b20ffa25f0f085c4a53238d406e8ffa83e487848
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94                                            unsigned nsid);
95
96 /*
97  * Prepare a queue for teardown.
98  *
99  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100  * the capacity to 0 after that to avoid blocking dispatchers that may be
101  * holding bd_butex.  This will end buffered writers dirtying pages that can't
102  * be synced.
103  */
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
105 {
106         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107                 return;
108
109         blk_set_queue_dying(ns->queue);
110         blk_mq_unquiesce_queue(ns->queue);
111
112         set_capacity_and_notify(ns->disk, 0);
113 }
114
115 void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117         /*
118          * Only new queue scan work when admin and IO queues are both alive
119          */
120         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121                 queue_work(nvme_wq, &ctrl->scan_work);
122 }
123
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132         if (ctrl->state != NVME_CTRL_RESETTING)
133                 return -EBUSY;
134         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135                 return -EBUSY;
136         return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139
140 static void nvme_failfast_work(struct work_struct *work)
141 {
142         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143                         struct nvme_ctrl, failfast_work);
144
145         if (ctrl->state != NVME_CTRL_CONNECTING)
146                 return;
147
148         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149         dev_info(ctrl->device, "failfast expired\n");
150         nvme_kick_requeue_lists(ctrl);
151 }
152
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
154 {
155         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156                 return;
157
158         schedule_delayed_work(&ctrl->failfast_work,
159                               ctrl->opts->fast_io_fail_tmo * HZ);
160 }
161
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
163 {
164         if (!ctrl->opts)
165                 return;
166
167         cancel_delayed_work_sync(&ctrl->failfast_work);
168         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
169 }
170
171
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
173 {
174         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175                 return -EBUSY;
176         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177                 return -EBUSY;
178         return 0;
179 }
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
181
182 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
183 {
184         int ret;
185
186         ret = nvme_reset_ctrl(ctrl);
187         if (!ret) {
188                 flush_work(&ctrl->reset_work);
189                 if (ctrl->state != NVME_CTRL_LIVE)
190                         ret = -ENETRESET;
191         }
192
193         return ret;
194 }
195
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198         dev_info(ctrl->device,
199                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
200
201         flush_work(&ctrl->reset_work);
202         nvme_stop_ctrl(ctrl);
203         nvme_remove_namespaces(ctrl);
204         ctrl->ops->delete_ctrl(ctrl);
205         nvme_uninit_ctrl(ctrl);
206 }
207
208 static void nvme_delete_ctrl_work(struct work_struct *work)
209 {
210         struct nvme_ctrl *ctrl =
211                 container_of(work, struct nvme_ctrl, delete_work);
212
213         nvme_do_delete_ctrl(ctrl);
214 }
215
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
217 {
218         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219                 return -EBUSY;
220         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221                 return -EBUSY;
222         return 0;
223 }
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
225
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
227 {
228         /*
229          * Keep a reference until nvme_do_delete_ctrl() complete,
230          * since ->delete_ctrl can free the controller.
231          */
232         nvme_get_ctrl(ctrl);
233         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234                 nvme_do_delete_ctrl(ctrl);
235         nvme_put_ctrl(ctrl);
236 }
237
238 static blk_status_t nvme_error_status(u16 status)
239 {
240         switch (status & 0x7ff) {
241         case NVME_SC_SUCCESS:
242                 return BLK_STS_OK;
243         case NVME_SC_CAP_EXCEEDED:
244                 return BLK_STS_NOSPC;
245         case NVME_SC_LBA_RANGE:
246         case NVME_SC_CMD_INTERRUPTED:
247         case NVME_SC_NS_NOT_READY:
248                 return BLK_STS_TARGET;
249         case NVME_SC_BAD_ATTRIBUTES:
250         case NVME_SC_ONCS_NOT_SUPPORTED:
251         case NVME_SC_INVALID_OPCODE:
252         case NVME_SC_INVALID_FIELD:
253         case NVME_SC_INVALID_NS:
254                 return BLK_STS_NOTSUPP;
255         case NVME_SC_WRITE_FAULT:
256         case NVME_SC_READ_ERROR:
257         case NVME_SC_UNWRITTEN_BLOCK:
258         case NVME_SC_ACCESS_DENIED:
259         case NVME_SC_READ_ONLY:
260         case NVME_SC_COMPARE_FAILED:
261                 return BLK_STS_MEDIUM;
262         case NVME_SC_GUARD_CHECK:
263         case NVME_SC_APPTAG_CHECK:
264         case NVME_SC_REFTAG_CHECK:
265         case NVME_SC_INVALID_PI:
266                 return BLK_STS_PROTECTION;
267         case NVME_SC_RESERVATION_CONFLICT:
268                 return BLK_STS_NEXUS;
269         case NVME_SC_HOST_PATH_ERROR:
270                 return BLK_STS_TRANSPORT;
271         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
273         case NVME_SC_ZONE_TOO_MANY_OPEN:
274                 return BLK_STS_ZONE_OPEN_RESOURCE;
275         default:
276                 return BLK_STS_IOERR;
277         }
278 }
279
280 static void nvme_retry_req(struct request *req)
281 {
282         unsigned long delay = 0;
283         u16 crd;
284
285         /* The mask and shift result must be <= 3 */
286         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
287         if (crd)
288                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
289
290         nvme_req(req)->retries++;
291         blk_mq_requeue_request(req, false);
292         blk_mq_delay_kick_requeue_list(req->q, delay);
293 }
294
295 enum nvme_disposition {
296         COMPLETE,
297         RETRY,
298         FAILOVER,
299 };
300
301 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
302 {
303         if (likely(nvme_req(req)->status == 0))
304                 return COMPLETE;
305
306         if (blk_noretry_request(req) ||
307             (nvme_req(req)->status & NVME_SC_DNR) ||
308             nvme_req(req)->retries >= nvme_max_retries)
309                 return COMPLETE;
310
311         if (req->cmd_flags & REQ_NVME_MPATH) {
312                 if (nvme_is_path_error(nvme_req(req)->status) ||
313                     blk_queue_dying(req->q))
314                         return FAILOVER;
315         } else {
316                 if (blk_queue_dying(req->q))
317                         return COMPLETE;
318         }
319
320         return RETRY;
321 }
322
323 static inline void nvme_end_req(struct request *req)
324 {
325         blk_status_t status = nvme_error_status(nvme_req(req)->status);
326
327         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
328             req_op(req) == REQ_OP_ZONE_APPEND)
329                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
330                         le64_to_cpu(nvme_req(req)->result.u64));
331
332         nvme_trace_bio_complete(req);
333         blk_mq_end_request(req, status);
334 }
335
336 void nvme_complete_rq(struct request *req)
337 {
338         trace_nvme_complete_rq(req);
339         nvme_cleanup_cmd(req);
340
341         if (nvme_req(req)->ctrl->kas)
342                 nvme_req(req)->ctrl->comp_seen = true;
343
344         switch (nvme_decide_disposition(req)) {
345         case COMPLETE:
346                 nvme_end_req(req);
347                 return;
348         case RETRY:
349                 nvme_retry_req(req);
350                 return;
351         case FAILOVER:
352                 nvme_failover_req(req);
353                 return;
354         }
355 }
356 EXPORT_SYMBOL_GPL(nvme_complete_rq);
357
358 /*
359  * Called to unwind from ->queue_rq on a failed command submission so that the
360  * multipathing code gets called to potentially failover to another path.
361  * The caller needs to unwind all transport specific resource allocations and
362  * must return propagate the return value.
363  */
364 blk_status_t nvme_host_path_error(struct request *req)
365 {
366         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
367         blk_mq_set_request_complete(req);
368         nvme_complete_rq(req);
369         return BLK_STS_OK;
370 }
371 EXPORT_SYMBOL_GPL(nvme_host_path_error);
372
373 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
374 {
375         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
376                                 "Cancelling I/O %d", req->tag);
377
378         /* don't abort one completed request */
379         if (blk_mq_request_completed(req))
380                 return true;
381
382         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
383         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
384         blk_mq_complete_request(req);
385         return true;
386 }
387 EXPORT_SYMBOL_GPL(nvme_cancel_request);
388
389 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
390 {
391         if (ctrl->tagset) {
392                 blk_mq_tagset_busy_iter(ctrl->tagset,
393                                 nvme_cancel_request, ctrl);
394                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
395         }
396 }
397 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
398
399 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
400 {
401         if (ctrl->admin_tagset) {
402                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
403                                 nvme_cancel_request, ctrl);
404                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
405         }
406 }
407 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
408
409 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
410                 enum nvme_ctrl_state new_state)
411 {
412         enum nvme_ctrl_state old_state;
413         unsigned long flags;
414         bool changed = false;
415
416         spin_lock_irqsave(&ctrl->lock, flags);
417
418         old_state = ctrl->state;
419         switch (new_state) {
420         case NVME_CTRL_LIVE:
421                 switch (old_state) {
422                 case NVME_CTRL_NEW:
423                 case NVME_CTRL_RESETTING:
424                 case NVME_CTRL_CONNECTING:
425                         changed = true;
426                         fallthrough;
427                 default:
428                         break;
429                 }
430                 break;
431         case NVME_CTRL_RESETTING:
432                 switch (old_state) {
433                 case NVME_CTRL_NEW:
434                 case NVME_CTRL_LIVE:
435                         changed = true;
436                         fallthrough;
437                 default:
438                         break;
439                 }
440                 break;
441         case NVME_CTRL_CONNECTING:
442                 switch (old_state) {
443                 case NVME_CTRL_NEW:
444                 case NVME_CTRL_RESETTING:
445                         changed = true;
446                         fallthrough;
447                 default:
448                         break;
449                 }
450                 break;
451         case NVME_CTRL_DELETING:
452                 switch (old_state) {
453                 case NVME_CTRL_LIVE:
454                 case NVME_CTRL_RESETTING:
455                 case NVME_CTRL_CONNECTING:
456                         changed = true;
457                         fallthrough;
458                 default:
459                         break;
460                 }
461                 break;
462         case NVME_CTRL_DELETING_NOIO:
463                 switch (old_state) {
464                 case NVME_CTRL_DELETING:
465                 case NVME_CTRL_DEAD:
466                         changed = true;
467                         fallthrough;
468                 default:
469                         break;
470                 }
471                 break;
472         case NVME_CTRL_DEAD:
473                 switch (old_state) {
474                 case NVME_CTRL_DELETING:
475                         changed = true;
476                         fallthrough;
477                 default:
478                         break;
479                 }
480                 break;
481         default:
482                 break;
483         }
484
485         if (changed) {
486                 ctrl->state = new_state;
487                 wake_up_all(&ctrl->state_wq);
488         }
489
490         spin_unlock_irqrestore(&ctrl->lock, flags);
491         if (!changed)
492                 return false;
493
494         if (ctrl->state == NVME_CTRL_LIVE) {
495                 if (old_state == NVME_CTRL_CONNECTING)
496                         nvme_stop_failfast_work(ctrl);
497                 nvme_kick_requeue_lists(ctrl);
498         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
499                 old_state == NVME_CTRL_RESETTING) {
500                 nvme_start_failfast_work(ctrl);
501         }
502         return changed;
503 }
504 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
505
506 /*
507  * Returns true for sink states that can't ever transition back to live.
