;
2726         c.get_log_page.nsid = cpu_to_le32(nsid);
2727         c.get_log_page.lid = log_page;
2728         c.get_log_page.lsp = lsp;
2729         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2730         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2731         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2732         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2733         c.get_log_page.csi = csi;
2734
2735         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2736 }
2737
2738 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2739                                 struct nvme_effects_log **log)
2740 {
2741         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2742         int ret;
2743
2744         if (cel)
2745                 goto out;
2746
2747         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2748         if (!cel)
2749                 return -ENOMEM;
2750
2751         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2752                         cel, sizeof(*cel), 0);
2753         if (ret) {
2754                 kfree(cel);
2755                 return ret;
2756         }
2757
2758         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2759 out:
2760         *log = cel;
2761         return 0;
2762 }
2763
2764 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2765 {
2766         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2767
2768         if (check_shl_overflow(1U, units + page_shift - 9, &val))
2769                 return UINT_MAX;
2770         return val;
2771 }
2772
2773 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2774 {
2775         struct nvme_command c = { };
2776         struct nvme_id_ctrl_nvm *id;
2777         int ret;
2778
2779         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2780                 ctrl->max_discard_sectors = UINT_MAX;
2781                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2782         } else {
2783                 ctrl->max_discard_sectors = 0;
2784                 ctrl->max_discard_segments = 0;
2785         }
2786
2787         /*
2788          * Even though NVMe spec explicitly states that MDTS is not applicable
2789          * to the write-zeroes, we are cautious and limit the size to the
2790          * controllers max_hw_sectors value, which is based on the MDTS field
2791          * and possibly other limiting factors.
2792          */
2793         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2794             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2795                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2796         else
2797                 ctrl->max_zeroes_sectors = 0;
2798
2799         if (nvme_ctrl_limited_cns(ctrl))
2800                 return 0;
2801
2802         id = kzalloc(sizeof(*id), GFP_KERNEL);
2803         if (!id)
2804                 return 0;
2805
2806         c.identify.opcode = nvme_admin_identify;
2807         c.identify.cns = NVME_ID_CNS_CS_CTRL;
2808         c.identify.csi = NVME_CSI_NVM;
2809
2810         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2811         if (ret)
2812                 goto free_data;
2813
2814         if (id->dmrl)
2815                 ctrl->max_discard_segments = id->dmrl;
2816         if (id->dmrsl)
2817                 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2818         if (id->wzsl)
2819                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2820
2821 free_data:
2822         kfree(id);
2823         return ret;
2824 }
2825
2826 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2827 {
2828         struct nvme_id_ctrl *id;
2829         u32 max_hw_sectors;
2830         bool prev_apst_enabled;
2831         int ret;
2832
2833         ret = nvme_identify_ctrl(ctrl, &id);
2834         if (ret) {
2835                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2836                 return -EIO;
2837         }
2838
2839         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2840                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2841                 if (ret < 0)
2842                         goto out_free;
2843         }
2844
2845         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2846                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2847
2848         if (!ctrl->identified) {
2849                 unsigned int i;
2850
2851                 ret = nvme_init_subsystem(ctrl, id);
2852                 if (ret)
2853                         goto out_free;
2854
2855                 /*
2856                  * Check for quirks.  Quirk can depend on firmware version,
2857                  * so, in principle, the set of quirks present can change
2858                  * across a reset.  As a possible future enhancement, we
2859                  * could re-scan for quirks every time we reinitialize
2860                  * the device, but we'd have to make sure that the driver
2861                  * behaves intelligently if the quirks change.
2862                  */
2863                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2864                         if (quirk_matches(id, &core_quirks[i]))
2865                                 ctrl->quirks |= core_quirks[i].quirks;
2866                 }
2867         }
2868
2869         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2870                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2871                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2872         }
2873
2874         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2875         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2876         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2877
2878         ctrl->oacs = le16_to_cpu(id->oacs);
2879         ctrl->oncs = le16_to_cpu(id->oncs);
2880         ctrl->mtfa = le16_to_cpu(id->mtfa);
2881         ctrl->oaes = le32_to_cpu(id->oaes);
2882         ctrl->wctemp = le16_to_cpu(id->wctemp);
2883         ctrl->cctemp = le16_to_cpu(id->cctemp);
2884
2885         atomic_set(&ctrl->abort_limit, id->acl + 1);
2886         ctrl->vwc = id->vwc;
2887         if (id->mdts)
2888                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2889         else
2890                 max_hw_sectors = UINT_MAX;
2891         ctrl->max_hw_sectors =
2892                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2893
2894         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2895         ctrl->sgls = le32_to_cpu(id->sgls);
2896         ctrl->kas = le16_to_cpu(id->kas);
2897         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2898         ctrl->ctratt = le32_to_cpu(id->ctratt);
2899
2900         if (id->rtd3e) {
2901                 /* us -> s */
2902                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2903
2904                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2905                                                  shutdown_timeout, 60);
2906
2907                 if (ctrl->shutdown_timeout != shutdown_timeout)
2908                         dev_info(ctrl->device,
2909                                  "Shutdown timeout set to %u seconds\n",
2910                                  ctrl->shutdown_timeout);
2911         } else
2912                 ctrl->shutdown_timeout = shutdown_timeout;
2913
2914         ctrl->npss = id->npss;
2915         ctrl->apsta = id->apsta;
2916         prev_apst_enabled = ctrl->apst_enabled;
2917         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2918                 if (force_apst && id->apsta) {
2919                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2920                         ctrl->apst_enabled = true;
2921                 } else {
2922                         ctrl->apst_enabled = false;
2923                 }
2924         } else {
2925                 ctrl->apst_enabled = id->apsta;
2926         }
2927         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2928
2929         if (ctrl->ops->flags & NVME_F_FABRICS) {
2930                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2931                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2932                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2933                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2934
2935                 /*
2936                  * In fabrics we need to verify the cntlid matches the
2937                  * admin connect
2938                  */
2939                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2940                         dev_err(ctrl->device,
2941                                 "Mismatching cntlid: Connect %u vs Identify "
2942                                 "%u, rejecting\n",
2943                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
2944                         ret = -EINVAL;
2945                         goto out_free;
2946                 }
2947
2948                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2949                         dev_err(ctrl->device,
2950                                 "keep-alive support is mandatory for fabrics\n");
2951                         ret = -EINVAL;
2952                         goto out_free;
2953                 }
2954         } else {
2955                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2956                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2957                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2958                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2959         }
2960
2961         ret = nvme_mpath_init_identify(ctrl, id);
2962         if (ret < 0)
2963                 goto out_free;
2964
2965         if (ctrl->apst_enabled && !prev_apst_enabled)
2966                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2967         else if (!ctrl->apst_enabled && prev_apst_enabled)
2968                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2969
2970 out_free:
2971         kfree(id);
2972         return ret;
2973 }
2974
2975 /*
2976  * Initialize the cached copies of the Identify data and various controller
2977  * register in our nvme_ctrl structure.  This should be called as soon as
2978  * the admin queue is fully up and running.
