nvme: Remove ADMIN_ONLY state
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such are scan, aen handling, fw activation,
70  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95                                            unsigned nsid);
96
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99         /*
100          * Revalidating a dead namespace sets capacity to 0. This will end
101          * buffered writers dirtying pages that can't be synced.
102          */
103         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104                 return;
105         blk_set_queue_dying(ns->queue);
106         /* Forcibly unquiesce queues to avoid blocking dispatch */
107         blk_mq_unquiesce_queue(ns->queue);
108         /*
109          * Revalidate after unblocking dispatchers that may be holding bd_butex
110          */
111         revalidate_disk(ns->disk);
112 }
113
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116         /*
117          * Only new queue scan work when admin and IO queues are both alive
118          */
119         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120                 queue_work(nvme_wq, &ctrl->scan_work);
121 }
122
123 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
124 {
125         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
126                 return -EBUSY;
127         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
128                 return -EBUSY;
129         return 0;
130 }
131 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
132
133 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
134 {
135         int ret;
136
137         ret = nvme_reset_ctrl(ctrl);
138         if (!ret) {
139                 flush_work(&ctrl->reset_work);
140                 if (ctrl->state != NVME_CTRL_LIVE)
141                         ret = -ENETRESET;
142         }
143
144         return ret;
145 }
146 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
147
148 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
149 {
150         dev_info(ctrl->device,
151                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
152
153         flush_work(&ctrl->reset_work);
154         nvme_stop_ctrl(ctrl);
155         nvme_remove_namespaces(ctrl);
156         ctrl->ops->delete_ctrl(ctrl);
157         nvme_uninit_ctrl(ctrl);
158         nvme_put_ctrl(ctrl);
159 }
160
161 static void nvme_delete_ctrl_work(struct work_struct *work)
162 {
163         struct nvme_ctrl *ctrl =
164                 container_of(work, struct nvme_ctrl, delete_work);
165
166         nvme_do_delete_ctrl(ctrl);
167 }
168
169 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
170 {
171         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
172                 return -EBUSY;
173         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
174                 return -EBUSY;
175         return 0;
176 }
177 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
178
179 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
180 {
181         int ret = 0;
182
183         /*
184          * Keep a reference until nvme_do_delete_ctrl() complete,
185          * since ->delete_ctrl can free the controller.
186          */
187         nvme_get_ctrl(ctrl);
188         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
189                 ret = -EBUSY;
190         if (!ret)
191                 nvme_do_delete_ctrl(ctrl);
192         nvme_put_ctrl(ctrl);
193         return ret;
194 }
195
196 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
197 {
198         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
199 }
200
201 static blk_status_t nvme_error_status(u16 status)
202 {
203         switch (status & 0x7ff) {
204         case NVME_SC_SUCCESS:
205                 return BLK_STS_OK;
206         case NVME_SC_CAP_EXCEEDED:
207                 return BLK_STS_NOSPC;
208         case NVME_SC_LBA_RANGE:
209                 return BLK_STS_TARGET;
210         case NVME_SC_BAD_ATTRIBUTES:
211         case NVME_SC_ONCS_NOT_SUPPORTED:
212         case NVME_SC_INVALID_OPCODE:
213         case NVME_SC_INVALID_FIELD:
214         case NVME_SC_INVALID_NS:
215                 return BLK_STS_NOTSUPP;
216         case NVME_SC_WRITE_FAULT:
217         case NVME_SC_READ_ERROR:
218         case NVME_SC_UNWRITTEN_BLOCK:
219         case NVME_SC_ACCESS_DENIED:
220         case NVME_SC_READ_ONLY:
221         case NVME_SC_COMPARE_FAILED:
222                 return BLK_STS_MEDIUM;
223         case NVME_SC_GUARD_CHECK:
224         case NVME_SC_APPTAG_CHECK:
225         case NVME_SC_REFTAG_CHECK:
226         case NVME_SC_INVALID_PI:
227                 return BLK_STS_PROTECTION;
228         case NVME_SC_RESERVATION_CONFLICT:
229                 return BLK_STS_NEXUS;
230         case NVME_SC_HOST_PATH_ERROR:
231                 return BLK_STS_TRANSPORT;
232         default:
233                 return BLK_STS_IOERR;
234         }
235 }
236
237 static inline bool nvme_req_needs_retry(struct request *req)
238 {
239         if (blk_noretry_request(req))
240                 return false;
241         if (nvme_req(req)->status & NVME_SC_DNR)
242                 return false;
243         if (nvme_req(req)->retries >= nvme_max_retries)
244                 return false;
245         return true;
246 }
247
248 static void nvme_retry_req(struct request *req)
249 {
250         struct nvme_ns *ns = req->q->queuedata;
251         unsigned long delay = 0;
252         u16 crd;
253
254         /* The mask and shift result must be <= 3 */
255         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
256         if (ns && crd)
257                 delay = ns->ctrl->crdt[crd - 1] * 100;
258
259         nvme_req(req)->retries++;
260         blk_mq_requeue_request(req, false);
261         blk_mq_delay_kick_requeue_list(req->q, delay);
262 }
263
264 void nvme_complete_rq(struct request *req)
265 {
266         blk_status_t status = nvme_error_status(nvme_req(req)->status);
267
268         trace_nvme_complete_rq(req);
269
270         if (nvme_req(req)->ctrl->kas)
271                 nvme_req(req)->ctrl->comp_seen = true;
272
273         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
274                 if ((req->cmd_flags & REQ_NVME_MPATH) &&
275                     blk_path_error(status)) {
276                         nvme_failover_req(req);
277                         return;
278                 }
279
280                 if (!blk_queue_dying(req->q)) {
281                         nvme_retry_req(req);
282                         return;
283                 }
284         }
285
286         nvme_trace_bio_complete(req, status);
287         blk_mq_end_request(req, status);
288 }
289 EXPORT_SYMBOL_GPL(nvme_complete_rq);
290
291 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
292 {
293         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
294                                 "Cancelling I/O %d", req->tag);
295
296         /* don't abort one completed request */
297         if (blk_mq_request_completed(req))
298                 return true;
299
300         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
301         blk_mq_complete_request(req);
302         return true;
303 }
304 EXPORT_SYMBOL_GPL(nvme_cancel_request);
305
306 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
307                 enum nvme_ctrl_state new_state)
308 {
309         enum nvme_ctrl_state old_state;
310         unsigned long flags;
311         bool changed = false;
312
313         spin_lock_irqsave(&ctrl->lock, flags);
314
315         old_state = ctrl->state;
316         switch (new_state) {
317         case NVME_CTRL_LIVE:
318                 switch (old_state) {
319                 case NVME_CTRL_NEW:
320                 case NVME_CTRL_RESETTING:
321                 case NVME_CTRL_CONNECTING:
322                         changed = true;
323                         /* FALLTHRU */
324                 default:
325                         break;
326                 }
327                 break;
328         case NVME_CTRL_RESETTING:
329                 switch (old_state) {
330                 case NVME_CTRL_NEW:
331                 case NVME_CTRL_LIVE:
332                         changed = true;
333                         /* FALLTHRU */
334                 default:
335                         break;
336                 }
337                 break;
338         case NVME_CTRL_CONNECTING:
339                 switch (old_state) {
340                 case NVME_CTRL_NEW:
341                 case NVME_CTRL_RESETTING:
342                         changed = true;
343                         /* FALLTHRU */
344                 default:
345                         break;
346                 }
347                 break;
348         case NVME_CTRL_DELETING:
349                 switch (old_state) {
350                 case NVME_CTRL_LIVE:
351                 case NVME_CTRL_RESETTING:
352                 case NVME_CTRL_CONNECTING:
353                         changed = true;
354                         /* FALLTHRU */
355                 default:
356                         break;
357                 }
358                 break;
359         case NVME_CTRL_DEAD:
360                 switch (old_state) {
361                 case NVME_CTRL_DELETING:
362                         changed = true;
363                         /* FALLTHRU */
364                 default:
365                         break;
366                 }
367                 break;
368         default:
369                 break;
370         }
371
372         if (changed)
373                 ctrl->state = new_state;
374
375         spin_unlock_irqrestore(&ctrl->lock, flags);
376         if (changed && ctrl->state == NVME_CTRL_LIVE)
377                 nvme_kick_requeue_lists(ctrl);
378         return changed;
379 }
380 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
381
382 static void nvme_free_ns_head(struct kref *ref)
383 {
384         struct nvme_ns_head *head =
385                 container_of(ref, struct nvme_ns_head, ref);
386
387         nvme_mpath_remove_disk(head);
388         ida_simple_remove(&head->subsys->ns_ida, head->instance);
389         list_del_init(&head->entry);
390         cleanup_srcu_struct(&head->srcu);
391         nvme_put_subsystem(head->subsys);
392         kfree(head);
393 }
394
395 static void nvme_put_ns_head(struct nvme_ns_head *head)
396 {
397         kref_put(&head->ref, nvme_free_ns_head);
398 }
399
400 static void nvme_free_ns(struct kref *kref)
401 {
402         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
403
404         if (ns->ndev)
405                 nvme_nvm_unregister(ns);
406
407         put_disk(ns->disk);
408         nvme_put_ns_head(ns->head);
409         nvme_put_ctrl(ns->ctrl);
410         kfree(ns);
411 }
412
413 static void nvme_put_ns(struct nvme_ns *ns)
414 {
415         kref_put(&ns->kref, nvme_free_ns);
416 }
417
418 static inline void nvme_clear_nvme_request(struct request *req)
419 {
420         if (!(req->rq_flags & RQF_DONTPREP)) {
421                 nvme_req(req)->retries = 0;
422                 nvme_req(req)->flags = 0;
423                 req->rq_flags |= RQF_DONTPREP;
424         }
425 }
426
427 struct request *nvme_alloc_request(struct request_queue *q,
428                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
429 {
430         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
431         struct request *req;
432
433         if (qid == NVME_QID_ANY) {
434                 req = blk_mq_alloc_request(q, op, flags);
435         } else {
436                 req = blk_mq_alloc_request_hctx(q, op, flags,
437                                 qid ? qid - 1 : 0);
438         }
439         if (IS_ERR(req))
440                 return req;
441
442         req->cmd_flags |= REQ_FAILFAST_DRIVER;
443         nvme_clear_nvme_request(req);
444         nvme_req(req)->cmd = cmd;
445
446         return req;
447 }
448 EXPORT_SYMBOL_GPL(nvme_alloc_request);
449
450 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
451 {
452         struct nvme_command c;
453
454         memset(&c, 0, sizeof(c));
455
456         c.directive.opcode = nvme_admin_directive_send;
457         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
458         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
459         c.directive.dtype = NVME_DIR_IDENTIFY;
460         c.directive.tdtype = NVME_DIR_STREAMS;
461         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
462
463         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
464 }
465
466 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
467 {
468         return nvme_toggle_streams(ctrl, false);
469 }
470
471 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
472 {
473         return nvme_toggle_streams(ctrl, true);
474 }
475
476 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
477                                   struct streams_directive_params *s, u32 nsid)
478 {
479         struct nvme_command c;
480
481         memset(&c, 0, sizeof(c));
482         memset(s, 0, sizeof(*s));
483
484         c.directive.opcode = nvme_admin_directive_recv;
485         c.directive.nsid = cpu_to_le32(nsid);
486         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
487         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
488         c.directive.dtype = NVME_DIR_STREAMS;
489
490         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
491 }
492
493 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
494 {
495         struct streams_directive_params s;
496         int ret;
497
498         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
499                 return 0;
500         if (!streams)
501                 return 0;
502
503         ret = nvme_enable_streams(ctrl);
504         if (ret)
505                 return ret;
506
507         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
508         if (ret)
509                 return ret;
510
511         ctrl->nssa = le16_to_cpu(s.nssa);
512         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
513                 dev_info(ctrl->device, "too few streams (%u) available\n",
514                                         ctrl->nssa);
515                 nvme_disable_streams(ctrl);
516                 return 0;
517         }
518
519         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
520         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
521         return 0;
522 }
523
524 /*
525  * Check if 'req' has a write hint associated with it. If it does, assign
526  * a valid namespace stream to the write.
527  */
528 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
529                                      struct request *req, u16 *control,
530                                      u32 *dsmgmt)
531 {
532         enum rw_hint streamid = req->write_hint;
533
534         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
535                 streamid = 0;
536         else {
537                 streamid--;
538                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
539                         return;
540
541                 *control |= NVME_RW_DTYPE_STREAMS;
542                 *dsmgmt |= streamid << 16;
543         }
544
545         if (streamid < ARRAY_SIZE(req->q->write_hints))
546                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
547 }
548
549 static inline void nvme_setup_flush(struct nvme_ns *ns,
550                 struct nvme_command *cmnd)
551 {
552         cmnd->common.opcode = nvme_cmd_flush;
553         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
554 }
555
556 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
557                 struct nvme_command *cmnd)
558 {
559         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
560         struct nvme_dsm_range *range;
561         struct bio *bio;
562
563         range = kmalloc_array(segments, sizeof(*range),
564                                 GFP_ATOMIC | __GFP_NOWARN);
565         if (!range) {
566                 /*
567                  * If we fail allocation our range, fallback to the controller
568                  * discard page. If that's also busy, it's safe to return
569                  * busy, as we know we can make progress once that's freed.
570                  */
571                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
572                         return BLK_STS_RESOURCE;
573
574                 range = page_address(ns->ctrl->discard_page);
575         }
576
577         __rq_for_each_bio(bio, req) {
578                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
579                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
580
581                 if (n < segments) {
582                         range[n].cattr = cpu_to_le32(0);
583                         range[n].nlb = cpu_to_le32(nlb);
584                         range[n].slba = cpu_to_le64(slba);
585                 }
586                 n++;
587         }
588
589         if (WARN_ON_ONCE(n != segments)) {
590                 if (virt_to_page(range) == ns->ctrl->discard_page)
591                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
592                 else
593                         kfree(range);
594                 return BLK_STS_IOERR;
595         }
596
597         cmnd->dsm.opcode = nvme_cmd_dsm;
598         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
599         cmnd->dsm.nr = cpu_to_le32(segments - 1);
600         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
601
602         req->special_vec.bv_page = virt_to_page(range);
603         req->special_vec.bv_offset = offset_in_page(range);
604         req->special_vec.bv_len = sizeof(*range) * segments;
605         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
606
607         return BLK_STS_OK;
608 }
609
610 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
611                 struct request *req, struct nvme_command *cmnd)
612 {
613         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
614                 return nvme_setup_discard(ns, req, cmnd);
615
616         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
617         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
618         cmnd->write_zeroes.slba =
619                 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
620         cmnd->write_zeroes.length =
621                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
622         cmnd->write_zeroes.control = 0;
623         return BLK_STS_OK;
624 }
625
626 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
627                 struct request *req, struct nvme_command *cmnd)
628 {
629         struct nvme_ctrl *ctrl = ns->ctrl;
630         u16 control = 0;
631         u32 dsmgmt = 0;
632
633         if (req->cmd_flags & REQ_FUA)
634                 control |= NVME_RW_FUA;
635         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
636                 control |= NVME_RW_LR;
637
638         if (req->cmd_flags & REQ_RAHEAD)
639                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
640
641         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
642         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
643         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
644         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
645
646         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
647                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
648
649         if (ns->ms) {
650                 /*
651                  * If formated with metadata, the block layer always provides a
652                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
653                  * we enable the PRACT bit for protection information or set the
654                  * namespace capacity to zero to prevent any I/O.
