1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
28 #define CREATE_TRACE_POINTS
31 #define NVME_MINORS (1U << MINORBITS)
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
65 * nvme_wq - hosts nvme related works that are not reset or delete
66 * nvme_reset_wq - hosts nvme reset works
67 * nvme_delete_wq - hosts nvme delete works
69 * nvme_wq will host works such as scan, aen handling, fw activation,
70 * keep-alive, periodic reconnects etc. nvme_reset_wq
71 * runs reset works which also flush works hosted on nvme_wq for
72 * serialization purposes. nvme_delete_wq host controller deletion
73 * works which flush reset works for serialization.
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
92 static DEFINE_IDA(nvme_ns_chr_minor_ida);
93 static dev_t nvme_ns_chr_devt;
94 static struct class *nvme_ns_chr_class;
96 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
97 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
101 * Prepare a queue for teardown.
103 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
104 * the capacity to 0 after that to avoid blocking dispatchers that may be
105 * holding bd_butex. This will end buffered writers dirtying pages that can't
108 static void nvme_set_queue_dying(struct nvme_ns *ns)
110 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
113 blk_set_queue_dying(ns->queue);
114 blk_mq_unquiesce_queue(ns->queue);
116 set_capacity_and_notify(ns->disk, 0);
119 void nvme_queue_scan(struct nvme_ctrl *ctrl)
122 * Only new queue scan work when admin and IO queues are both alive
124 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
125 queue_work(nvme_wq, &ctrl->scan_work);
129 * Use this function to proceed with scheduling reset_work for a controller
130 * that had previously been set to the resetting state. This is intended for
131 * code paths that can't be interrupted by other reset attempts. A hot removal
132 * may prevent this from succeeding.
134 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
136 if (ctrl->state != NVME_CTRL_RESETTING)
138 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
142 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
144 static void nvme_failfast_work(struct work_struct *work)
146 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
147 struct nvme_ctrl, failfast_work);
149 if (ctrl->state != NVME_CTRL_CONNECTING)
152 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
153 dev_info(ctrl->device, "failfast expired\n");
154 nvme_kick_requeue_lists(ctrl);
157 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
159 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
162 schedule_delayed_work(&ctrl->failfast_work,
163 ctrl->opts->fast_io_fail_tmo * HZ);
166 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
171 cancel_delayed_work_sync(&ctrl->failfast_work);
172 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
176 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
178 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
180 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
184 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
186 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
190 ret = nvme_reset_ctrl(ctrl);
192 flush_work(&ctrl->reset_work);
193 if (ctrl->state != NVME_CTRL_LIVE)
200 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
202 dev_info(ctrl->device,
203 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
205 flush_work(&ctrl->reset_work);
206 nvme_stop_ctrl(ctrl);
207 nvme_remove_namespaces(ctrl);
208 ctrl->ops->delete_ctrl(ctrl);
209 nvme_uninit_ctrl(ctrl);
212 static void nvme_delete_ctrl_work(struct work_struct *work)
214 struct nvme_ctrl *ctrl =
215 container_of(work, struct nvme_ctrl, delete_work);
217 nvme_do_delete_ctrl(ctrl);
220 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
222 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
224 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
228 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
230 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
233 * Keep a reference until nvme_do_delete_ctrl() complete,
234 * since ->delete_ctrl can free the controller.
237 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
238 nvme_do_delete_ctrl(ctrl);
242 static blk_status_t nvme_error_status(u16 status)
244 switch (status & 0x7ff) {
245 case NVME_SC_SUCCESS:
247 case NVME_SC_CAP_EXCEEDED:
248 return BLK_STS_NOSPC;
249 case NVME_SC_LBA_RANGE:
250 case NVME_SC_CMD_INTERRUPTED:
251 case NVME_SC_NS_NOT_READY:
252 return BLK_STS_TARGET;
253 case NVME_SC_BAD_ATTRIBUTES:
254 case NVME_SC_ONCS_NOT_SUPPORTED:
255 case NVME_SC_INVALID_OPCODE:
256 case NVME_SC_INVALID_FIELD:
257 case NVME_SC_INVALID_NS:
258 return BLK_STS_NOTSUPP;
259 case NVME_SC_WRITE_FAULT:
260 case NVME_SC_READ_ERROR:
261 case NVME_SC_UNWRITTEN_BLOCK:
262 case NVME_SC_ACCESS_DENIED:
263 case NVME_SC_READ_ONLY:
264 case NVME_SC_COMPARE_FAILED:
265 return BLK_STS_MEDIUM;
266 case NVME_SC_GUARD_CHECK:
267 case NVME_SC_APPTAG_CHECK:
268 case NVME_SC_REFTAG_CHECK:
269 case NVME_SC_INVALID_PI:
270 return BLK_STS_PROTECTION;
271 case NVME_SC_RESERVATION_CONFLICT:
272 return BLK_STS_NEXUS;
273 case NVME_SC_HOST_PATH_ERROR:
274 return BLK_STS_TRANSPORT;
275 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
276 return BLK_STS_ZONE_ACTIVE_RESOURCE;
277 case NVME_SC_ZONE_TOO_MANY_OPEN:
278 return BLK_STS_ZONE_OPEN_RESOURCE;
280 return BLK_STS_IOERR;
284 static void nvme_retry_req(struct request *req)
286 unsigned long delay = 0;
289 /* The mask and shift result must be <= 3 */
290 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
292 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
294 nvme_req(req)->retries++;
295 blk_mq_requeue_request(req, false);
296 blk_mq_delay_kick_requeue_list(req->q, delay);
299 enum nvme_disposition {
305 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
307 if (likely(nvme_req(req)->status == 0))
310 if (blk_noretry_request(req) ||
311 (nvme_req(req)->status & NVME_SC_DNR) ||
312 nvme_req(req)->retries >= nvme_max_retries)
315 if (req->cmd_flags & REQ_NVME_MPATH) {
316 if (nvme_is_path_error(nvme_req(req)->status) ||
317 blk_queue_dying(req->q))
320 if (blk_queue_dying(req->q))
327 static inline void nvme_end_req(struct request *req)
329 blk_status_t status = nvme_error_status(nvme_req(req)->status);
331 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
332 req_op(req) == REQ_OP_ZONE_APPEND)
333 req->__sector = nvme_lba_to_sect(req->q->queuedata,
334 le64_to_cpu(nvme_req(req)->result.u64));
336 nvme_trace_bio_complete(req);
337 blk_mq_end_request(req, status);
340 void nvme_complete_rq(struct request *req)
342 trace_nvme_complete_rq(req);
343 nvme_cleanup_cmd(req);
345 if (nvme_req(req)->ctrl->kas)
346 nvme_req(req)->ctrl->comp_seen = true;
348 switch (nvme_decide_disposition(req)) {
356 nvme_failover_req(req);
360 EXPORT_SYMBOL_GPL(nvme_complete_rq);
363 * Called to unwind from ->queue_rq on a failed command submission so that the
364 * multipathing code gets called to potentially failover to another path.
365 * The caller needs to unwind all transport specific resource allocations and
366 * must return propagate the return value.
368 blk_status_t nvme_host_path_error(struct request *req)
370 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
371 blk_mq_set_request_complete(req);
372 nvme_complete_rq(req);
375 EXPORT_SYMBOL_GPL(nvme_host_path_error);
377 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
379 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
380 "Cancelling I/O %d", req->tag);
382 /* don't abort one completed request */
383 if (blk_mq_request_completed(req))
386 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
387 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
388 blk_mq_complete_request(req);
391 EXPORT_SYMBOL_GPL(nvme_cancel_request);
393 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
396 blk_mq_tagset_busy_iter(ctrl->tagset,
397 nvme_cancel_request, ctrl);
398 blk_mq_tagset_wait_completed_request(ctrl->tagset);
401 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
403 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
405 if (ctrl->admin_tagset) {
406 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
407 nvme_cancel_request, ctrl);
408 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
411 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
413 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
414 enum nvme_ctrl_state new_state)
416 enum nvme_ctrl_state old_state;
418 bool changed = false;
420 spin_lock_irqsave(&ctrl->lock, flags);
422 old_state = ctrl->state;
427 case NVME_CTRL_RESETTING:
428 case NVME_CTRL_CONNECTING:
435 case NVME_CTRL_RESETTING:
445 case NVME_CTRL_CONNECTING:
448 case NVME_CTRL_RESETTING:
455 case NVME_CTRL_DELETING:
458 case NVME_CTRL_RESETTING:
459 case NVME_CTRL_CONNECTING:
466 case NVME_CTRL_DELETING_NOIO:
468 case NVME_CTRL_DELETING:
478 case NVME_CTRL_DELETING:
490 ctrl->state = new_state;
491 wake_up_all(&ctrl->state_wq);
494 spin_unlock_irqrestore(&ctrl->lock, flags);
498 if (ctrl->state == NVME_CTRL_LIVE) {
499 if (old_state == NVME_CTRL_CONNECTING)
500 nvme_stop_failfast_work(ctrl);
501 nvme_kick_requeue_lists(ctrl);
502 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
503 old_state == NVME_CTRL_RESETTING) {
504 nvme_start_failfast_work(ctrl);
508 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
511 * Returns true for sink states that can't ever transition back to live.
513 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
515 switch (ctrl->state) {
518 case NVME_CTRL_RESETTING:
519 case NVME_CTRL_CONNECTING:
521 case NVME_CTRL_DELETING:
522 case NVME_CTRL_DELETING_NOIO:
526 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
532 * Waits for the controller state to be resetting, or returns false if it is
533 * not possible to ever transition to that state.
535 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
537 wait_event(ctrl->state_wq,
538 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
539 nvme_state_terminal(ctrl));
540 return ctrl->state == NVME_CTRL_RESETTING;
542 EXPORT_SYMBOL_GPL(nvme_wait_reset);
544 static void nvme_free_ns_head(struct kref *ref)
546 struct nvme_ns_head *head =
547 container_of(ref, struct nvme_ns_head, ref);
549 nvme_mpath_remove_disk(head);
550 ida_simple_remove(&head->subsys->ns_ida, head->instance);
551 cleanup_srcu_struct(&head->srcu);
552 nvme_put_subsystem(head->subsys);
556 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
558 return kref_get_unless_zero(&head->ref);
561 void nvme_put_ns_head(struct nvme_ns_head *head)
563 kref_put(&head->ref, nvme_free_ns_head);
566 static void nvme_free_ns(struct kref *kref)
568 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
571 nvme_nvm_unregister(ns);
574 nvme_put_ns_head(ns->head);
575 nvme_put_ctrl(ns->ctrl);
579 static inline bool nvme_get_ns(struct nvme_ns *ns)
581 return kref_get_unless_zero(&ns->kref);
584 void nvme_put_ns(struct nvme_ns *ns)
586 kref_put(&ns->kref, nvme_free_ns);
588 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
590 static inline void nvme_clear_nvme_request(struct request *req)
592 nvme_req(req)->retries = 0;
593 nvme_req(req)->flags = 0;
594 req->rq_flags |= RQF_DONTPREP;
597 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
599 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
602 static inline void nvme_init_request(struct request *req,
603 struct nvme_command *cmd)
605 if (req->q->queuedata)
606 req->timeout = NVME_IO_TIMEOUT;
607 else /* no queuedata implies admin queue */
608 req->timeout = NVME_ADMIN_TIMEOUT;
610 /* passthru commands should let the driver set the SGL flags */
611 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
613 req->cmd_flags |= REQ_FAILFAST_DRIVER;
614 nvme_clear_nvme_request(req);
615 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
618 struct request *nvme_alloc_request(struct request_queue *q,
619 struct nvme_command *cmd, blk_mq_req_flags_t flags)
623 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
625 nvme_init_request(req, cmd);
628 EXPORT_SYMBOL_GPL(nvme_alloc_request);
630 static struct request *nvme_alloc_request_qid(struct request_queue *q,
631 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
635 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
638 nvme_init_request(req, cmd);
643 * For something we're not in a state to send to the device the default action
644 * is to busy it and retry it after the controller state is recovered. However,
645 * if the controller is deleting or if anything is marked for failfast or
646 * nvme multipath it is immediately failed.
