Merge tag 'efi-next-for-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94                                            unsigned nsid);
95
96 /*
97  * Prepare a queue for teardown.
98  *
99  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100  * the capacity to 0 after that to avoid blocking dispatchers that may be
101  * holding bd_butex.  This will end buffered writers dirtying pages that can't
102  * be synced.
103  */
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
105 {
106         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107                 return;
108
109         blk_set_queue_dying(ns->queue);
110         blk_mq_unquiesce_queue(ns->queue);
111
112         set_capacity_and_notify(ns->disk, 0);
113 }
114
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117         /*
118          * Only new queue scan work when admin and IO queues are both alive
119          */
120         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121                 queue_work(nvme_wq, &ctrl->scan_work);
122 }
123
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132         if (ctrl->state != NVME_CTRL_RESETTING)
133                 return -EBUSY;
134         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135                 return -EBUSY;
136         return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139
140 static void nvme_failfast_work(struct work_struct *work)
141 {
142         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143                         struct nvme_ctrl, failfast_work);
144
145         if (ctrl->state != NVME_CTRL_CONNECTING)
146                 return;
147
148         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149         dev_info(ctrl->device, "failfast expired\n");
150         nvme_kick_requeue_lists(ctrl);
151 }
152
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
154 {
155         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156                 return;
157
158         schedule_delayed_work(&ctrl->failfast_work,
159                               ctrl->opts->fast_io_fail_tmo * HZ);
160 }
161
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
163 {
164         if (!ctrl->opts)
165                 return;
166
167         cancel_delayed_work_sync(&ctrl->failfast_work);
168         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
169 }
170
171
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
173 {
174         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175                 return -EBUSY;
176         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177                 return -EBUSY;
178         return 0;
179 }
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
181
182 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
183 {
184         int ret;
185
186         ret = nvme_reset_ctrl(ctrl);
187         if (!ret) {
188                 flush_work(&ctrl->reset_work);
189                 if (ctrl->state != NVME_CTRL_LIVE)
190                         ret = -ENETRESET;
191         }
192
193         return ret;
194 }
195
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198         dev_info(ctrl->device,
199                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
200
201         flush_work(&ctrl->reset_work);
202         nvme_stop_ctrl(ctrl);
203         nvme_remove_namespaces(ctrl);
204         ctrl->ops->delete_ctrl(ctrl);
205         nvme_uninit_ctrl(ctrl);
206 }
207
208 static void nvme_delete_ctrl_work(struct work_struct *work)
209 {
210         struct nvme_ctrl *ctrl =
211                 container_of(work, struct nvme_ctrl, delete_work);
212
213         nvme_do_delete_ctrl(ctrl);
214 }
215
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
217 {
218         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219                 return -EBUSY;
220         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221                 return -EBUSY;
222         return 0;
223 }
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
225
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
227 {
228         /*
229          * Keep a reference until nvme_do_delete_ctrl() complete,
230          * since ->delete_ctrl can free the controller.
231          */
232         nvme_get_ctrl(ctrl);
233         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234                 nvme_do_delete_ctrl(ctrl);
235         nvme_put_ctrl(ctrl);
236 }
237
238 static blk_status_t nvme_error_status(u16 status)
239 {
240         switch (status & 0x7ff) {
241         case NVME_SC_SUCCESS:
242                 return BLK_STS_OK;
243         case NVME_SC_CAP_EXCEEDED:
244                 return BLK_STS_NOSPC;
245         case NVME_SC_LBA_RANGE:
246         case NVME_SC_CMD_INTERRUPTED:
247         case NVME_SC_NS_NOT_READY:
248                 return BLK_STS_TARGET;
249         case NVME_SC_BAD_ATTRIBUTES:
250         case NVME_SC_ONCS_NOT_SUPPORTED:
251         case NVME_SC_INVALID_OPCODE:
252         case NVME_SC_INVALID_FIELD:
253         case NVME_SC_INVALID_NS:
254                 return BLK_STS_NOTSUPP;
255         case NVME_SC_WRITE_FAULT:
256         case NVME_SC_READ_ERROR:
257         case NVME_SC_UNWRITTEN_BLOCK:
258         case NVME_SC_ACCESS_DENIED:
259         case NVME_SC_READ_ONLY:
260         case NVME_SC_COMPARE_FAILED:
261                 return BLK_STS_MEDIUM;
262         case NVME_SC_GUARD_CHECK:
263         case NVME_SC_APPTAG_CHECK:
264         case NVME_SC_REFTAG_CHECK:
265         case NVME_SC_INVALID_PI:
266                 return BLK_STS_PROTECTION;
267         case NVME_SC_RESERVATION_CONFLICT:
268                 return BLK_STS_NEXUS;
269         case NVME_SC_HOST_PATH_ERROR:
270                 return BLK_STS_TRANSPORT;
271         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
273         case NVME_SC_ZONE_TOO_MANY_OPEN:
274                 return BLK_STS_ZONE_OPEN_RESOURCE;
275         default:
276                 return BLK_STS_IOERR;
277         }
278 }
279
280 static void nvme_retry_req(struct request *req)
281 {
282         struct nvme_ns *ns = req->q->queuedata;
283         unsigned long delay = 0;
284         u16 crd;
285
286         /* The mask and shift result must be <= 3 */
287         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
288         if (ns && crd)
289                 delay = ns->ctrl->crdt[crd - 1] * 100;
290
291         nvme_req(req)->retries++;
292         blk_mq_requeue_request(req, false);
293         blk_mq_delay_kick_requeue_list(req->q, delay);
294 }
295
296 enum nvme_disposition {
297         COMPLETE,
298         RETRY,
299         FAILOVER,
300 };
301
302 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
303 {
304         if (likely(nvme_req(req)->status == 0))
305                 return COMPLETE;
306
307         if (blk_noretry_request(req) ||
308             (nvme_req(req)->status & NVME_SC_DNR) ||
309             nvme_req(req)->retries >= nvme_max_retries)
310                 return COMPLETE;
311
312         if (req->cmd_flags & REQ_NVME_MPATH) {
313                 if (nvme_is_path_error(nvme_req(req)->status) ||
314                     blk_queue_dying(req->q))
315                         return FAILOVER;
316         } else {
317                 if (blk_queue_dying(req->q))
318                         return COMPLETE;
319         }
320
321         return RETRY;
322 }
323
324 static inline void nvme_end_req(struct request *req)
325 {
326         blk_status_t status = nvme_error_status(nvme_req(req)->status);
327
328         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
329             req_op(req) == REQ_OP_ZONE_APPEND)
330                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
331                         le64_to_cpu(nvme_req(req)->result.u64));
332
333         nvme_trace_bio_complete(req);
334         blk_mq_end_request(req, status);
335 }
336
337 void nvme_complete_rq(struct request *req)
338 {
339         trace_nvme_complete_rq(req);
340         nvme_cleanup_cmd(req);
341
342         if (nvme_req(req)->ctrl->kas)
343                 nvme_req(req)->ctrl->comp_seen = true;
344
345         switch (nvme_decide_disposition(req)) {
346         case COMPLETE:
347                 nvme_end_req(req);
348                 return;
349         case RETRY:
350                 nvme_retry_req(req);
351                 return;
352         case FAILOVER:
353                 nvme_failover_req(req);
354                 return;
355         }
356 }
357 EXPORT_SYMBOL_GPL(nvme_complete_rq);
358
359 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
360 {
361         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
362                                 "Cancelling I/O %d", req->tag);
363
364         /* don't abort one completed request */
365         if (blk_mq_request_completed(req))
366                 return true;
367
368         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
369         blk_mq_complete_request(req);
370         return true;
371 }
372 EXPORT_SYMBOL_GPL(nvme_cancel_request);
373
374 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
375                 enum nvme_ctrl_state new_state)
376 {
377         enum nvme_ctrl_state old_state;
378         unsigned long flags;
379         bool changed = false;
380
381         spin_lock_irqsave(&ctrl->lock, flags);
382
383         old_state = ctrl->state;
384         switch (new_state) {
385         case NVME_CTRL_LIVE:
386                 switch (old_state) {
387                 case NVME_CTRL_NEW:
388                 case NVME_CTRL_RESETTING:
389                 case NVME_CTRL_CONNECTING:
390                         changed = true;
391                         fallthrough;
392                 default:
393                         break;
394                 }
395                 break;
396         case NVME_CTRL_RESETTING:
397                 switch (old_state) {
398                 case NVME_CTRL_NEW:
399                 case NVME_CTRL_LIVE:
400                         changed = true;
401                         fallthrough;
402                 default:
403                         break;
404                 }
405                 break;
406         case NVME_CTRL_CONNECTING:
407                 switch (old_state) {
408                 case NVME_CTRL_NEW:
409                 case NVME_CTRL_RESETTING:
410                         changed = true;
411                         fallthrough;
412                 default:
413                         break;
414                 }
415                 break;
416         case NVME_CTRL_DELETING:
417                 switch (old_state) {
418                 case NVME_CTRL_LIVE:
419                 case NVME_CTRL_RESETTING:
420                 case NVME_CTRL_CONNECTING:
421                         changed = true;
422                         fallthrough;
423                 default:
424                         break;
425                 }
426                 break;
427         case NVME_CTRL_DELETING_NOIO:
428                 switch (old_state) {
429                 case NVME_CTRL_DELETING:
430                 case NVME_CTRL_DEAD:
431                         changed = true;
432                         fallthrough;
433                 default:
434                         break;
435                 }
436                 break;
437         case NVME_CTRL_DEAD:
438                 switch (old_state) {
439                 case NVME_CTRL_DELETING:
440                         changed = true;
441                         fallthrough;
442                 default:
443                         break;
444                 }
445                 break;
446         default:
447                 break;
448         }
449
450         if (changed) {
451                 ctrl->state = new_state;
452                 wake_up_all(&ctrl->state_wq);
453         }
454
455         spin_unlock_irqrestore(&ctrl->lock, flags);
456         if (!changed)
457                 return false;
458
459         if (ctrl->state == NVME_CTRL_LIVE) {
460                 if (old_state == NVME_CTRL_CONNECTING)
461                         nvme_stop_failfast_work(ctrl);
462                 nvme_kick_requeue_lists(ctrl);
463         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
464                 old_state == NVME_CTRL_RESETTING) {
465                 nvme_start_failfast_work(ctrl);
466         }
467         return changed;
468 }
469 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
470
471 /*
472  * Returns true for sink states that can't ever transition back to live.
473  */
474 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
475 {
476         switch (ctrl->state) {
477         case NVME_CTRL_NEW:
478         case NVME_CTRL_LIVE:
479         case NVME_CTRL_RESETTING:
480         case NVME_CTRL_CONNECTING:
481                 return false;
482         case NVME_CTRL_DELETING:
483         case NVME_CTRL_DELETING_NOIO:
484         case NVME_CTRL_DEAD:
485                 return true;
486         default:
487                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
488                 return true;
489         }
490 }
491
492 /*
493  * Waits for the controller state to be resetting, or returns false if it is
494  * not possible to ever transition to that state.
495  */
496 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
497 {
498         wait_event(ctrl->state_wq,
499                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
500                    nvme_state_terminal(ctrl));
501         return ctrl->state == NVME_CTRL_RESETTING;
502 }
503 EXPORT_SYMBOL_GPL(nvme_wait_reset);
504
505 static void nvme_free_ns_head(struct kref *ref)
506 {
507         struct nvme_ns_head *head =
508                 container_of(ref, struct nvme_ns_head, ref);
509
510         nvme_mpath_remove_disk(head);
511         ida_simple_remove(&head->subsys->ns_ida, head->instance);
512         cleanup_srcu_struct(&head->srcu);
513         nvme_put_subsystem(head->subsys);
514         kfree(head);
515 }
516
517 static void nvme_put_ns_head(struct nvme_ns_head *head)
518 {
519         kref_put(&head->ref, nvme_free_ns_head);
520 }
521
522 static void nvme_free_ns(struct kref *kref)
523 {
524         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
525
526         if (ns->ndev)
527                 nvme_nvm_unregister(ns);
528
529         put_disk(ns->disk);
530         nvme_put_ns_head(ns->head);
531         nvme_put_ctrl(ns->ctrl);
532         kfree(ns);
533 }
534
535 void nvme_put_ns(struct nvme_ns *ns)
536 {
537         kref_put(&ns->kref, nvme_free_ns);
538 }
539 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
540
541 static inline void nvme_clear_nvme_request(struct request *req)
542 {
543         if (!(req->rq_flags & RQF_DONTPREP)) {
544                 nvme_req(req)->retries = 0;
545                 nvme_req(req)->flags = 0;
546                 req->rq_flags |= RQF_DONTPREP;
547         }
548 }
549
550 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
551 {
552         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
553 }
554
555 static inline void nvme_init_request(struct request *req,
556                 struct nvme_command *cmd)
557 {
558         if (req->q->queuedata)
559                 req->timeout = NVME_IO_TIMEOUT;
560         else /* no queuedata implies admin queue */
561                 req->timeout = NVME_ADMIN_TIMEOUT;
562
563         req->cmd_flags |= REQ_FAILFAST_DRIVER;
564         nvme_clear_nvme_request(req);
565         nvme_req(req)->cmd = cmd;
566 }
567
568 struct request *nvme_alloc_request(struct request_queue *q,
569                 struct nvme_command *cmd, blk_mq_req_flags_t flags)
570 {
571         struct request *req;
572
573         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
574         if (!IS_ERR(req))
575                 nvme_init_request(req, cmd);
576         return req;
577 }
578 EXPORT_SYMBOL_GPL(nvme_alloc_request);
579
580 static struct request *nvme_alloc_request_qid(struct request_queue *q,
581                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
582 {
583         struct request *req;
584
585         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
586                         qid ? qid - 1 : 0);
587         if (!IS_ERR(req))
588                 nvme_init_request(req, cmd);
589         return req;
590 }
591
592 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
593 {
594         struct nvme_command c;
595
596         memset(&c, 0, sizeof(c));
597
598         c.directive.opcode = nvme_admin_directive_send;
599         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
600         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
601         c.directive.dtype = NVME_DIR_IDENTIFY;
602         c.directive.tdtype = NVME_DIR_STREAMS;
603         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
604
605         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
606 }
607
608 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
609 {
610         return nvme_toggle_streams(ctrl, false);
611 }
612
613 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
614 {
615         return nvme_toggle_streams(ctrl, true);
616 }
617
618 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
619                                   struct streams_directive_params *s, u32 nsid)
620 {
621         struct nvme_command c;
622
623         memset(&c, 0, sizeof(c));
624         memset(s, 0, sizeof(*s));
625
626         c.directive.opcode = nvme_admin_directive_recv;
627         c.directive.nsid = cpu_to_le32(nsid);
628         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
629         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
630         c.directive.dtype = NVME_DIR_STREAMS;
631
632         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
633 }
634
635 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
636 {
637         struct streams_directive_params s;
638         int ret;
639
640         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
641                 return 0;
642         if (!streams)
643                 return 0;
644
645         ret = nvme_enable_streams(ctrl);
646         if (ret)
647                 return ret;
648
649         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
650         if (ret)
651                 goto out_disable_stream;
652
653         ctrl->nssa = le16_to_cpu(s.nssa);
654         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
655                 dev_info(ctrl->device, "too few streams (%u) available\n",
656                                         ctrl->nssa);
657                 goto out_disable_stream;
658         }
659
660         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
661         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
662         return 0;
663
664 out_disable_stream:
665         nvme_disable_streams(ctrl);
666         return ret;
667 }
668
669 /*
670  * Check if 'req' has a write hint associated with it. If it does, assign
671  * a valid namespace stream to the write.
672  */
673 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
674                                      struct request *req, u16 *control,
675                                      u32 *dsmgmt)
676 {
677         enum rw_hint streamid = req->write_hint;
678
679         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
680                 streamid = 0;
681         else {
682                 streamid--;
683                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
684                         return;
685
686                 *control |= NVME_RW_DTYPE_STREAMS;
687                 *dsmgmt |= streamid << 16;
688         }
689
690         if (streamid < ARRAY_SIZE(req->q->write_hints))
691                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
692 }
693
694 static void nvme_setup_passthrough(struct request *req,
695                 struct nvme_command *cmd)
696 {
697         memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
698         /* passthru commands should let the driver set the SGL flags */
699         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
700 }
701
702 static inline void nvme_setup_flush(struct nvme_ns *ns,
703                 struct nvme_command *cmnd)
704 {
705         cmnd->common.opcode = nvme_cmd_flush;
706         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
707 }
708
709 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
710                 struct nvme_command *cmnd)
711 {
712         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
713         struct nvme_dsm_range *range;
714         struct bio *bio;
715
716         /*
717          * Some devices do not consider the DSM 'Number of Ranges' field when
718          * determining how much data to DMA. Always allocate memory for maximum
719          * number of segments to prevent device reading beyond end of buffer.