655                  */
656                 if (!blk_integrity_rq(req)) {
657                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
658                                 return BLK_STS_NOTSUPP;
659                         control |= NVME_RW_PRINFO_PRACT;
660                 }
661
662                 switch (ns->pi_type) {
663                 case NVME_NS_DPS_PI_TYPE3:
664                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
665                         break;
666                 case NVME_NS_DPS_PI_TYPE1:
667                 case NVME_NS_DPS_PI_TYPE2:
668                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
669                                         NVME_RW_PRINFO_PRCHK_REF;
670                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
671                         break;
672                 }
673         }
674
675         cmnd->rw.control = cpu_to_le16(control);
676         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
677         return 0;
678 }
679
680 void nvme_cleanup_cmd(struct request *req)
681 {
682         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
683                 struct nvme_ns *ns = req->rq_disk->private_data;
684                 struct page *page = req->special_vec.bv_page;
685
686                 if (page == ns->ctrl->discard_page)
687                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
688                 else
689                         kfree(page_address(page) + req->special_vec.bv_offset);
690         }
691 }
692 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
693
694 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
695                 struct nvme_command *cmd)
696 {
697         blk_status_t ret = BLK_STS_OK;
698
699         nvme_clear_nvme_request(req);
700
701         memset(cmd, 0, sizeof(*cmd));
702         switch (req_op(req)) {
703         case REQ_OP_DRV_IN:
704         case REQ_OP_DRV_OUT:
705                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
706                 break;
707         case REQ_OP_FLUSH:
708                 nvme_setup_flush(ns, cmd);
709                 break;
710         case REQ_OP_WRITE_ZEROES:
711                 ret = nvme_setup_write_zeroes(ns, req, cmd);
712                 break;
713         case REQ_OP_DISCARD:
714                 ret = nvme_setup_discard(ns, req, cmd);
715                 break;
716         case REQ_OP_READ:
717         case REQ_OP_WRITE:
718                 ret = nvme_setup_rw(ns, req, cmd);
719                 break;
720         default:
721                 WARN_ON_ONCE(1);
722                 return BLK_STS_IOERR;
723         }
724
725         cmd->common.command_id = req->tag;
726         trace_nvme_setup_cmd(req, cmd);
727         return ret;
728 }
729 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
730
731 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
732 {
733         struct completion *waiting = rq->end_io_data;
734
735         rq->end_io_data = NULL;
736         complete(waiting);
737 }
738
739 static void nvme_execute_rq_polled(struct request_queue *q,
740                 struct gendisk *bd_disk, struct request *rq, int at_head)
741 {
742         DECLARE_COMPLETION_ONSTACK(wait);
743
744         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
745
746         rq->cmd_flags |= REQ_HIPRI;
747         rq->end_io_data = &wait;
748         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
749
750         while (!completion_done(&wait)) {
751                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
752                 cond_resched();
753         }
754 }
755
756 /*
757  * Returns 0 on success.  If the result is negative, it's a Linux error code;
758  * if the result is positive, it's an NVM Express status code
759  */
760 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
761                 union nvme_result *result, void *buffer, unsigned bufflen,
762                 unsigned timeout, int qid, int at_head,
763                 blk_mq_req_flags_t flags, bool poll)
764 {
765         struct request *req;
766         int ret;
767
768         req = nvme_alloc_request(q, cmd, flags, qid);
769         if (IS_ERR(req))
770                 return PTR_ERR(req);
771
772         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
773
774         if (buffer && bufflen) {
775                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
776                 if (ret)
777                         goto out;
778         }
779
780         if (poll)
781                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
782         else
783                 blk_execute_rq(req->q, NULL, req, at_head);
784         if (result)
785                 *result = nvme_req(req)->result;
786         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
787                 ret = -EINTR;
788         else
789                 ret = nvme_req(req)->status;
790  out:
791         blk_mq_free_request(req);
792         return ret;
793 }
794 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
795
796 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
797                 void *buffer, unsigned bufflen)
798 {
799         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
800                         NVME_QID_ANY, 0, 0, false);
801 }
802 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
803
804 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
805                 unsigned len, u32 seed, bool write)
806 {
807         struct bio_integrity_payload *bip;
808         int ret = -ENOMEM;
809         void *buf;
810
811         buf = kmalloc(len, GFP_KERNEL);
812         if (!buf)
813                 goto out;
814
815         ret = -EFAULT;
816         if (write && copy_from_user(buf, ubuf, len))
817                 goto out_free_meta;
818
819         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
820         if (IS_ERR(bip)) {
821                 ret = PTR_ERR(bip);
822                 goto out_free_meta;
823         }
824
825         bip->bip_iter.bi_size = len;
826         bip->bip_iter.bi_sector = seed;
827         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
828                         offset_in_page(buf));
829         if (ret == len)
830                 return buf;
831         ret = -ENOMEM;
832 out_free_meta:
833         kfree(buf);
834 out:
835         return ERR_PTR(ret);
836 }
837
838 static int nvme_submit_user_cmd(struct request_queue *q,
839                 struct nvme_command *cmd, void __user *ubuffer,
840                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
841                 u32 meta_seed, u64 *result, unsigned timeout)
842 {
843         bool write = nvme_is_write(cmd);
844         struct nvme_ns *ns = q->queuedata;
845         struct gendisk *disk = ns ? ns->disk : NULL;
846         struct request *req;
847         struct bio *bio = NULL;
848         void *meta = NULL;
849         int ret;
850
851         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
852         if (IS_ERR(req))
853                 return PTR_ERR(req);
854
855         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
856         nvme_req(req)->flags |= NVME_REQ_USERCMD;
857
858         if (ubuffer && bufflen) {
859                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
860                                 GFP_KERNEL);
861                 if (ret)
862                         goto out;
863                 bio = req->bio;
864                 bio->bi_disk = disk;
865                 if (disk && meta_buffer && meta_len) {
866                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
867                                         meta_seed, write);
868                         if (IS_ERR(meta)) {
869                                 ret = PTR_ERR(meta);
870                                 goto out_unmap;
871                         }
872                         req->cmd_flags |= REQ_INTEGRITY;
873                 }
874         }
875
876         blk_execute_rq(req->q, disk, req, 0);
877         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
878                 ret = -EINTR;
879         else
880                 ret = nvme_req(req)->status;
881         if (result)
882                 *result = le64_to_cpu(nvme_req(req)->result.u64);
883         if (meta && !ret && !write) {
884                 if (copy_to_user(meta_buffer, meta, meta_len))
885                         ret = -EFAULT;
886         }
887         kfree(meta);
888  out_unmap:
889         if (bio)
890                 blk_rq_unmap_user(bio);
891  out:
892         blk_mq_free_request(req);
893         return ret;
894 }
895
896 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
897 {
898         struct nvme_ctrl *ctrl = rq->end_io_data;
899         unsigned long flags;
900         bool startka = false;
901
902         blk_mq_free_request(rq);
903
904         if (status) {
905                 dev_err(ctrl->device,
906                         "failed nvme_keep_alive_end_io error=%d\n",
907                                 status);
908                 return;
909         }
910
911         ctrl->comp_seen = false;
912         spin_lock_irqsave(&ctrl->lock, flags);
913         if (ctrl->state == NVME_CTRL_LIVE ||
914             ctrl->state == NVME_CTRL_CONNECTING)
915                 startka = true;
916         spin_unlock_irqrestore(&ctrl->lock, flags);
917         if (startka)
918                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
919 }
920
921 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
922 {
923         struct request *rq;
924
925         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
926                         NVME_QID_ANY);
927         if (IS_ERR(rq))
928                 return PTR_ERR(rq);
929
930         rq->timeout = ctrl->kato * HZ;
931         rq->end_io_data = ctrl;
932
933         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
934
935         return 0;
936 }
937
938 static void nvme_keep_alive_work(struct work_struct *work)
939 {
940         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
941                         struct nvme_ctrl, ka_work);
942         bool comp_seen = ctrl->comp_seen;
943
944         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
945                 dev_dbg(ctrl->device,
946                         "reschedule traffic based keep-alive timer\n");
947                 ctrl->comp_seen = false;
948                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
949                 return;
950         }
951
952         if (nvme_keep_alive(ctrl)) {
953                 /* allocation failure, reset the controller */
954                 dev_err(ctrl->device, "keep-alive failed\n");
955                 nvme_reset_ctrl(ctrl);
956                 return;
957         }
958 }
959
960 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
961 {
962         if (unlikely(ctrl->kato == 0))
963                 return;
964
965         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
966 }
967
968 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
969 {
970         if (unlikely(ctrl->kato == 0))
971                 return;
972
973         cancel_delayed_work_sync(&ctrl->ka_work);
974 }
975 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
976
977 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
978 {
979         struct nvme_command c = { };
980         int error;
981
982         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
983         c.identify.opcode = nvme_admin_identify;
984         c.identify.cns = NVME_ID_CNS_CTRL;
985
986         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
987         if (!*id)
988                 return -ENOMEM;
989
990         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
991                         sizeof(struct nvme_id_ctrl));
992         if (error)
993                 kfree(*id);
994         return error;
995 }
996
997 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
998                 struct nvme_ns_ids *ids)
999 {
1000         struct nvme_command c = { };
1001         int status;
1002         void *data;
1003         int pos;
1004         int len;
1005
1006         c.identify.opcode = nvme_admin_identify;
1007         c.identify.nsid = cpu_to_le32(nsid);
1008         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1009
1010         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1011         if (!data)
1012                 return -ENOMEM;
1013
1014         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1015                                       NVME_IDENTIFY_DATA_SIZE);
1016         if (status)
1017                 goto free_data;
1018
1019         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1020                 struct nvme_ns_id_desc *cur = data + pos;
1021
1022                 if (cur->nidl == 0)
1023                         break;
1024
1025                 switch (cur->nidt) {
1026                 case NVME_NIDT_EUI64:
1027                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1028                                 dev_warn(ctrl->device,
1029                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1030                                          cur->nidl);
1031                                 goto free_data;
1032                         }
1033                         len = NVME_NIDT_EUI64_LEN;
1034                         memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1035                         break;
1036                 case NVME_NIDT_NGUID:
1037                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1038                                 dev_warn(ctrl->device,
1039                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1040                                          cur->nidl);
1041                                 goto free_data;
1042                         }
1043                         len = NVME_NIDT_NGUID_LEN;
1044                         memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1045                         break;
1046                 case NVME_NIDT_UUID:
1047                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
1048                                 dev_warn(ctrl->device,
1049                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1050                                          cur->nidl);
1051                                 goto free_data;
1052                         }
1053                         len = NVME_NIDT_UUID_LEN;
1054                         uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1055                         break;
1056                 default:
1057                         /* Skip unknown types */
1058                         len = cur->nidl;
1059                         break;
1060                 }
1061
1062                 len += sizeof(*cur);
1063         }
1064 free_data:
1065         kfree(data);
1066         return status;
1067 }
1068
1069 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1070 {
1071         struct nvme_command c = { };
1072
1073         c.identify.opcode = nvme_admin_identify;
1074         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1075         c.identify.nsid = cpu_to_le32(nsid);
1076         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1077                                     NVME_IDENTIFY_DATA_SIZE);
1078 }
1079
1080 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1081                 unsigned nsid, struct nvme_id_ns **id)
1082 {
1083         struct nvme_command c = { };
1084         int error;
1085
1086         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1087         c.identify.opcode = nvme_admin_identify;
1088         c.identify.nsid = cpu_to_le32(nsid);
1089         c.identify.cns = NVME_ID_CNS_NS;
1090
1091         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1092         if (!*id)
1093                 return -ENOMEM;
1094
1095         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1096         if (error) {
1097                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1098                 kfree(*id);
1099         }
1100
1101         return error;
1102 }
1103
1104 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1105                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1106 {
1107         struct nvme_command c;
1108         union nvme_result res;
1109         int ret;
1110
1111         memset(&c, 0, sizeof(c));
1112         c.features.opcode = op;
1113         c.features.fid = cpu_to_le32(fid);
1114         c.features.dword11 = cpu_to_le32(dword11);
1115
1116         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1117                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1118         if (ret >= 0 && result)
1119                 *result = le32_to_cpu(res.u32);
1120         return ret;
1121 }
1122
1123 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1124                       unsigned int dword11, void *buffer, size_t buflen,
1125                       u32 *result)
1126 {
1127         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1128                              buflen, result);
1129 }
1130 EXPORT_SYMBOL_GPL(nvme_set_features);
1131
1132 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1133                       unsigned int dword11, void *buffer, size_t buflen,
1134                       u32 *result)
1135 {
1136         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1137                              buflen, result);
1138 }
1139 EXPORT_SYMBOL_GPL(nvme_get_features);
1140
1141 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1142 {
1143         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1144         u32 result;
1145         int status, nr_io_queues;
1146
1147         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1148                         &result);
1149         if (status < 0)
1150                 return status;
1151
1152         /*
1153          * Degraded controllers might return an error when setting the queue
1154          * count.  We still want to be able to bring them online and offer
1155          * access to the admin queue, as that might be only way to fix them up.
