Merge tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94                                            unsigned nsid);
95
96 /*
97  * Prepare a queue for teardown.
98  *
99  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100  * the capacity to 0 after that to avoid blocking dispatchers that may be
101  * holding bd_butex.  This will end buffered writers dirtying pages that can't
102  * be synced.
103  */
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
105 {
106         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107                 return;
108
109         blk_set_queue_dying(ns->queue);
110         blk_mq_unquiesce_queue(ns->queue);
111
112         set_capacity_and_notify(ns->disk, 0);
113 }
114
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117         /*
118          * Only new queue scan work when admin and IO queues are both alive
119          */
120         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121                 queue_work(nvme_wq, &ctrl->scan_work);
122 }
123
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132         if (ctrl->state != NVME_CTRL_RESETTING)
133                 return -EBUSY;
134         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135                 return -EBUSY;
136         return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139
140 static void nvme_failfast_work(struct work_struct *work)
141 {
142         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143                         struct nvme_ctrl, failfast_work);
144
145         if (ctrl->state != NVME_CTRL_CONNECTING)
146                 return;
147
148         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149         dev_info(ctrl->device, "failfast expired\n");
150         nvme_kick_requeue_lists(ctrl);
151 }
152
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
154 {
155         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156                 return;
157
158         schedule_delayed_work(&ctrl->failfast_work,
159                               ctrl->opts->fast_io_fail_tmo * HZ);
160 }
161
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
163 {
164         if (!ctrl->opts)
165                 return;
166
167         cancel_delayed_work_sync(&ctrl->failfast_work);
168         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
169 }
170
171
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
173 {
174         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175                 return -EBUSY;
176         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177                 return -EBUSY;
178         return 0;
179 }
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
181
182 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
183 {
184         int ret;
185
186         ret = nvme_reset_ctrl(ctrl);
187         if (!ret) {
188                 flush_work(&ctrl->reset_work);
189                 if (ctrl->state != NVME_CTRL_LIVE)
190                         ret = -ENETRESET;
191         }
192
193         return ret;
194 }
195
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198         dev_info(ctrl->device,
199                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
200
201         flush_work(&ctrl->reset_work);
202         nvme_stop_ctrl(ctrl);
203         nvme_remove_namespaces(ctrl);
204         ctrl->ops->delete_ctrl(ctrl);
205         nvme_uninit_ctrl(ctrl);
206 }
207
208 static void nvme_delete_ctrl_work(struct work_struct *work)
209 {
210         struct nvme_ctrl *ctrl =
211                 container_of(work, struct nvme_ctrl, delete_work);
212
213         nvme_do_delete_ctrl(ctrl);
214 }
215
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
217 {
218         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219                 return -EBUSY;
220         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221                 return -EBUSY;
222         return 0;
223 }
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
225
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
227 {
228         /*
229          * Keep a reference until nvme_do_delete_ctrl() complete,
230          * since ->delete_ctrl can free the controller.
231          */
232         nvme_get_ctrl(ctrl);
233         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234                 nvme_do_delete_ctrl(ctrl);
235         nvme_put_ctrl(ctrl);
236 }
237
238 static blk_status_t nvme_error_status(u16 status)
239 {
240         switch (status & 0x7ff) {
241         case NVME_SC_SUCCESS:
242                 return BLK_STS_OK;
243         case NVME_SC_CAP_EXCEEDED:
244                 return BLK_STS_NOSPC;
245         case NVME_SC_LBA_RANGE:
246         case NVME_SC_CMD_INTERRUPTED:
247         case NVME_SC_NS_NOT_READY:
248                 return BLK_STS_TARGET;
249         case NVME_SC_BAD_ATTRIBUTES:
250         case NVME_SC_ONCS_NOT_SUPPORTED:
251         case NVME_SC_INVALID_OPCODE:
252         case NVME_SC_INVALID_FIELD:
253         case NVME_SC_INVALID_NS:
254                 return BLK_STS_NOTSUPP;
255         case NVME_SC_WRITE_FAULT:
256         case NVME_SC_READ_ERROR:
257         case NVME_SC_UNWRITTEN_BLOCK:
258         case NVME_SC_ACCESS_DENIED:
259         case NVME_SC_READ_ONLY:
260         case NVME_SC_COMPARE_FAILED:
261                 return BLK_STS_MEDIUM;
262         case NVME_SC_GUARD_CHECK:
263         case NVME_SC_APPTAG_CHECK:
264         case NVME_SC_REFTAG_CHECK:
265         case NVME_SC_INVALID_PI:
266                 return BLK_STS_PROTECTION;
267         case NVME_SC_RESERVATION_CONFLICT:
268                 return BLK_STS_NEXUS;
269         case NVME_SC_HOST_PATH_ERROR:
270                 return BLK_STS_TRANSPORT;
271         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
273         case NVME_SC_ZONE_TOO_MANY_OPEN:
274                 return BLK_STS_ZONE_OPEN_RESOURCE;
275         default:
276                 return BLK_STS_IOERR;
277         }
278 }
279
280 static void nvme_retry_req(struct request *req)
281 {
282         struct nvme_ns *ns = req->q->queuedata;
283         unsigned long delay = 0;
284         u16 crd;
285
286         /* The mask and shift result must be <= 3 */
287         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
288         if (ns && crd)
289                 delay = ns->ctrl->crdt[crd - 1] * 100;
290
291         nvme_req(req)->retries++;
292         blk_mq_requeue_request(req, false);
293         blk_mq_delay_kick_requeue_list(req->q, delay);
294 }
295
296 enum nvme_disposition {
297         COMPLETE,
298         RETRY,
299         FAILOVER,
300 };
301
302 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
303 {
304         if (likely(nvme_req(req)->status == 0))
305                 return COMPLETE;
306
307         if (blk_noretry_request(req) ||
308             (nvme_req(req)->status & NVME_SC_DNR) ||
309             nvme_req(req)->retries >= nvme_max_retries)
310                 return COMPLETE;
311
312         if (req->cmd_flags & REQ_NVME_MPATH) {
313                 if (nvme_is_path_error(nvme_req(req)->status) ||
314                     blk_queue_dying(req->q))
315                         return FAILOVER;
316         } else {
317                 if (blk_queue_dying(req->q))
318                         return COMPLETE;
319         }
320
321         return RETRY;
322 }
323
324 static inline void nvme_end_req(struct request *req)
325 {
326         blk_status_t status = nvme_error_status(nvme_req(req)->status);
327
328         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
329             req_op(req) == REQ_OP_ZONE_APPEND)
330                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
331                         le64_to_cpu(nvme_req(req)->result.u64));
332
333         nvme_trace_bio_complete(req);
334         blk_mq_end_request(req, status);
335 }
336
337 void nvme_complete_rq(struct request *req)
338 {
339         trace_nvme_complete_rq(req);
340         nvme_cleanup_cmd(req);
341
342         if (nvme_req(req)->ctrl->kas)
343                 nvme_req(req)->ctrl->comp_seen = true;
344
345         switch (nvme_decide_disposition(req)) {
346         case COMPLETE:
347                 nvme_end_req(req);
348                 return;
349         case RETRY:
350                 nvme_retry_req(req);
351                 return;
352         case FAILOVER:
353                 nvme_failover_req(req);
354                 return;
355         }
356 }
357 EXPORT_SYMBOL_GPL(nvme_complete_rq);
358
359 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
360 {
361         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
362                                 "Cancelling I/O %d", req->tag);
363
364         /* don't abort one completed request */
365         if (blk_mq_request_completed(req))
366                 return true;
367
368         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
369         blk_mq_complete_request(req);
370         return true;
371 }
372 EXPORT_SYMBOL_GPL(nvme_cancel_request);
373
374 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
375                 enum nvme_ctrl_state new_state)
376 {
377         enum nvme_ctrl_state old_state;
378         unsigned long flags;
379         bool changed = false;
380
381         spin_lock_irqsave(&ctrl->lock, flags);
382
383         old_state = ctrl->state;
384         switch (new_state) {
385         case NVME_CTRL_LIVE:
386                 switch (old_state) {
387                 case NVME_CTRL_NEW:
388                 case NVME_CTRL_RESETTING:
389                 case NVME_CTRL_CONNECTING:
390                         changed = true;
391                         fallthrough;
392                 default:
393                         break;
394                 }
395                 break;
396         case NVME_CTRL_RESETTING:
397                 switch (old_state) {
398                 case NVME_CTRL_NEW:
399                 case NVME_CTRL_LIVE:
400                         changed = true;
401                         fallthrough;
402                 default:
403                         break;
404                 }
405                 break;
406         case NVME_CTRL_CONNECTING:
407                 switch (old_state) {
408                 case NVME_CTRL_NEW:
409                 case NVME_CTRL_RESETTING:
410                         changed = true;
411                         fallthrough;
412                 default:
413                         break;
414                 }
415                 break;
416         case NVME_CTRL_DELETING:
417                 switch (old_state) {
418                 case NVME_CTRL_LIVE:
419                 case NVME_CTRL_RESETTING:
420                 case NVME_CTRL_CONNECTING:
421                         changed = true;
422                         fallthrough;
423                 default:
424                         break;
425                 }
426                 break;
427         case NVME_CTRL_DELETING_NOIO:
428                 switch (old_state) {
429                 case NVME_CTRL_DELETING:
430                 case NVME_CTRL_DEAD:
431                         changed = true;
432                         fallthrough;
433                 default:
434                         break;
435                 }
436                 break;
437         case NVME_CTRL_DEAD:
438                 switch (old_state) {
439                 case NVME_CTRL_DELETING:
440                         changed = true;
441                         fallthrough;
442                 default:
443                         break;
444                 }
445                 break;
446         default:
447                 break;
448         }
449
450         if (changed) {
451                 ctrl->state = new_state;
452                 wake_up_all(&ctrl->state_wq);
453         }
454
455         spin_unlock_irqrestore(&ctrl->lock, flags);
456         if (!changed)
457                 return false;
458
459         if (ctrl->state == NVME_CTRL_LIVE) {
460                 if (old_state == NVME_CTRL_CONNECTING)
461                         nvme_stop_failfast_work(ctrl);
462                 nvme_kick_requeue_lists(ctrl);
463         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
464                 old_state == NVME_CTRL_RESETTING) {
465                 nvme_start_failfast_work(ctrl);
466         }
467         return changed;
468 }
469 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
470
471 /*
472  * Returns true for sink states that can't ever transition back to live.
473  */
474 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
475 {
476         switch (ctrl->state) {
477         case NVME_CTRL_NEW:
478         case NVME_CTRL_LIVE:
479         case NVME_CTRL_RESETTING:
480         case NVME_CTRL_CONNECTING:
481                 return false;
482         case NVME_CTRL_DELETING:
483         case NVME_CTRL_DELETING_NOIO:
484         case NVME_CTRL_DEAD:
485                 return true;
486         default:
487                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
488                 return true;
489         }
490 }
491
492 /*
493  * Waits for the controller state to be resetting, or returns false if it is
494  * not possible to ever transition to that state.
495  */
496 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
497 {
498         wait_event(ctrl->state_wq,
499                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
500                    nvme_state_terminal(ctrl));
501         return ctrl->state == NVME_CTRL_RESETTING;
502 }
503 EXPORT_SYMBOL_GPL(nvme_wait_reset);
504
505 static void nvme_free_ns_head(struct kref *ref)
506 {
507         struct nvme_ns_head *head =
508                 container_of(ref, struct nvme_ns_head, ref);
509
510         nvme_mpath_remove_disk(head);
511         ida_simple_remove(&head->subsys->ns_ida, head->instance);
512         cleanup_srcu_struct(&head->srcu);
513         nvme_put_subsystem(head->subsys);
514         kfree(head);
515 }
516
517 static void nvme_put_ns_head(struct nvme_ns_head *head)
518 {
519         kref_put(&head->ref, nvme_free_ns_head);
520 }
521
522 static void nvme_free_ns(struct kref *kref)
523 {
524         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
525
526         if (ns->ndev)
527                 nvme_nvm_unregister(ns);
528
529         put_disk(ns->disk);
530         nvme_put_ns_head(ns->head);
531         nvme_put_ctrl(ns->ctrl);
532         kfree(ns);
533 }
534
535 void nvme_put_ns(struct nvme_ns *ns)
536 {
537         kref_put(&ns->kref, nvme_free_ns);
538 }
539 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
540
541 static inline void nvme_clear_nvme_request(struct request *req)
542 {
543         if (!(req->rq_flags & RQF_DONTPREP)) {
544                 nvme_req(req)->retries = 0;
545                 nvme_req(req)->flags = 0;
546                 req->rq_flags |= RQF_DONTPREP;
547         }
548 }
549
550 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
551 {
552         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
553 }
554
555 static inline void nvme_init_request(struct request *req,
556                 struct nvme_command *cmd)
557 {
558         if (req->q->queuedata)
559                 req->timeout = NVME_IO_TIMEOUT;
560         else /* no queuedata implies admin queue */
561                 req->timeout = NVME_ADMIN_TIMEOUT;
562
563         req->cmd_flags |= REQ_FAILFAST_DRIVER;
564         nvme_clear_nvme_request(req);
565         nvme_req(req)->cmd = cmd;
566 }
567
568 struct request *nvme_alloc_request(struct request_queue *q,
569                 struct nvme_command *cmd, blk_mq_req_flags_t flags)
570 {
571         struct request *req;
572
573         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
574         if (!IS_ERR(req))
575                 nvme_init_request(req, cmd);
576         return req;
577 }
578 EXPORT_SYMBOL_GPL(nvme_alloc_request);
579
580 static struct request *nvme_alloc_request_qid(struct request_queue *q,
581                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
582 {
583         struct request *req;
584
585         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
586                         qid ? qid - 1 : 0);
587         if (!IS_ERR(req))
588                 nvme_init_request(req, cmd);
589         return req;
590 }
591
592 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
593 {
594         struct nvme_command c;
595
596         memset(&c, 0, sizeof(c));
597
598         c.directive.opcode = nvme_admin_directive_send;
599         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
600         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
601         c.directive.dtype = NVME_DIR_IDENTIFY;
602         c.directive.tdtype = NVME_DIR_STREAMS;
603         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
604
605         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
606 }
607
608 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
609 {
610         return nvme_toggle_streams(ctrl, false);
611 }
612
613 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
614 {
615         return nvme_toggle_streams(ctrl, true);
616 }
617
618 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
619                                   struct streams_directive_params *s, u32 nsid)
620 {
621         struct nvme_command c;
622
623         memset(&c, 0, sizeof(c));
624         memset(s, 0, sizeof(*s));
625
626         c.directive.opcode = nvme_admin_directive_recv;
627         c.directive.nsid = cpu_to_le32(nsid);
628         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
629         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
630         c.directive.dtype = NVME_DIR_STREAMS;
631
632         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
633 }
634
635 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
636 {
637         struct streams_directive_params s;
638         int ret;
639
640         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
641                 return 0;
642         if (!streams)
643                 return 0;
644
645         ret = nvme_enable_streams(ctrl);
646         if (ret)
647                 return ret;
648
649         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
650         if (ret)
651                 goto out_disable_stream;
652
653         ctrl->nssa = le16_to_cpu(s.nssa);
654         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
655                 dev_info(ctrl->device, "too few streams (%u) available\n",
656                                         ctrl->nssa);
657                 goto out_disable_stream;
658         }
659
660         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
661         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
662         return 0;
663
664 out_disable_stream:
665         nvme_disable_streams(ctrl);
666         return ret;
667 }
668
669 /*
670  * Check if 'req' has a write hint associated with it. If it does, assign
671  * a valid namespace stream to the write.
672  */
673 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
674                                      struct request *req, u16 *control,
675                                      u32 *dsmgmt)
676 {
677         enum rw_hint streamid = req->write_hint;
678
679         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
680                 streamid = 0;
681         else {
682                 streamid--;
683                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
684                         return;
685
686                 *control |= NVME_RW_DTYPE_STREAMS;
687                 *dsmgmt |= streamid << 16;
688         }
689
690         if (streamid < ARRAY_SIZE(req->q->write_hints))
691                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
692 }
693
694 static void nvme_setup_passthrough(struct request *req,
695                 struct nvme_command *cmd)
696 {
697         memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
698         /* passthru commands should let the driver set the SGL flags */
699         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
700 }
701
702 static inline void nvme_setup_flush(struct nvme_ns *ns,
703                 struct nvme_command *cmnd)
704 {
705         cmnd->common.opcode = nvme_cmd_flush;
706         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
707 }
708
709 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
710                 struct nvme_command *cmnd)
711 {
712         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
713         struct nvme_dsm_range *range;
714         struct bio *bio;
715
716         /*
717          * Some devices do not consider the DSM 'Number of Ranges' field when
718          * determining how much data to DMA. Always allocate memory for maximum
719          * number of segments to prevent device reading beyond end of buffer.
