f3c037f5a9ba058f2f811fee80b6c41bb3b7fdf1
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/t10-pi.h>
23 #include <linux/pm_qos.h>
24 #include <asm/unaligned.h>
25
26 #include "nvme.h"
27 #include "fabrics.h"
28
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31
32 #define NVME_MINORS             (1U << MINORBITS)
33
34 unsigned int admin_timeout = 60;
35 module_param(admin_timeout, uint, 0644);
36 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
37 EXPORT_SYMBOL_GPL(admin_timeout);
38
39 unsigned int nvme_io_timeout = 30;
40 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
41 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
42 EXPORT_SYMBOL_GPL(nvme_io_timeout);
43
44 static unsigned char shutdown_timeout = 5;
45 module_param(shutdown_timeout, byte, 0644);
46 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
47
48 static u8 nvme_max_retries = 5;
49 module_param_named(max_retries, nvme_max_retries, byte, 0644);
50 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
51
52 static unsigned long default_ps_max_latency_us = 100000;
53 module_param(default_ps_max_latency_us, ulong, 0644);
54 MODULE_PARM_DESC(default_ps_max_latency_us,
55                  "max power saving latency for new devices; use PM QOS to change per device");
56
57 static bool force_apst;
58 module_param(force_apst, bool, 0644);
59 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
60
61 static bool streams;
62 module_param(streams, bool, 0644);
63 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
64
65 /*
66  * nvme_wq - hosts nvme related works that are not reset or delete
67  * nvme_reset_wq - hosts nvme reset works
68  * nvme_delete_wq - hosts nvme delete works
69  *
70  * nvme_wq will host works such as scan, aen handling, fw activation,
71  * keep-alive, periodic reconnects etc. nvme_reset_wq
72  * runs reset works which also flush works hosted on nvme_wq for
73  * serialization purposes. nvme_delete_wq host controller deletion
74  * works which flush reset works for serialization.
75  */
76 struct workqueue_struct *nvme_wq;
77 EXPORT_SYMBOL_GPL(nvme_wq);
78
79 struct workqueue_struct *nvme_reset_wq;
80 EXPORT_SYMBOL_GPL(nvme_reset_wq);
81
82 struct workqueue_struct *nvme_delete_wq;
83 EXPORT_SYMBOL_GPL(nvme_delete_wq);
84
85 static LIST_HEAD(nvme_subsystems);
86 static DEFINE_MUTEX(nvme_subsystems_lock);
87
88 static DEFINE_IDA(nvme_instance_ida);
89 static dev_t nvme_chr_devt;
90 static struct class *nvme_class;
91 static struct class *nvme_subsys_class;
92
93 static int nvme_revalidate_disk(struct gendisk *disk);
94 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
95 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
96                                            unsigned nsid);
97
98 static void nvme_set_queue_dying(struct nvme_ns *ns)
99 {
100         /*
101          * Revalidating a dead namespace sets capacity to 0. This will end
102          * buffered writers dirtying pages that can't be synced.
103          */
104         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
105                 return;
106         blk_set_queue_dying(ns->queue);
107         /* Forcibly unquiesce queues to avoid blocking dispatch */
108         blk_mq_unquiesce_queue(ns->queue);
109         /*
110          * Revalidate after unblocking dispatchers that may be holding bd_butex
111          */
112         revalidate_disk(ns->disk);
113 }
114
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117         /*
118          * Only new queue scan work when admin and IO queues are both alive
119          */
120         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121                 queue_work(nvme_wq, &ctrl->scan_work);
122 }
123
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132         if (ctrl->state != NVME_CTRL_RESETTING)
133                 return -EBUSY;
134         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135                 return -EBUSY;
136         return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139
140 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
141 {
142         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
143                 return -EBUSY;
144         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
145                 return -EBUSY;
146         return 0;
147 }
148 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
149
150 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
151 {
152         int ret;
153
154         ret = nvme_reset_ctrl(ctrl);
155         if (!ret) {
156                 flush_work(&ctrl->reset_work);
157                 if (ctrl->state != NVME_CTRL_LIVE)
158                         ret = -ENETRESET;
159         }
160
161         return ret;
162 }
163 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
164
165 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
166 {
167         dev_info(ctrl->device,
168                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
169
170         flush_work(&ctrl->reset_work);
171         nvme_stop_ctrl(ctrl);
172         nvme_remove_namespaces(ctrl);
173         ctrl->ops->delete_ctrl(ctrl);
174         nvme_uninit_ctrl(ctrl);
175 }
176
177 static void nvme_delete_ctrl_work(struct work_struct *work)
178 {
179         struct nvme_ctrl *ctrl =
180                 container_of(work, struct nvme_ctrl, delete_work);
181
182         nvme_do_delete_ctrl(ctrl);
183 }
184
185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 {
187         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188                 return -EBUSY;
189         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190                 return -EBUSY;
191         return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194
195 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197         /*
198          * Keep a reference until nvme_do_delete_ctrl() complete,
199          * since ->delete_ctrl can free the controller.
200          */
201         nvme_get_ctrl(ctrl);
202         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
203                 nvme_do_delete_ctrl(ctrl);
204         nvme_put_ctrl(ctrl);
205 }
206
207 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
208 {
209         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
210 }
211
212 static blk_status_t nvme_error_status(u16 status)
213 {
214         switch (status & 0x7ff) {
215         case NVME_SC_SUCCESS:
216                 return BLK_STS_OK;
217         case NVME_SC_CAP_EXCEEDED:
218                 return BLK_STS_NOSPC;
219         case NVME_SC_LBA_RANGE:
220         case NVME_SC_CMD_INTERRUPTED:
221         case NVME_SC_NS_NOT_READY:
222                 return BLK_STS_TARGET;
223         case NVME_SC_BAD_ATTRIBUTES:
224         case NVME_SC_ONCS_NOT_SUPPORTED:
225         case NVME_SC_INVALID_OPCODE:
226         case NVME_SC_INVALID_FIELD:
227         case NVME_SC_INVALID_NS:
228                 return BLK_STS_NOTSUPP;
229         case NVME_SC_WRITE_FAULT:
230         case NVME_SC_READ_ERROR:
231         case NVME_SC_UNWRITTEN_BLOCK:
232         case NVME_SC_ACCESS_DENIED:
233         case NVME_SC_READ_ONLY:
234         case NVME_SC_COMPARE_FAILED:
235                 return BLK_STS_MEDIUM;
236         case NVME_SC_GUARD_CHECK:
237         case NVME_SC_APPTAG_CHECK:
238         case NVME_SC_REFTAG_CHECK:
239         case NVME_SC_INVALID_PI:
240                 return BLK_STS_PROTECTION;
241         case NVME_SC_RESERVATION_CONFLICT:
242                 return BLK_STS_NEXUS;
243         case NVME_SC_HOST_PATH_ERROR:
244                 return BLK_STS_TRANSPORT;
245         default:
246                 return BLK_STS_IOERR;
247         }
248 }
249
250 static inline bool nvme_req_needs_retry(struct request *req)
251 {
252         if (blk_noretry_request(req))
253                 return false;
254         if (nvme_req(req)->status & NVME_SC_DNR)
255                 return false;
256         if (nvme_req(req)->retries >= nvme_max_retries)
257                 return false;
258         return true;
259 }
260
261 static void nvme_retry_req(struct request *req)
262 {
263         struct nvme_ns *ns = req->q->queuedata;
264         unsigned long delay = 0;
265         u16 crd;
266
267         /* The mask and shift result must be <= 3 */
268         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
269         if (ns && crd)
270                 delay = ns->ctrl->crdt[crd - 1] * 100;
271
272         nvme_req(req)->retries++;
273         blk_mq_requeue_request(req, false);
274         blk_mq_delay_kick_requeue_list(req->q, delay);
275 }
276
277 void nvme_complete_rq(struct request *req)
278 {
279         blk_status_t status = nvme_error_status(nvme_req(req)->status);
280
281         trace_nvme_complete_rq(req);
282
283         nvme_cleanup_cmd(req);
284
285         if (nvme_req(req)->ctrl->kas)
286                 nvme_req(req)->ctrl->comp_seen = true;
287
288         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
289                 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
290                         return;
291
292                 if (!blk_queue_dying(req->q)) {
293                         nvme_retry_req(req);
294                         return;
295                 }
296         }
297
298         nvme_trace_bio_complete(req, status);
299         blk_mq_end_request(req, status);
300 }
301 EXPORT_SYMBOL_GPL(nvme_complete_rq);
302
303 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
304 {
305         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
306                                 "Cancelling I/O %d", req->tag);
307
308         /* don't abort one completed request */
309         if (blk_mq_request_completed(req))
310                 return true;
311
312         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
313         blk_mq_complete_request(req);
314         return true;
315 }
316 EXPORT_SYMBOL_GPL(nvme_cancel_request);
317
318 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
319                 enum nvme_ctrl_state new_state)
320 {
321         enum nvme_ctrl_state old_state;
322         unsigned long flags;
323         bool changed = false;
324
325         spin_lock_irqsave(&ctrl->lock, flags);
326
327         old_state = ctrl->state;
328         switch (new_state) {
329         case NVME_CTRL_LIVE:
330                 switch (old_state) {
331                 case NVME_CTRL_NEW:
332                 case NVME_CTRL_RESETTING:
333                 case NVME_CTRL_CONNECTING:
334                         changed = true;
335                         /* FALLTHRU */
336                 default:
337                         break;
338                 }
339                 break;
340         case NVME_CTRL_RESETTING:
341                 switch (old_state) {
342                 case NVME_CTRL_NEW:
343                 case NVME_CTRL_LIVE:
344                         changed = true;
345                         /* FALLTHRU */
346                 default:
347                         break;
348                 }
349                 break;
350         case NVME_CTRL_CONNECTING:
351                 switch (old_state) {
352                 case NVME_CTRL_NEW:
353                 case NVME_CTRL_RESETTING:
354                         changed = true;
355                         /* FALLTHRU */
356                 default:
357                         break;
358                 }
359                 break;
360         case NVME_CTRL_DELETING:
361                 switch (old_state) {
362                 case NVME_CTRL_LIVE:
363                 case NVME_CTRL_RESETTING:
364                 case NVME_CTRL_CONNECTING:
365                         changed = true;
366                         /* FALLTHRU */
367                 default:
368                         break;
369                 }
370                 break;
371         case NVME_CTRL_DEAD:
372                 switch (old_state) {
373                 case NVME_CTRL_DELETING:
374                         changed = true;
375                         /* FALLTHRU */
376                 default:
377                         break;
378                 }
379                 break;
380         default:
381                 break;
382         }
383
384         if (changed) {
385                 ctrl->state = new_state;
386                 wake_up_all(&ctrl->state_wq);
387         }
388
389         spin_unlock_irqrestore(&ctrl->lock, flags);
390         if (changed && ctrl->state == NVME_CTRL_LIVE)
391                 nvme_kick_requeue_lists(ctrl);
392         return changed;
393 }
394 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
395
396 /*
397  * Returns true for sink states that can't ever transition back to live.
398  */
399 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
400 {
401         switch (ctrl->state) {
402         case NVME_CTRL_NEW:
403         case NVME_CTRL_LIVE:
404         case NVME_CTRL_RESETTING:
405         case NVME_CTRL_CONNECTING:
406                 return false;
407         case NVME_CTRL_DELETING:
408         case NVME_CTRL_DEAD:
409                 return true;
410         default:
411                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
412                 return true;
413         }
414 }
415
416 /*
417  * Waits for the controller state to be resetting, or returns false if it is
418  * not possible to ever transition to that state.
419  */
420 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
421 {
422         wait_event(ctrl->state_wq,
423                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
424                    nvme_state_terminal(ctrl));
425         return ctrl->state == NVME_CTRL_RESETTING;
426 }
427 EXPORT_SYMBOL_GPL(nvme_wait_reset);
428
429 static void nvme_free_ns_head(struct kref *ref)
430 {
431         struct nvme_ns_head *head =
432                 container_of(ref, struct nvme_ns_head, ref);
433
434         nvme_mpath_remove_disk(head);
435         ida_simple_remove(&head->subsys->ns_ida, head->instance);
436         list_del_init(&head->entry);
437         cleanup_srcu_struct(&head->srcu);
438         nvme_put_subsystem(head->subsys);
439         kfree(head);
440 }
441
442 static void nvme_put_ns_head(struct nvme_ns_head *head)
443 {
444         kref_put(&head->ref, nvme_free_ns_head);
445 }
446
447 static void nvme_free_ns(struct kref *kref)
448 {
449         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
450
451         if (ns->ndev)
452                 nvme_nvm_unregister(ns);
453
454         put_disk(ns->disk);
455         nvme_put_ns_head(ns->head);
456         nvme_put_ctrl(ns->ctrl);
457         kfree(ns);
458 }
459
460 static void nvme_put_ns(struct nvme_ns *ns)
461 {
462         kref_put(&ns->kref, nvme_free_ns);
463 }
464
465 static inline void nvme_clear_nvme_request(struct request *req)
466 {
467         if (!(req->rq_flags & RQF_DONTPREP)) {
468                 nvme_req(req)->retries = 0;
469                 nvme_req(req)->flags = 0;
470                 req->rq_flags |= RQF_DONTPREP;
471         }
472 }
473
474 struct request *nvme_alloc_request(struct request_queue *q,
475                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
476 {
477         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
478         struct request *req;
479
480         if (qid == NVME_QID_ANY) {
481                 req = blk_mq_alloc_request(q, op, flags);
482         } else {
483                 req = blk_mq_alloc_request_hctx(q, op, flags,
484                                 qid ? qid - 1 : 0);
485         }
486         if (IS_ERR(req))
487                 return req;
488
489         req->cmd_flags |= REQ_FAILFAST_DRIVER;
490         nvme_clear_nvme_request(req);
491         nvme_req(req)->cmd = cmd;
492
493         return req;
494 }
495 EXPORT_SYMBOL_GPL(nvme_alloc_request);
496
497 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
498 {
499         struct nvme_command c;
500
501         memset(&c, 0, sizeof(c));
502
503         c.directive.opcode = nvme_admin_directive_send;
504         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
505         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
506         c.directive.dtype = NVME_DIR_IDENTIFY;
507         c.directive.tdtype = NVME_DIR_STREAMS;
508         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
509
510         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
511 }
512
513 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
514 {
515         return nvme_toggle_streams(ctrl, false);
516 }
517
518 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
519 {
520         return nvme_toggle_streams(ctrl, true);
521 }
522
523 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
524                                   struct streams_directive_params *s, u32 nsid)
525 {
526         struct nvme_command c;
527
528         memset(&c, 0, sizeof(c));
529         memset(s, 0, sizeof(*s));
530
531         c.directive.opcode = nvme_admin_directive_recv;
532         c.directive.nsid = cpu_to_le32(nsid);
533         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
534         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
535         c.directive.dtype = NVME_DIR_STREAMS;
536
537         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
538 }
539
540 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
541 {
542         struct streams_directive_params s;
543         int ret;
544
545         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
546                 return 0;
547         if (!streams)
548                 return 0;
549
550         ret = nvme_enable_streams(ctrl);
551         if (ret)
552                 return ret;
553
554         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
555         if (ret)
556                 return ret;
557
558         ctrl->nssa = le16_to_cpu(s.nssa);
559         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
560                 dev_info(ctrl->device, "too few streams (%u) available\n",
561                                         ctrl->nssa);
562                 nvme_disable_streams(ctrl);
563                 return 0;
564         }
565
566         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
567         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
568         return 0;
569 }
570
571 /*
572  * Check if 'req' has a write hint associated with it. If it does, assign
573  * a valid namespace stream to the write.