648 * Note: commands used to initialize the controller will be marked for failfast.
649 * Note: nvme cli/ioctl commands are marked for failfast.
651 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
654 if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
655 ctrl->state != NVME_CTRL_DEAD &&
656 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
657 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
658 return BLK_STS_RESOURCE;
659 return nvme_host_path_error(rq);
661 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
663 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
666 struct nvme_request *req = nvme_req(rq);
669 * currently we have a problem sending passthru commands
670 * on the admin_q if the controller is not LIVE because we can't
671 * make sure that they are going out after the admin connect,
672 * controller enable and/or other commands in the initialization
673 * sequence. until the controller will be LIVE, fail with
674 * BLK_STS_RESOURCE so that they will be rescheduled.
676 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
679 if (ctrl->ops->flags & NVME_F_FABRICS) {
681 * Only allow commands on a live queue, except for the connect
682 * command, which is require to set the queue live in the
683 * appropinquate states.
685 switch (ctrl->state) {
686 case NVME_CTRL_CONNECTING:
687 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
688 req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
700 EXPORT_SYMBOL_GPL(__nvme_check_ready);
702 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
704 struct nvme_command c;
706 memset(&c, 0, sizeof(c));
708 c.directive.opcode = nvme_admin_directive_send;
709 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
710 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
711 c.directive.dtype = NVME_DIR_IDENTIFY;
712 c.directive.tdtype = NVME_DIR_STREAMS;
713 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
715 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
718 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
720 return nvme_toggle_streams(ctrl, false);
723 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
725 return nvme_toggle_streams(ctrl, true);
728 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
729 struct streams_directive_params *s, u32 nsid)
731 struct nvme_command c;
733 memset(&c, 0, sizeof(c));
734 memset(s, 0, sizeof(*s));
736 c.directive.opcode = nvme_admin_directive_recv;
737 c.directive.nsid = cpu_to_le32(nsid);
738 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
739 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
740 c.directive.dtype = NVME_DIR_STREAMS;
742 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
745 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
747 struct streams_directive_params s;
750 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
755 ret = nvme_enable_streams(ctrl);
759 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
761 goto out_disable_stream;
763 ctrl->nssa = le16_to_cpu(s.nssa);
764 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
765 dev_info(ctrl->device, "too few streams (%u) available\n",
767 goto out_disable_stream;
770 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
771 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
775 nvme_disable_streams(ctrl);
780 * Check if 'req' has a write hint associated with it. If it does, assign
781 * a valid namespace stream to the write.
783 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
784 struct request *req, u16 *control,
787 enum rw_hint streamid = req->write_hint;
789 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
793 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
796 *control |= NVME_RW_DTYPE_STREAMS;
797 *dsmgmt |= streamid << 16;
800 if (streamid < ARRAY_SIZE(req->q->write_hints))
801 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
804 static inline void nvme_setup_flush(struct nvme_ns *ns,
805 struct nvme_command *cmnd)
807 cmnd->common.opcode = nvme_cmd_flush;
808 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
811 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
812 struct nvme_command *cmnd)
814 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
815 struct nvme_dsm_range *range;
819 * Some devices do not consider the DSM 'Number of Ranges' field when
820 * determining how much data to DMA. Always allocate memory for maximum
821 * number of segments to prevent device reading beyond end of buffer.
823 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
825 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
828 * If we fail allocation our range, fallback to the controller
829 * discard page. If that's also busy, it's safe to return
830 * busy, as we know we can make progress once that's freed.
832 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
833 return BLK_STS_RESOURCE;
835 range = page_address(ns->ctrl->discard_page);
838 __rq_for_each_bio(bio, req) {
839 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
840 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
843 range[n].cattr = cpu_to_le32(0);
844 range[n].nlb = cpu_to_le32(nlb);
845 range[n].slba = cpu_to_le64(slba);
850 if (WARN_ON_ONCE(n != segments)) {
851 if (virt_to_page(range) == ns->ctrl->discard_page)
852 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
855 return BLK_STS_IOERR;
858 cmnd->dsm.opcode = nvme_cmd_dsm;
859 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
860 cmnd->dsm.nr = cpu_to_le32(segments - 1);
861 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
863 req->special_vec.bv_page = virt_to_page(range);
864 req->special_vec.bv_offset = offset_in_page(range);
865 req->special_vec.bv_len = alloc_size;
866 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
871 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
872 struct request *req, struct nvme_command *cmnd)
874 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
875 return nvme_setup_discard(ns, req, cmnd);
877 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
878 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
879 cmnd->write_zeroes.slba =
880 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
881 cmnd->write_zeroes.length =
882 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
883 cmnd->write_zeroes.control = 0;
887 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
888 struct request *req, struct nvme_command *cmnd,
891 struct nvme_ctrl *ctrl = ns->ctrl;
895 if (req->cmd_flags & REQ_FUA)
896 control |= NVME_RW_FUA;
897 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
898 control |= NVME_RW_LR;
900 if (req->cmd_flags & REQ_RAHEAD)
901 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
903 cmnd->rw.opcode = op;
904 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
905 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
906 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
908 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
909 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
913 * If formated with metadata, the block layer always provides a
914 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
915 * we enable the PRACT bit for protection information or set the
916 * namespace capacity to zero to prevent any I/O.
918 if (!blk_integrity_rq(req)) {
919 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
920 return BLK_STS_NOTSUPP;
921 control |= NVME_RW_PRINFO_PRACT;
924 switch (ns->pi_type) {
925 case NVME_NS_DPS_PI_TYPE3:
926 control |= NVME_RW_PRINFO_PRCHK_GUARD;
928 case NVME_NS_DPS_PI_TYPE1:
929 case NVME_NS_DPS_PI_TYPE2:
930 control |= NVME_RW_PRINFO_PRCHK_GUARD |
931 NVME_RW_PRINFO_PRCHK_REF;
932 if (op == nvme_cmd_zone_append)
933 control |= NVME_RW_APPEND_PIREMAP;
934 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
939 cmnd->rw.control = cpu_to_le16(control);
940 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
944 void nvme_cleanup_cmd(struct request *req)
946 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
947 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
948 struct page *page = req->special_vec.bv_page;
950 if (page == ctrl->discard_page)
951 clear_bit_unlock(0, &ctrl->discard_page_busy);
953 kfree(page_address(page) + req->special_vec.bv_offset);
956 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
958 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
960 struct nvme_command *cmd = nvme_req(req)->cmd;
961 blk_status_t ret = BLK_STS_OK;
963 if (!(req->rq_flags & RQF_DONTPREP)) {
964 nvme_clear_nvme_request(req);
965 memset(cmd, 0, sizeof(*cmd));
968 switch (req_op(req)) {
971 /* these are setup prior to execution in nvme_init_request() */
974 nvme_setup_flush(ns, cmd);
976 case REQ_OP_ZONE_RESET_ALL:
977 case REQ_OP_ZONE_RESET:
978 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
980 case REQ_OP_ZONE_OPEN:
981 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
983 case REQ_OP_ZONE_CLOSE:
984 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
986 case REQ_OP_ZONE_FINISH:
987 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
989 case REQ_OP_WRITE_ZEROES:
990 ret = nvme_setup_write_zeroes(ns, req, cmd);
993 ret = nvme_setup_discard(ns, req, cmd);
996 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
999 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1001 case REQ_OP_ZONE_APPEND:
1002 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1006 return BLK_STS_IOERR;
1009 cmd->common.command_id = req->tag;
1010 trace_nvme_setup_cmd(req, cmd);
1013 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1015 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
1017 struct completion *waiting = rq->end_io_data;
1019 rq->end_io_data = NULL;
1023 static void nvme_execute_rq_polled(struct request_queue *q,
1024 struct gendisk *bd_disk, struct request *rq, int at_head)
1026 DECLARE_COMPLETION_ONSTACK(wait);
1028 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
1030 rq->cmd_flags |= REQ_HIPRI;
1031 rq->end_io_data = &wait;
1032 blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
1034 while (!completion_done(&wait)) {
1035 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
1041 * Returns 0 on success. If the result is negative, it's a Linux error code;
1042 * if the result is positive, it's an NVM Express status code
1044 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1045 union nvme_result *result, void *buffer, unsigned bufflen,
1046 unsigned timeout, int qid, int at_head,
1047 blk_mq_req_flags_t flags, bool poll)
1049 struct request *req;
1052 if (qid == NVME_QID_ANY)
1053 req = nvme_alloc_request(q, cmd, flags);
1055 req = nvme_alloc_request_qid(q, cmd, flags, qid);
1057 return PTR_ERR(req);
1060 req->timeout = timeout;
1062 if (buffer && bufflen) {
1063 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1069 nvme_execute_rq_polled(req->q, NULL, req, at_head);
1071 blk_execute_rq(NULL, req, at_head);
1073 *result = nvme_req(req)->result;
1074 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1077 ret = nvme_req(req)->status;
1079 blk_mq_free_request(req);
1082 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1084 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1085 void *buffer, unsigned bufflen)
1087 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1088 NVME_QID_ANY, 0, 0, false);
1090 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1092 static u32 nvme_known_admin_effects(u8 opcode)
1095 case nvme_admin_format_nvm:
1096 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1097 NVME_CMD_EFFECTS_CSE_MASK;
1098 case nvme_admin_sanitize_nvm:
1099 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1106 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1111 if (ns->head->effects)
1112 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1113 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1114 dev_warn_once(ctrl->device,
1115 "IO command:%02x has unhandled effects:%08x\n",
1121 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1122 effects |= nvme_known_admin_effects(opcode);
1126 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1128 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1131 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1134 * For simplicity, IO to all namespaces is quiesced even if the command
1135 * effects say only one namespace is affected.
1137 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1138 mutex_lock(&ctrl->scan_lock);
1139 mutex_lock(&ctrl->subsys->lock);
1140 nvme_mpath_start_freeze(ctrl->subsys);
1141 nvme_mpath_wait_freeze(ctrl->subsys);
1142 nvme_start_freeze(ctrl);
1143 nvme_wait_freeze(ctrl);
1148 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1150 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1151 nvme_unfreeze(ctrl);
1152 nvme_mpath_unfreeze(ctrl->subsys);
1153 mutex_unlock(&ctrl->subsys->lock);
1154 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1155 mutex_unlock(&ctrl->scan_lock);
1157 if (effects & NVME_CMD_EFFECTS_CCC)
1158 nvme_init_ctrl_finish(ctrl);
1159 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1160 nvme_queue_scan(ctrl);
1161 flush_work(&ctrl->scan_work);
1165 void nvme_execute_passthru_rq(struct request *rq)
1167 struct nvme_command *cmd = nvme_req(rq)->cmd;
1168 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1169 struct nvme_ns *ns = rq->q->queuedata;
1170 struct gendisk *disk = ns ? ns->disk : NULL;
1173 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1174 blk_execute_rq(disk, rq, 0);
1175 if (effects) /* nothing to be done for zero cmd effects */
1176 nvme_passthru_end(ctrl, effects);
1178 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1181 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1183 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1184 * accounting for transport roundtrip times [..].