720          */
721         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
722
723         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
724         if (!range) {
725                 /*
726                  * If we fail allocation our range, fallback to the controller
727                  * discard page. If that's also busy, it's safe to return
728                  * busy, as we know we can make progress once that's freed.
729                  */
730                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
731                         return BLK_STS_RESOURCE;
732
733                 range = page_address(ns->ctrl->discard_page);
734         }
735
736         __rq_for_each_bio(bio, req) {
737                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
738                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
739
740                 if (n < segments) {
741                         range[n].cattr = cpu_to_le32(0);
742                         range[n].nlb = cpu_to_le32(nlb);
743                         range[n].slba = cpu_to_le64(slba);
744                 }
745                 n++;
746         }
747
748         if (WARN_ON_ONCE(n != segments)) {
749                 if (virt_to_page(range) == ns->ctrl->discard_page)
750                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
751                 else
752                         kfree(range);
753                 return BLK_STS_IOERR;
754         }
755
756         cmnd->dsm.opcode = nvme_cmd_dsm;
757         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
758         cmnd->dsm.nr = cpu_to_le32(segments - 1);
759         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
760
761         req->special_vec.bv_page = virt_to_page(range);
762         req->special_vec.bv_offset = offset_in_page(range);
763         req->special_vec.bv_len = alloc_size;
764         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
765
766         return BLK_STS_OK;
767 }
768
769 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
770                 struct request *req, struct nvme_command *cmnd)
771 {
772         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
773                 return nvme_setup_discard(ns, req, cmnd);
774
775         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
776         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
777         cmnd->write_zeroes.slba =
778                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
779         cmnd->write_zeroes.length =
780                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
781         cmnd->write_zeroes.control = 0;
782         return BLK_STS_OK;
783 }
784
785 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
786                 struct request *req, struct nvme_command *cmnd,
787                 enum nvme_opcode op)
788 {
789         struct nvme_ctrl *ctrl = ns->ctrl;
790         u16 control = 0;
791         u32 dsmgmt = 0;
792
793         if (req->cmd_flags & REQ_FUA)
794                 control |= NVME_RW_FUA;
795         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
796                 control |= NVME_RW_LR;
797
798         if (req->cmd_flags & REQ_RAHEAD)
799                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
800
801         cmnd->rw.opcode = op;
802         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
803         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
804         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
805
806         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
807                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
808
809         if (ns->ms) {
810                 /*
811                  * If formated with metadata, the block layer always provides a
812                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
813                  * we enable the PRACT bit for protection information or set the
814                  * namespace capacity to zero to prevent any I/O.
815                  */
816                 if (!blk_integrity_rq(req)) {
817                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
818                                 return BLK_STS_NOTSUPP;
819                         control |= NVME_RW_PRINFO_PRACT;
820                 }
821
822                 switch (ns->pi_type) {
823                 case NVME_NS_DPS_PI_TYPE3:
824                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
825                         break;
826                 case NVME_NS_DPS_PI_TYPE1:
827                 case NVME_NS_DPS_PI_TYPE2:
828                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
829                                         NVME_RW_PRINFO_PRCHK_REF;
830                         if (op == nvme_cmd_zone_append)
831                                 control |= NVME_RW_APPEND_PIREMAP;
832                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
833                         break;
834                 }
835         }
836
837         cmnd->rw.control = cpu_to_le16(control);
838         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
839         return 0;
840 }
841
842 void nvme_cleanup_cmd(struct request *req)
843 {
844         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
845                 struct nvme_ns *ns = req->rq_disk->private_data;
846                 struct page *page = req->special_vec.bv_page;
847
848                 if (page == ns->ctrl->discard_page)
849                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
850                 else
851                         kfree(page_address(page) + req->special_vec.bv_offset);
852         }
853 }
854 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
855
856 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
857                 struct nvme_command *cmd)
858 {
859         blk_status_t ret = BLK_STS_OK;
860
861         nvme_clear_nvme_request(req);
862
863         memset(cmd, 0, sizeof(*cmd));
864         switch (req_op(req)) {
865         case REQ_OP_DRV_IN:
866         case REQ_OP_DRV_OUT:
867                 nvme_setup_passthrough(req, cmd);
868                 break;
869         case REQ_OP_FLUSH:
870                 nvme_setup_flush(ns, cmd);
871                 break;
872         case REQ_OP_ZONE_RESET_ALL:
873         case REQ_OP_ZONE_RESET:
874                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
875                 break;
876         case REQ_OP_ZONE_OPEN:
877                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
878                 break;
879         case REQ_OP_ZONE_CLOSE:
880                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
881                 break;
882         case REQ_OP_ZONE_FINISH:
883                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
884                 break;
885         case REQ_OP_WRITE_ZEROES:
886                 ret = nvme_setup_write_zeroes(ns, req, cmd);
887                 break;
888         case REQ_OP_DISCARD:
889                 ret = nvme_setup_discard(ns, req, cmd);
890                 break;
891         case REQ_OP_READ:
892                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
893                 break;
894         case REQ_OP_WRITE:
895                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
896                 break;
897         case REQ_OP_ZONE_APPEND:
898                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
899                 break;
900         default:
901                 WARN_ON_ONCE(1);
902                 return BLK_STS_IOERR;
903         }
904
905         cmd->common.command_id = req->tag;
906         trace_nvme_setup_cmd(req, cmd);
907         return ret;
908 }
909 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
910
911 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
912 {
913         struct completion *waiting = rq->end_io_data;
914
915         rq->end_io_data = NULL;
916         complete(waiting);
917 }
918
919 static void nvme_execute_rq_polled(struct request_queue *q,
920                 struct gendisk *bd_disk, struct request *rq, int at_head)
921 {
922         DECLARE_COMPLETION_ONSTACK(wait);
923
924         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
925
926         rq->cmd_flags |= REQ_HIPRI;
927         rq->end_io_data = &wait;
928         blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
929
930         while (!completion_done(&wait)) {
931                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
932                 cond_resched();
933         }
934 }
935
936 /*
937  * Returns 0 on success.  If the result is negative, it's a Linux error code;
938  * if the result is positive, it's an NVM Express status code
939  */
940 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
941                 union nvme_result *result, void *buffer, unsigned bufflen,
942                 unsigned timeout, int qid, int at_head,
943                 blk_mq_req_flags_t flags, bool poll)
944 {
945         struct request *req;
946         int ret;
947
948         if (qid == NVME_QID_ANY)
949                 req = nvme_alloc_request(q, cmd, flags);
950         else
951                 req = nvme_alloc_request_qid(q, cmd, flags, qid);
952         if (IS_ERR(req))
953                 return PTR_ERR(req);
954
955         if (timeout)
956                 req->timeout = timeout;
957
958         if (buffer && bufflen) {
959                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
960                 if (ret)
961                         goto out;
962         }
963
964         if (poll)
965                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
966         else
967                 blk_execute_rq(NULL, req, at_head);
968         if (result)
969                 *result = nvme_req(req)->result;
970         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
971                 ret = -EINTR;
972         else
973                 ret = nvme_req(req)->status;
974  out:
975         blk_mq_free_request(req);
976         return ret;
977 }
978 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
979
980 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
981                 void *buffer, unsigned bufflen)
982 {
983         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
984                         NVME_QID_ANY, 0, 0, false);
985 }
986 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
987
988 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
989                 unsigned len, u32 seed, bool write)
990 {
991         struct bio_integrity_payload *bip;
992         int ret = -ENOMEM;
993         void *buf;
994
995         buf = kmalloc(len, GFP_KERNEL);
996         if (!buf)
997                 goto out;
998
999         ret = -EFAULT;
1000         if (write && copy_from_user(buf, ubuf, len))
1001                 goto out_free_meta;
1002
1003         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
1004         if (IS_ERR(bip)) {
1005                 ret = PTR_ERR(bip);
1006                 goto out_free_meta;
1007         }
1008
1009         bip->bip_iter.bi_size = len;
1010         bip->bip_iter.bi_sector = seed;
1011         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
1012                         offset_in_page(buf));
1013         if (ret == len)
1014                 return buf;
1015         ret = -ENOMEM;
1016 out_free_meta:
1017         kfree(buf);
1018 out:
1019         return ERR_PTR(ret);
1020 }
1021
1022 static u32 nvme_known_admin_effects(u8 opcode)
1023 {
1024         switch (opcode) {
1025         case nvme_admin_format_nvm:
1026                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1027                         NVME_CMD_EFFECTS_CSE_MASK;
1028         case nvme_admin_sanitize_nvm:
1029                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1030         default:
1031                 break;
1032         }
1033         return 0;
1034 }
1035
1036 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1037 {
1038         u32 effects = 0;
1039
1040         if (ns) {
1041                 if (ns->head->effects)
1042                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1043                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1044                         dev_warn(ctrl->device,
1045                                  "IO command:%02x has unhandled effects:%08x\n",
1046                                  opcode, effects);
1047                 return 0;
1048         }
1049
1050         if (ctrl->effects)
1051                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1052         effects |= nvme_known_admin_effects(opcode);
1053
1054         return effects;
1055 }
1056 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1057
1058 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1059                                u8 opcode)
1060 {
1061         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1062
1063         /*
1064          * For simplicity, IO to all namespaces is quiesced even if the command
1065          * effects say only one namespace is affected.
1066          */
1067         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1068                 mutex_lock(&ctrl->scan_lock);
1069                 mutex_lock(&ctrl->subsys->lock);
1070                 nvme_mpath_start_freeze(ctrl->subsys);
1071                 nvme_mpath_wait_freeze(ctrl->subsys);
1072                 nvme_start_freeze(ctrl);
1073                 nvme_wait_freeze(ctrl);
1074         }
1075         return effects;
1076 }
1077
1078 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1079 {
1080         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1081                 nvme_unfreeze(ctrl);
1082                 nvme_mpath_unfreeze(ctrl->subsys);
1083                 mutex_unlock(&ctrl->subsys->lock);
1084                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1085                 mutex_unlock(&ctrl->scan_lock);
1086         }
1087         if (effects & NVME_CMD_EFFECTS_CCC)
1088                 nvme_init_identify(ctrl);
1089         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1090                 nvme_queue_scan(ctrl);
1091                 flush_work(&ctrl->scan_work);
1092         }
1093 }
1094
1095 void nvme_execute_passthru_rq(struct request *rq)
1096 {
1097         struct nvme_command *cmd = nvme_req(rq)->cmd;
1098         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1099         struct nvme_ns *ns = rq->q->queuedata;
1100         struct gendisk *disk = ns ? ns->disk : NULL;
1101         u32 effects;
1102
1103         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1104         blk_execute_rq(disk, rq, 0);
1105         nvme_passthru_end(ctrl, effects);
1106 }
1107 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1108
1109 static int nvme_submit_user_cmd(struct request_queue *q,
1110                 struct nvme_command *cmd, void __user *ubuffer,
1111                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1112                 u32 meta_seed, u64 *result, unsigned timeout)
1113 {
1114         bool write = nvme_is_write(cmd);
1115         struct nvme_ns *ns = q->queuedata;
1116         struct block_device *bdev = ns ? ns->disk->part0 : NULL;
1117         struct request *req;
1118         struct bio *bio = NULL;
1119         void *meta = NULL;
1120         int ret;
1121
1122         req = nvme_alloc_request(q, cmd, 0);
1123         if (IS_ERR(req))
1124                 return PTR_ERR(req);
1125
1126         if (timeout)
1127                 req->timeout = timeout;
1128         nvme_req(req)->flags |= NVME_REQ_USERCMD;
1129
1130         if (ubuffer && bufflen) {
1131                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1132                                 GFP_KERNEL);
1133                 if (ret)
1134                         goto out;
1135                 bio = req->bio;
1136                 if (bdev)
1137                         bio_set_dev(bio, bdev);
1138                 if (bdev && meta_buffer && meta_len) {
1139                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1140                                         meta_seed, write);
1141                         if (IS_ERR(meta)) {
1142                                 ret = PTR_ERR(meta);
1143                                 goto out_unmap;
1144                         }
1145                         req->cmd_flags |= REQ_INTEGRITY;
1146                 }
1147         }
1148
1149         nvme_execute_passthru_rq(req);
1150         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1151                 ret = -EINTR;
1152         else
1153                 ret = nvme_req(req)->status;
1154         if (result)
1155                 *result = le64_to_cpu(nvme_req(req)->result.u64);
1156         if (meta && !ret && !write) {
1157                 if (copy_to_user(meta_buffer, meta, meta_len))
1158                         ret = -EFAULT;
1159         }
1160         kfree(meta);
1161  out_unmap:
1162         if (bio)
1163                 blk_rq_unmap_user(bio);
1164  out:
1165         blk_mq_free_request(req);
1166         return ret;
1167 }
1168
1169 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1170 {
1171         struct nvme_ctrl *ctrl = rq->end_io_data;
1172         unsigned long flags;
1173         bool startka = false;
1174
1175         blk_mq_free_request(rq);
1176
1177         if (status) {
1178                 dev_err(ctrl->device,
1179                         "failed nvme_keep_alive_end_io error=%d\n",
1180                                 status);
1181                 return;
1182         }
1183
1184         ctrl->comp_seen = false;
1185         spin_lock_irqsave(&ctrl->lock, flags);
1186         if (ctrl->state == NVME_CTRL_LIVE ||
1187             ctrl->state == NVME_CTRL_CONNECTING)
1188                 startka = true;
1189         spin_unlock_irqrestore(&ctrl->lock, flags);
1190         if (startka)
1191                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1192 }
1193
1194 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1195 {
1196         struct request *rq;
1197
1198         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1199                         BLK_MQ_REQ_RESERVED);
1200         if (IS_ERR(rq))
1201                 return PTR_ERR(rq);
1202
1203         rq->timeout = ctrl->kato * HZ;
1204         rq->end_io_data = ctrl;
1205
1206         blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1207
1208         return 0;
1209 }
1210
1211 static void nvme_keep_alive_work(struct work_struct *work)
1212 {
1213         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1214                         struct nvme_ctrl, ka_work);
1215         bool comp_seen = ctrl->comp_seen;
1216
1217         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1218                 dev_dbg(ctrl->device,
1219                         "reschedule traffic based keep-alive timer\n");
1220                 ctrl->comp_seen = false;
1221                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1222                 return;
1223         }
1224
1225         if (nvme_keep_alive(ctrl)) {
1226                 /* allocation failure, reset the controller */
1227                 dev_err(ctrl->device, "keep-alive failed\n");
1228                 nvme_reset_ctrl(ctrl);
1229                 return;
1230         }
1231 }
1232
1233 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1234 {
1235         if (unlikely(ctrl->kato == 0))
1236                 return;
1237
1238         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1239 }
1240
1241 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1242 {
1243         if (unlikely(ctrl->kato == 0))
1244                 return;
1245
1246         cancel_delayed_work_sync(&ctrl->ka_work);
1247 }
1248 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1249
1250 /*
1251  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1252  * flag, thus sending any new CNS opcodes has a big chance of not working.
1253  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1254  * (but not for any later version).