2979  */
2980 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
2981 {
2982         int ret;
2983
2984         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2985         if (ret) {
2986                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2987                 return ret;
2988         }
2989
2990         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2991
2992         if (ctrl->vs >= NVME_VS(1, 1, 0))
2993                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2994
2995         ret = nvme_init_identify(ctrl);
2996         if (ret)
2997                 return ret;
2998
2999         ret = nvme_init_non_mdts_limits(ctrl);
3000         if (ret < 0)
3001                 return ret;
3002
3003         ret = nvme_configure_apst(ctrl);
3004         if (ret < 0)
3005                 return ret;
3006
3007         ret = nvme_configure_timestamp(ctrl);
3008         if (ret < 0)
3009                 return ret;
3010
3011         ret = nvme_configure_directives(ctrl);
3012         if (ret < 0)
3013                 return ret;
3014
3015         ret = nvme_configure_acre(ctrl);
3016         if (ret < 0)
3017                 return ret;
3018
3019         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3020                 ret = nvme_hwmon_init(ctrl);
3021                 if (ret < 0)
3022                         return ret;
3023         }
3024
3025         ctrl->identified = true;
3026
3027         return 0;
3028 }
3029 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3030
3031 static int nvme_dev_open(struct inode *inode, struct file *file)
3032 {
3033         struct nvme_ctrl *ctrl =
3034                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3035
3036         switch (ctrl->state) {
3037         case NVME_CTRL_LIVE:
3038                 break;
3039         default:
3040                 return -EWOULDBLOCK;
3041         }
3042
3043         nvme_get_ctrl(ctrl);
3044         if (!try_module_get(ctrl->ops->module)) {
3045                 nvme_put_ctrl(ctrl);
3046                 return -EINVAL;
3047         }
3048
3049         file->private_data = ctrl;
3050         return 0;
3051 }
3052
3053 static int nvme_dev_release(struct inode *inode, struct file *file)
3054 {
3055         struct nvme_ctrl *ctrl =
3056                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3057
3058         module_put(ctrl->ops->module);
3059         nvme_put_ctrl(ctrl);
3060         return 0;
3061 }
3062
3063 static const struct file_operations nvme_dev_fops = {
3064         .owner          = THIS_MODULE,
3065         .open           = nvme_dev_open,
3066         .release        = nvme_dev_release,
3067         .unlocked_ioctl = nvme_dev_ioctl,
3068         .compat_ioctl   = compat_ptr_ioctl,
3069 };
3070
3071 static ssize_t nvme_sysfs_reset(struct device *dev,
3072                                 struct device_attribute *attr, const char *buf,
3073                                 size_t count)
3074 {
3075         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3076         int ret;
3077
3078         ret = nvme_reset_ctrl_sync(ctrl);
3079         if (ret < 0)
3080                 return ret;
3081         return count;
3082 }
3083 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3084
3085 static ssize_t nvme_sysfs_rescan(struct device *dev,
3086                                 struct device_attribute *attr, const char *buf,
3087                                 size_t count)
3088 {
3089         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3090
3091         nvme_queue_scan(ctrl);
3092         return count;
3093 }
3094 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3095
3096 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3097 {
3098         struct gendisk *disk = dev_to_disk(dev);
3099
3100         if (disk->fops == &nvme_bdev_ops)
3101                 return nvme_get_ns_from_dev(dev)->head;
3102         else
3103                 return disk->private_data;
3104 }
3105
3106 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3107                 char *buf)
3108 {
3109         struct nvme_ns_head *head = dev_to_ns_head(dev);
3110         struct nvme_ns_ids *ids = &head->ids;
3111         struct nvme_subsystem *subsys = head->subsys;
3112         int serial_len = sizeof(subsys->serial);
3113         int model_len = sizeof(subsys->model);
3114
3115         if (!uuid_is_null(&ids->uuid))
3116                 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3117
3118         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3119                 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3120
3121         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3122                 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3123
3124         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3125                                   subsys->serial[serial_len - 1] == '\0'))
3126                 serial_len--;
3127         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3128                                  subsys->model[model_len - 1] == '\0'))
3129                 model_len--;
3130
3131         return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3132                 serial_len, subsys->serial, model_len, subsys->model,
3133                 head->ns_id);
3134 }
3135 static DEVICE_ATTR_RO(wwid);
3136
3137 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3138                 char *buf)
3139 {
3140         return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3141 }
3142 static DEVICE_ATTR_RO(nguid);
3143
3144 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3145                 char *buf)
3146 {
3147         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3148
3149         /* For backward compatibility expose the NGUID to userspace if
3150          * we have no UUID set
3151          */
3152         if (uuid_is_null(&ids->uuid)) {
3153                 printk_ratelimited(KERN_WARNING
3154                                    "No UUID available providing old NGUID\n");
3155                 return sysfs_emit(buf, "%pU\n", ids->nguid);
3156         }
3157         return sysfs_emit(buf, "%pU\n", &ids->uuid);
3158 }
3159 static DEVICE_ATTR_RO(uuid);
3160
3161 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3162                 char *buf)
3163 {
3164         return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3165 }
3166 static DEVICE_ATTR_RO(eui);
3167
3168 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3169                 char *buf)
3170 {
3171         return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3172 }
3173 static DEVICE_ATTR_RO(nsid);
3174
3175 static struct attribute *nvme_ns_id_attrs[] = {
3176         &dev_attr_wwid.attr,
3177         &dev_attr_uuid.attr,
3178         &dev_attr_nguid.attr,
3179         &dev_attr_eui.attr,
3180         &dev_attr_nsid.attr,
3181 #ifdef CONFIG_NVME_MULTIPATH
3182         &dev_attr_ana_grpid.attr,
3183         &dev_attr_ana_state.attr,
3184 #endif
3185         NULL,
3186 };
3187
3188 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3189                 struct attribute *a, int n)
3190 {
3191         struct device *dev = container_of(kobj, struct device, kobj);
3192         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3193
3194         if (a == &dev_attr_uuid.attr) {
3195                 if (uuid_is_null(&ids->uuid) &&
3196                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3197                         return 0;
3198         }
3199         if (a == &dev_attr_nguid.attr) {
3200                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3201                         return 0;
3202         }
3203         if (a == &dev_attr_eui.attr) {
3204                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3205                         return 0;
3206         }
3207 #ifdef CONFIG_NVME_MULTIPATH
3208         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3209                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3210                         return 0;
3211                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3212                         return 0;
3213         }
3214 #endif
3215         return a->mode;
3216 }
3217
3218 static const struct attribute_group nvme_ns_id_attr_group = {
3219         .attrs          = nvme_ns_id_attrs,
3220         .is_visible     = nvme_ns_id_attrs_are_visible,
3221 };
3222
3223 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3224         &nvme_ns_id_attr_group,
3225 #ifdef CONFIG_NVM
3226         &nvme_nvm_attr_group,
3227 #endif
3228         NULL,
3229 };
3230
3231 #define nvme_show_str_function(field)                                           \
3232 static ssize_t  field##_show(struct device *dev,                                \
3233                             struct device_attribute *attr, char *buf)           \
3234 {                                                                               \
3235         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3236         return sysfs_emit(buf, "%.*s\n",                                        \
3237                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3238 }                                                                               \
3239 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3240
3241 nvme_show_str_function(model);
3242 nvme_show_str_function(serial);
3243 nvme_show_str_function(firmware_rev);
3244
3245 #define nvme_show_int_function(field)                                           \
3246 static ssize_t  field##_show(struct device *dev,                                \