1186 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1188 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1191 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1193 struct nvme_ctrl *ctrl = rq->end_io_data;
1194 unsigned long flags;
1195 bool startka = false;
1197 blk_mq_free_request(rq);
1200 dev_err(ctrl->device,
1201 "failed nvme_keep_alive_end_io error=%d\n",
1206 ctrl->comp_seen = false;
1207 spin_lock_irqsave(&ctrl->lock, flags);
1208 if (ctrl->state == NVME_CTRL_LIVE ||
1209 ctrl->state == NVME_CTRL_CONNECTING)
1211 spin_unlock_irqrestore(&ctrl->lock, flags);
1213 nvme_queue_keep_alive_work(ctrl);
1216 static void nvme_keep_alive_work(struct work_struct *work)
1218 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1219 struct nvme_ctrl, ka_work);
1220 bool comp_seen = ctrl->comp_seen;
1223 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1224 dev_dbg(ctrl->device,
1225 "reschedule traffic based keep-alive timer\n");
1226 ctrl->comp_seen = false;
1227 nvme_queue_keep_alive_work(ctrl);
1231 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1232 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1234 /* allocation failure, reset the controller */
1235 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1236 nvme_reset_ctrl(ctrl);
1240 rq->timeout = ctrl->kato * HZ;
1241 rq->end_io_data = ctrl;
1242 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1245 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1247 if (unlikely(ctrl->kato == 0))
1250 nvme_queue_keep_alive_work(ctrl);
1253 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1255 if (unlikely(ctrl->kato == 0))
1258 cancel_delayed_work_sync(&ctrl->ka_work);
1260 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1263 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1264 * flag, thus sending any new CNS opcodes has a big chance of not working.
1265 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1266 * (but not for any later version).
1268 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1270 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1271 return ctrl->vs < NVME_VS(1, 2, 0);
1272 return ctrl->vs < NVME_VS(1, 1, 0);
1275 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1277 struct nvme_command c = { };
1280 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1281 c.identify.opcode = nvme_admin_identify;
1282 c.identify.cns = NVME_ID_CNS_CTRL;
1284 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1288 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1289 sizeof(struct nvme_id_ctrl));
1295 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1297 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1300 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1301 struct nvme_ns_id_desc *cur, bool *csi_seen)
1303 const char *warn_str = "ctrl returned bogus length:";
1306 switch (cur->nidt) {
1307 case NVME_NIDT_EUI64:
1308 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1309 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1310 warn_str, cur->nidl);
1313 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1314 return NVME_NIDT_EUI64_LEN;
1315 case NVME_NIDT_NGUID:
1316 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1317 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1318 warn_str, cur->nidl);
1321 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1322 return NVME_NIDT_NGUID_LEN;
1323 case NVME_NIDT_UUID:
1324 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1325 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1326 warn_str, cur->nidl);
1329 uuid_copy(&ids->uuid, data + sizeof(*cur));
1330 return NVME_NIDT_UUID_LEN;
1332 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1333 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1334 warn_str, cur->nidl);
1337 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1339 return NVME_NIDT_CSI_LEN;
1341 /* Skip unknown types */
1346 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1347 struct nvme_ns_ids *ids)
1349 struct nvme_command c = { };
1350 bool csi_seen = false;
1351 int status, pos, len;
1354 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1356 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1359 c.identify.opcode = nvme_admin_identify;
1360 c.identify.nsid = cpu_to_le32(nsid);
1361 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1363 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1367 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1368 NVME_IDENTIFY_DATA_SIZE);
1370 dev_warn(ctrl->device,
1371 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1376 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1377 struct nvme_ns_id_desc *cur = data + pos;
1382 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1386 len += sizeof(*cur);
1389 if (nvme_multi_css(ctrl) && !csi_seen) {
1390 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1400 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1401 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1403 struct nvme_command c = { };
1406 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1407 c.identify.opcode = nvme_admin_identify;
1408 c.identify.nsid = cpu_to_le32(nsid);
1409 c.identify.cns = NVME_ID_CNS_NS;
1411 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1415 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1417 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1421 error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1422 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1425 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1426 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1427 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1428 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1429 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1430 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1439 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1440 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1442 union nvme_result res = { 0 };
1443 struct nvme_command c;
1446 memset(&c, 0, sizeof(c));
1447 c.features.opcode = op;
1448 c.features.fid = cpu_to_le32(fid);
1449 c.features.dword11 = cpu_to_le32(dword11);
1451 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1452 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1453 if (ret >= 0 && result)
1454 *result = le32_to_cpu(res.u32);
1458 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1459 unsigned int dword11, void *buffer, size_t buflen,
1462 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1465 EXPORT_SYMBOL_GPL(nvme_set_features);
1467 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1468 unsigned int dword11, void *buffer, size_t buflen,
1471 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1474 EXPORT_SYMBOL_GPL(nvme_get_features);
1476 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1478 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1480 int status, nr_io_queues;
1482 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1488 * Degraded controllers might return an error when setting the queue
1489 * count. We still want to be able to bring them online and offer
1490 * access to the admin queue, as that might be only way to fix them up.
1493 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1496 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1497 *count = min(*count, nr_io_queues);
1502 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1504 #define NVME_AEN_SUPPORTED \
1505 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1506 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1508 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1510 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1513 if (!supported_aens)
1516 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1519 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1522 queue_work(nvme_wq, &ctrl->async_event_work);
1526 * Issue ioctl requests on the first available path. Note that unlike normal
1527 * block layer requests we will not retry failed request on another controller.
1529 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1530 struct nvme_ns_head **head, int *srcu_idx)
1532 #ifdef CONFIG_NVME_MULTIPATH
1533 if (disk->fops == &nvme_ns_head_ops) {
1536 *head = disk->private_data;
1537 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1538 ns = nvme_find_path(*head);
1540 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1546 return disk->private_data;
1549 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1552 srcu_read_unlock(&head->srcu, idx);
1555 static int nvme_ns_open(struct nvme_ns *ns)
1558 /* should never be called due to GENHD_FL_HIDDEN */
1559 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1561 if (!nvme_get_ns(ns))
1563 if (!try_module_get(ns->ctrl->ops->module))
1574 static void nvme_ns_release(struct nvme_ns *ns)
1577 module_put(ns->ctrl->ops->module);
1581 static int nvme_open(struct block_device *bdev, fmode_t mode)
1583 return nvme_ns_open(bdev->bd_disk->private_data);
1586 static void nvme_release(struct gendisk *disk, fmode_t mode)
1588 nvme_ns_release(disk->private_data);
1591 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1593 /* some standard values */
1594 geo->heads = 1 << 6;
1595 geo->sectors = 1 << 5;
1596 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1600 #ifdef CONFIG_BLK_DEV_INTEGRITY
1601 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1602 u32 max_integrity_segments)
1604 struct blk_integrity integrity;
1606 memset(&integrity, 0, sizeof(integrity));
1608 case NVME_NS_DPS_PI_TYPE3:
1609 integrity.profile = &t10_pi_type3_crc;
1610 integrity.tag_size = sizeof(u16) + sizeof(u32);
1611 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1613 case NVME_NS_DPS_PI_TYPE1:
1614 case NVME_NS_DPS_PI_TYPE2:
1615 integrity.profile = &t10_pi_type1_crc;
1616 integrity.tag_size = sizeof(u16);
1617 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1620 integrity.profile = NULL;
1623 integrity.tuple_size = ms;
1624 blk_integrity_register(disk, &integrity);
1625 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1628 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1629 u32 max_integrity_segments)
1632 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1634 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1636 struct nvme_ctrl *ctrl = ns->ctrl;
1637 struct request_queue *queue = disk->queue;
1638 u32 size = queue_logical_block_size(queue);
1640 if (ctrl->max_discard_sectors == 0) {
1641 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1645 if (ctrl->nr_streams && ns->sws && ns->sgs)
1646 size *= ns->sws * ns->sgs;
1648 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1649 NVME_DSM_MAX_RANGES);
1651 queue->limits.discard_alignment = 0;
1652 queue->limits.discard_granularity = size;
1654 /* If discard is already enabled, don't reset queue limits */
1655 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1658 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1659 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1661 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1662 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1665 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1667 return !uuid_is_null(&ids->uuid) ||
1668 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1669 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1672 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1674 return uuid_equal(&a->uuid, &b->uuid) &&
1675 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1676 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1680 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1681 u32 *phys_bs, u32 *io_opt)
1683 struct streams_directive_params s;
1686 if (!ctrl->nr_streams)
1689 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1693 ns->sws = le32_to_cpu(s.sws);
1694 ns->sgs = le16_to_cpu(s.sgs);
1697 *phys_bs = ns->sws * (1 << ns->lba_shift);
1699 *io_opt = *phys_bs * ns->sgs;
1705 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1707 struct nvme_ctrl *ctrl = ns->ctrl;
1710 * The PI implementation requires the metadata size to be equal to the
1711 * t10 pi tuple size.
1713 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1714 if (ns->ms == sizeof(struct t10_pi_tuple))
1715 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1719 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1720 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1722 if (ctrl->ops->flags & NVME_F_FABRICS) {
1724 * The NVMe over Fabrics specification only supports metadata as
1725 * part of the extended data LBA. We rely on HCA/HBA support to
1726 * remap the separate metadata buffer from the block layer.
1728 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1730 if (ctrl->max_integrity_segments)
1732 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1735 * For PCIe controllers, we can't easily remap the separate
1736 * metadata buffer from the block layer and thus require a
1737 * separate metadata buffer for block layer metadata/PI support.
1738 * We allow extended LBAs for the passthrough interface, though.
1740 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1741 ns->features |= NVME_NS_EXT_LBAS;
1743 ns->features |= NVME_NS_METADATA_SUPPORTED;
1749 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1750 struct request_queue *q)
1752 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1754 if (ctrl->max_hw_sectors) {
1756 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1758 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1759 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1760 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1762 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1763 blk_queue_dma_alignment(q, 7);
1764 blk_queue_write_cache(q, vwc, vwc);
1767 static void nvme_update_disk_info(struct gendisk *disk,
1768 struct nvme_ns *ns, struct nvme_id_ns *id)
1770 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1771 unsigned short bs = 1 << ns->lba_shift;
1772 u32 atomic_bs, phys_bs, io_opt = 0;
1775 * The block layer can't support LBA sizes larger than the page size
1776 * yet, so catch this early and don't allow block I/O.
1778 if (ns->lba_shift > PAGE_SHIFT) {
1783 blk_integrity_unregister(disk);
1785 atomic_bs = phys_bs = bs;
1786 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1787 if (id->nabo == 0) {
1789 * Bit 1 indicates whether NAWUPF is defined for this namespace
1790 * and whether it should be used instead of AWUPF. If NAWUPF ==
1791 * 0 then AWUPF must be used instead.
1793 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1794 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1796 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1799 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1800 /* NPWG = Namespace Preferred Write Granularity */
1801 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1802 /* NOWS = Namespace Optimal Write Size */
1803 io_opt = bs * (1 + le16_to_cpu(id->nows));
1806 blk_queue_logical_block_size(disk->queue, bs);
1808 * Linux filesystems assume writing a single physical block is
1809 * an atomic operation. Hence limit the physical block size to the
1810 * value of the Atomic Write Unit Power Fail parameter.
1812 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1813 blk_queue_io_min(disk->queue, phys_bs);
1814 blk_queue_io_opt(disk->queue, io_opt);
1817 * Register a metadata profile for PI, or the plain non-integrity NVMe
1818 * metadata masquerading as Type 0 if supported, otherwise reject block
1819 * I/O to namespaces with metadata except when the namespace supports
1820 * PI, as it can strip/insert in that case.