720          */
721         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
722
723         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
724         if (!range) {
725                 /*
726                  * If we fail allocation our range, fallback to the controller
727                  * discard page. If that's also busy, it's safe to return
728                  * busy, as we know we can make progress once that's freed.
729                  */
730                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
731                         return BLK_STS_RESOURCE;
732
733                 range = page_address(ns->ctrl->discard_page);
734         }
735
736         __rq_for_each_bio(bio, req) {
737                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
738                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
739
740                 if (n < segments) {
741                         range[n].cattr = cpu_to_le32(0);
742                         range[n].nlb = cpu_to_le32(nlb);
743                         range[n].slba = cpu_to_le64(slba);
744                 }
745                 n++;
746         }
747
748         if (WARN_ON_ONCE(n != segments)) {
749                 if (virt_to_page(range) == ns->ctrl->discard_page)
750                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
751                 else
752                         kfree(range);
753                 return BLK_STS_IOERR;
754         }
755
756         cmnd->dsm.opcode = nvme_cmd_dsm;
757         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
758         cmnd->dsm.nr = cpu_to_le32(segments - 1);
759         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
760
761         req->special_vec.bv_page = virt_to_page(range);
762         req->special_vec.bv_offset = offset_in_page(range);
763         req->special_vec.bv_len = alloc_size;
764         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
765
766         return BLK_STS_OK;
767 }
768
769 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
770                 struct request *req, struct nvme_command *cmnd)
771 {
772         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
773                 return nvme_setup_discard(ns, req, cmnd);
774
775         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
776         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
777         cmnd->write_zeroes.slba =
778                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
779         cmnd->write_zeroes.length =
780                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
781         cmnd->write_zeroes.control = 0;
782         return BLK_STS_OK;
783 }
784
785 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
786                 struct request *req, struct nvme_command *cmnd,
787                 enum nvme_opcode op)
788 {
789         struct nvme_ctrl *ctrl = ns->ctrl;
790         u16 control = 0;
791         u32 dsmgmt = 0;
792
793         if (req->cmd_flags & REQ_FUA)
794                 control |= NVME_RW_FUA;
795         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
796                 control |= NVME_RW_LR;
797
798         if (req->cmd_flags & REQ_RAHEAD)
799                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
800
801         cmnd->rw.opcode = op;
802         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
803         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
804         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
805
806         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
807                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
808
809         if (ns->ms) {
810                 /*
811                  * If formated with metadata, the block layer always provides a
812                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
813                  * we enable the PRACT bit for protection information or set the
814                  * namespace capacity to zero to prevent any I/O.
815                  */
816                 if (!blk_integrity_rq(req)) {
817                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
818                                 return BLK_STS_NOTSUPP;
819                         control |= NVME_RW_PRINFO_PRACT;
820                 }
821
822                 switch (ns->pi_type) {
823                 case NVME_NS_DPS_PI_TYPE3:
824                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
825                         break;
826                 case NVME_NS_DPS_PI_TYPE1:
827                 case NVME_NS_DPS_PI_TYPE2:
828                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
829                                         NVME_RW_PRINFO_PRCHK_REF;
830                         if (op == nvme_cmd_zone_append)
831                                 control |= NVME_RW_APPEND_PIREMAP;
832                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
833                         break;
834                 }
835         }
836
837         cmnd->rw.control = cpu_to_le16(control);
838         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
839         return 0;
840 }
841
842 void nvme_cleanup_cmd(struct request *req)
843 {
844         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
845                 struct nvme_ns *ns = req->rq_disk->private_data;
846                 struct page *page = req->special_vec.bv_page;
847
848                 if (page == ns->ctrl->discard_page)
849                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
850                 else
851                         kfree(page_address(page) + req->special_vec.bv_offset);
852         }
853 }
854 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
855
856 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
857                 struct nvme_command *cmd)
858 {
859         blk_status_t ret = BLK_STS_OK;
860
861         nvme_clear_nvme_request(req);
862
863         memset(cmd, 0, sizeof(*cmd));
864         switch (req_op(req)) {
865         case REQ_OP_DRV_IN:
866         case REQ_OP_DRV_OUT:
867                 nvme_setup_passthrough(req, cmd);
868                 break;
869         case REQ_OP_FLUSH:
870                 nvme_setup_flush(ns, cmd);
871                 break;
872         case REQ_OP_ZONE_RESET_ALL:
873         case REQ_OP_ZONE_RESET:
874                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
875                 break;
876         case REQ_OP_ZONE_OPEN:
877                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
878                 break;
879         case REQ_OP_ZONE_CLOSE:
880                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
881                 break;
882         case REQ_OP_ZONE_FINISH:
883                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
884                 break;
885         case REQ_OP_WRITE_ZEROES:
886                 ret = nvme_setup_write_zeroes(ns, req, cmd);
887                 break;
888         case REQ_OP_DISCARD:
889                 ret = nvme_setup_discard(ns, req, cmd);
890                 break;
891         case REQ_OP_READ:
892                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
893                 break;
894         case REQ_OP_WRITE:
895                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
896                 break;
897         case REQ_OP_ZONE_APPEND:
898                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
899                 break;
900         default:
901                 WARN_ON_ONCE(1);
902                 return BLK_STS_IOERR;
903         }
904
905         cmd->common.command_id = req->tag;
906         trace_nvme_setup_cmd(req, cmd);
907         return ret;
908 }
909 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
910
911 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
912 {
913         struct completion *waiting = rq->end_io_data;
914
915         rq->end_io_data = NULL;
916         complete(waiting);
917 }
918
919 static void nvme_execute_rq_polled(struct request_queue *q,
920                 struct gendisk *bd_disk, struct request *rq, int at_head)
921 {
922         DECLARE_COMPLETION_ONSTACK(wait);
923
924         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
925
926         rq->cmd_flags |= REQ_HIPRI;
927         rq->end_io_data = &wait;
928         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
929
930         while (!completion_done(&wait)) {
931                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
932                 cond_resched();
933         }
934 }
935
936 /*
937  * Returns 0 on success.  If the result is negative, it's a Linux error code;
938  * if the result is positive, it's an NVM Express status code
939  */
940 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
941                 union nvme_result *result, void *buffer, unsigned bufflen,
942                 unsigned timeout, int qid, int at_head,
943                 blk_mq_req_flags_t flags, bool poll)
944 {
945         struct request *req;
946         int ret;
947
948         if (qid == NVME_QID_ANY)
949                 req = nvme_alloc_request(q, cmd, flags);
950         else
951                 req = nvme_alloc_request_qid(q, cmd, flags, qid);
952         if (IS_ERR(req))
953                 return PTR_ERR(req);
954
955         if (timeout)
956                 req->timeout = timeout;
957
958         if (buffer && bufflen) {
959                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
960                 if (ret)
961                         goto out;
962         }
963
964         if (poll)
965                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
966         else
967                 blk_execute_rq(req->q, NULL, req, at_head);
968         if (result)
969                 *result = nvme_req(req)->result;
970         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
971                 ret = -EINTR;
972         else
973                 ret = nvme_req(req)->status;
974  out:
975         blk_mq_free_request(req);
976         return ret;
977 }
978 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
979
980 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
981                 void *buffer, unsigned bufflen)
982 {
983         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
984                         NVME_QID_ANY, 0, 0, false);
985 }
986 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
987
988 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
989                 unsigned len, u32 seed, bool write)
990 {
991         struct bio_integrity_payload *bip;
992         int ret = -ENOMEM;
993         void *buf;
994
995         buf = kmalloc(len, GFP_KERNEL);
996         if (!buf)
997                 goto out;
998
999         ret = -EFAULT;
1000         if (write && copy_from_user(buf, ubuf, len))
1001                 goto out_free_meta;
1002
1003         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
1004         if (IS_ERR(bip)) {
1005                 ret = PTR_ERR(bip);
1006                 goto out_free_meta;
1007         }
1008
1009         bip->bip_iter.bi_size = len;
1010         bip->bip_iter.bi_sector = seed;
1011         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
1012                         offset_in_page(buf));
1013         if (ret == len)
1014                 return buf;
1015         ret = -ENOMEM;
1016 out_free_meta:
1017         kfree(buf);
1018 out:
1019         return ERR_PTR(ret);
1020 }
1021
1022 static u32 nvme_known_admin_effects(u8 opcode)
1023 {
1024         switch (opcode) {
1025         case nvme_admin_format_nvm:
1026                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1027                         NVME_CMD_EFFECTS_CSE_MASK;
1028         case nvme_admin_sanitize_nvm:
1029                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1030         default:
1031                 break;
1032         }
1033         return 0;
1034 }
1035
1036 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1037 {
1038         u32 effects = 0;
1039
1040         if (ns) {
1041                 if (ns->head->effects)
1042                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1043                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1044                         dev_warn(ctrl->device,
1045                                  "IO command:%02x has unhandled effects:%08x\n",
1046                                  opcode, effects);
1047                 return 0;
1048         }
1049
1050         if (ctrl->effects)
1051                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1052         effects |= nvme_known_admin_effects(opcode);
1053
1054         return effects;
1055 }
1056 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1057
1058 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1059                                u8 opcode)
1060 {
1061         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1062
1063         /*
1064          * For simplicity, IO to all namespaces is quiesced even if the command
1065          * effects say only one namespace is affected.
1066          */
1067         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1068                 mutex_lock(&ctrl->scan_lock);
1069                 mutex_lock(&ctrl->subsys->lock);
1070                 nvme_mpath_start_freeze(ctrl->subsys);
1071                 nvme_mpath_wait_freeze(ctrl->subsys);
1072                 nvme_start_freeze(ctrl);
1073                 nvme_wait_freeze(ctrl);
1074         }
1075         return effects;
1076 }
1077
1078 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1079 {
1080         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1081                 nvme_unfreeze(ctrl);
1082                 nvme_mpath_unfreeze(ctrl->subsys);
1083                 mutex_unlock(&ctrl->subsys->lock);
1084                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1085                 mutex_unlock(&ctrl->scan_lock);
1086         }
1087         if (effects & NVME_CMD_EFFECTS_CCC)
1088                 nvme_init_identify(ctrl);
1089         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1090                 nvme_queue_scan(ctrl);
1091                 flush_work(&ctrl->scan_work);
1092         }
1093 }
1094
1095 void nvme_execute_passthru_rq(struct request *rq)
1096 {
1097         struct nvme_command *cmd = nvme_req(rq)->cmd;
1098         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1099         struct nvme_ns *ns = rq->q->queuedata;
1100         struct gendisk *disk = ns ? ns->disk : NULL;
1101         u32 effects;
1102
1103         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1104         blk_execute_rq(rq->q, disk, rq, 0);
1105         nvme_passthru_end(ctrl, effects);
1106 }
1107 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1108
1109 static int nvme_submit_user_cmd(struct request_queue *q,
1110                 struct nvme_command *cmd, void __user *ubuffer,
1111                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1112                 u32 meta_seed, u64 *result, unsigned timeout)
1113 {
1114         bool write = nvme_is_write(cmd);
1115         struct nvme_ns *ns = q->queuedata;
1116         struct gendisk *disk = ns ? ns->disk : NULL;
1117         struct request *req;
1118         struct bio *bio = NULL;
1119         void *meta = NULL;
1120         int ret;
1121
1122         req = nvme_alloc_request(q, cmd, 0);
1123         if (IS_ERR(req))
1124                 return PTR_ERR(req);
1125
1126         if (timeout)
1127                 req->timeout = timeout;
1128         nvme_req(req)->flags |= NVME_REQ_USERCMD;
1129
1130         if (ubuffer && bufflen) {
1131                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1132                                 GFP_KERNEL);
1133                 if (ret)
1134                         goto out;
1135                 bio = req->bio;
1136                 bio->bi_disk = disk;
1137                 if (disk && meta_buffer && meta_len) {
1138                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1139                                         meta_seed, write);
1140                         if (IS_ERR(meta)) {
1141                                 ret = PTR_ERR(meta);
1142                                 goto out_unmap;
1143                         }
1144                         req->cmd_flags |= REQ_INTEGRITY;
1145                 }
1146         }
1147
1148         nvme_execute_passthru_rq(req);
1149         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1150                 ret = -EINTR;
1151         else
1152                 ret = nvme_req(req)->status;
1153         if (result)
1154                 *result = le64_to_cpu(nvme_req(req)->result.u64);
1155         if (meta && !ret && !write) {
1156                 if (copy_to_user(meta_buffer, meta, meta_len))
1157                         ret = -EFAULT;
1158         }
1159         kfree(meta);
1160  out_unmap:
1161         if (bio)
1162                 blk_rq_unmap_user(bio);
1163  out:
1164         blk_mq_free_request(req);
1165         return ret;
1166 }
1167
1168 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1169 {
1170         struct nvme_ctrl *ctrl = rq->end_io_data;
1171         unsigned long flags;
1172         bool startka = false;
1173
1174         blk_mq_free_request(rq);
1175
1176         if (status) {
1177                 dev_err(ctrl->device,
1178                         "failed nvme_keep_alive_end_io error=%d\n",
1179                                 status);
1180                 return;
1181         }
1182
1183         ctrl->comp_seen = false;
1184         spin_lock_irqsave(&ctrl->lock, flags);
1185         if (ctrl->state == NVME_CTRL_LIVE ||
1186             ctrl->state == NVME_CTRL_CONNECTING)
1187                 startka = true;
1188         spin_unlock_irqrestore(&ctrl->lock, flags);
1189         if (startka)
1190                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1191 }
1192
1193 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1194 {
1195         struct request *rq;
1196
1197         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1198                         BLK_MQ_REQ_RESERVED);
1199         if (IS_ERR(rq))
1200                 return PTR_ERR(rq);
1201
1202         rq->timeout = ctrl->kato * HZ;
1203         rq->end_io_data = ctrl;
1204
1205         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1206
1207         return 0;
1208 }
1209
1210 static void nvme_keep_alive_work(struct work_struct *work)
1211 {
1212         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1213                         struct nvme_ctrl, ka_work);
1214         bool comp_seen = ctrl->comp_seen;
1215
1216         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1217                 dev_dbg(ctrl->device,
1218                         "reschedule traffic based keep-alive timer\n");
1219                 ctrl->comp_seen = false;
1220                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1221                 return;
1222         }
1223
1224         if (nvme_keep_alive(ctrl)) {
1225                 /* allocation failure, reset the controller */
1226                 dev_err(ctrl->device, "keep-alive failed\n");
1227                 nvme_reset_ctrl(ctrl);
1228                 return;
1229         }
1230 }
1231
1232 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1233 {
1234         if (unlikely(ctrl->kato == 0))
1235                 return;
1236
1237         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1238 }
1239
1240 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1241 {
1242         if (unlikely(ctrl->kato == 0))
1243                 return;
1244
1245         cancel_delayed_work_sync(&ctrl->ka_work);
1246 }
1247 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1248
1249 /*
1250  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1251  * flag, thus sending any new CNS opcodes has a big chance of not working.
1252  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1253  * (but not for any later version).
