Merge tag 'soundwire-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static int _nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95                                            unsigned nsid);
96
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99         /*
100          * Revalidating a dead namespace sets capacity to 0. This will end
101          * buffered writers dirtying pages that can't be synced.
102          */
103         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104                 return;
105         blk_set_queue_dying(ns->queue);
106         /* Forcibly unquiesce queues to avoid blocking dispatch */
107         blk_mq_unquiesce_queue(ns->queue);
108         /*
109          * Revalidate after unblocking dispatchers that may be holding bd_butex
110          */
111         revalidate_disk(ns->disk);
112 }
113
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116         /*
117          * Only new queue scan work when admin and IO queues are both alive
118          */
119         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120                 queue_work(nvme_wq, &ctrl->scan_work);
121 }
122
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131         if (ctrl->state != NVME_CTRL_RESETTING)
132                 return -EBUSY;
133         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134                 return -EBUSY;
135         return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142                 return -EBUSY;
143         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144                 return -EBUSY;
145         return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151         int ret;
152
153         ret = nvme_reset_ctrl(ctrl);
154         if (!ret) {
155                 flush_work(&ctrl->reset_work);
156                 if (ctrl->state != NVME_CTRL_LIVE)
157                         ret = -ENETRESET;
158         }
159
160         return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166         dev_info(ctrl->device,
167                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168
169         flush_work(&ctrl->reset_work);
170         nvme_stop_ctrl(ctrl);
171         nvme_remove_namespaces(ctrl);
172         ctrl->ops->delete_ctrl(ctrl);
173         nvme_uninit_ctrl(ctrl);
174 }
175
176 static void nvme_delete_ctrl_work(struct work_struct *work)
177 {
178         struct nvme_ctrl *ctrl =
179                 container_of(work, struct nvme_ctrl, delete_work);
180
181         nvme_do_delete_ctrl(ctrl);
182 }
183
184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
185 {
186         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187                 return -EBUSY;
188         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
189                 return -EBUSY;
190         return 0;
191 }
192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
193
194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
195 {
196         /*
197          * Keep a reference until nvme_do_delete_ctrl() complete,
198          * since ->delete_ctrl can free the controller.
199          */
200         nvme_get_ctrl(ctrl);
201         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
202                 nvme_do_delete_ctrl(ctrl);
203         nvme_put_ctrl(ctrl);
204 }
205
206 static blk_status_t nvme_error_status(u16 status)
207 {
208         switch (status & 0x7ff) {
209         case NVME_SC_SUCCESS:
210                 return BLK_STS_OK;
211         case NVME_SC_CAP_EXCEEDED:
212                 return BLK_STS_NOSPC;
213         case NVME_SC_LBA_RANGE:
214         case NVME_SC_CMD_INTERRUPTED:
215         case NVME_SC_NS_NOT_READY:
216                 return BLK_STS_TARGET;
217         case NVME_SC_BAD_ATTRIBUTES:
218         case NVME_SC_ONCS_NOT_SUPPORTED:
219         case NVME_SC_INVALID_OPCODE:
220         case NVME_SC_INVALID_FIELD:
221         case NVME_SC_INVALID_NS:
222                 return BLK_STS_NOTSUPP;
223         case NVME_SC_WRITE_FAULT:
224         case NVME_SC_READ_ERROR:
225         case NVME_SC_UNWRITTEN_BLOCK:
226         case NVME_SC_ACCESS_DENIED:
227         case NVME_SC_READ_ONLY:
228         case NVME_SC_COMPARE_FAILED:
229                 return BLK_STS_MEDIUM;
230         case NVME_SC_GUARD_CHECK:
231         case NVME_SC_APPTAG_CHECK:
232         case NVME_SC_REFTAG_CHECK:
233         case NVME_SC_INVALID_PI:
234                 return BLK_STS_PROTECTION;
235         case NVME_SC_RESERVATION_CONFLICT:
236                 return BLK_STS_NEXUS;
237         case NVME_SC_HOST_PATH_ERROR:
238                 return BLK_STS_TRANSPORT;
239         default:
240                 return BLK_STS_IOERR;
241         }
242 }
243
244 static void nvme_retry_req(struct request *req)
245 {
246         struct nvme_ns *ns = req->q->queuedata;
247         unsigned long delay = 0;
248         u16 crd;
249
250         /* The mask and shift result must be <= 3 */
251         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
252         if (ns && crd)
253                 delay = ns->ctrl->crdt[crd - 1] * 100;
254
255         nvme_req(req)->retries++;
256         blk_mq_requeue_request(req, false);
257         blk_mq_delay_kick_requeue_list(req->q, delay);
258 }
259
260 enum nvme_disposition {
261         COMPLETE,
262         RETRY,
263         FAILOVER,
264 };
265
266 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
267 {
268         if (likely(nvme_req(req)->status == 0))
269                 return COMPLETE;
270
271         if (blk_noretry_request(req) ||
272             (nvme_req(req)->status & NVME_SC_DNR) ||
273             nvme_req(req)->retries >= nvme_max_retries)
274                 return COMPLETE;
275
276         if (req->cmd_flags & REQ_NVME_MPATH) {
277                 if (nvme_is_path_error(nvme_req(req)->status) ||
278                     blk_queue_dying(req->q))
279                         return FAILOVER;
280         } else {
281                 if (blk_queue_dying(req->q))
282                         return COMPLETE;
283         }
284
285         return RETRY;
286 }
287
288 static inline void nvme_end_req(struct request *req)
289 {
290         blk_status_t status = nvme_error_status(nvme_req(req)->status);
291
292         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
293             req_op(req) == REQ_OP_ZONE_APPEND)
294                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
295                         le64_to_cpu(nvme_req(req)->result.u64));
296
297         nvme_trace_bio_complete(req, status);
298         blk_mq_end_request(req, status);
299 }
300
301 void nvme_complete_rq(struct request *req)
302 {
303         trace_nvme_complete_rq(req);
304         nvme_cleanup_cmd(req);
305
306         if (nvme_req(req)->ctrl->kas)
307                 nvme_req(req)->ctrl->comp_seen = true;
308
309         switch (nvme_decide_disposition(req)) {
310         case COMPLETE:
311                 nvme_end_req(req);
312                 return;
313         case RETRY:
314                 nvme_retry_req(req);
315                 return;
316         case FAILOVER:
317                 nvme_failover_req(req);
318                 return;
319         }
320 }
321 EXPORT_SYMBOL_GPL(nvme_complete_rq);
322
323 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
324 {
325         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
326                                 "Cancelling I/O %d", req->tag);
327
328         /* don't abort one completed request */
329         if (blk_mq_request_completed(req))
330                 return true;
331
332         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
333         blk_mq_complete_request(req);
334         return true;
335 }
336 EXPORT_SYMBOL_GPL(nvme_cancel_request);
337
338 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
339                 enum nvme_ctrl_state new_state)
340 {
341         enum nvme_ctrl_state old_state;
342         unsigned long flags;
343         bool changed = false;
344
345         spin_lock_irqsave(&ctrl->lock, flags);
346
347         old_state = ctrl->state;
348         switch (new_state) {
349         case NVME_CTRL_LIVE:
350                 switch (old_state) {
351                 case NVME_CTRL_NEW:
352                 case NVME_CTRL_RESETTING:
353                 case NVME_CTRL_CONNECTING:
354                         changed = true;
355                         fallthrough;
356                 default:
357                         break;
358                 }
359                 break;
360         case NVME_CTRL_RESETTING:
361                 switch (old_state) {
362                 case NVME_CTRL_NEW:
363                 case NVME_CTRL_LIVE:
364                         changed = true;
365                         fallthrough;
366                 default:
367                         break;
368                 }
369                 break;
370         case NVME_CTRL_CONNECTING:
371                 switch (old_state) {
372                 case NVME_CTRL_NEW:
373                 case NVME_CTRL_RESETTING:
374                         changed = true;
375                         fallthrough;
376                 default:
377                         break;
378                 }
379                 break;
380         case NVME_CTRL_DELETING:
381                 switch (old_state) {
382                 case NVME_CTRL_LIVE:
383                 case NVME_CTRL_RESETTING:
384                 case NVME_CTRL_CONNECTING:
385                         changed = true;
386                         fallthrough;
387                 default:
388                         break;
389                 }
390                 break;
391         case NVME_CTRL_DELETING_NOIO:
392                 switch (old_state) {
393                 case NVME_CTRL_DELETING:
394                 case NVME_CTRL_DEAD:
395                         changed = true;
396                         fallthrough;
397                 default:
398                         break;
399                 }
400                 break;
401         case NVME_CTRL_DEAD:
402                 switch (old_state) {
403                 case NVME_CTRL_DELETING:
404                         changed = true;
405                         fallthrough;
406                 default:
407                         break;
408                 }
409                 break;
410         default:
411                 break;
412         }
413
414         if (changed) {
415                 ctrl->state = new_state;
416                 wake_up_all(&ctrl->state_wq);
417         }
418
419         spin_unlock_irqrestore(&ctrl->lock, flags);
420         if (changed && ctrl->state == NVME_CTRL_LIVE)
421                 nvme_kick_requeue_lists(ctrl);
422         return changed;
423 }
424 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
425
426 /*
427  * Returns true for sink states that can't ever transition back to live.
428  */
429 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
430 {
431         switch (ctrl->state) {
432         case NVME_CTRL_NEW:
433         case NVME_CTRL_LIVE:
434         case NVME_CTRL_RESETTING:
435         case NVME_CTRL_CONNECTING:
436                 return false;
437         case NVME_CTRL_DELETING:
438         case NVME_CTRL_DELETING_NOIO:
439         case NVME_CTRL_DEAD:
440                 return true;
441         default:
442                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
443                 return true;
444         }
445 }
446
447 /*
448  * Waits for the controller state to be resetting, or returns false if it is
449  * not possible to ever transition to that state.
450  */
451 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
452 {
453         wait_event(ctrl->state_wq,
454                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
455                    nvme_state_terminal(ctrl));
456         return ctrl->state == NVME_CTRL_RESETTING;
457 }
458 EXPORT_SYMBOL_GPL(nvme_wait_reset);
459
460 static void nvme_free_ns_head(struct kref *ref)
461 {
462         struct nvme_ns_head *head =
463                 container_of(ref, struct nvme_ns_head, ref);
464
465         nvme_mpath_remove_disk(head);
466         ida_simple_remove(&head->subsys->ns_ida, head->instance);
467         cleanup_srcu_struct(&head->srcu);
468         nvme_put_subsystem(head->subsys);
469         kfree(head);
470 }
471
472 static void nvme_put_ns_head(struct nvme_ns_head *head)
473 {
474         kref_put(&head->ref, nvme_free_ns_head);
475 }
476
477 static void nvme_free_ns(struct kref *kref)
478 {
479         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
480
481         if (ns->ndev)
482                 nvme_nvm_unregister(ns);
483
484         put_disk(ns->disk);
485         nvme_put_ns_head(ns->head);
486         nvme_put_ctrl(ns->ctrl);
487         kfree(ns);
488 }
489
490 void nvme_put_ns(struct nvme_ns *ns)
491 {
492         kref_put(&ns->kref, nvme_free_ns);
493 }
494 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
495
496 static inline void nvme_clear_nvme_request(struct request *req)
497 {
498         if (!(req->rq_flags & RQF_DONTPREP)) {
499                 nvme_req(req)->retries = 0;
500                 nvme_req(req)->flags = 0;
501                 req->rq_flags |= RQF_DONTPREP;
502         }
503 }
504
505 struct request *nvme_alloc_request(struct request_queue *q,
506                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
507 {
508         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
509         struct request *req;
510
511         if (qid == NVME_QID_ANY) {
512                 req = blk_mq_alloc_request(q, op, flags);
513         } else {
514                 req = blk_mq_alloc_request_hctx(q, op, flags,
515                                 qid ? qid - 1 : 0);
516         }
517         if (IS_ERR(req))
518                 return req;
519
520         req->cmd_flags |= REQ_FAILFAST_DRIVER;
521         nvme_clear_nvme_request(req);
522         nvme_req(req)->cmd = cmd;
523
524         return req;
525 }
526 EXPORT_SYMBOL_GPL(nvme_alloc_request);
527
528 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
529 {
530         struct nvme_command c;
531
532         memset(&c, 0, sizeof(c));
533
534         c.directive.opcode = nvme_admin_directive_send;
535         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
536         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
537         c.directive.dtype = NVME_DIR_IDENTIFY;
538         c.directive.tdtype = NVME_DIR_STREAMS;
539         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
540
541         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
542 }
543
544 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
545 {
546         return nvme_toggle_streams(ctrl, false);
547 }
548
549 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
550 {
551         return nvme_toggle_streams(ctrl, true);
552 }
553
554 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
555                                   struct streams_directive_params *s, u32 nsid)
556 {
557         struct nvme_command c;
558
559         memset(&c, 0, sizeof(c));
560         memset(s, 0, sizeof(*s));
561
562         c.directive.opcode = nvme_admin_directive_recv;
563         c.directive.nsid = cpu_to_le32(nsid);
564         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
565         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
566         c.directive.dtype = NVME_DIR_STREAMS;
567
568         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
569 }
570
571 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
572 {
573         struct streams_directive_params s;
574         int ret;
575
576         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
577                 return 0;
578         if (!streams)
579                 return 0;
580
581         ret = nvme_enable_streams(ctrl);
582         if (ret)
583                 return ret;
584
585         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
586         if (ret)
587                 goto out_disable_stream;
588
589         ctrl->nssa = le16_to_cpu(s.nssa);
590         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
591                 dev_info(ctrl->device, "too few streams (%u) available\n",
592                                         ctrl->nssa);
593                 goto out_disable_stream;
594         }
595
596         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
597         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
598         return 0;
599
600 out_disable_stream:
601         nvme_disable_streams(ctrl);
602         return ret;
603 }
604
605 /*
606  * Check if 'req' has a write hint associated with it. If it does, assign
607  * a valid namespace stream to the write.
608  */
609 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
610                                      struct request *req, u16 *control,
611                                      u32 *dsmgmt)
612 {
613         enum rw_hint streamid = req->write_hint;
614
615         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
616                 streamid = 0;
617         else {
618                 streamid--;
619                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
620                         return;
621
622                 *control |= NVME_RW_DTYPE_STREAMS;
623                 *dsmgmt |= streamid << 16;
624         }
625
626         if (streamid < ARRAY_SIZE(req->q->write_hints))
627                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
628 }
629
630 static void nvme_setup_passthrough(struct request *req,
631                 struct nvme_command *cmd)
632 {
633         memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
634         /* passthru commands should let the driver set the SGL flags */
635         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
636 }
637
638 static inline void nvme_setup_flush(struct nvme_ns *ns,
639                 struct nvme_command *cmnd)
640 {
641         cmnd->common.opcode = nvme_cmd_flush;
642         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
643 }
644
645 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
646                 struct nvme_command *cmnd)
647 {
648         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
649         struct nvme_dsm_range *range;
650         struct bio *bio;
651
652         /*
653          * Some devices do not consider the DSM 'Number of Ranges' field when
654          * determining how much data to DMA. Always allocate memory for maximum
655          * number of segments to prevent device reading beyond end of buffer.
656          */
657         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
658
659         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
660         if (!range) {
661                 /*
662                  * If we fail allocation our range, fallback to the controller
663                  * discard page. If that's also busy, it's safe to return
664                  * busy, as we know we can make progress once that's freed.
665                  */
666                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
667                         return BLK_STS_RESOURCE;
668
669                 range = page_address(ns->ctrl->discard_page);
670         }
671
672         __rq_for_each_bio(bio, req) {
673                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
674                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
675
676                 if (n < segments) {
677                         range[n].cattr = cpu_to_le32(0);
678                         range[n].nlb = cpu_to_le32(nlb);
679                         range[n].slba = cpu_to_le64(slba);
680                 }
681                 n++;
682         }
683
684         if (WARN_ON_ONCE(n != segments)) {
685                 if (virt_to_page(range) == ns->ctrl->discard_page)
686                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
687                 else
688                         kfree(range);
689                 return BLK_STS_IOERR;
690         }
691
692         cmnd->dsm.opcode = nvme_cmd_dsm;
693         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
694         cmnd->dsm.nr = cpu_to_le32(segments - 1);
695         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
696
697         req->special_vec.bv_page = virt_to_page(range);
698         req->special_vec.bv_offset = offset_in_page(range);
699         req->special_vec.bv_len = alloc_size;
700         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
701
702         return BLK_STS_OK;
703 }
704
705 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
706                 struct request *req, struct nvme_command *cmnd)
707 {
708         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
709                 return nvme_setup_discard(ns, req, cmnd);
710
711         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
712         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
713         cmnd->write_zeroes.slba =
714                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
715         cmnd->write_zeroes.length =
716                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
717         cmnd->write_zeroes.control = 0;
718         return BLK_STS_OK;
719 }
720
721 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
722                 struct request *req, struct nvme_command *cmnd,
723                 enum nvme_opcode op)
724 {
725         struct nvme_ctrl *ctrl = ns->ctrl;
726         u16 control = 0;
727         u32 dsmgmt = 0;
728
729         if (req->cmd_flags & REQ_FUA)
730                 control |= NVME_RW_FUA;
731         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
732                 control |= NVME_RW_LR;
733
734         if (req->cmd_flags & REQ_RAHEAD)
735                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
736
737         cmnd->rw.opcode = op;
738         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
739         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
740         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
741
742         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
743                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
744
745         if (ns->ms) {
746                 /*
747                  * If formated with metadata, the block layer always provides a
748                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
749                  * we enable the PRACT bit for protection information or set the
750                  * namespace capacity to zero to prevent any I/O.