1823 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1824 (ns->features & NVME_NS_METADATA_SUPPORTED))
1825 nvme_init_integrity(disk, ns->ms, ns->pi_type,
1826 ns->ctrl->max_integrity_segments);
1827 else if (!nvme_ns_has_pi(ns))
1831 set_capacity_and_notify(disk, capacity);
1833 nvme_config_discard(disk, ns);
1834 blk_queue_max_write_zeroes_sectors(disk->queue,
1835 ns->ctrl->max_zeroes_sectors);
1837 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1838 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1841 static inline bool nvme_first_scan(struct gendisk *disk)
1843 /* nvme_alloc_ns() scans the disk prior to adding it */
1844 return !(disk->flags & GENHD_FL_UP);
1847 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1849 struct nvme_ctrl *ctrl = ns->ctrl;
1852 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1853 is_power_of_2(ctrl->max_hw_sectors))
1854 iob = ctrl->max_hw_sectors;
1856 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1861 if (!is_power_of_2(iob)) {
1862 if (nvme_first_scan(ns->disk))
1863 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1864 ns->disk->disk_name, iob);
1868 if (blk_queue_is_zoned(ns->disk->queue)) {
1869 if (nvme_first_scan(ns->disk))
1870 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1871 ns->disk->disk_name);
1875 blk_queue_chunk_sectors(ns->queue, iob);
1878 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1880 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1883 blk_mq_freeze_queue(ns->disk->queue);
1884 ns->lba_shift = id->lbaf[lbaf].ds;
1885 nvme_set_queue_limits(ns->ctrl, ns->queue);
1887 ret = nvme_configure_metadata(ns, id);
1890 nvme_set_chunk_sectors(ns, id);
1891 nvme_update_disk_info(ns->disk, ns, id);
1893 if (ns->head->ids.csi == NVME_CSI_ZNS) {
1894 ret = nvme_update_zone_info(ns, lbaf);
1899 blk_mq_unfreeze_queue(ns->disk->queue);
1901 if (blk_queue_is_zoned(ns->queue)) {
1902 ret = nvme_revalidate_zones(ns);
1903 if (ret && !nvme_first_scan(ns->disk))
1907 if (nvme_ns_head_multipath(ns->head)) {
1908 blk_mq_freeze_queue(ns->head->disk->queue);
1909 nvme_update_disk_info(ns->head->disk, ns, id);
1910 blk_stack_limits(&ns->head->disk->queue->limits,
1911 &ns->queue->limits, 0);
1912 blk_queue_update_readahead(ns->head->disk->queue);
1913 blk_mq_unfreeze_queue(ns->head->disk->queue);
1918 blk_mq_unfreeze_queue(ns->disk->queue);
1921 * If probing fails due an unsupported feature, hide the block device,
1922 * but still allow other access.
1924 if (ret == -ENODEV) {
1925 ns->disk->flags |= GENHD_FL_HIDDEN;
1931 static char nvme_pr_type(enum pr_type type)
1934 case PR_WRITE_EXCLUSIVE:
1936 case PR_EXCLUSIVE_ACCESS:
1938 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1940 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1942 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1944 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1951 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1952 u64 key, u64 sa_key, u8 op)
1954 struct nvme_ns_head *head = NULL;
1956 struct nvme_command c;
1958 u8 data[16] = { 0, };
1960 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1962 return -EWOULDBLOCK;
1964 put_unaligned_le64(key, &data[0]);
1965 put_unaligned_le64(sa_key, &data[8]);
1967 memset(&c, 0, sizeof(c));
1968 c.common.opcode = op;
1969 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1970 c.common.cdw10 = cpu_to_le32(cdw10);
1972 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1973 nvme_put_ns_from_disk(head, srcu_idx);
1977 static int nvme_pr_register(struct block_device *bdev, u64 old,
1978 u64 new, unsigned flags)
1982 if (flags & ~PR_FL_IGNORE_KEY)
1985 cdw10 = old ? 2 : 0;
1986 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1987 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1988 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1991 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1992 enum pr_type type, unsigned flags)
1996 if (flags & ~PR_FL_IGNORE_KEY)
1999 cdw10 = nvme_pr_type(type) << 8;
2000 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2001 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2004 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2005 enum pr_type type, bool abort)
2007 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2009 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2012 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2014 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2016 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2019 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2021 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2023 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2026 const struct pr_ops nvme_pr_ops = {
2027 .pr_register = nvme_pr_register,
2028 .pr_reserve = nvme_pr_reserve,
2029 .pr_release = nvme_pr_release,
2030 .pr_preempt = nvme_pr_preempt,
2031 .pr_clear = nvme_pr_clear,
2034 #ifdef CONFIG_BLK_SED_OPAL
2035 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2038 struct nvme_ctrl *ctrl = data;
2039 struct nvme_command cmd;
2041 memset(&cmd, 0, sizeof(cmd));
2043 cmd.common.opcode = nvme_admin_security_send;
2045 cmd.common.opcode = nvme_admin_security_recv;
2046 cmd.common.nsid = 0;
2047 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2048 cmd.common.cdw11 = cpu_to_le32(len);
2050 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2051 NVME_QID_ANY, 1, 0, false);
2053 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2054 #endif /* CONFIG_BLK_SED_OPAL */
2056 static const struct block_device_operations nvme_bdev_ops = {
2057 .owner = THIS_MODULE,
2058 .ioctl = nvme_ioctl,
2060 .release = nvme_release,
2061 .getgeo = nvme_getgeo,
2062 .report_zones = nvme_report_zones,
2063 .pr_ops = &nvme_pr_ops,
2066 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2068 unsigned long timeout =
2069 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2070 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2073 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2076 if ((csts & NVME_CSTS_RDY) == bit)
2079 usleep_range(1000, 2000);
2080 if (fatal_signal_pending(current))
2082 if (time_after(jiffies, timeout)) {
2083 dev_err(ctrl->device,
2084 "Device not ready; aborting %s, CSTS=0x%x\n",
2085 enabled ? "initialisation" : "reset", csts);
2094 * If the device has been passed off to us in an enabled state, just clear
2095 * the enabled bit. The spec says we should set the 'shutdown notification
2096 * bits', but doing so may cause the device to complete commands to the
2097 * admin queue ... and we don't know what memory that might be pointing at!
2099 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2103 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2104 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2106 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2110 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2111 msleep(NVME_QUIRK_DELAY_AMOUNT);
2113 return nvme_wait_ready(ctrl, ctrl->cap, false);
2115 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2117 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2119 unsigned dev_page_min;
2122 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2124 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2127 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2129 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2130 dev_err(ctrl->device,
2131 "Minimum device page size %u too large for host (%u)\n",
2132 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2136 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2137 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2139 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2140 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2141 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2142 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2143 ctrl->ctrl_config |= NVME_CC_ENABLE;
2145 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2148 return nvme_wait_ready(ctrl, ctrl->cap, true);
2150 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2152 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2154 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2158 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2159 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2161 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2165 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2166 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2170 if (fatal_signal_pending(current))
2172 if (time_after(jiffies, timeout)) {
2173 dev_err(ctrl->device,
2174 "Device shutdown incomplete; abort shutdown\n");
2181 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2183 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2188 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2191 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2192 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2195 dev_warn_once(ctrl->device,
2196 "could not set timestamp (%d)\n", ret);
2200 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2202 struct nvme_feat_host_behavior *host;
2205 /* Don't bother enabling the feature if retry delay is not reported */
2209 host = kzalloc(sizeof(*host), GFP_KERNEL);
2213 host->acre = NVME_ENABLE_ACRE;
2214 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2215 host, sizeof(*host), NULL);
2221 * APST (Autonomous Power State Transition) lets us program a table of power
2222 * state transitions that the controller will perform automatically.
2223 * We configure it with a simple heuristic: we are willing to spend at most 2%
2224 * of the time transitioning between power states. Therefore, when running in
2225 * any given state, we will enter the next lower-power non-operational state
2226 * after waiting 50 * (enlat + exlat) microseconds, as long as that state's exit
2227 * latency is under the requested maximum latency.
2229 * We will not autonomously enter any non-operational state for which the total
2230 * latency exceeds ps_max_latency_us.
2232 * Users can set ps_max_latency_us to zero to turn off APST.
2234 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2236 struct nvme_feat_auto_pst *table;
2245 * If APST isn't supported or if we haven't been initialized yet,
2246 * then don't do anything.
2251 if (ctrl->npss > 31) {
2252 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2256 table = kzalloc(sizeof(*table), GFP_KERNEL);
2260 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2261 /* Turn off APST. */
2262 dev_dbg(ctrl->device, "APST disabled\n");
2267 * Walk through all states from lowest- to highest-power.
2268 * According to the spec, lower-numbered states use more power. NPSS,
2269 * despite the name, is the index of the lowest-power state, not the
2272 for (state = (int)ctrl->npss; state >= 0; state--) {
2273 u64 total_latency_us, exit_latency_us, transition_ms;
2276 table->entries[state] = target;
2279 * Don't allow transitions to the deepest state if it's quirked
2282 if (state == ctrl->npss &&
2283 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2287 * Is this state a useful non-operational state for higher-power
2288 * states to autonomously transition to?
2290 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2293 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2294 if (exit_latency_us > ctrl->ps_max_latency_us)
2297 total_latency_us = exit_latency_us +
2298 le32_to_cpu(ctrl->psd[state].entry_lat);
2301 * This state is good. Use it as the APST idle target for
2302 * higher power states.
2304 transition_ms = total_latency_us + 19;
2305 do_div(transition_ms, 20);
2306 if (transition_ms > (1 << 24) - 1)
2307 transition_ms = (1 << 24) - 1;
2309 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2312 if (total_latency_us > max_lat_us)
2313 max_lat_us = total_latency_us;
2317 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2319 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2320 max_ps, max_lat_us, (int)sizeof(*table), table);
2324 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2325 table, sizeof(*table), NULL);
2327 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2332 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2334 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2338 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2339 case PM_QOS_LATENCY_ANY:
2347 if (ctrl->ps_max_latency_us != latency) {
2348 ctrl->ps_max_latency_us = latency;
2349 if (ctrl->state == NVME_CTRL_LIVE)
2350 nvme_configure_apst(ctrl);
2354 struct nvme_core_quirk_entry {
2356 * NVMe model and firmware strings are padded with spaces. For
2357 * simplicity, strings in the quirk table are padded with NULLs
2363 unsigned long quirks;
2366 static const struct nvme_core_quirk_entry core_quirks[] = {
2369 * This Toshiba device seems to die using any APST states. See:
2370 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2373 .mn = "THNSF5256GPUK TOSHIBA",
2374 .quirks = NVME_QUIRK_NO_APST,
2378 * This LiteON CL1-3D*-Q11 firmware version has a race
2379 * condition associated with actions related to suspend to idle
2380 * LiteON has resolved the problem in future firmware
2384 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2388 /* match is null-terminated but idstr is space-padded. */
2389 static bool string_matches(const char *idstr, const char *match, size_t len)
2396 matchlen = strlen(match);
2397 WARN_ON_ONCE(matchlen > len);
2399 if (memcmp(idstr, match, matchlen))
2402 for (; matchlen < len; matchlen++)
2403 if (idstr[matchlen] != ' ')
2409 static bool quirk_matches(const struct nvme_id_ctrl *id,
2410 const struct nvme_core_quirk_entry *q)
2412 return q->vid == le16_to_cpu(id->vid) &&
2413 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2414 string_matches(id->fr, q->fr, sizeof(id->fr));
2417 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2418 struct nvme_id_ctrl *id)
2423 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2424 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2425 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2426 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2430 if (ctrl->vs >= NVME_VS(1, 2, 1))
2431 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2434 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2435 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2436 "nqn.2014.08.org.nvmexpress:%04x%04x",
2437 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2438 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2439 off += sizeof(id->sn);
2440 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2441 off += sizeof(id->mn);
2442 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2445 static void nvme_release_subsystem(struct device *dev)
2447 struct nvme_subsystem *subsys =
2448 container_of(dev, struct nvme_subsystem, dev);
2450 if (subsys->instance >= 0)
2451 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2455 static void nvme_destroy_subsystem(struct kref *ref)
2457 struct nvme_subsystem *subsys =
2458 container_of(ref, struct nvme_subsystem, ref);
2460 mutex_lock(&nvme_subsystems_lock);
2461 list_del(&subsys->entry);
2462 mutex_unlock(&nvme_subsystems_lock);
2464 ida_destroy(&subsys->ns_ida);
2465 device_del(&subsys->dev);
2466 put_device(&subsys->dev);
2469 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2471 kref_put(&subsys->ref, nvme_destroy_subsystem);
2474 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2476 struct nvme_subsystem *subsys;
2478 lockdep_assert_held(&nvme_subsystems_lock);
2481 * Fail matches for discovery subsystems. This results
2482 * in each discovery controller bound to a unique subsystem.