1255  */
1256 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1257 {
1258         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1259                 return ctrl->vs < NVME_VS(1, 2, 0);
1260         return ctrl->vs < NVME_VS(1, 1, 0);
1261 }
1262
1263 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1264 {
1265         struct nvme_command c = { };
1266         int error;
1267
1268         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1269         c.identify.opcode = nvme_admin_identify;
1270         c.identify.cns = NVME_ID_CNS_CTRL;
1271
1272         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1273         if (!*id)
1274                 return -ENOMEM;
1275
1276         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1277                         sizeof(struct nvme_id_ctrl));
1278         if (error)
1279                 kfree(*id);
1280         return error;
1281 }
1282
1283 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1284 {
1285         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1286 }
1287
1288 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1289                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1290 {
1291         const char *warn_str = "ctrl returned bogus length:";
1292         void *data = cur;
1293
1294         switch (cur->nidt) {
1295         case NVME_NIDT_EUI64:
1296                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1297                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1298                                  warn_str, cur->nidl);
1299                         return -1;
1300                 }
1301                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1302                 return NVME_NIDT_EUI64_LEN;
1303         case NVME_NIDT_NGUID:
1304                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1305                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1306                                  warn_str, cur->nidl);
1307                         return -1;
1308                 }
1309                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1310                 return NVME_NIDT_NGUID_LEN;
1311         case NVME_NIDT_UUID:
1312                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1313                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1314                                  warn_str, cur->nidl);
1315                         return -1;
1316                 }
1317                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1318                 return NVME_NIDT_UUID_LEN;
1319         case NVME_NIDT_CSI:
1320                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1321                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1322                                  warn_str, cur->nidl);
1323                         return -1;
1324                 }
1325                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1326                 *csi_seen = true;
1327                 return NVME_NIDT_CSI_LEN;
1328         default:
1329                 /* Skip unknown types */
1330                 return cur->nidl;
1331         }
1332 }
1333
1334 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1335                 struct nvme_ns_ids *ids)
1336 {
1337         struct nvme_command c = { };
1338         bool csi_seen = false;
1339         int status, pos, len;
1340         void *data;
1341
1342         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1343                 return 0;
1344         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1345                 return 0;
1346
1347         c.identify.opcode = nvme_admin_identify;
1348         c.identify.nsid = cpu_to_le32(nsid);
1349         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1350
1351         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1352         if (!data)
1353                 return -ENOMEM;
1354
1355         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1356                                       NVME_IDENTIFY_DATA_SIZE);
1357         if (status) {
1358                 dev_warn(ctrl->device,
1359                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1360                         nsid, status);
1361                 goto free_data;
1362         }
1363
1364         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1365                 struct nvme_ns_id_desc *cur = data + pos;
1366
1367                 if (cur->nidl == 0)
1368                         break;
1369
1370                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1371                 if (len < 0)
1372                         break;
1373
1374                 len += sizeof(*cur);
1375         }
1376
1377         if (nvme_multi_css(ctrl) && !csi_seen) {
1378                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1379                          nsid);
1380                 status = -EINVAL;
1381         }
1382
1383 free_data:
1384         kfree(data);
1385         return status;
1386 }
1387
1388 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1389                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1390 {
1391         struct nvme_command c = { };
1392         int error;
1393
1394         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1395         c.identify.opcode = nvme_admin_identify;
1396         c.identify.nsid = cpu_to_le32(nsid);
1397         c.identify.cns = NVME_ID_CNS_NS;
1398
1399         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1400         if (!*id)
1401                 return -ENOMEM;
1402
1403         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1404         if (error) {
1405                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1406                 goto out_free_id;
1407         }
1408
1409         error = -ENODEV;
1410         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1411                 goto out_free_id;
1412
1413         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1414             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1415                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1416         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1417             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1418                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1419
1420         return 0;
1421
1422 out_free_id:
1423         kfree(*id);
1424         return error;
1425 }
1426
1427 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1428                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1429 {
1430         union nvme_result res = { 0 };
1431         struct nvme_command c;
1432         int ret;
1433
1434         memset(&c, 0, sizeof(c));
1435         c.features.opcode = op;
1436         c.features.fid = cpu_to_le32(fid);
1437         c.features.dword11 = cpu_to_le32(dword11);
1438
1439         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1440                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1441         if (ret >= 0 && result)
1442                 *result = le32_to_cpu(res.u32);
1443         return ret;
1444 }
1445
1446 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1447                       unsigned int dword11, void *buffer, size_t buflen,
1448                       u32 *result)
1449 {
1450         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1451                              buflen, result);
1452 }
1453 EXPORT_SYMBOL_GPL(nvme_set_features);
1454
1455 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1456                       unsigned int dword11, void *buffer, size_t buflen,
1457                       u32 *result)
1458 {
1459         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1460                              buflen, result);
1461 }
1462 EXPORT_SYMBOL_GPL(nvme_get_features);
1463
1464 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1465 {
1466         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1467         u32 result;
1468         int status, nr_io_queues;
1469
1470         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1471                         &result);
1472         if (status < 0)
1473                 return status;
1474
1475         /*
1476          * Degraded controllers might return an error when setting the queue
1477          * count.  We still want to be able to bring them online and offer
1478          * access to the admin queue, as that might be only way to fix them up.
1479          */
1480         if (status > 0) {
1481                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1482                 *count = 0;
1483         } else {
1484                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1485                 *count = min(*count, nr_io_queues);
1486         }
1487
1488         return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1491
1492 #define NVME_AEN_SUPPORTED \
1493         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1494          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1495
1496 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1497 {
1498         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1499         int status;
1500
1501         if (!supported_aens)
1502                 return;
1503
1504         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1505                         NULL, 0, &result);
1506         if (status)
1507                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1508                          supported_aens);
1509
1510         queue_work(nvme_wq, &ctrl->async_event_work);
1511 }
1512
1513 /*
1514  * Convert integer values from ioctl structures to user pointers, silently
1515  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1516  * kernels.
1517  */
1518 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1519 {
1520         if (in_compat_syscall())
1521                 ptrval = (compat_uptr_t)ptrval;
1522         return (void __user *)ptrval;
1523 }
1524
1525 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1526 {
1527         struct nvme_user_io io;
1528         struct nvme_command c;
1529         unsigned length, meta_len;
1530         void __user *metadata;
1531
1532         if (copy_from_user(&io, uio, sizeof(io)))
1533                 return -EFAULT;
1534         if (io.flags)
1535                 return -EINVAL;
1536
1537         switch (io.opcode) {
1538         case nvme_cmd_write:
1539         case nvme_cmd_read:
1540         case nvme_cmd_compare:
1541                 break;
1542         default:
1543                 return -EINVAL;
1544         }
1545
1546         length = (io.nblocks + 1) << ns->lba_shift;
1547
1548         if ((io.control & NVME_RW_PRINFO_PRACT) &&
1549             ns->ms == sizeof(struct t10_pi_tuple)) {
1550                 /*
1551                  * Protection information is stripped/inserted by the
1552                  * controller.
1553                  */
1554                 if (nvme_to_user_ptr(io.metadata))
1555                         return -EINVAL;
1556                 meta_len = 0;
1557                 metadata = NULL;
1558         } else {
1559                 meta_len = (io.nblocks + 1) * ns->ms;
1560                 metadata = nvme_to_user_ptr(io.metadata);
1561         }
1562
1563         if (ns->features & NVME_NS_EXT_LBAS) {
1564                 length += meta_len;
1565                 meta_len = 0;
1566         } else if (meta_len) {
1567                 if ((io.metadata & 3) || !io.metadata)
1568                         return -EINVAL;
1569         }
1570
1571         memset(&c, 0, sizeof(c));
1572         c.rw.opcode = io.opcode;
1573         c.rw.flags = io.flags;
1574         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1575         c.rw.slba = cpu_to_le64(io.slba);
1576         c.rw.length = cpu_to_le16(io.nblocks);
1577         c.rw.control = cpu_to_le16(io.control);
1578         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1579         c.rw.reftag = cpu_to_le32(io.reftag);
1580         c.rw.apptag = cpu_to_le16(io.apptag);
1581         c.rw.appmask = cpu_to_le16(io.appmask);
1582
1583         return nvme_submit_user_cmd(ns->queue, &c,
1584                         nvme_to_user_ptr(io.addr), length,
1585                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1586 }
1587
1588 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1589                         struct nvme_passthru_cmd __user *ucmd)
1590 {
1591         struct nvme_passthru_cmd cmd;
1592         struct nvme_command c;
1593         unsigned timeout = 0;
1594         u64 result;
1595         int status;
1596
1597         if (!capable(CAP_SYS_ADMIN))
1598                 return -EACCES;
1599         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1600                 return -EFAULT;
1601         if (cmd.flags)
1602                 return -EINVAL;
1603
1604         memset(&c, 0, sizeof(c));
1605         c.common.opcode = cmd.opcode;
1606         c.common.flags = cmd.flags;
1607         c.common.nsid = cpu_to_le32(cmd.nsid);
1608         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1609         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1610         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1611         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1612         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1613         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1614         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1615         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1616
1617         if (cmd.timeout_ms)
1618                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1619
1620         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1621                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1622                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1623                         0, &result, timeout);
1624
1625         if (status >= 0) {
1626                 if (put_user(result, &ucmd->result))
1627                         return -EFAULT;
1628         }
1629
1630         return status;
1631 }
1632
1633 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1634                         struct nvme_passthru_cmd64 __user *ucmd)
1635 {
1636         struct nvme_passthru_cmd64 cmd;
1637         struct nvme_command c;
1638         unsigned timeout = 0;
1639         int status;
1640
1641         if (!capable(CAP_SYS_ADMIN))
1642                 return -EACCES;
1643         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1644                 return -EFAULT;
1645         if (cmd.flags)
1646                 return -EINVAL;
1647
1648         memset(&c, 0, sizeof(c));
1649         c.common.opcode = cmd.opcode;
1650         c.common.flags = cmd.flags;
1651         c.common.nsid = cpu_to_le32(cmd.nsid);
1652         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1653         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1654         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1655         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1656         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1657         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1658         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1659         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1660
1661         if (cmd.timeout_ms)
1662                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1663
1664         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1665                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1666                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1667                         0, &cmd.result, timeout);
1668
1669         if (status >= 0) {
1670                 if (put_user(cmd.result, &ucmd->result))
1671                         return -EFAULT;
1672         }
1673
1674         return status;
1675 }
1676
1677 /*
1678  * Issue ioctl requests on the first available path.  Note that unlike normal
1679  * block layer requests we will not retry failed request on another controller.
1680  */
1681 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1682                 struct nvme_ns_head **head, int *srcu_idx)
1683 {
1684 #ifdef CONFIG_NVME_MULTIPATH
1685         if (disk->fops == &nvme_ns_head_ops) {
1686                 struct nvme_ns *ns;
1687
1688                 *head = disk->private_data;
1689                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1690                 ns = nvme_find_path(*head);
1691                 if (!ns)
1692                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1693                 return ns;
1694         }
1695 #endif
1696         *head = NULL;
1697         *srcu_idx = -1;
1698         return disk->private_data;
1699 }
1700
1701 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1702 {
1703         if (head)
1704                 srcu_read_unlock(&head->srcu, idx);
1705 }
1706
1707 static bool is_ctrl_ioctl(unsigned int cmd)
1708 {
1709         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1710                 return true;
1711         if (is_sed_ioctl(cmd))
1712                 return true;
1713         return false;
1714 }
1715
1716 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1717                                   void __user *argp,
1718                                   struct nvme_ns_head *head,
1719                                   int srcu_idx)
1720 {
1721         struct nvme_ctrl *ctrl = ns->ctrl;
1722         int ret;
1723
1724         nvme_get_ctrl(ns->ctrl);
1725         nvme_put_ns_from_disk(head, srcu_idx);
1726
1727         switch (cmd) {
1728         case NVME_IOCTL_ADMIN_CMD:
1729                 ret = nvme_user_cmd(ctrl, NULL, argp);
1730                 break;
1731         case NVME_IOCTL_ADMIN64_CMD:
1732                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1733                 break;
1734         default:
1735                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1736                 break;
1737         }
1738         nvme_put_ctrl(ctrl);
1739         return ret;
1740 }
1741
1742 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1743                 unsigned int cmd, unsigned long arg)
1744 {
1745         struct nvme_ns_head *head = NULL;
1746         void __user *argp = (void __user *)arg;
1747         struct nvme_ns *ns;
1748         int srcu_idx, ret;
1749
1750         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1751         if (unlikely(!ns))
1752                 return -EWOULDBLOCK;
1753
1754         /*
1755          * Handle ioctls that apply to the controller instead of the namespace
1756          * seperately and drop the ns SRCU reference early.  This avoids a
1757          * deadlock when deleting namespaces using the passthrough interface.
1758          */
1759         if (is_ctrl_ioctl(cmd))
1760                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1761
1762         switch (cmd) {
1763         case NVME_IOCTL_ID:
1764                 force_successful_syscall_return();
1765                 ret = ns->head->ns_id;
1766                 break;
1767         case NVME_IOCTL_IO_CMD:
1768                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1769                 break;
1770         case NVME_IOCTL_SUBMIT_IO:
1771                 ret = nvme_submit_io(ns, argp);
1772                 break;
1773         case NVME_IOCTL_IO64_CMD:
1774                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1775                 break;
1776         default:
1777                 if (ns->ndev)
1778                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1779                 else
1780                         ret = -ENOTTY;
1781         }
1782
1783         nvme_put_ns_from_disk(head, srcu_idx);
1784         return ret;
1785 }
1786
1787 #ifdef CONFIG_COMPAT
1788 struct nvme_user_io32 {
1789         __u8    opcode;
1790         __u8    flags;
1791         __u16   control;
1792         __u16   nblocks;
1793         __u16   rsvd;
1794         __u64   metadata;
1795         __u64   addr;
1796         __u64   slba;
1797         __u32   dsmgmt;
1798         __u32   reftag;
1799         __u16   apptag;
1800         __u16   appmask;
1801 } __attribute__((__packed__));
1802
1803 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1804
1805 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1806                 unsigned int cmd, unsigned long arg)
1807 {
1808         /*
1809          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1810          * between 32 bit programs and 64 bit kernel.
1811          * The cause is that the results of sizeof(struct nvme_user_io),
1812          * which is used to define NVME_IOCTL_SUBMIT_IO,
1813          * are not same between 32 bit compiler and 64 bit compiler.
1814          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1815          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1816          * Other IOCTL numbers are same between 32 bit and 64 bit.
1817          * So there is nothing to do regarding to other IOCTL numbers.
1818          */
1819         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1820                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1821
1822         return nvme_ioctl(bdev, mode, cmd, arg);
1823 }
1824 #else
1825 #define nvme_compat_ioctl       NULL
1826 #endif /* CONFIG_COMPAT */
1827
1828 static int nvme_open(struct block_device *bdev, fmode_t mode)
1829 {
1830         struct nvme_ns *ns = bdev->bd_disk->private_data;
1831
1832 #ifdef CONFIG_NVME_MULTIPATH
1833         /* should never be called due to GENHD_FL_HIDDEN */
1834         if (WARN_ON_ONCE(ns->head->disk))
1835                 goto fail;
1836 #endif
1837         if (!kref_get_unless_zero(&ns->kref))
1838                 goto fail;
1839         if (!try_module_get(ns->ctrl->ops->module))
1840                 goto fail_put_ns;
1841
1842         return 0;
1843
1844 fail_put_ns:
1845         nvme_put_ns(ns);
1846 fail:
1847         return -ENXIO;
1848 }
1849
1850 static void nvme_release(struct gendisk *disk, fmode_t mode)
1851 {
1852         struct nvme_ns *ns = disk->private_data;
1853
1854         module_put(ns->ctrl->ops->module);
1855         nvme_put_ns(ns);
1856 }
1857
1858 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1859 {
1860         /* some standard values */
1861         geo->heads = 1 << 6;
1862         geo->sectors = 1 << 5;
1863         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1864         return 0;
1865 }
1866
1867 #ifdef CONFIG_BLK_DEV_INTEGRITY
1868 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1869                                 u32 max_integrity_segments)
1870 {
1871         struct blk_integrity integrity;
1872
1873         memset(&integrity, 0, sizeof(integrity));
1874         switch (pi_type) {
1875         case NVME_NS_DPS_PI_TYPE3:
1876                 integrity.profile = &t10_pi_type3_crc;
1877                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1878                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1879                 break;
1880         case NVME_NS_DPS_PI_TYPE1:
1881         case NVME_NS_DPS_PI_TYPE2:
1882                 integrity.profile = &t10_pi_type1_crc;
1883                 integrity.tag_size = sizeof(u16);
1884                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1885                 break;
1886         default:
1887                 integrity.profile = NULL;
1888                 break;
1889         }
1890         integrity.tuple_size = ms;
1891         blk_integrity_register(disk, &integrity);
1892         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1893 }
1894 #else
1895 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1896                                 u32 max_integrity_segments)
1897 {
1898 }
1899 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1900
1901 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1902 {
1903         struct nvme_ctrl *ctrl = ns->ctrl;
1904         struct request_queue *queue = disk->queue;
1905         u32 size = queue_logical_block_size(queue);
1906
1907         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1908                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1909                 return;
1910         }
1911
1912         if (ctrl->nr_streams && ns->sws && ns->sgs)
1913                 size *= ns->sws * ns->sgs;
1914
1915         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1916                         NVME_DSM_MAX_RANGES);
1917
1918         queue->limits.discard_alignment = 0;
1919         queue->limits.discard_granularity = size;
1920
1921         /* If discard is already enabled, don't reset queue limits */
1922         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1923                 return;
1924
1925         blk_queue_max_discard_sectors(queue, UINT_MAX);
1926         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1927
1928         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1929                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1930 }
1931
1932 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1933 {
1934         u64 max_blocks;
1935
1936         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1937             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1938                 return;
1939         /*
1940          * Even though NVMe spec explicitly states that MDTS is not
1941          * applicable to the write-zeroes:- "The restriction does not apply to
1942          * commands that do not transfer data between the host and the
1943          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1944          * In order to be more cautious use controller's max_hw_sectors value
1945          * to configure the maximum sectors for the write-zeroes which is
1946          * configured based on the controller's MDTS field in the
1947          * nvme_init_identify() if available.