751                  */
752                 if (!blk_integrity_rq(req)) {
753                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
754                                 return BLK_STS_NOTSUPP;
755                         control |= NVME_RW_PRINFO_PRACT;
756                 }
757
758                 switch (ns->pi_type) {
759                 case NVME_NS_DPS_PI_TYPE3:
760                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
761                         break;
762                 case NVME_NS_DPS_PI_TYPE1:
763                 case NVME_NS_DPS_PI_TYPE2:
764                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
765                                         NVME_RW_PRINFO_PRCHK_REF;
766                         if (op == nvme_cmd_zone_append)
767                                 control |= NVME_RW_APPEND_PIREMAP;
768                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
769                         break;
770                 }
771         }
772
773         cmnd->rw.control = cpu_to_le16(control);
774         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
775         return 0;
776 }
777
778 void nvme_cleanup_cmd(struct request *req)
779 {
780         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
781                 struct nvme_ns *ns = req->rq_disk->private_data;
782                 struct page *page = req->special_vec.bv_page;
783
784                 if (page == ns->ctrl->discard_page)
785                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
786                 else
787                         kfree(page_address(page) + req->special_vec.bv_offset);
788         }
789 }
790 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
791
792 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
793                 struct nvme_command *cmd)
794 {
795         blk_status_t ret = BLK_STS_OK;
796
797         nvme_clear_nvme_request(req);
798
799         memset(cmd, 0, sizeof(*cmd));
800         switch (req_op(req)) {
801         case REQ_OP_DRV_IN:
802         case REQ_OP_DRV_OUT:
803                 nvme_setup_passthrough(req, cmd);
804                 break;
805         case REQ_OP_FLUSH:
806                 nvme_setup_flush(ns, cmd);
807                 break;
808         case REQ_OP_ZONE_RESET_ALL:
809         case REQ_OP_ZONE_RESET:
810                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
811                 break;
812         case REQ_OP_ZONE_OPEN:
813                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
814                 break;
815         case REQ_OP_ZONE_CLOSE:
816                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
817                 break;
818         case REQ_OP_ZONE_FINISH:
819                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
820                 break;
821         case REQ_OP_WRITE_ZEROES:
822                 ret = nvme_setup_write_zeroes(ns, req, cmd);
823                 break;
824         case REQ_OP_DISCARD:
825                 ret = nvme_setup_discard(ns, req, cmd);
826                 break;
827         case REQ_OP_READ:
828                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
829                 break;
830         case REQ_OP_WRITE:
831                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
832                 break;
833         case REQ_OP_ZONE_APPEND:
834                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
835                 break;
836         default:
837                 WARN_ON_ONCE(1);
838                 return BLK_STS_IOERR;
839         }
840
841         cmd->common.command_id = req->tag;
842         trace_nvme_setup_cmd(req, cmd);
843         return ret;
844 }
845 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
846
847 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
848 {
849         struct completion *waiting = rq->end_io_data;
850
851         rq->end_io_data = NULL;
852         complete(waiting);
853 }
854
855 static void nvme_execute_rq_polled(struct request_queue *q,
856                 struct gendisk *bd_disk, struct request *rq, int at_head)
857 {
858         DECLARE_COMPLETION_ONSTACK(wait);
859
860         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
861
862         rq->cmd_flags |= REQ_HIPRI;
863         rq->end_io_data = &wait;
864         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
865
866         while (!completion_done(&wait)) {
867                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
868                 cond_resched();
869         }
870 }
871
872 /*
873  * Returns 0 on success.  If the result is negative, it's a Linux error code;
874  * if the result is positive, it's an NVM Express status code
875  */
876 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
877                 union nvme_result *result, void *buffer, unsigned bufflen,
878                 unsigned timeout, int qid, int at_head,
879                 blk_mq_req_flags_t flags, bool poll)
880 {
881         struct request *req;
882         int ret;
883
884         req = nvme_alloc_request(q, cmd, flags, qid);
885         if (IS_ERR(req))
886                 return PTR_ERR(req);
887
888         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
889
890         if (buffer && bufflen) {
891                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
892                 if (ret)
893                         goto out;
894         }
895
896         if (poll)
897                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
898         else
899                 blk_execute_rq(req->q, NULL, req, at_head);
900         if (result)
901                 *result = nvme_req(req)->result;
902         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
903                 ret = -EINTR;
904         else
905                 ret = nvme_req(req)->status;
906  out:
907         blk_mq_free_request(req);
908         return ret;
909 }
910 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
911
912 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
913                 void *buffer, unsigned bufflen)
914 {
915         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
916                         NVME_QID_ANY, 0, 0, false);
917 }
918 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
919
920 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
921                 unsigned len, u32 seed, bool write)
922 {
923         struct bio_integrity_payload *bip;
924         int ret = -ENOMEM;
925         void *buf;
926
927         buf = kmalloc(len, GFP_KERNEL);
928         if (!buf)
929                 goto out;
930
931         ret = -EFAULT;
932         if (write && copy_from_user(buf, ubuf, len))
933                 goto out_free_meta;
934
935         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
936         if (IS_ERR(bip)) {
937                 ret = PTR_ERR(bip);
938                 goto out_free_meta;
939         }
940
941         bip->bip_iter.bi_size = len;
942         bip->bip_iter.bi_sector = seed;
943         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
944                         offset_in_page(buf));
945         if (ret == len)
946                 return buf;
947         ret = -ENOMEM;
948 out_free_meta:
949         kfree(buf);
950 out:
951         return ERR_PTR(ret);
952 }
953
954 static u32 nvme_known_admin_effects(u8 opcode)
955 {
956         switch (opcode) {
957         case nvme_admin_format_nvm:
958                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
959                         NVME_CMD_EFFECTS_CSE_MASK;
960         case nvme_admin_sanitize_nvm:
961                 return NVME_CMD_EFFECTS_CSE_MASK;
962         default:
963                 break;
964         }
965         return 0;
966 }
967
968 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
969 {
970         u32 effects = 0;
971
972         if (ns) {
973                 if (ns->head->effects)
974                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
975                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
976                         dev_warn(ctrl->device,
977                                  "IO command:%02x has unhandled effects:%08x\n",
978                                  opcode, effects);
979                 return 0;
980         }
981
982         if (ctrl->effects)
983                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
984         effects |= nvme_known_admin_effects(opcode);
985
986         return effects;
987 }
988 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
989
990 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
991                                u8 opcode)
992 {
993         u32 effects = nvme_command_effects(ctrl, ns, opcode);
994
995         /*
996          * For simplicity, IO to all namespaces is quiesced even if the command
997          * effects say only one namespace is affected.
998          */
999         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1000                 mutex_lock(&ctrl->scan_lock);
1001                 mutex_lock(&ctrl->subsys->lock);
1002                 nvme_mpath_start_freeze(ctrl->subsys);
1003                 nvme_mpath_wait_freeze(ctrl->subsys);
1004                 nvme_start_freeze(ctrl);
1005                 nvme_wait_freeze(ctrl);
1006         }
1007         return effects;
1008 }
1009
1010 static void nvme_update_formats(struct nvme_ctrl *ctrl, u32 *effects)
1011 {
1012         struct nvme_ns *ns;
1013
1014         down_read(&ctrl->namespaces_rwsem);
1015         list_for_each_entry(ns, &ctrl->namespaces, list)
1016                 if (_nvme_revalidate_disk(ns->disk))
1017                         nvme_set_queue_dying(ns);
1018                 else if (blk_queue_is_zoned(ns->disk->queue)) {
1019                         /*
1020                          * IO commands are required to fully revalidate a zoned
1021                          * device. Force the command effects to trigger rescan
1022                          * work so report zones can run in a context with
1023                          * unfrozen IO queues.
1024                          */
1025                         *effects |= NVME_CMD_EFFECTS_NCC;
1026                 }
1027         up_read(&ctrl->namespaces_rwsem);
1028 }
1029
1030 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1031 {
1032         /*
1033          * Revalidate LBA changes prior to unfreezing. This is necessary to
1034          * prevent memory corruption if a logical block size was changed by
1035          * this command.
1036          */
1037         if (effects & NVME_CMD_EFFECTS_LBCC)
1038                 nvme_update_formats(ctrl, &effects);
1039         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1040                 nvme_unfreeze(ctrl);
1041                 nvme_mpath_unfreeze(ctrl->subsys);
1042                 mutex_unlock(&ctrl->subsys->lock);
1043                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1044                 mutex_unlock(&ctrl->scan_lock);
1045         }
1046         if (effects & NVME_CMD_EFFECTS_CCC)
1047                 nvme_init_identify(ctrl);
1048         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1049                 nvme_queue_scan(ctrl);
1050                 flush_work(&ctrl->scan_work);
1051         }
1052 }
1053
1054 void nvme_execute_passthru_rq(struct request *rq)
1055 {
1056         struct nvme_command *cmd = nvme_req(rq)->cmd;
1057         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1058         struct nvme_ns *ns = rq->q->queuedata;
1059         struct gendisk *disk = ns ? ns->disk : NULL;
1060         u32 effects;
1061
1062         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1063         blk_execute_rq(rq->q, disk, rq, 0);
1064         nvme_passthru_end(ctrl, effects);
1065 }
1066 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1067
1068 static int nvme_submit_user_cmd(struct request_queue *q,
1069                 struct nvme_command *cmd, void __user *ubuffer,
1070                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1071                 u32 meta_seed, u64 *result, unsigned timeout)
1072 {
1073         bool write = nvme_is_write(cmd);
1074         struct nvme_ns *ns = q->queuedata;
1075         struct gendisk *disk = ns ? ns->disk : NULL;
1076         struct request *req;
1077         struct bio *bio = NULL;
1078         void *meta = NULL;
1079         int ret;
1080
1081         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1082         if (IS_ERR(req))
1083                 return PTR_ERR(req);
1084
1085         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1086         nvme_req(req)->flags |= NVME_REQ_USERCMD;
1087
1088         if (ubuffer && bufflen) {
1089                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1090                                 GFP_KERNEL);
1091                 if (ret)
1092                         goto out;
1093                 bio = req->bio;
1094                 bio->bi_disk = disk;
1095                 if (disk && meta_buffer && meta_len) {
1096                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1097                                         meta_seed, write);
1098                         if (IS_ERR(meta)) {
1099                                 ret = PTR_ERR(meta);
1100                                 goto out_unmap;
1101                         }
1102                         req->cmd_flags |= REQ_INTEGRITY;
1103                 }
1104         }
1105
1106         nvme_execute_passthru_rq(req);
1107         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1108                 ret = -EINTR;
1109         else
1110                 ret = nvme_req(req)->status;
1111         if (result)
1112                 *result = le64_to_cpu(nvme_req(req)->result.u64);
1113         if (meta && !ret && !write) {
1114                 if (copy_to_user(meta_buffer, meta, meta_len))
1115                         ret = -EFAULT;
1116         }
1117         kfree(meta);
1118  out_unmap:
1119         if (bio)
1120                 blk_rq_unmap_user(bio);
1121  out:
1122         blk_mq_free_request(req);
1123         return ret;
1124 }
1125
1126 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1127 {
1128         struct nvme_ctrl *ctrl = rq->end_io_data;
1129         unsigned long flags;
1130         bool startka = false;
1131
1132         blk_mq_free_request(rq);
1133
1134         if (status) {
1135                 dev_err(ctrl->device,
1136                         "failed nvme_keep_alive_end_io error=%d\n",
1137                                 status);
1138                 return;
1139         }
1140
1141         ctrl->comp_seen = false;
1142         spin_lock_irqsave(&ctrl->lock, flags);
1143         if (ctrl->state == NVME_CTRL_LIVE ||
1144             ctrl->state == NVME_CTRL_CONNECTING)
1145                 startka = true;
1146         spin_unlock_irqrestore(&ctrl->lock, flags);
1147         if (startka)
1148                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1149 }
1150
1151 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1152 {
1153         struct request *rq;
1154
1155         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1156                         NVME_QID_ANY);
1157         if (IS_ERR(rq))
1158                 return PTR_ERR(rq);
1159
1160         rq->timeout = ctrl->kato * HZ;
1161         rq->end_io_data = ctrl;
1162
1163         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1164
1165         return 0;
1166 }
1167
1168 static void nvme_keep_alive_work(struct work_struct *work)
1169 {
1170         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1171                         struct nvme_ctrl, ka_work);
1172         bool comp_seen = ctrl->comp_seen;
1173
1174         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1175                 dev_dbg(ctrl->device,
1176                         "reschedule traffic based keep-alive timer\n");
1177                 ctrl->comp_seen = false;
1178                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1179                 return;
1180         }
1181
1182         if (nvme_keep_alive(ctrl)) {
1183                 /* allocation failure, reset the controller */
1184                 dev_err(ctrl->device, "keep-alive failed\n");
1185                 nvme_reset_ctrl(ctrl);
1186                 return;
1187         }
1188 }
1189
1190 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1191 {
1192         if (unlikely(ctrl->kato == 0))
1193                 return;
1194
1195         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1196 }
1197
1198 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1199 {
1200         if (unlikely(ctrl->kato == 0))
1201                 return;
1202
1203         cancel_delayed_work_sync(&ctrl->ka_work);
1204 }
1205 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1206
1207 /*
1208  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1209  * flag, thus sending any new CNS opcodes has a big chance of not working.
1210  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1211  * (but not for any later version).