508  */
509 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
510 {
511         switch (ctrl->state) {
512         case NVME_CTRL_NEW:
513         case NVME_CTRL_LIVE:
514         case NVME_CTRL_RESETTING:
515         case NVME_CTRL_CONNECTING:
516                 return false;
517         case NVME_CTRL_DELETING:
518         case NVME_CTRL_DELETING_NOIO:
519         case NVME_CTRL_DEAD:
520                 return true;
521         default:
522                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
523                 return true;
524         }
525 }
526
527 /*
528  * Waits for the controller state to be resetting, or returns false if it is
529  * not possible to ever transition to that state.
530  */
531 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
532 {
533         wait_event(ctrl->state_wq,
534                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
535                    nvme_state_terminal(ctrl));
536         return ctrl->state == NVME_CTRL_RESETTING;
537 }
538 EXPORT_SYMBOL_GPL(nvme_wait_reset);
539
540 static void nvme_free_ns_head(struct kref *ref)
541 {
542         struct nvme_ns_head *head =
543                 container_of(ref, struct nvme_ns_head, ref);
544
545         nvme_mpath_remove_disk(head);
546         ida_simple_remove(&head->subsys->ns_ida, head->instance);
547         cleanup_srcu_struct(&head->srcu);
548         nvme_put_subsystem(head->subsys);
549         kfree(head);
550 }
551
552 static void nvme_put_ns_head(struct nvme_ns_head *head)
553 {
554         kref_put(&head->ref, nvme_free_ns_head);
555 }
556
557 static void nvme_free_ns(struct kref *kref)
558 {
559         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
560
561         if (ns->ndev)
562                 nvme_nvm_unregister(ns);
563
564         put_disk(ns->disk);
565         nvme_put_ns_head(ns->head);
566         nvme_put_ctrl(ns->ctrl);
567         kfree(ns);
568 }
569
570 void nvme_put_ns(struct nvme_ns *ns)
571 {
572         kref_put(&ns->kref, nvme_free_ns);
573 }
574 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
575
576 static inline void nvme_clear_nvme_request(struct request *req)
577 {
578         struct nvme_command *cmd = nvme_req(req)->cmd;
579
580         memset(cmd, 0, sizeof(*cmd));
581         nvme_req(req)->retries = 0;
582         nvme_req(req)->flags = 0;
583         req->rq_flags |= RQF_DONTPREP;
584 }
585
586 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
587 {
588         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
589 }
590
591 static inline void nvme_init_request(struct request *req,
592                 struct nvme_command *cmd)
593 {
594         if (req->q->queuedata)
595                 req->timeout = NVME_IO_TIMEOUT;
596         else /* no queuedata implies admin queue */
597                 req->timeout = NVME_ADMIN_TIMEOUT;
598
599         /* passthru commands should let the driver set the SGL flags */
600         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
601
602         req->cmd_flags |= REQ_FAILFAST_DRIVER;
603         nvme_clear_nvme_request(req);
604         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
605 }
606
607 struct request *nvme_alloc_request(struct request_queue *q,
608                 struct nvme_command *cmd, blk_mq_req_flags_t flags)
609 {
610         struct request *req;
611
612         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
613         if (!IS_ERR(req))
614                 nvme_init_request(req, cmd);
615         return req;
616 }
617 EXPORT_SYMBOL_GPL(nvme_alloc_request);
618
619 static struct request *nvme_alloc_request_qid(struct request_queue *q,
620                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
621 {
622         struct request *req;
623
624         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
625                         qid ? qid - 1 : 0);
626         if (!IS_ERR(req))
627                 nvme_init_request(req, cmd);
628         return req;
629 }
630
631 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
632 {
633         struct nvme_command c;
634
635         memset(&c, 0, sizeof(c));
636
637         c.directive.opcode = nvme_admin_directive_send;
638         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
639         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
640         c.directive.dtype = NVME_DIR_IDENTIFY;
641         c.directive.tdtype = NVME_DIR_STREAMS;
642         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
643
644         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
645 }
646
647 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
648 {
649         return nvme_toggle_streams(ctrl, false);
650 }
651
652 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
653 {
654         return nvme_toggle_streams(ctrl, true);
655 }
656
657 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
658                                   struct streams_directive_params *s, u32 nsid)
659 {
660         struct nvme_command c;
661
662         memset(&c, 0, sizeof(c));
663         memset(s, 0, sizeof(*s));
664
665         c.directive.opcode = nvme_admin_directive_recv;
666         c.directive.nsid = cpu_to_le32(nsid);
667         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
668         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
669         c.directive.dtype = NVME_DIR_STREAMS;
670
671         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
672 }
673
674 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
675 {
676         struct streams_directive_params s;
677         int ret;
678
679         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
680                 return 0;
681         if (!streams)
682                 return 0;
683
684         ret = nvme_enable_streams(ctrl);
685         if (ret)
686                 return ret;
687
688         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
689         if (ret)
690                 goto out_disable_stream;
691
692         ctrl->nssa = le16_to_cpu(s.nssa);
693         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
694                 dev_info(ctrl->device, "too few streams (%u) available\n",
695                                         ctrl->nssa);
696                 goto out_disable_stream;
697         }
698
699         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
700         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
701         return 0;
702
703 out_disable_stream:
704         nvme_disable_streams(ctrl);
705         return ret;
706 }
707
708 /*
709  * Check if 'req' has a write hint associated with it. If it does, assign
710  * a valid namespace stream to the write.
711  */
712 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
713                                      struct request *req, u16 *control,
714                                      u32 *dsmgmt)
715 {
716         enum rw_hint streamid = req->write_hint;
717
718         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
719                 streamid = 0;
720         else {
721                 streamid--;
722                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
723                         return;
724
725                 *control |= NVME_RW_DTYPE_STREAMS;
726                 *dsmgmt |= streamid << 16;
727         }
728
729         if (streamid < ARRAY_SIZE(req->q->write_hints))
730                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
731 }
732
733 static inline void nvme_setup_flush(struct nvme_ns *ns,
734                 struct nvme_command *cmnd)
735 {
736         cmnd->common.opcode = nvme_cmd_flush;
737         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
738 }
739
740 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
741                 struct nvme_command *cmnd)
742 {
743         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
744         struct nvme_dsm_range *range;
745         struct bio *bio;
746
747         /*
748          * Some devices do not consider the DSM 'Number of Ranges' field when
749          * determining how much data to DMA. Always allocate memory for maximum
750          * number of segments to prevent device reading beyond end of buffer.
751          */
752         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
753
754         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
755         if (!range) {
756                 /*
757                  * If we fail allocation our range, fallback to the controller
758                  * discard page. If that's also busy, it's safe to return
759                  * busy, as we know we can make progress once that's freed.