574  */
575 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
576                                      struct request *req, u16 *control,
577                                      u32 *dsmgmt)
578 {
579         enum rw_hint streamid = req->write_hint;
580
581         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
582                 streamid = 0;
583         else {
584                 streamid--;
585                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
586                         return;
587
588                 *control |= NVME_RW_DTYPE_STREAMS;
589                 *dsmgmt |= streamid << 16;
590         }
591
592         if (streamid < ARRAY_SIZE(req->q->write_hints))
593                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
594 }
595
596 static inline void nvme_setup_flush(struct nvme_ns *ns,
597                 struct nvme_command *cmnd)
598 {
599         cmnd->common.opcode = nvme_cmd_flush;
600         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
601 }
602
603 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
604                 struct nvme_command *cmnd)
605 {
606         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
607         struct nvme_dsm_range *range;
608         struct bio *bio;
609
610         /*
611          * Some devices do not consider the DSM 'Number of Ranges' field when
612          * determining how much data to DMA. Always allocate memory for maximum
613          * number of segments to prevent device reading beyond end of buffer.
614          */
615         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
616
617         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
618         if (!range) {
619                 /*
620                  * If we fail allocation our range, fallback to the controller
621                  * discard page. If that's also busy, it's safe to return
622                  * busy, as we know we can make progress once that's freed.
623                  */
624                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
625                         return BLK_STS_RESOURCE;
626
627                 range = page_address(ns->ctrl->discard_page);
628         }
629
630         __rq_for_each_bio(bio, req) {
631                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
632                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
633
634                 if (n < segments) {
635                         range[n].cattr = cpu_to_le32(0);
636                         range[n].nlb = cpu_to_le32(nlb);
637                         range[n].slba = cpu_to_le64(slba);
638                 }
639                 n++;
640         }
641
642         if (WARN_ON_ONCE(n != segments)) {
643                 if (virt_to_page(range) == ns->ctrl->discard_page)
644                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
645                 else
646                         kfree(range);
647                 return BLK_STS_IOERR;
648         }
649
650         cmnd->dsm.opcode = nvme_cmd_dsm;
651         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
652         cmnd->dsm.nr = cpu_to_le32(segments - 1);
653         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
654
655         req->special_vec.bv_page = virt_to_page(range);
656         req->special_vec.bv_offset = offset_in_page(range);
657         req->special_vec.bv_len = alloc_size;
658         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
659
660         return BLK_STS_OK;
661 }
662
663 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
664                 struct request *req, struct nvme_command *cmnd)
665 {
666         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
667                 return nvme_setup_discard(ns, req, cmnd);
668
669         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
670         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
671         cmnd->write_zeroes.slba =
672                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
673         cmnd->write_zeroes.length =
674                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
675         cmnd->write_zeroes.control = 0;
676         return BLK_STS_OK;
677 }
678
679 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
680                 struct request *req, struct nvme_command *cmnd)
681 {
682         struct nvme_ctrl *ctrl = ns->ctrl;
683         u16 control = 0;
684         u32 dsmgmt = 0;
685
686         if (req->cmd_flags & REQ_FUA)
687                 control |= NVME_RW_FUA;
688         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
689                 control |= NVME_RW_LR;
690
691         if (req->cmd_flags & REQ_RAHEAD)
692                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
693
694         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
695         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
696         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
697         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
698
699         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
700                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
701
702         if (ns->ms) {
703                 /*
704                  * If formated with metadata, the block layer always provides a
705                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
706                  * we enable the PRACT bit for protection information or set the
707                  * namespace capacity to zero to prevent any I/O.
708                  */
709                 if (!blk_integrity_rq(req)) {
710                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
711                                 return BLK_STS_NOTSUPP;
712                         control |= NVME_RW_PRINFO_PRACT;
713                 }
714
715                 switch (ns->pi_type) {
716                 case NVME_NS_DPS_PI_TYPE3:
717                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
718                         break;
719                 case NVME_NS_DPS_PI_TYPE1:
720                 case NVME_NS_DPS_PI_TYPE2:
721                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
722                                         NVME_RW_PRINFO_PRCHK_REF;
723                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
724                         break;
725                 }
726         }
727
728         cmnd->rw.control = cpu_to_le16(control);
729         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
730         return 0;
731 }
732
733 void nvme_cleanup_cmd(struct request *req)
734 {
735         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
736                 struct nvme_ns *ns = req->rq_disk->private_data;
737                 struct page *page = req->special_vec.bv_page;
738
739                 if (page == ns->ctrl->discard_page)
740                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
741                 else
742                         kfree(page_address(page) + req->special_vec.bv_offset);
743         }
744 }
745 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
746
747 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
748                 struct nvme_command *cmd)
749 {
750         blk_status_t ret = BLK_STS_OK;
751
752         nvme_clear_nvme_request(req);
753
754         memset(cmd, 0, sizeof(*cmd));
755         switch (req_op(req)) {
756         case REQ_OP_DRV_IN:
757         case REQ_OP_DRV_OUT:
758                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
759                 break;
760         case REQ_OP_FLUSH:
761                 nvme_setup_flush(ns, cmd);
762                 break;
763         case REQ_OP_WRITE_ZEROES:
764                 ret = nvme_setup_write_zeroes(ns, req, cmd);
765                 break;
766         case REQ_OP_DISCARD:
767                 ret = nvme_setup_discard(ns, req, cmd);
768                 break;
769         case REQ_OP_READ:
770         case REQ_OP_WRITE:
771                 ret = nvme_setup_rw(ns, req, cmd);
772                 break;
773         default:
774                 WARN_ON_ONCE(1);
775                 return BLK_STS_IOERR;
776         }
777
778         cmd->common.command_id = req->tag;
779         trace_nvme_setup_cmd(req, cmd);
780         return ret;
781 }
782 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
783
784 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
785 {
786         struct completion *waiting = rq->end_io_data;
787
788         rq->end_io_data = NULL;
789         complete(waiting);
790 }
791
792 static void nvme_execute_rq_polled(struct request_queue *q,
793                 struct gendisk *bd_disk, struct request *rq, int at_head)
794 {
795         DECLARE_COMPLETION_ONSTACK(wait);
796
797         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
798
799         rq->cmd_flags |= REQ_HIPRI;
800         rq->end_io_data = &wait;
801         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
802
803         while (!completion_done(&wait)) {
804                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
805                 cond_resched();
806         }
807 }
808
809 /*
810  * Returns 0 on success.  If the result is negative, it's a Linux error code;
811  * if the result is positive, it's an NVM Express status code
812  */
813 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
814                 union nvme_result *result, void *buffer, unsigned bufflen,
815                 unsigned timeout, int qid, int at_head,
816                 blk_mq_req_flags_t flags, bool poll)
817 {
818         struct request *req;
819         int ret;
820
821         req = nvme_alloc_request(q, cmd, flags, qid);
822         if (IS_ERR(req))
823                 return PTR_ERR(req);
824
825         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
826
827         if (buffer && bufflen) {
828                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
829                 if (ret)
830                         goto out;
831         }
832
833         if (poll)
834                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
835         else
836                 blk_execute_rq(req->q, NULL, req, at_head);
837         if (result)
838                 *result = nvme_req(req)->result;
839         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
840                 ret = -EINTR;
841         else
842                 ret = nvme_req(req)->status;
843  out:
844         blk_mq_free_request(req);
845         return ret;
846 }
847 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
848
849 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
850                 void *buffer, unsigned bufflen)
851 {
852         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
853                         NVME_QID_ANY, 0, 0, false);
854 }
855 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
856
857 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
858                 unsigned len, u32 seed, bool write)
859 {
860         struct bio_integrity_payload *bip;
861         int ret = -ENOMEM;
862         void *buf;
863
864         buf = kmalloc(len, GFP_KERNEL);
865         if (!buf)
866                 goto out;
867
868         ret = -EFAULT;
869         if (write && copy_from_user(buf, ubuf, len))
870                 goto out_free_meta;
871
872         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
873         if (IS_ERR(bip)) {
874                 ret = PTR_ERR(bip);
875                 goto out_free_meta;
876         }
877
878         bip->bip_iter.bi_size = len;
879         bip->bip_iter.bi_sector = seed;
880         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
881                         offset_in_page(buf));
882         if (ret == len)
883                 return buf;
884         ret = -ENOMEM;
885 out_free_meta:
886         kfree(buf);
887 out:
888         return ERR_PTR(ret);
889 }
890
891 static int nvme_submit_user_cmd(struct request_queue *q,
892                 struct nvme_command *cmd, void __user *ubuffer,
893                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
894                 u32 meta_seed, u64 *result, unsigned timeout)
895 {
896         bool write = nvme_is_write(cmd);
897         struct nvme_ns *ns = q->queuedata;
898         struct gendisk *disk = ns ? ns->disk : NULL;
899         struct request *req;
900         struct bio *bio = NULL;
901         void *meta = NULL;
902         int ret;
903
904         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
905         if (IS_ERR(req))
906                 return PTR_ERR(req);
907
908         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
909         nvme_req(req)->flags |= NVME_REQ_USERCMD;
910
911         if (ubuffer && bufflen) {
912                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
913                                 GFP_KERNEL);
914                 if (ret)
915                         goto out;
916                 bio = req->bio;
917                 bio->bi_disk = disk;
918                 if (disk && meta_buffer && meta_len) {
919                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
920                                         meta_seed, write);
921                         if (IS_ERR(meta)) {
922                                 ret = PTR_ERR(meta);
923                                 goto out_unmap;
924                         }
925                         req->cmd_flags |= REQ_INTEGRITY;
926                 }
927         }
928
929         blk_execute_rq(req->q, disk, req, 0);
930         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
931                 ret = -EINTR;
932         else
933                 ret = nvme_req(req)->status;
934         if (result)
935                 *result = le64_to_cpu(nvme_req(req)->result.u64);
936         if (meta && !ret && !write) {
937                 if (copy_to_user(meta_buffer, meta, meta_len))
938                         ret = -EFAULT;
939         }
940         kfree(meta);
941  out_unmap:
942         if (bio)
943                 blk_rq_unmap_user(bio);
944  out:
945         blk_mq_free_request(req);
946         return ret;
947 }
948
949 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
950 {
951         struct nvme_ctrl *ctrl = rq->end_io_data;
952         unsigned long flags;
953         bool startka = false;
954
955         blk_mq_free_request(rq);
956
957         if (status) {
958                 dev_err(ctrl->device,
959                         "failed nvme_keep_alive_end_io error=%d\n",
960                                 status);
961                 return;
962         }
963
964         ctrl->comp_seen = false;
965         spin_lock_irqsave(&ctrl->lock, flags);
966         if (ctrl->state == NVME_CTRL_LIVE ||
967             ctrl->state == NVME_CTRL_CONNECTING)
968                 startka = true;
969         spin_unlock_irqrestore(&ctrl->lock, flags);
970         if (startka)
971                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
972 }
973
974 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
975 {
976         struct request *rq;
977
978         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
979                         NVME_QID_ANY);
980         if (IS_ERR(rq))
981                 return PTR_ERR(rq);
982
983         rq->timeout = ctrl->kato * HZ;
984         rq->end_io_data = ctrl;
985
986         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
987
988         return 0;
989 }
990
991 static void nvme_keep_alive_work(struct work_struct *work)
992 {
993         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
994                         struct nvme_ctrl, ka_work);
995         bool comp_seen = ctrl->comp_seen;
996
997         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
998                 dev_dbg(ctrl->device,
999                         "reschedule traffic based keep-alive timer\n");
1000                 ctrl->comp_seen = false;
1001                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1002                 return;
1003         }
1004
1005         if (nvme_keep_alive(ctrl)) {
1006                 /* allocation failure, reset the controller */
1007                 dev_err(ctrl->device, "keep-alive failed\n");
1008                 nvme_reset_ctrl(ctrl);
1009                 return;
1010         }
1011 }
1012
1013 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1014 {
1015         if (unlikely(ctrl->kato == 0))
1016                 return;
1017
1018         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1019 }
1020
1021 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1022 {
1023         if (unlikely(ctrl->kato == 0))
1024                 return;
1025
1026         cancel_delayed_work_sync(&ctrl->ka_work);
1027 }
1028 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1029
1030 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1031 {
1032         struct nvme_command c = { };
1033         int error;
1034
1035         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1036         c.identify.opcode = nvme_admin_identify;
1037         c.identify.cns = NVME_ID_CNS_CTRL;
1038
1039         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1040         if (!*id)
1041                 return -ENOMEM;
1042
1043         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1044                         sizeof(struct nvme_id_ctrl));
1045         if (error)
1046                 kfree(*id);
1047         return error;
1048 }
1049
1050 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1051                 struct nvme_ns_id_desc *cur)
1052 {
1053         const char *warn_str = "ctrl returned bogus length:";
1054         void *data = cur;
1055
1056         switch (cur->nidt) {
1057         case NVME_NIDT_EUI64:
1058                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1059                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1060                                  warn_str, cur->nidl);
1061                         return -1;
1062                 }
1063                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1064                 return NVME_NIDT_EUI64_LEN;
1065         case NVME_NIDT_NGUID:
1066                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1067                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1068                                  warn_str, cur->nidl);
1069                         return -1;
1070                 }
1071                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1072                 return NVME_NIDT_NGUID_LEN;
1073         case NVME_NIDT_UUID:
1074                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1075                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1076                                  warn_str, cur->nidl);
1077                         return -1;
1078                 }
1079                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1080                 return NVME_NIDT_UUID_LEN;
1081         default:
1082                 /* Skip unknown types */
1083                 return cur->nidl;
1084         }
1085 }
1086
1087 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1088                 struct nvme_ns_ids *ids)
1089 {
1090         struct nvme_command c = { };
1091         int status;
1092         void *data;
1093         int pos;
1094         int len;
1095
1096         c.identify.opcode = nvme_admin_identify;
1097         c.identify.nsid = cpu_to_le32(nsid);
1098         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1099
1100         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1101         if (!data)
1102                 return -ENOMEM;
1103
1104         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1105                                       NVME_IDENTIFY_DATA_SIZE);
1106         if (status) {
1107                 dev_warn(ctrl->device,
1108                         "Identify Descriptors failed (%d)\n", status);
1109                  /*
1110                   * Don't treat an error as fatal, as we potentially already
1111                   * have a NGUID or EUI-64.