1212  */
1213 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1214 {
1215         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1216                 return ctrl->vs < NVME_VS(1, 2, 0);
1217         return ctrl->vs < NVME_VS(1, 1, 0);
1218 }
1219
1220 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1221 {
1222         struct nvme_command c = { };
1223         int error;
1224
1225         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1226         c.identify.opcode = nvme_admin_identify;
1227         c.identify.cns = NVME_ID_CNS_CTRL;
1228
1229         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1230         if (!*id)
1231                 return -ENOMEM;
1232
1233         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1234                         sizeof(struct nvme_id_ctrl));
1235         if (error)
1236                 kfree(*id);
1237         return error;
1238 }
1239
1240 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1241 {
1242         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1243 }
1244
1245 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1246                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1247 {
1248         const char *warn_str = "ctrl returned bogus length:";
1249         void *data = cur;
1250
1251         switch (cur->nidt) {
1252         case NVME_NIDT_EUI64:
1253                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1254                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1255                                  warn_str, cur->nidl);
1256                         return -1;
1257                 }
1258                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1259                 return NVME_NIDT_EUI64_LEN;
1260         case NVME_NIDT_NGUID:
1261                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1262                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1263                                  warn_str, cur->nidl);
1264                         return -1;
1265                 }
1266                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1267                 return NVME_NIDT_NGUID_LEN;
1268         case NVME_NIDT_UUID:
1269                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1270                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1271                                  warn_str, cur->nidl);
1272                         return -1;
1273                 }
1274                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1275                 return NVME_NIDT_UUID_LEN;
1276         case NVME_NIDT_CSI:
1277                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1278                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1279                                  warn_str, cur->nidl);
1280                         return -1;
1281                 }
1282                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1283                 *csi_seen = true;
1284                 return NVME_NIDT_CSI_LEN;
1285         default:
1286                 /* Skip unknown types */
1287                 return cur->nidl;
1288         }
1289 }
1290
1291 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1292                 struct nvme_ns_ids *ids)
1293 {
1294         struct nvme_command c = { };
1295         bool csi_seen = false;
1296         int status, pos, len;
1297         void *data;
1298
1299         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1300                 return 0;
1301
1302         c.identify.opcode = nvme_admin_identify;
1303         c.identify.nsid = cpu_to_le32(nsid);
1304         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1305
1306         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1307         if (!data)
1308                 return -ENOMEM;
1309
1310         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1311                                       NVME_IDENTIFY_DATA_SIZE);
1312         if (status) {
1313                 dev_warn(ctrl->device,
1314                         "Identify Descriptors failed (%d)\n", status);
1315                 goto free_data;
1316         }
1317
1318         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1319                 struct nvme_ns_id_desc *cur = data + pos;
1320
1321                 if (cur->nidl == 0)
1322                         break;
1323
1324                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1325                 if (len < 0)
1326                         break;
1327
1328                 len += sizeof(*cur);
1329         }
1330
1331         if (nvme_multi_css(ctrl) && !csi_seen) {
1332                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1333                          nsid);
1334                 status = -EINVAL;
1335         }
1336
1337 free_data:
1338         kfree(data);
1339         return status;
1340 }
1341
1342 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1343 {
1344         struct nvme_command c = { };
1345
1346         c.identify.opcode = nvme_admin_identify;
1347         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1348         c.identify.nsid = cpu_to_le32(nsid);
1349         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1350                                     NVME_IDENTIFY_DATA_SIZE);
1351 }
1352
1353 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1354                 unsigned nsid, struct nvme_id_ns **id)
1355 {
1356         struct nvme_command c = { };
1357         int error;
1358
1359         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1360         c.identify.opcode = nvme_admin_identify;
1361         c.identify.nsid = cpu_to_le32(nsid);
1362         c.identify.cns = NVME_ID_CNS_NS;
1363
1364         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1365         if (!*id)
1366                 return -ENOMEM;
1367
1368         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1369         if (error) {
1370                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1371                 kfree(*id);
1372         }
1373
1374         return error;
1375 }
1376
1377 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1378                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1379 {
1380         union nvme_result res = { 0 };
1381         struct nvme_command c;
1382         int ret;
1383
1384         memset(&c, 0, sizeof(c));
1385         c.features.opcode = op;
1386         c.features.fid = cpu_to_le32(fid);
1387         c.features.dword11 = cpu_to_le32(dword11);
1388
1389         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1390                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1391         if (ret >= 0 && result)
1392                 *result = le32_to_cpu(res.u32);
1393         return ret;
1394 }
1395
1396 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1397                       unsigned int dword11, void *buffer, size_t buflen,
1398                       u32 *result)
1399 {
1400         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1401                              buflen, result);
1402 }
1403 EXPORT_SYMBOL_GPL(nvme_set_features);
1404
1405 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1406                       unsigned int dword11, void *buffer, size_t buflen,
1407                       u32 *result)
1408 {
1409         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1410                              buflen, result);
1411 }
1412 EXPORT_SYMBOL_GPL(nvme_get_features);
1413
1414 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1415 {
1416         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1417         u32 result;
1418         int status, nr_io_queues;
1419
1420         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1421                         &result);
1422         if (status < 0)
1423                 return status;
1424
1425         /*
1426          * Degraded controllers might return an error when setting the queue
1427          * count.  We still want to be able to bring them online and offer
1428          * access to the admin queue, as that might be only way to fix them up.
1429          */
1430         if (status > 0) {
1431                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1432                 *count = 0;
1433         } else {
1434                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1435                 *count = min(*count, nr_io_queues);
1436         }
1437
1438         return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1441
1442 #define NVME_AEN_SUPPORTED \
1443         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1444          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1445
1446 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1447 {
1448         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1449         int status;
1450
1451         if (!supported_aens)
1452                 return;
1453
1454         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1455                         NULL, 0, &result);
1456         if (status)
1457                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1458                          supported_aens);
1459
1460         queue_work(nvme_wq, &ctrl->async_event_work);
1461 }
1462
1463 /*
1464  * Convert integer values from ioctl structures to user pointers, silently
1465  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1466  * kernels.
1467  */
1468 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1469 {
1470         if (in_compat_syscall())
1471                 ptrval = (compat_uptr_t)ptrval;
1472         return (void __user *)ptrval;
1473 }
1474
1475 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1476 {
1477         struct nvme_user_io io;
1478         struct nvme_command c;
1479         unsigned length, meta_len;
1480         void __user *metadata;
1481
1482         if (copy_from_user(&io, uio, sizeof(io)))
1483                 return -EFAULT;
1484         if (io.flags)
1485                 return -EINVAL;
1486
1487         switch (io.opcode) {
1488         case nvme_cmd_write:
1489         case nvme_cmd_read:
1490         case nvme_cmd_compare:
1491                 break;
1492         default:
1493                 return -EINVAL;
1494         }
1495
1496         length = (io.nblocks + 1) << ns->lba_shift;
1497         meta_len = (io.nblocks + 1) * ns->ms;
1498         metadata = nvme_to_user_ptr(io.metadata);
1499
1500         if (ns->features & NVME_NS_EXT_LBAS) {
1501                 length += meta_len;
1502                 meta_len = 0;
1503         } else if (meta_len) {
1504                 if ((io.metadata & 3) || !io.metadata)
1505                         return -EINVAL;
1506         }
1507
1508         memset(&c, 0, sizeof(c));
1509         c.rw.opcode = io.opcode;
1510         c.rw.flags = io.flags;
1511         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1512         c.rw.slba = cpu_to_le64(io.slba);
1513         c.rw.length = cpu_to_le16(io.nblocks);
1514         c.rw.control = cpu_to_le16(io.control);
1515         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1516         c.rw.reftag = cpu_to_le32(io.reftag);
1517         c.rw.apptag = cpu_to_le16(io.apptag);
1518         c.rw.appmask = cpu_to_le16(io.appmask);
1519
1520         return nvme_submit_user_cmd(ns->queue, &c,
1521                         nvme_to_user_ptr(io.addr), length,
1522                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1523 }
1524
1525 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1526                         struct nvme_passthru_cmd __user *ucmd)
1527 {
1528         struct nvme_passthru_cmd cmd;
1529         struct nvme_command c;
1530         unsigned timeout = 0;
1531         u64 result;
1532         int status;
1533
1534         if (!capable(CAP_SYS_ADMIN))
1535                 return -EACCES;
1536         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1537                 return -EFAULT;
1538         if (cmd.flags)
1539                 return -EINVAL;
1540
1541         memset(&c, 0, sizeof(c));
1542         c.common.opcode = cmd.opcode;
1543         c.common.flags = cmd.flags;
1544         c.common.nsid = cpu_to_le32(cmd.nsid);
1545         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1546         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1547         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1548         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1549         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1550         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1551         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1552         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1553
1554         if (cmd.timeout_ms)
1555                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1556
1557         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1558                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1559                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1560                         0, &result, timeout);
1561
1562         if (status >= 0) {
1563                 if (put_user(result, &ucmd->result))
1564                         return -EFAULT;
1565         }
1566
1567         return status;
1568 }
1569
1570 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1571                         struct nvme_passthru_cmd64 __user *ucmd)
1572 {
1573         struct nvme_passthru_cmd64 cmd;
1574         struct nvme_command c;
1575         unsigned timeout = 0;
1576         int status;
1577
1578         if (!capable(CAP_SYS_ADMIN))
1579                 return -EACCES;
1580         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1581                 return -EFAULT;
1582         if (cmd.flags)
1583                 return -EINVAL;
1584
1585         memset(&c, 0, sizeof(c));
1586         c.common.opcode = cmd.opcode;
1587         c.common.flags = cmd.flags;
1588         c.common.nsid = cpu_to_le32(cmd.nsid);
1589         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1590         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1591         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1592         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1593         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1594         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1595         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1596         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1597
1598         if (cmd.timeout_ms)
1599                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1600
1601         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1602                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1603                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1604                         0, &cmd.result, timeout);
1605
1606         if (status >= 0) {
1607                 if (put_user(cmd.result, &ucmd->result))
1608                         return -EFAULT;
1609         }
1610
1611         return status;
1612 }
1613
1614 /*
1615  * Issue ioctl requests on the first available path.  Note that unlike normal
1616  * block layer requests we will not retry failed request on another controller.
1617  */
1618 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1619                 struct nvme_ns_head **head, int *srcu_idx)
1620 {
1621 #ifdef CONFIG_NVME_MULTIPATH
1622         if (disk->fops == &nvme_ns_head_ops) {
1623                 struct nvme_ns *ns;
1624
1625                 *head = disk->private_data;
1626                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1627                 ns = nvme_find_path(*head);
1628                 if (!ns)
1629                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1630                 return ns;
1631         }
1632 #endif
1633         *head = NULL;
1634         *srcu_idx = -1;
1635         return disk->private_data;
1636 }
1637
1638 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1639 {
1640         if (head)
1641                 srcu_read_unlock(&head->srcu, idx);
1642 }
1643
1644 static bool is_ctrl_ioctl(unsigned int cmd)
1645 {
1646         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1647                 return true;
1648         if (is_sed_ioctl(cmd))
1649                 return true;
1650         return false;
1651 }
1652
1653 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1654                                   void __user *argp,
1655                                   struct nvme_ns_head *head,
1656                                   int srcu_idx)
1657 {
1658         struct nvme_ctrl *ctrl = ns->ctrl;
1659         int ret;
1660
1661         nvme_get_ctrl(ns->ctrl);
1662         nvme_put_ns_from_disk(head, srcu_idx);
1663
1664         switch (cmd) {
1665         case NVME_IOCTL_ADMIN_CMD:
1666                 ret = nvme_user_cmd(ctrl, NULL, argp);
1667                 break;
1668         case NVME_IOCTL_ADMIN64_CMD:
1669                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1670                 break;
1671         default:
1672                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1673                 break;
1674         }
1675         nvme_put_ctrl(ctrl);
1676         return ret;
1677 }
1678
1679 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1680                 unsigned int cmd, unsigned long arg)
1681 {
1682         struct nvme_ns_head *head = NULL;
1683         void __user *argp = (void __user *)arg;
1684         struct nvme_ns *ns;
1685         int srcu_idx, ret;
1686
1687         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1688         if (unlikely(!ns))
1689                 return -EWOULDBLOCK;
1690
1691         /*
1692          * Handle ioctls that apply to the controller instead of the namespace
1693          * seperately and drop the ns SRCU reference early.  This avoids a
1694          * deadlock when deleting namespaces using the passthrough interface.
1695          */
1696         if (is_ctrl_ioctl(cmd))
1697                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1698
1699         switch (cmd) {
1700         case NVME_IOCTL_ID:
1701                 force_successful_syscall_return();
1702                 ret = ns->head->ns_id;
1703                 break;
1704         case NVME_IOCTL_IO_CMD:
1705                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1706                 break;
1707         case NVME_IOCTL_SUBMIT_IO:
1708                 ret = nvme_submit_io(ns, argp);
1709                 break;
1710         case NVME_IOCTL_IO64_CMD:
1711                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1712                 break;
1713         default:
1714                 if (ns->ndev)
1715                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1716                 else
1717                         ret = -ENOTTY;
1718         }
1719
1720         nvme_put_ns_from_disk(head, srcu_idx);
1721         return ret;
1722 }
1723
1724 #ifdef CONFIG_COMPAT
1725 struct nvme_user_io32 {
1726         __u8    opcode;
1727         __u8    flags;
1728         __u16   control;
1729         __u16   nblocks;
1730         __u16   rsvd;
1731         __u64   metadata;
1732         __u64   addr;
1733         __u64   slba;
1734         __u32   dsmgmt;
1735         __u32   reftag;
1736         __u16   apptag;
1737         __u16   appmask;
1738 } __attribute__((__packed__));
1739
1740 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1741
1742 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1743                 unsigned int cmd, unsigned long arg)
1744 {
1745         /*
1746          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1747          * between 32 bit programs and 64 bit kernel.
1748          * The cause is that the results of sizeof(struct nvme_user_io),
1749          * which is used to define NVME_IOCTL_SUBMIT_IO,
1750          * are not same between 32 bit compiler and 64 bit compiler.
1751          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1752          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1753          * Other IOCTL numbers are same between 32 bit and 64 bit.
1754          * So there is nothing to do regarding to other IOCTL numbers.
1755          */
1756         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1757                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1758
1759         return nvme_ioctl(bdev, mode, cmd, arg);
1760 }
1761 #else
1762 #define nvme_compat_ioctl       NULL
1763 #endif /* CONFIG_COMPAT */
1764
1765 static int nvme_open(struct block_device *bdev, fmode_t mode)
1766 {
1767         struct nvme_ns *ns = bdev->bd_disk->private_data;
1768
1769 #ifdef CONFIG_NVME_MULTIPATH
1770         /* should never be called due to GENHD_FL_HIDDEN */
1771         if (WARN_ON_ONCE(ns->head->disk))
1772                 goto fail;
1773 #endif
1774         if (!kref_get_unless_zero(&ns->kref))
1775                 goto fail;
1776         if (!try_module_get(ns->ctrl->ops->module))
1777                 goto fail_put_ns;
1778
1779         return 0;
1780
1781 fail_put_ns:
1782         nvme_put_ns(ns);
1783 fail:
1784         return -ENXIO;
1785 }
1786
1787 static void nvme_release(struct gendisk *disk, fmode_t mode)
1788 {
1789         struct nvme_ns *ns = disk->private_data;
1790
1791         module_put(ns->ctrl->ops->module);
1792         nvme_put_ns(ns);
1793 }
1794
1795 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1796 {
1797         /* some standard values */
1798         geo->heads = 1 << 6;
1799         geo->sectors = 1 << 5;
1800         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1801         return 0;
1802 }
1803
1804 #ifdef CONFIG_BLK_DEV_INTEGRITY
1805 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1806                                 u32 max_integrity_segments)
1807 {
1808         struct blk_integrity integrity;
1809
1810         memset(&integrity, 0, sizeof(integrity));
1811         switch (pi_type) {
1812         case NVME_NS_DPS_PI_TYPE3:
1813                 integrity.profile = &t10_pi_type3_crc;
1814                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1815                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1816                 break;
1817         case NVME_NS_DPS_PI_TYPE1:
1818         case NVME_NS_DPS_PI_TYPE2:
1819                 integrity.profile = &t10_pi_type1_crc;
1820                 integrity.tag_size = sizeof(u16);
1821                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1822                 break;
1823         default:
1824                 integrity.profile = NULL;
1825                 break;
1826         }
1827         integrity.tuple_size = ms;
1828         blk_integrity_register(disk, &integrity);
1829         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1830 }
1831 #else
1832 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1833                                 u32 max_integrity_segments)
1834 {
1835 }
1836 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1837
1838 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1839 {
1840         struct nvme_ctrl *ctrl = ns->ctrl;
1841         struct request_queue *queue = disk->queue;
1842         u32 size = queue_logical_block_size(queue);
1843
1844         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1845                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1846                 return;
1847         }
1848
1849         if (ctrl->nr_streams && ns->sws && ns->sgs)
1850                 size *= ns->sws * ns->sgs;
1851
1852         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1853                         NVME_DSM_MAX_RANGES);
1854
1855         queue->limits.discard_alignment = 0;
1856         queue->limits.discard_granularity = size;
1857
1858         /* If discard is already enabled, don't reset queue limits */
1859         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1860                 return;
1861
1862         blk_queue_max_discard_sectors(queue, UINT_MAX);
1863         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1864
1865         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1866                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1867 }
1868
1869 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1870 {
1871         u64 max_blocks;
1872
1873         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1874             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1875                 return;
1876         /*
1877          * Even though NVMe spec explicitly states that MDTS is not
1878          * applicable to the write-zeroes:- "The restriction does not apply to
1879          * commands that do not transfer data between the host and the
1880          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1881          * In order to be more cautious use controller's max_hw_sectors value
1882          * to configure the maximum sectors for the write-zeroes which is
1883          * configured based on the controller's MDTS field in the
1884          * nvme_init_identify() if available.