760                  */
761                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
762                         return BLK_STS_RESOURCE;
763
764                 range = page_address(ns->ctrl->discard_page);
765         }
766
767         __rq_for_each_bio(bio, req) {
768                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
769                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
770
771                 if (n < segments) {
772                         range[n].cattr = cpu_to_le32(0);
773                         range[n].nlb = cpu_to_le32(nlb);
774                         range[n].slba = cpu_to_le64(slba);
775                 }
776                 n++;
777         }
778
779         if (WARN_ON_ONCE(n != segments)) {
780                 if (virt_to_page(range) == ns->ctrl->discard_page)
781                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
782                 else
783                         kfree(range);
784                 return BLK_STS_IOERR;
785         }
786
787         cmnd->dsm.opcode = nvme_cmd_dsm;
788         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
789         cmnd->dsm.nr = cpu_to_le32(segments - 1);
790         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
791
792         req->special_vec.bv_page = virt_to_page(range);
793         req->special_vec.bv_offset = offset_in_page(range);
794         req->special_vec.bv_len = alloc_size;
795         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
796
797         return BLK_STS_OK;
798 }
799
800 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
801                 struct request *req, struct nvme_command *cmnd)
802 {
803         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
804                 return nvme_setup_discard(ns, req, cmnd);
805
806         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
807         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
808         cmnd->write_zeroes.slba =
809                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
810         cmnd->write_zeroes.length =
811                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
812         cmnd->write_zeroes.control = 0;
813         return BLK_STS_OK;
814 }
815
816 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
817                 struct request *req, struct nvme_command *cmnd,
818                 enum nvme_opcode op)
819 {
820         struct nvme_ctrl *ctrl = ns->ctrl;
821         u16 control = 0;
822         u32 dsmgmt = 0;
823
824         if (req->cmd_flags & REQ_FUA)
825                 control |= NVME_RW_FUA;
826         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
827                 control |= NVME_RW_LR;
828
829         if (req->cmd_flags & REQ_RAHEAD)
830                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
831
832         cmnd->rw.opcode = op;
833         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
834         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
835         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
836
837         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
838                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
839
840         if (ns->ms) {
841                 /*
842                  * If formated with metadata, the block layer always provides a
843                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
844                  * we enable the PRACT bit for protection information or set the
845                  * namespace capacity to zero to prevent any I/O.
846                  */
847                 if (!blk_integrity_rq(req)) {
848                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
849                                 return BLK_STS_NOTSUPP;
850                         control |= NVME_RW_PRINFO_PRACT;
851                 }
852
853                 switch (ns->pi_type) {
854                 case NVME_NS_DPS_PI_TYPE3:
855                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
856                         break;
857                 case NVME_NS_DPS_PI_TYPE1:
858                 case NVME_NS_DPS_PI_TYPE2:
859                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
860                                         NVME_RW_PRINFO_PRCHK_REF;
861                         if (op == nvme_cmd_zone_append)
862                                 control |= NVME_RW_APPEND_PIREMAP;
863                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
864                         break;
865                 }
866         }
867
868         cmnd->rw.control = cpu_to_le16(control);
869         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
870         return 0;
871 }
872
873 void nvme_cleanup_cmd(struct request *req)
874 {
875         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
876                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
877                 struct page *page = req->special_vec.bv_page;
878
879                 if (page == ctrl->discard_page)
880                         clear_bit_unlock(0, &ctrl->discard_page_busy);
881                 else
882                         kfree(page_address(page) + req->special_vec.bv_offset);
883         }
884 }
885 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
886
887 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
888 {
889         struct nvme_command *cmd = nvme_req(req)->cmd;
890         blk_status_t ret = BLK_STS_OK;
891
892         if (!(req->rq_flags & RQF_DONTPREP))
893                 nvme_clear_nvme_request(req);
894
895         switch (req_op(req)) {
896         case REQ_OP_DRV_IN:
897         case REQ_OP_DRV_OUT:
898                 /* these are setup prior to execution in nvme_init_request() */
899                 break;
900         case REQ_OP_FLUSH:
901                 nvme_setup_flush(ns, cmd);
902                 break;
903         case REQ_OP_ZONE_RESET_ALL:
904         case REQ_OP_ZONE_RESET:
905                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
906                 break;
907         case REQ_OP_ZONE_OPEN:
908                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
909                 break;
910         case REQ_OP_ZONE_CLOSE:
911                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
912                 break;
913         case REQ_OP_ZONE_FINISH:
914                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
915                 break;
916         case REQ_OP_WRITE_ZEROES:
917                 ret = nvme_setup_write_zeroes(ns, req, cmd);
918                 break;
919         case REQ_OP_DISCARD:
920                 ret = nvme_setup_discard(ns, req, cmd);
921                 break;
922         case REQ_OP_READ:
923                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
924                 break;
925         case REQ_OP_WRITE:
926                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
927                 break;
928         case REQ_OP_ZONE_APPEND:
929                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
930                 break;
931         default:
932                 WARN_ON_ONCE(1);
933                 return BLK_STS_IOERR;
934         }
935
936         cmd->common.command_id = req->tag;
937         trace_nvme_setup_cmd(req, cmd);
938         return ret;
939 }
940 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
941
942 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
943 {
944         struct completion *waiting = rq->end_io_data;
945
946         rq->end_io_data = NULL;
947         complete(waiting);
948 }
949
950 static void nvme_execute_rq_polled(struct request_queue *q,
951                 struct gendisk *bd_disk, struct request *rq, int at_head)
952 {
953         DECLARE_COMPLETION_ONSTACK(wait);
954
955         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
956
957         rq->cmd_flags |= REQ_HIPRI;
958         rq->end_io_data = &wait;
959         blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
960
961         while (!completion_done(&wait)) {
962                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
963                 cond_resched();
964         }
965 }
966
967 /*
968  * Returns 0 on success.  If the result is negative, it's a Linux error code;
969  * if the result is positive, it's an NVM Express status code
970  */
971 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
972                 union nvme_result *result, void *buffer, unsigned bufflen,
973                 unsigned timeout, int qid, int at_head,
974                 blk_mq_req_flags_t flags, bool poll)
975 {
976         struct request *req;
977         int ret;
978
979         if (qid == NVME_QID_ANY)
980                 req = nvme_alloc_request(q, cmd, flags);
981         else
982                 req = nvme_alloc_request_qid(q, cmd, flags, qid);
983         if (IS_ERR(req))
984                 return PTR_ERR(req);
985
986         if (timeout)
987                 req->timeout = timeout;
988
989         if (buffer && bufflen) {
990                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
991                 if (ret)
992                         goto out;
993         }
994
995         if (poll)
996                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
997         else
998                 blk_execute_rq(NULL, req, at_head);
999         if (result)
1000                 *result = nvme_req(req)->result;
1001         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1002                 ret = -EINTR;
1003         else
1004                 ret = nvme_req(req)->status;
1005  out:
1006         blk_mq_free_request(req);
1007         return ret;
1008 }
1009 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1010
1011 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1012                 void *buffer, unsigned bufflen)
1013 {
1014         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1015                         NVME_QID_ANY, 0, 0, false);
1016 }
1017 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1018
1019 static u32 nvme_known_admin_effects(u8 opcode)
1020 {
1021         switch (opcode) {
1022         case nvme_admin_format_nvm:
1023                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1024                         NVME_CMD_EFFECTS_CSE_MASK;
1025         case nvme_admin_sanitize_nvm:
1026                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1027         default:
1028                 break;
1029         }
1030         return 0;
1031 }
1032
1033 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1034 {
1035         u32 effects = 0;
1036
1037         if (ns) {
1038                 if (ns->head->effects)
1039                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1040                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1041                         dev_warn_once(ctrl->device,
1042                                 "IO command:%02x has unhandled effects:%08x\n",
1043                                 opcode, effects);
1044                 return 0;
1045         }
1046
1047         if (ctrl->effects)
1048                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1049         effects |= nvme_known_admin_effects(opcode);
1050
1051         return effects;
1052 }
1053 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1054
1055 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1056                                u8 opcode)
1057 {
1058         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1059
1060         /*
1061          * For simplicity, IO to all namespaces is quiesced even if the command
1062          * effects say only one namespace is affected.
1063          */
1064         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1065                 mutex_lock(&ctrl->scan_lock);
1066                 mutex_lock(&ctrl->subsys->lock);
1067                 nvme_mpath_start_freeze(ctrl->subsys);
1068                 nvme_mpath_wait_freeze(ctrl->subsys);
1069                 nvme_start_freeze(ctrl);
1070                 nvme_wait_freeze(ctrl);
1071         }
1072         return effects;
1073 }
1074
1075 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1076 {
1077         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1078                 nvme_unfreeze(ctrl);
1079                 nvme_mpath_unfreeze(ctrl->subsys);
1080                 mutex_unlock(&ctrl->subsys->lock);
1081                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1082                 mutex_unlock(&ctrl->scan_lock);
1083         }
1084         if (effects & NVME_CMD_EFFECTS_CCC)
1085                 nvme_init_ctrl_finish(ctrl);
1086         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1087                 nvme_queue_scan(ctrl);
1088                 flush_work(&ctrl->scan_work);
1089         }
1090 }
1091
1092 void nvme_execute_passthru_rq(struct request *rq)
1093 {
1094         struct nvme_command *cmd = nvme_req(rq)->cmd;
1095         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1096         struct nvme_ns *ns = rq->q->queuedata;
1097         struct gendisk *disk = ns ? ns->disk : NULL;
1098         u32 effects;
1099
1100         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1101         blk_execute_rq(disk, rq, 0);
1102         if (effects) /* nothing to be done for zero cmd effects */
1103                 nvme_passthru_end(ctrl, effects);
1104 }
1105 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1106
1107 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1108 {
1109         struct nvme_ctrl *ctrl = rq->end_io_data;
1110         unsigned long flags;
1111         bool startka = false;
1112
1113         blk_mq_free_request(rq);
1114
1115         if (status) {
1116                 dev_err(ctrl->device,
1117                         "failed nvme_keep_alive_end_io error=%d\n",
1118                                 status);
1119                 return;
1120         }
1121
1122         ctrl->comp_seen = false;
1123         spin_lock_irqsave(&ctrl->lock, flags);
1124         if (ctrl->state == NVME_CTRL_LIVE ||
1125             ctrl->state == NVME_CTRL_CONNECTING)
1126                 startka = true;
1127         spin_unlock_irqrestore(&ctrl->lock, flags);
1128         if (startka)
1129                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1130 }
1131
1132 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1133 {
1134         struct request *rq;
1135
1136         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1137                         BLK_MQ_REQ_RESERVED);
1138         if (IS_ERR(rq))
1139                 return PTR_ERR(rq);
1140
1141         rq->timeout = ctrl->kato * HZ;
1142         rq->end_io_data = ctrl;
1143
1144         blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1145
1146         return 0;
1147 }
1148
1149 static void nvme_keep_alive_work(struct work_struct *work)
1150 {
1151         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1152                         struct nvme_ctrl, ka_work);
1153         bool comp_seen = ctrl->comp_seen;
1154
1155         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1156                 dev_dbg(ctrl->device,
1157                         "reschedule traffic based keep-alive timer\n");
1158                 ctrl->comp_seen = false;
1159                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1160                 return;
1161         }
1162
1163         if (nvme_keep_alive(ctrl)) {
1164                 /* allocation failure, reset the controller */
1165                 dev_err(ctrl->device, "keep-alive failed\n");
1166                 nvme_reset_ctrl(ctrl);
1167                 return;
1168         }
1169 }
1170
1171 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1172 {
1173         if (unlikely(ctrl->kato == 0))
1174                 return;
1175
1176         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1177 }
1178
1179 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1180 {
1181         if (unlikely(ctrl->kato == 0))
1182                 return;
1183
1184         cancel_delayed_work_sync(&ctrl->ka_work);
1185 }
1186 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1187
1188 /*
1189  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1190  * flag, thus sending any new CNS opcodes has a big chance of not working.