3247                             struct device_attribute *attr, char *buf)           \
3248 {                                                                               \
3249         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3250         return sysfs_emit(buf, "%d\n", ctrl->field);                            \
3251 }                                                                               \
3252 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3253
3254 nvme_show_int_function(cntlid);
3255 nvme_show_int_function(numa_node);
3256 nvme_show_int_function(queue_count);
3257 nvme_show_int_function(sqsize);
3258 nvme_show_int_function(kato);
3259
3260 static ssize_t nvme_sysfs_delete(struct device *dev,
3261                                 struct device_attribute *attr, const char *buf,
3262                                 size_t count)
3263 {
3264         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3265
3266         if (device_remove_file_self(dev, attr))
3267                 nvme_delete_ctrl_sync(ctrl);
3268         return count;
3269 }
3270 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3271
3272 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3273                                          struct device_attribute *attr,
3274                                          char *buf)
3275 {
3276         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3277
3278         return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3279 }
3280 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3281
3282 static ssize_t nvme_sysfs_show_state(struct device *dev,
3283                                      struct device_attribute *attr,
3284                                      char *buf)
3285 {
3286         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3287         static const char *const state_name[] = {
3288                 [NVME_CTRL_NEW]         = "new",
3289                 [NVME_CTRL_LIVE]        = "live",
3290                 [NVME_CTRL_RESETTING]   = "resetting",
3291                 [NVME_CTRL_CONNECTING]  = "connecting",
3292                 [NVME_CTRL_DELETING]    = "deleting",
3293                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3294                 [NVME_CTRL_DEAD]        = "dead",
3295         };
3296
3297         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3298             state_name[ctrl->state])
3299                 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3300
3301         return sysfs_emit(buf, "unknown state\n");
3302 }
3303
3304 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3305
3306 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3307                                          struct device_attribute *attr,
3308                                          char *buf)
3309 {
3310         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3311
3312         return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3313 }
3314 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3315
3316 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3317                                         struct device_attribute *attr,
3318                                         char *buf)
3319 {
3320         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3321
3322         return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3323 }
3324 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3325
3326 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3327                                         struct device_attribute *attr,
3328                                         char *buf)
3329 {
3330         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3331
3332         return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3333 }
3334 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3335
3336 static ssize_t nvme_sysfs_show_address(struct device *dev,
3337                                          struct device_attribute *attr,
3338                                          char *buf)
3339 {
3340         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3341
3342         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3343 }
3344 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3345
3346 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3347                 struct device_attribute *attr, char *buf)
3348 {
3349         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3350         struct nvmf_ctrl_options *opts = ctrl->opts;
3351
3352         if (ctrl->opts->max_reconnects == -1)
3353                 return sysfs_emit(buf, "off\n");
3354         return sysfs_emit(buf, "%d\n",
3355                           opts->max_reconnects * opts->reconnect_delay);
3356 }
3357
3358 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3359                 struct device_attribute *attr, const char *buf, size_t count)
3360 {
3361         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3362         struct nvmf_ctrl_options *opts = ctrl->opts;
3363         int ctrl_loss_tmo, err;
3364
3365         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3366         if (err)
3367                 return -EINVAL;
3368
3369         if (ctrl_loss_tmo < 0)
3370                 opts->max_reconnects = -1;
3371         else
3372                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3373                                                 opts->reconnect_delay);
3374         return count;
3375 }
3376 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3377         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3378
3379 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3380                 struct device_attribute *attr, char *buf)
3381 {
3382         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3383
3384         if (ctrl->opts->reconnect_delay == -1)
3385                 return sysfs_emit(buf, "off\n");
3386         return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3387 }
3388
3389 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3390                 struct device_attribute *attr, const char *buf, size_t count)
3391 {
3392         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3393         unsigned int v;
3394         int err;
3395
3396         err = kstrtou32(buf, 10, &v);
3397         if (err)
3398                 return err;
3399
3400         ctrl->opts->reconnect_delay = v;
3401         return count;
3402 }
3403 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3404         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3405
3406 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3407                 struct device_attribute *attr, char *buf)
3408 {
3409         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3410
3411         if (ctrl->opts->fast_io_fail_tmo == -1)
3412                 return sysfs_emit(buf, "off\n");
3413         return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3414 }
3415
3416 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3417                 struct device_attribute *attr, const char *buf, size_t count)
3418 {
3419         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3420         struct nvmf_ctrl_options *opts = ctrl->opts;
3421         int fast_io_fail_tmo, err;
3422
3423         err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3424         if (err)
3425                 return -EINVAL;
3426
3427         if (fast_io_fail_tmo < 0)
3428                 opts->fast_io_fail_tmo = -1;
3429         else
3430                 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3431         return count;
3432 }
3433 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3434         nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3435
3436 static struct attribute *nvme_dev_attrs[] = {
3437         &dev_attr_reset_controller.attr,
3438         &dev_attr_rescan_controller.attr,
3439         &dev_attr_model.attr,
3440         &dev_attr_serial.attr,
3441         &dev_attr_firmware_rev.attr,
3442         &dev_attr_cntlid.attr,
3443         &dev_attr_delete_controller.attr,
3444         &dev_attr_transport.attr,
3445         &dev_attr_subsysnqn.attr,
3446         &dev_attr_address.attr,
3447         &dev_attr_state.attr,
3448         &dev_attr_numa_node.attr,
3449         &dev_attr_queue_count.attr,
3450         &dev_attr_sqsize.attr,
3451         &dev_attr_hostnqn.attr,
3452         &dev_attr_hostid.attr,
3453         &dev_attr_ctrl_loss_tmo.attr,
3454         &dev_attr_reconnect_delay.attr,
3455         &dev_attr_fast_io_fail_tmo.attr,
3456         &dev_attr_kato.attr,
3457         NULL
3458 };
3459
3460 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3461                 struct attribute *a, int n)
3462 {
3463         struct device *dev = container_of(kobj, struct device, kobj);
3464         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3465
3466         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3467                 return 0;
3468         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3469                 return 0;
3470         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3471                 return 0;
3472         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3473                 return 0;
3474         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3475                 return 0;
3476         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3477                 return 0;
3478         if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3479                 return 0;
3480
3481         return a->mode;
3482 }
3483
3484 static const struct attribute_group nvme_dev_attrs_group = {
3485         .attrs          = nvme_dev_attrs,