2483 * This avoids issues with validating controller values
2484 * that can only be true when there is a single unique subsystem.
2485 * There may be multiple and completely independent entities
2486 * that provide discovery controllers.
2488 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2491 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2492 if (strcmp(subsys->subnqn, subsysnqn))
2494 if (!kref_get_unless_zero(&subsys->ref))
2502 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2503 struct device_attribute subsys_attr_##_name = \
2504 __ATTR(_name, _mode, _show, NULL)
2506 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2507 struct device_attribute *attr,
2510 struct nvme_subsystem *subsys =
2511 container_of(dev, struct nvme_subsystem, dev);
2513 return sysfs_emit(buf, "%s\n", subsys->subnqn);
2515 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2517 #define nvme_subsys_show_str_function(field) \
2518 static ssize_t subsys_##field##_show(struct device *dev, \
2519 struct device_attribute *attr, char *buf) \
2521 struct nvme_subsystem *subsys = \
2522 container_of(dev, struct nvme_subsystem, dev); \
2523 return sysfs_emit(buf, "%.*s\n", \
2524 (int)sizeof(subsys->field), subsys->field); \
2526 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2528 nvme_subsys_show_str_function(model);
2529 nvme_subsys_show_str_function(serial);
2530 nvme_subsys_show_str_function(firmware_rev);
2532 static struct attribute *nvme_subsys_attrs[] = {
2533 &subsys_attr_model.attr,
2534 &subsys_attr_serial.attr,
2535 &subsys_attr_firmware_rev.attr,
2536 &subsys_attr_subsysnqn.attr,
2537 #ifdef CONFIG_NVME_MULTIPATH
2538 &subsys_attr_iopolicy.attr,
2543 static const struct attribute_group nvme_subsys_attrs_group = {
2544 .attrs = nvme_subsys_attrs,
2547 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2548 &nvme_subsys_attrs_group,
2552 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2554 return ctrl->opts && ctrl->opts->discovery_nqn;
2557 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2558 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2560 struct nvme_ctrl *tmp;
2562 lockdep_assert_held(&nvme_subsystems_lock);
2564 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2565 if (nvme_state_terminal(tmp))
2568 if (tmp->cntlid == ctrl->cntlid) {
2569 dev_err(ctrl->device,
2570 "Duplicate cntlid %u with %s, rejecting\n",
2571 ctrl->cntlid, dev_name(tmp->device));
2575 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2576 nvme_discovery_ctrl(ctrl))
2579 dev_err(ctrl->device,
2580 "Subsystem does not support multiple controllers\n");
2587 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2589 struct nvme_subsystem *subsys, *found;
2592 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2596 subsys->instance = -1;
2597 mutex_init(&subsys->lock);
2598 kref_init(&subsys->ref);
2599 INIT_LIST_HEAD(&subsys->ctrls);
2600 INIT_LIST_HEAD(&subsys->nsheads);
2601 nvme_init_subnqn(subsys, ctrl, id);
2602 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2603 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2604 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2605 subsys->vendor_id = le16_to_cpu(id->vid);
2606 subsys->cmic = id->cmic;
2607 subsys->awupf = le16_to_cpu(id->awupf);
2608 #ifdef CONFIG_NVME_MULTIPATH
2609 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2612 subsys->dev.class = nvme_subsys_class;
2613 subsys->dev.release = nvme_release_subsystem;
2614 subsys->dev.groups = nvme_subsys_attrs_groups;
2615 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2616 device_initialize(&subsys->dev);
2618 mutex_lock(&nvme_subsystems_lock);
2619 found = __nvme_find_get_subsystem(subsys->subnqn);
2621 put_device(&subsys->dev);
2624 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2626 goto out_put_subsystem;
2629 ret = device_add(&subsys->dev);
2631 dev_err(ctrl->device,
2632 "failed to register subsystem device.\n");
2633 put_device(&subsys->dev);
2636 ida_init(&subsys->ns_ida);
2637 list_add_tail(&subsys->entry, &nvme_subsystems);
2640 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2641 dev_name(ctrl->device));
2643 dev_err(ctrl->device,
2644 "failed to create sysfs link from subsystem.\n");
2645 goto out_put_subsystem;
2649 subsys->instance = ctrl->instance;
2650 ctrl->subsys = subsys;
2651 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2652 mutex_unlock(&nvme_subsystems_lock);
2656 nvme_put_subsystem(subsys);
2658 mutex_unlock(&nvme_subsystems_lock);
2662 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2663 void *log, size_t size, u64 offset)
2665 struct nvme_command c = { };
2666 u32 dwlen = nvme_bytes_to_numd(size);
2668 c.get_log_page.opcode = nvme_admin_get_log_page;
2669 c.get_log_page.nsid = cpu_to_le32(nsid);
2670 c.get_log_page.lid = log_page;
2671 c.get_log_page.lsp = lsp;
2672 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2673 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2674 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2675 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2676 c.get_log_page.csi = csi;
2678 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2681 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2682 struct nvme_effects_log **log)
2684 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2690 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2694 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2695 cel, sizeof(*cel), 0);
2701 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2707 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2709 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2711 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2716 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2718 struct nvme_command c = { };
2719 struct nvme_id_ctrl_nvm *id;
2722 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2723 ctrl->max_discard_sectors = UINT_MAX;
2724 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2726 ctrl->max_discard_sectors = 0;
2727 ctrl->max_discard_segments = 0;
2731 * Even though NVMe spec explicitly states that MDTS is not applicable
2732 * to the write-zeroes, we are cautious and limit the size to the
2733 * controllers max_hw_sectors value, which is based on the MDTS field
2734 * and possibly other limiting factors.
2736 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2737 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2738 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2740 ctrl->max_zeroes_sectors = 0;
2742 if (nvme_ctrl_limited_cns(ctrl))
2745 id = kzalloc(sizeof(*id), GFP_KERNEL);
2749 c.identify.opcode = nvme_admin_identify;
2750 c.identify.cns = NVME_ID_CNS_CS_CTRL;
2751 c.identify.csi = NVME_CSI_NVM;
2753 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2758 ctrl->max_discard_segments = id->dmrl;
2760 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2762 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2769 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2771 struct nvme_id_ctrl *id;
2773 bool prev_apst_enabled;
2776 ret = nvme_identify_ctrl(ctrl, &id);
2778 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2782 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2783 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2788 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2789 ctrl->cntlid = le16_to_cpu(id->cntlid);
2791 if (!ctrl->identified) {
2794 ret = nvme_init_subsystem(ctrl, id);
2799 * Check for quirks. Quirk can depend on firmware version,
2800 * so, in principle, the set of quirks present can change
2801 * across a reset. As a possible future enhancement, we
2802 * could re-scan for quirks every time we reinitialize
2803 * the device, but we'd have to make sure that the driver
2804 * behaves intelligently if the quirks change.
2806 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2807 if (quirk_matches(id, &core_quirks[i]))
2808 ctrl->quirks |= core_quirks[i].quirks;
2812 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2813 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2814 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2817 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2818 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2819 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2821 ctrl->oacs = le16_to_cpu(id->oacs);
2822 ctrl->oncs = le16_to_cpu(id->oncs);
2823 ctrl->mtfa = le16_to_cpu(id->mtfa);
2824 ctrl->oaes = le32_to_cpu(id->oaes);
2825 ctrl->wctemp = le16_to_cpu(id->wctemp);
2826 ctrl->cctemp = le16_to_cpu(id->cctemp);
2828 atomic_set(&ctrl->abort_limit, id->acl + 1);
2829 ctrl->vwc = id->vwc;
2831 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2833 max_hw_sectors = UINT_MAX;
2834 ctrl->max_hw_sectors =
2835 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2837 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2838 ctrl->sgls = le32_to_cpu(id->sgls);
2839 ctrl->kas = le16_to_cpu(id->kas);
2840 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2841 ctrl->ctratt = le32_to_cpu(id->ctratt);
2845 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2847 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2848 shutdown_timeout, 60);
2850 if (ctrl->shutdown_timeout != shutdown_timeout)
2851 dev_info(ctrl->device,
2852 "Shutdown timeout set to %u seconds\n",
2853 ctrl->shutdown_timeout);
2855 ctrl->shutdown_timeout = shutdown_timeout;
2857 ctrl->npss = id->npss;
2858 ctrl->apsta = id->apsta;
2859 prev_apst_enabled = ctrl->apst_enabled;
2860 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2861 if (force_apst && id->apsta) {
2862 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2863 ctrl->apst_enabled = true;
2865 ctrl->apst_enabled = false;
2868 ctrl->apst_enabled = id->apsta;
2870 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2872 if (ctrl->ops->flags & NVME_F_FABRICS) {
2873 ctrl->icdoff = le16_to_cpu(id->icdoff);
2874 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2875 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2876 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2879 * In fabrics we need to verify the cntlid matches the
2882 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2883 dev_err(ctrl->device,
2884 "Mismatching cntlid: Connect %u vs Identify "
2886 ctrl->cntlid, le16_to_cpu(id->cntlid));
2891 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2892 dev_err(ctrl->device,
2893 "keep-alive support is mandatory for fabrics\n");
2898 ctrl->hmpre = le32_to_cpu(id->hmpre);
2899 ctrl->hmmin = le32_to_cpu(id->hmmin);
2900 ctrl->hmminds = le32_to_cpu(id->hmminds);
2901 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2904 ret = nvme_mpath_init_identify(ctrl, id);
2908 if (ctrl->apst_enabled && !prev_apst_enabled)
2909 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2910 else if (!ctrl->apst_enabled && prev_apst_enabled)
2911 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2919 * Initialize the cached copies of the Identify data and various controller
2920 * register in our nvme_ctrl structure. This should be called as soon as
2921 * the admin queue is fully up and running.