1191  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1192  * (but not for any later version).
1193  */
1194 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1195 {
1196         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1197                 return ctrl->vs < NVME_VS(1, 2, 0);
1198         return ctrl->vs < NVME_VS(1, 1, 0);
1199 }
1200
1201 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1202 {
1203         struct nvme_command c = { };
1204         int error;
1205
1206         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1207         c.identify.opcode = nvme_admin_identify;
1208         c.identify.cns = NVME_ID_CNS_CTRL;
1209
1210         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1211         if (!*id)
1212                 return -ENOMEM;
1213
1214         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1215                         sizeof(struct nvme_id_ctrl));
1216         if (error)
1217                 kfree(*id);
1218         return error;
1219 }
1220
1221 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1222 {
1223         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1224 }
1225
1226 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1227                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1228 {
1229         const char *warn_str = "ctrl returned bogus length:";
1230         void *data = cur;
1231
1232         switch (cur->nidt) {
1233         case NVME_NIDT_EUI64:
1234                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1235                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1236                                  warn_str, cur->nidl);
1237                         return -1;
1238                 }
1239                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1240                 return NVME_NIDT_EUI64_LEN;
1241         case NVME_NIDT_NGUID:
1242                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1243                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1244                                  warn_str, cur->nidl);
1245                         return -1;
1246                 }
1247                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1248                 return NVME_NIDT_NGUID_LEN;
1249         case NVME_NIDT_UUID:
1250                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1251                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1252                                  warn_str, cur->nidl);
1253                         return -1;
1254                 }
1255                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1256                 return NVME_NIDT_UUID_LEN;
1257         case NVME_NIDT_CSI:
1258                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1259                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1260                                  warn_str, cur->nidl);
1261                         return -1;
1262                 }
1263                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1264                 *csi_seen = true;
1265                 return NVME_NIDT_CSI_LEN;
1266         default:
1267                 /* Skip unknown types */
1268                 return cur->nidl;
1269         }
1270 }
1271
1272 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1273                 struct nvme_ns_ids *ids)
1274 {
1275         struct nvme_command c = { };
1276         bool csi_seen = false;
1277         int status, pos, len;
1278         void *data;
1279
1280         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1281                 return 0;
1282         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1283                 return 0;
1284
1285         c.identify.opcode = nvme_admin_identify;
1286         c.identify.nsid = cpu_to_le32(nsid);
1287         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1288
1289         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1290         if (!data)
1291                 return -ENOMEM;
1292
1293         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1294                                       NVME_IDENTIFY_DATA_SIZE);
1295         if (status) {
1296                 dev_warn(ctrl->device,
1297                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1298                         nsid, status);
1299                 goto free_data;
1300         }
1301
1302         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1303                 struct nvme_ns_id_desc *cur = data + pos;
1304
1305                 if (cur->nidl == 0)
1306                         break;
1307
1308                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1309                 if (len < 0)
1310                         break;
1311
1312                 len += sizeof(*cur);
1313         }
1314
1315         if (nvme_multi_css(ctrl) && !csi_seen) {
1316                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1317                          nsid);
1318                 status = -EINVAL;
1319         }
1320
1321 free_data:
1322         kfree(data);
1323         return status;
1324 }
1325
1326 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1327                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1328 {
1329         struct nvme_command c = { };
1330         int error;
1331
1332         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1333         c.identify.opcode = nvme_admin_identify;
1334         c.identify.nsid = cpu_to_le32(nsid);
1335         c.identify.cns = NVME_ID_CNS_NS;
1336
1337         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1338         if (!*id)
1339                 return -ENOMEM;
1340
1341         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1342         if (error) {
1343                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1344                 goto out_free_id;
1345         }
1346
1347         error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1348         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1349                 goto out_free_id;
1350
1351         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1352             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1353                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1354         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1355             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1356                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1357
1358         return 0;
1359
1360 out_free_id:
1361         kfree(*id);
1362         return error;
1363 }
1364
1365 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1366                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1367 {
1368         union nvme_result res = { 0 };
1369         struct nvme_command c;
1370         int ret;
1371
1372         memset(&c, 0, sizeof(c));
1373         c.features.opcode = op;
1374         c.features.fid = cpu_to_le32(fid);
1375         c.features.dword11 = cpu_to_le32(dword11);
1376
1377         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1378                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1379         if (ret >= 0 && result)
1380                 *result = le32_to_cpu(res.u32);
1381         return ret;
1382 }
1383
1384 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1385                       unsigned int dword11, void *buffer, size_t buflen,
1386                       u32 *result)
1387 {
1388         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1389                              buflen, result);
1390 }
1391 EXPORT_SYMBOL_GPL(nvme_set_features);
1392
1393 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1394                       unsigned int dword11, void *buffer, size_t buflen,
1395                       u32 *result)
1396 {
1397         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1398                              buflen, result);
1399 }
1400 EXPORT_SYMBOL_GPL(nvme_get_features);
1401
1402 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1403 {
1404         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1405         u32 result;
1406         int status, nr_io_queues;
1407
1408         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1409                         &result);
1410         if (status < 0)
1411                 return status;
1412
1413         /*
1414          * Degraded controllers might return an error when setting the queue
1415          * count.  We still want to be able to bring them online and offer
1416          * access to the admin queue, as that might be only way to fix them up.
1417          */
1418         if (status > 0) {
1419                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1420                 *count = 0;
1421         } else {
1422                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1423                 *count = min(*count, nr_io_queues);
1424         }
1425
1426         return 0;
1427 }
1428 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1429
1430 #define NVME_AEN_SUPPORTED \
1431         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1432          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1433
1434 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1435 {
1436         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1437         int status;
1438
1439         if (!supported_aens)
1440                 return;
1441
1442         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1443                         NULL, 0, &result);
1444         if (status)
1445                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1446                          supported_aens);
1447
1448         queue_work(nvme_wq, &ctrl->async_event_work);
1449 }
1450
1451 /*
1452  * Issue ioctl requests on the first available path.  Note that unlike normal
1453  * block layer requests we will not retry failed request on another controller.