3486         .is_visible     = nvme_dev_attrs_are_visible,
3487 };
3488
3489 static const struct attribute_group *nvme_dev_attr_groups[] = {
3490         &nvme_dev_attrs_group,
3491         NULL,
3492 };
3493
3494 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3495                 unsigned nsid)
3496 {
3497         struct nvme_ns_head *h;
3498
3499         lockdep_assert_held(&subsys->lock);
3500
3501         list_for_each_entry(h, &subsys->nsheads, entry) {
3502                 if (h->ns_id == nsid && nvme_tryget_ns_head(h))
3503                         return h;
3504         }
3505
3506         return NULL;
3507 }
3508
3509 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3510                 struct nvme_ns_head *new)
3511 {
3512         struct nvme_ns_head *h;
3513
3514         lockdep_assert_held(&subsys->lock);
3515
3516         list_for_each_entry(h, &subsys->nsheads, entry) {
3517                 if (nvme_ns_ids_valid(&new->ids) &&
3518                     nvme_ns_ids_equal(&new->ids, &h->ids))
3519                         return -EINVAL;
3520         }
3521
3522         return 0;
3523 }
3524
3525 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3526 {
3527         cdev_device_del(cdev, cdev_device);
3528         ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt));
3529 }
3530
3531 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3532                 const struct file_operations *fops, struct module *owner)
3533 {
3534         int minor, ret;
3535
3536         minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3537         if (minor < 0)
3538                 return minor;
3539         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3540         cdev_device->class = nvme_ns_chr_class;
3541         device_initialize(cdev_device);
3542         cdev_init(cdev, fops);
3543         cdev->owner = owner;
3544         ret = cdev_device_add(cdev, cdev_device);
3545         if (ret) {
3546                 put_device(cdev_device);
3547                 ida_simple_remove(&nvme_ns_chr_minor_ida, minor);
3548         }
3549         return ret;
3550 }
3551
3552 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3553 {
3554         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3555 }
3556
3557 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3558 {
3559         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3560         return 0;
3561 }
3562
3563 static const struct file_operations nvme_ns_chr_fops = {
3564         .owner          = THIS_MODULE,
3565         .open           = nvme_ns_chr_open,
3566         .release        = nvme_ns_chr_release,
3567         .unlocked_ioctl = nvme_ns_chr_ioctl,
3568         .compat_ioctl   = compat_ptr_ioctl,
3569 };
3570
3571 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3572 {
3573         int ret;
3574
3575         ns->cdev_device.parent = ns->ctrl->device;
3576         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3577                            ns->ctrl->instance, ns->head->instance);
3578         if (ret)
3579                 return ret;
3580         ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3581                             ns->ctrl->ops->module);
3582         if (ret)
3583                 kfree_const(ns->cdev_device.kobj.name);
3584         return ret;
3585 }
3586
3587 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3588                 unsigned nsid, struct nvme_ns_ids *ids)
3589 {
3590         struct nvme_ns_head *head;
3591         size_t size = sizeof(*head);
3592         int ret = -ENOMEM;
3593
3594 #ifdef CONFIG_NVME_MULTIPATH
3595         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3596 #endif
3597
3598         head = kzalloc(size, GFP_KERNEL);
3599         if (!head)
3600                 goto out;
3601         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3602         if (ret < 0)
3603                 goto out_free_head;
3604         head->instance = ret;
3605         INIT_LIST_HEAD(&head->list);
3606         ret = init_srcu_struct(&head->srcu);
3607         if (ret)
3608                 goto out_ida_remove;
3609         head->subsys = ctrl->subsys;
3610         head->ns_id = nsid;
3611         head->ids = *ids;
3612         kref_init(&head->ref);
3613
3614         ret = __nvme_check_ids(ctrl->subsys, head);
3615         if (ret) {
3616                 dev_err(ctrl->device,
3617                         "duplicate IDs for nsid %d\n", nsid);
3618                 goto out_cleanup_srcu;
3619         }
3620
3621         if (head->ids.csi) {
3622                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3623                 if (ret)
3624                         goto out_cleanup_srcu;
3625         } else
3626                 head->effects = ctrl->effects;
3627
3628         ret = nvme_mpath_alloc_disk(ctrl, head);
3629         if (ret)
3630                 goto out_cleanup_srcu;
3631
3632         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3633
3634         kref_get(&ctrl->subsys->ref);
3635
3636         return head;
3637 out_cleanup_srcu:
3638         cleanup_srcu_struct(&head->srcu);
3639 out_ida_remove:
3640         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3641 out_free_head:
3642         kfree(head);
3643 out:
3644         if (ret > 0)
3645                 ret = blk_status_to_errno(nvme_error_status(ret));
3646         return ERR_PTR(ret);
3647 }
3648
3649 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3650                 struct nvme_ns_ids *ids, bool is_shared)
3651 {
3652         struct nvme_ctrl *ctrl = ns->ctrl;
3653         struct nvme_ns_head *head = NULL;
3654         int ret = 0;
3655
3656         mutex_lock(&ctrl->subsys->lock);
3657         head = nvme_find_ns_head(ctrl->subsys, nsid);
3658         if (!head) {
3659                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3660                 if (IS_ERR(head)) {
3661                         ret = PTR_ERR(head);
3662                         goto out_unlock;
3663                 }
3664                 head->shared = is_shared;
3665         } else {
3666                 ret = -EINVAL;
3667                 if (!is_shared || !head->shared) {
3668                         dev_err(ctrl->device,
3669                                 "Duplicate unshared namespace %d\n", nsid);
3670                         goto out_put_ns_head;
3671                 }
3672                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3673                         dev_err(ctrl->device,
3674                                 "IDs don't match for shared namespace %d\n",
3675                                         nsid);
3676                         goto out_put_ns_head;
3677                 }
3678         }
3679
3680         list_add_tail_rcu(&ns->siblings, &head->list);
3681         ns->head = head;
3682         mutex_unlock(&ctrl->subsys->lock);
3683         return 0;
3684
3685 out_put_ns_head:
3686         nvme_put_ns_head(head);
3687 out_unlock:
3688         mutex_unlock(&ctrl->subsys->lock);
3689         return ret;
3690 }
3691
3692 static int ns_cmp(void *priv, const struct list_head *a,
3693                 const struct list_head *b)
3694 {
3695         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3696         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3697
3698         return nsa->head->ns_id - nsb->head->ns_id;
3699 }
3700
3701 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3702 {
3703         struct nvme_ns *ns, *ret = NULL;
3704
3705         down_read(&ctrl->namespaces_rwsem);
3706         list_for_each_entry(ns, &ctrl->namespaces, list) {
3707                 if (ns->head->ns_id == nsid) {
3708                         if (!nvme_get_ns(ns))
3709                                 continue;
3710                         ret = ns;
3711                         break;
3712                 }
3713                 if (ns->head->ns_id > nsid)
3714                         break;
3715         }
3716         up_read(&ctrl->namespaces_rwsem);
3717         return ret;
3718 }
3719 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3720
3721 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3722                 struct nvme_ns_ids *ids)
3723 {
3724         struct nvme_ns *ns;
3725         struct gendisk *disk;
3726         struct nvme_id_ns *id;
3727         int node = ctrl->numa_node;
3728
3729         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3730                 return;
3731
3732         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3733         if (!ns)
3734                 goto out_free_id;
3735
3736         ns->queue = blk_mq_init_queue(ctrl->tagset);
3737         if (IS_ERR(ns->queue))
3738                 goto out_free_ns;
3739
3740         if (ctrl->opts && ctrl->opts->data_digest)
3741                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3742
3743         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3744         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3745                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3746
3747         ns->queue->queuedata = ns;
3748         ns->ctrl = ctrl;
3749         kref_init(&ns->kref);
3750
3751         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3752                 goto out_free_queue;
3753
3754         disk = alloc_disk_node(0, node);
3755         if (!disk)
3756                 goto out_unlink_ns;
3757
3758         disk->fops = &nvme_bdev_ops;
3759         disk->private_data = ns;
3760         disk->queue = ns->queue;
3761         /*
3762          * Without the multipath code enabled, multiple controller per
3763          * subsystems are visible as devices and thus we cannot use the
3764          * subsystem instance.