1885          */
1886         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1887                 max_blocks = (u64)USHRT_MAX + 1;
1888         else
1889                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1890
1891         blk_queue_max_write_zeroes_sectors(disk->queue,
1892                                            nvme_lba_to_sect(ns, max_blocks));
1893 }
1894
1895 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1896                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1897 {
1898         memset(ids, 0, sizeof(*ids));
1899
1900         if (ctrl->vs >= NVME_VS(1, 1, 0))
1901                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1902         if (ctrl->vs >= NVME_VS(1, 2, 0))
1903                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1904         if (ctrl->vs >= NVME_VS(1, 3, 0) || nvme_multi_css(ctrl))
1905                 return nvme_identify_ns_descs(ctrl, nsid, ids);
1906         return 0;
1907 }
1908
1909 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1910 {
1911         return !uuid_is_null(&ids->uuid) ||
1912                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1913                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1914 }
1915
1916 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1917 {
1918         return uuid_equal(&a->uuid, &b->uuid) &&
1919                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1920                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1921                 a->csi == b->csi;
1922 }
1923
1924 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1925                                  u32 *phys_bs, u32 *io_opt)
1926 {
1927         struct streams_directive_params s;
1928         int ret;
1929
1930         if (!ctrl->nr_streams)
1931                 return 0;
1932
1933         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1934         if (ret)
1935                 return ret;
1936
1937         ns->sws = le32_to_cpu(s.sws);
1938         ns->sgs = le16_to_cpu(s.sgs);
1939
1940         if (ns->sws) {
1941                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1942                 if (ns->sgs)
1943                         *io_opt = *phys_bs * ns->sgs;
1944         }
1945
1946         return 0;
1947 }
1948
1949 static void nvme_update_disk_info(struct gendisk *disk,
1950                 struct nvme_ns *ns, struct nvme_id_ns *id)
1951 {
1952         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1953         unsigned short bs = 1 << ns->lba_shift;
1954         u32 atomic_bs, phys_bs, io_opt = 0;
1955
1956         if (ns->lba_shift > PAGE_SHIFT) {
1957                 /* unsupported block size, set capacity to 0 later */
1958                 bs = (1 << 9);
1959         }
1960         blk_mq_freeze_queue(disk->queue);
1961         blk_integrity_unregister(disk);
1962
1963         atomic_bs = phys_bs = bs;
1964         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1965         if (id->nabo == 0) {
1966                 /*
1967                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1968                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1969                  * 0 then AWUPF must be used instead.
1970                  */
1971                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1972                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1973                 else
1974                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1975         }
1976
1977         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1978                 /* NPWG = Namespace Preferred Write Granularity */
1979                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1980                 /* NOWS = Namespace Optimal Write Size */
1981                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1982         }
1983
1984         blk_queue_logical_block_size(disk->queue, bs);
1985         /*
1986          * Linux filesystems assume writing a single physical block is
1987          * an atomic operation. Hence limit the physical block size to the
1988          * value of the Atomic Write Unit Power Fail parameter.
1989          */
1990         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1991         blk_queue_io_min(disk->queue, phys_bs);
1992         blk_queue_io_opt(disk->queue, io_opt);
1993
1994         /*
1995          * The block layer can't support LBA sizes larger than the page size
1996          * yet, so catch this early and don't allow block I/O.
1997          */
1998         if (ns->lba_shift > PAGE_SHIFT)
1999                 capacity = 0;
2000
2001         /*
2002          * Register a metadata profile for PI, or the plain non-integrity NVMe
2003          * metadata masquerading as Type 0 if supported, otherwise reject block
2004          * I/O to namespaces with metadata except when the namespace supports
2005          * PI, as it can strip/insert in that case.
2006          */
2007         if (ns->ms) {
2008                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2009                     (ns->features & NVME_NS_METADATA_SUPPORTED))
2010                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
2011                                             ns->ctrl->max_integrity_segments);
2012                 else if (!nvme_ns_has_pi(ns))
2013                         capacity = 0;
2014         }
2015
2016         set_capacity_revalidate_and_notify(disk, capacity, false);
2017
2018         nvme_config_discard(disk, ns);
2019         nvme_config_write_zeroes(disk, ns);
2020
2021         if (id->nsattr & NVME_NS_ATTR_RO)
2022                 set_disk_ro(disk, true);
2023         else
2024                 set_disk_ro(disk, false);
2025
2026         blk_mq_unfreeze_queue(disk->queue);
2027 }
2028
2029 static inline bool nvme_first_scan(struct gendisk *disk)
2030 {
2031         /* nvme_alloc_ns() scans the disk prior to adding it */
2032         return !(disk->flags & GENHD_FL_UP);
2033 }
2034
2035 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2036 {
2037         struct nvme_ctrl *ctrl = ns->ctrl;
2038         u32 iob;
2039
2040         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2041             is_power_of_2(ctrl->max_hw_sectors))
2042                 iob = ctrl->max_hw_sectors;
2043         else
2044                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2045
2046         if (!iob)
2047                 return;
2048
2049         if (!is_power_of_2(iob)) {
2050                 if (nvme_first_scan(ns->disk))
2051                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2052                                 ns->disk->disk_name, iob);
2053                 return;
2054         }
2055
2056         if (blk_queue_is_zoned(ns->disk->queue)) {
2057                 if (nvme_first_scan(ns->disk))
2058                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
2059                                 ns->disk->disk_name);
2060                 return;
2061         }
2062
2063         blk_queue_chunk_sectors(ns->queue, iob);
2064 }
2065
2066 static int __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
2067 {
2068         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2069         struct nvme_ns *ns = disk->private_data;
2070         struct nvme_ctrl *ctrl = ns->ctrl;
2071         int ret;
2072
2073         /*
2074          * If identify namespace failed, use default 512 byte block size so
2075          * block layer can use before failing read/write for 0 capacity.
2076          */
2077         ns->lba_shift = id->lbaf[lbaf].ds;
2078         if (ns->lba_shift == 0)
2079                 ns->lba_shift = 9;
2080
2081         switch (ns->head->ids.csi) {
2082         case NVME_CSI_NVM:
2083                 break;
2084         case NVME_CSI_ZNS:
2085                 ret = nvme_update_zone_info(disk, ns, lbaf);
2086                 if (ret) {
2087                         dev_warn(ctrl->device,
2088                                 "failed to add zoned namespace:%u ret:%d\n",
2089                                 ns->head->ns_id, ret);
2090                         return ret;
2091                 }
2092                 break;
2093         default:
2094                 dev_warn(ctrl->device, "unknown csi:%u ns:%u\n",
2095                         ns->head->ids.csi, ns->head->ns_id);
2096                 return -ENODEV;
2097         }
2098
2099         ns->features = 0;
2100         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2101         /* the PI implementation requires metadata equal t10 pi tuple size */
2102         if (ns->ms == sizeof(struct t10_pi_tuple))
2103                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2104         else
2105                 ns->pi_type = 0;
2106
2107         if (ns->ms) {
2108                 /*
2109                  * For PCIe only the separate metadata pointer is supported,
2110                  * as the block layer supplies metadata in a separate bio_vec
2111                  * chain. For Fabrics, only metadata as part of extended data
2112                  * LBA is supported on the wire per the Fabrics specification,
2113                  * but the HBA/HCA will do the remapping from the separate
2114                  * metadata buffers for us.
2115                  */
2116                 if (id->flbas & NVME_NS_FLBAS_META_EXT) {
2117                         ns->features |= NVME_NS_EXT_LBAS;
2118                         if ((ctrl->ops->flags & NVME_F_FABRICS) &&
2119                             (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) &&
2120                             ctrl->max_integrity_segments)
2121                                 ns->features |= NVME_NS_METADATA_SUPPORTED;
2122                 } else {
2123                         if (WARN_ON_ONCE(ctrl->ops->flags & NVME_F_FABRICS))
2124                                 return -EINVAL;
2125                         if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
2126                                 ns->features |= NVME_NS_METADATA_SUPPORTED;
2127                 }
2128         }
2129
2130         nvme_set_chunk_sectors(ns, id);
2131         nvme_update_disk_info(disk, ns, id);
2132 #ifdef CONFIG_NVME_MULTIPATH
2133         if (ns->head->disk) {
2134                 nvme_update_disk_info(ns->head->disk, ns, id);
2135                 blk_stack_limits(&ns->head->disk->queue->limits,
2136                                  &ns->queue->limits, 0);
2137                 nvme_mpath_update_disk_size(ns->head->disk);
2138         }
2139 #endif
2140         return 0;
2141 }
2142
2143 static int _nvme_revalidate_disk(struct gendisk *disk)
2144 {
2145         struct nvme_ns *ns = disk->private_data;
2146         struct nvme_ctrl *ctrl = ns->ctrl;
2147         struct nvme_id_ns *id;
2148         struct nvme_ns_ids ids;
2149         int ret = 0;
2150
2151         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
2152                 set_capacity(disk, 0);
2153                 return -ENODEV;
2154         }
2155
2156         ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
2157         if (ret)
2158                 goto out;
2159
2160         if (id->ncap == 0) {
2161                 ret = -ENODEV;
2162                 goto free_id;
2163         }
2164
2165         ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
2166         if (ret)
2167                 goto free_id;
2168
2169         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
2170                 dev_err(ctrl->device,
2171                         "identifiers changed for nsid %d\n", ns->head->ns_id);
2172                 ret = -ENODEV;
2173                 goto free_id;
2174         }
2175
2176         ret = __nvme_revalidate_disk(disk, id);
2177 free_id:
2178         kfree(id);
2179 out:
2180         /*
2181          * Only fail the function if we got a fatal error back from the
2182          * device, otherwise ignore the error and just move on.
2183          */
2184         if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
2185                 ret = 0;
2186         else if (ret > 0)
2187                 ret = blk_status_to_errno(nvme_error_status(ret));
2188         return ret;
2189 }
2190
2191 static int nvme_revalidate_disk(struct gendisk *disk)
2192 {
2193         int ret;
2194
2195         ret = _nvme_revalidate_disk(disk);
2196         if (ret)
2197                 return ret;
2198
2199 #ifdef CONFIG_BLK_DEV_ZONED
2200         if (blk_queue_is_zoned(disk->queue)) {
2201                 struct nvme_ns *ns = disk->private_data;
2202                 struct nvme_ctrl *ctrl = ns->ctrl;
2203
2204                 ret = blk_revalidate_disk_zones(disk, NULL);
2205                 if (!ret)
2206                         blk_queue_max_zone_append_sectors(disk->queue,
2207                                                           ctrl->max_zone_append);
2208         }
2209 #endif
2210         return ret;
2211 }
2212
2213 static char nvme_pr_type(enum pr_type type)
2214 {
2215         switch (type) {
2216         case PR_WRITE_EXCLUSIVE:
2217                 return 1;
2218         case PR_EXCLUSIVE_ACCESS:
2219                 return 2;
2220         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2221                 return 3;
2222         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2223                 return 4;
2224         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2225                 return 5;
2226         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2227                 return 6;
2228         default:
2229                 return 0;
2230         }
2231 };
2232
2233 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2234                                 u64 key, u64 sa_key, u8 op)
2235 {
2236         struct nvme_ns_head *head = NULL;
2237         struct nvme_ns *ns;
2238         struct nvme_command c;
2239         int srcu_idx, ret;
2240         u8 data[16] = { 0, };
2241
2242         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2243         if (unlikely(!ns))
2244                 return -EWOULDBLOCK;
2245
2246         put_unaligned_le64(key, &data[0]);
2247         put_unaligned_le64(sa_key, &data[8]);
2248
2249         memset(&c, 0, sizeof(c));
2250         c.common.opcode = op;
2251         c.common.nsid = cpu_to_le32(ns->head->ns_id);
2252         c.common.cdw10 = cpu_to_le32(cdw10);
2253
2254         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2255         nvme_put_ns_from_disk(head, srcu_idx);
2256         return ret;
2257 }
2258
2259 static int nvme_pr_register(struct block_device *bdev, u64 old,
2260                 u64 new, unsigned flags)
2261 {
2262         u32 cdw10;
2263
2264         if (flags & ~PR_FL_IGNORE_KEY)
2265                 return -EOPNOTSUPP;
2266
2267         cdw10 = old ? 2 : 0;
2268         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2269         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2270         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2271 }
2272
2273 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2274                 enum pr_type type, unsigned flags)
2275 {
2276         u32 cdw10;
2277
2278         if (flags & ~PR_FL_IGNORE_KEY)
2279                 return -EOPNOTSUPP;
2280
2281         cdw10 = nvme_pr_type(type) << 8;
2282         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2283         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2284 }
2285
2286 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2287                 enum pr_type type, bool abort)
2288 {
2289         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2290         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2291 }
2292
2293 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2294 {
2295         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2296         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2297 }
2298
2299 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2300 {
2301         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2302         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2303 }
2304
2305 static const struct pr_ops nvme_pr_ops = {
2306         .pr_register    = nvme_pr_register,
2307         .pr_reserve     = nvme_pr_reserve,
2308         .pr_release     = nvme_pr_release,
2309         .pr_preempt     = nvme_pr_preempt,
2310         .pr_clear       = nvme_pr_clear,
2311 };
2312
2313 #ifdef CONFIG_BLK_SED_OPAL
2314 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2315                 bool send)
2316 {
2317         struct nvme_ctrl *ctrl = data;
2318         struct nvme_command cmd;
2319
2320         memset(&cmd, 0, sizeof(cmd));
2321         if (send)
2322                 cmd.common.opcode = nvme_admin_security_send;
2323         else
2324                 cmd.common.opcode = nvme_admin_security_recv;
2325         cmd.common.nsid = 0;
2326         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2327         cmd.common.cdw11 = cpu_to_le32(len);
2328
2329         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2330                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2331 }
2332 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2333 #endif /* CONFIG_BLK_SED_OPAL */
2334
2335 static const struct block_device_operations nvme_fops = {
2336         .owner          = THIS_MODULE,
2337         .ioctl          = nvme_ioctl,
2338         .compat_ioctl   = nvme_compat_ioctl,
2339         .open           = nvme_open,
2340         .release        = nvme_release,
2341         .getgeo         = nvme_getgeo,
2342         .revalidate_disk= nvme_revalidate_disk,
2343         .report_zones   = nvme_report_zones,
2344         .pr_ops         = &nvme_pr_ops,
2345 };
2346
2347 #ifdef CONFIG_NVME_MULTIPATH
2348 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2349 {
2350         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2351
2352         if (!kref_get_unless_zero(&head->ref))
2353                 return -ENXIO;
2354         return 0;
2355 }
2356
2357 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2358 {
2359         nvme_put_ns_head(disk->private_data);
2360 }
2361
2362 const struct block_device_operations nvme_ns_head_ops = {
2363         .owner          = THIS_MODULE,
2364         .submit_bio     = nvme_ns_head_submit_bio,
2365         .open           = nvme_ns_head_open,
2366         .release        = nvme_ns_head_release,
2367         .ioctl          = nvme_ioctl,
2368         .compat_ioctl   = nvme_compat_ioctl,
2369         .getgeo         = nvme_getgeo,
2370         .report_zones   = nvme_report_zones,
2371         .pr_ops         = &nvme_pr_ops,
2372 };
2373 #endif /* CONFIG_NVME_MULTIPATH */
2374
2375 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2376 {
2377         unsigned long timeout =
2378                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2379         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2380         int ret;
2381
2382         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2383                 if (csts == ~0)
2384                         return -ENODEV;
2385                 if ((csts & NVME_CSTS_RDY) == bit)
2386                         break;
2387
2388                 usleep_range(1000, 2000);
2389                 if (fatal_signal_pending(current))
2390                         return -EINTR;
2391                 if (time_after(jiffies, timeout)) {
2392                         dev_err(ctrl->device,
2393                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2394                                 enabled ? "initialisation" : "reset", csts);
2395                         return -ENODEV;
2396                 }
2397         }
2398
2399         return ret;
2400 }
2401
2402 /*
2403  * If the device has been passed off to us in an enabled state, just clear
2404  * the enabled bit.  The spec says we should set the 'shutdown notification
2405  * bits', but doing so may cause the device to complete commands to the
2406  * admin queue ... and we don't know what memory that might be pointing at!