1156          */
1157         if (status > 0) {
1158                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1159                 *count = 0;
1160         } else {
1161                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1162                 *count = min(*count, nr_io_queues);
1163         }
1164
1165         return 0;
1166 }
1167 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1168
1169 #define NVME_AEN_SUPPORTED \
1170         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1171          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1172
1173 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1174 {
1175         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1176         int status;
1177
1178         if (!supported_aens)
1179                 return;
1180
1181         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1182                         NULL, 0, &result);
1183         if (status)
1184                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1185                          supported_aens);
1186
1187         queue_work(nvme_wq, &ctrl->async_event_work);
1188 }
1189
1190 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1191 {
1192         struct nvme_user_io io;
1193         struct nvme_command c;
1194         unsigned length, meta_len;
1195         void __user *metadata;
1196
1197         if (copy_from_user(&io, uio, sizeof(io)))
1198                 return -EFAULT;
1199         if (io.flags)
1200                 return -EINVAL;
1201
1202         switch (io.opcode) {
1203         case nvme_cmd_write:
1204         case nvme_cmd_read:
1205         case nvme_cmd_compare:
1206                 break;
1207         default:
1208                 return -EINVAL;
1209         }
1210
1211         length = (io.nblocks + 1) << ns->lba_shift;
1212         meta_len = (io.nblocks + 1) * ns->ms;
1213         metadata = (void __user *)(uintptr_t)io.metadata;
1214
1215         if (ns->ext) {
1216                 length += meta_len;
1217                 meta_len = 0;
1218         } else if (meta_len) {
1219                 if ((io.metadata & 3) || !io.metadata)
1220                         return -EINVAL;
1221         }
1222
1223         memset(&c, 0, sizeof(c));
1224         c.rw.opcode = io.opcode;
1225         c.rw.flags = io.flags;
1226         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1227         c.rw.slba = cpu_to_le64(io.slba);
1228         c.rw.length = cpu_to_le16(io.nblocks);
1229         c.rw.control = cpu_to_le16(io.control);
1230         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1231         c.rw.reftag = cpu_to_le32(io.reftag);
1232         c.rw.apptag = cpu_to_le16(io.apptag);
1233         c.rw.appmask = cpu_to_le16(io.appmask);
1234
1235         return nvme_submit_user_cmd(ns->queue, &c,
1236                         (void __user *)(uintptr_t)io.addr, length,
1237                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1238 }
1239
1240 static u32 nvme_known_admin_effects(u8 opcode)
1241 {
1242         switch (opcode) {
1243         case nvme_admin_format_nvm:
1244                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1245                                         NVME_CMD_EFFECTS_CSE_MASK;
1246         case nvme_admin_sanitize_nvm:
1247                 return NVME_CMD_EFFECTS_CSE_MASK;
1248         default:
1249                 break;
1250         }
1251         return 0;
1252 }
1253
1254 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1255                                                                 u8 opcode)
1256 {
1257         u32 effects = 0;
1258
1259         if (ns) {
1260                 if (ctrl->effects)
1261                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1262                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1263                         dev_warn(ctrl->device,
1264                                  "IO command:%02x has unhandled effects:%08x\n",
1265                                  opcode, effects);
1266                 return 0;
1267         }
1268
1269         if (ctrl->effects)
1270                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1271         effects |= nvme_known_admin_effects(opcode);
1272
1273         /*
1274          * For simplicity, IO to all namespaces is quiesced even if the command
1275          * effects say only one namespace is affected.
1276          */
1277         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1278                 mutex_lock(&ctrl->scan_lock);
1279                 mutex_lock(&ctrl->subsys->lock);
1280                 nvme_mpath_start_freeze(ctrl->subsys);
1281                 nvme_mpath_wait_freeze(ctrl->subsys);
1282                 nvme_start_freeze(ctrl);
1283                 nvme_wait_freeze(ctrl);
1284         }
1285         return effects;
1286 }
1287
1288 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1289 {
1290         struct nvme_ns *ns;
1291
1292         down_read(&ctrl->namespaces_rwsem);
1293         list_for_each_entry(ns, &ctrl->namespaces, list)
1294                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1295                         nvme_set_queue_dying(ns);
1296         up_read(&ctrl->namespaces_rwsem);
1297 }
1298
1299 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1300 {
1301         /*
1302          * Revalidate LBA changes prior to unfreezing. This is necessary to
1303          * prevent memory corruption if a logical block size was changed by
1304          * this command.
1305          */
1306         if (effects & NVME_CMD_EFFECTS_LBCC)
1307                 nvme_update_formats(ctrl);
1308         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1309                 nvme_unfreeze(ctrl);
1310                 nvme_mpath_unfreeze(ctrl->subsys);
1311                 mutex_unlock(&ctrl->subsys->lock);
1312                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1313                 mutex_unlock(&ctrl->scan_lock);
1314         }
1315         if (effects & NVME_CMD_EFFECTS_CCC)
1316                 nvme_init_identify(ctrl);
1317         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1318                 nvme_queue_scan(ctrl);
1319 }
1320
1321 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1322                         struct nvme_passthru_cmd __user *ucmd)
1323 {
1324         struct nvme_passthru_cmd cmd;
1325         struct nvme_command c;
1326         unsigned timeout = 0;
1327         u32 effects;
1328         u64 result;
1329         int status;
1330
1331         if (!capable(CAP_SYS_ADMIN))
1332                 return -EACCES;
1333         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1334                 return -EFAULT;
1335         if (cmd.flags)
1336                 return -EINVAL;
1337
1338         memset(&c, 0, sizeof(c));
1339         c.common.opcode = cmd.opcode;
1340         c.common.flags = cmd.flags;
1341         c.common.nsid = cpu_to_le32(cmd.nsid);
1342         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1343         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1344         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1345         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1346         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1347         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1348         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1349         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1350
1351         if (cmd.timeout_ms)
1352                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1353
1354         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1355         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1356                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1357                         (void __user *)(uintptr_t)cmd.metadata,
1358                         cmd.metadata_len, 0, &result, timeout);
1359         nvme_passthru_end(ctrl, effects);
1360
1361         if (status >= 0) {
1362                 if (put_user(result, &ucmd->result))
1363                         return -EFAULT;
1364         }
1365
1366         return status;
1367 }
1368
1369 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1370                         struct nvme_passthru_cmd64 __user *ucmd)
1371 {
1372         struct nvme_passthru_cmd64 cmd;
1373         struct nvme_command c;
1374         unsigned timeout = 0;
1375         u32 effects;
1376         int status;
1377
1378         if (!capable(CAP_SYS_ADMIN))
1379                 return -EACCES;
1380         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1381                 return -EFAULT;
1382         if (cmd.flags)
1383                 return -EINVAL;
1384
1385         memset(&c, 0, sizeof(c));
1386         c.common.opcode = cmd.opcode;
1387         c.common.flags = cmd.flags;
1388         c.common.nsid = cpu_to_le32(cmd.nsid);
1389         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1390         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1391         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1392         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1393         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1394         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1395         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1396         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1397
1398         if (cmd.timeout_ms)
1399                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1400
1401         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1402         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1403                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1404                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1405                         0, &cmd.result, timeout);
1406         nvme_passthru_end(ctrl, effects);
1407
1408         if (status >= 0) {
1409                 if (put_user(cmd.result, &ucmd->result))
1410                         return -EFAULT;
1411         }
1412
1413         return status;
1414 }
1415
1416 /*
1417  * Issue ioctl requests on the first available path.  Note that unlike normal
1418  * block layer requests we will not retry failed request on another controller.
1419  */
1420 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1421                 struct nvme_ns_head **head, int *srcu_idx)
1422 {
1423 #ifdef CONFIG_NVME_MULTIPATH
1424         if (disk->fops == &nvme_ns_head_ops) {
1425                 struct nvme_ns *ns;
1426
1427                 *head = disk->private_data;
1428                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1429                 ns = nvme_find_path(*head);
1430                 if (!ns)
1431                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1432                 return ns;
1433         }
1434 #endif
1435         *head = NULL;
1436         *srcu_idx = -1;
1437         return disk->private_data;
1438 }
1439
1440 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1441 {
1442         if (head)
1443                 srcu_read_unlock(&head->srcu, idx);
1444 }
1445
1446 static bool is_ctrl_ioctl(unsigned int cmd)
1447 {
1448         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1449                 return true;
1450         if (is_sed_ioctl(cmd))
1451                 return true;
1452         return false;
1453 }
1454
1455 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1456                                   void __user *argp,
1457                                   struct nvme_ns_head *head,
1458                                   int srcu_idx)
1459 {
1460         struct nvme_ctrl *ctrl = ns->ctrl;
1461         int ret;
1462
1463         nvme_get_ctrl(ns->ctrl);
1464         nvme_put_ns_from_disk(head, srcu_idx);
1465
1466         switch (cmd) {
1467         case NVME_IOCTL_ADMIN_CMD:
1468                 ret = nvme_user_cmd(ctrl, NULL, argp);
1469                 break;
1470         case NVME_IOCTL_ADMIN64_CMD:
1471                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1472                 break;
1473         default:
1474                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1475                 break;
1476         }
1477         nvme_put_ctrl(ctrl);
1478         return ret;
1479 }
1480
1481 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1482                 unsigned int cmd, unsigned long arg)
1483 {
1484         struct nvme_ns_head *head = NULL;
1485         void __user *argp = (void __user *)arg;
1486         struct nvme_ns *ns;
1487         int srcu_idx, ret;
1488
1489         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1490         if (unlikely(!ns))
1491                 return -EWOULDBLOCK;
1492
1493         /*
1494          * Handle ioctls that apply to the controller instead of the namespace
1495          * seperately and drop the ns SRCU reference early.  This avoids a
1496          * deadlock when deleting namespaces using the passthrough interface.
1497          */
1498         if (is_ctrl_ioctl(cmd))
1499                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1500
1501         switch (cmd) {
1502         case NVME_IOCTL_ID:
1503                 force_successful_syscall_return();
1504                 ret = ns->head->ns_id;
1505                 break;
1506         case NVME_IOCTL_IO_CMD:
1507                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1508                 break;
1509         case NVME_IOCTL_SUBMIT_IO:
1510                 ret = nvme_submit_io(ns, argp);
1511                 break;
1512         case NVME_IOCTL_IO64_CMD:
1513                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1514                 break;
1515         default:
1516                 if (ns->ndev)
1517                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1518                 else
1519                         ret = -ENOTTY;
1520         }
1521
1522         nvme_put_ns_from_disk(head, srcu_idx);
1523         return ret;
1524 }
1525
1526 static int nvme_open(struct block_device *bdev, fmode_t mode)
1527 {
1528         struct nvme_ns *ns = bdev->bd_disk->private_data;
1529
1530 #ifdef CONFIG_NVME_MULTIPATH
1531         /* should never be called due to GENHD_FL_HIDDEN */
1532         if (WARN_ON_ONCE(ns->head->disk))
1533                 goto fail;
1534 #endif
1535         if (!kref_get_unless_zero(&ns->kref))
1536                 goto fail;
1537         if (!try_module_get(ns->ctrl->ops->module))
1538                 goto fail_put_ns;
1539
1540         return 0;
1541
1542 fail_put_ns:
1543         nvme_put_ns(ns);
1544 fail:
1545         return -ENXIO;
1546 }
1547
1548 static void nvme_release(struct gendisk *disk, fmode_t mode)
1549 {
1550         struct nvme_ns *ns = disk->private_data;
1551
1552         module_put(ns->ctrl->ops->module);
1553         nvme_put_ns(ns);
1554 }
1555
1556 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1557 {
1558         /* some standard values */
1559         geo->heads = 1 << 6;
1560         geo->sectors = 1 << 5;
1561         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1562         return 0;
1563 }
1564
1565 #ifdef CONFIG_BLK_DEV_INTEGRITY
1566 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1567 {
1568         struct blk_integrity integrity;
1569
1570         memset(&integrity, 0, sizeof(integrity));
1571         switch (pi_type) {
1572         case NVME_NS_DPS_PI_TYPE3:
1573                 integrity.profile = &t10_pi_type3_crc;
1574                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1575                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1576                 break;
1577         case NVME_NS_DPS_PI_TYPE1:
1578         case NVME_NS_DPS_PI_TYPE2:
1579                 integrity.profile = &t10_pi_type1_crc;
1580                 integrity.tag_size = sizeof(u16);
1581                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1582                 break;
1583         default:
1584                 integrity.profile = NULL;
1585                 break;
1586         }
1587         integrity.tuple_size = ms;
1588         blk_integrity_register(disk, &integrity);
1589         blk_queue_max_integrity_segments(disk->queue, 1);
1590 }
1591 #else
1592 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1593 {
1594 }
1595 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1596
1597 static void nvme_set_chunk_size(struct nvme_ns *ns)
1598 {
1599         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1600         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1601 }
1602
1603 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1604 {
1605         struct nvme_ctrl *ctrl = ns->ctrl;
1606         struct request_queue *queue = disk->queue;
1607         u32 size = queue_logical_block_size(queue);
1608
1609         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1610                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1611                 return;
1612         }
1613
1614         if (ctrl->nr_streams && ns->sws && ns->sgs)
1615                 size *= ns->sws * ns->sgs;
1616
1617         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1618                         NVME_DSM_MAX_RANGES);
1619
1620         queue->limits.discard_alignment = 0;
1621         queue->limits.discard_granularity = size;
1622
1623         /* If discard is already enabled, don't reset queue limits */
1624         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1625                 return;
1626
1627         blk_queue_max_discard_sectors(queue, UINT_MAX);
1628         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1629
1630         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1631                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1632 }
1633
1634 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1635 {
1636         u32 max_sectors;
1637         unsigned short bs = 1 << ns->lba_shift;
1638
1639         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1640             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1641                 return;
1642         /*
1643          * Even though NVMe spec explicitly states that MDTS is not
1644          * applicable to the write-zeroes:- "The restriction does not apply to
1645          * commands that do not transfer data between the host and the
1646          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1647          * In order to be more cautious use controller's max_hw_sectors value
1648          * to configure the maximum sectors for the write-zeroes which is
1649          * configured based on the controller's MDTS field in the
1650          * nvme_init_identify() if available.
1651          */
1652         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1653                 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1654         else
1655                 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1656
1657         blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1658 }
1659
1660 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1661                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1662 {
1663         int ret = 0;
1664
1665         memset(ids, 0, sizeof(*ids));
1666
1667         if (ctrl->vs >= NVME_VS(1, 1, 0))
1668                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1669         if (ctrl->vs >= NVME_VS(1, 2, 0))
1670                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1671         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1672                  /* Don't treat error as fatal we potentially
1673                   * already have a NGUID or EUI-64
1674                   */
1675                 ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1676                 if (ret)
1677                         dev_warn(ctrl->device,
1678                                  "Identify Descriptors failed (%d)\n", ret);
1679         }
1680         return ret;
1681 }
1682
1683 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1684 {
1685         return !uuid_is_null(&ids->uuid) ||
1686                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1687                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1688 }
1689
1690 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1691 {
1692         return uuid_equal(&a->uuid, &b->uuid) &&
1693                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1694                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1695 }
1696
1697 static void nvme_update_disk_info(struct gendisk *disk,
1698                 struct nvme_ns *ns, struct nvme_id_ns *id)
1699 {
1700         sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9);
1701         unsigned short bs = 1 << ns->lba_shift;
1702         u32 atomic_bs, phys_bs, io_opt;
1703
1704         if (ns->lba_shift > PAGE_SHIFT) {
1705                 /* unsupported block size, set capacity to 0 later */
1706                 bs = (1 << 9);
1707         }
1708         blk_mq_freeze_queue(disk->queue);
1709         blk_integrity_unregister(disk);
1710
1711         if (id->nabo == 0) {
1712                 /*
1713                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1714                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1715                  * 0 then AWUPF must be used instead.