3765          */
3766         if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3767                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3768                         ns->head->instance);
3769         ns->disk = disk;
3770
3771         if (nvme_update_ns_info(ns, id))
3772                 goto out_put_disk;
3773
3774         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3775                 if (nvme_nvm_register(ns, disk->disk_name, node)) {
3776                         dev_warn(ctrl->device, "LightNVM init failure\n");
3777                         goto out_put_disk;
3778                 }
3779         }
3780
3781         down_write(&ctrl->namespaces_rwsem);
3782         list_add_tail(&ns->list, &ctrl->namespaces);
3783         up_write(&ctrl->namespaces_rwsem);
3784
3785         nvme_get_ctrl(ctrl);
3786
3787         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3788         if (!nvme_ns_head_multipath(ns->head))
3789                 nvme_add_ns_cdev(ns);
3790
3791         nvme_mpath_add_disk(ns, id);
3792         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3793         kfree(id);
3794
3795         return;
3796  out_put_disk:
3797         /* prevent double queue cleanup */
3798         ns->disk->queue = NULL;
3799         put_disk(ns->disk);
3800  out_unlink_ns:
3801         mutex_lock(&ctrl->subsys->lock);
3802         list_del_rcu(&ns->siblings);
3803         if (list_empty(&ns->head->list))
3804                 list_del_init(&ns->head->entry);
3805         mutex_unlock(&ctrl->subsys->lock);
3806         nvme_put_ns_head(ns->head);
3807  out_free_queue:
3808         blk_cleanup_queue(ns->queue);
3809  out_free_ns:
3810         kfree(ns);
3811  out_free_id:
3812         kfree(id);
3813 }
3814
3815 static void nvme_ns_remove(struct nvme_ns *ns)
3816 {
3817         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3818                 return;
3819
3820         set_capacity(ns->disk, 0);
3821         nvme_fault_inject_fini(&ns->fault_inject);
3822
3823         mutex_lock(&ns->ctrl->subsys->lock);
3824         list_del_rcu(&ns->siblings);
3825         if (list_empty(&ns->head->list))
3826                 list_del_init(&ns->head->entry);
3827         mutex_unlock(&ns->ctrl->subsys->lock);
3828
3829         synchronize_rcu(); /* guarantee not available in head->list */
3830         nvme_mpath_clear_current_path(ns);
3831         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3832
3833         if (ns->disk->flags & GENHD_FL_UP) {
3834                 if (!nvme_ns_head_multipath(ns->head))
3835                         nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3836                 del_gendisk(ns->disk);
3837                 blk_cleanup_queue(ns->queue);
3838                 if (blk_get_integrity(ns->disk))
3839                         blk_integrity_unregister(ns->disk);
3840         }
3841
3842         down_write(&ns->ctrl->namespaces_rwsem);
3843         list_del_init(&ns->list);
3844         up_write(&ns->ctrl->namespaces_rwsem);
3845
3846         nvme_mpath_check_last_path(ns);
3847         nvme_put_ns(ns);
3848 }
3849
3850 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3851 {
3852         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3853
3854         if (ns) {
3855                 nvme_ns_remove(ns);
3856                 nvme_put_ns(ns);
3857         }
3858 }
3859
3860 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3861 {
3862         struct nvme_id_ns *id;
3863         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3864
3865         if (test_bit(NVME_NS_DEAD, &ns->flags))
3866                 goto out;
3867
3868         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3869         if (ret)
3870                 goto out;
3871
3872         ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3873         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3874                 dev_err(ns->ctrl->device,
3875                         "identifiers changed for nsid %d\n", ns->head->ns_id);
3876                 goto out_free_id;
3877         }
3878
3879         ret = nvme_update_ns_info(ns, id);
3880
3881 out_free_id:
3882         kfree(id);
3883 out:
3884         /*
3885          * Only remove the namespace if we got a fatal error back from the
3886          * device, otherwise ignore the error and just move on.
3887          *
3888          * TODO: we should probably schedule a delayed retry here.
3889          */
3890         if (ret > 0 && (ret & NVME_SC_DNR))
3891                 nvme_ns_remove(ns);
3892 }
3893
3894 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3895 {
3896         struct nvme_ns_ids ids = { };
3897         struct nvme_ns *ns;
3898
3899         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3900                 return;
3901
3902         ns = nvme_find_get_ns(ctrl, nsid);
3903         if (ns) {
3904                 nvme_validate_ns(ns, &ids);
3905                 nvme_put_ns(ns);
3906                 return;
3907         }
3908
3909         switch (ids.csi) {
3910         case NVME_CSI_NVM:
3911                 nvme_alloc_ns(ctrl, nsid, &ids);
3912                 break;
3913         case NVME_CSI_ZNS:
3914                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3915                         dev_warn(ctrl->device,
3916                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3917                                 nsid);
3918                         break;
3919                 }
3920                 if (!nvme_multi_css(ctrl)) {
3921                         dev_warn(ctrl->device,
3922                                 "command set not reported for nsid: %d\n",
3923                                 nsid);
3924                         break;
3925                 }
3926                 nvme_alloc_ns(ctrl, nsid, &ids);
3927                 break;
3928         default:
3929                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3930                         ids.csi, nsid);
3931                 break;
3932         }
3933 }
3934
3935 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3936                                         unsigned nsid)
3937 {
3938         struct nvme_ns *ns, *next;
3939         LIST_HEAD(rm_list);
3940
3941         down_write(&ctrl->namespaces_rwsem);
3942         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3943                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3944                         list_move_tail(&ns->list, &rm_list);
3945         }
3946         up_write(&ctrl->namespaces_rwsem);
3947
3948         list_for_each_entry_safe(ns, next, &rm_list, list)
3949                 nvme_ns_remove(ns);
3950
3951 }
3952
3953 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3954 {
3955         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3956         __le32 *ns_list;
3957         u32 prev = 0;
3958         int ret = 0, i;
3959
3960         if (nvme_ctrl_limited_cns(ctrl))
3961                 return -EOPNOTSUPP;
3962
3963         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3964         if (!ns_list)
3965                 return -ENOMEM;
3966
3967         for (;;) {
3968                 struct nvme_command cmd = {
3969                         .identify.opcode        = nvme_admin_identify,
3970                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
3971                         .identify.nsid          = cpu_to_le32(prev),
3972                 };
3973
3974                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3975                                             NVME_IDENTIFY_DATA_SIZE);
3976                 if (ret) {
3977                         dev_warn(ctrl->device,
3978                                 "Identify NS List failed (status=0x%x)\n", ret);
3979                         goto free;
3980                 }
3981
3982                 for (i = 0; i < nr_entries; i++) {
3983                         u32 nsid = le32_to_cpu(ns_list[i]);
3984
3985                         if (!nsid)      /* end of the list? */
3986                                 goto out;
3987                         nvme_validate_or_alloc_ns(ctrl, nsid);
3988                         while (++prev < nsid)
3989                                 nvme_ns_remove_by_nsid(ctrl, prev);
3990                 }
3991         }
3992  out:
3993         nvme_remove_invalid_namespaces(ctrl, prev);
3994  free:
3995         kfree(ns_list);
3996         return ret;
3997 }
3998
3999 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4000 {
4001         struct nvme_id_ctrl *id;
4002         u32 nn, i;
4003
4004         if (nvme_identify_ctrl(ctrl, &id))
4005                 return;
4006         nn = le32_to_cpu(id->nn);
4007         kfree(id);
4008
4009         for (i = 1; i <= nn; i++)
4010                 nvme_validate_or_alloc_ns(ctrl, i);
4011
4012         nvme_remove_invalid_namespaces(ctrl, nn);
4013 }
4014
4015 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4016 {
4017         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4018         __le32 *log;
4019         int error;
4020
4021         log = kzalloc(log_size, GFP_KERNEL);
4022         if (!log)
4023                 return;
4024
4025         /*
4026          * We need to read the log to clear the AEN, but we don't want to rely
4027          * on it for the changed namespace information as userspace could have
4028          * raced with us in reading the log page, which could cause us to miss
4029          * updates.