1454  */
1455 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1456                 struct nvme_ns_head **head, int *srcu_idx)
1457 {
1458 #ifdef CONFIG_NVME_MULTIPATH
1459         if (disk->fops == &nvme_ns_head_ops) {
1460                 struct nvme_ns *ns;
1461
1462                 *head = disk->private_data;
1463                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1464                 ns = nvme_find_path(*head);
1465                 if (!ns)
1466                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1467                 return ns;
1468         }
1469 #endif
1470         *head = NULL;
1471         *srcu_idx = -1;
1472         return disk->private_data;
1473 }
1474
1475 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1476 {
1477         if (head)
1478                 srcu_read_unlock(&head->srcu, idx);
1479 }
1480
1481 static int nvme_open(struct block_device *bdev, fmode_t mode)
1482 {
1483         struct nvme_ns *ns = bdev->bd_disk->private_data;
1484
1485         /* should never be called due to GENHD_FL_HIDDEN */
1486         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1487                 goto fail;
1488         if (!kref_get_unless_zero(&ns->kref))
1489                 goto fail;
1490         if (!try_module_get(ns->ctrl->ops->module))
1491                 goto fail_put_ns;
1492
1493         return 0;
1494
1495 fail_put_ns:
1496         nvme_put_ns(ns);
1497 fail:
1498         return -ENXIO;
1499 }
1500
1501 static void nvme_release(struct gendisk *disk, fmode_t mode)
1502 {
1503         struct nvme_ns *ns = disk->private_data;
1504
1505         module_put(ns->ctrl->ops->module);
1506         nvme_put_ns(ns);
1507 }
1508
1509 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1510 {
1511         /* some standard values */
1512         geo->heads = 1 << 6;
1513         geo->sectors = 1 << 5;
1514         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1515         return 0;
1516 }
1517
1518 #ifdef CONFIG_BLK_DEV_INTEGRITY
1519 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1520                                 u32 max_integrity_segments)
1521 {
1522         struct blk_integrity integrity;
1523
1524         memset(&integrity, 0, sizeof(integrity));
1525         switch (pi_type) {
1526         case NVME_NS_DPS_PI_TYPE3:
1527                 integrity.profile = &t10_pi_type3_crc;
1528                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1529                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1530                 break;
1531         case NVME_NS_DPS_PI_TYPE1:
1532         case NVME_NS_DPS_PI_TYPE2:
1533                 integrity.profile = &t10_pi_type1_crc;
1534                 integrity.tag_size = sizeof(u16);
1535                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1536                 break;
1537         default:
1538                 integrity.profile = NULL;
1539                 break;
1540         }
1541         integrity.tuple_size = ms;
1542         blk_integrity_register(disk, &integrity);
1543         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1544 }
1545 #else
1546 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1547                                 u32 max_integrity_segments)
1548 {
1549 }
1550 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1551
1552 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1553 {
1554         struct nvme_ctrl *ctrl = ns->ctrl;
1555         struct request_queue *queue = disk->queue;
1556         u32 size = queue_logical_block_size(queue);
1557
1558         if (ctrl->max_discard_sectors == 0) {
1559                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1560                 return;
1561         }
1562
1563         if (ctrl->nr_streams && ns->sws && ns->sgs)
1564                 size *= ns->sws * ns->sgs;
1565
1566         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1567                         NVME_DSM_MAX_RANGES);
1568
1569         queue->limits.discard_alignment = 0;
1570         queue->limits.discard_granularity = size;
1571
1572         /* If discard is already enabled, don't reset queue limits */
1573         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1574                 return;
1575
1576         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1577         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1578
1579         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1580                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1581 }
1582
1583 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1584 {
1585         return !uuid_is_null(&ids->uuid) ||
1586                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1587                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1588 }
1589
1590 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1591 {
1592         return uuid_equal(&a->uuid, &b->uuid) &&
1593                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1594                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1595                 a->csi == b->csi;
1596 }
1597
1598 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1599                                  u32 *phys_bs, u32 *io_opt)
1600 {
1601         struct streams_directive_params s;
1602         int ret;
1603
1604         if (!ctrl->nr_streams)
1605                 return 0;
1606
1607         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1608         if (ret)
1609                 return ret;
1610
1611         ns->sws = le32_to_cpu(s.sws);
1612         ns->sgs = le16_to_cpu(s.sgs);
1613
1614         if (ns->sws) {
1615                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1616                 if (ns->sgs)
1617                         *io_opt = *phys_bs * ns->sgs;
1618         }
1619
1620         return 0;
1621 }
1622
1623 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1624 {
1625         struct nvme_ctrl *ctrl = ns->ctrl;
1626
1627         /*
1628          * The PI implementation requires the metadata size to be equal to the
1629          * t10 pi tuple size.
1630          */
1631         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1632         if (ns->ms == sizeof(struct t10_pi_tuple))
1633                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1634         else
1635                 ns->pi_type = 0;
1636
1637         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1638         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1639                 return 0;
1640         if (ctrl->ops->flags & NVME_F_FABRICS) {
1641                 /*
1642                  * The NVMe over Fabrics specification only supports metadata as
1643                  * part of the extended data LBA.  We rely on HCA/HBA support to
1644                  * remap the separate metadata buffer from the block layer.
1645                  */
1646                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1647                         return -EINVAL;
1648                 if (ctrl->max_integrity_segments)
1649                         ns->features |=
1650                                 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1651         } else {
1652                 /*
1653                  * For PCIe controllers, we can't easily remap the separate
1654                  * metadata buffer from the block layer and thus require a
1655                  * separate metadata buffer for block layer metadata/PI support.
1656                  * We allow extended LBAs for the passthrough interface, though.
1657                  */
1658                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1659                         ns->features |= NVME_NS_EXT_LBAS;
1660                 else
1661                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1662         }
1663
1664         return 0;
1665 }
1666
1667 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1668                 struct request_queue *q)
1669 {
1670         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1671
1672         if (ctrl->max_hw_sectors) {
1673                 u32 max_segments =
1674                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1675
1676                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1677                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1678                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1679         }
1680         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1681         blk_queue_dma_alignment(q, 7);
1682         blk_queue_write_cache(q, vwc, vwc);
1683 }
1684
1685 static void nvme_update_disk_info(struct gendisk *disk,
1686                 struct nvme_ns *ns, struct nvme_id_ns *id)
1687 {
1688         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1689         unsigned short bs = 1 << ns->lba_shift;
1690         u32 atomic_bs, phys_bs, io_opt = 0;
1691
1692         /*
1693          * The block layer can't support LBA sizes larger than the page size
1694          * yet, so catch this early and don't allow block I/O.
1695          */
1696         if (ns->lba_shift > PAGE_SHIFT) {
1697                 capacity = 0;
1698                 bs = (1 << 9);
1699         }
1700
1701         blk_integrity_unregister(disk);
1702
1703         atomic_bs = phys_bs = bs;
1704         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1705         if (id->nabo == 0) {
1706                 /*
1707                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1708                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1709                  * 0 then AWUPF must be used instead.
1710                  */
1711                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1712                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1713                 else
1714                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1715         }
1716
1717         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1718                 /* NPWG = Namespace Preferred Write Granularity */
1719                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1720                 /* NOWS = Namespace Optimal Write Size */
1721                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1722         }
1723
1724         blk_queue_logical_block_size(disk->queue, bs);
1725         /*
1726          * Linux filesystems assume writing a single physical block is
1727          * an atomic operation. Hence limit the physical block size to the
1728          * value of the Atomic Write Unit Power Fail parameter.
1729          */
1730         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1731         blk_queue_io_min(disk->queue, phys_bs);
1732         blk_queue_io_opt(disk->queue, io_opt);
1733
1734         /*
1735          * Register a metadata profile for PI, or the plain non-integrity NVMe
1736          * metadata masquerading as Type 0 if supported, otherwise reject block
1737          * I/O to namespaces with metadata except when the namespace supports
1738          * PI, as it can strip/insert in that case.
1739          */
1740         if (ns->ms) {
1741                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1742                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1743                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
1744                                             ns->ctrl->max_integrity_segments);
1745                 else if (!nvme_ns_has_pi(ns))
1746                         capacity = 0;
1747         }
1748
1749         set_capacity_and_notify(disk, capacity);
1750
1751         nvme_config_discard(disk, ns);
1752         blk_queue_max_write_zeroes_sectors(disk->queue,
1753                                            ns->ctrl->max_zeroes_sectors);
1754
1755         set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1756                 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1757 }
1758
1759 static inline bool nvme_first_scan(struct gendisk *disk)
1760 {
1761         /* nvme_alloc_ns() scans the disk prior to adding it */
1762         return !(disk->flags & GENHD_FL_UP);
1763 }
1764
1765 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1766 {
1767         struct nvme_ctrl *ctrl = ns->ctrl;
1768         u32 iob;
1769
1770         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1771             is_power_of_2(ctrl->max_hw_sectors))
1772                 iob = ctrl->max_hw_sectors;
1773         else
1774                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1775
1776         if (!iob)
1777                 return;
1778
1779         if (!is_power_of_2(iob)) {
1780                 if (nvme_first_scan(ns->disk))
1781                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1782                                 ns->disk->disk_name, iob);
1783                 return;
1784         }
1785
1786         if (blk_queue_is_zoned(ns->disk->queue)) {
1787                 if (nvme_first_scan(ns->disk))
1788                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1789                                 ns->disk->disk_name);
1790                 return;
1791         }
1792
1793         blk_queue_chunk_sectors(ns->queue, iob);
1794 }
1795
1796 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1797 {
1798         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1799         int ret;
1800
1801         blk_mq_freeze_queue(ns->disk->queue);
1802         ns->lba_shift = id->lbaf[lbaf].ds;
1803         nvme_set_queue_limits(ns->ctrl, ns->queue);
1804
1805         ret = nvme_configure_metadata(ns, id);
1806         if (ret)
1807                 goto out_unfreeze;
1808         nvme_set_chunk_sectors(ns, id);
1809         nvme_update_disk_info(ns->disk, ns, id);
1810
1811         if (ns->head->ids.csi == NVME_CSI_ZNS) {
1812                 ret = nvme_update_zone_info(ns, lbaf);
1813                 if (ret)