2407  */
2408 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2409 {
2410         int ret;
2411
2412         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2413         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2414
2415         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2416         if (ret)
2417                 return ret;
2418
2419         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2420                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2421
2422         return nvme_wait_ready(ctrl, ctrl->cap, false);
2423 }
2424 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2425
2426 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2427 {
2428         unsigned dev_page_min;
2429         int ret;
2430
2431         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2432         if (ret) {
2433                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2434                 return ret;
2435         }
2436         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2437
2438         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2439                 dev_err(ctrl->device,
2440                         "Minimum device page size %u too large for host (%u)\n",
2441                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2442                 return -ENODEV;
2443         }
2444
2445         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2446                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2447         else
2448                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2449         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2450         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2451         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2452         ctrl->ctrl_config |= NVME_CC_ENABLE;
2453
2454         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2455         if (ret)
2456                 return ret;
2457         return nvme_wait_ready(ctrl, ctrl->cap, true);
2458 }
2459 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2460
2461 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2462 {
2463         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2464         u32 csts;
2465         int ret;
2466
2467         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2468         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2469
2470         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2471         if (ret)
2472                 return ret;
2473
2474         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2475                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2476                         break;
2477
2478                 msleep(100);
2479                 if (fatal_signal_pending(current))
2480                         return -EINTR;
2481                 if (time_after(jiffies, timeout)) {
2482                         dev_err(ctrl->device,
2483                                 "Device shutdown incomplete; abort shutdown\n");
2484                         return -ENODEV;
2485                 }
2486         }
2487
2488         return ret;
2489 }
2490 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2491
2492 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2493                 struct request_queue *q)
2494 {
2495         bool vwc = false;
2496
2497         if (ctrl->max_hw_sectors) {
2498                 u32 max_segments =
2499                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2500
2501                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2502                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2503                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2504         }
2505         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2506         blk_queue_dma_alignment(q, 7);
2507         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2508                 vwc = true;
2509         blk_queue_write_cache(q, vwc, vwc);
2510 }
2511
2512 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2513 {
2514         __le64 ts;
2515         int ret;
2516
2517         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2518                 return 0;
2519
2520         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2521         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2522                         NULL);
2523         if (ret)
2524                 dev_warn_once(ctrl->device,
2525                         "could not set timestamp (%d)\n", ret);
2526         return ret;
2527 }
2528
2529 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2530 {
2531         struct nvme_feat_host_behavior *host;
2532         int ret;
2533
2534         /* Don't bother enabling the feature if retry delay is not reported */
2535         if (!ctrl->crdt[0])
2536                 return 0;
2537
2538         host = kzalloc(sizeof(*host), GFP_KERNEL);
2539         if (!host)
2540                 return 0;
2541
2542         host->acre = NVME_ENABLE_ACRE;
2543         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2544                                 host, sizeof(*host), NULL);
2545         kfree(host);
2546         return ret;
2547 }
2548
2549 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2550 {
2551         /*
2552          * APST (Autonomous Power State Transition) lets us program a
2553          * table of power state transitions that the controller will
2554          * perform automatically.  We configure it with a simple
2555          * heuristic: we are willing to spend at most 2% of the time
2556          * transitioning between power states.  Therefore, when running
2557          * in any given state, we will enter the next lower-power
2558          * non-operational state after waiting 50 * (enlat + exlat)
2559          * microseconds, as long as that state's exit latency is under
2560          * the requested maximum latency.
2561          *
2562          * We will not autonomously enter any non-operational state for
2563          * which the total latency exceeds ps_max_latency_us.  Users
2564          * can set ps_max_latency_us to zero to turn off APST.
2565          */
2566
2567         unsigned apste;
2568         struct nvme_feat_auto_pst *table;
2569         u64 max_lat_us = 0;
2570         int max_ps = -1;
2571         int ret;
2572
2573         /*
2574          * If APST isn't supported or if we haven't been initialized yet,
2575          * then don't do anything.
2576          */
2577         if (!ctrl->apsta)
2578                 return 0;
2579
2580         if (ctrl->npss > 31) {
2581                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2582                 return 0;
2583         }
2584
2585         table = kzalloc(sizeof(*table), GFP_KERNEL);
2586         if (!table)
2587                 return 0;
2588
2589         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2590                 /* Turn off APST. */
2591                 apste = 0;
2592                 dev_dbg(ctrl->device, "APST disabled\n");
2593         } else {
2594                 __le64 target = cpu_to_le64(0);
2595                 int state;
2596
2597                 /*
2598                  * Walk through all states from lowest- to highest-power.
2599                  * According to the spec, lower-numbered states use more
2600                  * power.  NPSS, despite the name, is the index of the
2601                  * lowest-power state, not the number of states.
2602                  */
2603                 for (state = (int)ctrl->npss; state >= 0; state--) {
2604                         u64 total_latency_us, exit_latency_us, transition_ms;
2605
2606                         if (target)
2607                                 table->entries[state] = target;
2608
2609                         /*
2610                          * Don't allow transitions to the deepest state
2611                          * if it's quirked off.
2612                          */
2613                         if (state == ctrl->npss &&
2614                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2615                                 continue;
2616
2617                         /*
2618                          * Is this state a useful non-operational state for
2619                          * higher-power states to autonomously transition to?
2620                          */
2621                         if (!(ctrl->psd[state].flags &
2622                               NVME_PS_FLAGS_NON_OP_STATE))
2623                                 continue;
2624
2625                         exit_latency_us =
2626                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2627                         if (exit_latency_us > ctrl->ps_max_latency_us)
2628                                 continue;
2629
2630                         total_latency_us =
2631                                 exit_latency_us +
2632                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2633
2634                         /*
2635                          * This state is good.  Use it as the APST idle
2636                          * target for higher power states.
2637                          */
2638                         transition_ms = total_latency_us + 19;
2639                         do_div(transition_ms, 20);
2640                         if (transition_ms > (1 << 24) - 1)
2641                                 transition_ms = (1 << 24) - 1;
2642
2643                         target = cpu_to_le64((state << 3) |
2644                                              (transition_ms << 8));
2645
2646                         if (max_ps == -1)
2647                                 max_ps = state;
2648
2649                         if (total_latency_us > max_lat_us)
2650                                 max_lat_us = total_latency_us;
2651                 }
2652
2653                 apste = 1;
2654
2655                 if (max_ps == -1) {
2656                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2657                 } else {
2658                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2659                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2660                 }
2661         }
2662
2663         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2664                                 table, sizeof(*table), NULL);
2665         if (ret)
2666                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2667
2668         kfree(table);
2669         return ret;
2670 }
2671
2672 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2673 {
2674         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2675         u64 latency;
2676
2677         switch (val) {
2678         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2679         case PM_QOS_LATENCY_ANY:
2680                 latency = U64_MAX;
2681                 break;
2682
2683         default:
2684                 latency = val;
2685         }
2686
2687         if (ctrl->ps_max_latency_us != latency) {
2688                 ctrl->ps_max_latency_us = latency;
2689                 nvme_configure_apst(ctrl);
2690         }
2691 }
2692
2693 struct nvme_core_quirk_entry {
2694         /*
2695          * NVMe model and firmware strings are padded with spaces.  For
2696          * simplicity, strings in the quirk table are padded with NULLs
2697          * instead.
2698          */
2699         u16 vid;
2700         const char *mn;
2701         const char *fr;
2702         unsigned long quirks;
2703 };
2704
2705 static const struct nvme_core_quirk_entry core_quirks[] = {
2706         {
2707                 /*
2708                  * This Toshiba device seems to die using any APST states.  See:
2709                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2710                  */
2711                 .vid = 0x1179,
2712                 .mn = "THNSF5256GPUK TOSHIBA",
2713                 .quirks = NVME_QUIRK_NO_APST,
2714         },
2715         {
2716                 /*
2717                  * This LiteON CL1-3D*-Q11 firmware version has a race
2718                  * condition associated with actions related to suspend to idle
2719                  * LiteON has resolved the problem in future firmware
2720                  */
2721                 .vid = 0x14a4,
2722                 .fr = "22301111",
2723                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2724         }
2725 };
2726
2727 /* match is null-terminated but idstr is space-padded. */
2728 static bool string_matches(const char *idstr, const char *match, size_t len)
2729 {
2730         size_t matchlen;
2731
2732         if (!match)
2733                 return true;
2734
2735         matchlen = strlen(match);
2736         WARN_ON_ONCE(matchlen > len);
2737
2738         if (memcmp(idstr, match, matchlen))
2739                 return false;
2740
2741         for (; matchlen < len; matchlen++)
2742                 if (idstr[matchlen] != ' ')
2743                         return false;
2744
2745         return true;
2746 }
2747
2748 static bool quirk_matches(const struct nvme_id_ctrl *id,
2749                           const struct nvme_core_quirk_entry *q)
2750 {
2751         return q->vid == le16_to_cpu(id->vid) &&
2752                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2753                 string_matches(id->fr, q->fr, sizeof(id->fr));
2754 }
2755
2756 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2757                 struct nvme_id_ctrl *id)
2758 {
2759         size_t nqnlen;
2760         int off;
2761
2762         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2763                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2764                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2765                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2766                         return;
2767                 }
2768
2769                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2770                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2771         }
2772
2773         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2774         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2775                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2776                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2777         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2778         off += sizeof(id->sn);
2779         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2780         off += sizeof(id->mn);
2781         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2782 }
2783
2784 static void nvme_release_subsystem(struct device *dev)
2785 {
2786         struct nvme_subsystem *subsys =
2787                 container_of(dev, struct nvme_subsystem, dev);
2788
2789         if (subsys->instance >= 0)
2790                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2791         kfree(subsys);
2792 }
2793
2794 static void nvme_destroy_subsystem(struct kref *ref)
2795 {
2796         struct nvme_subsystem *subsys =
2797                         container_of(ref, struct nvme_subsystem, ref);
2798
2799         mutex_lock(&nvme_subsystems_lock);
2800         list_del(&subsys->entry);
2801         mutex_unlock(&nvme_subsystems_lock);
2802
2803         ida_destroy(&subsys->ns_ida);
2804         device_del(&subsys->dev);
2805         put_device(&subsys->dev);
2806 }
2807
2808 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2809 {
2810         kref_put(&subsys->ref, nvme_destroy_subsystem);
2811 }
2812
2813 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2814 {
2815         struct nvme_subsystem *subsys;
2816
2817         lockdep_assert_held(&nvme_subsystems_lock);
2818
2819         /*
2820          * Fail matches for discovery subsystems. This results
2821          * in each discovery controller bound to a unique subsystem.
2822          * This avoids issues with validating controller values
2823          * that can only be true when there is a single unique subsystem.
2824          * There may be multiple and completely independent entities
2825          * that provide discovery controllers.
2826          */
2827         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2828                 return NULL;
2829
2830         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2831                 if (strcmp(subsys->subnqn, subsysnqn))
2832                         continue;
2833                 if (!kref_get_unless_zero(&subsys->ref))
2834                         continue;
2835                 return subsys;
2836         }
2837
2838         return NULL;
2839 }
2840
2841 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2842         struct device_attribute subsys_attr_##_name = \
2843                 __ATTR(_name, _mode, _show, NULL)
2844
2845 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2846                                     struct device_attribute *attr,
2847                                     char *buf)
2848 {
2849         struct nvme_subsystem *subsys =
2850                 container_of(dev, struct nvme_subsystem, dev);
2851
2852         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2853 }
2854 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2855
2856 #define nvme_subsys_show_str_function(field)                            \
2857 static ssize_t subsys_##field##_show(struct device *dev,                \
2858                             struct device_attribute *attr, char *buf)   \
2859 {                                                                       \
2860         struct nvme_subsystem *subsys =                                 \
2861                 container_of(dev, struct nvme_subsystem, dev);          \
2862         return sprintf(buf, "%.*s\n",                                   \
2863                        (int)sizeof(subsys->field), subsys->field);      \
2864 }                                                                       \
2865 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2866
2867 nvme_subsys_show_str_function(model);
2868 nvme_subsys_show_str_function(serial);
2869 nvme_subsys_show_str_function(firmware_rev);
2870
2871 static struct attribute *nvme_subsys_attrs[] = {
2872         &subsys_attr_model.attr,
2873         &subsys_attr_serial.attr,
2874         &subsys_attr_firmware_rev.attr,
2875         &subsys_attr_subsysnqn.attr,
2876 #ifdef CONFIG_NVME_MULTIPATH
2877         &subsys_attr_iopolicy.attr,
2878 #endif
2879         NULL,
2880 };
2881
2882 static struct attribute_group nvme_subsys_attrs_group = {
2883         .attrs = nvme_subsys_attrs,
2884 };
2885
2886 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2887         &nvme_subsys_attrs_group,
2888         NULL,
2889 };
2890
2891 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2892                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2893 {
2894         struct nvme_ctrl *tmp;
2895
2896         lockdep_assert_held(&nvme_subsystems_lock);
2897
2898         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2899                 if (nvme_state_terminal(tmp))
2900                         continue;
2901
2902                 if (tmp->cntlid == ctrl->cntlid) {
2903                         dev_err(ctrl->device,
2904                                 "Duplicate cntlid %u with %s, rejecting\n",
2905                                 ctrl->cntlid, dev_name(tmp->device));
2906                         return false;
2907                 }
2908
2909                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2910                     (ctrl->opts && ctrl->opts->discovery_nqn))
2911                         continue;
2912
2913                 dev_err(ctrl->device,
2914                         "Subsystem does not support multiple controllers\n");
2915                 return false;
2916         }
2917
2918         return true;
2919 }
2920
2921 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2922 {
2923         struct nvme_subsystem *subsys, *found;
2924         int ret;
2925
2926         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2927         if (!subsys)
2928                 return -ENOMEM;
2929
2930         subsys->instance = -1;
2931         mutex_init(&subsys->lock);
2932         kref_init(&subsys->ref);
2933         INIT_LIST_HEAD(&subsys->ctrls);
2934         INIT_LIST_HEAD(&subsys->nsheads);
2935         nvme_init_subnqn(subsys, ctrl, id);
2936         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2937         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2938         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2939         subsys->vendor_id = le16_to_cpu(id->vid);
2940         subsys->cmic = id->cmic;
2941         subsys->awupf = le16_to_cpu(id->awupf);
2942 #ifdef CONFIG_NVME_MULTIPATH
2943         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2944 #endif
2945
2946         subsys->dev.class = nvme_subsys_class;
2947         subsys->dev.release = nvme_release_subsystem;
2948         subsys->dev.groups = nvme_subsys_attrs_groups;
2949         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2950         device_initialize(&subsys->dev);
2951
2952         mutex_lock(&nvme_subsystems_lock);
2953         found = __nvme_find_get_subsystem(subsys->subnqn);
2954         if (found) {
2955                 put_device(&subsys->dev);
2956                 subsys = found;
2957
2958                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2959                         ret = -EINVAL;
2960                         goto out_put_subsystem;
2961                 }
2962         } else {
2963                 ret = device_add(&subsys->dev);
2964                 if (ret) {
2965                         dev_err(ctrl->device,
2966                                 "failed to register subsystem device.\n");
2967                         put_device(&subsys->dev);
2968                         goto out_unlock;
2969                 }
2970                 ida_init(&subsys->ns_ida);
2971                 list_add_tail(&subsys->entry, &nvme_subsystems);
2972         }
2973
2974         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2975                                 dev_name(ctrl->device));
2976         if (ret) {
2977                 dev_err(ctrl->device,
2978                         "failed to create sysfs link from subsystem.\n");
2979                 goto out_put_subsystem;
2980         }
2981
2982         if (!found)
2983                 subsys->instance = ctrl->instance;
2984         ctrl->subsys = subsys;
2985         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2986         mutex_unlock(&nvme_subsystems_lock);
2987         return 0;
2988
2989 out_put_subsystem:
2990         nvme_put_subsystem(subsys);
2991 out_unlock:
2992         mutex_unlock(&nvme_subsystems_lock);
2993         return ret;
2994 }
2995
2996 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2997                 void *log, size_t size, u64 offset)
2998 {
2999         struct nvme_command c = { };
3000         u32 dwlen = nvme_bytes_to_numd(size);
3001
3002         c.get_log_page.opcode = nvme_admin_get_log_page;
3003         c.get_log_page.nsid = cpu_to_le32(nsid);
3004         c.get_log_page.lid = log_page;
3005         c.get_log_page.lsp = lsp;
3006         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3007         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3008         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3009         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3010         c.get_log_page.csi = csi;
3011
3012         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3013 }
3014
3015 static struct nvme_cel *nvme_find_cel(struct nvme_ctrl *ctrl, u8 csi)
3016 {
3017         struct nvme_cel *cel, *ret = NULL;
3018
3019         spin_lock_irq(&ctrl->lock);
3020         list_for_each_entry(cel, &ctrl->cels, entry) {
3021                 if (cel->csi == csi) {
3022                         ret = cel;
3023                         break;
3024                 }
3025         }
3026         spin_unlock_irq(&ctrl->lock);
3027
3028         return ret;
3029 }
3030
3031 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3032                                 struct nvme_effects_log **log)
3033 {
3034         struct nvme_cel *cel = nvme_find_cel(ctrl, csi);
3035         int ret;
3036
3037         if (cel)
3038                 goto out;
3039
3040         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3041         if (!cel)
3042                 return -ENOMEM;
3043
3044         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, csi,
3045                         &cel->log, sizeof(cel->log), 0);
3046         if (ret) {
3047                 kfree(cel);
3048                 return ret;
3049         }
3050
3051         cel->csi = csi;
3052
3053         spin_lock_irq(&ctrl->lock);
3054         list_add_tail(&cel->entry, &ctrl->cels);
3055         spin_unlock_irq(&ctrl->lock);
3056 out:
3057         *log = &cel->log;
3058         return 0;
3059 }
3060
3061 /*
3062  * Initialize the cached copies of the Identify data and various controller
3063  * register in our nvme_ctrl structure.  This should be called as soon as
3064  * the admin queue is fully up and running.