1254  */
1255 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1256 {
1257         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1258                 return ctrl->vs < NVME_VS(1, 2, 0);
1259         return ctrl->vs < NVME_VS(1, 1, 0);
1260 }
1261
1262 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1263 {
1264         struct nvme_command c = { };
1265         int error;
1266
1267         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1268         c.identify.opcode = nvme_admin_identify;
1269         c.identify.cns = NVME_ID_CNS_CTRL;
1270
1271         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1272         if (!*id)
1273                 return -ENOMEM;
1274
1275         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1276                         sizeof(struct nvme_id_ctrl));
1277         if (error)
1278                 kfree(*id);
1279         return error;
1280 }
1281
1282 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1283 {
1284         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1285 }
1286
1287 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1288                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1289 {
1290         const char *warn_str = "ctrl returned bogus length:";
1291         void *data = cur;
1292
1293         switch (cur->nidt) {
1294         case NVME_NIDT_EUI64:
1295                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1296                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1297                                  warn_str, cur->nidl);
1298                         return -1;
1299                 }
1300                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1301                 return NVME_NIDT_EUI64_LEN;
1302         case NVME_NIDT_NGUID:
1303                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1304                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1305                                  warn_str, cur->nidl);
1306                         return -1;
1307                 }
1308                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1309                 return NVME_NIDT_NGUID_LEN;
1310         case NVME_NIDT_UUID:
1311                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1312                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1313                                  warn_str, cur->nidl);
1314                         return -1;
1315                 }
1316                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1317                 return NVME_NIDT_UUID_LEN;
1318         case NVME_NIDT_CSI:
1319                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1320                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1321                                  warn_str, cur->nidl);
1322                         return -1;
1323                 }
1324                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1325                 *csi_seen = true;
1326                 return NVME_NIDT_CSI_LEN;
1327         default:
1328                 /* Skip unknown types */
1329                 return cur->nidl;
1330         }
1331 }
1332
1333 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1334                 struct nvme_ns_ids *ids)
1335 {
1336         struct nvme_command c = { };
1337         bool csi_seen = false;
1338         int status, pos, len;
1339         void *data;
1340
1341         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1342                 return 0;
1343         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1344                 return 0;
1345
1346         c.identify.opcode = nvme_admin_identify;
1347         c.identify.nsid = cpu_to_le32(nsid);
1348         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1349
1350         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1351         if (!data)
1352                 return -ENOMEM;
1353
1354         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1355                                       NVME_IDENTIFY_DATA_SIZE);
1356         if (status) {
1357                 dev_warn(ctrl->device,
1358                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1359                         nsid, status);
1360                 goto free_data;
1361         }
1362
1363         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1364                 struct nvme_ns_id_desc *cur = data + pos;
1365
1366                 if (cur->nidl == 0)
1367                         break;
1368
1369                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1370                 if (len < 0)
1371                         break;
1372
1373                 len += sizeof(*cur);
1374         }
1375
1376         if (nvme_multi_css(ctrl) && !csi_seen) {
1377                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1378                          nsid);
1379                 status = -EINVAL;
1380         }
1381
1382 free_data:
1383         kfree(data);
1384         return status;
1385 }
1386
1387 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1388                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1389 {
1390         struct nvme_command c = { };
1391         int error;
1392
1393         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1394         c.identify.opcode = nvme_admin_identify;
1395         c.identify.nsid = cpu_to_le32(nsid);
1396         c.identify.cns = NVME_ID_CNS_NS;
1397
1398         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1399         if (!*id)
1400                 return -ENOMEM;
1401
1402         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1403         if (error) {
1404                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1405                 goto out_free_id;
1406         }
1407
1408         error = -ENODEV;
1409         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1410                 goto out_free_id;
1411
1412         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1413             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1414                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1415         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1416             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1417                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1418
1419         return 0;
1420
1421 out_free_id:
1422         kfree(*id);
1423         return error;
1424 }
1425
1426 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1427                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1428 {
1429         union nvme_result res = { 0 };
1430         struct nvme_command c;
1431         int ret;
1432
1433         memset(&c, 0, sizeof(c));
1434         c.features.opcode = op;
1435         c.features.fid = cpu_to_le32(fid);
1436         c.features.dword11 = cpu_to_le32(dword11);
1437
1438         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1439                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1440         if (ret >= 0 && result)
1441                 *result = le32_to_cpu(res.u32);
1442         return ret;
1443 }
1444
1445 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1446                       unsigned int dword11, void *buffer, size_t buflen,
1447                       u32 *result)
1448 {
1449         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1450                              buflen, result);
1451 }
1452 EXPORT_SYMBOL_GPL(nvme_set_features);
1453
1454 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1455                       unsigned int dword11, void *buffer, size_t buflen,
1456                       u32 *result)
1457 {
1458         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1459                              buflen, result);
1460 }
1461 EXPORT_SYMBOL_GPL(nvme_get_features);
1462
1463 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1464 {
1465         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1466         u32 result;
1467         int status, nr_io_queues;
1468
1469         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1470                         &result);
1471         if (status < 0)
1472                 return status;
1473
1474         /*
1475          * Degraded controllers might return an error when setting the queue
1476          * count.  We still want to be able to bring them online and offer
1477          * access to the admin queue, as that might be only way to fix them up.
1478          */
1479         if (status > 0) {
1480                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1481                 *count = 0;
1482         } else {
1483                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1484                 *count = min(*count, nr_io_queues);
1485         }
1486
1487         return 0;
1488 }
1489 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1490
1491 #define NVME_AEN_SUPPORTED \
1492         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1493          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1494
1495 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1496 {
1497         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1498         int status;
1499
1500         if (!supported_aens)
1501                 return;
1502
1503         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1504                         NULL, 0, &result);
1505         if (status)
1506                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1507                          supported_aens);
1508
1509         queue_work(nvme_wq, &ctrl->async_event_work);
1510 }
1511
1512 /*
1513  * Convert integer values from ioctl structures to user pointers, silently
1514  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1515  * kernels.
1516  */
1517 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1518 {
1519         if (in_compat_syscall())
1520                 ptrval = (compat_uptr_t)ptrval;
1521         return (void __user *)ptrval;
1522 }
1523
1524 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1525 {
1526         struct nvme_user_io io;
1527         struct nvme_command c;
1528         unsigned length, meta_len;
1529         void __user *metadata;
1530
1531         if (copy_from_user(&io, uio, sizeof(io)))
1532                 return -EFAULT;
1533         if (io.flags)
1534                 return -EINVAL;
1535
1536         switch (io.opcode) {
1537         case nvme_cmd_write:
1538         case nvme_cmd_read:
1539         case nvme_cmd_compare:
1540                 break;
1541         default:
1542                 return -EINVAL;
1543         }
1544
1545         length = (io.nblocks + 1) << ns->lba_shift;
1546
1547         if ((io.control & NVME_RW_PRINFO_PRACT) &&
1548             ns->ms == sizeof(struct t10_pi_tuple)) {
1549                 /*
1550                  * Protection information is stripped/inserted by the
1551                  * controller.
1552                  */
1553                 if (nvme_to_user_ptr(io.metadata))
1554                         return -EINVAL;
1555                 meta_len = 0;
1556                 metadata = NULL;
1557         } else {
1558                 meta_len = (io.nblocks + 1) * ns->ms;
1559                 metadata = nvme_to_user_ptr(io.metadata);
1560         }
1561
1562         if (ns->features & NVME_NS_EXT_LBAS) {
1563                 length += meta_len;
1564                 meta_len = 0;
1565         } else if (meta_len) {
1566                 if ((io.metadata & 3) || !io.metadata)
1567                         return -EINVAL;
1568         }
1569
1570         memset(&c, 0, sizeof(c));
1571         c.rw.opcode = io.opcode;
1572         c.rw.flags = io.flags;
1573         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1574         c.rw.slba = cpu_to_le64(io.slba);
1575         c.rw.length = cpu_to_le16(io.nblocks);
1576         c.rw.control = cpu_to_le16(io.control);
1577         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1578         c.rw.reftag = cpu_to_le32(io.reftag);
1579         c.rw.apptag = cpu_to_le16(io.apptag);
1580         c.rw.appmask = cpu_to_le16(io.appmask);
1581
1582         return nvme_submit_user_cmd(ns->queue, &c,
1583                         nvme_to_user_ptr(io.addr), length,
1584                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1585 }
1586
1587 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1588                         struct nvme_passthru_cmd __user *ucmd)
1589 {
1590         struct nvme_passthru_cmd cmd;
1591         struct nvme_command c;
1592         unsigned timeout = 0;
1593         u64 result;
1594         int status;
1595
1596         if (!capable(CAP_SYS_ADMIN))
1597                 return -EACCES;
1598         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1599                 return -EFAULT;
1600         if (cmd.flags)
1601                 return -EINVAL;
1602
1603         memset(&c, 0, sizeof(c));
1604         c.common.opcode = cmd.opcode;
1605         c.common.flags = cmd.flags;
1606         c.common.nsid = cpu_to_le32(cmd.nsid);
1607         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1608         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1609         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1610         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1611         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1612         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1613         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1614         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1615
1616         if (cmd.timeout_ms)
1617                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1618
1619         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1620                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1621                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1622                         0, &result, timeout);
1623
1624         if (status >= 0) {
1625                 if (put_user(result, &ucmd->result))
1626                         return -EFAULT;
1627         }
1628
1629         return status;
1630 }
1631
1632 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1633                         struct nvme_passthru_cmd64 __user *ucmd)
1634 {
1635         struct nvme_passthru_cmd64 cmd;
1636         struct nvme_command c;
1637         unsigned timeout = 0;
1638         int status;
1639
1640         if (!capable(CAP_SYS_ADMIN))
1641                 return -EACCES;
1642         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1643                 return -EFAULT;
1644         if (cmd.flags)
1645                 return -EINVAL;
1646
1647         memset(&c, 0, sizeof(c));
1648         c.common.opcode = cmd.opcode;
1649         c.common.flags = cmd.flags;
1650         c.common.nsid = cpu_to_le32(cmd.nsid);
1651         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1652         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1653         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1654         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1655         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1656         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1657         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1658         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1659
1660         if (cmd.timeout_ms)
1661                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1662
1663         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1664                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1665                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1666                         0, &cmd.result, timeout);
1667
1668         if (status >= 0) {
1669                 if (put_user(cmd.result, &ucmd->result))
1670                         return -EFAULT;
1671         }
1672
1673         return status;
1674 }
1675
1676 /*
1677  * Issue ioctl requests on the first available path.  Note that unlike normal
1678  * block layer requests we will not retry failed request on another controller.
1679  */
1680 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1681                 struct nvme_ns_head **head, int *srcu_idx)
1682 {
1683 #ifdef CONFIG_NVME_MULTIPATH
1684         if (disk->fops == &nvme_ns_head_ops) {
1685                 struct nvme_ns *ns;
1686
1687                 *head = disk->private_data;
1688                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1689                 ns = nvme_find_path(*head);
1690                 if (!ns)
1691                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1692                 return ns;
1693         }
1694 #endif
1695         *head = NULL;
1696         *srcu_idx = -1;
1697         return disk->private_data;
1698 }
1699
1700 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1701 {
1702         if (head)
1703                 srcu_read_unlock(&head->srcu, idx);
1704 }
1705
1706 static bool is_ctrl_ioctl(unsigned int cmd)
1707 {
1708         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1709                 return true;
1710         if (is_sed_ioctl(cmd))
1711                 return true;
1712         return false;
1713 }
1714
1715 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1716                                   void __user *argp,
1717                                   struct nvme_ns_head *head,
1718                                   int srcu_idx)
1719 {
1720         struct nvme_ctrl *ctrl = ns->ctrl;
1721         int ret;
1722
1723         nvme_get_ctrl(ns->ctrl);
1724         nvme_put_ns_from_disk(head, srcu_idx);
1725
1726         switch (cmd) {
1727         case NVME_IOCTL_ADMIN_CMD:
1728                 ret = nvme_user_cmd(ctrl, NULL, argp);
1729                 break;
1730         case NVME_IOCTL_ADMIN64_CMD:
1731                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1732                 break;
1733         default:
1734                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1735                 break;
1736         }
1737         nvme_put_ctrl(ctrl);
1738         return ret;
1739 }
1740
1741 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1742                 unsigned int cmd, unsigned long arg)
1743 {
1744         struct nvme_ns_head *head = NULL;
1745         void __user *argp = (void __user *)arg;
1746         struct nvme_ns *ns;
1747         int srcu_idx, ret;
1748
1749         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1750         if (unlikely(!ns))
1751                 return -EWOULDBLOCK;
1752
1753         /*
1754          * Handle ioctls that apply to the controller instead of the namespace
1755          * seperately and drop the ns SRCU reference early.  This avoids a
1756          * deadlock when deleting namespaces using the passthrough interface.
1757          */
1758         if (is_ctrl_ioctl(cmd))
1759                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1760
1761         switch (cmd) {
1762         case NVME_IOCTL_ID:
1763                 force_successful_syscall_return();
1764                 ret = ns->head->ns_id;
1765                 break;
1766         case NVME_IOCTL_IO_CMD:
1767                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1768                 break;
1769         case NVME_IOCTL_SUBMIT_IO:
1770                 ret = nvme_submit_io(ns, argp);
1771                 break;
1772         case NVME_IOCTL_IO64_CMD:
1773                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1774                 break;
1775         default:
1776                 if (ns->ndev)
1777                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1778                 else
1779                         ret = -ENOTTY;
1780         }
1781
1782         nvme_put_ns_from_disk(head, srcu_idx);
1783         return ret;
1784 }
1785
1786 #ifdef CONFIG_COMPAT
1787 struct nvme_user_io32 {
1788         __u8    opcode;
1789         __u8    flags;
1790         __u16   control;
1791         __u16   nblocks;
1792         __u16   rsvd;
1793         __u64   metadata;
1794         __u64   addr;
1795         __u64   slba;
1796         __u32   dsmgmt;
1797         __u32   reftag;
1798         __u16   apptag;
1799         __u16   appmask;
1800 } __attribute__((__packed__));
1801
1802 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1803
1804 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1805                 unsigned int cmd, unsigned long arg)
1806 {
1807         /*
1808          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1809          * between 32 bit programs and 64 bit kernel.
1810          * The cause is that the results of sizeof(struct nvme_user_io),
1811          * which is used to define NVME_IOCTL_SUBMIT_IO,
1812          * are not same between 32 bit compiler and 64 bit compiler.
1813          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1814          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1815          * Other IOCTL numbers are same between 32 bit and 64 bit.
1816          * So there is nothing to do regarding to other IOCTL numbers.
1817          */
1818         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1819                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1820
1821         return nvme_ioctl(bdev, mode, cmd, arg);
1822 }
1823 #else
1824 #define nvme_compat_ioctl       NULL
1825 #endif /* CONFIG_COMPAT */
1826
1827 static int nvme_open(struct block_device *bdev, fmode_t mode)
1828 {
1829         struct nvme_ns *ns = bdev->bd_disk->private_data;
1830
1831 #ifdef CONFIG_NVME_MULTIPATH
1832         /* should never be called due to GENHD_FL_HIDDEN */
1833         if (WARN_ON_ONCE(ns->head->disk))
1834                 goto fail;
1835 #endif
1836         if (!kref_get_unless_zero(&ns->kref))
1837                 goto fail;
1838         if (!try_module_get(ns->ctrl->ops->module))
1839                 goto fail_put_ns;
1840
1841         return 0;
1842
1843 fail_put_ns:
1844         nvme_put_ns(ns);
1845 fail:
1846         return -ENXIO;
1847 }
1848
1849 static void nvme_release(struct gendisk *disk, fmode_t mode)
1850 {
1851         struct nvme_ns *ns = disk->private_data;
1852
1853         module_put(ns->ctrl->ops->module);
1854         nvme_put_ns(ns);
1855 }
1856
1857 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1858 {
1859         /* some standard values */
1860         geo->heads = 1 << 6;
1861         geo->sectors = 1 << 5;
1862         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1863         return 0;
1864 }
1865
1866 #ifdef CONFIG_BLK_DEV_INTEGRITY
1867 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1868                                 u32 max_integrity_segments)
1869 {
1870         struct blk_integrity integrity;
1871
1872         memset(&integrity, 0, sizeof(integrity));
1873         switch (pi_type) {
1874         case NVME_NS_DPS_PI_TYPE3:
1875                 integrity.profile = &t10_pi_type3_crc;
1876                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1877                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1878                 break;
1879         case NVME_NS_DPS_PI_TYPE1:
1880         case NVME_NS_DPS_PI_TYPE2:
1881                 integrity.profile = &t10_pi_type1_crc;
1882                 integrity.tag_size = sizeof(u16);
1883                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1884                 break;
1885         default:
1886                 integrity.profile = NULL;
1887                 break;
1888         }
1889         integrity.tuple_size = ms;
1890         blk_integrity_register(disk, &integrity);
1891         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1892 }
1893 #else
1894 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1895                                 u32 max_integrity_segments)
1896 {
1897 }
1898 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1899
1900 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1901 {
1902         struct nvme_ctrl *ctrl = ns->ctrl;
1903         struct request_queue *queue = disk->queue;
1904         u32 size = queue_logical_block_size(queue);
1905
1906         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1907                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1908                 return;
1909         }
1910
1911         if (ctrl->nr_streams && ns->sws && ns->sgs)
1912                 size *= ns->sws * ns->sgs;
1913
1914         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1915                         NVME_DSM_MAX_RANGES);
1916
1917         queue->limits.discard_alignment = 0;
1918         queue->limits.discard_granularity = size;
1919
1920         /* If discard is already enabled, don't reset queue limits */
1921         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1922                 return;
1923
1924         blk_queue_max_discard_sectors(queue, UINT_MAX);
1925         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1926
1927         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1928                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1929 }
1930
1931 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1932 {
1933         u64 max_blocks;
1934
1935         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1936             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1937                 return;
1938         /*
1939          * Even though NVMe spec explicitly states that MDTS is not
1940          * applicable to the write-zeroes:- "The restriction does not apply to
1941          * commands that do not transfer data between the host and the
1942          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1943          * In order to be more cautious use controller's max_hw_sectors value
1944          * to configure the maximum sectors for the write-zeroes which is
1945          * configured based on the controller's MDTS field in the
1946          * nvme_init_identify() if available.