1814                         goto out_unfreeze;
1815         }
1816
1817         blk_mq_unfreeze_queue(ns->disk->queue);
1818
1819         if (blk_queue_is_zoned(ns->queue)) {
1820                 ret = nvme_revalidate_zones(ns);
1821                 if (ret && !nvme_first_scan(ns->disk))
1822                         return ret;
1823         }
1824
1825         if (nvme_ns_head_multipath(ns->head)) {
1826                 blk_mq_freeze_queue(ns->head->disk->queue);
1827                 nvme_update_disk_info(ns->head->disk, ns, id);
1828                 blk_stack_limits(&ns->head->disk->queue->limits,
1829                                  &ns->queue->limits, 0);
1830                 blk_queue_update_readahead(ns->head->disk->queue);
1831                 blk_mq_unfreeze_queue(ns->head->disk->queue);
1832         }
1833         return 0;
1834
1835 out_unfreeze:
1836         blk_mq_unfreeze_queue(ns->disk->queue);
1837         return ret;
1838 }
1839
1840 static char nvme_pr_type(enum pr_type type)
1841 {
1842         switch (type) {
1843         case PR_WRITE_EXCLUSIVE:
1844                 return 1;
1845         case PR_EXCLUSIVE_ACCESS:
1846                 return 2;
1847         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1848                 return 3;
1849         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1850                 return 4;
1851         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1852                 return 5;
1853         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1854                 return 6;
1855         default:
1856                 return 0;
1857         }
1858 };
1859
1860 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1861                                 u64 key, u64 sa_key, u8 op)
1862 {
1863         struct nvme_ns_head *head = NULL;
1864         struct nvme_ns *ns;
1865         struct nvme_command c;
1866         int srcu_idx, ret;
1867         u8 data[16] = { 0, };
1868
1869         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1870         if (unlikely(!ns))
1871                 return -EWOULDBLOCK;
1872
1873         put_unaligned_le64(key, &data[0]);
1874         put_unaligned_le64(sa_key, &data[8]);
1875
1876         memset(&c, 0, sizeof(c));
1877         c.common.opcode = op;
1878         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1879         c.common.cdw10 = cpu_to_le32(cdw10);
1880
1881         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1882         nvme_put_ns_from_disk(head, srcu_idx);
1883         return ret;
1884 }
1885
1886 static int nvme_pr_register(struct block_device *bdev, u64 old,
1887                 u64 new, unsigned flags)
1888 {
1889         u32 cdw10;
1890
1891         if (flags & ~PR_FL_IGNORE_KEY)
1892                 return -EOPNOTSUPP;
1893
1894         cdw10 = old ? 2 : 0;
1895         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1896         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1897         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1898 }
1899
1900 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1901                 enum pr_type type, unsigned flags)
1902 {
1903         u32 cdw10;
1904
1905         if (flags & ~PR_FL_IGNORE_KEY)
1906                 return -EOPNOTSUPP;
1907
1908         cdw10 = nvme_pr_type(type) << 8;
1909         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1910         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1911 }
1912
1913 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1914                 enum pr_type type, bool abort)
1915 {
1916         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1917
1918         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1919 }
1920
1921 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1922 {
1923         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1924
1925         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1926 }
1927
1928 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1929 {
1930         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1931
1932         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1933 }
1934
1935 static const struct pr_ops nvme_pr_ops = {
1936         .pr_register    = nvme_pr_register,
1937         .pr_reserve     = nvme_pr_reserve,
1938         .pr_release     = nvme_pr_release,
1939         .pr_preempt     = nvme_pr_preempt,
1940         .pr_clear       = nvme_pr_clear,
1941 };
1942
1943 #ifdef CONFIG_BLK_SED_OPAL
1944 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1945                 bool send)
1946 {
1947         struct nvme_ctrl *ctrl = data;
1948         struct nvme_command cmd;
1949
1950         memset(&cmd, 0, sizeof(cmd));
1951         if (send)
1952                 cmd.common.opcode = nvme_admin_security_send;
1953         else
1954                 cmd.common.opcode = nvme_admin_security_recv;
1955         cmd.common.nsid = 0;
1956         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1957         cmd.common.cdw11 = cpu_to_le32(len);
1958
1959         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
1960                         NVME_QID_ANY, 1, 0, false);
1961 }
1962 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1963 #endif /* CONFIG_BLK_SED_OPAL */
1964
1965 static const struct block_device_operations nvme_bdev_ops = {
1966         .owner          = THIS_MODULE,
1967         .ioctl          = nvme_ioctl,
1968         .open           = nvme_open,
1969         .release        = nvme_release,
1970         .getgeo         = nvme_getgeo,
1971         .report_zones   = nvme_report_zones,
1972         .pr_ops         = &nvme_pr_ops,
1973 };
1974
1975 #ifdef CONFIG_NVME_MULTIPATH
1976 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1977 {
1978         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1979
1980         if (!kref_get_unless_zero(&head->ref))
1981                 return -ENXIO;
1982         return 0;
1983 }
1984
1985 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1986 {
1987         nvme_put_ns_head(disk->private_data);
1988 }
1989
1990 struct nvme_ctrl *nvme_find_get_live_ctrl(struct nvme_subsystem *subsys)
1991 {
1992         struct nvme_ctrl *ctrl;
1993         int ret;
1994
1995         ret = mutex_lock_killable(&nvme_subsystems_lock);
1996         if (ret)
1997                 return ERR_PTR(ret);
1998         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1999                 if (ctrl->state == NVME_CTRL_LIVE)
2000                         goto found;
2001         }
2002         mutex_unlock(&nvme_subsystems_lock);
2003         return ERR_PTR(-EWOULDBLOCK);
2004 found:
2005         nvme_get_ctrl(ctrl);
2006         mutex_unlock(&nvme_subsystems_lock);
2007         return ctrl;
2008 }
2009
2010 const struct block_device_operations nvme_ns_head_ops = {
2011         .owner          = THIS_MODULE,
2012         .submit_bio     = nvme_ns_head_submit_bio,
2013         .open           = nvme_ns_head_open,
2014         .release        = nvme_ns_head_release,
2015         .ioctl          = nvme_ns_head_ioctl,
2016         .getgeo         = nvme_getgeo,
2017         .report_zones   = nvme_report_zones,
2018         .pr_ops         = &nvme_pr_ops,
2019 };
2020 #endif /* CONFIG_NVME_MULTIPATH */
2021
2022 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2023 {
2024         unsigned long timeout =
2025                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2026         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2027         int ret;
2028
2029         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2030                 if (csts == ~0)
2031                         return -ENODEV;
2032                 if ((csts & NVME_CSTS_RDY) == bit)
2033                         break;
2034
2035                 usleep_range(1000, 2000);
2036                 if (fatal_signal_pending(current))
2037                         return -EINTR;
2038                 if (time_after(jiffies, timeout)) {
2039                         dev_err(ctrl->device,
2040                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2041                                 enabled ? "initialisation" : "reset", csts);
2042                         return -ENODEV;
2043                 }
2044         }
2045
2046         return ret;
2047 }
2048
2049 /*
2050  * If the device has been passed off to us in an enabled state, just clear
2051  * the enabled bit.  The spec says we should set the 'shutdown notification
2052  * bits', but doing so may cause the device to complete commands to the
2053  * admin queue ... and we don't know what memory that might be pointing at!
2054  */
2055 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2056 {
2057         int ret;
2058
2059         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2060         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2061
2062         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2063         if (ret)
2064                 return ret;
2065
2066         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2067                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2068
2069         return nvme_wait_ready(ctrl, ctrl->cap, false);
2070 }
2071 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2072
2073 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2074 {
2075         unsigned dev_page_min;
2076         int ret;
2077
2078         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2079         if (ret) {
2080                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2081                 return ret;
2082         }
2083         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2084
2085         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2086                 dev_err(ctrl->device,
2087                         "Minimum device page size %u too large for host (%u)\n",
2088                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2089                 return -ENODEV;
2090         }
2091
2092         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2093                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2094         else
2095                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2096         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2097         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2098         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2099         ctrl->ctrl_config |= NVME_CC_ENABLE;
2100
2101         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2102         if (ret)
2103                 return ret;
2104         return nvme_wait_ready(ctrl, ctrl->cap, true);
2105 }
2106 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2107
2108 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2109 {
2110         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2111         u32 csts;
2112         int ret;
2113
2114         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2115         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2116
2117         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2118         if (ret)
2119                 return ret;
2120
2121         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2122                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2123                         break;
2124
2125                 msleep(100);
2126                 if (fatal_signal_pending(current))
2127                         return -EINTR;
2128                 if (time_after(jiffies, timeout)) {
2129                         dev_err(ctrl->device,
2130                                 "Device shutdown incomplete; abort shutdown\n");
2131                         return -ENODEV;
2132                 }
2133         }
2134
2135         return ret;
2136 }
2137 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2138
2139 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2140 {
2141         __le64 ts;
2142         int ret;
2143
2144         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2145                 return 0;
2146
2147         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2148         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2149                         NULL);
2150         if (ret)
2151                 dev_warn_once(ctrl->device,
2152                         "could not set timestamp (%d)\n", ret);
2153         return ret;
2154 }
2155
2156 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2157 {
2158         struct nvme_feat_host_behavior *host;
2159         int ret;
2160
2161         /* Don't bother enabling the feature if retry delay is not reported */
2162         if (!ctrl->crdt[0])
2163                 return 0;
2164
2165         host = kzalloc(sizeof(*host), GFP_KERNEL);
2166         if (!host)
2167                 return 0;
2168
2169         host->acre = NVME_ENABLE_ACRE;
2170         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2171                                 host, sizeof(*host), NULL);
2172         kfree(host);
2173         return ret;
2174 }
2175
2176 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2177 {
2178         /*
2179          * APST (Autonomous Power State Transition) lets us program a
2180          * table of power state transitions that the controller will
2181          * perform automatically.  We configure it with a simple
2182          * heuristic: we are willing to spend at most 2% of the time
2183          * transitioning between power states.  Therefore, when running
2184          * in any given state, we will enter the next lower-power
2185          * non-operational state after waiting 50 * (enlat + exlat)
2186          * microseconds, as long as that state's exit latency is under
2187          * the requested maximum latency.
2188          *
2189          * We will not autonomously enter any non-operational state for
2190          * which the total latency exceeds ps_max_latency_us.  Users
2191          * can set ps_max_latency_us to zero to turn off APST.