1112                   */
1113                 if (status > 0 && !(status & NVME_SC_DNR))
1114                         status = 0;
1115                 goto free_data;
1116         }
1117
1118         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1119                 struct nvme_ns_id_desc *cur = data + pos;
1120
1121                 if (cur->nidl == 0)
1122                         break;
1123
1124                 len = nvme_process_ns_desc(ctrl, ids, cur);
1125                 if (len < 0)
1126                         goto free_data;
1127
1128                 len += sizeof(*cur);
1129         }
1130 free_data:
1131         kfree(data);
1132         return status;
1133 }
1134
1135 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1136 {
1137         struct nvme_command c = { };
1138
1139         c.identify.opcode = nvme_admin_identify;
1140         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1141         c.identify.nsid = cpu_to_le32(nsid);
1142         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1143                                     NVME_IDENTIFY_DATA_SIZE);
1144 }
1145
1146 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1147                 unsigned nsid, struct nvme_id_ns **id)
1148 {
1149         struct nvme_command c = { };
1150         int error;
1151
1152         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1153         c.identify.opcode = nvme_admin_identify;
1154         c.identify.nsid = cpu_to_le32(nsid);
1155         c.identify.cns = NVME_ID_CNS_NS;
1156
1157         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1158         if (!*id)
1159                 return -ENOMEM;
1160
1161         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1162         if (error) {
1163                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1164                 kfree(*id);
1165         }
1166
1167         return error;
1168 }
1169
1170 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1171                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1172 {
1173         union nvme_result res = { 0 };
1174         struct nvme_command c;
1175         int ret;
1176
1177         memset(&c, 0, sizeof(c));
1178         c.features.opcode = op;
1179         c.features.fid = cpu_to_le32(fid);
1180         c.features.dword11 = cpu_to_le32(dword11);
1181
1182         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1183                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1184         if (ret >= 0 && result)
1185                 *result = le32_to_cpu(res.u32);
1186         return ret;
1187 }
1188
1189 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1190                       unsigned int dword11, void *buffer, size_t buflen,
1191                       u32 *result)
1192 {
1193         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1194                              buflen, result);
1195 }
1196 EXPORT_SYMBOL_GPL(nvme_set_features);
1197
1198 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1199                       unsigned int dword11, void *buffer, size_t buflen,
1200                       u32 *result)
1201 {
1202         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1203                              buflen, result);
1204 }
1205 EXPORT_SYMBOL_GPL(nvme_get_features);
1206
1207 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1208 {
1209         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1210         u32 result;
1211         int status, nr_io_queues;
1212
1213         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1214                         &result);
1215         if (status < 0)
1216                 return status;
1217
1218         /*
1219          * Degraded controllers might return an error when setting the queue
1220          * count.  We still want to be able to bring them online and offer
1221          * access to the admin queue, as that might be only way to fix them up.
1222          */
1223         if (status > 0) {
1224                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1225                 *count = 0;
1226         } else {
1227                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1228                 *count = min(*count, nr_io_queues);
1229         }
1230
1231         return 0;
1232 }
1233 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1234
1235 #define NVME_AEN_SUPPORTED \
1236         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1237          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1238
1239 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1240 {
1241         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1242         int status;
1243
1244         if (!supported_aens)
1245                 return;
1246
1247         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1248                         NULL, 0, &result);
1249         if (status)
1250                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1251                          supported_aens);
1252
1253         queue_work(nvme_wq, &ctrl->async_event_work);
1254 }
1255
1256 /*
1257  * Convert integer values from ioctl structures to user pointers, silently
1258  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1259  * kernels.
1260  */
1261 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1262 {
1263         if (in_compat_syscall())
1264                 ptrval = (compat_uptr_t)ptrval;
1265         return (void __user *)ptrval;
1266 }
1267
1268 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1269 {
1270         struct nvme_user_io io;
1271         struct nvme_command c;
1272         unsigned length, meta_len;
1273         void __user *metadata;
1274
1275         if (copy_from_user(&io, uio, sizeof(io)))
1276                 return -EFAULT;
1277         if (io.flags)
1278                 return -EINVAL;
1279
1280         switch (io.opcode) {
1281         case nvme_cmd_write:
1282         case nvme_cmd_read:
1283         case nvme_cmd_compare:
1284                 break;
1285         default:
1286                 return -EINVAL;
1287         }
1288
1289         length = (io.nblocks + 1) << ns->lba_shift;
1290         meta_len = (io.nblocks + 1) * ns->ms;
1291         metadata = nvme_to_user_ptr(io.metadata);
1292
1293         if (ns->ext) {
1294                 length += meta_len;
1295                 meta_len = 0;
1296         } else if (meta_len) {
1297                 if ((io.metadata & 3) || !io.metadata)
1298                         return -EINVAL;
1299         }
1300
1301         memset(&c, 0, sizeof(c));
1302         c.rw.opcode = io.opcode;
1303         c.rw.flags = io.flags;
1304         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1305         c.rw.slba = cpu_to_le64(io.slba);
1306         c.rw.length = cpu_to_le16(io.nblocks);
1307         c.rw.control = cpu_to_le16(io.control);
1308         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1309         c.rw.reftag = cpu_to_le32(io.reftag);
1310         c.rw.apptag = cpu_to_le16(io.apptag);
1311         c.rw.appmask = cpu_to_le16(io.appmask);
1312
1313         return nvme_submit_user_cmd(ns->queue, &c,
1314                         nvme_to_user_ptr(io.addr), length,
1315                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1316 }
1317
1318 static u32 nvme_known_admin_effects(u8 opcode)
1319 {
1320         switch (opcode) {
1321         case nvme_admin_format_nvm:
1322                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1323                                         NVME_CMD_EFFECTS_CSE_MASK;
1324         case nvme_admin_sanitize_nvm:
1325                 return NVME_CMD_EFFECTS_CSE_MASK;
1326         default:
1327                 break;
1328         }
1329         return 0;
1330 }
1331
1332 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1333                                                                 u8 opcode)
1334 {
1335         u32 effects = 0;
1336
1337         if (ns) {
1338                 if (ctrl->effects)
1339                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1340                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1341                         dev_warn(ctrl->device,
1342                                  "IO command:%02x has unhandled effects:%08x\n",
1343                                  opcode, effects);
1344                 return 0;
1345         }
1346
1347         if (ctrl->effects)
1348                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1349         effects |= nvme_known_admin_effects(opcode);
1350
1351         /*
1352          * For simplicity, IO to all namespaces is quiesced even if the command
1353          * effects say only one namespace is affected.
1354          */
1355         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1356                 mutex_lock(&ctrl->scan_lock);
1357                 mutex_lock(&ctrl->subsys->lock);
1358                 nvme_mpath_start_freeze(ctrl->subsys);
1359                 nvme_mpath_wait_freeze(ctrl->subsys);
1360                 nvme_start_freeze(ctrl);
1361                 nvme_wait_freeze(ctrl);
1362         }
1363         return effects;
1364 }
1365
1366 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1367 {
1368         struct nvme_ns *ns;
1369
1370         down_read(&ctrl->namespaces_rwsem);
1371         list_for_each_entry(ns, &ctrl->namespaces, list)
1372                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1373                         nvme_set_queue_dying(ns);
1374         up_read(&ctrl->namespaces_rwsem);
1375 }
1376
1377 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1378 {
1379         /*
1380          * Revalidate LBA changes prior to unfreezing. This is necessary to
1381          * prevent memory corruption if a logical block size was changed by
1382          * this command.
1383          */
1384         if (effects & NVME_CMD_EFFECTS_LBCC)
1385                 nvme_update_formats(ctrl);
1386         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1387                 nvme_unfreeze(ctrl);
1388                 nvme_mpath_unfreeze(ctrl->subsys);
1389                 mutex_unlock(&ctrl->subsys->lock);
1390                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1391                 mutex_unlock(&ctrl->scan_lock);
1392         }
1393         if (effects & NVME_CMD_EFFECTS_CCC)
1394                 nvme_init_identify(ctrl);
1395         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1396                 nvme_queue_scan(ctrl);
1397 }
1398
1399 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1400                         struct nvme_passthru_cmd __user *ucmd)
1401 {
1402         struct nvme_passthru_cmd cmd;
1403         struct nvme_command c;
1404         unsigned timeout = 0;
1405         u32 effects;
1406         u64 result;
1407         int status;
1408
1409         if (!capable(CAP_SYS_ADMIN))
1410                 return -EACCES;
1411         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1412                 return -EFAULT;
1413         if (cmd.flags)
1414                 return -EINVAL;
1415
1416         memset(&c, 0, sizeof(c));
1417         c.common.opcode = cmd.opcode;
1418         c.common.flags = cmd.flags;
1419         c.common.nsid = cpu_to_le32(cmd.nsid);
1420         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1421         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1422         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1423         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1424         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1425         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1426         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1427         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1428
1429         if (cmd.timeout_ms)
1430                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1431
1432         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1433         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1434                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1435                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1436                         0, &result, timeout);
1437         nvme_passthru_end(ctrl, effects);
1438
1439         if (status >= 0) {
1440                 if (put_user(result, &ucmd->result))
1441                         return -EFAULT;
1442         }
1443
1444         return status;
1445 }
1446
1447 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1448                         struct nvme_passthru_cmd64 __user *ucmd)
1449 {
1450         struct nvme_passthru_cmd64 cmd;
1451         struct nvme_command c;
1452         unsigned timeout = 0;
1453         u32 effects;
1454         int status;
1455
1456         if (!capable(CAP_SYS_ADMIN))
1457                 return -EACCES;
1458         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1459                 return -EFAULT;
1460         if (cmd.flags)
1461                 return -EINVAL;
1462
1463         memset(&c, 0, sizeof(c));
1464         c.common.opcode = cmd.opcode;
1465         c.common.flags = cmd.flags;
1466         c.common.nsid = cpu_to_le32(cmd.nsid);
1467         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1468         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1469         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1470         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1471         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1472         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1473         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1474         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1475
1476         if (cmd.timeout_ms)
1477                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1478
1479         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1480         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1481                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1482                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1483                         0, &cmd.result, timeout);
1484         nvme_passthru_end(ctrl, effects);
1485
1486         if (status >= 0) {
1487                 if (put_user(cmd.result, &ucmd->result))
1488                         return -EFAULT;
1489         }
1490
1491         return status;
1492 }
1493
1494 /*
1495  * Issue ioctl requests on the first available path.  Note that unlike normal
1496  * block layer requests we will not retry failed request on another controller.
1497  */
1498 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1499                 struct nvme_ns_head **head, int *srcu_idx)
1500 {
1501 #ifdef CONFIG_NVME_MULTIPATH
1502         if (disk->fops == &nvme_ns_head_ops) {
1503                 struct nvme_ns *ns;
1504
1505                 *head = disk->private_data;
1506                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1507                 ns = nvme_find_path(*head);
1508                 if (!ns)
1509                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1510                 return ns;
1511         }
1512 #endif
1513         *head = NULL;
1514         *srcu_idx = -1;
1515         return disk->private_data;
1516 }
1517
1518 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1519 {
1520         if (head)
1521                 srcu_read_unlock(&head->srcu, idx);
1522 }
1523
1524 static bool is_ctrl_ioctl(unsigned int cmd)
1525 {
1526         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1527                 return true;
1528         if (is_sed_ioctl(cmd))
1529                 return true;
1530         return false;
1531 }
1532
1533 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1534                                   void __user *argp,
1535                                   struct nvme_ns_head *head,
1536                                   int srcu_idx)
1537 {
1538         struct nvme_ctrl *ctrl = ns->ctrl;
1539         int ret;
1540
1541         nvme_get_ctrl(ns->ctrl);
1542         nvme_put_ns_from_disk(head, srcu_idx);
1543
1544         switch (cmd) {
1545         case NVME_IOCTL_ADMIN_CMD:
1546                 ret = nvme_user_cmd(ctrl, NULL, argp);
1547                 break;
1548         case NVME_IOCTL_ADMIN64_CMD:
1549                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1550                 break;
1551         default:
1552                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1553                 break;
1554         }
1555         nvme_put_ctrl(ctrl);
1556         return ret;
1557 }
1558
1559 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1560                 unsigned int cmd, unsigned long arg)
1561 {
1562         struct nvme_ns_head *head = NULL;
1563         void __user *argp = (void __user *)arg;
1564         struct nvme_ns *ns;
1565         int srcu_idx, ret;
1566
1567         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1568         if (unlikely(!ns))
1569                 return -EWOULDBLOCK;
1570
1571         /*
1572          * Handle ioctls that apply to the controller instead of the namespace
1573          * seperately and drop the ns SRCU reference early.  This avoids a
1574          * deadlock when deleting namespaces using the passthrough interface.
1575          */
1576         if (is_ctrl_ioctl(cmd))
1577                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1578
1579         switch (cmd) {
1580         case NVME_IOCTL_ID:
1581                 force_successful_syscall_return();
1582                 ret = ns->head->ns_id;
1583                 break;
1584         case NVME_IOCTL_IO_CMD:
1585                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1586                 break;
1587         case NVME_IOCTL_SUBMIT_IO:
1588                 ret = nvme_submit_io(ns, argp);
1589                 break;
1590         case NVME_IOCTL_IO64_CMD:
1591                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1592                 break;
1593         default:
1594                 if (ns->ndev)
1595                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1596                 else
1597                         ret = -ENOTTY;
1598         }
1599
1600         nvme_put_ns_from_disk(head, srcu_idx);
1601         return ret;
1602 }
1603
1604 #ifdef CONFIG_COMPAT
1605 struct nvme_user_io32 {
1606         __u8    opcode;
1607         __u8    flags;
1608         __u16   control;
1609         __u16   nblocks;
1610         __u16   rsvd;
1611         __u64   metadata;
1612         __u64   addr;
1613         __u64   slba;
1614         __u32   dsmgmt;
1615         __u32   reftag;
1616         __u16   apptag;
1617         __u16   appmask;
1618 } __attribute__((__packed__));
1619
1620 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1621
1622 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1623                 unsigned int cmd, unsigned long arg)
1624 {
1625         /*
1626          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1627          * between 32 bit programs and 64 bit kernel.
1628          * The cause is that the results of sizeof(struct nvme_user_io),
1629          * which is used to define NVME_IOCTL_SUBMIT_IO,
1630          * are not same between 32 bit compiler and 64 bit compiler.
1631          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1632          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1633          * Other IOCTL numbers are same between 32 bit and 64 bit.
1634          * So there is nothing to do regarding to other IOCTL numbers.
1635          */
1636         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1637                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1638
1639         return nvme_ioctl(bdev, mode, cmd, arg);
1640 }
1641 #else
1642 #define nvme_compat_ioctl       NULL
1643 #endif /* CONFIG_COMPAT */
1644
1645 static int nvme_open(struct block_device *bdev, fmode_t mode)
1646 {
1647         struct nvme_ns *ns = bdev->bd_disk->private_data;
1648
1649 #ifdef CONFIG_NVME_MULTIPATH
1650         /* should never be called due to GENHD_FL_HIDDEN */
1651         if (WARN_ON_ONCE(ns->head->disk))
1652                 goto fail;
1653 #endif
1654         if (!kref_get_unless_zero(&ns->kref))
1655                 goto fail;
1656         if (!try_module_get(ns->ctrl->ops->module))
1657                 goto fail_put_ns;
1658
1659         return 0;
1660
1661 fail_put_ns:
1662         nvme_put_ns(ns);
1663 fail:
1664         return -ENXIO;
1665 }
1666
1667 static void nvme_release(struct gendisk *disk, fmode_t mode)
1668 {
1669         struct nvme_ns *ns = disk->private_data;
1670
1671         module_put(ns->ctrl->ops->module);
1672         nvme_put_ns(ns);
1673 }
1674
1675 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1676 {
1677         /* some standard values */
1678         geo->heads = 1 << 6;
1679         geo->sectors = 1 << 5;
1680         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1681         return 0;
1682 }
1683
1684 #ifdef CONFIG_BLK_DEV_INTEGRITY
1685 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1686 {
1687         struct blk_integrity integrity;
1688
1689         memset(&integrity, 0, sizeof(integrity));
1690         switch (pi_type) {
1691         case NVME_NS_DPS_PI_TYPE3:
1692                 integrity.profile = &t10_pi_type3_crc;
1693                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1694                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1695                 break;
1696         case NVME_NS_DPS_PI_TYPE1:
1697         case NVME_NS_DPS_PI_TYPE2:
1698                 integrity.profile = &t10_pi_type1_crc;
1699                 integrity.tag_size = sizeof(u16);
1700                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1701                 break;
1702         default:
1703                 integrity.profile = NULL;
1704                 break;
1705         }
1706         integrity.tuple_size = ms;
1707         blk_integrity_register(disk, &integrity);
1708         blk_queue_max_integrity_segments(disk->queue, 1);
1709 }
1710 #else
1711 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1712 {
1713 }
1714 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1715
1716 static void nvme_set_chunk_size(struct nvme_ns *ns)
1717 {
1718         u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1719         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1720 }
1721
1722 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1723 {
1724         struct nvme_ctrl *ctrl = ns->ctrl;
1725         struct request_queue *queue = disk->queue;
1726         u32 size = queue_logical_block_size(queue);
1727
1728         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1729                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1730                 return;
1731         }
1732
1733         if (ctrl->nr_streams && ns->sws && ns->sgs)
1734                 size *= ns->sws * ns->sgs;
1735
1736         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1737                         NVME_DSM_MAX_RANGES);
1738
1739         queue->limits.discard_alignment = 0;
1740         queue->limits.discard_granularity = size;
1741
1742         /* If discard is already enabled, don't reset queue limits */
1743         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1744                 return;
1745
1746         blk_queue_max_discard_sectors(queue, UINT_MAX);
1747         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1748
1749         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1750                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1751 }
1752
1753 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1754 {
1755         u64 max_blocks;
1756
1757         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1758             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1759                 return;
1760         /*
1761          * Even though NVMe spec explicitly states that MDTS is not
1762          * applicable to the write-zeroes:- "The restriction does not apply to
1763          * commands that do not transfer data between the host and the
1764          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1765          * In order to be more cautious use controller's max_hw_sectors value
1766          * to configure the maximum sectors for the write-zeroes which is
1767          * configured based on the controller's MDTS field in the
1768          * nvme_init_identify() if available.