1948          */
1949         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1950                 max_blocks = (u64)USHRT_MAX + 1;
1951         else
1952                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1953
1954         blk_queue_max_write_zeroes_sectors(disk->queue,
1955                                            nvme_lba_to_sect(ns, max_blocks));
1956 }
1957
1958 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1959 {
1960         return !uuid_is_null(&ids->uuid) ||
1961                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1962                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1963 }
1964
1965 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1966 {
1967         return uuid_equal(&a->uuid, &b->uuid) &&
1968                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1969                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1970                 a->csi == b->csi;
1971 }
1972
1973 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1974                                  u32 *phys_bs, u32 *io_opt)
1975 {
1976         struct streams_directive_params s;
1977         int ret;
1978
1979         if (!ctrl->nr_streams)
1980                 return 0;
1981
1982         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1983         if (ret)
1984                 return ret;
1985
1986         ns->sws = le32_to_cpu(s.sws);
1987         ns->sgs = le16_to_cpu(s.sgs);
1988
1989         if (ns->sws) {
1990                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1991                 if (ns->sgs)
1992                         *io_opt = *phys_bs * ns->sgs;
1993         }
1994
1995         return 0;
1996 }
1997
1998 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1999 {
2000         struct nvme_ctrl *ctrl = ns->ctrl;
2001
2002         /*
2003          * The PI implementation requires the metadata size to be equal to the
2004          * t10 pi tuple size.
2005          */
2006         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
2007         if (ns->ms == sizeof(struct t10_pi_tuple))
2008                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2009         else
2010                 ns->pi_type = 0;
2011
2012         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2013         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
2014                 return 0;
2015         if (ctrl->ops->flags & NVME_F_FABRICS) {
2016                 /*
2017                  * The NVMe over Fabrics specification only supports metadata as
2018                  * part of the extended data LBA.  We rely on HCA/HBA support to
2019                  * remap the separate metadata buffer from the block layer.
2020                  */
2021                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2022                         return -EINVAL;
2023                 if (ctrl->max_integrity_segments)
2024                         ns->features |=
2025                                 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2026         } else {
2027                 /*
2028                  * For PCIe controllers, we can't easily remap the separate
2029                  * metadata buffer from the block layer and thus require a
2030                  * separate metadata buffer for block layer metadata/PI support.
2031                  * We allow extended LBAs for the passthrough interface, though.
2032                  */
2033                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2034                         ns->features |= NVME_NS_EXT_LBAS;
2035                 else
2036                         ns->features |= NVME_NS_METADATA_SUPPORTED;
2037         }
2038
2039         return 0;
2040 }
2041
2042 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2043                 struct request_queue *q)
2044 {
2045         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2046
2047         if (ctrl->max_hw_sectors) {
2048                 u32 max_segments =
2049                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2050
2051                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2052                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2053                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2054         }
2055         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2056         blk_queue_dma_alignment(q, 7);
2057         blk_queue_write_cache(q, vwc, vwc);
2058 }
2059
2060 static void nvme_update_disk_info(struct gendisk *disk,
2061                 struct nvme_ns *ns, struct nvme_id_ns *id)
2062 {
2063         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2064         unsigned short bs = 1 << ns->lba_shift;
2065         u32 atomic_bs, phys_bs, io_opt = 0;
2066
2067         /*
2068          * The block layer can't support LBA sizes larger than the page size
2069          * yet, so catch this early and don't allow block I/O.
2070          */
2071         if (ns->lba_shift > PAGE_SHIFT) {
2072                 capacity = 0;
2073                 bs = (1 << 9);
2074         }
2075
2076         blk_integrity_unregister(disk);
2077
2078         atomic_bs = phys_bs = bs;
2079         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2080         if (id->nabo == 0) {
2081                 /*
2082                  * Bit 1 indicates whether NAWUPF is defined for this namespace
2083                  * and whether it should be used instead of AWUPF. If NAWUPF ==
2084                  * 0 then AWUPF must be used instead.
2085                  */
2086                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2087                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2088                 else
2089                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2090         }
2091
2092         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2093                 /* NPWG = Namespace Preferred Write Granularity */
2094                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2095                 /* NOWS = Namespace Optimal Write Size */
2096                 io_opt = bs * (1 + le16_to_cpu(id->nows));
2097         }
2098
2099         blk_queue_logical_block_size(disk->queue, bs);
2100         /*
2101          * Linux filesystems assume writing a single physical block is
2102          * an atomic operation. Hence limit the physical block size to the
2103          * value of the Atomic Write Unit Power Fail parameter.
2104          */
2105         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2106         blk_queue_io_min(disk->queue, phys_bs);
2107         blk_queue_io_opt(disk->queue, io_opt);
2108
2109         /*
2110          * Register a metadata profile for PI, or the plain non-integrity NVMe
2111          * metadata masquerading as Type 0 if supported, otherwise reject block
2112          * I/O to namespaces with metadata except when the namespace supports
2113          * PI, as it can strip/insert in that case.
2114          */
2115         if (ns->ms) {
2116                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2117                     (ns->features & NVME_NS_METADATA_SUPPORTED))
2118                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
2119                                             ns->ctrl->max_integrity_segments);
2120                 else if (!nvme_ns_has_pi(ns))
2121                         capacity = 0;
2122         }
2123
2124         set_capacity_and_notify(disk, capacity);
2125
2126         nvme_config_discard(disk, ns);
2127         nvme_config_write_zeroes(disk, ns);
2128
2129         set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
2130                 test_bit(NVME_NS_FORCE_RO, &ns->flags));
2131 }
2132
2133 static inline bool nvme_first_scan(struct gendisk *disk)
2134 {
2135         /* nvme_alloc_ns() scans the disk prior to adding it */
2136         return !(disk->flags & GENHD_FL_UP);
2137 }
2138
2139 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2140 {
2141         struct nvme_ctrl *ctrl = ns->ctrl;
2142         u32 iob;
2143
2144         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2145             is_power_of_2(ctrl->max_hw_sectors))
2146                 iob = ctrl->max_hw_sectors;
2147         else
2148                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2149
2150         if (!iob)
2151                 return;
2152
2153         if (!is_power_of_2(iob)) {
2154                 if (nvme_first_scan(ns->disk))
2155                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2156                                 ns->disk->disk_name, iob);
2157                 return;
2158         }
2159
2160         if (blk_queue_is_zoned(ns->disk->queue)) {
2161                 if (nvme_first_scan(ns->disk))
2162                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
2163                                 ns->disk->disk_name);
2164                 return;
2165         }
2166
2167         blk_queue_chunk_sectors(ns->queue, iob);
2168 }
2169
2170 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2171 {
2172         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2173         int ret;
2174
2175         blk_mq_freeze_queue(ns->disk->queue);
2176         ns->lba_shift = id->lbaf[lbaf].ds;
2177         nvme_set_queue_limits(ns->ctrl, ns->queue);
2178
2179         ret = nvme_configure_metadata(ns, id);
2180         if (ret)
2181                 goto out_unfreeze;
2182         nvme_set_chunk_sectors(ns, id);
2183         nvme_update_disk_info(ns->disk, ns, id);
2184
2185         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2186                 ret = nvme_update_zone_info(ns, lbaf);
2187                 if (ret)
2188                         goto out_unfreeze;
2189         }
2190
2191         blk_mq_unfreeze_queue(ns->disk->queue);
2192
2193         if (blk_queue_is_zoned(ns->queue)) {
2194                 ret = nvme_revalidate_zones(ns);
2195                 if (ret && !nvme_first_scan(ns->disk))
2196                         return ret;
2197         }
2198
2199 #ifdef CONFIG_NVME_MULTIPATH
2200         if (ns->head->disk) {
2201                 blk_mq_freeze_queue(ns->head->disk->queue);
2202                 nvme_update_disk_info(ns->head->disk, ns, id);
2203                 blk_stack_limits(&ns->head->disk->queue->limits,
2204                                  &ns->queue->limits, 0);
2205                 blk_queue_update_readahead(ns->head->disk->queue);
2206                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2207         }
2208 #endif
2209         return 0;
2210
2211 out_unfreeze:
2212         blk_mq_unfreeze_queue(ns->disk->queue);
2213         return ret;
2214 }
2215
2216 static char nvme_pr_type(enum pr_type type)
2217 {
2218         switch (type) {
2219         case PR_WRITE_EXCLUSIVE:
2220                 return 1;
2221         case PR_EXCLUSIVE_ACCESS:
2222                 return 2;
2223         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2224                 return 3;
2225         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2226                 return 4;
2227         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2228                 return 5;
2229         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2230                 return 6;
2231         default:
2232                 return 0;
2233         }
2234 };
2235
2236 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2237                                 u64 key, u64 sa_key, u8 op)
2238 {
2239         struct nvme_ns_head *head = NULL;
2240         struct nvme_ns *ns;
2241         struct nvme_command c;
2242         int srcu_idx, ret;
2243         u8 data[16] = { 0, };
2244
2245         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2246         if (unlikely(!ns))
2247                 return -EWOULDBLOCK;
2248
2249         put_unaligned_le64(key, &data[0]);
2250         put_unaligned_le64(sa_key, &data[8]);
2251
2252         memset(&c, 0, sizeof(c));
2253         c.common.opcode = op;
2254         c.common.nsid = cpu_to_le32(ns->head->ns_id);
2255         c.common.cdw10 = cpu_to_le32(cdw10);
2256
2257         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2258         nvme_put_ns_from_disk(head, srcu_idx);
2259         return ret;
2260 }
2261
2262 static int nvme_pr_register(struct block_device *bdev, u64 old,
2263                 u64 new, unsigned flags)
2264 {
2265         u32 cdw10;
2266
2267         if (flags & ~PR_FL_IGNORE_KEY)
2268                 return -EOPNOTSUPP;
2269
2270         cdw10 = old ? 2 : 0;
2271         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2272         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2273         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2274 }
2275
2276 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2277                 enum pr_type type, unsigned flags)
2278 {
2279         u32 cdw10;
2280
2281         if (flags & ~PR_FL_IGNORE_KEY)
2282                 return -EOPNOTSUPP;
2283
2284         cdw10 = nvme_pr_type(type) << 8;
2285         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2286         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2287 }
2288
2289 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2290                 enum pr_type type, bool abort)
2291 {
2292         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2293         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2294 }
2295
2296 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2297 {
2298         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2299         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2300 }
2301
2302 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2303 {
2304         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2305         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2306 }
2307
2308 static const struct pr_ops nvme_pr_ops = {
2309         .pr_register    = nvme_pr_register,
2310         .pr_reserve     = nvme_pr_reserve,
2311         .pr_release     = nvme_pr_release,
2312         .pr_preempt     = nvme_pr_preempt,
2313         .pr_clear       = nvme_pr_clear,
2314 };
2315
2316 #ifdef CONFIG_BLK_SED_OPAL
2317 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2318                 bool send)
2319 {
2320         struct nvme_ctrl *ctrl = data;
2321         struct nvme_command cmd;
2322
2323         memset(&cmd, 0, sizeof(cmd));
2324         if (send)
2325                 cmd.common.opcode = nvme_admin_security_send;
2326         else
2327                 cmd.common.opcode = nvme_admin_security_recv;
2328         cmd.common.nsid = 0;
2329         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2330         cmd.common.cdw11 = cpu_to_le32(len);
2331
2332         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2333                         NVME_QID_ANY, 1, 0, false);
2334 }
2335 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2336 #endif /* CONFIG_BLK_SED_OPAL */
2337
2338 static const struct block_device_operations nvme_bdev_ops = {
2339         .owner          = THIS_MODULE,
2340         .ioctl          = nvme_ioctl,
2341         .compat_ioctl   = nvme_compat_ioctl,
2342         .open           = nvme_open,
2343         .release        = nvme_release,
2344         .getgeo         = nvme_getgeo,
2345         .report_zones   = nvme_report_zones,
2346         .pr_ops         = &nvme_pr_ops,
2347 };
2348
2349 #ifdef CONFIG_NVME_MULTIPATH
2350 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2351 {
2352         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2353
2354         if (!kref_get_unless_zero(&head->ref))
2355                 return -ENXIO;
2356         return 0;
2357 }
2358
2359 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2360 {
2361         nvme_put_ns_head(disk->private_data);
2362 }
2363
2364 const struct block_device_operations nvme_ns_head_ops = {
2365         .owner          = THIS_MODULE,
2366         .submit_bio     = nvme_ns_head_submit_bio,
2367         .open           = nvme_ns_head_open,
2368         .release        = nvme_ns_head_release,
2369         .ioctl          = nvme_ioctl,
2370         .compat_ioctl   = nvme_compat_ioctl,
2371         .getgeo         = nvme_getgeo,
2372         .report_zones   = nvme_report_zones,
2373         .pr_ops         = &nvme_pr_ops,
2374 };
2375 #endif /* CONFIG_NVME_MULTIPATH */
2376
2377 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2378 {
2379         unsigned long timeout =
2380                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2381         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2382         int ret;
2383
2384         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2385                 if (csts == ~0)
2386                         return -ENODEV;
2387                 if ((csts & NVME_CSTS_RDY) == bit)
2388                         break;
2389
2390                 usleep_range(1000, 2000);
2391                 if (fatal_signal_pending(current))
2392                         return -EINTR;
2393                 if (time_after(jiffies, timeout)) {
2394                         dev_err(ctrl->device,
2395                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2396                                 enabled ? "initialisation" : "reset", csts);
2397                         return -ENODEV;
2398                 }
2399         }
2400
2401         return ret;
2402 }
2403
2404 /*
2405  * If the device has been passed off to us in an enabled state, just clear
2406  * the enabled bit.  The spec says we should set the 'shutdown notification
2407  * bits', but doing so may cause the device to complete commands to the
2408  * admin queue ... and we don't know what memory that might be pointing at!
2409  */
2410 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2411 {
2412         int ret;
2413
2414         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2415         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2416
2417         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2418         if (ret)
2419                 return ret;
2420
2421         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2422                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2423
2424         return nvme_wait_ready(ctrl, ctrl->cap, false);
2425 }
2426 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2427
2428 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2429 {
2430         unsigned dev_page_min;
2431         int ret;
2432
2433         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2434         if (ret) {
2435                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2436                 return ret;
2437         }
2438         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2439
2440         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2441                 dev_err(ctrl->device,
2442                         "Minimum device page size %u too large for host (%u)\n",
2443                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2444                 return -ENODEV;
2445         }
2446
2447         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2448                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2449         else
2450                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2451         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2452         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2453         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2454         ctrl->ctrl_config |= NVME_CC_ENABLE;
2455
2456         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2457         if (ret)
2458                 return ret;
2459         return nvme_wait_ready(ctrl, ctrl->cap, true);
2460 }
2461 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2462
2463 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2464 {
2465         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2466         u32 csts;
2467         int ret;
2468
2469         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2470         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2471
2472         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2473         if (ret)
2474                 return ret;
2475
2476         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2477                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2478                         break;
2479
2480                 msleep(100);
2481                 if (fatal_signal_pending(current))
2482                         return -EINTR;
2483                 if (time_after(jiffies, timeout)) {
2484                         dev_err(ctrl->device,
2485                                 "Device shutdown incomplete; abort shutdown\n");
2486                         return -ENODEV;
2487                 }
2488         }
2489
2490         return ret;
2491 }
2492 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2493
2494 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2495 {
2496         __le64 ts;
2497         int ret;
2498
2499         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2500                 return 0;
2501
2502         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2503         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2504                         NULL);
2505         if (ret)
2506                 dev_warn_once(ctrl->device,
2507                         "could not set timestamp (%d)\n", ret);
2508         return ret;
2509 }
2510
2511 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2512 {
2513         struct nvme_feat_host_behavior *host;
2514         int ret;
2515
2516         /* Don't bother enabling the feature if retry delay is not reported */
2517         if (!ctrl->crdt[0])
2518                 return 0;
2519
2520         host = kzalloc(sizeof(*host), GFP_KERNEL);
2521         if (!host)
2522                 return 0;
2523
2524         host->acre = NVME_ENABLE_ACRE;
2525         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2526                                 host, sizeof(*host), NULL);
2527         kfree(host);
2528         return ret;
2529 }
2530
2531 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2532 {
2533         /*
2534          * APST (Autonomous Power State Transition) lets us program a
2535          * table of power state transitions that the controller will
2536          * perform automatically.  We configure it with a simple
2537          * heuristic: we are willing to spend at most 2% of the time
2538          * transitioning between power states.  Therefore, when running
2539          * in any given state, we will enter the next lower-power
2540          * non-operational state after waiting 50 * (enlat + exlat)
2541          * microseconds, as long as that state's exit latency is under
2542          * the requested maximum latency.