2923 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
2927 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2929 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2933 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2935 if (ctrl->vs >= NVME_VS(1, 1, 0))
2936 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2938 ret = nvme_init_identify(ctrl);
2942 ret = nvme_init_non_mdts_limits(ctrl);
2946 ret = nvme_configure_apst(ctrl);
2950 ret = nvme_configure_timestamp(ctrl);
2954 ret = nvme_configure_directives(ctrl);
2958 ret = nvme_configure_acre(ctrl);
2962 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
2963 ret = nvme_hwmon_init(ctrl);
2968 ctrl->identified = true;
2972 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
2974 static int nvme_dev_open(struct inode *inode, struct file *file)
2976 struct nvme_ctrl *ctrl =
2977 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2979 switch (ctrl->state) {
2980 case NVME_CTRL_LIVE:
2983 return -EWOULDBLOCK;
2986 nvme_get_ctrl(ctrl);
2987 if (!try_module_get(ctrl->ops->module)) {
2988 nvme_put_ctrl(ctrl);
2992 file->private_data = ctrl;
2996 static int nvme_dev_release(struct inode *inode, struct file *file)
2998 struct nvme_ctrl *ctrl =
2999 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3001 module_put(ctrl->ops->module);
3002 nvme_put_ctrl(ctrl);
3006 static const struct file_operations nvme_dev_fops = {
3007 .owner = THIS_MODULE,
3008 .open = nvme_dev_open,
3009 .release = nvme_dev_release,
3010 .unlocked_ioctl = nvme_dev_ioctl,
3011 .compat_ioctl = compat_ptr_ioctl,
3014 static ssize_t nvme_sysfs_reset(struct device *dev,
3015 struct device_attribute *attr, const char *buf,
3018 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3021 ret = nvme_reset_ctrl_sync(ctrl);
3026 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3028 static ssize_t nvme_sysfs_rescan(struct device *dev,
3029 struct device_attribute *attr, const char *buf,
3032 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3034 nvme_queue_scan(ctrl);
3037 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3039 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3041 struct gendisk *disk = dev_to_disk(dev);
3043 if (disk->fops == &nvme_bdev_ops)
3044 return nvme_get_ns_from_dev(dev)->head;
3046 return disk->private_data;
3049 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3052 struct nvme_ns_head *head = dev_to_ns_head(dev);
3053 struct nvme_ns_ids *ids = &head->ids;
3054 struct nvme_subsystem *subsys = head->subsys;
3055 int serial_len = sizeof(subsys->serial);
3056 int model_len = sizeof(subsys->model);
3058 if (!uuid_is_null(&ids->uuid))
3059 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3061 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3062 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3064 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3065 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3067 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3068 subsys->serial[serial_len - 1] == '\0'))
3070 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3071 subsys->model[model_len - 1] == '\0'))
3074 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3075 serial_len, subsys->serial, model_len, subsys->model,
3078 static DEVICE_ATTR_RO(wwid);
3080 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3083 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3085 static DEVICE_ATTR_RO(nguid);
3087 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3090 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3092 /* For backward compatibility expose the NGUID to userspace if
3093 * we have no UUID set
3095 if (uuid_is_null(&ids->uuid)) {
3096 printk_ratelimited(KERN_WARNING
3097 "No UUID available providing old NGUID\n");
3098 return sysfs_emit(buf, "%pU\n", ids->nguid);
3100 return sysfs_emit(buf, "%pU\n", &ids->uuid);
3102 static DEVICE_ATTR_RO(uuid);
3104 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3107 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3109 static DEVICE_ATTR_RO(eui);
3111 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3114 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3116 static DEVICE_ATTR_RO(nsid);
3118 static struct attribute *nvme_ns_id_attrs[] = {
3119 &dev_attr_wwid.attr,
3120 &dev_attr_uuid.attr,
3121 &dev_attr_nguid.attr,
3123 &dev_attr_nsid.attr,
3124 #ifdef CONFIG_NVME_MULTIPATH
3125 &dev_attr_ana_grpid.attr,
3126 &dev_attr_ana_state.attr,
3131 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3132 struct attribute *a, int n)
3134 struct device *dev = container_of(kobj, struct device, kobj);
3135 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3137 if (a == &dev_attr_uuid.attr) {
3138 if (uuid_is_null(&ids->uuid) &&
3139 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3142 if (a == &dev_attr_nguid.attr) {
3143 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3146 if (a == &dev_attr_eui.attr) {
3147 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3150 #ifdef CONFIG_NVME_MULTIPATH
3151 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3152 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3154 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3161 static const struct attribute_group nvme_ns_id_attr_group = {
3162 .attrs = nvme_ns_id_attrs,
3163 .is_visible = nvme_ns_id_attrs_are_visible,
3166 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3167 &nvme_ns_id_attr_group,
3169 &nvme_nvm_attr_group,
3174 #define nvme_show_str_function(field) \
3175 static ssize_t field##_show(struct device *dev, \
3176 struct device_attribute *attr, char *buf) \
3178 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3179 return sysfs_emit(buf, "%.*s\n", \
3180 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3182 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3184 nvme_show_str_function(model);
3185 nvme_show_str_function(serial);
3186 nvme_show_str_function(firmware_rev);
3188 #define nvme_show_int_function(field) \
3189 static ssize_t field##_show(struct device *dev, \
3190 struct device_attribute *attr, char *buf) \
3192 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3193 return sysfs_emit(buf, "%d\n", ctrl->field); \
3195 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3197 nvme_show_int_function(cntlid);
3198 nvme_show_int_function(numa_node);
3199 nvme_show_int_function(queue_count);
3200 nvme_show_int_function(sqsize);
3201 nvme_show_int_function(kato);
3203 static ssize_t nvme_sysfs_delete(struct device *dev,
3204 struct device_attribute *attr, const char *buf,
3207 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3209 if (device_remove_file_self(dev, attr))
3210 nvme_delete_ctrl_sync(ctrl);
3213 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3215 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3216 struct device_attribute *attr,
3219 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3221 return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3223 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3225 static ssize_t nvme_sysfs_show_state(struct device *dev,
3226 struct device_attribute *attr,
3229 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3230 static const char *const state_name[] = {
3231 [NVME_CTRL_NEW] = "new",
3232 [NVME_CTRL_LIVE] = "live",
3233 [NVME_CTRL_RESETTING] = "resetting",
3234 [NVME_CTRL_CONNECTING] = "connecting",
3235 [NVME_CTRL_DELETING] = "deleting",
3236 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3237 [NVME_CTRL_DEAD] = "dead",
3240 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3241 state_name[ctrl->state])
3242 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3244 return sysfs_emit(buf, "unknown state\n");
3247 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3249 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3250 struct device_attribute *attr,
3253 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3255 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3257 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3259 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3260 struct device_attribute *attr,
3263 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3265 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3267 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3269 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3270 struct device_attribute *attr,
3273 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3275 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3277 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3279 static ssize_t nvme_sysfs_show_address(struct device *dev,
3280 struct device_attribute *attr,
3283 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3285 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3287 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3289 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3290 struct device_attribute *attr, char *buf)
3292 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3293 struct nvmf_ctrl_options *opts = ctrl->opts;
3295 if (ctrl->opts->max_reconnects == -1)
3296 return sysfs_emit(buf, "off\n");
3297 return sysfs_emit(buf, "%d\n",
3298 opts->max_reconnects * opts->reconnect_delay);
3301 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3302 struct device_attribute *attr, const char *buf, size_t count)
3304 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3305 struct nvmf_ctrl_options *opts = ctrl->opts;
3306 int ctrl_loss_tmo, err;
3308 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3312 if (ctrl_loss_tmo < 0)
3313 opts->max_reconnects = -1;
3315 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3316 opts->reconnect_delay);
3319 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3320 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3322 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3323 struct device_attribute *attr, char *buf)
3325 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3327 if (ctrl->opts->reconnect_delay == -1)
3328 return sysfs_emit(buf, "off\n");
3329 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3332 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3333 struct device_attribute *attr, const char *buf, size_t count)
3335 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3339 err = kstrtou32(buf, 10, &v);
3343 ctrl->opts->reconnect_delay = v;
3346 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3347 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3349 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3350 struct device_attribute *attr, char *buf)
3352 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3354 if (ctrl->opts->fast_io_fail_tmo == -1)
3355 return sysfs_emit(buf, "off\n");
3356 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3359 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3360 struct device_attribute *attr, const char *buf, size_t count)
3362 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3363 struct nvmf_ctrl_options *opts = ctrl->opts;
3364 int fast_io_fail_tmo, err;
3366 err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3370 if (fast_io_fail_tmo < 0)
3371 opts->fast_io_fail_tmo = -1;
3373 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3376 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3377 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3379 static struct attribute *nvme_dev_attrs[] = {
3380 &dev_attr_reset_controller.attr,
3381 &dev_attr_rescan_controller.attr,
3382 &dev_attr_model.attr,
3383 &dev_attr_serial.attr,
3384 &dev_attr_firmware_rev.attr,
3385 &dev_attr_cntlid.attr,
3386 &dev_attr_delete_controller.attr,
3387 &dev_attr_transport.attr,
3388 &dev_attr_subsysnqn.attr,
3389 &dev_attr_address.attr,
3390 &dev_attr_state.attr,
3391 &dev_attr_numa_node.attr,
3392 &dev_attr_queue_count.attr,
3393 &dev_attr_sqsize.attr,
3394 &dev_attr_hostnqn.attr,
3395 &dev_attr_hostid.attr,
3396 &dev_attr_ctrl_loss_tmo.attr,
3397 &dev_attr_reconnect_delay.attr,
3398 &dev_attr_fast_io_fail_tmo.attr,
3399 &dev_attr_kato.attr,
3403 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3404 struct attribute *a, int n)
3406 struct device *dev = container_of(kobj, struct device, kobj);
3407 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3409 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3411 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3413 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3415 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3417 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3419 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3421 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3427 static const struct attribute_group nvme_dev_attrs_group = {
3428 .attrs = nvme_dev_attrs,
3429 .is_visible = nvme_dev_attrs_are_visible,
3432 static const struct attribute_group *nvme_dev_attr_groups[] = {
3433 &nvme_dev_attrs_group,
3437 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3440 struct nvme_ns_head *h;
3442 lockdep_assert_held(&subsys->lock);
3444 list_for_each_entry(h, &subsys->nsheads, entry) {
3445 if (h->ns_id == nsid && nvme_tryget_ns_head(h))
3452 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3453 struct nvme_ns_head *new)
3455 struct nvme_ns_head *h;
3457 lockdep_assert_held(&subsys->lock);
3459 list_for_each_entry(h, &subsys->nsheads, entry) {
3460 if (nvme_ns_ids_valid(&new->ids) &&
3461 nvme_ns_ids_equal(&new->ids, &h->ids))
3468 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3470 cdev_device_del(cdev, cdev_device);
3471 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt));
3474 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3475 const struct file_operations *fops, struct module *owner)
3479 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3482 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3483 cdev_device->class = nvme_ns_chr_class;
3484 device_initialize(cdev_device);
3485 cdev_init(cdev, fops);
3486 cdev->owner = owner;
3487 ret = cdev_device_add(cdev, cdev_device);
3489 ida_simple_remove(&nvme_ns_chr_minor_ida, minor);
3493 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3495 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3498 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3500 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3504 static const struct file_operations nvme_ns_chr_fops = {
3505 .owner = THIS_MODULE,
3506 .open = nvme_ns_chr_open,
3507 .release = nvme_ns_chr_release,
3508 .unlocked_ioctl = nvme_ns_chr_ioctl,
3509 .compat_ioctl = compat_ptr_ioctl,
3512 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3516 ns->cdev_device.parent = ns->ctrl->device;
3517 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3518 ns->ctrl->instance, ns->head->instance);
3521 ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3522 ns->ctrl->ops->module);
3524 kfree_const(ns->cdev_device.kobj.name);
3528 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3529 unsigned nsid, struct nvme_ns_ids *ids)
3531 struct nvme_ns_head *head;
3532 size_t size = sizeof(*head);
3535 #ifdef CONFIG_NVME_MULTIPATH
3536 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3539 head = kzalloc(size, GFP_KERNEL);
3542 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3545 head->instance = ret;
3546 INIT_LIST_HEAD(&head->list);
3547 ret = init_srcu_struct(&head->srcu);
3549 goto out_ida_remove;
3550 head->subsys = ctrl->subsys;
3553 kref_init(&head->ref);
3555 ret = __nvme_check_ids(ctrl->subsys, head);
3557 dev_err(ctrl->device,
3558 "duplicate IDs for nsid %d\n", nsid);
3559 goto out_cleanup_srcu;
3562 if (head->ids.csi) {
3563 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3565 goto out_cleanup_srcu;
3567 head->effects = ctrl->effects;
3569 ret = nvme_mpath_alloc_disk(ctrl, head);
3571 goto out_cleanup_srcu;
3573 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3575 kref_get(&ctrl->subsys->ref);
3579 cleanup_srcu_struct(&head->srcu);
3581 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3586 ret = blk_status_to_errno(nvme_error_status(ret));
3587 return ERR_PTR(ret);
3590 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3591 struct nvme_ns_ids *ids, bool is_shared)
3593 struct nvme_ctrl *ctrl = ns->ctrl;
3594 struct nvme_ns_head *head = NULL;
3597 mutex_lock(&ctrl->subsys->lock);
3598 head = nvme_find_ns_head(ctrl->subsys, nsid);
3600 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3602 ret = PTR_ERR(head);
3605 head->shared = is_shared;
3608 if (!is_shared || !head->shared) {
3609 dev_err(ctrl->device,
3610 "Duplicate unshared namespace %d\n", nsid);
3611 goto out_put_ns_head;
3613 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3614 dev_err(ctrl->device,
3615 "IDs don't match for shared namespace %d\n",
3617 goto out_put_ns_head;
3621 list_add_tail_rcu(&ns->siblings, &head->list);
3623 mutex_unlock(&ctrl->subsys->lock);
3627 nvme_put_ns_head(head);
3629 mutex_unlock(&ctrl->subsys->lock);
3633 static int ns_cmp(void *priv, const struct list_head *a,
3634 const struct list_head *b)
3636 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3637 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3639 return nsa->head->ns_id - nsb->head->ns_id;
3642 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3644 struct nvme_ns *ns, *ret = NULL;
3646 down_read(&ctrl->namespaces_rwsem);
3647 list_for_each_entry(ns, &ctrl->namespaces, list) {
3648 if (ns->head->ns_id == nsid) {
3649 if (!nvme_get_ns(ns))
3654 if (ns->head->ns_id > nsid)
3657 up_read(&ctrl->namespaces_rwsem);
3660 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3662 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3663 struct nvme_ns_ids *ids)
3666 struct gendisk *disk;
3667 struct nvme_id_ns *id;
3668 int node = ctrl->numa_node;
3670 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3673 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3677 ns->queue = blk_mq_init_queue(ctrl->tagset);
3678 if (IS_ERR(ns->queue))
3681 if (ctrl->opts && ctrl->opts->data_digest)
3682 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3684 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3685 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3686 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3688 ns->queue->queuedata = ns;
3690 kref_init(&ns->kref);
3692 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3693 goto out_free_queue;
3695 disk = alloc_disk_node(0, node);
3699 disk->fops = &nvme_bdev_ops;
3700 disk->private_data = ns;
3701 disk->queue = ns->queue;
3702 disk->flags = GENHD_FL_EXT_DEVT;
3704 * Without the multipath code enabled, multiple controller per
3705 * subsystems are visible as devices and thus we cannot use the
3706 * subsystem instance.