1769          */
1770         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1771                 max_blocks = (u64)USHRT_MAX + 1;
1772         else
1773                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1774
1775         blk_queue_max_write_zeroes_sectors(disk->queue,
1776                                            nvme_lba_to_sect(ns, max_blocks));
1777 }
1778
1779 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1780                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1781 {
1782         memset(ids, 0, sizeof(*ids));
1783
1784         if (ctrl->vs >= NVME_VS(1, 1, 0))
1785                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1786         if (ctrl->vs >= NVME_VS(1, 2, 0))
1787                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1788         if (ctrl->vs >= NVME_VS(1, 3, 0))
1789                 return nvme_identify_ns_descs(ctrl, nsid, ids);
1790         return 0;
1791 }
1792
1793 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1794 {
1795         return !uuid_is_null(&ids->uuid) ||
1796                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1797                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1798 }
1799
1800 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1801 {
1802         return uuid_equal(&a->uuid, &b->uuid) &&
1803                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1804                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1805 }
1806
1807 static void nvme_update_disk_info(struct gendisk *disk,
1808                 struct nvme_ns *ns, struct nvme_id_ns *id)
1809 {
1810         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1811         unsigned short bs = 1 << ns->lba_shift;
1812         u32 atomic_bs, phys_bs, io_opt;
1813
1814         if (ns->lba_shift > PAGE_SHIFT) {
1815                 /* unsupported block size, set capacity to 0 later */
1816                 bs = (1 << 9);
1817         }
1818         blk_mq_freeze_queue(disk->queue);
1819         blk_integrity_unregister(disk);
1820
1821         if (id->nabo == 0) {
1822                 /*
1823                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1824                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1825                  * 0 then AWUPF must be used instead.
1826                  */
1827                 if (id->nsfeat & (1 << 1) && id->nawupf)
1828                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1829                 else
1830                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1831         } else {
1832                 atomic_bs = bs;
1833         }
1834         phys_bs = bs;
1835         io_opt = bs;
1836         if (id->nsfeat & (1 << 4)) {
1837                 /* NPWG = Namespace Preferred Write Granularity */
1838                 phys_bs *= 1 + le16_to_cpu(id->npwg);
1839                 /* NOWS = Namespace Optimal Write Size */
1840                 io_opt *= 1 + le16_to_cpu(id->nows);
1841         }
1842
1843         blk_queue_logical_block_size(disk->queue, bs);
1844         /*
1845          * Linux filesystems assume writing a single physical block is
1846          * an atomic operation. Hence limit the physical block size to the
1847          * value of the Atomic Write Unit Power Fail parameter.
1848          */
1849         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1850         blk_queue_io_min(disk->queue, phys_bs);
1851         blk_queue_io_opt(disk->queue, io_opt);
1852
1853         if (ns->ms && !ns->ext &&
1854             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1855                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1856         if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1857             ns->lba_shift > PAGE_SHIFT)
1858                 capacity = 0;
1859
1860         set_capacity_revalidate_and_notify(disk, capacity, false);
1861
1862         nvme_config_discard(disk, ns);
1863         nvme_config_write_zeroes(disk, ns);
1864
1865         if (id->nsattr & (1 << 0))
1866                 set_disk_ro(disk, true);
1867         else
1868                 set_disk_ro(disk, false);
1869
1870         blk_mq_unfreeze_queue(disk->queue);
1871 }
1872
1873 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1874 {
1875         struct nvme_ns *ns = disk->private_data;
1876
1877         /*
1878          * If identify namespace failed, use default 512 byte block size so
1879          * block layer can use before failing read/write for 0 capacity.
1880          */
1881         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1882         if (ns->lba_shift == 0)
1883                 ns->lba_shift = 9;
1884         ns->noiob = le16_to_cpu(id->noiob);
1885         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1886         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1887         /* the PI implementation requires metadata equal t10 pi tuple size */
1888         if (ns->ms == sizeof(struct t10_pi_tuple))
1889                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1890         else
1891                 ns->pi_type = 0;
1892
1893         if (ns->noiob)
1894                 nvme_set_chunk_size(ns);
1895         nvme_update_disk_info(disk, ns, id);
1896 #ifdef CONFIG_NVME_MULTIPATH
1897         if (ns->head->disk) {
1898                 nvme_update_disk_info(ns->head->disk, ns, id);
1899                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1900                 if (bdi_cap_stable_pages_required(ns->queue->backing_dev_info)) {
1901                         struct backing_dev_info *info =
1902                                 ns->head->disk->queue->backing_dev_info;
1903
1904                         info->capabilities |= BDI_CAP_STABLE_WRITES;
1905                 }
1906
1907                 revalidate_disk(ns->head->disk);
1908         }
1909 #endif
1910 }
1911
1912 static int nvme_revalidate_disk(struct gendisk *disk)
1913 {
1914         struct nvme_ns *ns = disk->private_data;
1915         struct nvme_ctrl *ctrl = ns->ctrl;
1916         struct nvme_id_ns *id;
1917         struct nvme_ns_ids ids;
1918         int ret = 0;
1919
1920         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1921                 set_capacity(disk, 0);
1922                 return -ENODEV;
1923         }
1924
1925         ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1926         if (ret)
1927                 goto out;
1928
1929         if (id->ncap == 0) {
1930                 ret = -ENODEV;
1931                 goto free_id;
1932         }
1933
1934         __nvme_revalidate_disk(disk, id);
1935         ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1936         if (ret)
1937                 goto free_id;
1938
1939         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1940                 dev_err(ctrl->device,
1941                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1942                 ret = -ENODEV;
1943         }
1944
1945 free_id:
1946         kfree(id);
1947 out:
1948         /*
1949          * Only fail the function if we got a fatal error back from the
1950          * device, otherwise ignore the error and just move on.
1951          */
1952         if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1953                 ret = 0;
1954         else if (ret > 0)
1955                 ret = blk_status_to_errno(nvme_error_status(ret));
1956         return ret;
1957 }
1958
1959 static char nvme_pr_type(enum pr_type type)
1960 {
1961         switch (type) {
1962         case PR_WRITE_EXCLUSIVE:
1963                 return 1;
1964         case PR_EXCLUSIVE_ACCESS:
1965                 return 2;
1966         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1967                 return 3;
1968         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1969                 return 4;
1970         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1971                 return 5;
1972         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1973                 return 6;
1974         default:
1975                 return 0;
1976         }
1977 };
1978
1979 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1980                                 u64 key, u64 sa_key, u8 op)
1981 {
1982         struct nvme_ns_head *head = NULL;
1983         struct nvme_ns *ns;
1984         struct nvme_command c;
1985         int srcu_idx, ret;
1986         u8 data[16] = { 0, };
1987
1988         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1989         if (unlikely(!ns))
1990                 return -EWOULDBLOCK;
1991
1992         put_unaligned_le64(key, &data[0]);
1993         put_unaligned_le64(sa_key, &data[8]);
1994
1995         memset(&c, 0, sizeof(c));
1996         c.common.opcode = op;
1997         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1998         c.common.cdw10 = cpu_to_le32(cdw10);
1999
2000         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2001         nvme_put_ns_from_disk(head, srcu_idx);
2002         return ret;
2003 }
2004
2005 static int nvme_pr_register(struct block_device *bdev, u64 old,
2006                 u64 new, unsigned flags)
2007 {
2008         u32 cdw10;
2009
2010         if (flags & ~PR_FL_IGNORE_KEY)
2011                 return -EOPNOTSUPP;
2012
2013         cdw10 = old ? 2 : 0;
2014         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2015         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2016         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2017 }
2018
2019 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2020                 enum pr_type type, unsigned flags)
2021 {
2022         u32 cdw10;
2023
2024         if (flags & ~PR_FL_IGNORE_KEY)
2025                 return -EOPNOTSUPP;
2026
2027         cdw10 = nvme_pr_type(type) << 8;
2028         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2029         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2030 }
2031
2032 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2033                 enum pr_type type, bool abort)
2034 {
2035         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2036         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2037 }
2038
2039 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2040 {
2041         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2042         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2043 }
2044
2045 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2046 {
2047         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2048         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2049 }
2050
2051 static const struct pr_ops nvme_pr_ops = {
2052         .pr_register    = nvme_pr_register,
2053         .pr_reserve     = nvme_pr_reserve,
2054         .pr_release     = nvme_pr_release,
2055         .pr_preempt     = nvme_pr_preempt,
2056         .pr_clear       = nvme_pr_clear,
2057 };
2058
2059 #ifdef CONFIG_BLK_SED_OPAL
2060 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2061                 bool send)
2062 {
2063         struct nvme_ctrl *ctrl = data;
2064         struct nvme_command cmd;
2065
2066         memset(&cmd, 0, sizeof(cmd));
2067         if (send)
2068                 cmd.common.opcode = nvme_admin_security_send;
2069         else
2070                 cmd.common.opcode = nvme_admin_security_recv;
2071         cmd.common.nsid = 0;
2072         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2073         cmd.common.cdw11 = cpu_to_le32(len);
2074
2075         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2076                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2077 }
2078 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2079 #endif /* CONFIG_BLK_SED_OPAL */
2080
2081 static const struct block_device_operations nvme_fops = {
2082         .owner          = THIS_MODULE,
2083         .ioctl          = nvme_ioctl,
2084         .compat_ioctl   = nvme_compat_ioctl,
2085         .open           = nvme_open,
2086         .release        = nvme_release,
2087         .getgeo         = nvme_getgeo,
2088         .revalidate_disk= nvme_revalidate_disk,
2089         .pr_ops         = &nvme_pr_ops,
2090 };
2091
2092 #ifdef CONFIG_NVME_MULTIPATH
2093 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2094 {
2095         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2096
2097         if (!kref_get_unless_zero(&head->ref))
2098                 return -ENXIO;
2099         return 0;
2100 }
2101
2102 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2103 {
2104         nvme_put_ns_head(disk->private_data);
2105 }
2106
2107 const struct block_device_operations nvme_ns_head_ops = {
2108         .owner          = THIS_MODULE,
2109         .open           = nvme_ns_head_open,
2110         .release        = nvme_ns_head_release,
2111         .ioctl          = nvme_ioctl,
2112         .compat_ioctl   = nvme_compat_ioctl,
2113         .getgeo         = nvme_getgeo,
2114         .pr_ops         = &nvme_pr_ops,
2115 };
2116 #endif /* CONFIG_NVME_MULTIPATH */
2117
2118 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2119 {
2120         unsigned long timeout =
2121                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2122         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2123         int ret;
2124
2125         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2126                 if (csts == ~0)
2127                         return -ENODEV;
2128                 if ((csts & NVME_CSTS_RDY) == bit)
2129                         break;
2130
2131                 usleep_range(1000, 2000);
2132                 if (fatal_signal_pending(current))
2133                         return -EINTR;
2134                 if (time_after(jiffies, timeout)) {
2135                         dev_err(ctrl->device,
2136                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2137                                 enabled ? "initialisation" : "reset", csts);
2138                         return -ENODEV;
2139                 }
2140         }
2141
2142         return ret;
2143 }
2144
2145 /*
2146  * If the device has been passed off to us in an enabled state, just clear
2147  * the enabled bit.  The spec says we should set the 'shutdown notification
2148  * bits', but doing so may cause the device to complete commands to the
2149  * admin queue ... and we don't know what memory that might be pointing at!
2150  */
2151 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2152 {
2153         int ret;
2154
2155         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2156         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2157
2158         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2159         if (ret)
2160                 return ret;
2161
2162         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2163                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2164
2165         return nvme_wait_ready(ctrl, ctrl->cap, false);
2166 }
2167 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2168
2169 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2170 {
2171         /*
2172          * Default to a 4K page size, with the intention to update this
2173          * path in the future to accomodate architectures with differing
2174          * kernel and IO page sizes.
2175          */
2176         unsigned dev_page_min, page_shift = 12;
2177         int ret;
2178
2179         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2180         if (ret) {
2181                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2182                 return ret;
2183         }
2184         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2185
2186         if (page_shift < dev_page_min) {
2187                 dev_err(ctrl->device,
2188                         "Minimum device page size %u too large for host (%u)\n",
2189                         1 << dev_page_min, 1 << page_shift);
2190                 return -ENODEV;
2191         }
2192
2193         ctrl->page_size = 1 << page_shift;
2194
2195         ctrl->ctrl_config = NVME_CC_CSS_NVM;
2196         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2197         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2198         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2199         ctrl->ctrl_config |= NVME_CC_ENABLE;
2200
2201         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2202         if (ret)
2203                 return ret;
2204         return nvme_wait_ready(ctrl, ctrl->cap, true);
2205 }
2206 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2207
2208 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2209 {
2210         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2211         u32 csts;
2212         int ret;
2213
2214         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2215         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2216
2217         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2218         if (ret)
2219                 return ret;
2220
2221         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2222                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2223                         break;
2224
2225                 msleep(100);
2226                 if (fatal_signal_pending(current))
2227                         return -EINTR;
2228                 if (time_after(jiffies, timeout)) {
2229                         dev_err(ctrl->device,
2230                                 "Device shutdown incomplete; abort shutdown\n");
2231                         return -ENODEV;
2232                 }
2233         }
2234
2235         return ret;
2236 }
2237 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2238
2239 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2240                 struct request_queue *q)
2241 {
2242         bool vwc = false;
2243
2244         if (ctrl->max_hw_sectors) {
2245                 u32 max_segments =
2246                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2247
2248                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2249                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2250                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2251         }
2252         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2253             is_power_of_2(ctrl->max_hw_sectors))
2254                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2255         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2256         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2257                 vwc = true;
2258         blk_queue_write_cache(q, vwc, vwc);
2259 }
2260
2261 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2262 {
2263         __le64 ts;
2264         int ret;
2265
2266         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2267                 return 0;
2268
2269         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2270         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2271                         NULL);
2272         if (ret)
2273                 dev_warn_once(ctrl->device,
2274                         "could not set timestamp (%d)\n", ret);
2275         return ret;
2276 }
2277
2278 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2279 {
2280         struct nvme_feat_host_behavior *host;
2281         int ret;
2282
2283         /* Don't bother enabling the feature if retry delay is not reported */
2284         if (!ctrl->crdt[0])
2285                 return 0;
2286
2287         host = kzalloc(sizeof(*host), GFP_KERNEL);
2288         if (!host)
2289                 return 0;
2290
2291         host->acre = NVME_ENABLE_ACRE;
2292         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2293                                 host, sizeof(*host), NULL);
2294         kfree(host);
2295         return ret;
2296 }
2297
2298 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2299 {
2300         /*
2301          * APST (Autonomous Power State Transition) lets us program a
2302          * table of power state transitions that the controller will
2303          * perform automatically.  We configure it with a simple
2304          * heuristic: we are willing to spend at most 2% of the time
2305          * transitioning between power states.  Therefore, when running
2306          * in any given state, we will enter the next lower-power
2307          * non-operational state after waiting 50 * (enlat + exlat)
2308          * microseconds, as long as that state's exit latency is under
2309          * the requested maximum latency.