4030          */
4031         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4032                         NVME_CSI_NVM, log, log_size, 0);
4033         if (error)
4034                 dev_warn(ctrl->device,
4035                         "reading changed ns log failed: %d\n", error);
4036
4037         kfree(log);
4038 }
4039
4040 static void nvme_scan_work(struct work_struct *work)
4041 {
4042         struct nvme_ctrl *ctrl =
4043                 container_of(work, struct nvme_ctrl, scan_work);
4044
4045         /* No tagset on a live ctrl means IO queues could not created */
4046         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4047                 return;
4048
4049         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4050                 dev_info(ctrl->device, "rescanning namespaces.\n");
4051                 nvme_clear_changed_ns_log(ctrl);
4052         }
4053
4054         mutex_lock(&ctrl->scan_lock);
4055         if (nvme_scan_ns_list(ctrl) != 0)
4056                 nvme_scan_ns_sequential(ctrl);
4057         mutex_unlock(&ctrl->scan_lock);
4058
4059         down_write(&ctrl->namespaces_rwsem);
4060         list_sort(NULL, &ctrl->namespaces, ns_cmp);
4061         up_write(&ctrl->namespaces_rwsem);
4062 }
4063
4064 /*
4065  * This function iterates the namespace list unlocked to allow recovery from
4066  * controller failure. It is up to the caller to ensure the namespace list is
4067  * not modified by scan work while this function is executing.
4068  */
4069 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4070 {
4071         struct nvme_ns *ns, *next;
4072         LIST_HEAD(ns_list);
4073
4074         /*
4075          * make sure to requeue I/O to all namespaces as these
4076          * might result from the scan itself and must complete
4077          * for the scan_work to make progress
4078          */
4079         nvme_mpath_clear_ctrl_paths(ctrl);
4080
4081         /* prevent racing with ns scanning */
4082         flush_work(&ctrl->scan_work);
4083
4084         /*
4085          * The dead states indicates the controller was not gracefully
4086          * disconnected. In that case, we won't be able to flush any data while
4087          * removing the namespaces' disks; fail all the queues now to avoid
4088          * potentially having to clean up the failed sync later.
4089          */
4090         if (ctrl->state == NVME_CTRL_DEAD)
4091                 nvme_kill_queues(ctrl);
4092
4093         /* this is a no-op when called from the controller reset handler */
4094         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4095
4096         down_write(&ctrl->namespaces_rwsem);
4097         list_splice_init(&ctrl->namespaces, &ns_list);
4098         up_write(&ctrl->namespaces_rwsem);
4099
4100         list_for_each_entry_safe(ns, next, &ns_list, list)
4101                 nvme_ns_remove(ns);
4102 }
4103 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4104
4105 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4106 {
4107         struct nvme_ctrl *ctrl =
4108                 container_of(dev, struct nvme_ctrl, ctrl_device);
4109         struct nvmf_ctrl_options *opts = ctrl->opts;
4110         int ret;
4111
4112         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4113         if (ret)
4114                 return ret;
4115
4116         if (opts) {
4117                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4118                 if (ret)
4119                         return ret;
4120
4121                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4122                                 opts->trsvcid ?: "none");
4123                 if (ret)
4124                         return ret;
4125
4126                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4127                                 opts->host_traddr ?: "none");
4128                 if (ret)
4129                         return ret;
4130
4131                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4132                                 opts->host_iface ?: "none");
4133         }
4134         return ret;
4135 }
4136
4137 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4138 {
4139         char *envp[2] = { NULL, NULL };
4140         u32 aen_result = ctrl->aen_result;
4141
4142         ctrl->aen_result = 0;
4143         if (!aen_result)
4144                 return;
4145
4146         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4147         if (!envp[0])
4148                 return;
4149         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4150         kfree(envp[0]);
4151 }
4152
4153 static void nvme_async_event_work(struct work_struct *work)
4154 {
4155         struct nvme_ctrl *ctrl =
4156                 container_of(work, struct nvme_ctrl, async_event_work);
4157
4158         nvme_aen_uevent(ctrl);
4159         ctrl->ops->submit_async_event(ctrl);
4160 }
4161
4162 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4163 {
4164
4165         u32 csts;
4166
4167         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4168                 return false;
4169
4170         if (csts == ~0)
4171                 return false;
4172
4173         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4174 }
4175
4176 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4177 {
4178         struct nvme_fw_slot_info_log *log;
4179
4180         log = kmalloc(sizeof(*log), GFP_KERNEL);
4181         if (!log)
4182                 return;
4183
4184         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4185                         log, sizeof(*log), 0))
4186                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4187         kfree(log);
4188 }
4189
4190 static void nvme_fw_act_work(struct work_struct *work)
4191 {
4192         struct nvme_ctrl *ctrl = container_of(work,
4193                                 struct nvme_ctrl, fw_act_work);
4194         unsigned long fw_act_timeout;
4195
4196         if (ctrl->mtfa)
4197                 fw_act_timeout = jiffies +
4198                                 msecs_to_jiffies(ctrl->mtfa * 100);
4199         else
4200                 fw_act_timeout = jiffies +
4201                                 msecs_to_jiffies(admin_timeout * 1000);
4202
4203         nvme_stop_queues(ctrl);
4204         while (nvme_ctrl_pp_status(ctrl)) {
4205                 if (time_after(jiffies, fw_act_timeout)) {
4206                         dev_warn(ctrl->device,
4207                                 "Fw activation timeout, reset controller\n");
4208                         nvme_try_sched_reset(ctrl);
4209                         return;
4210                 }
4211                 msleep(100);
4212         }
4213
4214         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4215                 return;
4216
4217         nvme_start_queues(ctrl);
4218         /* read FW slot information to clear the AER */
4219         nvme_get_fw_slot_info(ctrl);
4220 }
4221
4222 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4223 {
4224         u32 aer_notice_type = (result & 0xff00) >> 8;
4225
4226         trace_nvme_async_event(ctrl, aer_notice_type);
4227
4228         switch (aer_notice_type) {
4229         case NVME_AER_NOTICE_NS_CHANGED:
4230                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4231                 nvme_queue_scan(ctrl);
4232                 break;
4233         case NVME_AER_NOTICE_FW_ACT_STARTING:
4234                 /*
4235                  * We are (ab)using the RESETTING state to prevent subsequent
4236                  * recovery actions from interfering with the controller's
4237                  * firmware activation.