1716                  */
1717                 if (id->nsfeat & (1 << 1) && id->nawupf)
1718                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1719                 else
1720                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1721         } else {
1722                 atomic_bs = bs;
1723         }
1724         phys_bs = bs;
1725         io_opt = bs;
1726         if (id->nsfeat & (1 << 4)) {
1727                 /* NPWG = Namespace Preferred Write Granularity */
1728                 phys_bs *= 1 + le16_to_cpu(id->npwg);
1729                 /* NOWS = Namespace Optimal Write Size */
1730                 io_opt *= 1 + le16_to_cpu(id->nows);
1731         }
1732
1733         blk_queue_logical_block_size(disk->queue, bs);
1734         /*
1735          * Linux filesystems assume writing a single physical block is
1736          * an atomic operation. Hence limit the physical block size to the
1737          * value of the Atomic Write Unit Power Fail parameter.
1738          */
1739         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1740         blk_queue_io_min(disk->queue, phys_bs);
1741         blk_queue_io_opt(disk->queue, io_opt);
1742
1743         if (ns->ms && !ns->ext &&
1744             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1745                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1746         if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1747             ns->lba_shift > PAGE_SHIFT)
1748                 capacity = 0;
1749
1750         set_capacity(disk, capacity);
1751
1752         nvme_config_discard(disk, ns);
1753         nvme_config_write_zeroes(disk, ns);
1754
1755         if (id->nsattr & (1 << 0))
1756                 set_disk_ro(disk, true);
1757         else
1758                 set_disk_ro(disk, false);
1759
1760         blk_mq_unfreeze_queue(disk->queue);
1761 }
1762
1763 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1764 {
1765         struct nvme_ns *ns = disk->private_data;
1766
1767         /*
1768          * If identify namespace failed, use default 512 byte block size so
1769          * block layer can use before failing read/write for 0 capacity.
1770          */
1771         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1772         if (ns->lba_shift == 0)
1773                 ns->lba_shift = 9;
1774         ns->noiob = le16_to_cpu(id->noiob);
1775         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1776         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1777         /* the PI implementation requires metadata equal t10 pi tuple size */
1778         if (ns->ms == sizeof(struct t10_pi_tuple))
1779                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1780         else
1781                 ns->pi_type = 0;
1782
1783         if (ns->noiob)
1784                 nvme_set_chunk_size(ns);
1785         nvme_update_disk_info(disk, ns, id);
1786 #ifdef CONFIG_NVME_MULTIPATH
1787         if (ns->head->disk) {
1788                 nvme_update_disk_info(ns->head->disk, ns, id);
1789                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1790                 revalidate_disk(ns->head->disk);
1791         }
1792 #endif
1793 }
1794
1795 static int nvme_revalidate_disk(struct gendisk *disk)
1796 {
1797         struct nvme_ns *ns = disk->private_data;
1798         struct nvme_ctrl *ctrl = ns->ctrl;
1799         struct nvme_id_ns *id;
1800         struct nvme_ns_ids ids;
1801         int ret = 0;
1802
1803         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1804                 set_capacity(disk, 0);
1805                 return -ENODEV;
1806         }
1807
1808         ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1809         if (ret)
1810                 goto out;
1811
1812         if (id->ncap == 0) {
1813                 ret = -ENODEV;
1814                 goto free_id;
1815         }
1816
1817         __nvme_revalidate_disk(disk, id);
1818         ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1819         if (ret)
1820                 goto free_id;
1821
1822         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1823                 dev_err(ctrl->device,
1824                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1825                 ret = -ENODEV;
1826         }
1827
1828 free_id:
1829         kfree(id);
1830 out:
1831         /*
1832          * Only fail the function if we got a fatal error back from the
1833          * device, otherwise ignore the error and just move on.
1834          */
1835         if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1836                 ret = 0;
1837         else if (ret > 0)
1838                 ret = blk_status_to_errno(nvme_error_status(ret));
1839         return ret;
1840 }
1841
1842 static char nvme_pr_type(enum pr_type type)
1843 {
1844         switch (type) {
1845         case PR_WRITE_EXCLUSIVE:
1846                 return 1;
1847         case PR_EXCLUSIVE_ACCESS:
1848                 return 2;
1849         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1850                 return 3;
1851         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1852                 return 4;
1853         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1854                 return 5;
1855         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1856                 return 6;
1857         default:
1858                 return 0;
1859         }
1860 };
1861
1862 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1863                                 u64 key, u64 sa_key, u8 op)
1864 {
1865         struct nvme_ns_head *head = NULL;
1866         struct nvme_ns *ns;
1867         struct nvme_command c;
1868         int srcu_idx, ret;
1869         u8 data[16] = { 0, };
1870
1871         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1872         if (unlikely(!ns))
1873                 return -EWOULDBLOCK;
1874
1875         put_unaligned_le64(key, &data[0]);
1876         put_unaligned_le64(sa_key, &data[8]);
1877
1878         memset(&c, 0, sizeof(c));
1879         c.common.opcode = op;
1880         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1881         c.common.cdw10 = cpu_to_le32(cdw10);
1882
1883         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1884         nvme_put_ns_from_disk(head, srcu_idx);
1885         return ret;
1886 }
1887
1888 static int nvme_pr_register(struct block_device *bdev, u64 old,
1889                 u64 new, unsigned flags)
1890 {
1891         u32 cdw10;
1892
1893         if (flags & ~PR_FL_IGNORE_KEY)
1894                 return -EOPNOTSUPP;
1895
1896         cdw10 = old ? 2 : 0;
1897         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1898         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1899         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1900 }
1901
1902 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1903                 enum pr_type type, unsigned flags)
1904 {
1905         u32 cdw10;
1906
1907         if (flags & ~PR_FL_IGNORE_KEY)
1908                 return -EOPNOTSUPP;
1909
1910         cdw10 = nvme_pr_type(type) << 8;
1911         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1912         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1913 }
1914
1915 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1916                 enum pr_type type, bool abort)
1917 {
1918         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1919         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1920 }
1921
1922 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1923 {
1924         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1925         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1926 }
1927
1928 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1929 {
1930         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1931         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1932 }
1933
1934 static const struct pr_ops nvme_pr_ops = {
1935         .pr_register    = nvme_pr_register,
1936         .pr_reserve     = nvme_pr_reserve,
1937         .pr_release     = nvme_pr_release,
1938         .pr_preempt     = nvme_pr_preempt,
1939         .pr_clear       = nvme_pr_clear,
1940 };
1941
1942 #ifdef CONFIG_BLK_SED_OPAL
1943 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1944                 bool send)
1945 {
1946         struct nvme_ctrl *ctrl = data;
1947         struct nvme_command cmd;
1948
1949         memset(&cmd, 0, sizeof(cmd));
1950         if (send)
1951                 cmd.common.opcode = nvme_admin_security_send;
1952         else
1953                 cmd.common.opcode = nvme_admin_security_recv;
1954         cmd.common.nsid = 0;
1955         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1956         cmd.common.cdw11 = cpu_to_le32(len);
1957
1958         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1959                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1960 }
1961 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1962 #endif /* CONFIG_BLK_SED_OPAL */
1963
1964 static const struct block_device_operations nvme_fops = {
1965         .owner          = THIS_MODULE,
1966         .ioctl          = nvme_ioctl,
1967         .compat_ioctl   = nvme_ioctl,
1968         .open           = nvme_open,
1969         .release        = nvme_release,
1970         .getgeo         = nvme_getgeo,
1971         .revalidate_disk= nvme_revalidate_disk,
1972         .pr_ops         = &nvme_pr_ops,
1973 };
1974
1975 #ifdef CONFIG_NVME_MULTIPATH
1976 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1977 {
1978         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1979
1980         if (!kref_get_unless_zero(&head->ref))
1981                 return -ENXIO;
1982         return 0;
1983 }
1984
1985 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1986 {
1987         nvme_put_ns_head(disk->private_data);
1988 }
1989
1990 const struct block_device_operations nvme_ns_head_ops = {
1991         .owner          = THIS_MODULE,
1992         .open           = nvme_ns_head_open,
1993         .release        = nvme_ns_head_release,
1994         .ioctl          = nvme_ioctl,
1995         .compat_ioctl   = nvme_ioctl,
1996         .getgeo         = nvme_getgeo,
1997         .pr_ops         = &nvme_pr_ops,
1998 };
1999 #endif /* CONFIG_NVME_MULTIPATH */
2000
2001 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2002 {
2003         unsigned long timeout =
2004                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2005         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2006         int ret;
2007
2008         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2009                 if (csts == ~0)
2010                         return -ENODEV;
2011                 if ((csts & NVME_CSTS_RDY) == bit)
2012                         break;
2013
2014                 msleep(100);
2015                 if (fatal_signal_pending(current))
2016                         return -EINTR;
2017                 if (time_after(jiffies, timeout)) {
2018                         dev_err(ctrl->device,
2019                                 "Device not ready; aborting %s\n", enabled ?
2020                                                 "initialisation" : "reset");
2021                         return -ENODEV;
2022                 }
2023         }
2024
2025         return ret;
2026 }
2027
2028 /*
2029  * If the device has been passed off to us in an enabled state, just clear
2030  * the enabled bit.  The spec says we should set the 'shutdown notification
2031  * bits', but doing so may cause the device to complete commands to the
2032  * admin queue ... and we don't know what memory that might be pointing at!
2033  */
2034 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2035 {
2036         int ret;
2037
2038         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2039         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2040
2041         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2042         if (ret)
2043                 return ret;
2044
2045         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2046                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2047
2048         return nvme_wait_ready(ctrl, ctrl->cap, false);
2049 }
2050 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2051
2052 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2053 {
2054         /*
2055          * Default to a 4K page size, with the intention to update this
2056          * path in the future to accomodate architectures with differing
2057          * kernel and IO page sizes.
2058          */
2059         unsigned dev_page_min, page_shift = 12;
2060         int ret;
2061
2062         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2063         if (ret) {
2064                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2065                 return ret;
2066         }
2067         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2068
2069         if (page_shift < dev_page_min) {
2070                 dev_err(ctrl->device,
2071                         "Minimum device page size %u too large for host (%u)\n",
2072                         1 << dev_page_min, 1 << page_shift);
2073                 return -ENODEV;
2074         }
2075
2076         ctrl->page_size = 1 << page_shift;
2077
2078         ctrl->ctrl_config = NVME_CC_CSS_NVM;
2079         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2080         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2081         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2082         ctrl->ctrl_config |= NVME_CC_ENABLE;
2083
2084         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2085         if (ret)
2086                 return ret;
2087         return nvme_wait_ready(ctrl, ctrl->cap, true);
2088 }
2089 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2090
2091 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2092 {
2093         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2094         u32 csts;
2095         int ret;
2096
2097         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2098         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2099
2100         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2101         if (ret)
2102                 return ret;
2103
2104         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2105                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2106                         break;
2107
2108                 msleep(100);
2109                 if (fatal_signal_pending(current))
2110                         return -EINTR;
2111                 if (time_after(jiffies, timeout)) {
2112                         dev_err(ctrl->device,
2113                                 "Device shutdown incomplete; abort shutdown\n");
2114                         return -ENODEV;
2115                 }
2116         }
2117
2118         return ret;
2119 }
2120 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2121
2122 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2123                 struct request_queue *q)
2124 {
2125         bool vwc = false;
2126
2127         if (ctrl->max_hw_sectors) {
2128                 u32 max_segments =
2129                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2130
2131                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2132                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2133                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2134         }
2135         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2136             is_power_of_2(ctrl->max_hw_sectors))
2137                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2138         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2139         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2140                 vwc = true;
2141         blk_queue_write_cache(q, vwc, vwc);
2142 }
2143
2144 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2145 {
2146         __le64 ts;
2147         int ret;
2148
2149         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2150                 return 0;
2151
2152         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2153         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2154                         NULL);
2155         if (ret)
2156                 dev_warn_once(ctrl->device,
2157                         "could not set timestamp (%d)\n", ret);
2158         return ret;
2159 }
2160
2161 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2162 {
2163         struct nvme_feat_host_behavior *host;
2164         int ret;
2165
2166         /* Don't bother enabling the feature if retry delay is not reported */
2167         if (!ctrl->crdt[0])
2168                 return 0;
2169
2170         host = kzalloc(sizeof(*host), GFP_KERNEL);
2171         if (!host)
2172                 return 0;
2173
2174         host->acre = NVME_ENABLE_ACRE;
2175         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2176                                 host, sizeof(*host), NULL);
2177         kfree(host);
2178         return ret;
2179 }
2180
2181 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2182 {
2183         /*
2184          * APST (Autonomous Power State Transition) lets us program a
2185          * table of power state transitions that the controller will
2186          * perform automatically.  We configure it with a simple
2187          * heuristic: we are willing to spend at most 2% of the time
2188          * transitioning between power states.  Therefore, when running
2189          * in any given state, we will enter the next lower-power
2190          * non-operational state after waiting 50 * (enlat + exlat)
2191          * microseconds, as long as that state's exit latency is under
2192          * the requested maximum latency.
2193          *
2194          * We will not autonomously enter any non-operational state for
2195          * which the total latency exceeds ps_max_latency_us.  Users
2196          * can set ps_max_latency_us to zero to turn off APST.
2197          */
2198
2199         unsigned apste;
2200         struct nvme_feat_auto_pst *table;
2201         u64 max_lat_us = 0;
2202         int max_ps = -1;
2203         int ret;
2204
2205         /*
2206          * If APST isn't supported or if we haven't been initialized yet,
2207          * then don't do anything.
2208          */
2209         if (!ctrl->apsta)
2210                 return 0;
2211
2212         if (ctrl->npss > 31) {
2213                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2214                 return 0;
2215         }
2216
2217         table = kzalloc(sizeof(*table), GFP_KERNEL);
2218         if (!table)
2219                 return 0;
2220
2221         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2222                 /* Turn off APST. */
2223                 apste = 0;
2224                 dev_dbg(ctrl->device, "APST disabled\n");
2225         } else {
2226                 __le64 target = cpu_to_le64(0);
2227                 int state;
2228
2229                 /*
2230                  * Walk through all states from lowest- to highest-power.