2310          *
2311          * We will not autonomously enter any non-operational state for
2312          * which the total latency exceeds ps_max_latency_us.  Users
2313          * can set ps_max_latency_us to zero to turn off APST.
2314          */
2315
2316         unsigned apste;
2317         struct nvme_feat_auto_pst *table;
2318         u64 max_lat_us = 0;
2319         int max_ps = -1;
2320         int ret;
2321
2322         /*
2323          * If APST isn't supported or if we haven't been initialized yet,
2324          * then don't do anything.
2325          */
2326         if (!ctrl->apsta)
2327                 return 0;
2328
2329         if (ctrl->npss > 31) {
2330                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2331                 return 0;
2332         }
2333
2334         table = kzalloc(sizeof(*table), GFP_KERNEL);
2335         if (!table)
2336                 return 0;
2337
2338         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2339                 /* Turn off APST. */
2340                 apste = 0;
2341                 dev_dbg(ctrl->device, "APST disabled\n");
2342         } else {
2343                 __le64 target = cpu_to_le64(0);
2344                 int state;
2345
2346                 /*
2347                  * Walk through all states from lowest- to highest-power.
2348                  * According to the spec, lower-numbered states use more
2349                  * power.  NPSS, despite the name, is the index of the
2350                  * lowest-power state, not the number of states.
2351                  */
2352                 for (state = (int)ctrl->npss; state >= 0; state--) {
2353                         u64 total_latency_us, exit_latency_us, transition_ms;
2354
2355                         if (target)
2356                                 table->entries[state] = target;
2357
2358                         /*
2359                          * Don't allow transitions to the deepest state
2360                          * if it's quirked off.
2361                          */
2362                         if (state == ctrl->npss &&
2363                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2364                                 continue;
2365
2366                         /*
2367                          * Is this state a useful non-operational state for
2368                          * higher-power states to autonomously transition to?
2369                          */
2370                         if (!(ctrl->psd[state].flags &
2371                               NVME_PS_FLAGS_NON_OP_STATE))
2372                                 continue;
2373
2374                         exit_latency_us =
2375                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2376                         if (exit_latency_us > ctrl->ps_max_latency_us)
2377                                 continue;
2378
2379                         total_latency_us =
2380                                 exit_latency_us +
2381                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2382
2383                         /*
2384                          * This state is good.  Use it as the APST idle
2385                          * target for higher power states.
2386                          */
2387                         transition_ms = total_latency_us + 19;
2388                         do_div(transition_ms, 20);
2389                         if (transition_ms > (1 << 24) - 1)
2390                                 transition_ms = (1 << 24) - 1;
2391
2392                         target = cpu_to_le64((state << 3) |
2393                                              (transition_ms << 8));
2394
2395                         if (max_ps == -1)
2396                                 max_ps = state;
2397
2398                         if (total_latency_us > max_lat_us)
2399                                 max_lat_us = total_latency_us;
2400                 }
2401
2402                 apste = 1;
2403
2404                 if (max_ps == -1) {
2405                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2406                 } else {
2407                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2408                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2409                 }
2410         }
2411
2412         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2413                                 table, sizeof(*table), NULL);
2414         if (ret)
2415                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2416
2417         kfree(table);
2418         return ret;
2419 }
2420
2421 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2422 {
2423         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2424         u64 latency;
2425
2426         switch (val) {
2427         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2428         case PM_QOS_LATENCY_ANY:
2429                 latency = U64_MAX;
2430                 break;
2431
2432         default:
2433                 latency = val;
2434         }
2435
2436         if (ctrl->ps_max_latency_us != latency) {
2437                 ctrl->ps_max_latency_us = latency;
2438                 nvme_configure_apst(ctrl);
2439         }
2440 }
2441
2442 struct nvme_core_quirk_entry {
2443         /*
2444          * NVMe model and firmware strings are padded with spaces.  For
2445          * simplicity, strings in the quirk table are padded with NULLs
2446          * instead.
2447          */
2448         u16 vid;
2449         const char *mn;
2450         const char *fr;
2451         unsigned long quirks;
2452 };
2453
2454 static const struct nvme_core_quirk_entry core_quirks[] = {
2455         {
2456                 /*
2457                  * This Toshiba device seems to die using any APST states.  See:
2458                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2459                  */
2460                 .vid = 0x1179,
2461                 .mn = "THNSF5256GPUK TOSHIBA",
2462                 .quirks = NVME_QUIRK_NO_APST,
2463         },
2464         {
2465                 /*
2466                  * This LiteON CL1-3D*-Q11 firmware version has a race
2467                  * condition associated with actions related to suspend to idle
2468                  * LiteON has resolved the problem in future firmware
2469                  */
2470                 .vid = 0x14a4,
2471                 .fr = "22301111",
2472                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2473         }
2474 };
2475
2476 /* match is null-terminated but idstr is space-padded. */
2477 static bool string_matches(const char *idstr, const char *match, size_t len)
2478 {
2479         size_t matchlen;
2480
2481         if (!match)
2482                 return true;
2483
2484         matchlen = strlen(match);
2485         WARN_ON_ONCE(matchlen > len);
2486
2487         if (memcmp(idstr, match, matchlen))
2488                 return false;
2489
2490         for (; matchlen < len; matchlen++)
2491                 if (idstr[matchlen] != ' ')
2492                         return false;
2493
2494         return true;
2495 }
2496
2497 static bool quirk_matches(const struct nvme_id_ctrl *id,
2498                           const struct nvme_core_quirk_entry *q)
2499 {
2500         return q->vid == le16_to_cpu(id->vid) &&
2501                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2502                 string_matches(id->fr, q->fr, sizeof(id->fr));
2503 }
2504
2505 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2506                 struct nvme_id_ctrl *id)
2507 {
2508         size_t nqnlen;
2509         int off;
2510
2511         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2512                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2513                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2514                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2515                         return;
2516                 }
2517
2518                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2519                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2520         }
2521
2522         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2523         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2524                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2525                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2526         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2527         off += sizeof(id->sn);
2528         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2529         off += sizeof(id->mn);
2530         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2531 }
2532
2533 static void nvme_release_subsystem(struct device *dev)
2534 {
2535         struct nvme_subsystem *subsys =
2536                 container_of(dev, struct nvme_subsystem, dev);
2537
2538         if (subsys->instance >= 0)
2539                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2540         kfree(subsys);
2541 }
2542
2543 static void nvme_destroy_subsystem(struct kref *ref)
2544 {
2545         struct nvme_subsystem *subsys =
2546                         container_of(ref, struct nvme_subsystem, ref);
2547
2548         mutex_lock(&nvme_subsystems_lock);
2549         list_del(&subsys->entry);
2550         mutex_unlock(&nvme_subsystems_lock);
2551
2552         ida_destroy(&subsys->ns_ida);
2553         device_del(&subsys->dev);
2554         put_device(&subsys->dev);
2555 }
2556
2557 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2558 {
2559         kref_put(&subsys->ref, nvme_destroy_subsystem);
2560 }
2561
2562 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2563 {
2564         struct nvme_subsystem *subsys;
2565
2566         lockdep_assert_held(&nvme_subsystems_lock);
2567
2568         /*
2569          * Fail matches for discovery subsystems. This results
2570          * in each discovery controller bound to a unique subsystem.
2571          * This avoids issues with validating controller values
2572          * that can only be true when there is a single unique subsystem.
2573          * There may be multiple and completely independent entities
2574          * that provide discovery controllers.
2575          */
2576         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2577                 return NULL;
2578
2579         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2580                 if (strcmp(subsys->subnqn, subsysnqn))
2581                         continue;
2582                 if (!kref_get_unless_zero(&subsys->ref))
2583                         continue;
2584                 return subsys;
2585         }
2586
2587         return NULL;
2588 }
2589
2590 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2591         struct device_attribute subsys_attr_##_name = \
2592                 __ATTR(_name, _mode, _show, NULL)
2593
2594 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2595                                     struct device_attribute *attr,
2596                                     char *buf)
2597 {
2598         struct nvme_subsystem *subsys =
2599                 container_of(dev, struct nvme_subsystem, dev);
2600
2601         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2602 }
2603 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2604
2605 #define nvme_subsys_show_str_function(field)                            \
2606 static ssize_t subsys_##field##_show(struct device *dev,                \
2607                             struct device_attribute *attr, char *buf)   \
2608 {                                                                       \
2609         struct nvme_subsystem *subsys =                                 \
2610                 container_of(dev, struct nvme_subsystem, dev);          \
2611         return sprintf(buf, "%.*s\n",                                   \
2612                        (int)sizeof(subsys->field), subsys->field);      \
2613 }                                                                       \
2614 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2615
2616 nvme_subsys_show_str_function(model);
2617 nvme_subsys_show_str_function(serial);
2618 nvme_subsys_show_str_function(firmware_rev);
2619
2620 static struct attribute *nvme_subsys_attrs[] = {
2621         &subsys_attr_model.attr,
2622         &subsys_attr_serial.attr,
2623         &subsys_attr_firmware_rev.attr,
2624         &subsys_attr_subsysnqn.attr,
2625 #ifdef CONFIG_NVME_MULTIPATH
2626         &subsys_attr_iopolicy.attr,
2627 #endif
2628         NULL,
2629 };
2630
2631 static struct attribute_group nvme_subsys_attrs_group = {
2632         .attrs = nvme_subsys_attrs,
2633 };
2634
2635 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2636         &nvme_subsys_attrs_group,
2637         NULL,
2638 };
2639
2640 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2641                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2642 {
2643         struct nvme_ctrl *tmp;
2644
2645         lockdep_assert_held(&nvme_subsystems_lock);
2646
2647         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2648                 if (nvme_state_terminal(tmp))
2649                         continue;
2650
2651                 if (tmp->cntlid == ctrl->cntlid) {
2652                         dev_err(ctrl->device,
2653                                 "Duplicate cntlid %u with %s, rejecting\n",
2654                                 ctrl->cntlid, dev_name(tmp->device));
2655                         return false;
2656                 }
2657
2658                 if ((id->cmic & (1 << 1)) ||
2659                     (ctrl->opts && ctrl->opts->discovery_nqn))
2660                         continue;
2661
2662                 dev_err(ctrl->device,
2663                         "Subsystem does not support multiple controllers\n");
2664                 return false;
2665         }
2666
2667         return true;
2668 }
2669
2670 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2671 {
2672         struct nvme_subsystem *subsys, *found;
2673         int ret;
2674
2675         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2676         if (!subsys)
2677                 return -ENOMEM;
2678
2679         subsys->instance = -1;
2680         mutex_init(&subsys->lock);
2681         kref_init(&subsys->ref);
2682         INIT_LIST_HEAD(&subsys->ctrls);
2683         INIT_LIST_HEAD(&subsys->nsheads);
2684         nvme_init_subnqn(subsys, ctrl, id);
2685         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2686         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2687         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2688         subsys->vendor_id = le16_to_cpu(id->vid);
2689         subsys->cmic = id->cmic;
2690         subsys->awupf = le16_to_cpu(id->awupf);
2691 #ifdef CONFIG_NVME_MULTIPATH
2692         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2693 #endif
2694
2695         subsys->dev.class = nvme_subsys_class;
2696         subsys->dev.release = nvme_release_subsystem;
2697         subsys->dev.groups = nvme_subsys_attrs_groups;
2698         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2699         device_initialize(&subsys->dev);
2700
2701         mutex_lock(&nvme_subsystems_lock);
2702         found = __nvme_find_get_subsystem(subsys->subnqn);
2703         if (found) {
2704                 put_device(&subsys->dev);
2705                 subsys = found;
2706
2707                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2708                         ret = -EINVAL;
2709                         goto out_put_subsystem;
2710                 }
2711         } else {
2712                 ret = device_add(&subsys->dev);
2713                 if (ret) {
2714                         dev_err(ctrl->device,
2715                                 "failed to register subsystem device.\n");
2716                         put_device(&subsys->dev);
2717                         goto out_unlock;
2718                 }
2719                 ida_init(&subsys->ns_ida);
2720                 list_add_tail(&subsys->entry, &nvme_subsystems);
2721         }
2722
2723         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2724                                 dev_name(ctrl->device));
2725         if (ret) {
2726                 dev_err(ctrl->device,
2727                         "failed to create sysfs link from subsystem.\n");
2728                 goto out_put_subsystem;
2729         }
2730
2731         if (!found)
2732                 subsys->instance = ctrl->instance;
2733         ctrl->subsys = subsys;
2734         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2735         mutex_unlock(&nvme_subsystems_lock);
2736         return 0;
2737
2738 out_put_subsystem:
2739         nvme_put_subsystem(subsys);
2740 out_unlock:
2741         mutex_unlock(&nvme_subsystems_lock);
2742         return ret;
2743 }
2744
2745 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2746                 void *log, size_t size, u64 offset)
2747 {
2748         struct nvme_command c = { };
2749         unsigned long dwlen = size / 4 - 1;
2750
2751         c.get_log_page.opcode = nvme_admin_get_log_page;
2752         c.get_log_page.nsid = cpu_to_le32(nsid);
2753         c.get_log_page.lid = log_page;
2754         c.get_log_page.lsp = lsp;
2755         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2756         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2757         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2758         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2759
2760         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2761 }
2762
2763 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2764 {
2765         int ret;
2766
2767         if (!ctrl->effects)
2768                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2769
2770         if (!ctrl->effects)
2771                 return 0;
2772
2773         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2774                         ctrl->effects, sizeof(*ctrl->effects), 0);
2775         if (ret) {
2776                 kfree(ctrl->effects);
2777                 ctrl->effects = NULL;
2778         }
2779         return ret;
2780 }
2781
2782 /*
2783  * Initialize the cached copies of the Identify data and various controller
2784  * register in our nvme_ctrl structure.  This should be called as soon as
2785  * the admin queue is fully up and running.