3065  */
3066 int nvme_init_identify(struct nvme_ctrl *ctrl)
3067 {
3068         struct nvme_id_ctrl *id;
3069         int ret, page_shift;
3070         u32 max_hw_sectors;
3071         bool prev_apst_enabled;
3072
3073         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3074         if (ret) {
3075                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3076                 return ret;
3077         }
3078         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3079         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3080
3081         if (ctrl->vs >= NVME_VS(1, 1, 0))
3082                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3083
3084         ret = nvme_identify_ctrl(ctrl, &id);
3085         if (ret) {
3086                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3087                 return -EIO;
3088         }
3089
3090         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3091                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3092                 if (ret < 0)
3093                         goto out_free;
3094         }
3095
3096         if (!(ctrl->ops->flags & NVME_F_FABRICS))
3097                 ctrl->cntlid = le16_to_cpu(id->cntlid);
3098
3099         if (!ctrl->identified) {
3100                 int i;
3101
3102                 ret = nvme_init_subsystem(ctrl, id);
3103                 if (ret)
3104                         goto out_free;
3105
3106                 /*
3107                  * Check for quirks.  Quirk can depend on firmware version,
3108                  * so, in principle, the set of quirks present can change
3109                  * across a reset.  As a possible future enhancement, we
3110                  * could re-scan for quirks every time we reinitialize
3111                  * the device, but we'd have to make sure that the driver
3112                  * behaves intelligently if the quirks change.
3113                  */
3114                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3115                         if (quirk_matches(id, &core_quirks[i]))
3116                                 ctrl->quirks |= core_quirks[i].quirks;
3117                 }
3118         }
3119
3120         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3121                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3122                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3123         }
3124
3125         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3126         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3127         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3128
3129         ctrl->oacs = le16_to_cpu(id->oacs);
3130         ctrl->oncs = le16_to_cpu(id->oncs);
3131         ctrl->mtfa = le16_to_cpu(id->mtfa);
3132         ctrl->oaes = le32_to_cpu(id->oaes);
3133         ctrl->wctemp = le16_to_cpu(id->wctemp);
3134         ctrl->cctemp = le16_to_cpu(id->cctemp);
3135
3136         atomic_set(&ctrl->abort_limit, id->acl + 1);
3137         ctrl->vwc = id->vwc;
3138         if (id->mdts)
3139                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3140         else
3141                 max_hw_sectors = UINT_MAX;
3142         ctrl->max_hw_sectors =
3143                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3144
3145         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3146         ctrl->sgls = le32_to_cpu(id->sgls);
3147         ctrl->kas = le16_to_cpu(id->kas);
3148         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3149         ctrl->ctratt = le32_to_cpu(id->ctratt);
3150
3151         if (id->rtd3e) {
3152                 /* us -> s */
3153                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3154
3155                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3156                                                  shutdown_timeout, 60);
3157
3158                 if (ctrl->shutdown_timeout != shutdown_timeout)
3159                         dev_info(ctrl->device,
3160                                  "Shutdown timeout set to %u seconds\n",
3161                                  ctrl->shutdown_timeout);
3162         } else
3163                 ctrl->shutdown_timeout = shutdown_timeout;
3164
3165         ctrl->npss = id->npss;
3166         ctrl->apsta = id->apsta;
3167         prev_apst_enabled = ctrl->apst_enabled;
3168         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3169                 if (force_apst && id->apsta) {
3170                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3171                         ctrl->apst_enabled = true;
3172                 } else {
3173                         ctrl->apst_enabled = false;
3174                 }
3175         } else {
3176                 ctrl->apst_enabled = id->apsta;
3177         }
3178         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3179
3180         if (ctrl->ops->flags & NVME_F_FABRICS) {
3181                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3182                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3183                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3184                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3185
3186                 /*
3187                  * In fabrics we need to verify the cntlid matches the
3188                  * admin connect
3189                  */
3190                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3191                         dev_err(ctrl->device,
3192                                 "Mismatching cntlid: Connect %u vs Identify "
3193                                 "%u, rejecting\n",
3194                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3195                         ret = -EINVAL;
3196                         goto out_free;
3197                 }
3198
3199                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3200                         dev_err(ctrl->device,
3201                                 "keep-alive support is mandatory for fabrics\n");
3202                         ret = -EINVAL;
3203                         goto out_free;
3204                 }
3205         } else {
3206                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3207                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3208                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3209                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3210         }
3211
3212         ret = nvme_mpath_init(ctrl, id);
3213         kfree(id);
3214
3215         if (ret < 0)
3216                 return ret;
3217
3218         if (ctrl->apst_enabled && !prev_apst_enabled)
3219                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3220         else if (!ctrl->apst_enabled && prev_apst_enabled)
3221                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3222
3223         ret = nvme_configure_apst(ctrl);
3224         if (ret < 0)
3225                 return ret;
3226         
3227         ret = nvme_configure_timestamp(ctrl);
3228         if (ret < 0)
3229                 return ret;
3230
3231         ret = nvme_configure_directives(ctrl);
3232         if (ret < 0)
3233                 return ret;
3234
3235         ret = nvme_configure_acre(ctrl);
3236         if (ret < 0)
3237                 return ret;
3238
3239         if (!ctrl->identified)
3240                 nvme_hwmon_init(ctrl);
3241
3242         ctrl->identified = true;
3243
3244         return 0;
3245
3246 out_free:
3247         kfree(id);
3248         return ret;
3249 }
3250 EXPORT_SYMBOL_GPL(nvme_init_identify);
3251
3252 static int nvme_dev_open(struct inode *inode, struct file *file)
3253 {
3254         struct nvme_ctrl *ctrl =
3255                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3256
3257         switch (ctrl->state) {
3258         case NVME_CTRL_LIVE:
3259                 break;
3260         default:
3261                 return -EWOULDBLOCK;
3262         }
3263
3264         file->private_data = ctrl;
3265         return 0;
3266 }
3267
3268 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3269 {
3270         struct nvme_ns *ns;
3271         int ret;
3272
3273         down_read(&ctrl->namespaces_rwsem);
3274         if (list_empty(&ctrl->namespaces)) {
3275                 ret = -ENOTTY;
3276                 goto out_unlock;
3277         }
3278
3279         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3280         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3281                 dev_warn(ctrl->device,
3282                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3283                 ret = -EINVAL;
3284                 goto out_unlock;
3285         }
3286
3287         dev_warn(ctrl->device,
3288                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3289         kref_get(&ns->kref);
3290         up_read(&ctrl->namespaces_rwsem);
3291
3292         ret = nvme_user_cmd(ctrl, ns, argp);
3293         nvme_put_ns(ns);
3294         return ret;
3295
3296 out_unlock:
3297         up_read(&ctrl->namespaces_rwsem);
3298         return ret;
3299 }
3300
3301 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3302                 unsigned long arg)
3303 {
3304         struct nvme_ctrl *ctrl = file->private_data;
3305         void __user *argp = (void __user *)arg;
3306
3307         switch (cmd) {
3308         case NVME_IOCTL_ADMIN_CMD:
3309                 return nvme_user_cmd(ctrl, NULL, argp);
3310         case NVME_IOCTL_ADMIN64_CMD:
3311                 return nvme_user_cmd64(ctrl, NULL, argp);
3312         case NVME_IOCTL_IO_CMD:
3313                 return nvme_dev_user_cmd(ctrl, argp);
3314         case NVME_IOCTL_RESET:
3315                 dev_warn(ctrl->device, "resetting controller\n");
3316                 return nvme_reset_ctrl_sync(ctrl);
3317         case NVME_IOCTL_SUBSYS_RESET:
3318                 return nvme_reset_subsystem(ctrl);
3319         case NVME_IOCTL_RESCAN:
3320                 nvme_queue_scan(ctrl);
3321                 return 0;
3322         default:
3323                 return -ENOTTY;
3324         }
3325 }
3326
3327 static const struct file_operations nvme_dev_fops = {
3328         .owner          = THIS_MODULE,
3329         .open           = nvme_dev_open,
3330         .unlocked_ioctl = nvme_dev_ioctl,
3331         .compat_ioctl   = compat_ptr_ioctl,
3332 };
3333
3334 static ssize_t nvme_sysfs_reset(struct device *dev,
3335                                 struct device_attribute *attr, const char *buf,
3336                                 size_t count)
3337 {
3338         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3339         int ret;
3340
3341         ret = nvme_reset_ctrl_sync(ctrl);
3342         if (ret < 0)
3343                 return ret;
3344         return count;
3345 }
3346 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3347
3348 static ssize_t nvme_sysfs_rescan(struct device *dev,
3349                                 struct device_attribute *attr, const char *buf,
3350                                 size_t count)
3351 {
3352         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3353
3354         nvme_queue_scan(ctrl);
3355         return count;
3356 }
3357 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3358
3359 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3360 {
3361         struct gendisk *disk = dev_to_disk(dev);
3362
3363         if (disk->fops == &nvme_fops)
3364                 return nvme_get_ns_from_dev(dev)->head;
3365         else
3366                 return disk->private_data;
3367 }
3368
3369 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3370                 char *buf)
3371 {
3372         struct nvme_ns_head *head = dev_to_ns_head(dev);
3373         struct nvme_ns_ids *ids = &head->ids;
3374         struct nvme_subsystem *subsys = head->subsys;
3375         int serial_len = sizeof(subsys->serial);
3376         int model_len = sizeof(subsys->model);
3377
3378         if (!uuid_is_null(&ids->uuid))
3379                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3380
3381         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3382                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3383
3384         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3385                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3386
3387         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3388                                   subsys->serial[serial_len - 1] == '\0'))
3389                 serial_len--;
3390         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3391                                  subsys->model[model_len - 1] == '\0'))
3392                 model_len--;
3393
3394         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3395                 serial_len, subsys->serial, model_len, subsys->model,
3396                 head->ns_id);
3397 }
3398 static DEVICE_ATTR_RO(wwid);
3399
3400 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3401                 char *buf)
3402 {
3403         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3404 }
3405 static DEVICE_ATTR_RO(nguid);
3406
3407 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3408                 char *buf)
3409 {
3410         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3411
3412         /* For backward compatibility expose the NGUID to userspace if
3413          * we have no UUID set
3414          */
3415         if (uuid_is_null(&ids->uuid)) {
3416                 printk_ratelimited(KERN_WARNING
3417                                    "No UUID available providing old NGUID\n");
3418                 return sprintf(buf, "%pU\n", ids->nguid);
3419         }
3420         return sprintf(buf, "%pU\n", &ids->uuid);
3421 }
3422 static DEVICE_ATTR_RO(uuid);
3423
3424 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3425                 char *buf)
3426 {
3427         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3428 }
3429 static DEVICE_ATTR_RO(eui);
3430
3431 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3432                 char *buf)
3433 {
3434         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3435 }
3436 static DEVICE_ATTR_RO(nsid);
3437
3438 static struct attribute *nvme_ns_id_attrs[] = {
3439         &dev_attr_wwid.attr,
3440         &dev_attr_uuid.attr,
3441         &dev_attr_nguid.attr,
3442         &dev_attr_eui.attr,
3443         &dev_attr_nsid.attr,
3444 #ifdef CONFIG_NVME_MULTIPATH
3445         &dev_attr_ana_grpid.attr,
3446         &dev_attr_ana_state.attr,
3447 #endif
3448         NULL,
3449 };
3450
3451 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3452                 struct attribute *a, int n)
3453 {
3454         struct device *dev = container_of(kobj, struct device, kobj);
3455         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3456
3457         if (a == &dev_attr_uuid.attr) {
3458                 if (uuid_is_null(&ids->uuid) &&
3459                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3460                         return 0;
3461         }
3462         if (a == &dev_attr_nguid.attr) {
3463                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3464                         return 0;
3465         }
3466         if (a == &dev_attr_eui.attr) {
3467                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3468                         return 0;
3469         }
3470 #ifdef CONFIG_NVME_MULTIPATH
3471         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3472                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3473                         return 0;
3474                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3475                         return 0;
3476         }
3477 #endif
3478         return a->mode;
3479 }
3480
3481 static const struct attribute_group nvme_ns_id_attr_group = {
3482         .attrs          = nvme_ns_id_attrs,
3483         .is_visible     = nvme_ns_id_attrs_are_visible,
3484 };
3485
3486 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3487         &nvme_ns_id_attr_group,
3488 #ifdef CONFIG_NVM
3489         &nvme_nvm_attr_group,
3490 #endif
3491         NULL,
3492 };
3493
3494 #define nvme_show_str_function(field)                                           \
3495 static ssize_t  field##_show(struct device *dev,                                \
3496                             struct device_attribute *attr, char *buf)           \
3497 {                                                                               \
3498         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3499         return sprintf(buf, "%.*s\n",                                           \
3500                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3501 }                                                                               \
3502 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3503
3504 nvme_show_str_function(model);
3505 nvme_show_str_function(serial);
3506 nvme_show_str_function(firmware_rev);
3507
3508 #define nvme_show_int_function(field)                                           \
3509 static ssize_t  field##_show(struct device *dev,                                \
3510                             struct device_attribute *attr, char *buf)           \
3511 {                                                                               \
3512         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3513         return sprintf(buf, "%d\n", ctrl->field);       \
3514 }                                                                               \
3515 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3516
3517 nvme_show_int_function(cntlid);
3518 nvme_show_int_function(numa_node);
3519 nvme_show_int_function(queue_count);
3520 nvme_show_int_function(sqsize);
3521
3522 static ssize_t nvme_sysfs_delete(struct device *dev,
3523                                 struct device_attribute *attr, const char *buf,
3524                                 size_t count)
3525 {
3526         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3527
3528         if (device_remove_file_self(dev, attr))
3529                 nvme_delete_ctrl_sync(ctrl);
3530         return count;
3531 }
3532 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3533
3534 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3535                                          struct device_attribute *attr,
3536                                          char *buf)
3537 {
3538         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3539
3540         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3541 }
3542 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3543
3544 static ssize_t nvme_sysfs_show_state(struct device *dev,
3545                                      struct device_attribute *attr,
3546                                      char *buf)
3547 {
3548         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3549         static const char *const state_name[] = {
3550                 [NVME_CTRL_NEW]         = "new",
3551                 [NVME_CTRL_LIVE]        = "live",
3552                 [NVME_CTRL_RESETTING]   = "resetting",
3553                 [NVME_CTRL_CONNECTING]  = "connecting",
3554                 [NVME_CTRL_DELETING]    = "deleting",
3555                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3556                 [NVME_CTRL_DEAD]        = "dead",
3557         };
3558
3559         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3560             state_name[ctrl->state])
3561                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3562
3563         return sprintf(buf, "unknown state\n");
3564 }
3565
3566 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3567
3568 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3569                                          struct device_attribute *attr,
3570                                          char *buf)
3571 {
3572         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3573
3574         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3575 }
3576 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3577
3578 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3579                                         struct device_attribute *attr,
3580                                         char *buf)
3581 {
3582         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3583
3584         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3585 }
3586 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3587
3588 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3589                                         struct device_attribute *attr,
3590                                         char *buf)
3591 {
3592         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3593
3594         return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3595 }
3596 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3597
3598 static ssize_t nvme_sysfs_show_address(struct device *dev,