2192          */
2193
2194         unsigned apste;
2195         struct nvme_feat_auto_pst *table;
2196         u64 max_lat_us = 0;
2197         int max_ps = -1;
2198         int ret;
2199
2200         /*
2201          * If APST isn't supported or if we haven't been initialized yet,
2202          * then don't do anything.
2203          */
2204         if (!ctrl->apsta)
2205                 return 0;
2206
2207         if (ctrl->npss > 31) {
2208                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2209                 return 0;
2210         }
2211
2212         table = kzalloc(sizeof(*table), GFP_KERNEL);
2213         if (!table)
2214                 return 0;
2215
2216         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2217                 /* Turn off APST. */
2218                 apste = 0;
2219                 dev_dbg(ctrl->device, "APST disabled\n");
2220         } else {
2221                 __le64 target = cpu_to_le64(0);
2222                 int state;
2223
2224                 /*
2225                  * Walk through all states from lowest- to highest-power.
2226                  * According to the spec, lower-numbered states use more
2227                  * power.  NPSS, despite the name, is the index of the
2228                  * lowest-power state, not the number of states.
2229                  */
2230                 for (state = (int)ctrl->npss; state >= 0; state--) {
2231                         u64 total_latency_us, exit_latency_us, transition_ms;
2232
2233                         if (target)
2234                                 table->entries[state] = target;
2235
2236                         /*
2237                          * Don't allow transitions to the deepest state
2238                          * if it's quirked off.
2239                          */
2240                         if (state == ctrl->npss &&
2241                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2242                                 continue;
2243
2244                         /*
2245                          * Is this state a useful non-operational state for
2246                          * higher-power states to autonomously transition to?
2247                          */
2248                         if (!(ctrl->psd[state].flags &
2249                               NVME_PS_FLAGS_NON_OP_STATE))
2250                                 continue;
2251
2252                         exit_latency_us =
2253                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2254                         if (exit_latency_us > ctrl->ps_max_latency_us)
2255                                 continue;
2256
2257                         total_latency_us =
2258                                 exit_latency_us +
2259                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2260
2261                         /*
2262                          * This state is good.  Use it as the APST idle
2263                          * target for higher power states.
2264                          */
2265                         transition_ms = total_latency_us + 19;
2266                         do_div(transition_ms, 20);
2267                         if (transition_ms > (1 << 24) - 1)
2268                                 transition_ms = (1 << 24) - 1;
2269
2270                         target = cpu_to_le64((state << 3) |
2271                                              (transition_ms << 8));
2272
2273                         if (max_ps == -1)
2274                                 max_ps = state;
2275
2276                         if (total_latency_us > max_lat_us)
2277                                 max_lat_us = total_latency_us;
2278                 }
2279
2280                 apste = 1;
2281
2282                 if (max_ps == -1) {
2283                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2284                 } else {
2285                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2286                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2287                 }
2288         }
2289
2290         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2291                                 table, sizeof(*table), NULL);
2292         if (ret)
2293                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2294
2295         kfree(table);
2296         return ret;
2297 }
2298
2299 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2300 {
2301         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2302         u64 latency;
2303
2304         switch (val) {
2305         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2306         case PM_QOS_LATENCY_ANY:
2307                 latency = U64_MAX;
2308                 break;
2309
2310         default:
2311                 latency = val;
2312         }
2313
2314         if (ctrl->ps_max_latency_us != latency) {
2315                 ctrl->ps_max_latency_us = latency;
2316                 nvme_configure_apst(ctrl);
2317         }
2318 }
2319
2320 struct nvme_core_quirk_entry {
2321         /*
2322          * NVMe model and firmware strings are padded with spaces.  For
2323          * simplicity, strings in the quirk table are padded with NULLs
2324          * instead.
2325          */
2326         u16 vid;
2327         const char *mn;
2328         const char *fr;
2329         unsigned long quirks;
2330 };
2331
2332 static const struct nvme_core_quirk_entry core_quirks[] = {
2333         {
2334                 /*
2335                  * This Toshiba device seems to die using any APST states.  See:
2336                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2337                  */
2338                 .vid = 0x1179,
2339                 .mn = "THNSF5256GPUK TOSHIBA",
2340                 .quirks = NVME_QUIRK_NO_APST,
2341         },
2342         {
2343                 /*
2344                  * This LiteON CL1-3D*-Q11 firmware version has a race
2345                  * condition associated with actions related to suspend to idle
2346                  * LiteON has resolved the problem in future firmware
2347                  */
2348                 .vid = 0x14a4,
2349                 .fr = "22301111",
2350                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2351         }
2352 };
2353
2354 /* match is null-terminated but idstr is space-padded. */
2355 static bool string_matches(const char *idstr, const char *match, size_t len)
2356 {
2357         size_t matchlen;
2358
2359         if (!match)
2360                 return true;
2361
2362         matchlen = strlen(match);
2363         WARN_ON_ONCE(matchlen > len);
2364
2365         if (memcmp(idstr, match, matchlen))
2366                 return false;
2367
2368         for (; matchlen < len; matchlen++)
2369                 if (idstr[matchlen] != ' ')
2370                         return false;
2371
2372         return true;
2373 }
2374
2375 static bool quirk_matches(const struct nvme_id_ctrl *id,
2376                           const struct nvme_core_quirk_entry *q)
2377 {
2378         return q->vid == le16_to_cpu(id->vid) &&
2379                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2380                 string_matches(id->fr, q->fr, sizeof(id->fr));
2381 }
2382
2383 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2384                 struct nvme_id_ctrl *id)
2385 {
2386         size_t nqnlen;
2387         int off;
2388
2389         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2390                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2391                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2392                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2393                         return;
2394                 }
2395
2396                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2397                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2398         }
2399
2400         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2401         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2402                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2403                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2404         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2405         off += sizeof(id->sn);
2406         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2407         off += sizeof(id->mn);
2408         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2409 }
2410
2411 static void nvme_release_subsystem(struct device *dev)
2412 {
2413         struct nvme_subsystem *subsys =
2414                 container_of(dev, struct nvme_subsystem, dev);
2415
2416         if (subsys->instance >= 0)
2417                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2418         kfree(subsys);
2419 }
2420
2421 static void nvme_destroy_subsystem(struct kref *ref)
2422 {
2423         struct nvme_subsystem *subsys =
2424                         container_of(ref, struct nvme_subsystem, ref);
2425
2426         mutex_lock(&nvme_subsystems_lock);
2427         list_del(&subsys->entry);
2428         mutex_unlock(&nvme_subsystems_lock);
2429
2430         ida_destroy(&subsys->ns_ida);
2431         device_del(&subsys->dev);
2432         put_device(&subsys->dev);
2433 }
2434
2435 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2436 {
2437         kref_put(&subsys->ref, nvme_destroy_subsystem);
2438 }
2439
2440 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2441 {
2442         struct nvme_subsystem *subsys;
2443
2444         lockdep_assert_held(&nvme_subsystems_lock);
2445
2446         /*
2447          * Fail matches for discovery subsystems. This results
2448          * in each discovery controller bound to a unique subsystem.
2449          * This avoids issues with validating controller values
2450          * that can only be true when there is a single unique subsystem.
2451          * There may be multiple and completely independent entities
2452          * that provide discovery controllers.