2786  */
2787 int nvme_init_identify(struct nvme_ctrl *ctrl)
2788 {
2789         struct nvme_id_ctrl *id;
2790         int ret, page_shift;
2791         u32 max_hw_sectors;
2792         bool prev_apst_enabled;
2793
2794         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2795         if (ret) {
2796                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2797                 return ret;
2798         }
2799         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2800         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2801
2802         if (ctrl->vs >= NVME_VS(1, 1, 0))
2803                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2804
2805         ret = nvme_identify_ctrl(ctrl, &id);
2806         if (ret) {
2807                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2808                 return -EIO;
2809         }
2810
2811         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2812                 ret = nvme_get_effects_log(ctrl);
2813                 if (ret < 0)
2814                         goto out_free;
2815         }
2816
2817         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2818                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2819
2820         if (!ctrl->identified) {
2821                 int i;
2822
2823                 ret = nvme_init_subsystem(ctrl, id);
2824                 if (ret)
2825                         goto out_free;
2826
2827                 /*
2828                  * Check for quirks.  Quirk can depend on firmware version,
2829                  * so, in principle, the set of quirks present can change
2830                  * across a reset.  As a possible future enhancement, we
2831                  * could re-scan for quirks every time we reinitialize
2832                  * the device, but we'd have to make sure that the driver
2833                  * behaves intelligently if the quirks change.
2834                  */
2835                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2836                         if (quirk_matches(id, &core_quirks[i]))
2837                                 ctrl->quirks |= core_quirks[i].quirks;
2838                 }
2839         }
2840
2841         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2842                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2843                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2844         }
2845
2846         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2847         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2848         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2849
2850         ctrl->oacs = le16_to_cpu(id->oacs);
2851         ctrl->oncs = le16_to_cpu(id->oncs);
2852         ctrl->mtfa = le16_to_cpu(id->mtfa);
2853         ctrl->oaes = le32_to_cpu(id->oaes);
2854         ctrl->wctemp = le16_to_cpu(id->wctemp);
2855         ctrl->cctemp = le16_to_cpu(id->cctemp);
2856
2857         atomic_set(&ctrl->abort_limit, id->acl + 1);
2858         ctrl->vwc = id->vwc;
2859         if (id->mdts)
2860                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2861         else
2862                 max_hw_sectors = UINT_MAX;
2863         ctrl->max_hw_sectors =
2864                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2865
2866         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2867         ctrl->sgls = le32_to_cpu(id->sgls);
2868         ctrl->kas = le16_to_cpu(id->kas);
2869         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2870         ctrl->ctratt = le32_to_cpu(id->ctratt);
2871
2872         if (id->rtd3e) {
2873                 /* us -> s */
2874                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2875
2876                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2877                                                  shutdown_timeout, 60);
2878
2879                 if (ctrl->shutdown_timeout != shutdown_timeout)
2880                         dev_info(ctrl->device,
2881                                  "Shutdown timeout set to %u seconds\n",
2882                                  ctrl->shutdown_timeout);
2883         } else
2884                 ctrl->shutdown_timeout = shutdown_timeout;
2885
2886         ctrl->npss = id->npss;
2887         ctrl->apsta = id->apsta;
2888         prev_apst_enabled = ctrl->apst_enabled;
2889         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2890                 if (force_apst && id->apsta) {
2891                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2892                         ctrl->apst_enabled = true;
2893                 } else {
2894                         ctrl->apst_enabled = false;
2895                 }
2896         } else {
2897                 ctrl->apst_enabled = id->apsta;
2898         }
2899         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2900
2901         if (ctrl->ops->flags & NVME_F_FABRICS) {
2902                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2903                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2904                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2905                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2906
2907                 /*
2908                  * In fabrics we need to verify the cntlid matches the
2909                  * admin connect
2910                  */
2911                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2912                         dev_err(ctrl->device,
2913                                 "Mismatching cntlid: Connect %u vs Identify "
2914                                 "%u, rejecting\n",
2915                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
2916                         ret = -EINVAL;
2917                         goto out_free;
2918                 }
2919
2920                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2921                         dev_err(ctrl->device,
2922                                 "keep-alive support is mandatory for fabrics\n");
2923                         ret = -EINVAL;
2924                         goto out_free;
2925                 }
2926         } else {
2927                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2928                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2929                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2930                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2931         }
2932
2933         ret = nvme_mpath_init(ctrl, id);
2934         kfree(id);
2935
2936         if (ret < 0)
2937                 return ret;
2938
2939         if (ctrl->apst_enabled && !prev_apst_enabled)
2940                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2941         else if (!ctrl->apst_enabled && prev_apst_enabled)
2942                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2943
2944         ret = nvme_configure_apst(ctrl);
2945         if (ret < 0)
2946                 return ret;
2947         
2948         ret = nvme_configure_timestamp(ctrl);
2949         if (ret < 0)
2950                 return ret;
2951
2952         ret = nvme_configure_directives(ctrl);
2953         if (ret < 0)
2954                 return ret;
2955
2956         ret = nvme_configure_acre(ctrl);
2957         if (ret < 0)
2958                 return ret;
2959
2960         if (!ctrl->identified)
2961                 nvme_hwmon_init(ctrl);
2962
2963         ctrl->identified = true;
2964
2965         return 0;
2966
2967 out_free:
2968         kfree(id);
2969         return ret;
2970 }
2971 EXPORT_SYMBOL_GPL(nvme_init_identify);
2972
2973 static int nvme_dev_open(struct inode *inode, struct file *file)
2974 {
2975         struct nvme_ctrl *ctrl =
2976                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2977
2978         switch (ctrl->state) {
2979         case NVME_CTRL_LIVE:
2980                 break;
2981         default:
2982                 return -EWOULDBLOCK;
2983         }
2984
2985         file->private_data = ctrl;
2986         return 0;
2987 }
2988
2989 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2990 {
2991         struct nvme_ns *ns;
2992         int ret;
2993
2994         down_read(&ctrl->namespaces_rwsem);
2995         if (list_empty(&ctrl->namespaces)) {
2996                 ret = -ENOTTY;
2997                 goto out_unlock;
2998         }
2999
3000         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3001         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3002                 dev_warn(ctrl->device,
3003                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3004                 ret = -EINVAL;
3005                 goto out_unlock;
3006         }
3007
3008         dev_warn(ctrl->device,
3009                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3010         kref_get(&ns->kref);
3011         up_read(&ctrl->namespaces_rwsem);
3012
3013         ret = nvme_user_cmd(ctrl, ns, argp);
3014         nvme_put_ns(ns);
3015         return ret;
3016
3017 out_unlock:
3018         up_read(&ctrl->namespaces_rwsem);
3019         return ret;
3020 }
3021
3022 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3023                 unsigned long arg)
3024 {
3025         struct nvme_ctrl *ctrl = file->private_data;
3026         void __user *argp = (void __user *)arg;
3027
3028         switch (cmd) {
3029         case NVME_IOCTL_ADMIN_CMD:
3030                 return nvme_user_cmd(ctrl, NULL, argp);
3031         case NVME_IOCTL_ADMIN64_CMD:
3032                 return nvme_user_cmd64(ctrl, NULL, argp);
3033         case NVME_IOCTL_IO_CMD:
3034                 return nvme_dev_user_cmd(ctrl, argp);
3035         case NVME_IOCTL_RESET:
3036                 dev_warn(ctrl->device, "resetting controller\n");
3037                 return nvme_reset_ctrl_sync(ctrl);
3038         case NVME_IOCTL_SUBSYS_RESET:
3039                 return nvme_reset_subsystem(ctrl);
3040         case NVME_IOCTL_RESCAN:
3041                 nvme_queue_scan(ctrl);
3042                 return 0;
3043         default:
3044                 return -ENOTTY;
3045         }
3046 }
3047
3048 static const struct file_operations nvme_dev_fops = {
3049         .owner          = THIS_MODULE,
3050         .open           = nvme_dev_open,
3051         .unlocked_ioctl = nvme_dev_ioctl,
3052         .compat_ioctl   = compat_ptr_ioctl,
3053 };
3054
3055 static ssize_t nvme_sysfs_reset(struct device *dev,
3056                                 struct device_attribute *attr, const char *buf,
3057                                 size_t count)
3058 {
3059         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3060         int ret;
3061
3062         ret = nvme_reset_ctrl_sync(ctrl);
3063         if (ret < 0)
3064                 return ret;
3065         return count;
3066 }
3067 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3068
3069 static ssize_t nvme_sysfs_rescan(struct device *dev,
3070                                 struct device_attribute *attr, const char *buf,
3071                                 size_t count)
3072 {
3073         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3074
3075         nvme_queue_scan(ctrl);
3076         return count;
3077 }
3078 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3079
3080 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3081 {
3082         struct gendisk *disk = dev_to_disk(dev);
3083
3084         if (disk->fops == &nvme_fops)
3085                 return nvme_get_ns_from_dev(dev)->head;
3086         else
3087                 return disk->private_data;
3088 }
3089
3090 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3091                 char *buf)
3092 {
3093         struct nvme_ns_head *head = dev_to_ns_head(dev);
3094         struct nvme_ns_ids *ids = &head->ids;
3095         struct nvme_subsystem *subsys = head->subsys;
3096         int serial_len = sizeof(subsys->serial);
3097         int model_len = sizeof(subsys->model);
3098
3099         if (!uuid_is_null(&ids->uuid))
3100                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3101
3102         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3103                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3104
3105         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3106                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3107
3108         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3109                                   subsys->serial[serial_len - 1] == '\0'))
3110                 serial_len--;
3111         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3112                                  subsys->model[model_len - 1] == '\0'))
3113                 model_len--;
3114
3115         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3116                 serial_len, subsys->serial, model_len, subsys->model,
3117                 head->ns_id);
3118 }
3119 static DEVICE_ATTR_RO(wwid);
3120
3121 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3122                 char *buf)
3123 {
3124         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3125 }
3126 static DEVICE_ATTR_RO(nguid);
3127
3128 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3129                 char *buf)
3130 {
3131         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3132
3133         /* For backward compatibility expose the NGUID to userspace if
3134          * we have no UUID set
3135          */
3136         if (uuid_is_null(&ids->uuid)) {
3137                 printk_ratelimited(KERN_WARNING
3138                                    "No UUID available providing old NGUID\n");
3139                 return sprintf(buf, "%pU\n", ids->nguid);
3140         }
3141         return sprintf(buf, "%pU\n", &ids->uuid);
3142 }
3143 static DEVICE_ATTR_RO(uuid);
3144
3145 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3146                 char *buf)
3147 {
3148         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3149 }
3150 static DEVICE_ATTR_RO(eui);
3151
3152 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3153                 char *buf)
3154 {
3155         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3156 }
3157 static DEVICE_ATTR_RO(nsid);
3158
3159 static struct attribute *nvme_ns_id_attrs[] = {
3160         &dev_attr_wwid.attr,
3161         &dev_attr_uuid.attr,
3162         &dev_attr_nguid.attr,
3163         &dev_attr_eui.attr,
3164         &dev_attr_nsid.attr,
3165 #ifdef CONFIG_NVME_MULTIPATH
3166         &dev_attr_ana_grpid.attr,
3167         &dev_attr_ana_state.attr,
3168 #endif
3169         NULL,
3170 };
3171
3172 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3173                 struct attribute *a, int n)
3174 {
3175         struct device *dev = container_of(kobj, struct device, kobj);
3176         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3177
3178         if (a == &dev_attr_uuid.attr) {
3179                 if (uuid_is_null(&ids->uuid) &&
3180                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3181                         return 0;
3182         }
3183         if (a == &dev_attr_nguid.attr) {
3184                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3185                         return 0;
3186         }
3187         if (a == &dev_attr_eui.attr) {
3188                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3189                         return 0;
3190         }
3191 #ifdef CONFIG_NVME_MULTIPATH
3192         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3193                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3194                         return 0;
3195                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3196                         return 0;
3197         }
3198 #endif
3199         return a->mode;
3200 }
3201
3202 static const struct attribute_group nvme_ns_id_attr_group = {
3203         .attrs          = nvme_ns_id_attrs,
3204         .is_visible     = nvme_ns_id_attrs_are_visible,
3205 };
3206
3207 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3208         &nvme_ns_id_attr_group,
3209 #ifdef CONFIG_NVM
3210         &nvme_nvm_attr_group,
3211 #endif
3212         NULL,
3213 };
3214
3215 #define nvme_show_str_function(field)                                           \
3216 static ssize_t  field##_show(struct device *dev,                                \
3217                             struct device_attribute *attr, char *buf)           \
3218 {                                                                               \
3219         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3220         return sprintf(buf, "%.*s\n",                                           \
3221                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3222 }                                                                               \
3223 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3224
3225 nvme_show_str_function(model);
3226 nvme_show_str_function(serial);
3227 nvme_show_str_function(firmware_rev);
3228
3229 #define nvme_show_int_function(field)                                           \
3230 static ssize_t  field##_show(struct device *dev,                                \
3231                             struct device_attribute *attr, char *buf)           \
3232 {                                                                               \
3233         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3234         return sprintf(buf, "%d\n", ctrl->field);       \
3235 }                                                                               \
3236 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3237
3238 nvme_show_int_function(cntlid);
3239 nvme_show_int_function(numa_node);
3240 nvme_show_int_function(queue_count);
3241 nvme_show_int_function(sqsize);
3242
3243 static ssize_t nvme_sysfs_delete(struct device *dev,
3244                                 struct device_attribute *attr, const char *buf,
3245                                 size_t count)
3246 {
3247         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3248
3249         /* Can't delete non-created controllers */
3250         if (!ctrl->created)
3251                 return -EBUSY;
3252
3253         if (device_remove_file_self(dev, attr))
3254                 nvme_delete_ctrl_sync(ctrl);
3255         return count;
3256 }
3257 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3258
3259 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3260                                          struct device_attribute *attr,
3261                                          char *buf)
3262 {
3263         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3264
3265         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3266 }
3267 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3268
3269 static ssize_t nvme_sysfs_show_state(struct device *dev,
3270                                      struct device_attribute *attr,
3271                                      char *buf)
3272 {
3273         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3274         static const char *const state_name[] = {
3275                 [NVME_CTRL_NEW]         = "new",
3276                 [NVME_CTRL_LIVE]        = "live",
3277                 [NVME_CTRL_RESETTING]   = "resetting",
3278                 [NVME_CTRL_CONNECTING]  = "connecting",
3279                 [NVME_CTRL_DELETING]    = "deleting",
3280                 [NVME_CTRL_DEAD]        = "dead",
3281         };
3282
3283         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3284             state_name[ctrl->state])
3285                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3286
3287         return sprintf(buf, "unknown state\n");
3288 }
3289
3290 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3291