2231                  * According to the spec, lower-numbered states use more
2232                  * power.  NPSS, despite the name, is the index of the
2233                  * lowest-power state, not the number of states.
2234                  */
2235                 for (state = (int)ctrl->npss; state >= 0; state--) {
2236                         u64 total_latency_us, exit_latency_us, transition_ms;
2237
2238                         if (target)
2239                                 table->entries[state] = target;
2240
2241                         /*
2242                          * Don't allow transitions to the deepest state
2243                          * if it's quirked off.
2244                          */
2245                         if (state == ctrl->npss &&
2246                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2247                                 continue;
2248
2249                         /*
2250                          * Is this state a useful non-operational state for
2251                          * higher-power states to autonomously transition to?
2252                          */
2253                         if (!(ctrl->psd[state].flags &
2254                               NVME_PS_FLAGS_NON_OP_STATE))
2255                                 continue;
2256
2257                         exit_latency_us =
2258                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2259                         if (exit_latency_us > ctrl->ps_max_latency_us)
2260                                 continue;
2261
2262                         total_latency_us =
2263                                 exit_latency_us +
2264                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2265
2266                         /*
2267                          * This state is good.  Use it as the APST idle
2268                          * target for higher power states.
2269                          */
2270                         transition_ms = total_latency_us + 19;
2271                         do_div(transition_ms, 20);
2272                         if (transition_ms > (1 << 24) - 1)
2273                                 transition_ms = (1 << 24) - 1;
2274
2275                         target = cpu_to_le64((state << 3) |
2276                                              (transition_ms << 8));
2277
2278                         if (max_ps == -1)
2279                                 max_ps = state;
2280
2281                         if (total_latency_us > max_lat_us)
2282                                 max_lat_us = total_latency_us;
2283                 }
2284
2285                 apste = 1;
2286
2287                 if (max_ps == -1) {
2288                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2289                 } else {
2290                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2291                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2292                 }
2293         }
2294
2295         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2296                                 table, sizeof(*table), NULL);
2297         if (ret)
2298                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2299
2300         kfree(table);
2301         return ret;
2302 }
2303
2304 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2305 {
2306         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2307         u64 latency;
2308
2309         switch (val) {
2310         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2311         case PM_QOS_LATENCY_ANY:
2312                 latency = U64_MAX;
2313                 break;
2314
2315         default:
2316                 latency = val;
2317         }
2318
2319         if (ctrl->ps_max_latency_us != latency) {
2320                 ctrl->ps_max_latency_us = latency;
2321                 nvme_configure_apst(ctrl);
2322         }
2323 }
2324
2325 struct nvme_core_quirk_entry {
2326         /*
2327          * NVMe model and firmware strings are padded with spaces.  For
2328          * simplicity, strings in the quirk table are padded with NULLs
2329          * instead.
2330          */
2331         u16 vid;
2332         const char *mn;
2333         const char *fr;
2334         unsigned long quirks;
2335 };
2336
2337 static const struct nvme_core_quirk_entry core_quirks[] = {
2338         {
2339                 /*
2340                  * This Toshiba device seems to die using any APST states.  See:
2341                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2342                  */
2343                 .vid = 0x1179,
2344                 .mn = "THNSF5256GPUK TOSHIBA",
2345                 .quirks = NVME_QUIRK_NO_APST,
2346         },
2347         {
2348                 /*
2349                  * This LiteON CL1-3D*-Q11 firmware version has a race
2350                  * condition associated with actions related to suspend to idle
2351                  * LiteON has resolved the problem in future firmware
2352                  */
2353                 .vid = 0x14a4,
2354                 .fr = "22301111",
2355                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2356         },
2357         {
2358                 /*
2359                  * This Kingston E8FK11.T firmware version has no interrupt
2360                  * after resume with actions related to suspend to idle
2361                  * https://bugzilla.kernel.org/show_bug.cgi?id=204887
2362                  */
2363                 .vid = 0x2646,
2364                 .fr = "E8FK11.T",
2365                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2366         }
2367 };
2368
2369 /* match is null-terminated but idstr is space-padded. */
2370 static bool string_matches(const char *idstr, const char *match, size_t len)
2371 {
2372         size_t matchlen;
2373
2374         if (!match)
2375                 return true;
2376
2377         matchlen = strlen(match);
2378         WARN_ON_ONCE(matchlen > len);
2379
2380         if (memcmp(idstr, match, matchlen))
2381                 return false;
2382
2383         for (; matchlen < len; matchlen++)
2384                 if (idstr[matchlen] != ' ')
2385                         return false;
2386
2387         return true;
2388 }
2389
2390 static bool quirk_matches(const struct nvme_id_ctrl *id,
2391                           const struct nvme_core_quirk_entry *q)
2392 {
2393         return q->vid == le16_to_cpu(id->vid) &&
2394                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2395                 string_matches(id->fr, q->fr, sizeof(id->fr));
2396 }
2397
2398 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2399                 struct nvme_id_ctrl *id)
2400 {
2401         size_t nqnlen;
2402         int off;
2403
2404         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2405                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2406                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2407                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2408                         return;
2409                 }
2410
2411                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2412                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2413         }
2414
2415         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2416         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2417                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2418                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2419         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2420         off += sizeof(id->sn);
2421         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2422         off += sizeof(id->mn);
2423         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2424 }
2425
2426 static void nvme_release_subsystem(struct device *dev)
2427 {
2428         struct nvme_subsystem *subsys =
2429                 container_of(dev, struct nvme_subsystem, dev);
2430
2431         if (subsys->instance >= 0)
2432                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2433         kfree(subsys);
2434 }
2435
2436 static void nvme_destroy_subsystem(struct kref *ref)
2437 {
2438         struct nvme_subsystem *subsys =
2439                         container_of(ref, struct nvme_subsystem, ref);
2440
2441         mutex_lock(&nvme_subsystems_lock);
2442         list_del(&subsys->entry);
2443         mutex_unlock(&nvme_subsystems_lock);
2444
2445         ida_destroy(&subsys->ns_ida);
2446         device_del(&subsys->dev);
2447         put_device(&subsys->dev);
2448 }
2449
2450 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2451 {
2452         kref_put(&subsys->ref, nvme_destroy_subsystem);
2453 }
2454
2455 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2456 {
2457         struct nvme_subsystem *subsys;
2458
2459         lockdep_assert_held(&nvme_subsystems_lock);
2460
2461         /*
2462          * Fail matches for discovery subsystems. This results
2463          * in each discovery controller bound to a unique subsystem.
2464          * This avoids issues with validating controller values
2465          * that can only be true when there is a single unique subsystem.
2466          * There may be multiple and completely independent entities
2467          * that provide discovery controllers.
2468          */
2469         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2470                 return NULL;
2471
2472         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2473                 if (strcmp(subsys->subnqn, subsysnqn))
2474                         continue;
2475                 if (!kref_get_unless_zero(&subsys->ref))
2476                         continue;
2477                 return subsys;
2478         }
2479
2480         return NULL;
2481 }
2482
2483 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2484         struct device_attribute subsys_attr_##_name = \
2485                 __ATTR(_name, _mode, _show, NULL)
2486
2487 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2488                                     struct device_attribute *attr,
2489                                     char *buf)
2490 {
2491         struct nvme_subsystem *subsys =
2492                 container_of(dev, struct nvme_subsystem, dev);
2493
2494         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2495 }
2496 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2497
2498 #define nvme_subsys_show_str_function(field)                            \
2499 static ssize_t subsys_##field##_show(struct device *dev,                \
2500                             struct device_attribute *attr, char *buf)   \
2501 {                                                                       \
2502         struct nvme_subsystem *subsys =                                 \
2503                 container_of(dev, struct nvme_subsystem, dev);          \
2504         return sprintf(buf, "%.*s\n",                                   \
2505                        (int)sizeof(subsys->field), subsys->field);      \
2506 }                                                                       \
2507 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2508
2509 nvme_subsys_show_str_function(model);
2510 nvme_subsys_show_str_function(serial);
2511 nvme_subsys_show_str_function(firmware_rev);
2512
2513 static struct attribute *nvme_subsys_attrs[] = {
2514         &subsys_attr_model.attr,
2515         &subsys_attr_serial.attr,
2516         &subsys_attr_firmware_rev.attr,
2517         &subsys_attr_subsysnqn.attr,
2518 #ifdef CONFIG_NVME_MULTIPATH
2519         &subsys_attr_iopolicy.attr,
2520 #endif
2521         NULL,
2522 };
2523
2524 static struct attribute_group nvme_subsys_attrs_group = {
2525         .attrs = nvme_subsys_attrs,
2526 };
2527
2528 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2529         &nvme_subsys_attrs_group,
2530         NULL,
2531 };
2532
2533 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2534                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2535 {
2536         struct nvme_ctrl *tmp;
2537
2538         lockdep_assert_held(&nvme_subsystems_lock);
2539
2540         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2541                 if (tmp->state == NVME_CTRL_DELETING ||
2542                     tmp->state == NVME_CTRL_DEAD)
2543                         continue;
2544
2545                 if (tmp->cntlid == ctrl->cntlid) {
2546                         dev_err(ctrl->device,
2547                                 "Duplicate cntlid %u with %s, rejecting\n",
2548                                 ctrl->cntlid, dev_name(tmp->device));
2549                         return false;
2550                 }
2551
2552                 if ((id->cmic & (1 << 1)) ||
2553                     (ctrl->opts && ctrl->opts->discovery_nqn))
2554                         continue;
2555
2556                 dev_err(ctrl->device,
2557                         "Subsystem does not support multiple controllers\n");
2558                 return false;
2559         }
2560
2561         return true;
2562 }
2563
2564 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2565 {
2566         struct nvme_subsystem *subsys, *found;
2567         int ret;
2568
2569         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2570         if (!subsys)
2571                 return -ENOMEM;
2572
2573         subsys->instance = -1;
2574         mutex_init(&subsys->lock);
2575         kref_init(&subsys->ref);
2576         INIT_LIST_HEAD(&subsys->ctrls);
2577         INIT_LIST_HEAD(&subsys->nsheads);
2578         nvme_init_subnqn(subsys, ctrl, id);
2579         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2580         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2581         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2582         subsys->vendor_id = le16_to_cpu(id->vid);
2583         subsys->cmic = id->cmic;
2584         subsys->awupf = le16_to_cpu(id->awupf);
2585 #ifdef CONFIG_NVME_MULTIPATH
2586         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2587 #endif
2588
2589         subsys->dev.class = nvme_subsys_class;
2590         subsys->dev.release = nvme_release_subsystem;
2591         subsys->dev.groups = nvme_subsys_attrs_groups;
2592         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2593         device_initialize(&subsys->dev);
2594
2595         mutex_lock(&nvme_subsystems_lock);
2596         found = __nvme_find_get_subsystem(subsys->subnqn);
2597         if (found) {
2598                 put_device(&subsys->dev);
2599                 subsys = found;
2600
2601                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2602                         ret = -EINVAL;
2603                         goto out_put_subsystem;
2604                 }
2605         } else {
2606                 ret = device_add(&subsys->dev);
2607                 if (ret) {
2608                         dev_err(ctrl->device,
2609                                 "failed to register subsystem device.\n");
2610                         put_device(&subsys->dev);
2611                         goto out_unlock;
2612                 }
2613                 ida_init(&subsys->ns_ida);
2614                 list_add_tail(&subsys->entry, &nvme_subsystems);
2615         }
2616
2617         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2618                                 dev_name(ctrl->device));
2619         if (ret) {
2620                 dev_err(ctrl->device,
2621                         "failed to create sysfs link from subsystem.\n");
2622                 goto out_put_subsystem;
2623         }
2624
2625         if (!found)
2626                 subsys->instance = ctrl->instance;
2627         ctrl->subsys = subsys;
2628         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2629         mutex_unlock(&nvme_subsystems_lock);
2630         return 0;
2631
2632 out_put_subsystem:
2633         nvme_put_subsystem(subsys);
2634 out_unlock:
2635         mutex_unlock(&nvme_subsystems_lock);
2636         return ret;
2637 }
2638
2639 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2640                 void *log, size_t size, u64 offset)
2641 {
2642         struct nvme_command c = { };
2643         unsigned long dwlen = size / 4 - 1;
2644
2645         c.get_log_page.opcode = nvme_admin_get_log_page;
2646         c.get_log_page.nsid = cpu_to_le32(nsid);
2647         c.get_log_page.lid = log_page;
2648         c.get_log_page.lsp = lsp;
2649         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2650         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2651         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2652         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2653
2654         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2655 }
2656
2657 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2658 {
2659         int ret;
2660
2661         if (!ctrl->effects)
2662                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2663
2664         if (!ctrl->effects)
2665                 return 0;
2666
2667         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2668                         ctrl->effects, sizeof(*ctrl->effects), 0);
2669         if (ret) {
2670                 kfree(ctrl->effects);
2671                 ctrl->effects = NULL;
2672         }
2673         return ret;
2674 }
2675
2676 /*
2677  * Initialize the cached copies of the Identify data and various controller
2678  * register in our nvme_ctrl structure.  This should be called as soon as
2679  * the admin queue is fully up and running.
2680  */
2681 int nvme_init_identify(struct nvme_ctrl *ctrl)
2682 {
2683         struct nvme_id_ctrl *id;
2684         int ret, page_shift;
2685         u32 max_hw_sectors;
2686         bool prev_apst_enabled;
2687
2688         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2689         if (ret) {
2690                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2691                 return ret;
2692         }
2693         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2694         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2695
2696         if (ctrl->vs >= NVME_VS(1, 1, 0))
2697                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2698
2699         ret = nvme_identify_ctrl(ctrl, &id);
2700         if (ret) {
2701                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2702                 return -EIO;
2703         }
2704
2705         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2706                 ret = nvme_get_effects_log(ctrl);
2707                 if (ret < 0)
2708                         goto out_free;
2709         }
2710
2711         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2712                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2713
2714         if (!ctrl->identified) {
2715                 int i;
2716
2717                 ret = nvme_init_subsystem(ctrl, id);
2718                 if (ret)
2719                         goto out_free;
2720
2721                 /*
2722                  * Check for quirks.  Quirk can depend on firmware version,
2723                  * so, in principle, the set of quirks present can change
2724                  * across a reset.  As a possible future enhancement, we
2725                  * could re-scan for quirks every time we reinitialize
2726                  * the device, but we'd have to make sure that the driver
2727                  * behaves intelligently if the quirks change.