2543          *
2544          * We will not autonomously enter any non-operational state for
2545          * which the total latency exceeds ps_max_latency_us.  Users
2546          * can set ps_max_latency_us to zero to turn off APST.
2547          */
2548
2549         unsigned apste;
2550         struct nvme_feat_auto_pst *table;
2551         u64 max_lat_us = 0;
2552         int max_ps = -1;
2553         int ret;
2554
2555         /*
2556          * If APST isn't supported or if we haven't been initialized yet,
2557          * then don't do anything.
2558          */
2559         if (!ctrl->apsta)
2560                 return 0;
2561
2562         if (ctrl->npss > 31) {
2563                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2564                 return 0;
2565         }
2566
2567         table = kzalloc(sizeof(*table), GFP_KERNEL);
2568         if (!table)
2569                 return 0;
2570
2571         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2572                 /* Turn off APST. */
2573                 apste = 0;
2574                 dev_dbg(ctrl->device, "APST disabled\n");
2575         } else {
2576                 __le64 target = cpu_to_le64(0);
2577                 int state;
2578
2579                 /*
2580                  * Walk through all states from lowest- to highest-power.
2581                  * According to the spec, lower-numbered states use more
2582                  * power.  NPSS, despite the name, is the index of the
2583                  * lowest-power state, not the number of states.
2584                  */
2585                 for (state = (int)ctrl->npss; state >= 0; state--) {
2586                         u64 total_latency_us, exit_latency_us, transition_ms;
2587
2588                         if (target)
2589                                 table->entries[state] = target;
2590
2591                         /*
2592                          * Don't allow transitions to the deepest state
2593                          * if it's quirked off.
2594                          */
2595                         if (state == ctrl->npss &&
2596                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2597                                 continue;
2598
2599                         /*
2600                          * Is this state a useful non-operational state for
2601                          * higher-power states to autonomously transition to?
2602                          */
2603                         if (!(ctrl->psd[state].flags &
2604                               NVME_PS_FLAGS_NON_OP_STATE))
2605                                 continue;
2606
2607                         exit_latency_us =
2608                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2609                         if (exit_latency_us > ctrl->ps_max_latency_us)
2610                                 continue;
2611
2612                         total_latency_us =
2613                                 exit_latency_us +
2614                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2615
2616                         /*
2617                          * This state is good.  Use it as the APST idle
2618                          * target for higher power states.
2619                          */
2620                         transition_ms = total_latency_us + 19;
2621                         do_div(transition_ms, 20);
2622                         if (transition_ms > (1 << 24) - 1)
2623                                 transition_ms = (1 << 24) - 1;
2624
2625                         target = cpu_to_le64((state << 3) |
2626                                              (transition_ms << 8));
2627
2628                         if (max_ps == -1)
2629                                 max_ps = state;
2630
2631                         if (total_latency_us > max_lat_us)
2632                                 max_lat_us = total_latency_us;
2633                 }
2634
2635                 apste = 1;
2636
2637                 if (max_ps == -1) {
2638                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2639                 } else {
2640                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2641                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2642                 }
2643         }
2644
2645         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2646                                 table, sizeof(*table), NULL);
2647         if (ret)
2648                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2649
2650         kfree(table);
2651         return ret;
2652 }
2653
2654 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2655 {
2656         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2657         u64 latency;
2658
2659         switch (val) {
2660         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2661         case PM_QOS_LATENCY_ANY:
2662                 latency = U64_MAX;
2663                 break;
2664
2665         default:
2666                 latency = val;
2667         }
2668
2669         if (ctrl->ps_max_latency_us != latency) {
2670                 ctrl->ps_max_latency_us = latency;
2671                 nvme_configure_apst(ctrl);
2672         }
2673 }
2674
2675 struct nvme_core_quirk_entry {
2676         /*
2677          * NVMe model and firmware strings are padded with spaces.  For
2678          * simplicity, strings in the quirk table are padded with NULLs
2679          * instead.
2680          */
2681         u16 vid;
2682         const char *mn;
2683         const char *fr;
2684         unsigned long quirks;
2685 };
2686
2687 static const struct nvme_core_quirk_entry core_quirks[] = {
2688         {
2689                 /*
2690                  * This Toshiba device seems to die using any APST states.  See:
2691                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2692                  */
2693                 .vid = 0x1179,
2694                 .mn = "THNSF5256GPUK TOSHIBA",
2695                 .quirks = NVME_QUIRK_NO_APST,
2696         },
2697         {
2698                 /*
2699                  * This LiteON CL1-3D*-Q11 firmware version has a race
2700                  * condition associated with actions related to suspend to idle
2701                  * LiteON has resolved the problem in future firmware
2702                  */
2703                 .vid = 0x14a4,
2704                 .fr = "22301111",
2705                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2706         }
2707 };
2708
2709 /* match is null-terminated but idstr is space-padded. */
2710 static bool string_matches(const char *idstr, const char *match, size_t len)
2711 {
2712         size_t matchlen;
2713
2714         if (!match)
2715                 return true;
2716
2717         matchlen = strlen(match);
2718         WARN_ON_ONCE(matchlen > len);
2719
2720         if (memcmp(idstr, match, matchlen))
2721                 return false;
2722
2723         for (; matchlen < len; matchlen++)
2724                 if (idstr[matchlen] != ' ')
2725                         return false;
2726
2727         return true;
2728 }
2729
2730 static bool quirk_matches(const struct nvme_id_ctrl *id,
2731                           const struct nvme_core_quirk_entry *q)
2732 {
2733         return q->vid == le16_to_cpu(id->vid) &&
2734                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2735                 string_matches(id->fr, q->fr, sizeof(id->fr));
2736 }
2737
2738 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2739                 struct nvme_id_ctrl *id)
2740 {
2741         size_t nqnlen;
2742         int off;
2743
2744         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2745                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2746                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2747                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2748                         return;
2749                 }
2750
2751                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2752                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2753         }
2754
2755         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2756         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2757                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2758                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2759         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2760         off += sizeof(id->sn);
2761         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2762         off += sizeof(id->mn);
2763         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2764 }
2765
2766 static void nvme_release_subsystem(struct device *dev)
2767 {
2768         struct nvme_subsystem *subsys =
2769                 container_of(dev, struct nvme_subsystem, dev);
2770
2771         if (subsys->instance >= 0)
2772                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2773         kfree(subsys);
2774 }
2775
2776 static void nvme_destroy_subsystem(struct kref *ref)
2777 {
2778         struct nvme_subsystem *subsys =
2779                         container_of(ref, struct nvme_subsystem, ref);
2780
2781         mutex_lock(&nvme_subsystems_lock);
2782         list_del(&subsys->entry);
2783         mutex_unlock(&nvme_subsystems_lock);
2784
2785         ida_destroy(&subsys->ns_ida);
2786         device_del(&subsys->dev);
2787         put_device(&subsys->dev);
2788 }
2789
2790 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2791 {
2792         kref_put(&subsys->ref, nvme_destroy_subsystem);
2793 }
2794
2795 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2796 {
2797         struct nvme_subsystem *subsys;
2798
2799         lockdep_assert_held(&nvme_subsystems_lock);
2800
2801         /*
2802          * Fail matches for discovery subsystems. This results
2803          * in each discovery controller bound to a unique subsystem.
2804          * This avoids issues with validating controller values
2805          * that can only be true when there is a single unique subsystem.
2806          * There may be multiple and completely independent entities
2807          * that provide discovery controllers.
2808          */
2809         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2810                 return NULL;
2811
2812         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2813                 if (strcmp(subsys->subnqn, subsysnqn))
2814                         continue;
2815                 if (!kref_get_unless_zero(&subsys->ref))
2816                         continue;
2817                 return subsys;
2818         }
2819
2820         return NULL;
2821 }
2822
2823 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2824         struct device_attribute subsys_attr_##_name = \
2825                 __ATTR(_name, _mode, _show, NULL)
2826
2827 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2828                                     struct device_attribute *attr,
2829                                     char *buf)
2830 {
2831         struct nvme_subsystem *subsys =
2832                 container_of(dev, struct nvme_subsystem, dev);
2833
2834         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2835 }
2836 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2837
2838 #define nvme_subsys_show_str_function(field)                            \
2839 static ssize_t subsys_##field##_show(struct device *dev,                \
2840                             struct device_attribute *attr, char *buf)   \
2841 {                                                                       \
2842         struct nvme_subsystem *subsys =                                 \
2843                 container_of(dev, struct nvme_subsystem, dev);          \
2844         return sprintf(buf, "%.*s\n",                                   \
2845                        (int)sizeof(subsys->field), subsys->field);      \
2846 }                                                                       \
2847 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2848
2849 nvme_subsys_show_str_function(model);
2850 nvme_subsys_show_str_function(serial);
2851 nvme_subsys_show_str_function(firmware_rev);
2852
2853 static struct attribute *nvme_subsys_attrs[] = {
2854         &subsys_attr_model.attr,
2855         &subsys_attr_serial.attr,
2856         &subsys_attr_firmware_rev.attr,
2857         &subsys_attr_subsysnqn.attr,
2858 #ifdef CONFIG_NVME_MULTIPATH
2859         &subsys_attr_iopolicy.attr,
2860 #endif
2861         NULL,
2862 };
2863
2864 static struct attribute_group nvme_subsys_attrs_group = {
2865         .attrs = nvme_subsys_attrs,
2866 };
2867
2868 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2869         &nvme_subsys_attrs_group,
2870         NULL,
2871 };
2872
2873 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2874 {
2875         return ctrl->opts && ctrl->opts->discovery_nqn;
2876 }
2877
2878 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2879                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2880 {
2881         struct nvme_ctrl *tmp;
2882
2883         lockdep_assert_held(&nvme_subsystems_lock);
2884
2885         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2886                 if (nvme_state_terminal(tmp))
2887                         continue;
2888
2889                 if (tmp->cntlid == ctrl->cntlid) {
2890                         dev_err(ctrl->device,
2891                                 "Duplicate cntlid %u with %s, rejecting\n",
2892                                 ctrl->cntlid, dev_name(tmp->device));
2893                         return false;
2894                 }
2895
2896                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2897                     nvme_discovery_ctrl(ctrl))
2898                         continue;
2899
2900                 dev_err(ctrl->device,
2901                         "Subsystem does not support multiple controllers\n");
2902                 return false;
2903         }
2904
2905         return true;
2906 }
2907
2908 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2909 {
2910         struct nvme_subsystem *subsys, *found;
2911         int ret;
2912
2913         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2914         if (!subsys)
2915                 return -ENOMEM;
2916
2917         subsys->instance = -1;
2918         mutex_init(&subsys->lock);
2919         kref_init(&subsys->ref);
2920         INIT_LIST_HEAD(&subsys->ctrls);
2921         INIT_LIST_HEAD(&subsys->nsheads);
2922         nvme_init_subnqn(subsys, ctrl, id);
2923         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2924         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2925         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2926         subsys->vendor_id = le16_to_cpu(id->vid);
2927         subsys->cmic = id->cmic;
2928         subsys->awupf = le16_to_cpu(id->awupf);
2929 #ifdef CONFIG_NVME_MULTIPATH
2930         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2931 #endif
2932
2933         subsys->dev.class = nvme_subsys_class;
2934         subsys->dev.release = nvme_release_subsystem;
2935         subsys->dev.groups = nvme_subsys_attrs_groups;
2936         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2937         device_initialize(&subsys->dev);
2938
2939         mutex_lock(&nvme_subsystems_lock);
2940         found = __nvme_find_get_subsystem(subsys->subnqn);
2941         if (found) {
2942                 put_device(&subsys->dev);
2943                 subsys = found;
2944
2945                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2946                         ret = -EINVAL;
2947                         goto out_put_subsystem;
2948                 }
2949         } else {
2950                 ret = device_add(&subsys->dev);
2951                 if (ret) {
2952                         dev_err(ctrl->device,
2953                                 "failed to register subsystem device.\n");
2954                         put_device(&subsys->dev);
2955                         goto out_unlock;
2956                 }
2957                 ida_init(&subsys->ns_ida);
2958                 list_add_tail(&subsys->entry, &nvme_subsystems);
2959         }
2960
2961         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2962                                 dev_name(ctrl->device));
2963         if (ret) {
2964                 dev_err(ctrl->device,
2965                         "failed to create sysfs link from subsystem.\n");
2966                 goto out_put_subsystem;
2967         }
2968
2969         if (!found)
2970                 subsys->instance = ctrl->instance;
2971         ctrl->subsys = subsys;
2972         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2973         mutex_unlock(&nvme_subsystems_lock);
2974         return 0;
2975
2976 out_put_subsystem:
2977         nvme_put_subsystem(subsys);
2978 out_unlock:
2979         mutex_unlock(&nvme_subsystems_lock);
2980         return ret;
2981 }
2982
2983 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2984                 void *log, size_t size, u64 offset)
2985 {
2986         struct nvme_command c = { };
2987         u32 dwlen = nvme_bytes_to_numd(size);
2988
2989         c.get_log_page.opcode = nvme_admin_get_log_page;
2990         c.get_log_page.nsid = cpu_to_le32(nsid);
2991         c.get_log_page.lid = log_page;
2992         c.get_log_page.lsp = lsp;
2993         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2994         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2995         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2996         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2997         c.get_log_page.csi = csi;
2998
2999         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3000 }
3001
3002 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3003                                 struct nvme_effects_log **log)
3004 {
3005         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
3006         int ret;
3007
3008         if (cel)
3009                 goto out;
3010
3011         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3012         if (!cel)
3013                 return -ENOMEM;
3014
3015         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3016                         cel, sizeof(*cel), 0);
3017         if (ret) {
3018                 kfree(cel);
3019                 return ret;
3020         }
3021
3022         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3023 out:
3024         *log = cel;
3025         return 0;
3026 }
3027
3028 /*
3029  * Initialize the cached copies of the Identify data and various controller
3030  * register in our nvme_ctrl structure.  This should be called as soon as
3031  * the admin queue is fully up and running.
3032  */
3033 int nvme_init_identify(struct nvme_ctrl *ctrl)
3034 {
3035         struct nvme_id_ctrl *id;
3036         int ret, page_shift;
3037         u32 max_hw_sectors;
3038         bool prev_apst_enabled;
3039
3040         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3041         if (ret) {
3042                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3043                 return ret;
3044         }
3045         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3046         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3047
3048         if (ctrl->vs >= NVME_VS(1, 1, 0))
3049                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3050
3051         ret = nvme_identify_ctrl(ctrl, &id);
3052         if (ret) {
3053                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3054                 return -EIO;
3055         }
3056
3057         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3058                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3059                 if (ret < 0)
3060                         goto out_free;
3061         }
3062
3063         if (!(ctrl->ops->flags & NVME_F_FABRICS))
3064                 ctrl->cntlid = le16_to_cpu(id->cntlid);
3065
3066         if (!ctrl->identified) {
3067                 int i;
3068
3069                 ret = nvme_init_subsystem(ctrl, id);
3070                 if (ret)
3071                         goto out_free;
3072
3073                 /*
3074                  * Check for quirks.  Quirk can depend on firmware version,
3075                  * so, in principle, the set of quirks present can change
3076                  * across a reset.  As a possible future enhancement, we
3077                  * could re-scan for quirks every time we reinitialize
3078                  * the device, but we'd have to make sure that the driver
3079                  * behaves intelligently if the quirks change.