3292 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3293                                          struct device_attribute *attr,
3294                                          char *buf)
3295 {
3296         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3297
3298         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3299 }
3300 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3301
3302 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3303                                         struct device_attribute *attr,
3304                                         char *buf)
3305 {
3306         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3307
3308         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3309 }
3310 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3311
3312 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3313                                         struct device_attribute *attr,
3314                                         char *buf)
3315 {
3316         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3317
3318         return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3319 }
3320 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3321
3322 static ssize_t nvme_sysfs_show_address(struct device *dev,
3323                                          struct device_attribute *attr,
3324                                          char *buf)
3325 {
3326         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3327
3328         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3329 }
3330 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3331
3332 static struct attribute *nvme_dev_attrs[] = {
3333         &dev_attr_reset_controller.attr,
3334         &dev_attr_rescan_controller.attr,
3335         &dev_attr_model.attr,
3336         &dev_attr_serial.attr,
3337         &dev_attr_firmware_rev.attr,
3338         &dev_attr_cntlid.attr,
3339         &dev_attr_delete_controller.attr,
3340         &dev_attr_transport.attr,
3341         &dev_attr_subsysnqn.attr,
3342         &dev_attr_address.attr,
3343         &dev_attr_state.attr,
3344         &dev_attr_numa_node.attr,
3345         &dev_attr_queue_count.attr,
3346         &dev_attr_sqsize.attr,
3347         &dev_attr_hostnqn.attr,
3348         &dev_attr_hostid.attr,
3349         NULL
3350 };
3351
3352 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3353                 struct attribute *a, int n)
3354 {
3355         struct device *dev = container_of(kobj, struct device, kobj);
3356         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3357
3358         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3359                 return 0;
3360         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3361                 return 0;
3362         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3363                 return 0;
3364         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3365                 return 0;
3366
3367         return a->mode;
3368 }
3369
3370 static struct attribute_group nvme_dev_attrs_group = {
3371         .attrs          = nvme_dev_attrs,
3372         .is_visible     = nvme_dev_attrs_are_visible,
3373 };
3374
3375 static const struct attribute_group *nvme_dev_attr_groups[] = {
3376         &nvme_dev_attrs_group,
3377         NULL,
3378 };
3379
3380 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3381                 unsigned nsid)
3382 {
3383         struct nvme_ns_head *h;
3384
3385         lockdep_assert_held(&subsys->lock);
3386
3387         list_for_each_entry(h, &subsys->nsheads, entry) {
3388                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3389                         return h;
3390         }
3391
3392         return NULL;
3393 }
3394
3395 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3396                 struct nvme_ns_head *new)
3397 {
3398         struct nvme_ns_head *h;
3399
3400         lockdep_assert_held(&subsys->lock);
3401
3402         list_for_each_entry(h, &subsys->nsheads, entry) {
3403                 if (nvme_ns_ids_valid(&new->ids) &&
3404                     !list_empty(&h->list) &&
3405                     nvme_ns_ids_equal(&new->ids, &h->ids))
3406                         return -EINVAL;
3407         }
3408
3409         return 0;
3410 }
3411
3412 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3413                 unsigned nsid, struct nvme_id_ns *id,
3414                 struct nvme_ns_ids *ids)
3415 {
3416         struct nvme_ns_head *head;
3417         size_t size = sizeof(*head);
3418         int ret = -ENOMEM;
3419
3420 #ifdef CONFIG_NVME_MULTIPATH
3421         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3422 #endif
3423
3424         head = kzalloc(size, GFP_KERNEL);
3425         if (!head)
3426                 goto out;
3427         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3428         if (ret < 0)
3429                 goto out_free_head;
3430         head->instance = ret;
3431         INIT_LIST_HEAD(&head->list);
3432         ret = init_srcu_struct(&head->srcu);
3433         if (ret)
3434                 goto out_ida_remove;
3435         head->subsys = ctrl->subsys;
3436         head->ns_id = nsid;
3437         head->ids = *ids;
3438         kref_init(&head->ref);
3439
3440         ret = __nvme_check_ids(ctrl->subsys, head);
3441         if (ret) {
3442                 dev_err(ctrl->device,
3443                         "duplicate IDs for nsid %d\n", nsid);
3444                 goto out_cleanup_srcu;
3445         }
3446
3447         ret = nvme_mpath_alloc_disk(ctrl, head);
3448         if (ret)
3449                 goto out_cleanup_srcu;
3450
3451         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3452
3453         kref_get(&ctrl->subsys->ref);
3454
3455         return head;
3456 out_cleanup_srcu:
3457         cleanup_srcu_struct(&head->srcu);
3458 out_ida_remove:
3459         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3460 out_free_head:
3461         kfree(head);
3462 out:
3463         if (ret > 0)
3464                 ret = blk_status_to_errno(nvme_error_status(ret));
3465         return ERR_PTR(ret);
3466 }
3467
3468 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3469                 struct nvme_id_ns *id)
3470 {
3471         struct nvme_ctrl *ctrl = ns->ctrl;
3472         bool is_shared = id->nmic & (1 << 0);
3473         struct nvme_ns_head *head = NULL;
3474         struct nvme_ns_ids ids;
3475         int ret = 0;
3476
3477         ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3478         if (ret)
3479                 goto out;
3480
3481         mutex_lock(&ctrl->subsys->lock);
3482         if (is_shared)
3483                 head = nvme_find_ns_head(ctrl->subsys, nsid);
3484         if (!head) {
3485                 head = nvme_alloc_ns_head(ctrl, nsid, id, &ids);
3486                 if (IS_ERR(head)) {
3487                         ret = PTR_ERR(head);
3488                         goto out_unlock;
3489                 }
3490         } else {
3491                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3492                         dev_err(ctrl->device,
3493                                 "IDs don't match for shared namespace %d\n",
3494                                         nsid);
3495                         ret = -EINVAL;
3496                         goto out_unlock;
3497                 }
3498         }
3499
3500         list_add_tail(&ns->siblings, &head->list);
3501         ns->head = head;
3502
3503 out_unlock:
3504         mutex_unlock(&ctrl->subsys->lock);
3505 out:
3506         if (ret > 0)
3507                 ret = blk_status_to_errno(nvme_error_status(ret));
3508         return ret;
3509 }
3510
3511 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3512 {
3513         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3514         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3515
3516         return nsa->head->ns_id - nsb->head->ns_id;
3517 }
3518
3519 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3520 {
3521         struct nvme_ns *ns, *ret = NULL;
3522
3523         down_read(&ctrl->namespaces_rwsem);
3524         list_for_each_entry(ns, &ctrl->namespaces, list) {
3525                 if (ns->head->ns_id == nsid) {
3526                         if (!kref_get_unless_zero(&ns->kref))
3527                                 continue;
3528                         ret = ns;
3529                         break;
3530                 }
3531                 if (ns->head->ns_id > nsid)
3532                         break;
3533         }
3534         up_read(&ctrl->namespaces_rwsem);
3535         return ret;
3536 }
3537
3538 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3539 {
3540         struct streams_directive_params s;
3541         int ret;
3542
3543         if (!ctrl->nr_streams)
3544                 return 0;
3545
3546         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3547         if (ret)
3548                 return ret;
3549
3550         ns->sws = le32_to_cpu(s.sws);
3551         ns->sgs = le16_to_cpu(s.sgs);
3552
3553         if (ns->sws) {
3554                 unsigned int bs = 1 << ns->lba_shift;
3555
3556                 blk_queue_io_min(ns->queue, bs * ns->sws);
3557                 if (ns->sgs)
3558                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3559         }
3560
3561         return 0;
3562 }
3563
3564 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3565 {
3566         struct nvme_ns *ns;
3567         struct gendisk *disk;
3568         struct nvme_id_ns *id;
3569         char disk_name[DISK_NAME_LEN];
3570         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3571
3572         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3573         if (!ns)
3574                 return;
3575
3576         ns->queue = blk_mq_init_queue(ctrl->tagset);
3577         if (IS_ERR(ns->queue))
3578                 goto out_free_ns;
3579
3580         if (ctrl->opts && ctrl->opts->data_digest)
3581                 ns->queue->backing_dev_info->capabilities
3582                         |= BDI_CAP_STABLE_WRITES;
3583
3584         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3585         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3586                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3587
3588         ns->queue->queuedata = ns;
3589         ns->ctrl = ctrl;
3590
3591         kref_init(&ns->kref);
3592         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3593
3594         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3595         nvme_set_queue_limits(ctrl, ns->queue);
3596
3597         ret = nvme_identify_ns(ctrl, nsid, &id);
3598         if (ret)
3599                 goto out_free_queue;
3600
3601         if (id->ncap == 0)      /* no namespace (legacy quirk) */
3602                 goto out_free_id;
3603
3604         ret = nvme_init_ns_head(ns, nsid, id);
3605         if (ret)
3606                 goto out_free_id;
3607         nvme_setup_streams_ns(ctrl, ns);
3608         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3609
3610         disk = alloc_disk_node(0, node);
3611         if (!disk)
3612                 goto out_unlink_ns;
3613
3614         disk->fops = &nvme_fops;
3615         disk->private_data = ns;
3616         disk->queue = ns->queue;
3617         disk->flags = flags;
3618         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3619         ns->disk = disk;
3620
3621         __nvme_revalidate_disk(disk, id);
3622
3623         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3624                 ret = nvme_nvm_register(ns, disk_name, node);
3625                 if (ret) {
3626                         dev_warn(ctrl->device, "LightNVM init failure\n");
3627                         goto out_put_disk;
3628                 }
3629         }
3630
3631         down_write(&ctrl->namespaces_rwsem);
3632         list_add_tail(&ns->list, &ctrl->namespaces);
3633         up_write(&ctrl->namespaces_rwsem);
3634
3635         nvme_get_ctrl(ctrl);
3636
3637         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3638
3639         nvme_mpath_add_disk(ns, id);
3640         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3641         kfree(id);
3642
3643         return;
3644  out_put_disk:
3645         /* prevent double queue cleanup */
3646         ns->disk->queue = NULL;
3647         put_disk(ns->disk);
3648  out_unlink_ns:
3649         mutex_lock(&ctrl->subsys->lock);
3650         list_del_rcu(&ns->siblings);
3651         mutex_unlock(&ctrl->subsys->lock);
3652         nvme_put_ns_head(ns->head);
3653  out_free_id:
3654         kfree(id);
3655  out_free_queue:
3656         blk_cleanup_queue(ns->queue);
3657  out_free_ns:
3658         kfree(ns);
3659 }
3660
3661 static void nvme_ns_remove(struct nvme_ns *ns)
3662 {
3663         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3664                 return;
3665
3666         nvme_fault_inject_fini(&ns->fault_inject);
3667
3668         mutex_lock(&ns->ctrl->subsys->lock);
3669         list_del_rcu(&ns->siblings);
3670         mutex_unlock(&ns->ctrl->subsys->lock);
3671         synchronize_rcu(); /* guarantee not available in head->list */
3672         nvme_mpath_clear_current_path(ns);
3673         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3674
3675         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3676                 del_gendisk(ns->disk);
3677                 blk_cleanup_queue(ns->queue);
3678                 if (blk_get_integrity(ns->disk))
3679                         blk_integrity_unregister(ns->disk);
3680         }
3681
3682         down_write(&ns->ctrl->namespaces_rwsem);
3683         list_del_init(&ns->list);
3684         up_write(&ns->ctrl->namespaces_rwsem);
3685
3686         nvme_mpath_check_last_path(ns);
3687         nvme_put_ns(ns);
3688 }
3689
3690 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3691 {
3692         struct nvme_ns *ns;
3693
3694         ns = nvme_find_get_ns(ctrl, nsid);
3695         if (ns) {
3696                 if (ns->disk && revalidate_disk(ns->disk))
3697                         nvme_ns_remove(ns);
3698                 nvme_put_ns(ns);
3699         } else
3700                 nvme_alloc_ns(ctrl, nsid);
3701 }
3702
3703 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3704                                         unsigned nsid)
3705 {
3706         struct nvme_ns *ns, *next;
3707         LIST_HEAD(rm_list);
3708
3709         down_write(&ctrl->namespaces_rwsem);
3710         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3711                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3712                         list_move_tail(&ns->list, &rm_list);
3713         }
3714         up_write(&ctrl->namespaces_rwsem);
3715
3716         list_for_each_entry_safe(ns, next, &rm_list, list)
3717                 nvme_ns_remove(ns);
3718
3719 }
3720
3721 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3722 {
3723         struct nvme_ns *ns;
3724         __le32 *ns_list;
3725         unsigned i, j, nsid, prev = 0;
3726         unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3727         int ret = 0;
3728
3729         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3730         if (!ns_list)
3731                 return -ENOMEM;
3732
3733         for (i = 0; i < num_lists; i++) {
3734                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3735                 if (ret)
3736                         goto free;
3737
3738                 for (j = 0; j < min(nn, 1024U); j++) {
3739                         nsid = le32_to_cpu(ns_list[j]);
3740                         if (!nsid)
3741                                 goto out;
3742
3743                         nvme_validate_ns(ctrl, nsid);
3744
3745                         while (++prev < nsid) {
3746                                 ns = nvme_find_get_ns(ctrl, prev);
3747                                 if (ns) {
3748                                         nvme_ns_remove(ns);
3749                                         nvme_put_ns(ns);
3750                                 }
3751                         }
3752                 }
3753                 nn -= j;
3754         }
3755  out:
3756         nvme_remove_invalid_namespaces(ctrl, prev);
3757  free:
3758         kfree(ns_list);
3759         return ret;
3760 }
3761
3762 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3763 {
3764         unsigned i;
3765
3766         for (i = 1; i <= nn; i++)
3767                 nvme_validate_ns(ctrl, i);
3768
3769         nvme_remove_invalid_namespaces(ctrl, nn);
3770 }
3771
3772 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3773 {
3774         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3775         __le32 *log;
3776         int error;
3777
3778         log = kzalloc(log_size, GFP_KERNEL);
3779         if (!log)
3780                 return;
3781
3782         /*
3783          * We need to read the log to clear the AEN, but we don't want to rely
3784          * on it for the changed namespace information as userspace could have
3785          * raced with us in reading the log page, which could cause us to miss
3786          * updates.
3787          */
3788         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3789                         log_size, 0);
3790         if (error)
3791                 dev_warn(ctrl->device,
3792                         "reading changed ns log failed: %d\n", error);
3793
3794         kfree(log);
3795 }
3796
3797 static void nvme_scan_work(struct work_struct *work)
3798 {
3799         struct nvme_ctrl *ctrl =
3800                 container_of(work, struct nvme_ctrl, scan_work);
3801         struct nvme_id_ctrl *id;
3802         unsigned nn;
3803
3804         /* No tagset on a live ctrl means IO queues could not created */
3805         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3806                 return;
3807
3808         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3809                 dev_info(ctrl->device, "rescanning namespaces.\n");
3810                 nvme_clear_changed_ns_log(ctrl);
3811         }
3812
3813         if (nvme_identify_ctrl(ctrl, &id))
3814                 return;
3815
3816         mutex_lock(&ctrl->scan_lock);
3817         nn = le32_to_cpu(id->nn);
3818         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3819             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3820                 if (!nvme_scan_ns_list(ctrl, nn))
3821                         goto out_free_id;
3822         }
3823         nvme_scan_ns_sequential(ctrl, nn);
3824 out_free_id:
3825         mutex_unlock(&ctrl->scan_lock);
3826         kfree(id);
3827         down_write(&ctrl->namespaces_rwsem);
3828         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3829         up_write(&ctrl->namespaces_rwsem);
3830 }
3831
3832 /*
3833  * This function iterates the namespace list unlocked to allow recovery from
3834  * controller failure. It is up to the caller to ensure the namespace list is
3835  * not modified by scan work while this function is executing.
3836  */
3837 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3838 {
3839         struct nvme_ns *ns, *next;
3840         LIST_HEAD(ns_list);
3841
3842         /*
3843          * make sure to requeue I/O to all namespaces as these
3844          * might result from the scan itself and must complete
3845          * for the scan_work to make progress
3846          */
3847         nvme_mpath_clear_ctrl_paths(ctrl);
3848
3849         /* prevent racing with ns scanning */
3850         flush_work(&ctrl->scan_work);
3851
3852         /*
3853          * The dead states indicates the controller was not gracefully
3854          * disconnected. In that case, we won't be able to flush any data while
3855          * removing the namespaces' disks; fail all the queues now to avoid
3856          * potentially having to clean up the failed sync later.