2728                  */
2729                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2730                         if (quirk_matches(id, &core_quirks[i]))
2731                                 ctrl->quirks |= core_quirks[i].quirks;
2732                 }
2733         }
2734
2735         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2736                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2737                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2738         }
2739
2740         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2741         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2742         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2743
2744         ctrl->oacs = le16_to_cpu(id->oacs);
2745         ctrl->oncs = le16_to_cpu(id->oncs);
2746         ctrl->mtfa = le16_to_cpu(id->mtfa);
2747         ctrl->oaes = le32_to_cpu(id->oaes);
2748         atomic_set(&ctrl->abort_limit, id->acl + 1);
2749         ctrl->vwc = id->vwc;
2750         if (id->mdts)
2751                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2752         else
2753                 max_hw_sectors = UINT_MAX;
2754         ctrl->max_hw_sectors =
2755                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2756
2757         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2758         ctrl->sgls = le32_to_cpu(id->sgls);
2759         ctrl->kas = le16_to_cpu(id->kas);
2760         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2761         ctrl->ctratt = le32_to_cpu(id->ctratt);
2762
2763         if (id->rtd3e) {
2764                 /* us -> s */
2765                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2766
2767                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2768                                                  shutdown_timeout, 60);
2769
2770                 if (ctrl->shutdown_timeout != shutdown_timeout)
2771                         dev_info(ctrl->device,
2772                                  "Shutdown timeout set to %u seconds\n",
2773                                  ctrl->shutdown_timeout);
2774         } else
2775                 ctrl->shutdown_timeout = shutdown_timeout;
2776
2777         ctrl->npss = id->npss;
2778         ctrl->apsta = id->apsta;
2779         prev_apst_enabled = ctrl->apst_enabled;
2780         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2781                 if (force_apst && id->apsta) {
2782                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2783                         ctrl->apst_enabled = true;
2784                 } else {
2785                         ctrl->apst_enabled = false;
2786                 }
2787         } else {
2788                 ctrl->apst_enabled = id->apsta;
2789         }
2790         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2791
2792         if (ctrl->ops->flags & NVME_F_FABRICS) {
2793                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2794                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2795                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2796                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2797
2798                 /*
2799                  * In fabrics we need to verify the cntlid matches the
2800                  * admin connect
2801                  */
2802                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2803                         ret = -EINVAL;
2804                         goto out_free;
2805                 }
2806
2807                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2808                         dev_err(ctrl->device,
2809                                 "keep-alive support is mandatory for fabrics\n");
2810                         ret = -EINVAL;
2811                         goto out_free;
2812                 }
2813         } else {
2814                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2815                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2816                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2817                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2818         }
2819
2820         ret = nvme_mpath_init(ctrl, id);
2821         kfree(id);
2822
2823         if (ret < 0)
2824                 return ret;
2825
2826         if (ctrl->apst_enabled && !prev_apst_enabled)
2827                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2828         else if (!ctrl->apst_enabled && prev_apst_enabled)
2829                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2830
2831         ret = nvme_configure_apst(ctrl);
2832         if (ret < 0)
2833                 return ret;
2834         
2835         ret = nvme_configure_timestamp(ctrl);
2836         if (ret < 0)
2837                 return ret;
2838
2839         ret = nvme_configure_directives(ctrl);
2840         if (ret < 0)
2841                 return ret;
2842
2843         ret = nvme_configure_acre(ctrl);
2844         if (ret < 0)
2845                 return ret;
2846
2847         ctrl->identified = true;
2848
2849         return 0;
2850
2851 out_free:
2852         kfree(id);
2853         return ret;
2854 }
2855 EXPORT_SYMBOL_GPL(nvme_init_identify);
2856
2857 static int nvme_dev_open(struct inode *inode, struct file *file)
2858 {
2859         struct nvme_ctrl *ctrl =
2860                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2861
2862         switch (ctrl->state) {
2863         case NVME_CTRL_LIVE:
2864                 break;
2865         default:
2866                 return -EWOULDBLOCK;
2867         }
2868
2869         file->private_data = ctrl;
2870         return 0;
2871 }
2872
2873 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2874 {
2875         struct nvme_ns *ns;
2876         int ret;
2877
2878         down_read(&ctrl->namespaces_rwsem);
2879         if (list_empty(&ctrl->namespaces)) {
2880                 ret = -ENOTTY;
2881                 goto out_unlock;
2882         }
2883
2884         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2885         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2886                 dev_warn(ctrl->device,
2887                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2888                 ret = -EINVAL;
2889                 goto out_unlock;
2890         }
2891
2892         dev_warn(ctrl->device,
2893                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2894         kref_get(&ns->kref);
2895         up_read(&ctrl->namespaces_rwsem);
2896
2897         ret = nvme_user_cmd(ctrl, ns, argp);
2898         nvme_put_ns(ns);
2899         return ret;
2900
2901 out_unlock:
2902         up_read(&ctrl->namespaces_rwsem);
2903         return ret;
2904 }
2905
2906 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2907                 unsigned long arg)
2908 {
2909         struct nvme_ctrl *ctrl = file->private_data;
2910         void __user *argp = (void __user *)arg;
2911
2912         switch (cmd) {
2913         case NVME_IOCTL_ADMIN_CMD:
2914                 return nvme_user_cmd(ctrl, NULL, argp);
2915         case NVME_IOCTL_ADMIN64_CMD:
2916                 return nvme_user_cmd64(ctrl, NULL, argp);
2917         case NVME_IOCTL_IO_CMD:
2918                 return nvme_dev_user_cmd(ctrl, argp);
2919         case NVME_IOCTL_RESET:
2920                 dev_warn(ctrl->device, "resetting controller\n");
2921                 return nvme_reset_ctrl_sync(ctrl);
2922         case NVME_IOCTL_SUBSYS_RESET:
2923                 return nvme_reset_subsystem(ctrl);
2924         case NVME_IOCTL_RESCAN:
2925                 nvme_queue_scan(ctrl);
2926                 return 0;
2927         default:
2928                 return -ENOTTY;
2929         }
2930 }
2931
2932 static const struct file_operations nvme_dev_fops = {
2933         .owner          = THIS_MODULE,
2934         .open           = nvme_dev_open,
2935         .unlocked_ioctl = nvme_dev_ioctl,
2936         .compat_ioctl   = nvme_dev_ioctl,
2937 };
2938
2939 static ssize_t nvme_sysfs_reset(struct device *dev,
2940                                 struct device_attribute *attr, const char *buf,
2941                                 size_t count)
2942 {
2943         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2944         int ret;
2945
2946         ret = nvme_reset_ctrl_sync(ctrl);
2947         if (ret < 0)
2948                 return ret;
2949         return count;
2950 }
2951 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2952
2953 static ssize_t nvme_sysfs_rescan(struct device *dev,
2954                                 struct device_attribute *attr, const char *buf,
2955                                 size_t count)
2956 {
2957         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2958
2959         nvme_queue_scan(ctrl);
2960         return count;
2961 }
2962 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2963
2964 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2965 {
2966         struct gendisk *disk = dev_to_disk(dev);
2967
2968         if (disk->fops == &nvme_fops)
2969                 return nvme_get_ns_from_dev(dev)->head;
2970         else
2971                 return disk->private_data;
2972 }
2973
2974 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2975                 char *buf)
2976 {
2977         struct nvme_ns_head *head = dev_to_ns_head(dev);
2978         struct nvme_ns_ids *ids = &head->ids;
2979         struct nvme_subsystem *subsys = head->subsys;
2980         int serial_len = sizeof(subsys->serial);
2981         int model_len = sizeof(subsys->model);
2982
2983         if (!uuid_is_null(&ids->uuid))
2984                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2985
2986         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2987                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2988
2989         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2990                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2991
2992         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2993                                   subsys->serial[serial_len - 1] == '\0'))
2994                 serial_len--;
2995         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2996                                  subsys->model[model_len - 1] == '\0'))
2997                 model_len--;
2998
2999         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3000                 serial_len, subsys->serial, model_len, subsys->model,
3001                 head->ns_id);
3002 }
3003 static DEVICE_ATTR_RO(wwid);
3004
3005 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3006                 char *buf)
3007 {
3008         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3009 }
3010 static DEVICE_ATTR_RO(nguid);
3011
3012 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3013                 char *buf)
3014 {
3015         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3016
3017         /* For backward compatibility expose the NGUID to userspace if
3018          * we have no UUID set
3019          */
3020         if (uuid_is_null(&ids->uuid)) {
3021                 printk_ratelimited(KERN_WARNING
3022                                    "No UUID available providing old NGUID\n");
3023                 return sprintf(buf, "%pU\n", ids->nguid);
3024         }
3025         return sprintf(buf, "%pU\n", &ids->uuid);
3026 }
3027 static DEVICE_ATTR_RO(uuid);
3028
3029 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3030                 char *buf)
3031 {
3032         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3033 }
3034 static DEVICE_ATTR_RO(eui);
3035
3036 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3037                 char *buf)
3038 {
3039         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3040 }
3041 static DEVICE_ATTR_RO(nsid);
3042
3043 static struct attribute *nvme_ns_id_attrs[] = {
3044         &dev_attr_wwid.attr,
3045         &dev_attr_uuid.attr,
3046         &dev_attr_nguid.attr,
3047         &dev_attr_eui.attr,
3048         &dev_attr_nsid.attr,
3049 #ifdef CONFIG_NVME_MULTIPATH
3050         &dev_attr_ana_grpid.attr,
3051         &dev_attr_ana_state.attr,
3052 #endif
3053         NULL,
3054 };
3055
3056 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3057                 struct attribute *a, int n)
3058 {
3059         struct device *dev = container_of(kobj, struct device, kobj);
3060         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3061
3062         if (a == &dev_attr_uuid.attr) {
3063                 if (uuid_is_null(&ids->uuid) &&
3064                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3065                         return 0;
3066         }
3067         if (a == &dev_attr_nguid.attr) {
3068                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3069                         return 0;
3070         }
3071         if (a == &dev_attr_eui.attr) {
3072                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3073                         return 0;
3074         }
3075 #ifdef CONFIG_NVME_MULTIPATH
3076         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3077                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3078                         return 0;
3079                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3080                         return 0;
3081         }
3082 #endif
3083         return a->mode;
3084 }
3085
3086 static const struct attribute_group nvme_ns_id_attr_group = {
3087         .attrs          = nvme_ns_id_attrs,
3088         .is_visible     = nvme_ns_id_attrs_are_visible,
3089 };
3090
3091 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3092         &nvme_ns_id_attr_group,
3093 #ifdef CONFIG_NVM
3094         &nvme_nvm_attr_group,
3095 #endif
3096         NULL,
3097 };
3098
3099 #define nvme_show_str_function(field)                                           \
3100 static ssize_t  field##_show(struct device *dev,                                \
3101                             struct device_attribute *attr, char *buf)           \
3102 {                                                                               \
3103         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3104         return sprintf(buf, "%.*s\n",                                           \
3105                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3106 }                                                                               \
3107 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3108
3109 nvme_show_str_function(model);
3110 nvme_show_str_function(serial);
3111 nvme_show_str_function(firmware_rev);
3112
3113 #define nvme_show_int_function(field)                                           \
3114 static ssize_t  field##_show(struct device *dev,                                \
3115                             struct device_attribute *attr, char *buf)           \
3116 {                                                                               \
3117         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3118         return sprintf(buf, "%d\n", ctrl->field);       \
3119 }                                                                               \
3120 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3121
3122 nvme_show_int_function(cntlid);
3123 nvme_show_int_function(numa_node);
3124 nvme_show_int_function(queue_count);
3125 nvme_show_int_function(sqsize);
3126
3127 static ssize_t nvme_sysfs_delete(struct device *dev,
3128                                 struct device_attribute *attr, const char *buf,
3129                                 size_t count)
3130 {
3131         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3132
3133         if (device_remove_file_self(dev, attr))
3134                 nvme_delete_ctrl_sync(ctrl);
3135         return count;
3136 }
3137 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3138
3139 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3140                                          struct device_attribute *attr,
3141                                          char *buf)
3142 {
3143         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3144
3145         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3146 }
3147 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3148
3149 static ssize_t nvme_sysfs_show_state(struct device *dev,
3150                                      struct device_attribute *attr,
3151                                      char *buf)
3152 {
3153         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3154         static const char *const state_name[] = {
3155                 [NVME_CTRL_NEW]         = "new",
3156                 [NVME_CTRL_LIVE]        = "live",
3157                 [NVME_CTRL_RESETTING]   = "resetting",
3158                 [NVME_CTRL_CONNECTING]  = "connecting",
3159                 [NVME_CTRL_DELETING]    = "deleting",
3160                 [NVME_CTRL_DEAD]        = "dead",
3161         };
3162
3163         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3164             state_name[ctrl->state])
3165                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3166
3167         return sprintf(buf, "unknown state\n");
3168 }
3169
3170 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3171
3172 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3173                                          struct device_attribute *attr,
3174                                          char *buf)
3175 {
3176         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3177
3178         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3179 }
3180 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3181
3182 static ssize_t nvme_sysfs_show_address(struct device *dev,
3183                                          struct device_attribute *attr,
3184                                          char *buf)
3185 {
3186         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3187
3188         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3189 }
3190 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3191
3192 static struct attribute *nvme_dev_attrs[] = {
3193         &dev_attr_reset_controller.attr,