3599                                          struct device_attribute *attr,
3600                                          char *buf)
3601 {
3602         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3603
3604         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3605 }
3606 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3607
3608 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3609                 struct device_attribute *attr, char *buf)
3610 {
3611         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3612         struct nvmf_ctrl_options *opts = ctrl->opts;
3613
3614         if (ctrl->opts->max_reconnects == -1)
3615                 return sprintf(buf, "off\n");
3616         return sprintf(buf, "%d\n",
3617                         opts->max_reconnects * opts->reconnect_delay);
3618 }
3619
3620 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3621                 struct device_attribute *attr, const char *buf, size_t count)
3622 {
3623         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3624         struct nvmf_ctrl_options *opts = ctrl->opts;
3625         int ctrl_loss_tmo, err;
3626
3627         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3628         if (err)
3629                 return -EINVAL;
3630
3631         else if (ctrl_loss_tmo < 0)
3632                 opts->max_reconnects = -1;
3633         else
3634                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3635                                                 opts->reconnect_delay);
3636         return count;
3637 }
3638 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3639         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3640
3641 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3642                 struct device_attribute *attr, char *buf)
3643 {
3644         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3645
3646         if (ctrl->opts->reconnect_delay == -1)
3647                 return sprintf(buf, "off\n");
3648         return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3649 }
3650
3651 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3652                 struct device_attribute *attr, const char *buf, size_t count)
3653 {
3654         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3655         unsigned int v;
3656         int err;
3657
3658         err = kstrtou32(buf, 10, &v);
3659         if (err)
3660                 return err;
3661
3662         ctrl->opts->reconnect_delay = v;
3663         return count;
3664 }
3665 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3666         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3667
3668 static struct attribute *nvme_dev_attrs[] = {
3669         &dev_attr_reset_controller.attr,
3670         &dev_attr_rescan_controller.attr,
3671         &dev_attr_model.attr,
3672         &dev_attr_serial.attr,
3673         &dev_attr_firmware_rev.attr,
3674         &dev_attr_cntlid.attr,
3675         &dev_attr_delete_controller.attr,
3676         &dev_attr_transport.attr,
3677         &dev_attr_subsysnqn.attr,
3678         &dev_attr_address.attr,
3679         &dev_attr_state.attr,
3680         &dev_attr_numa_node.attr,
3681         &dev_attr_queue_count.attr,
3682         &dev_attr_sqsize.attr,
3683         &dev_attr_hostnqn.attr,
3684         &dev_attr_hostid.attr,
3685         &dev_attr_ctrl_loss_tmo.attr,
3686         &dev_attr_reconnect_delay.attr,
3687         NULL
3688 };
3689
3690 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3691                 struct attribute *a, int n)
3692 {
3693         struct device *dev = container_of(kobj, struct device, kobj);
3694         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3695
3696         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3697                 return 0;
3698         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3699                 return 0;
3700         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3701                 return 0;
3702         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3703                 return 0;
3704         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3705                 return 0;
3706         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3707                 return 0;
3708
3709         return a->mode;
3710 }
3711
3712 static struct attribute_group nvme_dev_attrs_group = {
3713         .attrs          = nvme_dev_attrs,
3714         .is_visible     = nvme_dev_attrs_are_visible,
3715 };
3716
3717 static const struct attribute_group *nvme_dev_attr_groups[] = {
3718         &nvme_dev_attrs_group,
3719         NULL,
3720 };
3721
3722 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3723                 unsigned nsid)
3724 {
3725         struct nvme_ns_head *h;
3726
3727         lockdep_assert_held(&subsys->lock);
3728
3729         list_for_each_entry(h, &subsys->nsheads, entry) {
3730                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3731                         return h;
3732         }
3733
3734         return NULL;
3735 }
3736
3737 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3738                 struct nvme_ns_head *new)
3739 {
3740         struct nvme_ns_head *h;
3741
3742         lockdep_assert_held(&subsys->lock);
3743
3744         list_for_each_entry(h, &subsys->nsheads, entry) {
3745                 if (nvme_ns_ids_valid(&new->ids) &&
3746                     nvme_ns_ids_equal(&new->ids, &h->ids))
3747                         return -EINVAL;
3748         }
3749
3750         return 0;
3751 }
3752
3753 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3754                 unsigned nsid, struct nvme_ns_ids *ids)
3755 {
3756         struct nvme_ns_head *head;
3757         size_t size = sizeof(*head);
3758         int ret = -ENOMEM;
3759
3760 #ifdef CONFIG_NVME_MULTIPATH
3761         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3762 #endif
3763
3764         head = kzalloc(size, GFP_KERNEL);
3765         if (!head)
3766                 goto out;
3767         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3768         if (ret < 0)
3769                 goto out_free_head;
3770         head->instance = ret;
3771         INIT_LIST_HEAD(&head->list);
3772         ret = init_srcu_struct(&head->srcu);
3773         if (ret)
3774                 goto out_ida_remove;
3775         head->subsys = ctrl->subsys;
3776         head->ns_id = nsid;
3777         head->ids = *ids;
3778         kref_init(&head->ref);
3779
3780         ret = __nvme_check_ids(ctrl->subsys, head);
3781         if (ret) {
3782                 dev_err(ctrl->device,
3783                         "duplicate IDs for nsid %d\n", nsid);
3784                 goto out_cleanup_srcu;
3785         }
3786
3787         if (head->ids.csi) {
3788                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3789                 if (ret)
3790                         goto out_cleanup_srcu;
3791         } else
3792                 head->effects = ctrl->effects;
3793
3794         ret = nvme_mpath_alloc_disk(ctrl, head);
3795         if (ret)
3796                 goto out_cleanup_srcu;
3797
3798         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3799
3800         kref_get(&ctrl->subsys->ref);
3801
3802         return head;
3803 out_cleanup_srcu:
3804         cleanup_srcu_struct(&head->srcu);
3805 out_ida_remove:
3806         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3807 out_free_head:
3808         kfree(head);
3809 out:
3810         if (ret > 0)
3811                 ret = blk_status_to_errno(nvme_error_status(ret));
3812         return ERR_PTR(ret);
3813 }
3814
3815 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3816                 struct nvme_id_ns *id)
3817 {
3818         struct nvme_ctrl *ctrl = ns->ctrl;
3819         bool is_shared = id->nmic & NVME_NS_NMIC_SHARED;
3820         struct nvme_ns_head *head = NULL;
3821         struct nvme_ns_ids ids;
3822         int ret = 0;
3823
3824         ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3825         if (ret) {
3826                 if (ret < 0)
3827                         return ret;
3828                 return blk_status_to_errno(nvme_error_status(ret));
3829         }
3830
3831         mutex_lock(&ctrl->subsys->lock);
3832         head = nvme_find_ns_head(ctrl->subsys, nsid);
3833         if (!head) {
3834                 head = nvme_alloc_ns_head(ctrl, nsid, &ids);
3835                 if (IS_ERR(head)) {
3836                         ret = PTR_ERR(head);
3837                         goto out_unlock;
3838                 }
3839                 head->shared = is_shared;
3840         } else {
3841                 ret = -EINVAL;
3842                 if (!is_shared || !head->shared) {
3843                         dev_err(ctrl->device,
3844                                 "Duplicate unshared namespace %d\n", nsid);
3845                         goto out_put_ns_head;
3846                 }
3847                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3848                         dev_err(ctrl->device,
3849                                 "IDs don't match for shared namespace %d\n",
3850                                         nsid);
3851                         goto out_put_ns_head;
3852                 }
3853         }
3854
3855         list_add_tail(&ns->siblings, &head->list);
3856         ns->head = head;
3857         mutex_unlock(&ctrl->subsys->lock);
3858         return 0;
3859
3860 out_put_ns_head:
3861         nvme_put_ns_head(head);
3862 out_unlock:
3863         mutex_unlock(&ctrl->subsys->lock);
3864         return ret;
3865 }
3866
3867 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3868 {
3869         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3870         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3871
3872         return nsa->head->ns_id - nsb->head->ns_id;
3873 }
3874
3875 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3876 {
3877         struct nvme_ns *ns, *ret = NULL;
3878
3879         down_read(&ctrl->namespaces_rwsem);
3880         list_for_each_entry(ns, &ctrl->namespaces, list) {
3881                 if (ns->head->ns_id == nsid) {
3882                         if (!kref_get_unless_zero(&ns->kref))
3883                                 continue;
3884                         ret = ns;
3885                         break;
3886                 }
3887                 if (ns->head->ns_id > nsid)
3888                         break;
3889         }
3890         up_read(&ctrl->namespaces_rwsem);
3891         return ret;
3892 }
3893 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3894
3895 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3896 {
3897         struct nvme_ns *ns;
3898         struct gendisk *disk;
3899         struct nvme_id_ns *id;
3900         char disk_name[DISK_NAME_LEN];
3901         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3902
3903         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3904         if (!ns)
3905                 return;
3906
3907         ns->queue = blk_mq_init_queue(ctrl->tagset);
3908         if (IS_ERR(ns->queue))
3909                 goto out_free_ns;
3910
3911         if (ctrl->opts && ctrl->opts->data_digest)
3912                 ns->queue->backing_dev_info->capabilities
3913                         |= BDI_CAP_STABLE_WRITES;
3914
3915         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3916         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3917                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3918
3919         ns->queue->queuedata = ns;
3920         ns->ctrl = ctrl;
3921
3922         kref_init(&ns->kref);
3923         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3924
3925         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3926         nvme_set_queue_limits(ctrl, ns->queue);
3927
3928         ret = nvme_identify_ns(ctrl, nsid, &id);
3929         if (ret)
3930                 goto out_free_queue;
3931
3932         if (id->ncap == 0)      /* no namespace (legacy quirk) */
3933                 goto out_free_id;
3934
3935         ret = nvme_init_ns_head(ns, nsid, id);
3936         if (ret)
3937                 goto out_free_id;
3938         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3939
3940         disk = alloc_disk_node(0, node);
3941         if (!disk)
3942                 goto out_unlink_ns;
3943
3944         disk->fops = &nvme_fops;
3945         disk->private_data = ns;
3946         disk->queue = ns->queue;
3947         disk->flags = flags;
3948         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3949         ns->disk = disk;
3950
3951         if (__nvme_revalidate_disk(disk, id))
3952                 goto out_put_disk;
3953
3954         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3955                 ret = nvme_nvm_register(ns, disk_name, node);
3956                 if (ret) {
3957                         dev_warn(ctrl->device, "LightNVM init failure\n");
3958                         goto out_put_disk;
3959                 }
3960         }
3961
3962         down_write(&ctrl->namespaces_rwsem);
3963         list_add_tail(&ns->list, &ctrl->namespaces);
3964         up_write(&ctrl->namespaces_rwsem);
3965
3966         nvme_get_ctrl(ctrl);
3967
3968         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3969
3970         nvme_mpath_add_disk(ns, id);
3971         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3972         kfree(id);
3973
3974         return;
3975  out_put_disk:
3976         /* prevent double queue cleanup */
3977         ns->disk->queue = NULL;
3978         put_disk(ns->disk);
3979  out_unlink_ns:
3980         mutex_lock(&ctrl->subsys->lock);
3981         list_del_rcu(&ns->siblings);
3982         if (list_empty(&ns->head->list))
3983                 list_del_init(&ns->head->entry);
3984         mutex_unlock(&ctrl->subsys->lock);
3985         nvme_put_ns_head(ns->head);
3986  out_free_id:
3987         kfree(id);
3988  out_free_queue:
3989         blk_cleanup_queue(ns->queue);
3990  out_free_ns:
3991         kfree(ns);
3992 }
3993
3994 static void nvme_ns_remove(struct nvme_ns *ns)
3995 {
3996         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3997                 return;
3998
3999         nvme_fault_inject_fini(&ns->fault_inject);
4000
4001         mutex_lock(&ns->ctrl->subsys->lock);
4002         list_del_rcu(&ns->siblings);
4003         if (list_empty(&ns->head->list))
4004                 list_del_init(&ns->head->entry);
4005         mutex_unlock(&ns->ctrl->subsys->lock);
4006
4007         synchronize_rcu(); /* guarantee not available in head->list */
4008         nvme_mpath_clear_current_path(ns);
4009         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
4010
4011         if (ns->disk->flags & GENHD_FL_UP) {
4012                 del_gendisk(ns->disk);
4013                 blk_cleanup_queue(ns->queue);
4014                 if (blk_get_integrity(ns->disk))
4015                         blk_integrity_unregister(ns->disk);
4016         }
4017
4018         down_write(&ns->ctrl->namespaces_rwsem);
4019         list_del_init(&ns->list);
4020         up_write(&ns->ctrl->namespaces_rwsem);
4021
4022         nvme_mpath_check_last_path(ns);
4023         nvme_put_ns(ns);
4024 }
4025
4026 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4027 {
4028         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4029
4030         if (ns) {
4031                 nvme_ns_remove(ns);
4032                 nvme_put_ns(ns);
4033         }
4034 }
4035
4036 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4037 {
4038         struct nvme_ns *ns;
4039
4040         ns = nvme_find_get_ns(ctrl, nsid);
4041         if (ns) {
4042                 if (revalidate_disk(ns->disk))
4043                         nvme_ns_remove(ns);
4044                 nvme_put_ns(ns);
4045         } else
4046                 nvme_alloc_ns(ctrl, nsid);
4047 }
4048
4049 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4050                                         unsigned nsid)
4051 {
4052         struct nvme_ns *ns, *next;
4053         LIST_HEAD(rm_list);
4054
4055         down_write(&ctrl->namespaces_rwsem);
4056         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4057                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4058                         list_move_tail(&ns->list, &rm_list);
4059         }
4060         up_write(&ctrl->namespaces_rwsem);
4061
4062         list_for_each_entry_safe(ns, next, &rm_list, list)
4063                 nvme_ns_remove(ns);
4064
4065 }
4066
4067 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4068 {
4069         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4070         __le32 *ns_list;
4071         u32 prev = 0;
4072         int ret = 0, i;
4073
4074         if (nvme_ctrl_limited_cns(ctrl))
4075                 return -EOPNOTSUPP;
4076
4077         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4078         if (!ns_list)
4079                 return -ENOMEM;
4080
4081         for (;;) {
4082                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
4083                 if (ret)
4084                         goto free;
4085
4086                 for (i = 0; i < nr_entries; i++) {
4087                         u32 nsid = le32_to_cpu(ns_list[i]);
4088
4089                         if (!nsid)      /* end of the list? */
4090                                 goto out;
4091                         nvme_validate_ns(ctrl, nsid);
4092                         while (++prev < nsid)
4093                                 nvme_ns_remove_by_nsid(ctrl, prev);
4094                 }
4095         }
4096  out:
4097         nvme_remove_invalid_namespaces(ctrl, prev);
4098  free:
4099         kfree(ns_list);
4100         return ret;
4101 }
4102
4103 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4104 {
4105         struct nvme_id_ctrl *id;
4106         u32 nn, i;
4107
4108         if (nvme_identify_ctrl(ctrl, &id))
4109                 return;
4110         nn = le32_to_cpu(id->nn);
4111         kfree(id);
4112
4113         for (i = 1; i <= nn; i++)
4114                 nvme_validate_ns(ctrl, i);
4115
4116         nvme_remove_invalid_namespaces(ctrl, nn);
4117 }
4118
4119 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4120 {
4121         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4122         __le32 *log;
4123         int error;
4124
4125         log = kzalloc(log_size, GFP_KERNEL);
4126         if (!log)
4127                 return;
4128
4129         /*
4130          * We need to read the log to clear the AEN, but we don't want to rely
4131          * on it for the changed namespace information as userspace could have
4132          * raced with us in reading the log page, which could cause us to miss
4133          * updates.
4134          */
4135         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4136                         NVME_CSI_NVM, log, log_size, 0);
4137         if (error)
4138                 dev_warn(ctrl->device,
4139                         "reading changed ns log failed: %d\n", error);
4140
4141         kfree(log);
4142 }
4143
4144 static void nvme_scan_work(struct work_struct *work)
4145 {
4146         struct nvme_ctrl *ctrl =
4147                 container_of(work, struct nvme_ctrl, scan_work);
4148
4149         /* No tagset on a live ctrl means IO queues could not created */
4150         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4151                 return;
4152
4153         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4154                 dev_info(ctrl->device, "rescanning namespaces.\n");
4155                 nvme_clear_changed_ns_log(ctrl);
4156         }
4157
4158         mutex_lock(&ctrl->scan_lock);
4159         if (nvme_scan_ns_list(ctrl) != 0)
4160                 nvme_scan_ns_sequential(ctrl);
4161         mutex_unlock(&ctrl->scan_lock);
4162
4163         down_write(&ctrl->namespaces_rwsem);
4164         list_sort(NULL, &ctrl->namespaces, ns_cmp);
4165         up_write(&ctrl->namespaces_rwsem);
4166 }
4167
4168 /*
4169  * This function iterates the namespace list unlocked to allow recovery from
4170  * controller failure. It is up to the caller to ensure the namespace list is
4171  * not modified by scan work while this function is executing.
4172  */
4173 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4174 {
4175         struct nvme_ns *ns, *next;
4176         LIST_HEAD(ns_list);
4177
4178         /*
4179          * make sure to requeue I/O to all namespaces as these
4180          * might result from the scan itself and must complete
4181          * for the scan_work to make progress
4182          */
4183         nvme_mpath_clear_ctrl_paths(ctrl);
4184
4185         /* prevent racing with ns scanning */
4186         flush_work(&ctrl->scan_work);
4187
4188         /*
4189          * The dead states indicates the controller was not gracefully
4190          * disconnected. In that case, we won't be able to flush any data while
4191          * removing the namespaces' disks; fail all the queues now to avoid
4192          * potentially having to clean up the failed sync later.