3080                  */
3081                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3082                         if (quirk_matches(id, &core_quirks[i]))
3083                                 ctrl->quirks |= core_quirks[i].quirks;
3084                 }
3085         }
3086
3087         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3088                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3089                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3090         }
3091
3092         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3093         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3094         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3095
3096         ctrl->oacs = le16_to_cpu(id->oacs);
3097         ctrl->oncs = le16_to_cpu(id->oncs);
3098         ctrl->mtfa = le16_to_cpu(id->mtfa);
3099         ctrl->oaes = le32_to_cpu(id->oaes);
3100         ctrl->wctemp = le16_to_cpu(id->wctemp);
3101         ctrl->cctemp = le16_to_cpu(id->cctemp);
3102
3103         atomic_set(&ctrl->abort_limit, id->acl + 1);
3104         ctrl->vwc = id->vwc;
3105         if (id->mdts)
3106                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3107         else
3108                 max_hw_sectors = UINT_MAX;
3109         ctrl->max_hw_sectors =
3110                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3111
3112         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3113         ctrl->sgls = le32_to_cpu(id->sgls);
3114         ctrl->kas = le16_to_cpu(id->kas);
3115         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3116         ctrl->ctratt = le32_to_cpu(id->ctratt);
3117
3118         if (id->rtd3e) {
3119                 /* us -> s */
3120                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3121
3122                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3123                                                  shutdown_timeout, 60);
3124
3125                 if (ctrl->shutdown_timeout != shutdown_timeout)
3126                         dev_info(ctrl->device,
3127                                  "Shutdown timeout set to %u seconds\n",
3128                                  ctrl->shutdown_timeout);
3129         } else
3130                 ctrl->shutdown_timeout = shutdown_timeout;
3131
3132         ctrl->npss = id->npss;
3133         ctrl->apsta = id->apsta;
3134         prev_apst_enabled = ctrl->apst_enabled;
3135         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3136                 if (force_apst && id->apsta) {
3137                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3138                         ctrl->apst_enabled = true;
3139                 } else {
3140                         ctrl->apst_enabled = false;
3141                 }
3142         } else {
3143                 ctrl->apst_enabled = id->apsta;
3144         }
3145         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3146
3147         if (ctrl->ops->flags & NVME_F_FABRICS) {
3148                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3149                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3150                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3151                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3152
3153                 /*
3154                  * In fabrics we need to verify the cntlid matches the
3155                  * admin connect
3156                  */
3157                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3158                         dev_err(ctrl->device,
3159                                 "Mismatching cntlid: Connect %u vs Identify "
3160                                 "%u, rejecting\n",
3161                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3162                         ret = -EINVAL;
3163                         goto out_free;
3164                 }
3165
3166                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3167                         dev_err(ctrl->device,
3168                                 "keep-alive support is mandatory for fabrics\n");
3169                         ret = -EINVAL;
3170                         goto out_free;
3171                 }
3172         } else {
3173                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3174                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3175                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3176                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3177         }
3178
3179         ret = nvme_mpath_init(ctrl, id);
3180         kfree(id);
3181
3182         if (ret < 0)
3183                 return ret;
3184
3185         if (ctrl->apst_enabled && !prev_apst_enabled)
3186                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3187         else if (!ctrl->apst_enabled && prev_apst_enabled)
3188                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3189
3190         ret = nvme_configure_apst(ctrl);
3191         if (ret < 0)
3192                 return ret;
3193         
3194         ret = nvme_configure_timestamp(ctrl);
3195         if (ret < 0)
3196                 return ret;
3197
3198         ret = nvme_configure_directives(ctrl);
3199         if (ret < 0)
3200                 return ret;
3201
3202         ret = nvme_configure_acre(ctrl);
3203         if (ret < 0)
3204                 return ret;
3205
3206         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3207                 ret = nvme_hwmon_init(ctrl);
3208                 if (ret < 0)
3209                         return ret;
3210         }
3211
3212         ctrl->identified = true;
3213
3214         return 0;
3215
3216 out_free:
3217         kfree(id);
3218         return ret;
3219 }
3220 EXPORT_SYMBOL_GPL(nvme_init_identify);
3221
3222 static int nvme_dev_open(struct inode *inode, struct file *file)
3223 {
3224         struct nvme_ctrl *ctrl =
3225                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3226
3227         switch (ctrl->state) {
3228         case NVME_CTRL_LIVE:
3229                 break;
3230         default:
3231                 return -EWOULDBLOCK;
3232         }
3233
3234         nvme_get_ctrl(ctrl);
3235         if (!try_module_get(ctrl->ops->module)) {
3236                 nvme_put_ctrl(ctrl);
3237                 return -EINVAL;
3238         }
3239
3240         file->private_data = ctrl;
3241         return 0;
3242 }
3243
3244 static int nvme_dev_release(struct inode *inode, struct file *file)
3245 {
3246         struct nvme_ctrl *ctrl =
3247                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3248
3249         module_put(ctrl->ops->module);
3250         nvme_put_ctrl(ctrl);
3251         return 0;
3252 }
3253
3254 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3255 {
3256         struct nvme_ns *ns;
3257         int ret;
3258
3259         down_read(&ctrl->namespaces_rwsem);
3260         if (list_empty(&ctrl->namespaces)) {
3261                 ret = -ENOTTY;
3262                 goto out_unlock;
3263         }
3264
3265         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3266         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3267                 dev_warn(ctrl->device,
3268                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3269                 ret = -EINVAL;
3270                 goto out_unlock;
3271         }
3272
3273         dev_warn(ctrl->device,
3274                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3275         kref_get(&ns->kref);
3276         up_read(&ctrl->namespaces_rwsem);
3277
3278         ret = nvme_user_cmd(ctrl, ns, argp);
3279         nvme_put_ns(ns);
3280         return ret;
3281
3282 out_unlock:
3283         up_read(&ctrl->namespaces_rwsem);
3284         return ret;
3285 }
3286
3287 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3288                 unsigned long arg)
3289 {
3290         struct nvme_ctrl *ctrl = file->private_data;
3291         void __user *argp = (void __user *)arg;
3292
3293         switch (cmd) {
3294         case NVME_IOCTL_ADMIN_CMD:
3295                 return nvme_user_cmd(ctrl, NULL, argp);
3296         case NVME_IOCTL_ADMIN64_CMD:
3297                 return nvme_user_cmd64(ctrl, NULL, argp);
3298         case NVME_IOCTL_IO_CMD:
3299                 return nvme_dev_user_cmd(ctrl, argp);
3300         case NVME_IOCTL_RESET:
3301                 dev_warn(ctrl->device, "resetting controller\n");
3302                 return nvme_reset_ctrl_sync(ctrl);
3303         case NVME_IOCTL_SUBSYS_RESET:
3304                 return nvme_reset_subsystem(ctrl);
3305         case NVME_IOCTL_RESCAN:
3306                 nvme_queue_scan(ctrl);
3307                 return 0;
3308         default:
3309                 return -ENOTTY;
3310         }
3311 }
3312
3313 static const struct file_operations nvme_dev_fops = {
3314         .owner          = THIS_MODULE,
3315         .open           = nvme_dev_open,
3316         .release        = nvme_dev_release,
3317         .unlocked_ioctl = nvme_dev_ioctl,
3318         .compat_ioctl   = compat_ptr_ioctl,
3319 };
3320
3321 static ssize_t nvme_sysfs_reset(struct device *dev,
3322                                 struct device_attribute *attr, const char *buf,
3323                                 size_t count)
3324 {
3325         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3326         int ret;
3327
3328         ret = nvme_reset_ctrl_sync(ctrl);
3329         if (ret < 0)
3330                 return ret;
3331         return count;
3332 }
3333 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3334
3335 static ssize_t nvme_sysfs_rescan(struct device *dev,
3336                                 struct device_attribute *attr, const char *buf,
3337                                 size_t count)
3338 {
3339         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3340
3341         nvme_queue_scan(ctrl);
3342         return count;
3343 }
3344 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3345
3346 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3347 {
3348         struct gendisk *disk = dev_to_disk(dev);
3349
3350         if (disk->fops == &nvme_bdev_ops)
3351                 return nvme_get_ns_from_dev(dev)->head;
3352         else
3353                 return disk->private_data;
3354 }
3355
3356 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3357                 char *buf)
3358 {
3359         struct nvme_ns_head *head = dev_to_ns_head(dev);
3360         struct nvme_ns_ids *ids = &head->ids;
3361         struct nvme_subsystem *subsys = head->subsys;
3362         int serial_len = sizeof(subsys->serial);
3363         int model_len = sizeof(subsys->model);
3364
3365         if (!uuid_is_null(&ids->uuid))
3366                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3367
3368         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3369                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3370
3371         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3372                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3373
3374         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3375                                   subsys->serial[serial_len - 1] == '\0'))
3376                 serial_len--;
3377         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3378                                  subsys->model[model_len - 1] == '\0'))
3379                 model_len--;
3380
3381         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3382                 serial_len, subsys->serial, model_len, subsys->model,
3383                 head->ns_id);
3384 }
3385 static DEVICE_ATTR_RO(wwid);
3386
3387 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3388                 char *buf)
3389 {
3390         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3391 }
3392 static DEVICE_ATTR_RO(nguid);
3393
3394 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3395                 char *buf)
3396 {
3397         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3398
3399         /* For backward compatibility expose the NGUID to userspace if
3400          * we have no UUID set
3401          */
3402         if (uuid_is_null(&ids->uuid)) {
3403                 printk_ratelimited(KERN_WARNING
3404                                    "No UUID available providing old NGUID\n");
3405                 return sprintf(buf, "%pU\n", ids->nguid);
3406         }
3407         return sprintf(buf, "%pU\n", &ids->uuid);
3408 }
3409 static DEVICE_ATTR_RO(uuid);
3410
3411 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3412                 char *buf)
3413 {
3414         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3415 }
3416 static DEVICE_ATTR_RO(eui);
3417
3418 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3419                 char *buf)
3420 {
3421         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3422 }
3423 static DEVICE_ATTR_RO(nsid);
3424
3425 static struct attribute *nvme_ns_id_attrs[] = {
3426         &dev_attr_wwid.attr,
3427         &dev_attr_uuid.attr,
3428         &dev_attr_nguid.attr,
3429         &dev_attr_eui.attr,
3430         &dev_attr_nsid.attr,
3431 #ifdef CONFIG_NVME_MULTIPATH
3432         &dev_attr_ana_grpid.attr,
3433         &dev_attr_ana_state.attr,
3434 #endif
3435         NULL,
3436 };
3437
3438 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3439                 struct attribute *a, int n)
3440 {
3441         struct device *dev = container_of(kobj, struct device, kobj);
3442         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3443
3444         if (a == &dev_attr_uuid.attr) {
3445                 if (uuid_is_null(&ids->uuid) &&
3446                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3447                         return 0;
3448         }
3449         if (a == &dev_attr_nguid.attr) {
3450                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3451                         return 0;
3452         }
3453         if (a == &dev_attr_eui.attr) {
3454                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3455                         return 0;
3456         }
3457 #ifdef CONFIG_NVME_MULTIPATH
3458         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3459                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3460                         return 0;
3461                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3462                         return 0;
3463         }
3464 #endif
3465         return a->mode;
3466 }
3467
3468 static const struct attribute_group nvme_ns_id_attr_group = {
3469         .attrs          = nvme_ns_id_attrs,
3470         .is_visible     = nvme_ns_id_attrs_are_visible,
3471 };
3472
3473 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3474         &nvme_ns_id_attr_group,
3475 #ifdef CONFIG_NVM
3476         &nvme_nvm_attr_group,
3477 #endif
3478         NULL,
3479 };
3480
3481 #define nvme_show_str_function(field)                                           \
3482 static ssize_t  field##_show(struct device *dev,                                \
3483                             struct device_attribute *attr, char *buf)           \
3484 {                                                                               \
3485         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3486         return sprintf(buf, "%.*s\n",                                           \
3487                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3488 }                                                                               \
3489 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3490
3491 nvme_show_str_function(model);
3492 nvme_show_str_function(serial);
3493 nvme_show_str_function(firmware_rev);
3494
3495 #define nvme_show_int_function(field)                                           \
3496 static ssize_t  field##_show(struct device *dev,                                \
3497                             struct device_attribute *attr, char *buf)           \
3498 {                                                                               \
3499         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3500         return sprintf(buf, "%d\n", ctrl->field);       \
3501 }                                                                               \
3502 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3503
3504 nvme_show_int_function(cntlid);
3505 nvme_show_int_function(numa_node);
3506 nvme_show_int_function(queue_count);
3507 nvme_show_int_function(sqsize);
3508
3509 static ssize_t nvme_sysfs_delete(struct device *dev,
3510                                 struct device_attribute *attr, const char *buf,
3511                                 size_t count)
3512 {
3513         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3514
3515         if (device_remove_file_self(dev, attr))
3516                 nvme_delete_ctrl_sync(ctrl);
3517         return count;
3518 }
3519 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3520
3521 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3522                                          struct device_attribute *attr,
3523                                          char *buf)
3524 {
3525         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3526
3527         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3528 }
3529 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3530
3531 static ssize_t nvme_sysfs_show_state(struct device *dev,
3532                                      struct device_attribute *attr,
3533                                      char *buf)
3534 {
3535         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3536         static const char *const state_name[] = {
3537                 [NVME_CTRL_NEW]         = "new",
3538                 [NVME_CTRL_LIVE]        = "live",
3539                 [NVME_CTRL_RESETTING]   = "resetting",
3540                 [NVME_CTRL_CONNECTING]  = "connecting",
3541                 [NVME_CTRL_DELETING]    = "deleting",
3542                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3543                 [NVME_CTRL_DEAD]        = "dead",
3544         };
3545
3546         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3547             state_name[ctrl->state])
3548                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3549
3550         return sprintf(buf, "unknown state\n");
3551 }
3552
3553 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3554
3555 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3556                                          struct device_attribute *attr,
3557                                          char *buf)
3558 {
3559         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3560
3561         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3562 }
3563 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3564
3565 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3566                                         struct device_attribute *attr,
3567                                         char *buf)
3568 {
3569         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3570
3571         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3572 }
3573 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3574
3575 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3576                                         struct device_attribute *attr,
3577                                         char *buf)
3578 {
3579         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3580
3581         return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3582 }
3583 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3584
3585 static ssize_t nvme_sysfs_show_address(struct device *dev,
3586                                          struct device_attribute *attr,
3587                                          char *buf)
3588 {
3589         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3590
3591         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3592 }
3593 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3594
3595 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3596                 struct device_attribute *attr, char *buf)
3597 {
3598         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3599         struct nvmf_ctrl_options *opts = ctrl->opts;
3600
3601         if (ctrl->opts->max_reconnects == -1)
3602                 return sprintf(buf, "off\n");
3603         return sprintf(buf, "%d\n",
3604                         opts->max_reconnects * opts->reconnect_delay);
3605 }
3606
3607 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3608                 struct device_attribute *attr, const char *buf, size_t count)
3609 {
3610         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3611         struct nvmf_ctrl_options *opts = ctrl->opts;
3612         int ctrl_loss_tmo, err;
3613
3614         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3615         if (err)
3616                 return -EINVAL;
3617
3618         else if (ctrl_loss_tmo < 0)
3619                 opts->max_reconnects = -1;
3620         else
3621                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3622                                                 opts->reconnect_delay);
3623         return count;
3624 }