3194         &dev_attr_rescan_controller.attr,
3195         &dev_attr_model.attr,
3196         &dev_attr_serial.attr,
3197         &dev_attr_firmware_rev.attr,
3198         &dev_attr_cntlid.attr,
3199         &dev_attr_delete_controller.attr,
3200         &dev_attr_transport.attr,
3201         &dev_attr_subsysnqn.attr,
3202         &dev_attr_address.attr,
3203         &dev_attr_state.attr,
3204         &dev_attr_numa_node.attr,
3205         &dev_attr_queue_count.attr,
3206         &dev_attr_sqsize.attr,
3207         NULL
3208 };
3209
3210 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3211                 struct attribute *a, int n)
3212 {
3213         struct device *dev = container_of(kobj, struct device, kobj);
3214         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3215
3216         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3217                 return 0;
3218         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3219                 return 0;
3220
3221         return a->mode;
3222 }
3223
3224 static struct attribute_group nvme_dev_attrs_group = {
3225         .attrs          = nvme_dev_attrs,
3226         .is_visible     = nvme_dev_attrs_are_visible,
3227 };
3228
3229 static const struct attribute_group *nvme_dev_attr_groups[] = {
3230         &nvme_dev_attrs_group,
3231         NULL,
3232 };
3233
3234 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3235                 unsigned nsid)
3236 {
3237         struct nvme_ns_head *h;
3238
3239         lockdep_assert_held(&subsys->lock);
3240
3241         list_for_each_entry(h, &subsys->nsheads, entry) {
3242                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3243                         return h;
3244         }
3245
3246         return NULL;
3247 }
3248
3249 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3250                 struct nvme_ns_head *new)
3251 {
3252         struct nvme_ns_head *h;
3253
3254         lockdep_assert_held(&subsys->lock);
3255
3256         list_for_each_entry(h, &subsys->nsheads, entry) {
3257                 if (nvme_ns_ids_valid(&new->ids) &&
3258                     !list_empty(&h->list) &&
3259                     nvme_ns_ids_equal(&new->ids, &h->ids))
3260                         return -EINVAL;
3261         }
3262
3263         return 0;
3264 }
3265
3266 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3267                 unsigned nsid, struct nvme_id_ns *id)
3268 {
3269         struct nvme_ns_head *head;
3270         size_t size = sizeof(*head);
3271         int ret = -ENOMEM;
3272
3273 #ifdef CONFIG_NVME_MULTIPATH
3274         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3275 #endif
3276
3277         head = kzalloc(size, GFP_KERNEL);
3278         if (!head)
3279                 goto out;
3280         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3281         if (ret < 0)
3282                 goto out_free_head;
3283         head->instance = ret;
3284         INIT_LIST_HEAD(&head->list);
3285         ret = init_srcu_struct(&head->srcu);
3286         if (ret)
3287                 goto out_ida_remove;
3288         head->subsys = ctrl->subsys;
3289         head->ns_id = nsid;
3290         kref_init(&head->ref);
3291
3292         ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3293         if (ret)
3294                 goto out_cleanup_srcu;
3295
3296         ret = __nvme_check_ids(ctrl->subsys, head);
3297         if (ret) {
3298                 dev_err(ctrl->device,
3299                         "duplicate IDs for nsid %d\n", nsid);
3300                 goto out_cleanup_srcu;
3301         }
3302
3303         ret = nvme_mpath_alloc_disk(ctrl, head);
3304         if (ret)
3305                 goto out_cleanup_srcu;
3306
3307         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3308
3309         kref_get(&ctrl->subsys->ref);
3310
3311         return head;
3312 out_cleanup_srcu:
3313         cleanup_srcu_struct(&head->srcu);
3314 out_ida_remove:
3315         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3316 out_free_head:
3317         kfree(head);
3318 out:
3319         if (ret > 0)
3320                 ret = blk_status_to_errno(nvme_error_status(ret));
3321         return ERR_PTR(ret);
3322 }
3323
3324 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3325                 struct nvme_id_ns *id)
3326 {
3327         struct nvme_ctrl *ctrl = ns->ctrl;
3328         bool is_shared = id->nmic & (1 << 0);
3329         struct nvme_ns_head *head = NULL;
3330         int ret = 0;
3331
3332         mutex_lock(&ctrl->subsys->lock);
3333         if (is_shared)
3334                 head = __nvme_find_ns_head(ctrl->subsys, nsid);
3335         if (!head) {
3336                 head = nvme_alloc_ns_head(ctrl, nsid, id);
3337                 if (IS_ERR(head)) {
3338                         ret = PTR_ERR(head);
3339                         goto out_unlock;
3340                 }
3341         } else {
3342                 struct nvme_ns_ids ids;
3343
3344                 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3345                 if (ret)
3346                         goto out_unlock;
3347
3348                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3349                         dev_err(ctrl->device,
3350                                 "IDs don't match for shared namespace %d\n",
3351                                         nsid);
3352                         ret = -EINVAL;
3353                         goto out_unlock;
3354                 }
3355         }
3356
3357         list_add_tail(&ns->siblings, &head->list);
3358         ns->head = head;
3359
3360 out_unlock:
3361         mutex_unlock(&ctrl->subsys->lock);
3362         if (ret > 0)
3363                 ret = blk_status_to_errno(nvme_error_status(ret));
3364         return ret;
3365 }
3366
3367 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3368 {
3369         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3370         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3371
3372         return nsa->head->ns_id - nsb->head->ns_id;
3373 }
3374
3375 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3376 {
3377         struct nvme_ns *ns, *ret = NULL;
3378
3379         down_read(&ctrl->namespaces_rwsem);
3380         list_for_each_entry(ns, &ctrl->namespaces, list) {
3381                 if (ns->head->ns_id == nsid) {
3382                         if (!kref_get_unless_zero(&ns->kref))
3383                                 continue;
3384                         ret = ns;
3385                         break;
3386                 }
3387                 if (ns->head->ns_id > nsid)
3388                         break;
3389         }
3390         up_read(&ctrl->namespaces_rwsem);
3391         return ret;
3392 }
3393
3394 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3395 {
3396         struct streams_directive_params s;
3397         int ret;
3398
3399         if (!ctrl->nr_streams)
3400                 return 0;
3401
3402         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3403         if (ret)
3404                 return ret;
3405
3406         ns->sws = le32_to_cpu(s.sws);
3407         ns->sgs = le16_to_cpu(s.sgs);
3408
3409         if (ns->sws) {
3410                 unsigned int bs = 1 << ns->lba_shift;
3411
3412                 blk_queue_io_min(ns->queue, bs * ns->sws);
3413                 if (ns->sgs)
3414                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3415         }
3416
3417         return 0;
3418 }
3419
3420 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3421 {
3422         struct nvme_ns *ns;
3423         struct gendisk *disk;
3424         struct nvme_id_ns *id;
3425         char disk_name[DISK_NAME_LEN];
3426         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3427
3428         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3429         if (!ns)
3430                 return -ENOMEM;
3431
3432         ns->queue = blk_mq_init_queue(ctrl->tagset);
3433         if (IS_ERR(ns->queue)) {
3434                 ret = PTR_ERR(ns->queue);
3435                 goto out_free_ns;
3436         }
3437
3438         if (ctrl->opts && ctrl->opts->data_digest)
3439                 ns->queue->backing_dev_info->capabilities
3440                         |= BDI_CAP_STABLE_WRITES;
3441
3442         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3443         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3444                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3445
3446         ns->queue->queuedata = ns;
3447         ns->ctrl = ctrl;
3448
3449         kref_init(&ns->kref);
3450         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3451
3452         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3453         nvme_set_queue_limits(ctrl, ns->queue);
3454
3455         ret = nvme_identify_ns(ctrl, nsid, &id);
3456         if (ret)
3457                 goto out_free_queue;
3458
3459         if (id->ncap == 0) {
3460                 ret = -EINVAL;
3461                 goto out_free_id;
3462         }
3463
3464         ret = nvme_init_ns_head(ns, nsid, id);
3465         if (ret)
3466                 goto out_free_id;
3467         nvme_setup_streams_ns(ctrl, ns);
3468         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3469
3470         disk = alloc_disk_node(0, node);
3471         if (!disk) {
3472                 ret = -ENOMEM;
3473                 goto out_unlink_ns;
3474         }
3475
3476         disk->fops = &nvme_fops;
3477         disk->private_data = ns;
3478         disk->queue = ns->queue;
3479         disk->flags = flags;
3480         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3481         ns->disk = disk;
3482
3483         __nvme_revalidate_disk(disk, id);
3484
3485         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3486                 ret = nvme_nvm_register(ns, disk_name, node);
3487                 if (ret) {
3488                         dev_warn(ctrl->device, "LightNVM init failure\n");
3489                         goto out_put_disk;
3490                 }
3491         }
3492
3493         down_write(&ctrl->namespaces_rwsem);
3494         list_add_tail(&ns->list, &ctrl->namespaces);
3495         up_write(&ctrl->namespaces_rwsem);
3496
3497         nvme_get_ctrl(ctrl);
3498
3499         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3500
3501         nvme_mpath_add_disk(ns, id);
3502         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3503         kfree(id);
3504
3505         return 0;
3506  out_put_disk:
3507         put_disk(ns->disk);
3508  out_unlink_ns:
3509         mutex_lock(&ctrl->subsys->lock);
3510         list_del_rcu(&ns->siblings);
3511         mutex_unlock(&ctrl->subsys->lock);
3512         nvme_put_ns_head(ns->head);
3513  out_free_id:
3514         kfree(id);
3515  out_free_queue:
3516         blk_cleanup_queue(ns->queue);
3517  out_free_ns:
3518         kfree(ns);
3519         if (ret > 0)
3520                 ret = blk_status_to_errno(nvme_error_status(ret));
3521         return ret;
3522 }
3523
3524 static void nvme_ns_remove(struct nvme_ns *ns)
3525 {
3526         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3527                 return;
3528
3529         nvme_fault_inject_fini(&ns->fault_inject);
3530
3531         mutex_lock(&ns->ctrl->subsys->lock);
3532         list_del_rcu(&ns->siblings);
3533         mutex_unlock(&ns->ctrl->subsys->lock);
3534         synchronize_rcu(); /* guarantee not available in head->list */
3535         nvme_mpath_clear_current_path(ns);
3536         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3537
3538         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3539                 del_gendisk(ns->disk);
3540                 blk_cleanup_queue(ns->queue);
3541                 if (blk_get_integrity(ns->disk))
3542                         blk_integrity_unregister(ns->disk);
3543         }
3544
3545         down_write(&ns->ctrl->namespaces_rwsem);
3546         list_del_init(&ns->list);
3547         up_write(&ns->ctrl->namespaces_rwsem);
3548
3549         nvme_mpath_check_last_path(ns);
3550         nvme_put_ns(ns);
3551 }
3552
3553 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3554 {
3555         struct nvme_ns *ns;
3556
3557         ns = nvme_find_get_ns(ctrl, nsid);
3558         if (ns) {
3559                 if (ns->disk && revalidate_disk(ns->disk))
3560                         nvme_ns_remove(ns);
3561                 nvme_put_ns(ns);
3562         } else
3563                 nvme_alloc_ns(ctrl, nsid);
3564 }
3565
3566 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3567                                         unsigned nsid)
3568 {
3569         struct nvme_ns *ns, *next;
3570         LIST_HEAD(rm_list);
3571
3572         down_write(&ctrl->namespaces_rwsem);
3573         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3574                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3575                         list_move_tail(&ns->list, &rm_list);
3576         }
3577         up_write(&ctrl->namespaces_rwsem);
3578
3579         list_for_each_entry_safe(ns, next, &rm_list, list)
3580                 nvme_ns_remove(ns);
3581
3582 }
3583
3584 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3585 {
3586         struct nvme_ns *ns;
3587         __le32 *ns_list;
3588         unsigned i, j, nsid, prev = 0;
3589         unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3590         int ret = 0;
3591
3592         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3593         if (!ns_list)
3594                 return -ENOMEM;
3595
3596         for (i = 0; i < num_lists; i++) {
3597                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3598                 if (ret)
3599                         goto free;
3600
3601                 for (j = 0; j < min(nn, 1024U); j++) {
3602                         nsid = le32_to_cpu(ns_list[j]);
3603                         if (!nsid)
3604                                 goto out;
3605
3606                         nvme_validate_ns(ctrl, nsid);
3607
3608                         while (++prev < nsid) {
3609                                 ns = nvme_find_get_ns(ctrl, prev);
3610                                 if (ns) {
3611                                         nvme_ns_remove(ns);
3612                                         nvme_put_ns(ns);
3613                                 }
3614                         }
3615                 }
3616                 nn -= j;
3617         }
3618  out:
3619         nvme_remove_invalid_namespaces(ctrl, prev);
3620  free:
3621         kfree(ns_list);
3622         return ret;
3623 }
3624
3625 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3626 {
3627         unsigned i;
3628
3629         for (i = 1; i <= nn; i++)
3630                 nvme_validate_ns(ctrl, i);
3631
3632         nvme_remove_invalid_namespaces(ctrl, nn);
3633 }
3634
3635 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3636 {
3637         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3638         __le32 *log;
3639         int error;
3640
3641         log = kzalloc(log_size, GFP_KERNEL);
3642         if (!log)
3643                 return;
3644
3645         /*
3646          * We need to read the log to clear the AEN, but we don't want to rely
3647          * on it for the changed namespace information as userspace could have
3648          * raced with us in reading the log page, which could cause us to miss
3649          * updates.
3650          */
3651         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3652                         log_size, 0);
3653         if (error)
3654                 dev_warn(ctrl->device,
3655                         "reading changed ns log failed: %d\n", error);
3656
3657         kfree(log);
3658 }
3659
3660 static void nvme_scan_work(struct work_struct *work)
3661 {
3662         struct nvme_ctrl *ctrl =
3663                 container_of(work, struct nvme_ctrl, scan_work);
3664         struct nvme_id_ctrl *id;
3665         unsigned nn;
3666
3667         /* No tagset on a live ctrl means IO queues could not created */
3668         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3669                 return;
3670
3671         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3672                 dev_info(ctrl->device, "rescanning namespaces.\n");
3673                 nvme_clear_changed_ns_log(ctrl);
3674         }
3675
3676         if (nvme_identify_ctrl(ctrl, &id))
3677                 return;
3678
3679         mutex_lock(&ctrl->scan_lock);
3680         nn = le32_to_cpu(id->nn);
3681         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3682             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3683                 if (!nvme_scan_ns_list(ctrl, nn))
3684                         goto out_free_id;
3685         }
3686         nvme_scan_ns_sequential(ctrl, nn);
3687 out_free_id:
3688         mutex_unlock(&ctrl->scan_lock);
3689         kfree(id);
3690         down_write(&ctrl->namespaces_rwsem);
3691         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3692         up_write(&ctrl->namespaces_rwsem);
3693 }
3694
3695 /*
3696  * This function iterates the namespace list unlocked to allow recovery from
3697  * controller failure. It is up to the caller to ensure the namespace list is
3698  * not modified by scan work while this function is executing.
3699  */
3700 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3701 {
3702         struct nvme_ns *ns, *next;
3703         LIST_HEAD(ns_list);
3704
3705         /*
3706          * make sure to requeue I/O to all namespaces as these
3707          * might result from the scan itself and must complete
3708          * for the scan_work to make progress
3709          */
3710         nvme_mpath_clear_ctrl_paths(ctrl);
3711
3712         /* prevent racing with ns scanning */
3713         flush_work(&ctrl->scan_work);
3714
3715         /*
3716          * The dead states indicates the controller was not gracefully
3717          * disconnected. In that case, we won't be able to flush any data while
3718          * removing the namespaces' disks; fail all the queues now to avoid
3719          * potentially having to clean up the failed sync later.