1947          */
1948         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1949                 max_blocks = (u64)USHRT_MAX + 1;
1950         else
1951                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1952
1953         blk_queue_max_write_zeroes_sectors(disk->queue,
1954                                            nvme_lba_to_sect(ns, max_blocks));
1955 }
1956
1957 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1958 {
1959         return !uuid_is_null(&ids->uuid) ||
1960                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1961                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1962 }
1963
1964 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1965 {
1966         return uuid_equal(&a->uuid, &b->uuid) &&
1967                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1968                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1969                 a->csi == b->csi;
1970 }
1971
1972 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1973                                  u32 *phys_bs, u32 *io_opt)
1974 {
1975         struct streams_directive_params s;
1976         int ret;
1977
1978         if (!ctrl->nr_streams)
1979                 return 0;
1980
1981         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1982         if (ret)
1983                 return ret;
1984
1985         ns->sws = le32_to_cpu(s.sws);
1986         ns->sgs = le16_to_cpu(s.sgs);
1987
1988         if (ns->sws) {
1989                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1990                 if (ns->sgs)
1991                         *io_opt = *phys_bs * ns->sgs;
1992         }
1993
1994         return 0;
1995 }
1996
1997 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1998 {
1999         struct nvme_ctrl *ctrl = ns->ctrl;
2000
2001         /*
2002          * The PI implementation requires the metadata size to be equal to the
2003          * t10 pi tuple size.
2004          */
2005         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
2006         if (ns->ms == sizeof(struct t10_pi_tuple))
2007                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2008         else
2009                 ns->pi_type = 0;
2010
2011         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2012         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
2013                 return 0;
2014         if (ctrl->ops->flags & NVME_F_FABRICS) {
2015                 /*
2016                  * The NVMe over Fabrics specification only supports metadata as
2017                  * part of the extended data LBA.  We rely on HCA/HBA support to
2018                  * remap the separate metadata buffer from the block layer.
2019                  */
2020                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2021                         return -EINVAL;
2022                 if (ctrl->max_integrity_segments)
2023                         ns->features |=
2024                                 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2025         } else {
2026                 /*
2027                  * For PCIe controllers, we can't easily remap the separate
2028                  * metadata buffer from the block layer and thus require a
2029                  * separate metadata buffer for block layer metadata/PI support.
2030                  * We allow extended LBAs for the passthrough interface, though.
2031                  */
2032                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2033                         ns->features |= NVME_NS_EXT_LBAS;
2034                 else
2035                         ns->features |= NVME_NS_METADATA_SUPPORTED;
2036         }
2037
2038         return 0;
2039 }
2040
2041 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2042                 struct request_queue *q)
2043 {
2044         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2045
2046         if (ctrl->max_hw_sectors) {
2047                 u32 max_segments =
2048                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2049
2050                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2051                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2052                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2053         }
2054         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2055         blk_queue_dma_alignment(q, 7);
2056         blk_queue_write_cache(q, vwc, vwc);
2057 }
2058
2059 static void nvme_update_disk_info(struct gendisk *disk,
2060                 struct nvme_ns *ns, struct nvme_id_ns *id)
2061 {
2062         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2063         unsigned short bs = 1 << ns->lba_shift;
2064         u32 atomic_bs, phys_bs, io_opt = 0;
2065
2066         /*
2067          * The block layer can't support LBA sizes larger than the page size
2068          * yet, so catch this early and don't allow block I/O.
2069          */
2070         if (ns->lba_shift > PAGE_SHIFT) {
2071                 capacity = 0;
2072                 bs = (1 << 9);
2073         }
2074
2075         blk_integrity_unregister(disk);
2076
2077         atomic_bs = phys_bs = bs;
2078         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2079         if (id->nabo == 0) {
2080                 /*
2081                  * Bit 1 indicates whether NAWUPF is defined for this namespace
2082                  * and whether it should be used instead of AWUPF. If NAWUPF ==
2083                  * 0 then AWUPF must be used instead.
2084                  */
2085                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2086                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2087                 else
2088                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2089         }
2090
2091         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2092                 /* NPWG = Namespace Preferred Write Granularity */
2093                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2094                 /* NOWS = Namespace Optimal Write Size */
2095                 io_opt = bs * (1 + le16_to_cpu(id->nows));
2096         }
2097
2098         blk_queue_logical_block_size(disk->queue, bs);
2099         /*
2100          * Linux filesystems assume writing a single physical block is
2101          * an atomic operation. Hence limit the physical block size to the
2102          * value of the Atomic Write Unit Power Fail parameter.
2103          */
2104         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2105         blk_queue_io_min(disk->queue, phys_bs);
2106         blk_queue_io_opt(disk->queue, io_opt);
2107
2108         /*
2109          * Register a metadata profile for PI, or the plain non-integrity NVMe
2110          * metadata masquerading as Type 0 if supported, otherwise reject block
2111          * I/O to namespaces with metadata except when the namespace supports
2112          * PI, as it can strip/insert in that case.
2113          */
2114         if (ns->ms) {
2115                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2116                     (ns->features & NVME_NS_METADATA_SUPPORTED))
2117                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
2118                                             ns->ctrl->max_integrity_segments);
2119                 else if (!nvme_ns_has_pi(ns))
2120                         capacity = 0;
2121         }
2122
2123         set_capacity_and_notify(disk, capacity);
2124
2125         nvme_config_discard(disk, ns);
2126         nvme_config_write_zeroes(disk, ns);
2127
2128         if ((id->nsattr & NVME_NS_ATTR_RO) ||
2129             test_bit(NVME_NS_FORCE_RO, &ns->flags))
2130                 set_disk_ro(disk, true);
2131 }
2132
2133 static inline bool nvme_first_scan(struct gendisk *disk)
2134 {
2135         /* nvme_alloc_ns() scans the disk prior to adding it */
2136         return !(disk->flags & GENHD_FL_UP);
2137 }
2138
2139 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2140 {
2141         struct nvme_ctrl *ctrl = ns->ctrl;
2142         u32 iob;
2143
2144         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2145             is_power_of_2(ctrl->max_hw_sectors))
2146                 iob = ctrl->max_hw_sectors;
2147         else
2148                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2149
2150         if (!iob)
2151                 return;
2152
2153         if (!is_power_of_2(iob)) {
2154                 if (nvme_first_scan(ns->disk))
2155                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2156                                 ns->disk->disk_name, iob);
2157                 return;
2158         }
2159
2160         if (blk_queue_is_zoned(ns->disk->queue)) {
2161                 if (nvme_first_scan(ns->disk))
2162                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
2163                                 ns->disk->disk_name);
2164                 return;
2165         }
2166
2167         blk_queue_chunk_sectors(ns->queue, iob);
2168 }
2169
2170 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2171 {
2172         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2173         int ret;
2174
2175         blk_mq_freeze_queue(ns->disk->queue);
2176         ns->lba_shift = id->lbaf[lbaf].ds;
2177         nvme_set_queue_limits(ns->ctrl, ns->queue);
2178
2179         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2180                 ret = nvme_update_zone_info(ns, lbaf);
2181                 if (ret)
2182                         goto out_unfreeze;
2183         }
2184
2185         ret = nvme_configure_metadata(ns, id);
2186         if (ret)
2187                 goto out_unfreeze;
2188         nvme_set_chunk_sectors(ns, id);
2189         nvme_update_disk_info(ns->disk, ns, id);
2190         blk_mq_unfreeze_queue(ns->disk->queue);
2191
2192         if (blk_queue_is_zoned(ns->queue)) {
2193                 ret = nvme_revalidate_zones(ns);
2194                 if (ret && !nvme_first_scan(ns->disk))
2195                         return ret;
2196         }
2197
2198 #ifdef CONFIG_NVME_MULTIPATH
2199         if (ns->head->disk) {
2200                 blk_mq_freeze_queue(ns->head->disk->queue);
2201                 nvme_update_disk_info(ns->head->disk, ns, id);
2202                 blk_stack_limits(&ns->head->disk->queue->limits,
2203                                  &ns->queue->limits, 0);
2204                 blk_queue_update_readahead(ns->head->disk->queue);
2205                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2206         }
2207 #endif
2208         return 0;
2209
2210 out_unfreeze:
2211         blk_mq_unfreeze_queue(ns->disk->queue);
2212         return ret;
2213 }
2214
2215 static char nvme_pr_type(enum pr_type type)
2216 {
2217         switch (type) {
2218         case PR_WRITE_EXCLUSIVE:
2219                 return 1;
2220         case PR_EXCLUSIVE_ACCESS:
2221                 return 2;
2222         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2223                 return 3;
2224         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2225                 return 4;
2226         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2227                 return 5;
2228         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2229                 return 6;
2230         default:
2231                 return 0;
2232         }
2233 };
2234
2235 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2236                                 u64 key, u64 sa_key, u8 op)
2237 {
2238         struct nvme_ns_head *head = NULL;
2239         struct nvme_ns *ns;
2240         struct nvme_command c;
2241         int srcu_idx, ret;
2242         u8 data[16] = { 0, };
2243
2244         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2245         if (unlikely(!ns))
2246                 return -EWOULDBLOCK;
2247
2248         put_unaligned_le64(key, &data[0]);
2249         put_unaligned_le64(sa_key, &data[8]);
2250
2251         memset(&c, 0, sizeof(c));
2252         c.common.opcode = op;
2253         c.common.nsid = cpu_to_le32(ns->head->ns_id);
2254         c.common.cdw10 = cpu_to_le32(cdw10);
2255
2256         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2257         nvme_put_ns_from_disk(head, srcu_idx);
2258         return ret;
2259 }
2260
2261 static int nvme_pr_register(struct block_device *bdev, u64 old,
2262                 u64 new, unsigned flags)
2263 {
2264         u32 cdw10;
2265
2266         if (flags & ~PR_FL_IGNORE_KEY)
2267                 return -EOPNOTSUPP;
2268
2269         cdw10 = old ? 2 : 0;
2270         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2271         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2272         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2273 }
2274
2275 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2276                 enum pr_type type, unsigned flags)
2277 {
2278         u32 cdw10;
2279
2280         if (flags & ~PR_FL_IGNORE_KEY)
2281                 return -EOPNOTSUPP;
2282
2283         cdw10 = nvme_pr_type(type) << 8;
2284         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2285         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2286 }
2287
2288 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2289                 enum pr_type type, bool abort)
2290 {
2291         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2292         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2293 }
2294
2295 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2296 {
2297         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2298         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2299 }
2300
2301 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2302 {
2303         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2304         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2305 }
2306
2307 static const struct pr_ops nvme_pr_ops = {
2308         .pr_register    = nvme_pr_register,
2309         .pr_reserve     = nvme_pr_reserve,
2310         .pr_release     = nvme_pr_release,
2311         .pr_preempt     = nvme_pr_preempt,
2312         .pr_clear       = nvme_pr_clear,
2313 };
2314
2315 #ifdef CONFIG_BLK_SED_OPAL
2316 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2317                 bool send)
2318 {
2319         struct nvme_ctrl *ctrl = data;
2320         struct nvme_command cmd;
2321
2322         memset(&cmd, 0, sizeof(cmd));
2323         if (send)
2324                 cmd.common.opcode = nvme_admin_security_send;
2325         else
2326                 cmd.common.opcode = nvme_admin_security_recv;
2327         cmd.common.nsid = 0;
2328         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2329         cmd.common.cdw11 = cpu_to_le32(len);
2330
2331         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2332                         NVME_QID_ANY, 1, 0, false);
2333 }
2334 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2335 #endif /* CONFIG_BLK_SED_OPAL */
2336
2337 static const struct block_device_operations nvme_bdev_ops = {
2338         .owner          = THIS_MODULE,
2339         .ioctl          = nvme_ioctl,
2340         .compat_ioctl   = nvme_compat_ioctl,
2341         .open           = nvme_open,
2342         .release        = nvme_release,
2343         .getgeo         = nvme_getgeo,
2344         .report_zones   = nvme_report_zones,
2345         .pr_ops         = &nvme_pr_ops,
2346 };
2347
2348 #ifdef CONFIG_NVME_MULTIPATH
2349 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2350 {
2351         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2352
2353         if (!kref_get_unless_zero(&head->ref))
2354                 return -ENXIO;
2355         return 0;
2356 }
2357
2358 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2359 {
2360         nvme_put_ns_head(disk->private_data);
2361 }
2362
2363 const struct block_device_operations nvme_ns_head_ops = {
2364         .owner          = THIS_MODULE,
2365         .submit_bio     = nvme_ns_head_submit_bio,
2366         .open           = nvme_ns_head_open,
2367         .release        = nvme_ns_head_release,
2368         .ioctl          = nvme_ioctl,
2369         .compat_ioctl   = nvme_compat_ioctl,
2370         .getgeo         = nvme_getgeo,
2371         .report_zones   = nvme_report_zones,
2372         .pr_ops         = &nvme_pr_ops,
2373 };
2374 #endif /* CONFIG_NVME_MULTIPATH */
2375
2376 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2377 {
2378         unsigned long timeout =
2379                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2380         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2381         int ret;
2382
2383         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2384                 if (csts == ~0)
2385                         return -ENODEV;
2386                 if ((csts & NVME_CSTS_RDY) == bit)
2387                         break;
2388
2389                 usleep_range(1000, 2000);
2390                 if (fatal_signal_pending(current))
2391                         return -EINTR;
2392                 if (time_after(jiffies, timeout)) {
2393                         dev_err(ctrl->device,
2394                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2395                                 enabled ? "initialisation" : "reset", csts);
2396                         return -ENODEV;
2397                 }
2398         }
2399
2400         return ret;
2401 }
2402
2403 /*
2404  * If the device has been passed off to us in an enabled state, just clear
2405  * the enabled bit.  The spec says we should set the 'shutdown notification
2406  * bits', but doing so may cause the device to complete commands to the
2407  * admin queue ... and we don't know what memory that might be pointing at!
2408  */
2409 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2410 {
2411         int ret;
2412
2413         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2414         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2415
2416         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2417         if (ret)
2418                 return ret;
2419
2420         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2421                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2422
2423         return nvme_wait_ready(ctrl, ctrl->cap, false);
2424 }
2425 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2426
2427 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2428 {
2429         unsigned dev_page_min;
2430         int ret;
2431
2432         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2433         if (ret) {
2434                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2435                 return ret;
2436         }
2437         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2438
2439         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2440                 dev_err(ctrl->device,
2441                         "Minimum device page size %u too large for host (%u)\n",
2442                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2443                 return -ENODEV;
2444         }
2445
2446         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2447                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2448         else
2449                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2450         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2451         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2452         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2453         ctrl->ctrl_config |= NVME_CC_ENABLE;
2454
2455         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2456         if (ret)
2457                 return ret;
2458         return nvme_wait_ready(ctrl, ctrl->cap, true);
2459 }
2460 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2461
2462 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2463 {
2464         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2465         u32 csts;
2466         int ret;
2467
2468         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2469         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2470
2471         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2472         if (ret)
2473                 return ret;
2474
2475         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2476                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2477                         break;
2478
2479                 msleep(100);
2480                 if (fatal_signal_pending(current))
2481                         return -EINTR;
2482                 if (time_after(jiffies, timeout)) {
2483                         dev_err(ctrl->device,
2484                                 "Device shutdown incomplete; abort shutdown\n");
2485                         return -ENODEV;
2486                 }
2487         }
2488
2489         return ret;
2490 }
2491 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2492
2493 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2494 {
2495         __le64 ts;
2496         int ret;
2497
2498         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2499                 return 0;
2500
2501         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2502         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2503                         NULL);
2504         if (ret)
2505                 dev_warn_once(ctrl->device,
2506                         "could not set timestamp (%d)\n", ret);
2507         return ret;
2508 }
2509
2510 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2511 {
2512         struct nvme_feat_host_behavior *host;
2513         int ret;
2514
2515         /* Don't bother enabling the feature if retry delay is not reported */
2516         if (!ctrl->crdt[0])
2517                 return 0;
2518
2519         host = kzalloc(sizeof(*host), GFP_KERNEL);
2520         if (!host)
2521                 return 0;
2522
2523         host->acre = NVME_ENABLE_ACRE;
2524         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2525                                 host, sizeof(*host), NULL);
2526         kfree(host);
2527         return ret;
2528 }
2529
2530 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2531 {
2532         /*
2533          * APST (Autonomous Power State Transition) lets us program a
2534          * table of power state transitions that the controller will
2535          * perform automatically.  We configure it with a simple
2536          * heuristic: we are willing to spend at most 2% of the time
2537          * transitioning between power states.  Therefore, when running
2538          * in any given state, we will enter the next lower-power
2539          * non-operational state after waiting 50 * (enlat + exlat)
2540          * microseconds, as long as that state's exit latency is under
2541          * the requested maximum latency.