3625 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3626         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3627
3628 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3629                 struct device_attribute *attr, char *buf)
3630 {
3631         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3632
3633         if (ctrl->opts->reconnect_delay == -1)
3634                 return sprintf(buf, "off\n");
3635         return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3636 }
3637
3638 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3639                 struct device_attribute *attr, const char *buf, size_t count)
3640 {
3641         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3642         unsigned int v;
3643         int err;
3644
3645         err = kstrtou32(buf, 10, &v);
3646         if (err)
3647                 return err;
3648
3649         ctrl->opts->reconnect_delay = v;
3650         return count;
3651 }
3652 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3653         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3654
3655 static struct attribute *nvme_dev_attrs[] = {
3656         &dev_attr_reset_controller.attr,
3657         &dev_attr_rescan_controller.attr,
3658         &dev_attr_model.attr,
3659         &dev_attr_serial.attr,
3660         &dev_attr_firmware_rev.attr,
3661         &dev_attr_cntlid.attr,
3662         &dev_attr_delete_controller.attr,
3663         &dev_attr_transport.attr,
3664         &dev_attr_subsysnqn.attr,
3665         &dev_attr_address.attr,
3666         &dev_attr_state.attr,
3667         &dev_attr_numa_node.attr,
3668         &dev_attr_queue_count.attr,
3669         &dev_attr_sqsize.attr,
3670         &dev_attr_hostnqn.attr,
3671         &dev_attr_hostid.attr,
3672         &dev_attr_ctrl_loss_tmo.attr,
3673         &dev_attr_reconnect_delay.attr,
3674         NULL
3675 };
3676
3677 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3678                 struct attribute *a, int n)
3679 {
3680         struct device *dev = container_of(kobj, struct device, kobj);
3681         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3682
3683         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3684                 return 0;
3685         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3686                 return 0;
3687         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3688                 return 0;
3689         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3690                 return 0;
3691         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3692                 return 0;
3693         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3694                 return 0;
3695
3696         return a->mode;
3697 }
3698
3699 static struct attribute_group nvme_dev_attrs_group = {
3700         .attrs          = nvme_dev_attrs,
3701         .is_visible     = nvme_dev_attrs_are_visible,
3702 };
3703
3704 static const struct attribute_group *nvme_dev_attr_groups[] = {
3705         &nvme_dev_attrs_group,
3706         NULL,
3707 };
3708
3709 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3710                 unsigned nsid)
3711 {
3712         struct nvme_ns_head *h;
3713
3714         lockdep_assert_held(&subsys->lock);
3715
3716         list_for_each_entry(h, &subsys->nsheads, entry) {
3717                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3718                         return h;
3719         }
3720
3721         return NULL;
3722 }
3723
3724 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3725                 struct nvme_ns_head *new)
3726 {
3727         struct nvme_ns_head *h;
3728
3729         lockdep_assert_held(&subsys->lock);
3730
3731         list_for_each_entry(h, &subsys->nsheads, entry) {
3732                 if (nvme_ns_ids_valid(&new->ids) &&
3733                     nvme_ns_ids_equal(&new->ids, &h->ids))
3734                         return -EINVAL;
3735         }
3736
3737         return 0;
3738 }
3739
3740 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3741                 unsigned nsid, struct nvme_ns_ids *ids)
3742 {
3743         struct nvme_ns_head *head;
3744         size_t size = sizeof(*head);
3745         int ret = -ENOMEM;
3746
3747 #ifdef CONFIG_NVME_MULTIPATH
3748         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3749 #endif
3750
3751         head = kzalloc(size, GFP_KERNEL);
3752         if (!head)
3753                 goto out;
3754         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3755         if (ret < 0)
3756                 goto out_free_head;
3757         head->instance = ret;
3758         INIT_LIST_HEAD(&head->list);
3759         ret = init_srcu_struct(&head->srcu);
3760         if (ret)
3761                 goto out_ida_remove;
3762         head->subsys = ctrl->subsys;
3763         head->ns_id = nsid;
3764         head->ids = *ids;
3765         kref_init(&head->ref);
3766
3767         ret = __nvme_check_ids(ctrl->subsys, head);
3768         if (ret) {
3769                 dev_err(ctrl->device,
3770                         "duplicate IDs for nsid %d\n", nsid);
3771                 goto out_cleanup_srcu;
3772         }
3773
3774         if (head->ids.csi) {
3775                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3776                 if (ret)
3777                         goto out_cleanup_srcu;
3778         } else
3779                 head->effects = ctrl->effects;
3780
3781         ret = nvme_mpath_alloc_disk(ctrl, head);
3782         if (ret)
3783                 goto out_cleanup_srcu;
3784
3785         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3786
3787         kref_get(&ctrl->subsys->ref);
3788
3789         return head;
3790 out_cleanup_srcu:
3791         cleanup_srcu_struct(&head->srcu);
3792 out_ida_remove:
3793         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3794 out_free_head:
3795         kfree(head);
3796 out:
3797         if (ret > 0)
3798                 ret = blk_status_to_errno(nvme_error_status(ret));
3799         return ERR_PTR(ret);
3800 }
3801
3802 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3803                 struct nvme_ns_ids *ids, bool is_shared)
3804 {
3805         struct nvme_ctrl *ctrl = ns->ctrl;
3806         struct nvme_ns_head *head = NULL;
3807         int ret = 0;
3808
3809         mutex_lock(&ctrl->subsys->lock);
3810         head = nvme_find_ns_head(ctrl->subsys, nsid);
3811         if (!head) {
3812                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3813                 if (IS_ERR(head)) {
3814                         ret = PTR_ERR(head);
3815                         goto out_unlock;
3816                 }
3817                 head->shared = is_shared;
3818         } else {
3819                 ret = -EINVAL;
3820                 if (!is_shared || !head->shared) {
3821                         dev_err(ctrl->device,
3822                                 "Duplicate unshared namespace %d\n", nsid);
3823                         goto out_put_ns_head;
3824                 }
3825                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3826                         dev_err(ctrl->device,
3827                                 "IDs don't match for shared namespace %d\n",
3828                                         nsid);
3829                         goto out_put_ns_head;
3830                 }
3831         }
3832
3833         list_add_tail_rcu(&ns->siblings, &head->list);
3834         ns->head = head;
3835         mutex_unlock(&ctrl->subsys->lock);
3836         return 0;
3837
3838 out_put_ns_head:
3839         nvme_put_ns_head(head);
3840 out_unlock:
3841         mutex_unlock(&ctrl->subsys->lock);
3842         return ret;
3843 }
3844
3845 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3846 {
3847         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3848         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3849
3850         return nsa->head->ns_id - nsb->head->ns_id;
3851 }
3852
3853 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3854 {
3855         struct nvme_ns *ns, *ret = NULL;
3856
3857         down_read(&ctrl->namespaces_rwsem);
3858         list_for_each_entry(ns, &ctrl->namespaces, list) {
3859                 if (ns->head->ns_id == nsid) {
3860                         if (!kref_get_unless_zero(&ns->kref))
3861                                 continue;
3862                         ret = ns;
3863                         break;
3864                 }
3865                 if (ns->head->ns_id > nsid)
3866                         break;
3867         }
3868         up_read(&ctrl->namespaces_rwsem);
3869         return ret;
3870 }
3871 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3872
3873 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3874                 struct nvme_ns_ids *ids)
3875 {
3876         struct nvme_ns *ns;
3877         struct gendisk *disk;
3878         struct nvme_id_ns *id;
3879         char disk_name[DISK_NAME_LEN];
3880         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3881
3882         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3883                 return;
3884
3885         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3886         if (!ns)
3887                 goto out_free_id;
3888
3889         ns->queue = blk_mq_init_queue(ctrl->tagset);
3890         if (IS_ERR(ns->queue))
3891                 goto out_free_ns;
3892
3893         if (ctrl->opts && ctrl->opts->data_digest)
3894                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3895
3896         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3897         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3898                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3899
3900         ns->queue->queuedata = ns;
3901         ns->ctrl = ctrl;
3902         kref_init(&ns->kref);
3903
3904         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3905                 goto out_free_queue;
3906         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3907
3908         disk = alloc_disk_node(0, node);
3909         if (!disk)
3910                 goto out_unlink_ns;
3911
3912         disk->fops = &nvme_bdev_ops;
3913         disk->private_data = ns;
3914         disk->queue = ns->queue;
3915         disk->flags = flags;
3916         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3917         ns->disk = disk;
3918
3919         if (nvme_update_ns_info(ns, id))
3920                 goto out_put_disk;
3921
3922         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3923                 if (nvme_nvm_register(ns, disk_name, node)) {
3924                         dev_warn(ctrl->device, "LightNVM init failure\n");
3925                         goto out_put_disk;
3926                 }
3927         }
3928
3929         down_write(&ctrl->namespaces_rwsem);
3930         list_add_tail(&ns->list, &ctrl->namespaces);
3931         up_write(&ctrl->namespaces_rwsem);
3932
3933         nvme_get_ctrl(ctrl);
3934
3935         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3936
3937         nvme_mpath_add_disk(ns, id);
3938         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3939         kfree(id);
3940
3941         return;
3942  out_put_disk:
3943         /* prevent double queue cleanup */
3944         ns->disk->queue = NULL;
3945         put_disk(ns->disk);
3946  out_unlink_ns:
3947         mutex_lock(&ctrl->subsys->lock);
3948         list_del_rcu(&ns->siblings);
3949         if (list_empty(&ns->head->list))
3950                 list_del_init(&ns->head->entry);
3951         mutex_unlock(&ctrl->subsys->lock);
3952         nvme_put_ns_head(ns->head);
3953  out_free_queue:
3954         blk_cleanup_queue(ns->queue);
3955  out_free_ns:
3956         kfree(ns);
3957  out_free_id:
3958         kfree(id);
3959 }
3960
3961 static void nvme_ns_remove(struct nvme_ns *ns)
3962 {
3963         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3964                 return;
3965
3966         set_capacity(ns->disk, 0);
3967         nvme_fault_inject_fini(&ns->fault_inject);
3968
3969         mutex_lock(&ns->ctrl->subsys->lock);
3970         list_del_rcu(&ns->siblings);
3971         if (list_empty(&ns->head->list))
3972                 list_del_init(&ns->head->entry);
3973         mutex_unlock(&ns->ctrl->subsys->lock);
3974
3975         synchronize_rcu(); /* guarantee not available in head->list */
3976         nvme_mpath_clear_current_path(ns);
3977         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3978
3979         if (ns->disk->flags & GENHD_FL_UP) {
3980                 del_gendisk(ns->disk);
3981                 blk_cleanup_queue(ns->queue);
3982                 if (blk_get_integrity(ns->disk))
3983                         blk_integrity_unregister(ns->disk);
3984         }
3985
3986         down_write(&ns->ctrl->namespaces_rwsem);
3987         list_del_init(&ns->list);
3988         up_write(&ns->ctrl->namespaces_rwsem);
3989
3990         nvme_mpath_check_last_path(ns);
3991         nvme_put_ns(ns);
3992 }
3993
3994 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3995 {
3996         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3997
3998         if (ns) {
3999                 nvme_ns_remove(ns);
4000                 nvme_put_ns(ns);
4001         }
4002 }
4003
4004 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4005 {
4006         struct nvme_id_ns *id;
4007         int ret = -ENODEV;
4008
4009         if (test_bit(NVME_NS_DEAD, &ns->flags))
4010                 goto out;
4011
4012         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4013         if (ret)
4014                 goto out;
4015
4016         ret = -ENODEV;
4017         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4018                 dev_err(ns->ctrl->device,
4019                         "identifiers changed for nsid %d\n", ns->head->ns_id);
4020                 goto out_free_id;
4021         }
4022
4023         ret = nvme_update_ns_info(ns, id);
4024
4025 out_free_id:
4026         kfree(id);
4027 out:
4028         /*
4029          * Only remove the namespace if we got a fatal error back from the
4030          * device, otherwise ignore the error and just move on.
4031          *
4032          * TODO: we should probably schedule a delayed retry here.
4033          */
4034         if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
4035                 nvme_ns_remove(ns);
4036 }
4037
4038 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4039 {
4040         struct nvme_ns_ids ids = { };
4041         struct nvme_ns *ns;
4042
4043         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4044                 return;
4045
4046         ns = nvme_find_get_ns(ctrl, nsid);
4047         if (ns) {
4048                 nvme_validate_ns(ns, &ids);
4049                 nvme_put_ns(ns);
4050                 return;
4051         }
4052
4053         switch (ids.csi) {
4054         case NVME_CSI_NVM:
4055                 nvme_alloc_ns(ctrl, nsid, &ids);
4056                 break;
4057         case NVME_CSI_ZNS:
4058                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4059                         dev_warn(ctrl->device,
4060                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4061                                 nsid);
4062                         break;
4063                 }
4064                 nvme_alloc_ns(ctrl, nsid, &ids);
4065                 break;
4066         default:
4067                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4068                         ids.csi, nsid);
4069                 break;
4070         }
4071 }
4072
4073 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4074                                         unsigned nsid)
4075 {
4076         struct nvme_ns *ns, *next;
4077         LIST_HEAD(rm_list);
4078
4079         down_write(&ctrl->namespaces_rwsem);
4080         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4081                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4082                         list_move_tail(&ns->list, &rm_list);
4083         }
4084         up_write(&ctrl->namespaces_rwsem);
4085
4086         list_for_each_entry_safe(ns, next, &rm_list, list)
4087                 nvme_ns_remove(ns);
4088
4089 }
4090
4091 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4092 {
4093         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4094         __le32 *ns_list;
4095         u32 prev = 0;
4096         int ret = 0, i;
4097
4098         if (nvme_ctrl_limited_cns(ctrl))
4099                 return -EOPNOTSUPP;
4100
4101         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4102         if (!ns_list)
4103                 return -ENOMEM;
4104
4105         for (;;) {
4106                 struct nvme_command cmd = {
4107                         .identify.opcode        = nvme_admin_identify,
4108                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4109                         .identify.nsid          = cpu_to_le32(prev),
4110                 };
4111
4112                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4113                                             NVME_IDENTIFY_DATA_SIZE);
4114                 if (ret) {
4115                         dev_warn(ctrl->device,
4116                                 "Identify NS List failed (status=0x%x)\n", ret);
4117                         goto free;
4118                 }
4119
4120                 for (i = 0; i < nr_entries; i++) {
4121                         u32 nsid = le32_to_cpu(ns_list[i]);
4122
4123                         if (!nsid)      /* end of the list? */
4124                                 goto out;
4125                         nvme_validate_or_alloc_ns(ctrl, nsid);
4126                         while (++prev < nsid)
4127                                 nvme_ns_remove_by_nsid(ctrl, prev);
4128                 }
4129         }
4130  out:
4131         nvme_remove_invalid_namespaces(ctrl, prev);
4132  free:
4133         kfree(ns_list);
4134         return ret;
4135 }
4136
4137 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4138 {
4139         struct nvme_id_ctrl *id;
4140         u32 nn, i;
4141
4142         if (nvme_identify_ctrl(ctrl, &id))
4143                 return;
4144         nn = le32_to_cpu(id->nn);
4145         kfree(id);
4146
4147         for (i = 1; i <= nn; i++)
4148                 nvme_validate_or_alloc_ns(ctrl, i);
4149
4150         nvme_remove_invalid_namespaces(ctrl, nn);
4151 }
4152
4153 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4154 {
4155         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4156         __le32 *log;
4157         int error;
4158
4159         log = kzalloc(log_size, GFP_KERNEL);
4160         if (!log)
4161                 return;
4162
4163         /*
4164          * We need to read the log to clear the AEN, but we don't want to rely
4165          * on it for the changed namespace information as userspace could have
4166          * raced with us in reading the log page, which could cause us to miss
4167          * updates.
4168          */
4169         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4170                         NVME_CSI_NVM, log, log_size, 0);
4171         if (error)
4172                 dev_warn(ctrl->device,
4173                         "reading changed ns log failed: %d\n", error);
4174
4175         kfree(log);
4176 }
4177
4178 static void nvme_scan_work(struct work_struct *work)
4179 {
4180         struct nvme_ctrl *ctrl =
4181                 container_of(work, struct nvme_ctrl, scan_work);
4182
4183         /* No tagset on a live ctrl means IO queues could not created */
4184         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4185                 return;
4186
4187         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4188                 dev_info(ctrl->device, "rescanning namespaces.\n");
4189                 nvme_clear_changed_ns_log(ctrl);
4190         }
4191
4192         mutex_lock(&ctrl->scan_lock);
4193         if (nvme_scan_ns_list(ctrl) != 0)
4194                 nvme_scan_ns_sequential(ctrl);
4195         mutex_unlock(&ctrl->scan_lock);
4196
4197         down_write(&ctrl->namespaces_rwsem);
4198         list_sort(NULL, &ctrl->namespaces, ns_cmp);
4199         up_write(&ctrl->namespaces_rwsem);
4200 }
4201
4202 /*
4203  * This function iterates the namespace list unlocked to allow recovery from
4204  * controller failure. It is up to the caller to ensure the namespace list is
4205  * not modified by scan work while this function is executing.
4206  */
4207 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4208 {
4209         struct nvme_ns *ns, *next;
4210         LIST_HEAD(ns_list);
4211
4212         /*
4213          * make sure to requeue I/O to all namespaces as these
4214          * might result from the scan itself and must complete
4215          * for the scan_work to make progress
4216          */
4217         nvme_mpath_clear_ctrl_paths(ctrl);
4218
4219         /* prevent racing with ns scanning */
4220         flush_work(&ctrl->scan_work);
4221
4222         /*
4223          * The dead states indicates the controller was not gracefully
4224          * disconnected. In that case, we won't be able to flush any data while
4225          * removing the namespaces' disks; fail all the queues now to avoid
4226          * potentially having to clean up the failed sync later.