4238                  */
4239                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4240                         queue_work(nvme_wq, &ctrl->fw_act_work);
4241                 break;
4242 #ifdef CONFIG_NVME_MULTIPATH
4243         case NVME_AER_NOTICE_ANA:
4244                 if (!ctrl->ana_log_buf)
4245                         break;
4246                 queue_work(nvme_wq, &ctrl->ana_work);
4247                 break;
4248 #endif
4249         case NVME_AER_NOTICE_DISC_CHANGED:
4250                 ctrl->aen_result = result;
4251                 break;
4252         default:
4253                 dev_warn(ctrl->device, "async event result %08x\n", result);
4254         }
4255 }
4256
4257 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4258                 volatile union nvme_result *res)
4259 {
4260         u32 result = le32_to_cpu(res->u32);
4261         u32 aer_type = result & 0x07;
4262
4263         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4264                 return;
4265
4266         switch (aer_type) {
4267         case NVME_AER_NOTICE:
4268                 nvme_handle_aen_notice(ctrl, result);
4269                 break;
4270         case NVME_AER_ERROR:
4271         case NVME_AER_SMART:
4272         case NVME_AER_CSS:
4273         case NVME_AER_VS:
4274                 trace_nvme_async_event(ctrl, aer_type);
4275                 ctrl->aen_result = result;
4276                 break;
4277         default:
4278                 break;
4279         }
4280         queue_work(nvme_wq, &ctrl->async_event_work);
4281 }
4282 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4283
4284 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4285 {
4286         nvme_mpath_stop(ctrl);
4287         nvme_stop_keep_alive(ctrl);
4288         nvme_stop_failfast_work(ctrl);
4289         flush_work(&ctrl->async_event_work);
4290         cancel_work_sync(&ctrl->fw_act_work);
4291 }
4292 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4293
4294 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4295 {
4296         nvme_start_keep_alive(ctrl);
4297
4298         nvme_enable_aen(ctrl);
4299
4300         if (ctrl->queue_count > 1) {
4301                 nvme_queue_scan(ctrl);
4302                 nvme_start_queues(ctrl);
4303         }
4304 }
4305 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4306
4307 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4308 {
4309         nvme_hwmon_exit(ctrl);
4310         nvme_fault_inject_fini(&ctrl->fault_inject);
4311         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4312         cdev_device_del(&ctrl->cdev, ctrl->device);
4313         nvme_put_ctrl(ctrl);
4314 }
4315 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4316
4317 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4318 {
4319         struct nvme_effects_log *cel;
4320         unsigned long i;
4321
4322         xa_for_each(&ctrl->cels, i, cel) {
4323                 xa_erase(&ctrl->cels, i);
4324                 kfree(cel);
4325         }
4326
4327         xa_destroy(&ctrl->cels);
4328 }
4329
4330 static void nvme_free_ctrl(struct device *dev)
4331 {
4332         struct nvme_ctrl *ctrl =
4333                 container_of(dev, struct nvme_ctrl, ctrl_device);
4334         struct nvme_subsystem *subsys = ctrl->subsys;
4335
4336         if (!subsys || ctrl->instance != subsys->instance)
4337                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4338
4339         nvme_free_cels(ctrl);
4340         nvme_mpath_uninit(ctrl);
4341         __free_page(ctrl->discard_page);
4342
4343         if (subsys) {
4344                 mutex_lock(&nvme_subsystems_lock);
4345                 list_del(&ctrl->subsys_entry);
4346                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4347                 mutex_unlock(&nvme_subsystems_lock);
4348         }
4349
4350         ctrl->ops->free_ctrl(ctrl);
4351
4352         if (subsys)
4353                 nvme_put_subsystem(subsys);
4354 }
4355
4356 /*
4357  * Initialize a NVMe controller structures.  This needs to be called during
4358  * earliest initialization so that we have the initialized structured around
4359  * during probing.
4360  */
4361 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4362                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4363 {
4364         int ret;
4365
4366         ctrl->state = NVME_CTRL_NEW;
4367         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4368         spin_lock_init(&ctrl->lock);
4369         mutex_init(&ctrl->scan_lock);
4370         INIT_LIST_HEAD(&ctrl->namespaces);
4371         xa_init(&ctrl->cels);
4372         init_rwsem(&ctrl->namespaces_rwsem);
4373         ctrl->dev = dev;
4374         ctrl->ops = ops;
4375         ctrl->quirks = quirks;
4376         ctrl->numa_node = NUMA_NO_NODE;
4377         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4378         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4379         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4380         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4381         init_waitqueue_head(&ctrl->state_wq);
4382
4383         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4384         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4385         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4386         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4387
4388         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4389                         PAGE_SIZE);
4390         ctrl->discard_page = alloc_page(GFP_KERNEL);
4391         if (!ctrl->discard_page) {
4392                 ret = -ENOMEM;
4393                 goto out;
4394         }
4395
4396         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4397         if (ret < 0)
4398                 goto out;
4399         ctrl->instance = ret;
4400
4401         device_initialize(&ctrl->ctrl_device);
4402         ctrl->device = &ctrl->ctrl_device;
4403         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4404                         ctrl->instance);
4405         ctrl->device->class = nvme_class;
4406         ctrl->device->parent = ctrl->dev;
4407         ctrl->device->groups = nvme_dev_attr_groups;
4408         ctrl->device->release = nvme_free_ctrl;
4409         dev_set_drvdata(ctrl->device, ctrl);
4410         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4411         if (ret)
4412                 goto out_release_instance;
4413
4414         nvme_get_ctrl(ctrl);
4415         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4416         ctrl->cdev.owner = ops->module;
4417         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4418         if (ret)
4419                 goto out_free_name;
4420
4421         /*
4422          * Initialize latency tolerance controls.  The sysfs files won't
4423          * be visible to userspace unless the device actually supports APST.