2542          *
2543          * We will not autonomously enter any non-operational state for
2544          * which the total latency exceeds ps_max_latency_us.  Users
2545          * can set ps_max_latency_us to zero to turn off APST.
2546          */
2547
2548         unsigned apste;
2549         struct nvme_feat_auto_pst *table;
2550         u64 max_lat_us = 0;
2551         int max_ps = -1;
2552         int ret;
2553
2554         /*
2555          * If APST isn't supported or if we haven't been initialized yet,
2556          * then don't do anything.
2557          */
2558         if (!ctrl->apsta)
2559                 return 0;
2560
2561         if (ctrl->npss > 31) {
2562                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2563                 return 0;
2564         }
2565
2566         table = kzalloc(sizeof(*table), GFP_KERNEL);
2567         if (!table)
2568                 return 0;
2569
2570         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2571                 /* Turn off APST. */
2572                 apste = 0;
2573                 dev_dbg(ctrl->device, "APST disabled\n");
2574         } else {
2575                 __le64 target = cpu_to_le64(0);
2576                 int state;
2577
2578                 /*
2579                  * Walk through all states from lowest- to highest-power.
2580                  * According to the spec, lower-numbered states use more
2581                  * power.  NPSS, despite the name, is the index of the
2582                  * lowest-power state, not the number of states.
2583                  */
2584                 for (state = (int)ctrl->npss; state >= 0; state--) {
2585                         u64 total_latency_us, exit_latency_us, transition_ms;
2586
2587                         if (target)
2588                                 table->entries[state] = target;
2589
2590                         /*
2591                          * Don't allow transitions to the deepest state
2592                          * if it's quirked off.
2593                          */
2594                         if (state == ctrl->npss &&
2595                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2596                                 continue;
2597
2598                         /*
2599                          * Is this state a useful non-operational state for
2600                          * higher-power states to autonomously transition to?
2601                          */
2602                         if (!(ctrl->psd[state].flags &
2603                               NVME_PS_FLAGS_NON_OP_STATE))
2604                                 continue;
2605
2606                         exit_latency_us =
2607                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2608                         if (exit_latency_us > ctrl->ps_max_latency_us)
2609                                 continue;
2610
2611                         total_latency_us =
2612                                 exit_latency_us +
2613                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2614
2615                         /*
2616                          * This state is good.  Use it as the APST idle
2617                          * target for higher power states.
2618                          */
2619                         transition_ms = total_latency_us + 19;
2620                         do_div(transition_ms, 20);
2621                         if (transition_ms > (1 << 24) - 1)
2622                                 transition_ms = (1 << 24) - 1;
2623
2624                         target = cpu_to_le64((state << 3) |
2625                                              (transition_ms << 8));
2626
2627                         if (max_ps == -1)
2628                                 max_ps = state;
2629
2630                         if (total_latency_us > max_lat_us)
2631                                 max_lat_us = total_latency_us;
2632                 }
2633
2634                 apste = 1;
2635
2636                 if (max_ps == -1) {
2637                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2638                 } else {
2639                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2640                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2641                 }
2642         }
2643
2644         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2645                                 table, sizeof(*table), NULL);
2646         if (ret)
2647                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2648
2649         kfree(table);
2650         return ret;
2651 }
2652
2653 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2654 {
2655         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2656         u64 latency;
2657
2658         switch (val) {
2659         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2660         case PM_QOS_LATENCY_ANY:
2661                 latency = U64_MAX;
2662                 break;
2663
2664         default:
2665                 latency = val;
2666         }
2667
2668         if (ctrl->ps_max_latency_us != latency) {
2669                 ctrl->ps_max_latency_us = latency;
2670                 nvme_configure_apst(ctrl);
2671         }
2672 }
2673
2674 struct nvme_core_quirk_entry {
2675         /*
2676          * NVMe model and firmware strings are padded with spaces.  For
2677          * simplicity, strings in the quirk table are padded with NULLs
2678          * instead.
2679          */
2680         u16 vid;
2681         const char *mn;
2682         const char *fr;
2683         unsigned long quirks;
2684 };
2685
2686 static const struct nvme_core_quirk_entry core_quirks[] = {
2687         {
2688                 /*
2689                  * This Toshiba device seems to die using any APST states.  See:
2690                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2691                  */
2692                 .vid = 0x1179,
2693                 .mn = "THNSF5256GPUK TOSHIBA",
2694                 .quirks = NVME_QUIRK_NO_APST,
2695         },
2696         {
2697                 /*
2698                  * This LiteON CL1-3D*-Q11 firmware version has a race
2699                  * condition associated with actions related to suspend to idle
2700                  * LiteON has resolved the problem in future firmware
2701                  */
2702                 .vid = 0x14a4,
2703                 .fr = "22301111",
2704                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2705         }
2706 };
2707
2708 /* match is null-terminated but idstr is space-padded. */
2709 static bool string_matches(const char *idstr, const char *match, size_t len)
2710 {
2711         size_t matchlen;
2712
2713         if (!match)
2714                 return true;
2715
2716         matchlen = strlen(match);
2717         WARN_ON_ONCE(matchlen > len);
2718
2719         if (memcmp(idstr, match, matchlen))
2720                 return false;
2721
2722         for (; matchlen < len; matchlen++)
2723                 if (idstr[matchlen] != ' ')
2724                         return false;
2725
2726         return true;
2727 }
2728
2729 static bool quirk_matches(const struct nvme_id_ctrl *id,
2730                           const struct nvme_core_quirk_entry *q)
2731 {
2732         return q->vid == le16_to_cpu(id->vid) &&
2733                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2734                 string_matches(id->fr, q->fr, sizeof(id->fr));
2735 }
2736
2737 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2738                 struct nvme_id_ctrl *id)
2739 {
2740         size_t nqnlen;
2741         int off;
2742
2743         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2744                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2745                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2746                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2747                         return;
2748                 }
2749
2750                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2751                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2752         }
2753
2754         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2755         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2756                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2757                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2758         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2759         off += sizeof(id->sn);
2760         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2761         off += sizeof(id->mn);
2762         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2763 }
2764
2765 static void nvme_release_subsystem(struct device *dev)
2766 {
2767         struct nvme_subsystem *subsys =
2768                 container_of(dev, struct nvme_subsystem, dev);
2769
2770         if (subsys->instance >= 0)
2771                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2772         kfree(subsys);
2773 }
2774
2775 static void nvme_destroy_subsystem(struct kref *ref)
2776 {
2777         struct nvme_subsystem *subsys =
2778                         container_of(ref, struct nvme_subsystem, ref);
2779
2780         mutex_lock(&nvme_subsystems_lock);
2781         list_del(&subsys->entry);
2782         mutex_unlock(&nvme_subsystems_lock);
2783
2784         ida_destroy(&subsys->ns_ida);
2785         device_del(&subsys->dev);
2786         put_device(&subsys->dev);
2787 }
2788
2789 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2790 {
2791         kref_put(&subsys->ref, nvme_destroy_subsystem);
2792 }
2793
2794 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2795 {
2796         struct nvme_subsystem *subsys;
2797
2798         lockdep_assert_held(&nvme_subsystems_lock);
2799
2800         /*
2801          * Fail matches for discovery subsystems. This results
2802          * in each discovery controller bound to a unique subsystem.
2803          * This avoids issues with validating controller values
2804          * that can only be true when there is a single unique subsystem.
2805          * There may be multiple and completely independent entities
2806          * that provide discovery controllers.
2807          */
2808         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2809                 return NULL;
2810
2811         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2812                 if (strcmp(subsys->subnqn, subsysnqn))
2813                         continue;
2814                 if (!kref_get_unless_zero(&subsys->ref))
2815                         continue;
2816                 return subsys;
2817         }
2818
2819         return NULL;
2820 }
2821
2822 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2823         struct device_attribute subsys_attr_##_name = \
2824                 __ATTR(_name, _mode, _show, NULL)
2825
2826 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2827                                     struct device_attribute *attr,
2828                                     char *buf)
2829 {
2830         struct nvme_subsystem *subsys =
2831                 container_of(dev, struct nvme_subsystem, dev);
2832
2833         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2834 }
2835 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2836
2837 #define nvme_subsys_show_str_function(field)                            \
2838 static ssize_t subsys_##field##_show(struct device *dev,                \
2839                             struct device_attribute *attr, char *buf)   \
2840 {                                                                       \
2841         struct nvme_subsystem *subsys =                                 \
2842                 container_of(dev, struct nvme_subsystem, dev);          \
2843         return sprintf(buf, "%.*s\n",                                   \
2844                        (int)sizeof(subsys->field), subsys->field);      \
2845 }                                                                       \
2846 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2847
2848 nvme_subsys_show_str_function(model);
2849 nvme_subsys_show_str_function(serial);
2850 nvme_subsys_show_str_function(firmware_rev);
2851
2852 static struct attribute *nvme_subsys_attrs[] = {
2853         &subsys_attr_model.attr,
2854         &subsys_attr_serial.attr,
2855         &subsys_attr_firmware_rev.attr,
2856         &subsys_attr_subsysnqn.attr,
2857 #ifdef CONFIG_NVME_MULTIPATH
2858         &subsys_attr_iopolicy.attr,
2859 #endif
2860         NULL,
2861 };
2862
2863 static struct attribute_group nvme_subsys_attrs_group = {
2864         .attrs = nvme_subsys_attrs,
2865 };
2866
2867 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2868         &nvme_subsys_attrs_group,
2869         NULL,
2870 };
2871
2872 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2873 {
2874         return ctrl->opts && ctrl->opts->discovery_nqn;
2875 }
2876
2877 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2878                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2879 {
2880         struct nvme_ctrl *tmp;
2881
2882         lockdep_assert_held(&nvme_subsystems_lock);
2883
2884         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2885                 if (nvme_state_terminal(tmp))
2886                         continue;
2887
2888                 if (tmp->cntlid == ctrl->cntlid) {
2889                         dev_err(ctrl->device,
2890                                 "Duplicate cntlid %u with %s, rejecting\n",
2891                                 ctrl->cntlid, dev_name(tmp->device));
2892                         return false;
2893                 }
2894
2895                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2896                     nvme_discovery_ctrl(ctrl))
2897                         continue;
2898
2899                 dev_err(ctrl->device,
2900                         "Subsystem does not support multiple controllers\n");
2901                 return false;
2902         }
2903
2904         return true;
2905 }
2906
2907 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2908 {
2909         struct nvme_subsystem *subsys, *found;
2910         int ret;
2911
2912         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2913         if (!subsys)
2914                 return -ENOMEM;
2915
2916         subsys->instance = -1;
2917         mutex_init(&subsys->lock);
2918         kref_init(&subsys->ref);
2919         INIT_LIST_HEAD(&subsys->ctrls);
2920         INIT_LIST_HEAD(&subsys->nsheads);
2921         nvme_init_subnqn(subsys, ctrl, id);
2922         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2923         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2924         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2925         subsys->vendor_id = le16_to_cpu(id->vid);
2926         subsys->cmic = id->cmic;
2927         subsys->awupf = le16_to_cpu(id->awupf);
2928 #ifdef CONFIG_NVME_MULTIPATH
2929         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2930 #endif
2931
2932         subsys->dev.class = nvme_subsys_class;
2933         subsys->dev.release = nvme_release_subsystem;
2934         subsys->dev.groups = nvme_subsys_attrs_groups;
2935         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2936         device_initialize(&subsys->dev);
2937
2938         mutex_lock(&nvme_subsystems_lock);
2939         found = __nvme_find_get_subsystem(subsys->subnqn);
2940         if (found) {
2941                 put_device(&subsys->dev);
2942                 subsys = found;
2943
2944                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2945                         ret = -EINVAL;
2946                         goto out_put_subsystem;
2947                 }
2948         } else {
2949                 ret = device_add(&subsys->dev);
2950                 if (ret) {
2951                         dev_err(ctrl->device,
2952                                 "failed to register subsystem device.\n");
2953                         put_device(&subsys->dev);
2954                         goto out_unlock;
2955                 }
2956                 ida_init(&subsys->ns_ida);
2957                 list_add_tail(&subsys->entry, &nvme_subsystems);
2958         }
2959
2960         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2961                                 dev_name(ctrl->device));
2962         if (ret) {
2963                 dev_err(ctrl->device,
2964                         "failed to create sysfs link from subsystem.\n");
2965                 goto out_put_subsystem;
2966         }
2967
2968         if (!found)
2969                 subsys->instance = ctrl->instance;
2970         ctrl->subsys = subsys;
2971         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2972         mutex_unlock(&nvme_subsystems_lock);
2973         return 0;
2974
2975 out_put_subsystem:
2976         nvme_put_subsystem(subsys);
2977 out_unlock:
2978         mutex_unlock(&nvme_subsystems_lock);
2979         return ret;
2980 }
2981
2982 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2983                 void *log, size_t size, u64 offset)
2984 {
2985         struct nvme_command c = { };
2986         u32 dwlen = nvme_bytes_to_numd(size);
2987
2988         c.get_log_page.opcode = nvme_admin_get_log_page;
2989         c.get_log_page.nsid = cpu_to_le32(nsid);
2990         c.get_log_page.lid = log_page;
2991         c.get_log_page.lsp = lsp;
2992         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2993         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2994         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2995         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2996         c.get_log_page.csi = csi;
2997
2998         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2999 }
3000
3001 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3002                                 struct nvme_effects_log **log)
3003 {
3004         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
3005         int ret;
3006
3007         if (cel)
3008                 goto out;
3009
3010         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3011         if (!cel)
3012                 return -ENOMEM;
3013
3014         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3015                         cel, sizeof(*cel), 0);
3016         if (ret) {
3017                 kfree(cel);
3018                 return ret;
3019         }
3020
3021         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3022 out:
3023         *log = cel;
3024         return 0;
3025 }
3026
3027 /*
3028  * Initialize the cached copies of the Identify data and various controller
3029  * register in our nvme_ctrl structure.  This should be called as soon as
3030  * the admin queue is fully up and running.
3031  */
3032 int nvme_init_identify(struct nvme_ctrl *ctrl)
3033 {
3034         struct nvme_id_ctrl *id;
3035         int ret, page_shift;
3036         u32 max_hw_sectors;
3037         bool prev_apst_enabled;
3038
3039         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3040         if (ret) {
3041                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3042                 return ret;
3043         }
3044         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3045         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3046
3047         if (ctrl->vs >= NVME_VS(1, 1, 0))
3048                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3049
3050         ret = nvme_identify_ctrl(ctrl, &id);
3051         if (ret) {
3052                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3053                 return -EIO;
3054         }
3055
3056         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3057                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3058                 if (ret < 0)
3059                         goto out_free;
3060         }
3061
3062         if (!(ctrl->ops->flags & NVME_F_FABRICS))
3063                 ctrl->cntlid = le16_to_cpu(id->cntlid);
3064
3065         if (!ctrl->identified) {
3066                 int i;
3067
3068                 ret = nvme_init_subsystem(ctrl, id);
3069                 if (ret)
3070                         goto out_free;
3071
3072                 /*
3073                  * Check for quirks.  Quirk can depend on firmware version,
3074                  * so, in principle, the set of quirks present can change
3075                  * across a reset.  As a possible future enhancement, we
3076                  * could re-scan for quirks every time we reinitialize
3077                  * the device, but we'd have to make sure that the driver
3078                  * behaves intelligently if the quirks change.