3708 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3709 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3710 ns->head->instance);
3713 if (nvme_update_ns_info(ns, id))
3716 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3717 if (nvme_nvm_register(ns, disk->disk_name, node)) {
3718 dev_warn(ctrl->device, "LightNVM init failure\n");
3723 down_write(&ctrl->namespaces_rwsem);
3724 list_add_tail(&ns->list, &ctrl->namespaces);
3725 up_write(&ctrl->namespaces_rwsem);
3727 nvme_get_ctrl(ctrl);
3729 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3730 if (!nvme_ns_head_multipath(ns->head))
3731 nvme_add_ns_cdev(ns);
3733 nvme_mpath_add_disk(ns, id);
3734 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3739 /* prevent double queue cleanup */
3740 ns->disk->queue = NULL;
3743 mutex_lock(&ctrl->subsys->lock);
3744 list_del_rcu(&ns->siblings);
3745 if (list_empty(&ns->head->list))
3746 list_del_init(&ns->head->entry);
3747 mutex_unlock(&ctrl->subsys->lock);
3748 nvme_put_ns_head(ns->head);
3750 blk_cleanup_queue(ns->queue);
3757 static void nvme_ns_remove(struct nvme_ns *ns)
3759 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3762 set_capacity(ns->disk, 0);
3763 nvme_fault_inject_fini(&ns->fault_inject);
3765 mutex_lock(&ns->ctrl->subsys->lock);
3766 list_del_rcu(&ns->siblings);
3767 if (list_empty(&ns->head->list))
3768 list_del_init(&ns->head->entry);
3769 mutex_unlock(&ns->ctrl->subsys->lock);
3771 synchronize_rcu(); /* guarantee not available in head->list */
3772 nvme_mpath_clear_current_path(ns);
3773 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3775 if (ns->disk->flags & GENHD_FL_UP) {
3776 if (!nvme_ns_head_multipath(ns->head))
3777 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3778 del_gendisk(ns->disk);
3779 blk_cleanup_queue(ns->queue);
3780 if (blk_get_integrity(ns->disk))
3781 blk_integrity_unregister(ns->disk);
3784 down_write(&ns->ctrl->namespaces_rwsem);
3785 list_del_init(&ns->list);
3786 up_write(&ns->ctrl->namespaces_rwsem);
3788 nvme_mpath_check_last_path(ns);
3792 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3794 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3802 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3804 struct nvme_id_ns *id;
3805 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3807 if (test_bit(NVME_NS_DEAD, &ns->flags))
3810 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3814 ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3815 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3816 dev_err(ns->ctrl->device,
3817 "identifiers changed for nsid %d\n", ns->head->ns_id);
3821 ret = nvme_update_ns_info(ns, id);
3827 * Only remove the namespace if we got a fatal error back from the
3828 * device, otherwise ignore the error and just move on.
3830 * TODO: we should probably schedule a delayed retry here.
3832 if (ret > 0 && (ret & NVME_SC_DNR))
3836 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3838 struct nvme_ns_ids ids = { };
3841 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3844 ns = nvme_find_get_ns(ctrl, nsid);
3846 nvme_validate_ns(ns, &ids);
3853 nvme_alloc_ns(ctrl, nsid, &ids);
3856 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3857 dev_warn(ctrl->device,
3858 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3862 if (!nvme_multi_css(ctrl)) {
3863 dev_warn(ctrl->device,
3864 "command set not reported for nsid: %d\n",
3868 nvme_alloc_ns(ctrl, nsid, &ids);
3871 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3877 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3880 struct nvme_ns *ns, *next;
3883 down_write(&ctrl->namespaces_rwsem);
3884 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3885 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3886 list_move_tail(&ns->list, &rm_list);
3888 up_write(&ctrl->namespaces_rwsem);
3890 list_for_each_entry_safe(ns, next, &rm_list, list)
3895 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3897 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3902 if (nvme_ctrl_limited_cns(ctrl))
3905 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3910 struct nvme_command cmd = {
3911 .identify.opcode = nvme_admin_identify,
3912 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
3913 .identify.nsid = cpu_to_le32(prev),
3916 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3917 NVME_IDENTIFY_DATA_SIZE);
3919 dev_warn(ctrl->device,
3920 "Identify NS List failed (status=0x%x)\n", ret);
3924 for (i = 0; i < nr_entries; i++) {
3925 u32 nsid = le32_to_cpu(ns_list[i]);
3927 if (!nsid) /* end of the list? */
3929 nvme_validate_or_alloc_ns(ctrl, nsid);
3930 while (++prev < nsid)
3931 nvme_ns_remove_by_nsid(ctrl, prev);
3935 nvme_remove_invalid_namespaces(ctrl, prev);
3941 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3943 struct nvme_id_ctrl *id;
3946 if (nvme_identify_ctrl(ctrl, &id))
3948 nn = le32_to_cpu(id->nn);
3951 for (i = 1; i <= nn; i++)
3952 nvme_validate_or_alloc_ns(ctrl, i);
3954 nvme_remove_invalid_namespaces(ctrl, nn);
3957 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3959 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3963 log = kzalloc(log_size, GFP_KERNEL);
3968 * We need to read the log to clear the AEN, but we don't want to rely
3969 * on it for the changed namespace information as userspace could have
3970 * raced with us in reading the log page, which could cause us to miss
3973 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3974 NVME_CSI_NVM, log, log_size, 0);
3976 dev_warn(ctrl->device,
3977 "reading changed ns log failed: %d\n", error);
3982 static void nvme_scan_work(struct work_struct *work)
3984 struct nvme_ctrl *ctrl =
3985 container_of(work, struct nvme_ctrl, scan_work);
3987 /* No tagset on a live ctrl means IO queues could not created */
3988 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3991 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3992 dev_info(ctrl->device, "rescanning namespaces.\n");
3993 nvme_clear_changed_ns_log(ctrl);
3996 mutex_lock(&ctrl->scan_lock);
3997 if (nvme_scan_ns_list(ctrl) != 0)
3998 nvme_scan_ns_sequential(ctrl);
3999 mutex_unlock(&ctrl->scan_lock);
4001 down_write(&ctrl->namespaces_rwsem);
4002 list_sort(NULL, &ctrl->namespaces, ns_cmp);
4003 up_write(&ctrl->namespaces_rwsem);
4007 * This function iterates the namespace list unlocked to allow recovery from
4008 * controller failure. It is up to the caller to ensure the namespace list is
4009 * not modified by scan work while this function is executing.
4011 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4013 struct nvme_ns *ns, *next;
4017 * make sure to requeue I/O to all namespaces as these
4018 * might result from the scan itself and must complete
4019 * for the scan_work to make progress
4021 nvme_mpath_clear_ctrl_paths(ctrl);
4023 /* prevent racing with ns scanning */
4024 flush_work(&ctrl->scan_work);
4027 * The dead states indicates the controller was not gracefully
4028 * disconnected. In that case, we won't be able to flush any data while
4029 * removing the namespaces' disks; fail all the queues now to avoid
4030 * potentially having to clean up the failed sync later.