4424          */
4425         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4426         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4427                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4428
4429         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4430         nvme_mpath_init_ctrl(ctrl);
4431
4432         return 0;
4433 out_free_name:
4434         nvme_put_ctrl(ctrl);
4435         kfree_const(ctrl->device->kobj.name);
4436 out_release_instance:
4437         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4438 out:
4439         if (ctrl->discard_page)
4440                 __free_page(ctrl->discard_page);
4441         return ret;
4442 }
4443 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4444
4445 /**
4446  * nvme_kill_queues(): Ends all namespace queues
4447  * @ctrl: the dead controller that needs to end
4448  *
4449  * Call this function when the driver determines it is unable to get the
4450  * controller in a state capable of servicing IO.
4451  */
4452 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4453 {
4454         struct nvme_ns *ns;
4455
4456         down_read(&ctrl->namespaces_rwsem);
4457
4458         /* Forcibly unquiesce queues to avoid blocking dispatch */
4459         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4460                 blk_mq_unquiesce_queue(ctrl->admin_q);
4461
4462         list_for_each_entry(ns, &ctrl->namespaces, list)
4463                 nvme_set_queue_dying(ns);
4464
4465         up_read(&ctrl->namespaces_rwsem);
4466 }
4467 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4468
4469 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4470 {
4471         struct nvme_ns *ns;
4472
4473         down_read(&ctrl->namespaces_rwsem);
4474         list_for_each_entry(ns, &ctrl->namespaces, list)
4475                 blk_mq_unfreeze_queue(ns->queue);
4476         up_read(&ctrl->namespaces_rwsem);
4477 }
4478 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4479
4480 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4481 {
4482         struct nvme_ns *ns;
4483
4484         down_read(&ctrl->namespaces_rwsem);
4485         list_for_each_entry(ns, &ctrl->namespaces, list) {
4486                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4487                 if (timeout <= 0)
4488                         break;
4489         }
4490         up_read(&ctrl->namespaces_rwsem);
4491         return timeout;
4492 }
4493 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4494
4495 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4496 {
4497         struct nvme_ns *ns;
4498
4499         down_read(&ctrl->namespaces_rwsem);
4500         list_for_each_entry(ns, &ctrl->namespaces, list)
4501                 blk_mq_freeze_queue_wait(ns->queue);
4502         up_read(&ctrl->namespaces_rwsem);
4503 }
4504 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4505
4506 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4507 {
4508         struct nvme_ns *ns;
4509
4510         down_read(&ctrl->namespaces_rwsem);
4511         list_for_each_entry(ns, &ctrl->namespaces, list)
4512                 blk_freeze_queue_start(ns->queue);
4513         up_read(&ctrl->namespaces_rwsem);
4514 }
4515 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4516
4517 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4518 {
4519         struct nvme_ns *ns;
4520
4521         down_read(&ctrl->namespaces_rwsem);
4522         list_for_each_entry(ns, &ctrl->namespaces, list)
4523                 blk_mq_quiesce_queue(ns->queue);
4524         up_read(&ctrl->namespaces_rwsem);
4525 }
4526 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4527
4528 void nvme_start_queues(struct nvme_ctrl *ctrl)
4529 {
4530         struct nvme_ns *ns;
4531
4532         down_read(&ctrl->namespaces_rwsem);
4533         list_for_each_entry(ns, &ctrl->namespaces, list)
4534                 blk_mq_unquiesce_queue(ns->queue);
4535         up_read(&ctrl->namespaces_rwsem);
4536 }
4537 EXPORT_SYMBOL_GPL(nvme_start_queues);
4538
4539 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4540 {
4541         struct nvme_ns *ns;
4542
4543         down_read(&ctrl->namespaces_rwsem);
4544         list_for_each_entry(ns, &ctrl->namespaces, list)
4545                 blk_sync_queue(ns->queue);
4546         up_read(&ctrl->namespaces_rwsem);
4547 }
4548 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4549
4550 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4551 {
4552         nvme_sync_io_queues(ctrl);
4553         if (ctrl->admin_q)
4554                 blk_sync_queue(ctrl->admin_q);
4555 }
4556 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4557
4558 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4559 {
4560         if (file->f_op != &nvme_dev_fops)
4561                 return NULL;
4562         return file->private_data;
4563 }
4564 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4565
4566 /*
4567  * Check we didn't inadvertently grow the command structure sizes:
4568  */
4569 static inline void _nvme_check_size(void)
4570 {
4571         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4572         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4573         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4574         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4575         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4576         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4577         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4578         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4579         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4580         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4581         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4582         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4583         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4584         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4585         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4586         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4587         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4588         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4589         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4590         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4591 }
4592
4593
4594 static int __init nvme_core_init(void)
4595 {
4596         int result = -ENOMEM;
4597
4598         _nvme_check_size();
4599
4600         nvme_wq = alloc_workqueue("nvme-wq",
4601                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4602         if (!nvme_wq)
4603                 goto out;
4604
4605         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4606                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4607         if (!nvme_reset_wq)
4608                 goto destroy_wq;
4609
4610         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4611                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4612         if (!nvme_delete_wq)
4613                 goto destroy_reset_wq;
4614
4615         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4616                         NVME_MINORS, "nvme");
4617         if (result < 0)
4618                 goto destroy_delete_wq;
4619
4620         nvme_class = class_create(THIS_MODULE, "nvme");
4621         if (IS_ERR(nvme_class)) {
4622                 result = PTR_ERR(nvme_class);
4623                 goto unregister_chrdev;
4624         }
4625         nvme_class->dev_uevent = nvme_class_uevent;
4626
4627         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4628         if (IS_ERR(nvme_subsys_class)) {
4629                 result = PTR_ERR(nvme_subsys_class);
4630                 goto destroy_class;
4631         }
4632
4633         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4634                                      "nvme-generic");
4635         if (result < 0)
4636                 goto destroy_subsys_class;
4637
4638         nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4639         if (IS_ERR(nvme_ns_chr_class)) {
4640                 result = PTR_ERR(nvme_ns_chr_class);
4641                 goto unregister_generic_ns;
4642         }
4643
4644         return 0;
4645
4646 unregister_generic_ns:
4647         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4648 destroy_subsys_class:
4649         class_destroy(nvme_subsys_class);
4650 destroy_class:
4651         class_destroy(nvme_class);
4652 unregister_chrdev:
4653         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4654 destroy_delete_wq:
4655         destroy_workqueue(nvme_delete_wq);
4656 destroy_reset_wq:
4657         destroy_workqueue(nvme_reset_wq);
4658 destroy_wq:
4659         destroy_workqueue(nvme_wq);
4660 out:
4661         return result;
4662 }
4663
4664 static void __exit nvme_core_exit(void)
4665 {
4666         class_destroy(nvme_ns_chr_class);
4667         class_destroy(nvme_subsys_class);
4668         class_destroy(nvme_class);
4669         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4670         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4671         destroy_workqueue(nvme_delete_wq);
4672         destroy_workqueue(nvme_reset_wq);
4673         destroy_workqueue(nvme_wq);
4674         ida_destroy(&nvme_ns_chr_minor_ida);
4675         ida_destroy(&nvme_instance_ida);
4676 }
4677
4678 MODULE_LICENSE("GPL");
4679 MODULE_VERSION("1.0");
4680 module_init(nvme_core_init);
4681 module_exit(nvme_core_exit);