4227          */
4228         if (ctrl->state == NVME_CTRL_DEAD)
4229                 nvme_kill_queues(ctrl);
4230
4231         /* this is a no-op when called from the controller reset handler */
4232         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4233
4234         down_write(&ctrl->namespaces_rwsem);
4235         list_splice_init(&ctrl->namespaces, &ns_list);
4236         up_write(&ctrl->namespaces_rwsem);
4237
4238         list_for_each_entry_safe(ns, next, &ns_list, list)
4239                 nvme_ns_remove(ns);
4240 }
4241 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4242
4243 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4244 {
4245         struct nvme_ctrl *ctrl =
4246                 container_of(dev, struct nvme_ctrl, ctrl_device);
4247         struct nvmf_ctrl_options *opts = ctrl->opts;
4248         int ret;
4249
4250         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4251         if (ret)
4252                 return ret;
4253
4254         if (opts) {
4255                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4256                 if (ret)
4257                         return ret;
4258
4259                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4260                                 opts->trsvcid ?: "none");
4261                 if (ret)
4262                         return ret;
4263
4264                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4265                                 opts->host_traddr ?: "none");
4266         }
4267         return ret;
4268 }
4269
4270 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4271 {
4272         char *envp[2] = { NULL, NULL };
4273         u32 aen_result = ctrl->aen_result;
4274
4275         ctrl->aen_result = 0;
4276         if (!aen_result)
4277                 return;
4278
4279         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4280         if (!envp[0])
4281                 return;
4282         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4283         kfree(envp[0]);
4284 }
4285
4286 static void nvme_async_event_work(struct work_struct *work)
4287 {
4288         struct nvme_ctrl *ctrl =
4289                 container_of(work, struct nvme_ctrl, async_event_work);
4290
4291         nvme_aen_uevent(ctrl);
4292         ctrl->ops->submit_async_event(ctrl);
4293 }
4294
4295 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4296 {
4297
4298         u32 csts;
4299
4300         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4301                 return false;
4302
4303         if (csts == ~0)
4304                 return false;
4305
4306         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4307 }
4308
4309 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4310 {
4311         struct nvme_fw_slot_info_log *log;
4312
4313         log = kmalloc(sizeof(*log), GFP_KERNEL);
4314         if (!log)
4315                 return;
4316
4317         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4318                         log, sizeof(*log), 0))
4319                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4320         kfree(log);
4321 }
4322
4323 static void nvme_fw_act_work(struct work_struct *work)
4324 {
4325         struct nvme_ctrl *ctrl = container_of(work,
4326                                 struct nvme_ctrl, fw_act_work);
4327         unsigned long fw_act_timeout;
4328
4329         if (ctrl->mtfa)
4330                 fw_act_timeout = jiffies +
4331                                 msecs_to_jiffies(ctrl->mtfa * 100);
4332         else
4333                 fw_act_timeout = jiffies +
4334                                 msecs_to_jiffies(admin_timeout * 1000);
4335
4336         nvme_stop_queues(ctrl);
4337         while (nvme_ctrl_pp_status(ctrl)) {
4338                 if (time_after(jiffies, fw_act_timeout)) {
4339                         dev_warn(ctrl->device,
4340                                 "Fw activation timeout, reset controller\n");
4341                         nvme_try_sched_reset(ctrl);
4342                         return;
4343                 }
4344                 msleep(100);
4345         }
4346
4347         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4348                 return;
4349
4350         nvme_start_queues(ctrl);
4351         /* read FW slot information to clear the AER */
4352         nvme_get_fw_slot_info(ctrl);
4353 }
4354
4355 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4356 {
4357         u32 aer_notice_type = (result & 0xff00) >> 8;
4358
4359         trace_nvme_async_event(ctrl, aer_notice_type);
4360
4361         switch (aer_notice_type) {
4362         case NVME_AER_NOTICE_NS_CHANGED:
4363                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4364                 nvme_queue_scan(ctrl);
4365                 break;
4366         case NVME_AER_NOTICE_FW_ACT_STARTING:
4367                 /*
4368                  * We are (ab)using the RESETTING state to prevent subsequent
4369                  * recovery actions from interfering with the controller's
4370                  * firmware activation.
4371                  */
4372                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4373                         queue_work(nvme_wq, &ctrl->fw_act_work);
4374                 break;
4375 #ifdef CONFIG_NVME_MULTIPATH
4376         case NVME_AER_NOTICE_ANA:
4377                 if (!ctrl->ana_log_buf)
4378                         break;
4379                 queue_work(nvme_wq, &ctrl->ana_work);
4380                 break;
4381 #endif
4382         case NVME_AER_NOTICE_DISC_CHANGED:
4383                 ctrl->aen_result = result;
4384                 break;
4385         default:
4386                 dev_warn(ctrl->device, "async event result %08x\n", result);
4387         }
4388 }
4389
4390 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4391                 volatile union nvme_result *res)
4392 {
4393         u32 result = le32_to_cpu(res->u32);
4394         u32 aer_type = result & 0x07;
4395
4396         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4397                 return;
4398
4399         switch (aer_type) {
4400         case NVME_AER_NOTICE:
4401                 nvme_handle_aen_notice(ctrl, result);
4402                 break;
4403         case NVME_AER_ERROR:
4404         case NVME_AER_SMART:
4405         case NVME_AER_CSS:
4406         case NVME_AER_VS:
4407                 trace_nvme_async_event(ctrl, aer_type);
4408                 ctrl->aen_result = result;
4409                 break;
4410         default:
4411                 break;
4412         }
4413         queue_work(nvme_wq, &ctrl->async_event_work);
4414 }
4415 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4416
4417 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4418 {
4419         nvme_mpath_stop(ctrl);
4420         nvme_stop_keep_alive(ctrl);
4421         nvme_stop_failfast_work(ctrl);
4422         flush_work(&ctrl->async_event_work);
4423         cancel_work_sync(&ctrl->fw_act_work);
4424 }
4425 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4426
4427 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4428 {
4429         nvme_start_keep_alive(ctrl);
4430
4431         nvme_enable_aen(ctrl);
4432
4433         if (ctrl->queue_count > 1) {
4434                 nvme_queue_scan(ctrl);
4435                 nvme_start_queues(ctrl);
4436         }
4437 }
4438 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4439
4440 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4441 {
4442         nvme_fault_inject_fini(&ctrl->fault_inject);
4443         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4444         cdev_device_del(&ctrl->cdev, ctrl->device);
4445         nvme_put_ctrl(ctrl);
4446 }
4447 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4448
4449 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4450 {
4451         struct nvme_effects_log *cel;
4452         unsigned long i;
4453
4454         xa_for_each (&ctrl->cels, i, cel) {
4455                 xa_erase(&ctrl->cels, i);
4456                 kfree(cel);
4457         }
4458
4459         xa_destroy(&ctrl->cels);
4460 }
4461
4462 static void nvme_free_ctrl(struct device *dev)
4463 {
4464         struct nvme_ctrl *ctrl =
4465                 container_of(dev, struct nvme_ctrl, ctrl_device);
4466         struct nvme_subsystem *subsys = ctrl->subsys;
4467
4468         if (!subsys || ctrl->instance != subsys->instance)
4469                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4470
4471         nvme_free_cels(ctrl);
4472         nvme_mpath_uninit(ctrl);
4473         __free_page(ctrl->discard_page);
4474
4475         if (subsys) {
4476                 mutex_lock(&nvme_subsystems_lock);
4477                 list_del(&ctrl->subsys_entry);
4478                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4479                 mutex_unlock(&nvme_subsystems_lock);
4480         }
4481
4482         ctrl->ops->free_ctrl(ctrl);
4483
4484         if (subsys)
4485                 nvme_put_subsystem(subsys);
4486 }
4487
4488 /*
4489  * Initialize a NVMe controller structures.  This needs to be called during
4490  * earliest initialization so that we have the initialized structured around
4491  * during probing.
4492  */
4493 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4494                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4495 {
4496         int ret;
4497
4498         ctrl->state = NVME_CTRL_NEW;
4499         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4500         spin_lock_init(&ctrl->lock);
4501         mutex_init(&ctrl->scan_lock);
4502         INIT_LIST_HEAD(&ctrl->namespaces);
4503         xa_init(&ctrl->cels);
4504         init_rwsem(&ctrl->namespaces_rwsem);
4505         ctrl->dev = dev;
4506         ctrl->ops = ops;
4507         ctrl->quirks = quirks;
4508         ctrl->numa_node = NUMA_NO_NODE;
4509         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4510         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4511         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4512         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4513         init_waitqueue_head(&ctrl->state_wq);
4514
4515         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4516         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4517         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4518         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4519
4520         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4521                         PAGE_SIZE);
4522         ctrl->discard_page = alloc_page(GFP_KERNEL);
4523         if (!ctrl->discard_page) {
4524                 ret = -ENOMEM;
4525                 goto out;
4526         }
4527
4528         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4529         if (ret < 0)
4530                 goto out;
4531         ctrl->instance = ret;
4532
4533         device_initialize(&ctrl->ctrl_device);
4534         ctrl->device = &ctrl->ctrl_device;
4535         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4536                         ctrl->instance);
4537         ctrl->device->class = nvme_class;
4538         ctrl->device->parent = ctrl->dev;
4539         ctrl->device->groups = nvme_dev_attr_groups;
4540         ctrl->device->release = nvme_free_ctrl;
4541         dev_set_drvdata(ctrl->device, ctrl);
4542         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4543         if (ret)
4544                 goto out_release_instance;
4545
4546         nvme_get_ctrl(ctrl);
4547         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4548         ctrl->cdev.owner = ops->module;
4549         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4550         if (ret)
4551                 goto out_free_name;
4552
4553         /*
4554          * Initialize latency tolerance controls.  The sysfs files won't
4555          * be visible to userspace unless the device actually supports APST.
4556          */
4557         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4558         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4559                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4560
4561         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4562
4563         return 0;
4564 out_free_name:
4565         nvme_put_ctrl(ctrl);
4566         kfree_const(ctrl->device->kobj.name);
4567 out_release_instance:
4568         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4569 out:
4570         if (ctrl->discard_page)
4571                 __free_page(ctrl->discard_page);
4572         return ret;
4573 }
4574 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4575
4576 /**
4577  * nvme_kill_queues(): Ends all namespace queues
4578  * @ctrl: the dead controller that needs to end
4579  *
4580  * Call this function when the driver determines it is unable to get the
4581  * controller in a state capable of servicing IO.
4582  */
4583 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4584 {
4585         struct nvme_ns *ns;
4586
4587         down_read(&ctrl->namespaces_rwsem);
4588
4589         /* Forcibly unquiesce queues to avoid blocking dispatch */
4590         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4591                 blk_mq_unquiesce_queue(ctrl->admin_q);
4592
4593         list_for_each_entry(ns, &ctrl->namespaces, list)
4594                 nvme_set_queue_dying(ns);
4595
4596         up_read(&ctrl->namespaces_rwsem);
4597 }
4598 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4599
4600 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4601 {
4602         struct nvme_ns *ns;
4603
4604         down_read(&ctrl->namespaces_rwsem);
4605         list_for_each_entry(ns, &ctrl->namespaces, list)
4606                 blk_mq_unfreeze_queue(ns->queue);
4607         up_read(&ctrl->namespaces_rwsem);
4608 }
4609 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4610
4611 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4612 {
4613         struct nvme_ns *ns;
4614
4615         down_read(&ctrl->namespaces_rwsem);
4616         list_for_each_entry(ns, &ctrl->namespaces, list) {
4617                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4618                 if (timeout <= 0)
4619                         break;
4620         }
4621         up_read(&ctrl->namespaces_rwsem);
4622         return timeout;
4623 }
4624 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4625
4626 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4627 {
4628         struct nvme_ns *ns;
4629
4630         down_read(&ctrl->namespaces_rwsem);
4631         list_for_each_entry(ns, &ctrl->namespaces, list)
4632                 blk_mq_freeze_queue_wait(ns->queue);
4633         up_read(&ctrl->namespaces_rwsem);
4634 }
4635 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4636
4637 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4638 {
4639         struct nvme_ns *ns;
4640
4641         down_read(&ctrl->namespaces_rwsem);
4642         list_for_each_entry(ns, &ctrl->namespaces, list)
4643                 blk_freeze_queue_start(ns->queue);
4644         up_read(&ctrl->namespaces_rwsem);
4645 }
4646 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4647
4648 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4649 {
4650         struct nvme_ns *ns;
4651
4652         down_read(&ctrl->namespaces_rwsem);
4653         list_for_each_entry(ns, &ctrl->namespaces, list)
4654                 blk_mq_quiesce_queue(ns->queue);
4655         up_read(&ctrl->namespaces_rwsem);
4656 }
4657 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4658
4659 void nvme_start_queues(struct nvme_ctrl *ctrl)
4660 {
4661         struct nvme_ns *ns;
4662
4663         down_read(&ctrl->namespaces_rwsem);
4664         list_for_each_entry(ns, &ctrl->namespaces, list)
4665                 blk_mq_unquiesce_queue(ns->queue);
4666         up_read(&ctrl->namespaces_rwsem);
4667 }
4668 EXPORT_SYMBOL_GPL(nvme_start_queues);
4669
4670 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4671 {
4672         struct nvme_ns *ns;
4673
4674         down_read(&ctrl->namespaces_rwsem);
4675         list_for_each_entry(ns, &ctrl->namespaces, list)
4676                 blk_sync_queue(ns->queue);
4677         up_read(&ctrl->namespaces_rwsem);
4678 }
4679 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4680
4681 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4682 {
4683         nvme_sync_io_queues(ctrl);
4684         if (ctrl->admin_q)
4685                 blk_sync_queue(ctrl->admin_q);
4686 }
4687 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4688
4689 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4690 {
4691         if (file->f_op != &nvme_dev_fops)
4692                 return NULL;
4693         return file->private_data;
4694 }
4695 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4696
4697 /*
4698  * Check we didn't inadvertently grow the command structure sizes:
4699  */
4700 static inline void _nvme_check_size(void)
4701 {
4702         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4703         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4704         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4705         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4706         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4707         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4708         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4709         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4710         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4711         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4712         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4713         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4714         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4715         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4716         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4717         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4718         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4719         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4720         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4721 }
4722
4723
4724 static int __init nvme_core_init(void)
4725 {
4726         int result = -ENOMEM;
4727
4728         _nvme_check_size();
4729
4730         nvme_wq = alloc_workqueue("nvme-wq",
4731                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4732         if (!nvme_wq)
4733                 goto out;
4734
4735         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4736                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4737         if (!nvme_reset_wq)
4738                 goto destroy_wq;
4739
4740         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4741                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4742         if (!nvme_delete_wq)
4743                 goto destroy_reset_wq;
4744
4745         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4746                         NVME_MINORS, "nvme");
4747         if (result < 0)
4748                 goto destroy_delete_wq;
4749
4750         nvme_class = class_create(THIS_MODULE, "nvme");
4751         if (IS_ERR(nvme_class)) {
4752                 result = PTR_ERR(nvme_class);
4753                 goto unregister_chrdev;
4754         }
4755         nvme_class->dev_uevent = nvme_class_uevent;
4756
4757         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4758         if (IS_ERR(nvme_subsys_class)) {
4759                 result = PTR_ERR(nvme_subsys_class);
4760                 goto destroy_class;
4761         }
4762         return 0;
4763
4764 destroy_class:
4765         class_destroy(nvme_class);
4766 unregister_chrdev:
4767         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4768 destroy_delete_wq:
4769         destroy_workqueue(nvme_delete_wq);
4770 destroy_reset_wq:
4771         destroy_workqueue(nvme_reset_wq);
4772 destroy_wq:
4773         destroy_workqueue(nvme_wq);
4774 out:
4775         return result;
4776 }
4777
4778 static void __exit nvme_core_exit(void)
4779 {
4780         class_destroy(nvme_subsys_class);
4781         class_destroy(nvme_class);
4782         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4783         destroy_workqueue(nvme_delete_wq);
4784         destroy_workqueue(nvme_reset_wq);
4785         destroy_workqueue(nvme_wq);
4786         ida_destroy(&nvme_instance_ida);
4787 }
4788
4789 MODULE_LICENSE("GPL");
4790 MODULE_VERSION("1.0");
4791 module_init(nvme_core_init);
4792 module_exit(nvme_core_exit);