4032 if (ctrl->state == NVME_CTRL_DEAD)
4033 nvme_kill_queues(ctrl);
4035 /* this is a no-op when called from the controller reset handler */
4036 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4038 down_write(&ctrl->namespaces_rwsem);
4039 list_splice_init(&ctrl->namespaces, &ns_list);
4040 up_write(&ctrl->namespaces_rwsem);
4042 list_for_each_entry_safe(ns, next, &ns_list, list)
4045 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4047 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4049 struct nvme_ctrl *ctrl =
4050 container_of(dev, struct nvme_ctrl, ctrl_device);
4051 struct nvmf_ctrl_options *opts = ctrl->opts;
4054 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4059 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4063 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4064 opts->trsvcid ?: "none");
4068 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4069 opts->host_traddr ?: "none");
4074 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4076 char *envp[2] = { NULL, NULL };
4077 u32 aen_result = ctrl->aen_result;
4079 ctrl->aen_result = 0;
4083 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4086 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4090 static void nvme_async_event_work(struct work_struct *work)
4092 struct nvme_ctrl *ctrl =
4093 container_of(work, struct nvme_ctrl, async_event_work);
4095 nvme_aen_uevent(ctrl);
4096 ctrl->ops->submit_async_event(ctrl);
4099 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4104 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4110 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4113 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4115 struct nvme_fw_slot_info_log *log;
4117 log = kmalloc(sizeof(*log), GFP_KERNEL);
4121 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4122 log, sizeof(*log), 0))
4123 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4127 static void nvme_fw_act_work(struct work_struct *work)
4129 struct nvme_ctrl *ctrl = container_of(work,
4130 struct nvme_ctrl, fw_act_work);
4131 unsigned long fw_act_timeout;
4134 fw_act_timeout = jiffies +
4135 msecs_to_jiffies(ctrl->mtfa * 100);
4137 fw_act_timeout = jiffies +
4138 msecs_to_jiffies(admin_timeout * 1000);
4140 nvme_stop_queues(ctrl);
4141 while (nvme_ctrl_pp_status(ctrl)) {
4142 if (time_after(jiffies, fw_act_timeout)) {
4143 dev_warn(ctrl->device,
4144 "Fw activation timeout, reset controller\n");
4145 nvme_try_sched_reset(ctrl);
4151 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4154 nvme_start_queues(ctrl);
4155 /* read FW slot information to clear the AER */
4156 nvme_get_fw_slot_info(ctrl);
4159 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4161 u32 aer_notice_type = (result & 0xff00) >> 8;
4163 trace_nvme_async_event(ctrl, aer_notice_type);
4165 switch (aer_notice_type) {
4166 case NVME_AER_NOTICE_NS_CHANGED:
4167 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4168 nvme_queue_scan(ctrl);
4170 case NVME_AER_NOTICE_FW_ACT_STARTING:
4172 * We are (ab)using the RESETTING state to prevent subsequent
4173 * recovery actions from interfering with the controller's
4174 * firmware activation.
4176 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4177 queue_work(nvme_wq, &ctrl->fw_act_work);
4179 #ifdef CONFIG_NVME_MULTIPATH
4180 case NVME_AER_NOTICE_ANA:
4181 if (!ctrl->ana_log_buf)
4183 queue_work(nvme_wq, &ctrl->ana_work);
4186 case NVME_AER_NOTICE_DISC_CHANGED:
4187 ctrl->aen_result = result;
4190 dev_warn(ctrl->device, "async event result %08x\n", result);
4194 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4195 volatile union nvme_result *res)
4197 u32 result = le32_to_cpu(res->u32);
4198 u32 aer_type = result & 0x07;
4200 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4204 case NVME_AER_NOTICE:
4205 nvme_handle_aen_notice(ctrl, result);
4207 case NVME_AER_ERROR:
4208 case NVME_AER_SMART:
4211 trace_nvme_async_event(ctrl, aer_type);
4212 ctrl->aen_result = result;
4217 queue_work(nvme_wq, &ctrl->async_event_work);
4219 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4221 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4223 nvme_mpath_stop(ctrl);
4224 nvme_stop_keep_alive(ctrl);
4225 nvme_stop_failfast_work(ctrl);
4226 flush_work(&ctrl->async_event_work);
4227 cancel_work_sync(&ctrl->fw_act_work);
4229 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4231 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4233 nvme_start_keep_alive(ctrl);
4235 nvme_enable_aen(ctrl);
4237 if (ctrl->queue_count > 1) {
4238 nvme_queue_scan(ctrl);
4239 nvme_start_queues(ctrl);
4242 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4244 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4246 nvme_hwmon_exit(ctrl);
4247 nvme_fault_inject_fini(&ctrl->fault_inject);
4248 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4249 cdev_device_del(&ctrl->cdev, ctrl->device);
4250 nvme_put_ctrl(ctrl);
4252 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4254 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4256 struct nvme_effects_log *cel;
4259 xa_for_each(&ctrl->cels, i, cel) {
4260 xa_erase(&ctrl->cels, i);
4264 xa_destroy(&ctrl->cels);
4267 static void nvme_free_ctrl(struct device *dev)
4269 struct nvme_ctrl *ctrl =
4270 container_of(dev, struct nvme_ctrl, ctrl_device);
4271 struct nvme_subsystem *subsys = ctrl->subsys;
4273 if (!subsys || ctrl->instance != subsys->instance)
4274 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4276 nvme_free_cels(ctrl);
4277 nvme_mpath_uninit(ctrl);
4278 __free_page(ctrl->discard_page);
4281 mutex_lock(&nvme_subsystems_lock);
4282 list_del(&ctrl->subsys_entry);
4283 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4284 mutex_unlock(&nvme_subsystems_lock);
4287 ctrl->ops->free_ctrl(ctrl);
4290 nvme_put_subsystem(subsys);
4294 * Initialize a NVMe controller structures. This needs to be called during
4295 * earliest initialization so that we have the initialized structured around
4298 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4299 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4303 ctrl->state = NVME_CTRL_NEW;
4304 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4305 spin_lock_init(&ctrl->lock);
4306 mutex_init(&ctrl->scan_lock);
4307 INIT_LIST_HEAD(&ctrl->namespaces);
4308 xa_init(&ctrl->cels);
4309 init_rwsem(&ctrl->namespaces_rwsem);
4312 ctrl->quirks = quirks;
4313 ctrl->numa_node = NUMA_NO_NODE;
4314 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4315 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4316 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4317 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4318 init_waitqueue_head(&ctrl->state_wq);
4320 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4321 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4322 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4323 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4325 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4327 ctrl->discard_page = alloc_page(GFP_KERNEL);
4328 if (!ctrl->discard_page) {
4333 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4336 ctrl->instance = ret;
4338 device_initialize(&ctrl->ctrl_device);
4339 ctrl->device = &ctrl->ctrl_device;
4340 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4342 ctrl->device->class = nvme_class;
4343 ctrl->device->parent = ctrl->dev;
4344 ctrl->device->groups = nvme_dev_attr_groups;
4345 ctrl->device->release = nvme_free_ctrl;
4346 dev_set_drvdata(ctrl->device, ctrl);
4347 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4349 goto out_release_instance;
4351 nvme_get_ctrl(ctrl);
4352 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4353 ctrl->cdev.owner = ops->module;
4354 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4359 * Initialize latency tolerance controls. The sysfs files won't
4360 * be visible to userspace unless the device actually supports APST.
4362 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4363 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4364 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4366 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4367 nvme_mpath_init_ctrl(ctrl);
4371 nvme_put_ctrl(ctrl);
4372 kfree_const(ctrl->device->kobj.name);
4373 out_release_instance:
4374 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4376 if (ctrl->discard_page)
4377 __free_page(ctrl->discard_page);
4380 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4383 * nvme_kill_queues(): Ends all namespace queues
4384 * @ctrl: the dead controller that needs to end
4386 * Call this function when the driver determines it is unable to get the
4387 * controller in a state capable of servicing IO.
4389 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4393 down_read(&ctrl->namespaces_rwsem);
4395 /* Forcibly unquiesce queues to avoid blocking dispatch */
4396 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4397 blk_mq_unquiesce_queue(ctrl->admin_q);
4399 list_for_each_entry(ns, &ctrl->namespaces, list)
4400 nvme_set_queue_dying(ns);
4402 up_read(&ctrl->namespaces_rwsem);
4404 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4406 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4410 down_read(&ctrl->namespaces_rwsem);
4411 list_for_each_entry(ns, &ctrl->namespaces, list)
4412 blk_mq_unfreeze_queue(ns->queue);
4413 up_read(&ctrl->namespaces_rwsem);
4415 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4417 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4421 down_read(&ctrl->namespaces_rwsem);
4422 list_for_each_entry(ns, &ctrl->namespaces, list) {
4423 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4427 up_read(&ctrl->namespaces_rwsem);
4430 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4432 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4436 down_read(&ctrl->namespaces_rwsem);
4437 list_for_each_entry(ns, &ctrl->namespaces, list)
4438 blk_mq_freeze_queue_wait(ns->queue);
4439 up_read(&ctrl->namespaces_rwsem);
4441 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4443 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4447 down_read(&ctrl->namespaces_rwsem);
4448 list_for_each_entry(ns, &ctrl->namespaces, list)
4449 blk_freeze_queue_start(ns->queue);
4450 up_read(&ctrl->namespaces_rwsem);
4452 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4454 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4458 down_read(&ctrl->namespaces_rwsem);
4459 list_for_each_entry(ns, &ctrl->namespaces, list)
4460 blk_mq_quiesce_queue(ns->queue);
4461 up_read(&ctrl->namespaces_rwsem);
4463 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4465 void nvme_start_queues(struct nvme_ctrl *ctrl)
4469 down_read(&ctrl->namespaces_rwsem);
4470 list_for_each_entry(ns, &ctrl->namespaces, list)
4471 blk_mq_unquiesce_queue(ns->queue);
4472 up_read(&ctrl->namespaces_rwsem);
4474 EXPORT_SYMBOL_GPL(nvme_start_queues);
4476 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4480 down_read(&ctrl->namespaces_rwsem);
4481 list_for_each_entry(ns, &ctrl->namespaces, list)
4482 blk_sync_queue(ns->queue);
4483 up_read(&ctrl->namespaces_rwsem);
4485 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4487 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4489 nvme_sync_io_queues(ctrl);
4491 blk_sync_queue(ctrl->admin_q);
4493 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4495 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4497 if (file->f_op != &nvme_dev_fops)
4499 return file->private_data;
4501 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4504 * Check we didn't inadvertently grow the command structure sizes:
4506 static inline void _nvme_check_size(void)
4508 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4509 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4510 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4511 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4512 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4513 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4514 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4515 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4516 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4517 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4518 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4519 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4520 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4521 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4522 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4523 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4524 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4525 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4526 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4527 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4531 static int __init nvme_core_init(void)
4533 int result = -ENOMEM;
4537 nvme_wq = alloc_workqueue("nvme-wq",
4538 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4542 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4543 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4547 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4548 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4549 if (!nvme_delete_wq)
4550 goto destroy_reset_wq;
4552 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4553 NVME_MINORS, "nvme");
4555 goto destroy_delete_wq;
4557 nvme_class = class_create(THIS_MODULE, "nvme");
4558 if (IS_ERR(nvme_class)) {
4559 result = PTR_ERR(nvme_class);
4560 goto unregister_chrdev;
4562 nvme_class->dev_uevent = nvme_class_uevent;
4564 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4565 if (IS_ERR(nvme_subsys_class)) {
4566 result = PTR_ERR(nvme_subsys_class);
4570 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4573 goto destroy_subsys_class;
4575 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4576 if (IS_ERR(nvme_ns_chr_class)) {
4577 result = PTR_ERR(nvme_ns_chr_class);
4578 goto unregister_generic_ns;
4583 unregister_generic_ns:
4584 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4585 destroy_subsys_class:
4586 class_destroy(nvme_subsys_class);
4588 class_destroy(nvme_class);
4590 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4592 destroy_workqueue(nvme_delete_wq);
4594 destroy_workqueue(nvme_reset_wq);
4596 destroy_workqueue(nvme_wq);
4601 static void __exit nvme_core_exit(void)
4603 class_destroy(nvme_ns_chr_class);
4604 class_destroy(nvme_subsys_class);
4605 class_destroy(nvme_class);
4606 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4607 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4608 destroy_workqueue(nvme_delete_wq);
4609 destroy_workqueue(nvme_reset_wq);
4610 destroy_workqueue(nvme_wq);
4611 ida_destroy(&nvme_ns_chr_minor_ida);
4612 ida_destroy(&nvme_instance_ida);
4615 MODULE_LICENSE("GPL");
4616 MODULE_VERSION("1.0");
4617 module_init(nvme_core_init);
4618 module_exit(nvme_core_exit);