3079                  */
3080                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3081                         if (quirk_matches(id, &core_quirks[i]))
3082                                 ctrl->quirks |= core_quirks[i].quirks;
3083                 }
3084         }
3085
3086         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3087                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3088                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3089         }
3090
3091         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3092         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3093         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3094
3095         ctrl->oacs = le16_to_cpu(id->oacs);
3096         ctrl->oncs = le16_to_cpu(id->oncs);
3097         ctrl->mtfa = le16_to_cpu(id->mtfa);
3098         ctrl->oaes = le32_to_cpu(id->oaes);
3099         ctrl->wctemp = le16_to_cpu(id->wctemp);
3100         ctrl->cctemp = le16_to_cpu(id->cctemp);
3101
3102         atomic_set(&ctrl->abort_limit, id->acl + 1);
3103         ctrl->vwc = id->vwc;
3104         if (id->mdts)
3105                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3106         else
3107                 max_hw_sectors = UINT_MAX;
3108         ctrl->max_hw_sectors =
3109                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3110
3111         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3112         ctrl->sgls = le32_to_cpu(id->sgls);
3113         ctrl->kas = le16_to_cpu(id->kas);
3114         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3115         ctrl->ctratt = le32_to_cpu(id->ctratt);
3116
3117         if (id->rtd3e) {
3118                 /* us -> s */
3119                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3120
3121                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3122                                                  shutdown_timeout, 60);
3123
3124                 if (ctrl->shutdown_timeout != shutdown_timeout)
3125                         dev_info(ctrl->device,
3126                                  "Shutdown timeout set to %u seconds\n",
3127                                  ctrl->shutdown_timeout);
3128         } else
3129                 ctrl->shutdown_timeout = shutdown_timeout;
3130
3131         ctrl->npss = id->npss;
3132         ctrl->apsta = id->apsta;
3133         prev_apst_enabled = ctrl->apst_enabled;
3134         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3135                 if (force_apst && id->apsta) {
3136                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3137                         ctrl->apst_enabled = true;
3138                 } else {
3139                         ctrl->apst_enabled = false;
3140                 }
3141         } else {
3142                 ctrl->apst_enabled = id->apsta;
3143         }
3144         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3145
3146         if (ctrl->ops->flags & NVME_F_FABRICS) {
3147                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3148                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3149                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3150                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3151
3152                 /*
3153                  * In fabrics we need to verify the cntlid matches the
3154                  * admin connect
3155                  */
3156                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3157                         dev_err(ctrl->device,
3158                                 "Mismatching cntlid: Connect %u vs Identify "
3159                                 "%u, rejecting\n",
3160                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3161                         ret = -EINVAL;
3162                         goto out_free;
3163                 }
3164
3165                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3166                         dev_err(ctrl->device,
3167                                 "keep-alive support is mandatory for fabrics\n");
3168                         ret = -EINVAL;
3169                         goto out_free;
3170                 }
3171         } else {
3172                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3173                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3174                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3175                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3176         }
3177
3178         ret = nvme_mpath_init(ctrl, id);
3179         kfree(id);
3180
3181         if (ret < 0)
3182                 return ret;
3183
3184         if (ctrl->apst_enabled && !prev_apst_enabled)
3185                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3186         else if (!ctrl->apst_enabled && prev_apst_enabled)
3187                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3188
3189         ret = nvme_configure_apst(ctrl);
3190         if (ret < 0)
3191                 return ret;
3192         
3193         ret = nvme_configure_timestamp(ctrl);
3194         if (ret < 0)
3195                 return ret;
3196
3197         ret = nvme_configure_directives(ctrl);
3198         if (ret < 0)
3199                 return ret;
3200
3201         ret = nvme_configure_acre(ctrl);
3202         if (ret < 0)
3203                 return ret;
3204
3205         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3206                 ret = nvme_hwmon_init(ctrl);
3207                 if (ret < 0)
3208                         return ret;
3209         }
3210
3211         ctrl->identified = true;
3212
3213         return 0;
3214
3215 out_free:
3216         kfree(id);
3217         return ret;
3218 }
3219 EXPORT_SYMBOL_GPL(nvme_init_identify);
3220
3221 static int nvme_dev_open(struct inode *inode, struct file *file)
3222 {
3223         struct nvme_ctrl *ctrl =
3224                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3225
3226         switch (ctrl->state) {
3227         case NVME_CTRL_LIVE:
3228                 break;
3229         default:
3230                 return -EWOULDBLOCK;
3231         }
3232
3233         nvme_get_ctrl(ctrl);
3234         if (!try_module_get(ctrl->ops->module)) {
3235                 nvme_put_ctrl(ctrl);
3236                 return -EINVAL;
3237         }
3238
3239         file->private_data = ctrl;
3240         return 0;
3241 }
3242
3243 static int nvme_dev_release(struct inode *inode, struct file *file)
3244 {
3245         struct nvme_ctrl *ctrl =
3246                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3247
3248         module_put(ctrl->ops->module);
3249         nvme_put_ctrl(ctrl);
3250         return 0;
3251 }
3252
3253 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3254 {
3255         struct nvme_ns *ns;
3256         int ret;
3257
3258         down_read(&ctrl->namespaces_rwsem);
3259         if (list_empty(&ctrl->namespaces)) {
3260                 ret = -ENOTTY;
3261                 goto out_unlock;
3262         }
3263
3264         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3265         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3266                 dev_warn(ctrl->device,
3267                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3268                 ret = -EINVAL;
3269                 goto out_unlock;
3270         }
3271
3272         dev_warn(ctrl->device,
3273                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3274         kref_get(&ns->kref);
3275         up_read(&ctrl->namespaces_rwsem);
3276
3277         ret = nvme_user_cmd(ctrl, ns, argp);
3278         nvme_put_ns(ns);
3279         return ret;
3280
3281 out_unlock:
3282         up_read(&ctrl->namespaces_rwsem);
3283         return ret;
3284 }
3285
3286 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3287                 unsigned long arg)
3288 {
3289         struct nvme_ctrl *ctrl = file->private_data;
3290         void __user *argp = (void __user *)arg;
3291
3292         switch (cmd) {
3293         case NVME_IOCTL_ADMIN_CMD:
3294                 return nvme_user_cmd(ctrl, NULL, argp);
3295         case NVME_IOCTL_ADMIN64_CMD:
3296                 return nvme_user_cmd64(ctrl, NULL, argp);
3297         case NVME_IOCTL_IO_CMD:
3298                 return nvme_dev_user_cmd(ctrl, argp);
3299         case NVME_IOCTL_RESET:
3300                 dev_warn(ctrl->device, "resetting controller\n");
3301                 return nvme_reset_ctrl_sync(ctrl);
3302         case NVME_IOCTL_SUBSYS_RESET:
3303                 return nvme_reset_subsystem(ctrl);
3304         case NVME_IOCTL_RESCAN:
3305                 nvme_queue_scan(ctrl);
3306                 return 0;
3307         default:
3308                 return -ENOTTY;
3309         }
3310 }
3311
3312 static const struct file_operations nvme_dev_fops = {
3313         .owner          = THIS_MODULE,
3314         .open           = nvme_dev_open,
3315         .release        = nvme_dev_release,
3316         .unlocked_ioctl = nvme_dev_ioctl,
3317         .compat_ioctl   = compat_ptr_ioctl,
3318 };
3319
3320 static ssize_t nvme_sysfs_reset(struct device *dev,
3321                                 struct device_attribute *attr, const char *buf,
3322                                 size_t count)
3323 {
3324         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3325         int ret;
3326
3327         ret = nvme_reset_ctrl_sync(ctrl);
3328         if (ret < 0)
3329                 return ret;
3330         return count;
3331 }
3332 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3333
3334 static ssize_t nvme_sysfs_rescan(struct device *dev,
3335                                 struct device_attribute *attr, const char *buf,
3336                                 size_t count)
3337 {
3338         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3339
3340         nvme_queue_scan(ctrl);
3341         return count;
3342 }
3343 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3344
3345 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3346 {
3347         struct gendisk *disk = dev_to_disk(dev);
3348
3349         if (disk->fops == &nvme_bdev_ops)
3350                 return nvme_get_ns_from_dev(dev)->head;
3351         else
3352                 return disk->private_data;
3353 }
3354
3355 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3356                 char *buf)
3357 {
3358         struct nvme_ns_head *head = dev_to_ns_head(dev);
3359         struct nvme_ns_ids *ids = &head->ids;
3360         struct nvme_subsystem *subsys = head->subsys;
3361         int serial_len = sizeof(subsys->serial);
3362         int model_len = sizeof(subsys->model);
3363
3364         if (!uuid_is_null(&ids->uuid))
3365                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3366
3367         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3368                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3369
3370         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3371                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3372
3373         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3374                                   subsys->serial[serial_len - 1] == '\0'))
3375                 serial_len--;
3376         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3377                                  subsys->model[model_len - 1] == '\0'))
3378                 model_len--;
3379
3380         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3381                 serial_len, subsys->serial, model_len, subsys->model,
3382                 head->ns_id);
3383 }
3384 static DEVICE_ATTR_RO(wwid);
3385
3386 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3387                 char *buf)
3388 {
3389         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3390 }
3391 static DEVICE_ATTR_RO(nguid);
3392
3393 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3394                 char *buf)
3395 {
3396         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3397
3398         /* For backward compatibility expose the NGUID to userspace if
3399          * we have no UUID set
3400          */
3401         if (uuid_is_null(&ids->uuid)) {
3402                 printk_ratelimited(KERN_WARNING
3403                                    "No UUID available providing old NGUID\n");
3404                 return sprintf(buf, "%pU\n", ids->nguid);
3405         }
3406         return sprintf(buf, "%pU\n", &ids->uuid);
3407 }
3408 static DEVICE_ATTR_RO(uuid);
3409
3410 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3411                 char *buf)
3412 {
3413         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3414 }
3415 static DEVICE_ATTR_RO(eui);
3416
3417 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3418                 char *buf)
3419 {
3420         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3421 }
3422 static DEVICE_ATTR_RO(nsid);
3423
3424 static struct attribute *nvme_ns_id_attrs[] = {
3425         &dev_attr_wwid.attr,
3426         &dev_attr_uuid.attr,
3427         &dev_attr_nguid.attr,
3428         &dev_attr_eui.attr,
3429         &dev_attr_nsid.attr,
3430 #ifdef CONFIG_NVME_MULTIPATH
3431         &dev_attr_ana_grpid.attr,
3432         &dev_attr_ana_state.attr,
3433 #endif
3434         NULL,
3435 };
3436
3437 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3438                 struct attribute *a, int n)
3439 {
3440         struct device *dev = container_of(kobj, struct device, kobj);
3441         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3442
3443         if (a == &dev_attr_uuid.attr) {
3444                 if (uuid_is_null(&ids->uuid) &&
3445                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3446                         return 0;
3447         }
3448         if (a == &dev_attr_nguid.attr) {
3449                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3450                         return 0;
3451         }
3452         if (a == &dev_attr_eui.attr) {
3453                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3454                         return 0;
3455         }
3456 #ifdef CONFIG_NVME_MULTIPATH
3457         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3458                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3459                         return 0;
3460                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3461                         return 0;
3462         }
3463 #endif
3464         return a->mode;
3465 }
3466
3467 static const struct attribute_group nvme_ns_id_attr_group = {
3468         .attrs          = nvme_ns_id_attrs,
3469         .is_visible     = nvme_ns_id_attrs_are_visible,
3470 };
3471
3472 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3473         &nvme_ns_id_attr_group,
3474 #ifdef CONFIG_NVM
3475         &nvme_nvm_attr_group,
3476 #endif
3477         NULL,
3478 };
3479
3480 #define nvme_show_str_function(field)                                           \
3481 static ssize_t  field##_show(struct device *dev,                                \
3482                             struct device_attribute *attr, char *buf)           \
3483 {                                                                               \
3484         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3485         return sprintf(buf, "%.*s\n",                                           \
3486                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3487 }                                                                               \
3488 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3489
3490 nvme_show_str_function(model);
3491 nvme_show_str_function(serial);
3492 nvme_show_str_function(firmware_rev);
3493
3494 #define nvme_show_int_function(field)                                           \
3495 static ssize_t  field##_show(struct device *dev,                                \
3496                             struct device_attribute *attr, char *buf)           \
3497 {                                                                               \
3498         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3499         return sprintf(buf, "%d\n", ctrl->field);       \
3500 }                                                                               \
3501 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3502
3503 nvme_show_int_function(cntlid);
3504 nvme_show_int_function(numa_node);
3505 nvme_show_int_function(queue_count);
3506 nvme_show_int_function(sqsize);
3507
3508 static ssize_t nvme_sysfs_delete(struct device *dev,
3509                                 struct device_attribute *attr, const char *buf,
3510                                 size_t count)
3511 {
3512         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3513
3514         if (device_remove_file_self(dev, attr))
3515                 nvme_delete_ctrl_sync(ctrl);
3516         return count;
3517 }
3518 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3519
3520 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3521                                          struct device_attribute *attr,
3522                                          char *buf)
3523 {
3524         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3525
3526         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3527 }
3528 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3529
3530 static ssize_t nvme_sysfs_show_state(struct device *dev,
3531                                      struct device_attribute *attr,
3532                                      char *buf)
3533 {
3534         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3535         static const char *const state_name[] = {
3536                 [NVME_CTRL_NEW]         = "new",
3537                 [NVME_CTRL_LIVE]        = "live",
3538                 [NVME_CTRL_RESETTING]   = "resetting",
3539                 [NVME_CTRL_CONNECTING]  = "connecting",
3540                 [NVME_CTRL_DELETING]    = "deleting",
3541                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3542                 [NVME_CTRL_DEAD]        = "dead",
3543         };
3544
3545         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3546             state_name[ctrl->state])
3547                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3548
3549         return sprintf(buf, "unknown state\n");
3550 }
3551
3552 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3553
3554 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3555                                          struct device_attribute *attr,
3556                                          char *buf)
3557 {
3558         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3559
3560         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3561 }
3562 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3563
3564 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3565                                         struct device_attribute *attr,
3566                                         char *buf)
3567 {
3568         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3569
3570         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3571 }
3572 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3573
3574 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3575                                         struct device_attribute *attr,
3576                                         char *buf)
3577 {
3578         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3579
3580         return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3581 }
3582 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3583
3584 static ssize_t nvme_sysfs_show_address(struct device *dev,
3585                                          struct device_attribute *attr,
3586                                          char *buf)
3587 {
3588         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3589
3590         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3591 }
3592 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3593
3594 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3595                 struct device_attribute *attr, char *buf)
3596 {
3597         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3598         struct nvmf_ctrl_options *opts = ctrl->opts;
3599
3600         if (ctrl->opts->max_reconnects == -1)
3601                 return sprintf(buf, "off\n");
3602         return sprintf(buf, "%d\n",
3603                         opts->max_reconnects * opts->reconnect_delay);
3604 }
3605
3606 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3607                 struct device_attribute *attr, const char *buf, size_t count)
3608 {
3609         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3610         struct nvmf_ctrl_options *opts = ctrl->opts;
3611         int ctrl_loss_tmo, err;
3612
3613         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3614         if (err)
3615                 return -EINVAL;
3616
3617         else if (ctrl_loss_tmo < 0)
3618                 opts->max_reconnects = -1;
3619         else
3620                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3621                                                 opts->reconnect_delay);
3622         return count;
3623 }