3857          */
3858         if (ctrl->state == NVME_CTRL_DEAD)
3859                 nvme_kill_queues(ctrl);
3860
3861         down_write(&ctrl->namespaces_rwsem);
3862         list_splice_init(&ctrl->namespaces, &ns_list);
3863         up_write(&ctrl->namespaces_rwsem);
3864
3865         list_for_each_entry_safe(ns, next, &ns_list, list)
3866                 nvme_ns_remove(ns);
3867 }
3868 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3869
3870 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3871 {
3872         struct nvme_ctrl *ctrl =
3873                 container_of(dev, struct nvme_ctrl, ctrl_device);
3874         struct nvmf_ctrl_options *opts = ctrl->opts;
3875         int ret;
3876
3877         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3878         if (ret)
3879                 return ret;
3880
3881         if (opts) {
3882                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3883                 if (ret)
3884                         return ret;
3885
3886                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3887                                 opts->trsvcid ?: "none");
3888                 if (ret)
3889                         return ret;
3890
3891                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3892                                 opts->host_traddr ?: "none");
3893         }
3894         return ret;
3895 }
3896
3897 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3898 {
3899         char *envp[2] = { NULL, NULL };
3900         u32 aen_result = ctrl->aen_result;
3901
3902         ctrl->aen_result = 0;
3903         if (!aen_result)
3904                 return;
3905
3906         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3907         if (!envp[0])
3908                 return;
3909         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3910         kfree(envp[0]);
3911 }
3912
3913 static void nvme_async_event_work(struct work_struct *work)
3914 {
3915         struct nvme_ctrl *ctrl =
3916                 container_of(work, struct nvme_ctrl, async_event_work);
3917
3918         nvme_aen_uevent(ctrl);
3919         ctrl->ops->submit_async_event(ctrl);
3920 }
3921
3922 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3923 {
3924
3925         u32 csts;
3926
3927         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3928                 return false;
3929
3930         if (csts == ~0)
3931                 return false;
3932
3933         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3934 }
3935
3936 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3937 {
3938         struct nvme_fw_slot_info_log *log;
3939
3940         log = kmalloc(sizeof(*log), GFP_KERNEL);
3941         if (!log)
3942                 return;
3943
3944         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log,
3945                         sizeof(*log), 0))
3946                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3947         kfree(log);
3948 }
3949
3950 static void nvme_fw_act_work(struct work_struct *work)
3951 {
3952         struct nvme_ctrl *ctrl = container_of(work,
3953                                 struct nvme_ctrl, fw_act_work);
3954         unsigned long fw_act_timeout;
3955
3956         if (ctrl->mtfa)
3957                 fw_act_timeout = jiffies +
3958                                 msecs_to_jiffies(ctrl->mtfa * 100);
3959         else
3960                 fw_act_timeout = jiffies +
3961                                 msecs_to_jiffies(admin_timeout * 1000);
3962
3963         nvme_stop_queues(ctrl);
3964         while (nvme_ctrl_pp_status(ctrl)) {
3965                 if (time_after(jiffies, fw_act_timeout)) {
3966                         dev_warn(ctrl->device,
3967                                 "Fw activation timeout, reset controller\n");
3968                         nvme_try_sched_reset(ctrl);
3969                         return;
3970                 }
3971                 msleep(100);
3972         }
3973
3974         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3975                 return;
3976
3977         nvme_start_queues(ctrl);
3978         /* read FW slot information to clear the AER */
3979         nvme_get_fw_slot_info(ctrl);
3980 }
3981
3982 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3983 {
3984         u32 aer_notice_type = (result & 0xff00) >> 8;
3985
3986         trace_nvme_async_event(ctrl, aer_notice_type);
3987
3988         switch (aer_notice_type) {
3989         case NVME_AER_NOTICE_NS_CHANGED:
3990                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3991                 nvme_queue_scan(ctrl);
3992                 break;
3993         case NVME_AER_NOTICE_FW_ACT_STARTING:
3994                 /*
3995                  * We are (ab)using the RESETTING state to prevent subsequent
3996                  * recovery actions from interfering with the controller's
3997                  * firmware activation.
3998                  */
3999                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4000                         queue_work(nvme_wq, &ctrl->fw_act_work);
4001                 break;
4002 #ifdef CONFIG_NVME_MULTIPATH
4003         case NVME_AER_NOTICE_ANA:
4004                 if (!ctrl->ana_log_buf)
4005                         break;
4006                 queue_work(nvme_wq, &ctrl->ana_work);
4007                 break;
4008 #endif
4009         case NVME_AER_NOTICE_DISC_CHANGED:
4010                 ctrl->aen_result = result;
4011                 break;
4012         default:
4013                 dev_warn(ctrl->device, "async event result %08x\n", result);
4014         }
4015 }
4016
4017 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4018                 volatile union nvme_result *res)
4019 {
4020         u32 result = le32_to_cpu(res->u32);
4021         u32 aer_type = result & 0x07;
4022
4023         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4024                 return;
4025
4026         switch (aer_type) {
4027         case NVME_AER_NOTICE:
4028                 nvme_handle_aen_notice(ctrl, result);
4029                 break;
4030         case NVME_AER_ERROR:
4031         case NVME_AER_SMART:
4032         case NVME_AER_CSS:
4033         case NVME_AER_VS:
4034                 trace_nvme_async_event(ctrl, aer_type);
4035                 ctrl->aen_result = result;
4036                 break;
4037         default:
4038                 break;
4039         }
4040         queue_work(nvme_wq, &ctrl->async_event_work);
4041 }
4042 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4043
4044 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4045 {
4046         nvme_mpath_stop(ctrl);
4047         nvme_stop_keep_alive(ctrl);
4048         flush_work(&ctrl->async_event_work);
4049         cancel_work_sync(&ctrl->fw_act_work);
4050 }
4051 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4052
4053 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4054 {
4055         if (ctrl->kato)
4056                 nvme_start_keep_alive(ctrl);
4057
4058         nvme_enable_aen(ctrl);
4059
4060         if (ctrl->queue_count > 1) {
4061                 nvme_queue_scan(ctrl);
4062                 nvme_start_queues(ctrl);
4063         }
4064         ctrl->created = true;
4065 }
4066 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4067
4068 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4069 {
4070         nvme_fault_inject_fini(&ctrl->fault_inject);
4071         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4072         cdev_device_del(&ctrl->cdev, ctrl->device);
4073         nvme_put_ctrl(ctrl);
4074 }
4075 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4076
4077 static void nvme_free_ctrl(struct device *dev)
4078 {
4079         struct nvme_ctrl *ctrl =
4080                 container_of(dev, struct nvme_ctrl, ctrl_device);
4081         struct nvme_subsystem *subsys = ctrl->subsys;
4082
4083         if (subsys && ctrl->instance != subsys->instance)
4084                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4085
4086         kfree(ctrl->effects);
4087         nvme_mpath_uninit(ctrl);
4088         __free_page(ctrl->discard_page);
4089
4090         if (subsys) {
4091                 mutex_lock(&nvme_subsystems_lock);
4092                 list_del(&ctrl->subsys_entry);
4093                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4094                 mutex_unlock(&nvme_subsystems_lock);
4095         }
4096
4097         ctrl->ops->free_ctrl(ctrl);
4098
4099         if (subsys)
4100                 nvme_put_subsystem(subsys);
4101 }
4102
4103 /*
4104  * Initialize a NVMe controller structures.  This needs to be called during
4105  * earliest initialization so that we have the initialized structured around
4106  * during probing.
4107  */
4108 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4109                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4110 {
4111         int ret;
4112
4113         ctrl->state = NVME_CTRL_NEW;
4114         spin_lock_init(&ctrl->lock);
4115         mutex_init(&ctrl->scan_lock);
4116         INIT_LIST_HEAD(&ctrl->namespaces);
4117         init_rwsem(&ctrl->namespaces_rwsem);
4118         ctrl->dev = dev;
4119         ctrl->ops = ops;
4120         ctrl->quirks = quirks;
4121         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4122         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4123         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4124         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4125         init_waitqueue_head(&ctrl->state_wq);
4126
4127         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4128         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4129         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4130
4131         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4132                         PAGE_SIZE);
4133         ctrl->discard_page = alloc_page(GFP_KERNEL);
4134         if (!ctrl->discard_page) {
4135                 ret = -ENOMEM;
4136                 goto out;
4137         }
4138
4139         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4140         if (ret < 0)
4141                 goto out;
4142         ctrl->instance = ret;
4143
4144         device_initialize(&ctrl->ctrl_device);
4145         ctrl->device = &ctrl->ctrl_device;
4146         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4147         ctrl->device->class = nvme_class;
4148         ctrl->device->parent = ctrl->dev;
4149         ctrl->device->groups = nvme_dev_attr_groups;
4150         ctrl->device->release = nvme_free_ctrl;
4151         dev_set_drvdata(ctrl->device, ctrl);
4152         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4153         if (ret)
4154                 goto out_release_instance;
4155
4156         nvme_get_ctrl(ctrl);
4157         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4158         ctrl->cdev.owner = ops->module;
4159         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4160         if (ret)
4161                 goto out_free_name;
4162
4163         /*
4164          * Initialize latency tolerance controls.  The sysfs files won't
4165          * be visible to userspace unless the device actually supports APST.
4166          */
4167         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4168         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4169                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4170
4171         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4172
4173         return 0;
4174 out_free_name:
4175         nvme_put_ctrl(ctrl);
4176         kfree_const(ctrl->device->kobj.name);
4177 out_release_instance:
4178         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4179 out:
4180         if (ctrl->discard_page)
4181                 __free_page(ctrl->discard_page);
4182         return ret;
4183 }
4184 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4185
4186 /**
4187  * nvme_kill_queues(): Ends all namespace queues
4188  * @ctrl: the dead controller that needs to end
4189  *
4190  * Call this function when the driver determines it is unable to get the
4191  * controller in a state capable of servicing IO.
4192  */
4193 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4194 {
4195         struct nvme_ns *ns;
4196
4197         down_read(&ctrl->namespaces_rwsem);
4198
4199         /* Forcibly unquiesce queues to avoid blocking dispatch */
4200         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4201                 blk_mq_unquiesce_queue(ctrl->admin_q);
4202
4203         list_for_each_entry(ns, &ctrl->namespaces, list)
4204                 nvme_set_queue_dying(ns);
4205
4206         up_read(&ctrl->namespaces_rwsem);
4207 }
4208 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4209
4210 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4211 {
4212         struct nvme_ns *ns;
4213
4214         down_read(&ctrl->namespaces_rwsem);
4215         list_for_each_entry(ns, &ctrl->namespaces, list)
4216                 blk_mq_unfreeze_queue(ns->queue);
4217         up_read(&ctrl->namespaces_rwsem);
4218 }
4219 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4220
4221 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4222 {
4223         struct nvme_ns *ns;
4224
4225         down_read(&ctrl->namespaces_rwsem);
4226         list_for_each_entry(ns, &ctrl->namespaces, list) {
4227                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4228                 if (timeout <= 0)
4229                         break;
4230         }
4231         up_read(&ctrl->namespaces_rwsem);
4232 }
4233 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4234
4235 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4236 {
4237         struct nvme_ns *ns;
4238
4239         down_read(&ctrl->namespaces_rwsem);
4240         list_for_each_entry(ns, &ctrl->namespaces, list)
4241                 blk_mq_freeze_queue_wait(ns->queue);
4242         up_read(&ctrl->namespaces_rwsem);
4243 }
4244 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4245
4246 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4247 {
4248         struct nvme_ns *ns;
4249
4250         down_read(&ctrl->namespaces_rwsem);
4251         list_for_each_entry(ns, &ctrl->namespaces, list)
4252                 blk_freeze_queue_start(ns->queue);
4253         up_read(&ctrl->namespaces_rwsem);
4254 }
4255 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4256
4257 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4258 {
4259         struct nvme_ns *ns;
4260
4261         down_read(&ctrl->namespaces_rwsem);
4262         list_for_each_entry(ns, &ctrl->namespaces, list)
4263                 blk_mq_quiesce_queue(ns->queue);
4264         up_read(&ctrl->namespaces_rwsem);
4265 }
4266 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4267
4268 void nvme_start_queues(struct nvme_ctrl *ctrl)
4269 {
4270         struct nvme_ns *ns;
4271
4272         down_read(&ctrl->namespaces_rwsem);
4273         list_for_each_entry(ns, &ctrl->namespaces, list)
4274                 blk_mq_unquiesce_queue(ns->queue);
4275         up_read(&ctrl->namespaces_rwsem);
4276 }
4277 EXPORT_SYMBOL_GPL(nvme_start_queues);
4278
4279
4280 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4281 {
4282         struct nvme_ns *ns;
4283
4284         down_read(&ctrl->namespaces_rwsem);
4285         list_for_each_entry(ns, &ctrl->namespaces, list)
4286                 blk_sync_queue(ns->queue);
4287         up_read(&ctrl->namespaces_rwsem);
4288
4289         if (ctrl->admin_q)
4290                 blk_sync_queue(ctrl->admin_q);
4291 }
4292 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4293
4294 /*
4295  * Check we didn't inadvertently grow the command structure sizes:
4296  */
4297 static inline void _nvme_check_size(void)
4298 {
4299         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4300         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4301         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4302         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4303         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4304         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4305         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4306         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4307         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4308         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4309         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4310         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4311         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4312         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4313         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4314         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4315         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4316 }
4317
4318
4319 static int __init nvme_core_init(void)
4320 {
4321         int result = -ENOMEM;
4322
4323         _nvme_check_size();
4324
4325         nvme_wq = alloc_workqueue("nvme-wq",
4326                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4327         if (!nvme_wq)
4328                 goto out;
4329
4330         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4331                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4332         if (!nvme_reset_wq)
4333                 goto destroy_wq;
4334
4335         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4336                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4337         if (!nvme_delete_wq)
4338                 goto destroy_reset_wq;
4339
4340         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4341         if (result < 0)
4342                 goto destroy_delete_wq;
4343
4344         nvme_class = class_create(THIS_MODULE, "nvme");
4345         if (IS_ERR(nvme_class)) {
4346                 result = PTR_ERR(nvme_class);
4347                 goto unregister_chrdev;
4348         }
4349         nvme_class->dev_uevent = nvme_class_uevent;
4350
4351         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4352         if (IS_ERR(nvme_subsys_class)) {
4353                 result = PTR_ERR(nvme_subsys_class);
4354                 goto destroy_class;
4355         }
4356         return 0;
4357
4358 destroy_class:
4359         class_destroy(nvme_class);
4360 unregister_chrdev:
4361         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4362 destroy_delete_wq:
4363         destroy_workqueue(nvme_delete_wq);
4364 destroy_reset_wq:
4365         destroy_workqueue(nvme_reset_wq);
4366 destroy_wq:
4367         destroy_workqueue(nvme_wq);
4368 out:
4369         return result;
4370 }
4371
4372 static void __exit nvme_core_exit(void)
4373 {
4374         class_destroy(nvme_subsys_class);
4375         class_destroy(nvme_class);
4376         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4377         destroy_workqueue(nvme_delete_wq);
4378         destroy_workqueue(nvme_reset_wq);
4379         destroy_workqueue(nvme_wq);
4380         ida_destroy(&nvme_instance_ida);
4381 }
4382
4383 MODULE_LICENSE("GPL");
4384 MODULE_VERSION("1.0");
4385 module_init(nvme_core_init);
4386 module_exit(nvme_core_exit);