3720          */
3721         if (ctrl->state == NVME_CTRL_DEAD)
3722                 nvme_kill_queues(ctrl);
3723
3724         down_write(&ctrl->namespaces_rwsem);
3725         list_splice_init(&ctrl->namespaces, &ns_list);
3726         up_write(&ctrl->namespaces_rwsem);
3727
3728         list_for_each_entry_safe(ns, next, &ns_list, list)
3729                 nvme_ns_remove(ns);
3730 }
3731 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3732
3733 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3734 {
3735         struct nvme_ctrl *ctrl =
3736                 container_of(dev, struct nvme_ctrl, ctrl_device);
3737         struct nvmf_ctrl_options *opts = ctrl->opts;
3738         int ret;
3739
3740         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3741         if (ret)
3742                 return ret;
3743
3744         if (opts) {
3745                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3746                 if (ret)
3747                         return ret;
3748
3749                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3750                                 opts->trsvcid ?: "none");
3751                 if (ret)
3752                         return ret;
3753
3754                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3755                                 opts->host_traddr ?: "none");
3756         }
3757         return ret;
3758 }
3759
3760 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3761 {
3762         char *envp[2] = { NULL, NULL };
3763         u32 aen_result = ctrl->aen_result;
3764
3765         ctrl->aen_result = 0;
3766         if (!aen_result)
3767                 return;
3768
3769         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3770         if (!envp[0])
3771                 return;
3772         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3773         kfree(envp[0]);
3774 }
3775
3776 static void nvme_async_event_work(struct work_struct *work)
3777 {
3778         struct nvme_ctrl *ctrl =
3779                 container_of(work, struct nvme_ctrl, async_event_work);
3780
3781         nvme_aen_uevent(ctrl);
3782         ctrl->ops->submit_async_event(ctrl);
3783 }
3784
3785 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3786 {
3787
3788         u32 csts;
3789
3790         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3791                 return false;
3792
3793         if (csts == ~0)
3794                 return false;
3795
3796         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3797 }
3798
3799 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3800 {
3801         struct nvme_fw_slot_info_log *log;
3802
3803         log = kmalloc(sizeof(*log), GFP_KERNEL);
3804         if (!log)
3805                 return;
3806
3807         if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3808                         sizeof(*log), 0))
3809                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3810         kfree(log);
3811 }
3812
3813 static void nvme_fw_act_work(struct work_struct *work)
3814 {
3815         struct nvme_ctrl *ctrl = container_of(work,
3816                                 struct nvme_ctrl, fw_act_work);
3817         unsigned long fw_act_timeout;
3818
3819         if (ctrl->mtfa)
3820                 fw_act_timeout = jiffies +
3821                                 msecs_to_jiffies(ctrl->mtfa * 100);
3822         else
3823                 fw_act_timeout = jiffies +
3824                                 msecs_to_jiffies(admin_timeout * 1000);
3825
3826         nvme_stop_queues(ctrl);
3827         while (nvme_ctrl_pp_status(ctrl)) {
3828                 if (time_after(jiffies, fw_act_timeout)) {
3829                         dev_warn(ctrl->device,
3830                                 "Fw activation timeout, reset controller\n");
3831                         nvme_reset_ctrl(ctrl);
3832                         break;
3833                 }
3834                 msleep(100);
3835         }
3836
3837         if (ctrl->state != NVME_CTRL_LIVE)
3838                 return;
3839
3840         nvme_start_queues(ctrl);
3841         /* read FW slot information to clear the AER */
3842         nvme_get_fw_slot_info(ctrl);
3843 }
3844
3845 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3846 {
3847         u32 aer_notice_type = (result & 0xff00) >> 8;
3848
3849         trace_nvme_async_event(ctrl, aer_notice_type);
3850
3851         switch (aer_notice_type) {
3852         case NVME_AER_NOTICE_NS_CHANGED:
3853                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3854                 nvme_queue_scan(ctrl);
3855                 break;
3856         case NVME_AER_NOTICE_FW_ACT_STARTING:
3857                 queue_work(nvme_wq, &ctrl->fw_act_work);
3858                 break;
3859 #ifdef CONFIG_NVME_MULTIPATH
3860         case NVME_AER_NOTICE_ANA:
3861                 if (!ctrl->ana_log_buf)
3862                         break;
3863                 queue_work(nvme_wq, &ctrl->ana_work);
3864                 break;
3865 #endif
3866         case NVME_AER_NOTICE_DISC_CHANGED:
3867                 ctrl->aen_result = result;
3868                 break;
3869         default:
3870                 dev_warn(ctrl->device, "async event result %08x\n", result);
3871         }
3872 }
3873
3874 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3875                 volatile union nvme_result *res)
3876 {
3877         u32 result = le32_to_cpu(res->u32);
3878         u32 aer_type = result & 0x07;
3879
3880         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3881                 return;
3882
3883         switch (aer_type) {
3884         case NVME_AER_NOTICE:
3885                 nvme_handle_aen_notice(ctrl, result);
3886                 break;
3887         case NVME_AER_ERROR:
3888         case NVME_AER_SMART:
3889         case NVME_AER_CSS:
3890         case NVME_AER_VS:
3891                 trace_nvme_async_event(ctrl, aer_type);
3892                 ctrl->aen_result = result;
3893                 break;
3894         default:
3895                 break;
3896         }
3897         queue_work(nvme_wq, &ctrl->async_event_work);
3898 }
3899 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3900
3901 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3902 {
3903         nvme_mpath_stop(ctrl);
3904         nvme_stop_keep_alive(ctrl);
3905         flush_work(&ctrl->async_event_work);
3906         cancel_work_sync(&ctrl->fw_act_work);
3907 }
3908 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3909
3910 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3911 {
3912         if (ctrl->kato)
3913                 nvme_start_keep_alive(ctrl);
3914
3915         nvme_enable_aen(ctrl);
3916
3917         if (ctrl->queue_count > 1) {
3918                 nvme_queue_scan(ctrl);
3919                 nvme_start_queues(ctrl);
3920         }
3921 }
3922 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3923
3924 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3925 {
3926         nvme_fault_inject_fini(&ctrl->fault_inject);
3927         dev_pm_qos_hide_latency_tolerance(ctrl->device);
3928         cdev_device_del(&ctrl->cdev, ctrl->device);
3929 }
3930 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3931
3932 static void nvme_free_ctrl(struct device *dev)
3933 {
3934         struct nvme_ctrl *ctrl =
3935                 container_of(dev, struct nvme_ctrl, ctrl_device);
3936         struct nvme_subsystem *subsys = ctrl->subsys;
3937
3938         if (subsys && ctrl->instance != subsys->instance)
3939                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3940
3941         kfree(ctrl->effects);
3942         nvme_mpath_uninit(ctrl);
3943         __free_page(ctrl->discard_page);
3944
3945         if (subsys) {
3946                 mutex_lock(&nvme_subsystems_lock);
3947                 list_del(&ctrl->subsys_entry);
3948                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3949                 mutex_unlock(&nvme_subsystems_lock);
3950         }
3951
3952         ctrl->ops->free_ctrl(ctrl);
3953
3954         if (subsys)
3955                 nvme_put_subsystem(subsys);
3956 }
3957
3958 /*
3959  * Initialize a NVMe controller structures.  This needs to be called during
3960  * earliest initialization so that we have the initialized structured around
3961  * during probing.
3962  */
3963 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3964                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3965 {
3966         int ret;
3967
3968         ctrl->state = NVME_CTRL_NEW;
3969         spin_lock_init(&ctrl->lock);
3970         mutex_init(&ctrl->scan_lock);
3971         INIT_LIST_HEAD(&ctrl->namespaces);
3972         init_rwsem(&ctrl->namespaces_rwsem);
3973         ctrl->dev = dev;
3974         ctrl->ops = ops;
3975         ctrl->quirks = quirks;
3976         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3977         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3978         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3979         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3980
3981         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3982         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3983         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3984
3985         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
3986                         PAGE_SIZE);
3987         ctrl->discard_page = alloc_page(GFP_KERNEL);
3988         if (!ctrl->discard_page) {
3989                 ret = -ENOMEM;
3990                 goto out;
3991         }
3992
3993         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3994         if (ret < 0)
3995                 goto out;
3996         ctrl->instance = ret;
3997
3998         device_initialize(&ctrl->ctrl_device);
3999         ctrl->device = &ctrl->ctrl_device;
4000         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4001         ctrl->device->class = nvme_class;
4002         ctrl->device->parent = ctrl->dev;
4003         ctrl->device->groups = nvme_dev_attr_groups;
4004         ctrl->device->release = nvme_free_ctrl;
4005         dev_set_drvdata(ctrl->device, ctrl);
4006         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4007         if (ret)
4008                 goto out_release_instance;
4009
4010         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4011         ctrl->cdev.owner = ops->module;
4012         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4013         if (ret)
4014                 goto out_free_name;
4015
4016         /*
4017          * Initialize latency tolerance controls.  The sysfs files won't
4018          * be visible to userspace unless the device actually supports APST.
4019          */
4020         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4021         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4022                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4023
4024         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4025
4026         return 0;
4027 out_free_name:
4028         kfree_const(ctrl->device->kobj.name);
4029 out_release_instance:
4030         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4031 out:
4032         if (ctrl->discard_page)
4033                 __free_page(ctrl->discard_page);
4034         return ret;
4035 }
4036 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4037
4038 /**
4039  * nvme_kill_queues(): Ends all namespace queues
4040  * @ctrl: the dead controller that needs to end
4041  *
4042  * Call this function when the driver determines it is unable to get the
4043  * controller in a state capable of servicing IO.
4044  */
4045 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4046 {
4047         struct nvme_ns *ns;
4048
4049         down_read(&ctrl->namespaces_rwsem);
4050
4051         /* Forcibly unquiesce queues to avoid blocking dispatch */
4052         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4053                 blk_mq_unquiesce_queue(ctrl->admin_q);
4054
4055         list_for_each_entry(ns, &ctrl->namespaces, list)
4056                 nvme_set_queue_dying(ns);
4057
4058         up_read(&ctrl->namespaces_rwsem);
4059 }
4060 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4061
4062 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4063 {
4064         struct nvme_ns *ns;
4065
4066         down_read(&ctrl->namespaces_rwsem);
4067         list_for_each_entry(ns, &ctrl->namespaces, list)
4068                 blk_mq_unfreeze_queue(ns->queue);
4069         up_read(&ctrl->namespaces_rwsem);
4070 }
4071 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4072
4073 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4074 {
4075         struct nvme_ns *ns;
4076
4077         down_read(&ctrl->namespaces_rwsem);
4078         list_for_each_entry(ns, &ctrl->namespaces, list) {
4079                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4080                 if (timeout <= 0)
4081                         break;
4082         }
4083         up_read(&ctrl->namespaces_rwsem);
4084 }
4085 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4086
4087 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4088 {
4089         struct nvme_ns *ns;
4090
4091         down_read(&ctrl->namespaces_rwsem);
4092         list_for_each_entry(ns, &ctrl->namespaces, list)
4093                 blk_mq_freeze_queue_wait(ns->queue);
4094         up_read(&ctrl->namespaces_rwsem);
4095 }
4096 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4097
4098 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4099 {
4100         struct nvme_ns *ns;
4101
4102         down_read(&ctrl->namespaces_rwsem);
4103         list_for_each_entry(ns, &ctrl->namespaces, list)
4104                 blk_freeze_queue_start(ns->queue);
4105         up_read(&ctrl->namespaces_rwsem);
4106 }
4107 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4108
4109 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4110 {
4111         struct nvme_ns *ns;
4112
4113         down_read(&ctrl->namespaces_rwsem);
4114         list_for_each_entry(ns, &ctrl->namespaces, list)
4115                 blk_mq_quiesce_queue(ns->queue);
4116         up_read(&ctrl->namespaces_rwsem);
4117 }
4118 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4119
4120 void nvme_start_queues(struct nvme_ctrl *ctrl)
4121 {
4122         struct nvme_ns *ns;
4123
4124         down_read(&ctrl->namespaces_rwsem);
4125         list_for_each_entry(ns, &ctrl->namespaces, list)
4126                 blk_mq_unquiesce_queue(ns->queue);
4127         up_read(&ctrl->namespaces_rwsem);
4128 }
4129 EXPORT_SYMBOL_GPL(nvme_start_queues);
4130
4131
4132 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4133 {
4134         struct nvme_ns *ns;
4135
4136         down_read(&ctrl->namespaces_rwsem);
4137         list_for_each_entry(ns, &ctrl->namespaces, list)
4138                 blk_sync_queue(ns->queue);
4139         up_read(&ctrl->namespaces_rwsem);
4140
4141         if (ctrl->admin_q)
4142                 blk_sync_queue(ctrl->admin_q);
4143 }
4144 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4145
4146 /*
4147  * Check we didn't inadvertently grow the command structure sizes:
4148  */
4149 static inline void _nvme_check_size(void)
4150 {
4151         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4152         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4153         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4154         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4155         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4156         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4157         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4158         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4159         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4160         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4161         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4162         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4163         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4164         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4165         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4166         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4167         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4168 }
4169
4170
4171 static int __init nvme_core_init(void)
4172 {
4173         int result = -ENOMEM;
4174
4175         _nvme_check_size();
4176
4177         nvme_wq = alloc_workqueue("nvme-wq",
4178                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4179         if (!nvme_wq)
4180                 goto out;
4181
4182         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4183                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4184         if (!nvme_reset_wq)
4185                 goto destroy_wq;
4186
4187         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4188                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4189         if (!nvme_delete_wq)
4190                 goto destroy_reset_wq;
4191
4192         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4193         if (result < 0)
4194                 goto destroy_delete_wq;
4195
4196         nvme_class = class_create(THIS_MODULE, "nvme");
4197         if (IS_ERR(nvme_class)) {
4198                 result = PTR_ERR(nvme_class);
4199                 goto unregister_chrdev;
4200         }
4201         nvme_class->dev_uevent = nvme_class_uevent;
4202
4203         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4204         if (IS_ERR(nvme_subsys_class)) {
4205                 result = PTR_ERR(nvme_subsys_class);
4206                 goto destroy_class;
4207         }
4208         return 0;
4209
4210 destroy_class:
4211         class_destroy(nvme_class);
4212 unregister_chrdev:
4213         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4214 destroy_delete_wq:
4215         destroy_workqueue(nvme_delete_wq);
4216 destroy_reset_wq:
4217         destroy_workqueue(nvme_reset_wq);
4218 destroy_wq:
4219         destroy_workqueue(nvme_wq);
4220 out:
4221         return result;
4222 }
4223
4224 static void __exit nvme_core_exit(void)
4225 {
4226         class_destroy(nvme_subsys_class);
4227         class_destroy(nvme_class);
4228         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4229         destroy_workqueue(nvme_delete_wq);
4230         destroy_workqueue(nvme_reset_wq);
4231         destroy_workqueue(nvme_wq);
4232 }
4233
4234 MODULE_LICENSE("GPL");
4235 MODULE_VERSION("1.0");
4236 module_init(nvme_core_init);
4237 module_exit(nvme_core_exit);