3624 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3625         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3626
3627 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3628                 struct device_attribute *attr, char *buf)
3629 {
3630         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3631
3632         if (ctrl->opts->reconnect_delay == -1)
3633                 return sprintf(buf, "off\n");
3634         return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3635 }
3636
3637 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3638                 struct device_attribute *attr, const char *buf, size_t count)
3639 {
3640         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3641         unsigned int v;
3642         int err;
3643
3644         err = kstrtou32(buf, 10, &v);
3645         if (err)
3646                 return err;
3647
3648         ctrl->opts->reconnect_delay = v;
3649         return count;
3650 }
3651 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3652         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3653
3654 static struct attribute *nvme_dev_attrs[] = {
3655         &dev_attr_reset_controller.attr,
3656         &dev_attr_rescan_controller.attr,
3657         &dev_attr_model.attr,
3658         &dev_attr_serial.attr,
3659         &dev_attr_firmware_rev.attr,
3660         &dev_attr_cntlid.attr,
3661         &dev_attr_delete_controller.attr,
3662         &dev_attr_transport.attr,
3663         &dev_attr_subsysnqn.attr,
3664         &dev_attr_address.attr,
3665         &dev_attr_state.attr,
3666         &dev_attr_numa_node.attr,
3667         &dev_attr_queue_count.attr,
3668         &dev_attr_sqsize.attr,
3669         &dev_attr_hostnqn.attr,
3670         &dev_attr_hostid.attr,
3671         &dev_attr_ctrl_loss_tmo.attr,
3672         &dev_attr_reconnect_delay.attr,
3673         NULL
3674 };
3675
3676 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3677                 struct attribute *a, int n)
3678 {
3679         struct device *dev = container_of(kobj, struct device, kobj);
3680         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3681
3682         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3683                 return 0;
3684         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3685                 return 0;
3686         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3687                 return 0;
3688         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3689                 return 0;
3690         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3691                 return 0;
3692         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3693                 return 0;
3694
3695         return a->mode;
3696 }
3697
3698 static struct attribute_group nvme_dev_attrs_group = {
3699         .attrs          = nvme_dev_attrs,
3700         .is_visible     = nvme_dev_attrs_are_visible,
3701 };
3702
3703 static const struct attribute_group *nvme_dev_attr_groups[] = {
3704         &nvme_dev_attrs_group,
3705         NULL,
3706 };
3707
3708 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3709                 unsigned nsid)
3710 {
3711         struct nvme_ns_head *h;
3712
3713         lockdep_assert_held(&subsys->lock);
3714
3715         list_for_each_entry(h, &subsys->nsheads, entry) {
3716                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3717                         return h;
3718         }
3719
3720         return NULL;
3721 }
3722
3723 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3724                 struct nvme_ns_head *new)
3725 {
3726         struct nvme_ns_head *h;
3727
3728         lockdep_assert_held(&subsys->lock);
3729
3730         list_for_each_entry(h, &subsys->nsheads, entry) {
3731                 if (nvme_ns_ids_valid(&new->ids) &&
3732                     nvme_ns_ids_equal(&new->ids, &h->ids))
3733                         return -EINVAL;
3734         }
3735
3736         return 0;
3737 }
3738
3739 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3740                 unsigned nsid, struct nvme_ns_ids *ids)
3741 {
3742         struct nvme_ns_head *head;
3743         size_t size = sizeof(*head);
3744         int ret = -ENOMEM;
3745
3746 #ifdef CONFIG_NVME_MULTIPATH
3747         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3748 #endif
3749
3750         head = kzalloc(size, GFP_KERNEL);
3751         if (!head)
3752                 goto out;
3753         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3754         if (ret < 0)
3755                 goto out_free_head;
3756         head->instance = ret;
3757         INIT_LIST_HEAD(&head->list);
3758         ret = init_srcu_struct(&head->srcu);
3759         if (ret)
3760                 goto out_ida_remove;
3761         head->subsys = ctrl->subsys;
3762         head->ns_id = nsid;
3763         head->ids = *ids;
3764         kref_init(&head->ref);
3765
3766         ret = __nvme_check_ids(ctrl->subsys, head);
3767         if (ret) {
3768                 dev_err(ctrl->device,
3769                         "duplicate IDs for nsid %d\n", nsid);
3770                 goto out_cleanup_srcu;
3771         }
3772
3773         if (head->ids.csi) {
3774                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3775                 if (ret)
3776                         goto out_cleanup_srcu;
3777         } else
3778                 head->effects = ctrl->effects;
3779
3780         ret = nvme_mpath_alloc_disk(ctrl, head);
3781         if (ret)
3782                 goto out_cleanup_srcu;
3783
3784         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3785
3786         kref_get(&ctrl->subsys->ref);
3787
3788         return head;
3789 out_cleanup_srcu:
3790         cleanup_srcu_struct(&head->srcu);
3791 out_ida_remove:
3792         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3793 out_free_head:
3794         kfree(head);
3795 out:
3796         if (ret > 0)
3797                 ret = blk_status_to_errno(nvme_error_status(ret));
3798         return ERR_PTR(ret);
3799 }
3800
3801 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3802                 struct nvme_ns_ids *ids, bool is_shared)
3803 {
3804         struct nvme_ctrl *ctrl = ns->ctrl;
3805         struct nvme_ns_head *head = NULL;
3806         int ret = 0;
3807
3808         mutex_lock(&ctrl->subsys->lock);
3809         head = nvme_find_ns_head(ctrl->subsys, nsid);
3810         if (!head) {
3811                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3812                 if (IS_ERR(head)) {
3813                         ret = PTR_ERR(head);
3814                         goto out_unlock;
3815                 }
3816                 head->shared = is_shared;
3817         } else {
3818                 ret = -EINVAL;
3819                 if (!is_shared || !head->shared) {
3820                         dev_err(ctrl->device,
3821                                 "Duplicate unshared namespace %d\n", nsid);
3822                         goto out_put_ns_head;
3823                 }
3824                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3825                         dev_err(ctrl->device,
3826                                 "IDs don't match for shared namespace %d\n",
3827                                         nsid);
3828                         goto out_put_ns_head;
3829                 }
3830         }
3831
3832         list_add_tail_rcu(&ns->siblings, &head->list);
3833         ns->head = head;
3834         mutex_unlock(&ctrl->subsys->lock);
3835         return 0;
3836
3837 out_put_ns_head:
3838         nvme_put_ns_head(head);
3839 out_unlock:
3840         mutex_unlock(&ctrl->subsys->lock);
3841         return ret;
3842 }
3843
3844 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3845 {
3846         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3847         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3848
3849         return nsa->head->ns_id - nsb->head->ns_id;
3850 }
3851
3852 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3853 {
3854         struct nvme_ns *ns, *ret = NULL;
3855
3856         down_read(&ctrl->namespaces_rwsem);
3857         list_for_each_entry(ns, &ctrl->namespaces, list) {
3858                 if (ns->head->ns_id == nsid) {
3859                         if (!kref_get_unless_zero(&ns->kref))
3860                                 continue;
3861                         ret = ns;
3862                         break;
3863                 }
3864                 if (ns->head->ns_id > nsid)
3865                         break;
3866         }
3867         up_read(&ctrl->namespaces_rwsem);
3868         return ret;
3869 }
3870 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3871
3872 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3873                 struct nvme_ns_ids *ids)
3874 {
3875         struct nvme_ns *ns;
3876         struct gendisk *disk;
3877         struct nvme_id_ns *id;
3878         char disk_name[DISK_NAME_LEN];
3879         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3880
3881         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3882                 return;
3883
3884         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3885         if (!ns)
3886                 goto out_free_id;
3887
3888         ns->queue = blk_mq_init_queue(ctrl->tagset);
3889         if (IS_ERR(ns->queue))
3890                 goto out_free_ns;
3891
3892         if (ctrl->opts && ctrl->opts->data_digest)
3893                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3894
3895         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3896         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3897                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3898
3899         ns->queue->queuedata = ns;
3900         ns->ctrl = ctrl;
3901         kref_init(&ns->kref);
3902
3903         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3904                 goto out_free_queue;
3905         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3906
3907         disk = alloc_disk_node(0, node);
3908         if (!disk)
3909                 goto out_unlink_ns;
3910
3911         disk->fops = &nvme_bdev_ops;
3912         disk->private_data = ns;
3913         disk->queue = ns->queue;
3914         disk->flags = flags;
3915         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3916         ns->disk = disk;
3917
3918         if (nvme_update_ns_info(ns, id))
3919                 goto out_put_disk;
3920
3921         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3922                 if (nvme_nvm_register(ns, disk_name, node)) {
3923                         dev_warn(ctrl->device, "LightNVM init failure\n");
3924                         goto out_put_disk;
3925                 }
3926         }
3927
3928         down_write(&ctrl->namespaces_rwsem);
3929         list_add_tail(&ns->list, &ctrl->namespaces);
3930         up_write(&ctrl->namespaces_rwsem);
3931
3932         nvme_get_ctrl(ctrl);
3933
3934         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3935
3936         nvme_mpath_add_disk(ns, id);
3937         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3938         kfree(id);
3939
3940         return;
3941  out_put_disk:
3942         /* prevent double queue cleanup */
3943         ns->disk->queue = NULL;
3944         put_disk(ns->disk);
3945  out_unlink_ns:
3946         mutex_lock(&ctrl->subsys->lock);
3947         list_del_rcu(&ns->siblings);
3948         if (list_empty(&ns->head->list))
3949                 list_del_init(&ns->head->entry);
3950         mutex_unlock(&ctrl->subsys->lock);
3951         nvme_put_ns_head(ns->head);
3952  out_free_queue:
3953         blk_cleanup_queue(ns->queue);
3954  out_free_ns:
3955         kfree(ns);
3956  out_free_id:
3957         kfree(id);
3958 }
3959
3960 static void nvme_ns_remove(struct nvme_ns *ns)
3961 {
3962         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3963                 return;
3964
3965         set_capacity(ns->disk, 0);
3966         nvme_fault_inject_fini(&ns->fault_inject);
3967
3968         mutex_lock(&ns->ctrl->subsys->lock);
3969         list_del_rcu(&ns->siblings);
3970         if (list_empty(&ns->head->list))
3971                 list_del_init(&ns->head->entry);
3972         mutex_unlock(&ns->ctrl->subsys->lock);
3973
3974         synchronize_rcu(); /* guarantee not available in head->list */
3975         nvme_mpath_clear_current_path(ns);
3976         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3977
3978         if (ns->disk->flags & GENHD_FL_UP) {
3979                 del_gendisk(ns->disk);
3980                 blk_cleanup_queue(ns->queue);
3981                 if (blk_get_integrity(ns->disk))
3982                         blk_integrity_unregister(ns->disk);
3983         }
3984
3985         down_write(&ns->ctrl->namespaces_rwsem);
3986         list_del_init(&ns->list);
3987         up_write(&ns->ctrl->namespaces_rwsem);
3988
3989         nvme_mpath_check_last_path(ns);
3990         nvme_put_ns(ns);
3991 }
3992
3993 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3994 {
3995         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3996
3997         if (ns) {
3998                 nvme_ns_remove(ns);
3999                 nvme_put_ns(ns);
4000         }
4001 }
4002
4003 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4004 {
4005         struct nvme_id_ns *id;
4006         int ret = -ENODEV;
4007
4008         if (test_bit(NVME_NS_DEAD, &ns->flags))
4009                 goto out;
4010
4011         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4012         if (ret)
4013                 goto out;
4014
4015         ret = -ENODEV;
4016         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4017                 dev_err(ns->ctrl->device,
4018                         "identifiers changed for nsid %d\n", ns->head->ns_id);
4019                 goto out_free_id;
4020         }
4021
4022         ret = nvme_update_ns_info(ns, id);
4023
4024 out_free_id:
4025         kfree(id);
4026 out:
4027         /*
4028          * Only remove the namespace if we got a fatal error back from the
4029          * device, otherwise ignore the error and just move on.
4030          *
4031          * TODO: we should probably schedule a delayed retry here.
4032          */
4033         if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
4034                 nvme_ns_remove(ns);
4035 }
4036
4037 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4038 {
4039         struct nvme_ns_ids ids = { };
4040         struct nvme_ns *ns;
4041
4042         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4043                 return;
4044
4045         ns = nvme_find_get_ns(ctrl, nsid);
4046         if (ns) {
4047                 nvme_validate_ns(ns, &ids);
4048                 nvme_put_ns(ns);
4049                 return;
4050         }
4051
4052         switch (ids.csi) {
4053         case NVME_CSI_NVM:
4054                 nvme_alloc_ns(ctrl, nsid, &ids);
4055                 break;
4056         case NVME_CSI_ZNS:
4057                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4058                         dev_warn(ctrl->device,
4059                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4060                                 nsid);
4061                         break;
4062                 }
4063                 nvme_alloc_ns(ctrl, nsid, &ids);
4064                 break;
4065         default:
4066                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4067                         ids.csi, nsid);
4068                 break;
4069         }
4070 }
4071
4072 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4073                                         unsigned nsid)
4074 {
4075         struct nvme_ns *ns, *next;
4076         LIST_HEAD(rm_list);
4077
4078         down_write(&ctrl->namespaces_rwsem);
4079         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4080                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4081                         list_move_tail(&ns->list, &rm_list);
4082         }
4083         up_write(&ctrl->namespaces_rwsem);
4084
4085         list_for_each_entry_safe(ns, next, &rm_list, list)
4086                 nvme_ns_remove(ns);
4087
4088 }
4089
4090 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4091 {
4092         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4093         __le32 *ns_list;
4094         u32 prev = 0;
4095         int ret = 0, i;
4096
4097         if (nvme_ctrl_limited_cns(ctrl))
4098                 return -EOPNOTSUPP;
4099
4100         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4101         if (!ns_list)
4102                 return -ENOMEM;
4103
4104         for (;;) {
4105                 struct nvme_command cmd = {
4106                         .identify.opcode        = nvme_admin_identify,
4107                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4108                         .identify.nsid          = cpu_to_le32(prev),
4109                 };
4110
4111                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4112                                             NVME_IDENTIFY_DATA_SIZE);
4113                 if (ret) {
4114                         dev_warn(ctrl->device,
4115                                 "Identify NS List failed (status=0x%x)\n", ret);
4116                         goto free;
4117                 }
4118
4119                 for (i = 0; i < nr_entries; i++) {
4120                         u32 nsid = le32_to_cpu(ns_list[i]);
4121
4122                         if (!nsid)      /* end of the list? */
4123                                 goto out;
4124                         nvme_validate_or_alloc_ns(ctrl, nsid);
4125                         while (++prev < nsid)
4126                                 nvme_ns_remove_by_nsid(ctrl, prev);
4127                 }
4128         }
4129  out:
4130         nvme_remove_invalid_namespaces(ctrl, prev);
4131  free:
4132         kfree(ns_list);
4133         return ret;
4134 }
4135
4136 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4137 {
4138         struct nvme_id_ctrl *id;
4139         u32 nn, i;
4140
4141         if (nvme_identify_ctrl(ctrl, &id))
4142                 return;
4143         nn = le32_to_cpu(id->nn);
4144         kfree(id);
4145
4146         for (i = 1; i <= nn; i++)
4147                 nvme_validate_or_alloc_ns(ctrl, i);
4148
4149         nvme_remove_invalid_namespaces(ctrl, nn);
4150 }
4151
4152 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4153 {
4154         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4155         __le32 *log;
4156         int error;
4157
4158         log = kzalloc(log_size, GFP_KERNEL);
4159         if (!log)
4160                 return;
4161
4162         /*
4163          * We need to read the log to clear the AEN, but we don't want to rely
4164          * on it for the changed namespace information as userspace could have
4165          * raced with us in reading the log page, which could cause us to miss
4166          * updates.
4167          */
4168         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4169                         NVME_CSI_NVM, log, log_size, 0);
4170         if (error)
4171                 dev_warn(ctrl->device,
4172                         "reading changed ns log failed: %d\n", error);
4173
4174         kfree(log);
4175 }
4176
4177 static void nvme_scan_work(struct work_struct *work)
4178 {
4179         struct nvme_ctrl *ctrl =
4180                 container_of(work, struct nvme_ctrl, scan_work);
4181
4182         /* No tagset on a live ctrl means IO queues could not created */
4183         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4184                 return;
4185
4186         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4187                 dev_info(ctrl->device, "rescanning namespaces.\n");
4188                 nvme_clear_changed_ns_log(ctrl);
4189         }
4190
4191         mutex_lock(&ctrl->scan_lock);
4192         if (nvme_scan_ns_list(ctrl) != 0)
4193                 nvme_scan_ns_sequential(ctrl);
4194         mutex_unlock(&ctrl->scan_lock);
4195
4196         down_write(&ctrl->namespaces_rwsem);
4197         list_sort(NULL, &ctrl->namespaces, ns_cmp);
4198         up_write(&ctrl->namespaces_rwsem);
4199 }
4200
4201 /*
4202  * This function iterates the namespace list unlocked to allow recovery from
4203  * controller failure. It is up to the caller to ensure the namespace list is
4204  * not modified by scan work while this function is executing.
4205  */
4206 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4207 {
4208         struct nvme_ns *ns, *next;
4209         LIST_HEAD(ns_list);
4210
4211         /*
4212          * make sure to requeue I/O to all namespaces as these
4213          * might result from the scan itself and must complete
4214          * for the scan_work to make progress
4215          */
4216         nvme_mpath_clear_ctrl_paths(ctrl);
4217
4218         /* prevent racing with ns scanning */
4219         flush_work(&ctrl->scan_work);
4220
4221         /*
4222          * The dead states indicates the controller was not gracefully
4223          * disconnected. In that case, we won't be able to flush any data while
4224          * removing the namespaces' disks; fail all the queues now to avoid
4225          * potentially having to clean up the failed sync later.