4193          */
4194         if (ctrl->state == NVME_CTRL_DEAD)
4195                 nvme_kill_queues(ctrl);
4196
4197         /* this is a no-op when called from the controller reset handler */
4198         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4199
4200         down_write(&ctrl->namespaces_rwsem);
4201         list_splice_init(&ctrl->namespaces, &ns_list);
4202         up_write(&ctrl->namespaces_rwsem);
4203
4204         list_for_each_entry_safe(ns, next, &ns_list, list)
4205                 nvme_ns_remove(ns);
4206 }
4207 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4208
4209 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4210 {
4211         struct nvme_ctrl *ctrl =
4212                 container_of(dev, struct nvme_ctrl, ctrl_device);
4213         struct nvmf_ctrl_options *opts = ctrl->opts;
4214         int ret;
4215
4216         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4217         if (ret)
4218                 return ret;
4219
4220         if (opts) {
4221                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4222                 if (ret)
4223                         return ret;
4224
4225                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4226                                 opts->trsvcid ?: "none");
4227                 if (ret)
4228                         return ret;
4229
4230                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4231                                 opts->host_traddr ?: "none");
4232         }
4233         return ret;
4234 }
4235
4236 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4237 {
4238         char *envp[2] = { NULL, NULL };
4239         u32 aen_result = ctrl->aen_result;
4240
4241         ctrl->aen_result = 0;
4242         if (!aen_result)
4243                 return;
4244
4245         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4246         if (!envp[0])
4247                 return;
4248         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4249         kfree(envp[0]);
4250 }
4251
4252 static void nvme_async_event_work(struct work_struct *work)
4253 {
4254         struct nvme_ctrl *ctrl =
4255                 container_of(work, struct nvme_ctrl, async_event_work);
4256
4257         nvme_aen_uevent(ctrl);
4258         ctrl->ops->submit_async_event(ctrl);
4259 }
4260
4261 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4262 {
4263
4264         u32 csts;
4265
4266         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4267                 return false;
4268
4269         if (csts == ~0)
4270                 return false;
4271
4272         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4273 }
4274
4275 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4276 {
4277         struct nvme_fw_slot_info_log *log;
4278
4279         log = kmalloc(sizeof(*log), GFP_KERNEL);
4280         if (!log)
4281                 return;
4282
4283         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4284                         log, sizeof(*log), 0))
4285                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4286         kfree(log);
4287 }
4288
4289 static void nvme_fw_act_work(struct work_struct *work)
4290 {
4291         struct nvme_ctrl *ctrl = container_of(work,
4292                                 struct nvme_ctrl, fw_act_work);
4293         unsigned long fw_act_timeout;
4294
4295         if (ctrl->mtfa)
4296                 fw_act_timeout = jiffies +
4297                                 msecs_to_jiffies(ctrl->mtfa * 100);
4298         else
4299                 fw_act_timeout = jiffies +
4300                                 msecs_to_jiffies(admin_timeout * 1000);
4301
4302         nvme_stop_queues(ctrl);
4303         while (nvme_ctrl_pp_status(ctrl)) {
4304                 if (time_after(jiffies, fw_act_timeout)) {
4305                         dev_warn(ctrl->device,
4306                                 "Fw activation timeout, reset controller\n");
4307                         nvme_try_sched_reset(ctrl);
4308                         return;
4309                 }
4310                 msleep(100);
4311         }
4312
4313         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4314                 return;
4315
4316         nvme_start_queues(ctrl);
4317         /* read FW slot information to clear the AER */
4318         nvme_get_fw_slot_info(ctrl);
4319 }
4320
4321 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4322 {
4323         u32 aer_notice_type = (result & 0xff00) >> 8;
4324
4325         trace_nvme_async_event(ctrl, aer_notice_type);
4326
4327         switch (aer_notice_type) {
4328         case NVME_AER_NOTICE_NS_CHANGED:
4329                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4330                 nvme_queue_scan(ctrl);
4331                 break;
4332         case NVME_AER_NOTICE_FW_ACT_STARTING:
4333                 /*
4334                  * We are (ab)using the RESETTING state to prevent subsequent
4335                  * recovery actions from interfering with the controller's
4336                  * firmware activation.
4337                  */
4338                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4339                         queue_work(nvme_wq, &ctrl->fw_act_work);
4340                 break;
4341 #ifdef CONFIG_NVME_MULTIPATH
4342         case NVME_AER_NOTICE_ANA:
4343                 if (!ctrl->ana_log_buf)
4344                         break;
4345                 queue_work(nvme_wq, &ctrl->ana_work);
4346                 break;
4347 #endif
4348         case NVME_AER_NOTICE_DISC_CHANGED:
4349                 ctrl->aen_result = result;
4350                 break;
4351         default:
4352                 dev_warn(ctrl->device, "async event result %08x\n", result);
4353         }
4354 }
4355
4356 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4357                 volatile union nvme_result *res)
4358 {
4359         u32 result = le32_to_cpu(res->u32);
4360         u32 aer_type = result & 0x07;
4361
4362         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4363                 return;
4364
4365         switch (aer_type) {
4366         case NVME_AER_NOTICE:
4367                 nvme_handle_aen_notice(ctrl, result);
4368                 break;
4369         case NVME_AER_ERROR:
4370         case NVME_AER_SMART:
4371         case NVME_AER_CSS:
4372         case NVME_AER_VS:
4373                 trace_nvme_async_event(ctrl, aer_type);
4374                 ctrl->aen_result = result;
4375                 break;
4376         default:
4377                 break;
4378         }
4379         queue_work(nvme_wq, &ctrl->async_event_work);
4380 }
4381 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4382
4383 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4384 {
4385         nvme_mpath_stop(ctrl);
4386         nvme_stop_keep_alive(ctrl);
4387         flush_work(&ctrl->async_event_work);
4388         cancel_work_sync(&ctrl->fw_act_work);
4389 }
4390 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4391
4392 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4393 {
4394         nvme_start_keep_alive(ctrl);
4395
4396         nvme_enable_aen(ctrl);
4397
4398         if (ctrl->queue_count > 1) {
4399                 nvme_queue_scan(ctrl);
4400                 nvme_start_queues(ctrl);
4401         }
4402 }
4403 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4404
4405 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4406 {
4407         nvme_fault_inject_fini(&ctrl->fault_inject);
4408         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4409         cdev_device_del(&ctrl->cdev, ctrl->device);
4410         nvme_put_ctrl(ctrl);
4411 }
4412 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4413
4414 static void nvme_free_ctrl(struct device *dev)
4415 {
4416         struct nvme_ctrl *ctrl =
4417                 container_of(dev, struct nvme_ctrl, ctrl_device);
4418         struct nvme_subsystem *subsys = ctrl->subsys;
4419         struct nvme_cel *cel, *next;
4420
4421         if (!subsys || ctrl->instance != subsys->instance)
4422                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4423
4424         list_for_each_entry_safe(cel, next, &ctrl->cels, entry) {
4425                 list_del(&cel->entry);
4426                 kfree(cel);
4427         }
4428
4429         nvme_mpath_uninit(ctrl);
4430         __free_page(ctrl->discard_page);
4431
4432         if (subsys) {
4433                 mutex_lock(&nvme_subsystems_lock);
4434                 list_del(&ctrl->subsys_entry);
4435                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4436                 mutex_unlock(&nvme_subsystems_lock);
4437         }
4438
4439         ctrl->ops->free_ctrl(ctrl);
4440
4441         if (subsys)
4442                 nvme_put_subsystem(subsys);
4443 }
4444
4445 /*
4446  * Initialize a NVMe controller structures.  This needs to be called during
4447  * earliest initialization so that we have the initialized structured around
4448  * during probing.
4449  */
4450 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4451                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4452 {
4453         int ret;
4454
4455         ctrl->state = NVME_CTRL_NEW;
4456         spin_lock_init(&ctrl->lock);
4457         mutex_init(&ctrl->scan_lock);
4458         INIT_LIST_HEAD(&ctrl->namespaces);
4459         INIT_LIST_HEAD(&ctrl->cels);
4460         init_rwsem(&ctrl->namespaces_rwsem);
4461         ctrl->dev = dev;
4462         ctrl->ops = ops;
4463         ctrl->quirks = quirks;
4464         ctrl->numa_node = NUMA_NO_NODE;
4465         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4466         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4467         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4468         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4469         init_waitqueue_head(&ctrl->state_wq);
4470
4471         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4472         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4473         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4474
4475         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4476                         PAGE_SIZE);
4477         ctrl->discard_page = alloc_page(GFP_KERNEL);
4478         if (!ctrl->discard_page) {
4479                 ret = -ENOMEM;
4480                 goto out;
4481         }
4482
4483         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4484         if (ret < 0)
4485                 goto out;
4486         ctrl->instance = ret;
4487
4488         device_initialize(&ctrl->ctrl_device);
4489         ctrl->device = &ctrl->ctrl_device;
4490         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4491         ctrl->device->class = nvme_class;
4492         ctrl->device->parent = ctrl->dev;
4493         ctrl->device->groups = nvme_dev_attr_groups;
4494         ctrl->device->release = nvme_free_ctrl;
4495         dev_set_drvdata(ctrl->device, ctrl);
4496         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4497         if (ret)
4498                 goto out_release_instance;
4499
4500         nvme_get_ctrl(ctrl);
4501         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4502         ctrl->cdev.owner = ops->module;
4503         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4504         if (ret)
4505                 goto out_free_name;
4506
4507         /*
4508          * Initialize latency tolerance controls.  The sysfs files won't
4509          * be visible to userspace unless the device actually supports APST.
4510          */
4511         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4512         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4513                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4514
4515         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4516
4517         return 0;
4518 out_free_name:
4519         nvme_put_ctrl(ctrl);
4520         kfree_const(ctrl->device->kobj.name);
4521 out_release_instance:
4522         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4523 out:
4524         if (ctrl->discard_page)
4525                 __free_page(ctrl->discard_page);
4526         return ret;
4527 }
4528 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4529
4530 /**
4531  * nvme_kill_queues(): Ends all namespace queues
4532  * @ctrl: the dead controller that needs to end
4533  *
4534  * Call this function when the driver determines it is unable to get the
4535  * controller in a state capable of servicing IO.
4536  */
4537 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4538 {
4539         struct nvme_ns *ns;
4540
4541         down_read(&ctrl->namespaces_rwsem);
4542
4543         /* Forcibly unquiesce queues to avoid blocking dispatch */
4544         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4545                 blk_mq_unquiesce_queue(ctrl->admin_q);
4546
4547         list_for_each_entry(ns, &ctrl->namespaces, list)
4548                 nvme_set_queue_dying(ns);
4549
4550         up_read(&ctrl->namespaces_rwsem);
4551 }
4552 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4553
4554 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4555 {
4556         struct nvme_ns *ns;
4557
4558         down_read(&ctrl->namespaces_rwsem);
4559         list_for_each_entry(ns, &ctrl->namespaces, list)
4560                 blk_mq_unfreeze_queue(ns->queue);
4561         up_read(&ctrl->namespaces_rwsem);
4562 }
4563 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4564
4565 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4566 {
4567         struct nvme_ns *ns;
4568
4569         down_read(&ctrl->namespaces_rwsem);
4570         list_for_each_entry(ns, &ctrl->namespaces, list) {
4571                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4572                 if (timeout <= 0)
4573                         break;
4574         }
4575         up_read(&ctrl->namespaces_rwsem);
4576         return timeout;
4577 }
4578 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4579
4580 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4581 {
4582         struct nvme_ns *ns;
4583
4584         down_read(&ctrl->namespaces_rwsem);
4585         list_for_each_entry(ns, &ctrl->namespaces, list)
4586                 blk_mq_freeze_queue_wait(ns->queue);
4587         up_read(&ctrl->namespaces_rwsem);
4588 }
4589 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4590
4591 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4592 {
4593         struct nvme_ns *ns;
4594
4595         down_read(&ctrl->namespaces_rwsem);
4596         list_for_each_entry(ns, &ctrl->namespaces, list)
4597                 blk_freeze_queue_start(ns->queue);
4598         up_read(&ctrl->namespaces_rwsem);
4599 }
4600 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4601
4602 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4603 {
4604         struct nvme_ns *ns;
4605
4606         down_read(&ctrl->namespaces_rwsem);
4607         list_for_each_entry(ns, &ctrl->namespaces, list)
4608                 blk_mq_quiesce_queue(ns->queue);
4609         up_read(&ctrl->namespaces_rwsem);
4610 }
4611 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4612
4613 void nvme_start_queues(struct nvme_ctrl *ctrl)
4614 {
4615         struct nvme_ns *ns;
4616
4617         down_read(&ctrl->namespaces_rwsem);
4618         list_for_each_entry(ns, &ctrl->namespaces, list)
4619                 blk_mq_unquiesce_queue(ns->queue);
4620         up_read(&ctrl->namespaces_rwsem);
4621 }
4622 EXPORT_SYMBOL_GPL(nvme_start_queues);
4623
4624
4625 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4626 {
4627         struct nvme_ns *ns;
4628
4629         down_read(&ctrl->namespaces_rwsem);
4630         list_for_each_entry(ns, &ctrl->namespaces, list)
4631                 blk_sync_queue(ns->queue);
4632         up_read(&ctrl->namespaces_rwsem);
4633
4634         if (ctrl->admin_q)
4635                 blk_sync_queue(ctrl->admin_q);
4636 }
4637 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4638
4639 struct nvme_ctrl *nvme_ctrl_get_by_path(const char *path)
4640 {
4641         struct nvme_ctrl *ctrl;
4642         struct file *f;
4643
4644         f = filp_open(path, O_RDWR, 0);
4645         if (IS_ERR(f))
4646                 return ERR_CAST(f);
4647
4648         if (f->f_op != &nvme_dev_fops) {
4649                 ctrl = ERR_PTR(-EINVAL);
4650                 goto out_close;
4651         }
4652
4653         ctrl = f->private_data;
4654         nvme_get_ctrl(ctrl);
4655
4656 out_close:
4657         filp_close(f, NULL);
4658         return ctrl;
4659 }
4660 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_get_by_path, NVME_TARGET_PASSTHRU);
4661
4662 /*
4663  * Check we didn't inadvertently grow the command structure sizes:
4664  */
4665 static inline void _nvme_check_size(void)
4666 {
4667         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4668         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4669         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4670         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4671         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4672         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4673         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4674         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4675         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4676         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4677         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4678         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4679         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4680         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4681         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4682         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4683         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4684         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4685         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4686 }
4687
4688
4689 static int __init nvme_core_init(void)
4690 {
4691         int result = -ENOMEM;
4692
4693         _nvme_check_size();
4694
4695         nvme_wq = alloc_workqueue("nvme-wq",
4696                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4697         if (!nvme_wq)
4698                 goto out;
4699
4700         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4701                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4702         if (!nvme_reset_wq)
4703                 goto destroy_wq;
4704
4705         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4706                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4707         if (!nvme_delete_wq)
4708                 goto destroy_reset_wq;
4709
4710         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4711         if (result < 0)
4712                 goto destroy_delete_wq;
4713
4714         nvme_class = class_create(THIS_MODULE, "nvme");
4715         if (IS_ERR(nvme_class)) {
4716                 result = PTR_ERR(nvme_class);
4717                 goto unregister_chrdev;
4718         }
4719         nvme_class->dev_uevent = nvme_class_uevent;
4720
4721         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4722         if (IS_ERR(nvme_subsys_class)) {
4723                 result = PTR_ERR(nvme_subsys_class);
4724                 goto destroy_class;
4725         }
4726         return 0;
4727
4728 destroy_class:
4729         class_destroy(nvme_class);
4730 unregister_chrdev:
4731         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4732 destroy_delete_wq:
4733         destroy_workqueue(nvme_delete_wq);
4734 destroy_reset_wq:
4735         destroy_workqueue(nvme_reset_wq);
4736 destroy_wq:
4737         destroy_workqueue(nvme_wq);
4738 out:
4739         return result;
4740 }
4741
4742 static void __exit nvme_core_exit(void)
4743 {
4744         class_destroy(nvme_subsys_class);
4745         class_destroy(nvme_class);
4746         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4747         destroy_workqueue(nvme_delete_wq);
4748         destroy_workqueue(nvme_reset_wq);
4749         destroy_workqueue(nvme_wq);
4750         ida_destroy(&nvme_instance_ida);
4751 }
4752
4753 MODULE_LICENSE("GPL");
4754 MODULE_VERSION("1.0");
4755 module_init(nvme_core_init);
4756 module_exit(nvme_core_exit);