4226          */
4227         if (ctrl->state == NVME_CTRL_DEAD)
4228                 nvme_kill_queues(ctrl);
4229
4230         /* this is a no-op when called from the controller reset handler */
4231         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4232
4233         down_write(&ctrl->namespaces_rwsem);
4234         list_splice_init(&ctrl->namespaces, &ns_list);
4235         up_write(&ctrl->namespaces_rwsem);
4236
4237         list_for_each_entry_safe(ns, next, &ns_list, list)
4238                 nvme_ns_remove(ns);
4239 }
4240 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4241
4242 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4243 {
4244         struct nvme_ctrl *ctrl =
4245                 container_of(dev, struct nvme_ctrl, ctrl_device);
4246         struct nvmf_ctrl_options *opts = ctrl->opts;
4247         int ret;
4248
4249         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4250         if (ret)
4251                 return ret;
4252
4253         if (opts) {
4254                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4255                 if (ret)
4256                         return ret;
4257
4258                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4259                                 opts->trsvcid ?: "none");
4260                 if (ret)
4261                         return ret;
4262
4263                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4264                                 opts->host_traddr ?: "none");
4265         }
4266         return ret;
4267 }
4268
4269 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4270 {
4271         char *envp[2] = { NULL, NULL };
4272         u32 aen_result = ctrl->aen_result;
4273
4274         ctrl->aen_result = 0;
4275         if (!aen_result)
4276                 return;
4277
4278         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4279         if (!envp[0])
4280                 return;
4281         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4282         kfree(envp[0]);
4283 }
4284
4285 static void nvme_async_event_work(struct work_struct *work)
4286 {
4287         struct nvme_ctrl *ctrl =
4288                 container_of(work, struct nvme_ctrl, async_event_work);
4289
4290         nvme_aen_uevent(ctrl);
4291         ctrl->ops->submit_async_event(ctrl);
4292 }
4293
4294 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4295 {
4296
4297         u32 csts;
4298
4299         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4300                 return false;
4301
4302         if (csts == ~0)
4303                 return false;
4304
4305         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4306 }
4307
4308 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4309 {
4310         struct nvme_fw_slot_info_log *log;
4311
4312         log = kmalloc(sizeof(*log), GFP_KERNEL);
4313         if (!log)
4314                 return;
4315
4316         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4317                         log, sizeof(*log), 0))
4318                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4319         kfree(log);
4320 }
4321
4322 static void nvme_fw_act_work(struct work_struct *work)
4323 {
4324         struct nvme_ctrl *ctrl = container_of(work,
4325                                 struct nvme_ctrl, fw_act_work);
4326         unsigned long fw_act_timeout;
4327
4328         if (ctrl->mtfa)
4329                 fw_act_timeout = jiffies +
4330                                 msecs_to_jiffies(ctrl->mtfa * 100);
4331         else
4332                 fw_act_timeout = jiffies +
4333                                 msecs_to_jiffies(admin_timeout * 1000);
4334
4335         nvme_stop_queues(ctrl);
4336         while (nvme_ctrl_pp_status(ctrl)) {
4337                 if (time_after(jiffies, fw_act_timeout)) {
4338                         dev_warn(ctrl->device,
4339                                 "Fw activation timeout, reset controller\n");
4340                         nvme_try_sched_reset(ctrl);
4341                         return;
4342                 }
4343                 msleep(100);
4344         }
4345
4346         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4347                 return;
4348
4349         nvme_start_queues(ctrl);
4350         /* read FW slot information to clear the AER */
4351         nvme_get_fw_slot_info(ctrl);
4352 }
4353
4354 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4355 {
4356         u32 aer_notice_type = (result & 0xff00) >> 8;
4357
4358         trace_nvme_async_event(ctrl, aer_notice_type);
4359
4360         switch (aer_notice_type) {
4361         case NVME_AER_NOTICE_NS_CHANGED:
4362                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4363                 nvme_queue_scan(ctrl);
4364                 break;
4365         case NVME_AER_NOTICE_FW_ACT_STARTING:
4366                 /*
4367                  * We are (ab)using the RESETTING state to prevent subsequent
4368                  * recovery actions from interfering with the controller's
4369                  * firmware activation.
4370                  */
4371                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4372                         queue_work(nvme_wq, &ctrl->fw_act_work);
4373                 break;
4374 #ifdef CONFIG_NVME_MULTIPATH
4375         case NVME_AER_NOTICE_ANA:
4376                 if (!ctrl->ana_log_buf)
4377                         break;
4378                 queue_work(nvme_wq, &ctrl->ana_work);
4379                 break;
4380 #endif
4381         case NVME_AER_NOTICE_DISC_CHANGED:
4382                 ctrl->aen_result = result;
4383                 break;
4384         default:
4385                 dev_warn(ctrl->device, "async event result %08x\n", result);
4386         }
4387 }
4388
4389 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4390                 volatile union nvme_result *res)
4391 {
4392         u32 result = le32_to_cpu(res->u32);
4393         u32 aer_type = result & 0x07;
4394
4395         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4396                 return;
4397
4398         switch (aer_type) {
4399         case NVME_AER_NOTICE:
4400                 nvme_handle_aen_notice(ctrl, result);
4401                 break;
4402         case NVME_AER_ERROR:
4403         case NVME_AER_SMART:
4404         case NVME_AER_CSS:
4405         case NVME_AER_VS:
4406                 trace_nvme_async_event(ctrl, aer_type);
4407                 ctrl->aen_result = result;
4408                 break;
4409         default:
4410                 break;
4411         }
4412         queue_work(nvme_wq, &ctrl->async_event_work);
4413 }
4414 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4415
4416 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4417 {
4418         nvme_mpath_stop(ctrl);
4419         nvme_stop_keep_alive(ctrl);
4420         nvme_stop_failfast_work(ctrl);
4421         flush_work(&ctrl->async_event_work);
4422         cancel_work_sync(&ctrl->fw_act_work);
4423 }
4424 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4425
4426 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4427 {
4428         nvme_start_keep_alive(ctrl);
4429
4430         nvme_enable_aen(ctrl);
4431
4432         if (ctrl->queue_count > 1) {
4433                 nvme_queue_scan(ctrl);
4434                 nvme_start_queues(ctrl);
4435         }
4436 }
4437 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4438
4439 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4440 {
4441         nvme_fault_inject_fini(&ctrl->fault_inject);
4442         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4443         cdev_device_del(&ctrl->cdev, ctrl->device);
4444         nvme_put_ctrl(ctrl);
4445 }
4446 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4447
4448 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4449 {
4450         struct nvme_effects_log *cel;
4451         unsigned long i;
4452
4453         xa_for_each (&ctrl->cels, i, cel) {
4454                 xa_erase(&ctrl->cels, i);
4455                 kfree(cel);
4456         }
4457
4458         xa_destroy(&ctrl->cels);
4459 }
4460
4461 static void nvme_free_ctrl(struct device *dev)
4462 {
4463         struct nvme_ctrl *ctrl =
4464                 container_of(dev, struct nvme_ctrl, ctrl_device);
4465         struct nvme_subsystem *subsys = ctrl->subsys;
4466
4467         if (!subsys || ctrl->instance != subsys->instance)
4468                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4469
4470         nvme_free_cels(ctrl);
4471         nvme_mpath_uninit(ctrl);
4472         __free_page(ctrl->discard_page);
4473
4474         if (subsys) {
4475                 mutex_lock(&nvme_subsystems_lock);
4476                 list_del(&ctrl->subsys_entry);
4477                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4478                 mutex_unlock(&nvme_subsystems_lock);
4479         }
4480
4481         ctrl->ops->free_ctrl(ctrl);
4482
4483         if (subsys)
4484                 nvme_put_subsystem(subsys);
4485 }
4486
4487 /*
4488  * Initialize a NVMe controller structures.  This needs to be called during
4489  * earliest initialization so that we have the initialized structured around
4490  * during probing.
4491  */
4492 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4493                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4494 {
4495         int ret;
4496
4497         ctrl->state = NVME_CTRL_NEW;
4498         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4499         spin_lock_init(&ctrl->lock);
4500         mutex_init(&ctrl->scan_lock);
4501         INIT_LIST_HEAD(&ctrl->namespaces);
4502         xa_init(&ctrl->cels);
4503         init_rwsem(&ctrl->namespaces_rwsem);
4504         ctrl->dev = dev;
4505         ctrl->ops = ops;
4506         ctrl->quirks = quirks;
4507         ctrl->numa_node = NUMA_NO_NODE;
4508         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4509         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4510         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4511         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4512         init_waitqueue_head(&ctrl->state_wq);
4513
4514         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4515         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4516         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4517         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4518
4519         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4520                         PAGE_SIZE);
4521         ctrl->discard_page = alloc_page(GFP_KERNEL);
4522         if (!ctrl->discard_page) {
4523                 ret = -ENOMEM;
4524                 goto out;
4525         }
4526
4527         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4528         if (ret < 0)
4529                 goto out;
4530         ctrl->instance = ret;
4531
4532         device_initialize(&ctrl->ctrl_device);
4533         ctrl->device = &ctrl->ctrl_device;
4534         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4535                         ctrl->instance);
4536         ctrl->device->class = nvme_class;
4537         ctrl->device->parent = ctrl->dev;
4538         ctrl->device->groups = nvme_dev_attr_groups;
4539         ctrl->device->release = nvme_free_ctrl;
4540         dev_set_drvdata(ctrl->device, ctrl);
4541         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4542         if (ret)
4543                 goto out_release_instance;
4544
4545         nvme_get_ctrl(ctrl);
4546         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4547         ctrl->cdev.owner = ops->module;
4548         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4549         if (ret)
4550                 goto out_free_name;
4551
4552         /*
4553          * Initialize latency tolerance controls.  The sysfs files won't
4554          * be visible to userspace unless the device actually supports APST.
4555          */
4556         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4557         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4558                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4559
4560         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4561
4562         return 0;
4563 out_free_name:
4564         nvme_put_ctrl(ctrl);
4565         kfree_const(ctrl->device->kobj.name);
4566 out_release_instance:
4567         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4568 out:
4569         if (ctrl->discard_page)
4570                 __free_page(ctrl->discard_page);
4571         return ret;
4572 }
4573 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4574
4575 /**
4576  * nvme_kill_queues(): Ends all namespace queues
4577  * @ctrl: the dead controller that needs to end
4578  *
4579  * Call this function when the driver determines it is unable to get the
4580  * controller in a state capable of servicing IO.
4581  */
4582 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4583 {
4584         struct nvme_ns *ns;
4585
4586         down_read(&ctrl->namespaces_rwsem);
4587
4588         /* Forcibly unquiesce queues to avoid blocking dispatch */
4589         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4590                 blk_mq_unquiesce_queue(ctrl->admin_q);
4591
4592         list_for_each_entry(ns, &ctrl->namespaces, list)
4593                 nvme_set_queue_dying(ns);
4594
4595         up_read(&ctrl->namespaces_rwsem);
4596 }
4597 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4598
4599 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4600 {
4601         struct nvme_ns *ns;
4602
4603         down_read(&ctrl->namespaces_rwsem);
4604         list_for_each_entry(ns, &ctrl->namespaces, list)
4605                 blk_mq_unfreeze_queue(ns->queue);
4606         up_read(&ctrl->namespaces_rwsem);
4607 }
4608 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4609
4610 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4611 {
4612         struct nvme_ns *ns;
4613
4614         down_read(&ctrl->namespaces_rwsem);
4615         list_for_each_entry(ns, &ctrl->namespaces, list) {
4616                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4617                 if (timeout <= 0)
4618                         break;
4619         }
4620         up_read(&ctrl->namespaces_rwsem);
4621         return timeout;
4622 }
4623 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4624
4625 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4626 {
4627         struct nvme_ns *ns;
4628
4629         down_read(&ctrl->namespaces_rwsem);
4630         list_for_each_entry(ns, &ctrl->namespaces, list)
4631                 blk_mq_freeze_queue_wait(ns->queue);
4632         up_read(&ctrl->namespaces_rwsem);
4633 }
4634 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4635
4636 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4637 {
4638         struct nvme_ns *ns;
4639
4640         down_read(&ctrl->namespaces_rwsem);
4641         list_for_each_entry(ns, &ctrl->namespaces, list)
4642                 blk_freeze_queue_start(ns->queue);
4643         up_read(&ctrl->namespaces_rwsem);
4644 }
4645 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4646
4647 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4648 {
4649         struct nvme_ns *ns;
4650
4651         down_read(&ctrl->namespaces_rwsem);
4652         list_for_each_entry(ns, &ctrl->namespaces, list)
4653                 blk_mq_quiesce_queue(ns->queue);
4654         up_read(&ctrl->namespaces_rwsem);
4655 }
4656 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4657
4658 void nvme_start_queues(struct nvme_ctrl *ctrl)
4659 {
4660         struct nvme_ns *ns;
4661
4662         down_read(&ctrl->namespaces_rwsem);
4663         list_for_each_entry(ns, &ctrl->namespaces, list)
4664                 blk_mq_unquiesce_queue(ns->queue);
4665         up_read(&ctrl->namespaces_rwsem);
4666 }
4667 EXPORT_SYMBOL_GPL(nvme_start_queues);
4668
4669 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4670 {
4671         struct nvme_ns *ns;
4672
4673         down_read(&ctrl->namespaces_rwsem);
4674         list_for_each_entry(ns, &ctrl->namespaces, list)
4675                 blk_sync_queue(ns->queue);
4676         up_read(&ctrl->namespaces_rwsem);
4677 }
4678 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4679
4680 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4681 {
4682         nvme_sync_io_queues(ctrl);
4683         if (ctrl->admin_q)
4684                 blk_sync_queue(ctrl->admin_q);
4685 }
4686 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4687
4688 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4689 {
4690         if (file->f_op != &nvme_dev_fops)
4691                 return NULL;
4692         return file->private_data;
4693 }
4694 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4695
4696 /*
4697  * Check we didn't inadvertently grow the command structure sizes:
4698  */
4699 static inline void _nvme_check_size(void)
4700 {
4701         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4702         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4703         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4704         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4705         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4706         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4707         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4708         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4709         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4710         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4711         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4712         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4713         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4714         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4715         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4716         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4717         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4718         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4719         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4720 }
4721
4722
4723 static int __init nvme_core_init(void)
4724 {
4725         int result = -ENOMEM;
4726
4727         _nvme_check_size();
4728
4729         nvme_wq = alloc_workqueue("nvme-wq",
4730                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4731         if (!nvme_wq)
4732                 goto out;
4733
4734         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4735                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4736         if (!nvme_reset_wq)
4737                 goto destroy_wq;
4738
4739         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4740                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4741         if (!nvme_delete_wq)
4742                 goto destroy_reset_wq;
4743
4744         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4745                         NVME_MINORS, "nvme");
4746         if (result < 0)
4747                 goto destroy_delete_wq;
4748
4749         nvme_class = class_create(THIS_MODULE, "nvme");
4750         if (IS_ERR(nvme_class)) {
4751                 result = PTR_ERR(nvme_class);
4752                 goto unregister_chrdev;
4753         }
4754         nvme_class->dev_uevent = nvme_class_uevent;
4755
4756         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4757         if (IS_ERR(nvme_subsys_class)) {
4758                 result = PTR_ERR(nvme_subsys_class);
4759                 goto destroy_class;
4760         }
4761         return 0;
4762
4763 destroy_class:
4764         class_destroy(nvme_class);
4765 unregister_chrdev:
4766         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4767 destroy_delete_wq:
4768         destroy_workqueue(nvme_delete_wq);
4769 destroy_reset_wq:
4770         destroy_workqueue(nvme_reset_wq);
4771 destroy_wq:
4772         destroy_workqueue(nvme_wq);
4773 out:
4774         return result;
4775 }
4776
4777 static void __exit nvme_core_exit(void)
4778 {
4779         class_destroy(nvme_subsys_class);
4780         class_destroy(nvme_class);
4781         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4782         destroy_workqueue(nvme_delete_wq);
4783         destroy_workqueue(nvme_reset_wq);
4784         destroy_workqueue(nvme_wq);
4785         ida_destroy(&nvme_instance_ida);
4786 }
4787
4788 MODULE_LICENSE("GPL");
4789 MODULE_VERSION("1.0");
4790 module_init(nvme_core_init);
4791 module_exit(nvme_core_exit);