2453          */
2454         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2455                 return NULL;
2456
2457         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2458                 if (strcmp(subsys->subnqn, subsysnqn))
2459                         continue;
2460                 if (!kref_get_unless_zero(&subsys->ref))
2461                         continue;
2462                 return subsys;
2463         }
2464
2465         return NULL;
2466 }
2467
2468 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2469         struct device_attribute subsys_attr_##_name = \
2470                 __ATTR(_name, _mode, _show, NULL)
2471
2472 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2473                                     struct device_attribute *attr,
2474                                     char *buf)
2475 {
2476         struct nvme_subsystem *subsys =
2477                 container_of(dev, struct nvme_subsystem, dev);
2478
2479         return sysfs_emit(buf, "%s\n", subsys->subnqn);
2480 }
2481 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2482
2483 #define nvme_subsys_show_str_function(field)                            \
2484 static ssize_t subsys_##field##_show(struct device *dev,                \
2485                             struct device_attribute *attr, char *buf)   \
2486 {                                                                       \
2487         struct nvme_subsystem *subsys =                                 \
2488                 container_of(dev, struct nvme_subsystem, dev);          \
2489         return sysfs_emit(buf, "%.*s\n",                                \
2490                            (int)sizeof(subsys->field), subsys->field);  \
2491 }                                                                       \
2492 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2493
2494 nvme_subsys_show_str_function(model);
2495 nvme_subsys_show_str_function(serial);
2496 nvme_subsys_show_str_function(firmware_rev);
2497
2498 static struct attribute *nvme_subsys_attrs[] = {
2499         &subsys_attr_model.attr,
2500         &subsys_attr_serial.attr,
2501         &subsys_attr_firmware_rev.attr,
2502         &subsys_attr_subsysnqn.attr,
2503 #ifdef CONFIG_NVME_MULTIPATH
2504         &subsys_attr_iopolicy.attr,
2505 #endif
2506         NULL,
2507 };
2508
2509 static const struct attribute_group nvme_subsys_attrs_group = {
2510         .attrs = nvme_subsys_attrs,
2511 };
2512
2513 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2514         &nvme_subsys_attrs_group,
2515         NULL,
2516 };
2517
2518 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2519 {
2520         return ctrl->opts && ctrl->opts->discovery_nqn;
2521 }
2522
2523 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2524                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2525 {
2526         struct nvme_ctrl *tmp;
2527
2528         lockdep_assert_held(&nvme_subsystems_lock);
2529
2530         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2531                 if (nvme_state_terminal(tmp))
2532                         continue;
2533
2534                 if (tmp->cntlid == ctrl->cntlid) {
2535                         dev_err(ctrl->device,
2536                                 "Duplicate cntlid %u with %s, rejecting\n",
2537                                 ctrl->cntlid, dev_name(tmp->device));
2538                         return false;
2539                 }
2540
2541                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2542                     nvme_discovery_ctrl(ctrl))
2543                         continue;
2544
2545                 dev_err(ctrl->device,
2546                         "Subsystem does not support multiple controllers\n");
2547                 return false;
2548         }
2549
2550         return true;
2551 }
2552
2553 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2554 {
2555         struct nvme_subsystem *subsys, *found;
2556         int ret;
2557
2558         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2559         if (!subsys)
2560                 return -ENOMEM;
2561
2562         subsys->instance = -1;
2563         mutex_init(&subsys->lock);
2564         kref_init(&subsys->ref);
2565         INIT_LIST_HEAD(&subsys->ctrls);
2566         INIT_LIST_HEAD(&subsys->nsheads);
2567         nvme_init_subnqn(subsys, ctrl, id);
2568         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2569         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2570         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2571         subsys->vendor_id = le16_to_cpu(id->vid);
2572         subsys->cmic = id->cmic;
2573         subsys->awupf = le16_to_cpu(id->awupf);
2574 #ifdef CONFIG_NVME_MULTIPATH
2575         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2576 #endif
2577
2578         subsys->dev.class = nvme_subsys_class;
2579         subsys->dev.release = nvme_release_subsystem;
2580         subsys->dev.groups = nvme_subsys_attrs_groups;
2581         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2582         device_initialize(&subsys->dev);
2583
2584         mutex_lock(&nvme_subsystems_lock);
2585         found = __nvme_find_get_subsystem(subsys->subnqn);
2586         if (found) {
2587                 put_device(&subsys->dev);
2588                 subsys = found;
2589
2590                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2591                         ret = -EINVAL;
2592                         goto out_put_subsystem;
2593                 }
2594         } else {
2595                 ret = device_add(&subsys->dev);
2596                 if (ret) {
2597                         dev_err(ctrl->device,
2598                                 "failed to register subsystem device.\n");
2599                         put_device(&subsys->dev);
2600                         goto out_unlock;
2601                 }
2602                 ida_init(&subsys->ns_ida);
2603                 list_add_tail(&subsys->entry, &nvme_subsystems);
2604         }
2605
2606         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2607                                 dev_name(ctrl->device));
2608         if (ret) {
2609                 dev_err(ctrl->device,
2610                         "failed to create sysfs link from subsystem.\n");
2611                 goto out_put_subsystem;
2612         }
2613
2614         if (!found)
2615                 subsys->instance = ctrl->instance;
2616         ctrl->subsys = subsys;
2617         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2618         mutex_unlock(&nvme_subsystems_lock);
2619         return 0;
2620
2621 out_put_subsystem:
2622         nvme_put_subsystem(subsys);
2623 out_unlock:
2624         mutex_unlock(&nvme_subsystems_lock);
2625         return ret;
2626 }
2627
2628 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2629                 void *log, size_t size, u64 offset)
2630 {
2631         struct nvme_command c = { };
2632         u32 dwlen = nvme_bytes_to_numd(size);
2633
2634         c.get_log_page.opcode = nvme_admin_get_log_page;
2635         c.get_log_page.nsid = cpu_to_le32(nsid);
2636         c.get_log_page.lid = log_page;
2637         c.get_log_page.lsp = lsp;
2638         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2639         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2640         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2641         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2642         c.get_log_page.csi = csi;
2643
2644         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2645 }
2646
2647 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2648                                 struct nvme_effects_log **log)
2649 {
2650         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2651         int ret;
2652
2653         if (cel)
2654                 goto out;
2655
2656         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2657         if (!cel)
2658                 return -ENOMEM;
2659
2660         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2661                         cel, sizeof(*cel), 0);
2662         if (ret) {
2663                 kfree(cel);
2664                 return ret;
2665         }
2666
2667         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2668 out:
2669         *log = cel;
2670         return 0;
2671 }
2672
2673 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2674 {
2675         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2676
2677         if (check_shl_overflow(1U, units + page_shift - 9, &val))
2678                 return UINT_MAX;
2679         return val;
2680 }
2681
2682 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2683 {
2684         struct nvme_command c = { };
2685         struct nvme_id_ctrl_nvm *id;
2686         int ret;
2687
2688         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2689                 ctrl->max_discard_sectors = UINT_MAX;
2690                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2691         } else {
2692                 ctrl->max_discard_sectors = 0;
2693                 ctrl->max_discard_segments = 0;
2694         }
2695
2696         /*
2697          * Even though NVMe spec explicitly states that MDTS is not applicable
2698          * to the write-zeroes, we are cautious and limit the size to the
2699          * controllers max_hw_sectors value, which is based on the MDTS field
2700          * and possibly other limiting factors.
2701          */
2702         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2703             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2704                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2705         else
2706                 ctrl->max_zeroes_sectors = 0;
2707
2708         if (nvme_ctrl_limited_cns(ctrl))
2709                 return 0;
2710
2711         id = kzalloc(sizeof(*id), GFP_KERNEL);
2712         if (!id)
2713                 return 0;
2714
2715         c.identify.opcode = nvme_admin_identify;
2716         c.identify.cns = NVME_ID_CNS_CS_CTRL;
2717         c.identify.csi = NVME_CSI_NVM;
2718
2719         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2720         if (ret)
2721                 goto free_data;
2722
2723         if (id->dmrl)
2724                 ctrl->max_discard_segments = id->dmrl;
2725         if (id->dmrsl)
2726                 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2727         if (id->wzsl)
2728                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2729
2730 free_data:
2731         kfree(id);
2732         return ret;
2733 }
2734
2735 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2736 {
2737         struct nvme_id_ctrl *id;
2738         u32 max_hw_sectors;
2739         bool prev_apst_enabled;
2740         int ret;
2741
2742         ret = nvme_identify_ctrl(ctrl, &id);
2743         if (ret) {
2744                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2745                 return -EIO;
2746         }
2747
2748         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2749                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2750                 if (ret < 0)
2751                         goto out_free;
2752         }
2753
2754         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2755                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2756
2757         if (!ctrl->identified) {
2758                 unsigned int i;
2759
2760                 ret = nvme_init_subsystem(ctrl, id);
2761                 if (ret)
2762                         goto out_free;
2763
2764                 /*
2765                  * Check for quirks.  Quirk can depend on firmware version,
2766                  * so, in principle, the set of quirks present can change
2767                  * across a reset.  As a possible future enhancement, we
2768                  * could re-scan for quirks every time we reinitialize
2769                  * the device, but we'd have to make sure that the driver
2770                  * behaves intelligently if the quirks change.
2771                  */
2772                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2773                         if (quirk_matches(id, &core_quirks[i]))
2774                                 ctrl->quirks |= core_quirks[i].quirks;
2775                 }
2776         }
2777
2778         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2779                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2780                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2781         }
2782
2783         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2784         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2785         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2786
2787         ctrl->oacs = le16_to_cpu(id->oacs);
2788         ctrl->oncs = le16_to_cpu(id->oncs);
2789         ctrl->mtfa = le16_to_cpu(id->mtfa);
2790         ctrl->oaes = le32_to_cpu(id->oaes);
2791         ctrl->wctemp = le16_to_cpu(id->wctemp);
2792         ctrl->cctemp = le16_to_cpu(id->cctemp);
2793
2794         atomic_set(&ctrl->abort_limit, id->acl + 1);
2795         ctrl->vwc = id->vwc;
2796         if (id->mdts)
2797                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2798         else
2799                 max_hw_sectors = UINT_MAX;
2800         ctrl->max_hw_sectors =
2801                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2802
2803         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2804         ctrl->sgls = le32_to_cpu(id->sgls);
2805         ctrl->kas = le16_to_cpu(id->kas);
2806         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2807         ctrl->ctratt = le32_to_cpu(id->ctratt);
2808
2809         if (id->rtd3e) {
2810                 /* us -> s */
2811                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2812
2813                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2814                                                  shutdown_timeout, 60);
2815
2816                 if (ctrl->shutdown_timeout != shutdown_timeout)
2817                         dev_info(ctrl->device,
2818                                  "Shutdown timeout set to %u seconds\n",
2819                                  ctrl->shutdown_timeout);
2820         } else
2821                 ctrl->shutdown_timeout = shutdown_timeout;
2822
2823         ctrl->npss = id->npss;
2824         ctrl->apsta = id->apsta;
2825         prev_apst_enabled = ctrl->apst_enabled;
2826         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2827                 if (force_apst && id->apsta) {
2828                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2829                         ctrl->apst_enabled = true;
2830                 } else {
2831                         ctrl->apst_enabled = false;
2832                 }
2833         } else {
2834                 ctrl->apst_enabled = id->apsta;
2835         }
2836         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2837
2838         if (ctrl->ops->flags & NVME_F_FABRICS) {
2839                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2840                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2841                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2842                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2843
2844                 /*
2845                  * In fabrics we need to verify the cntlid matches the
2846                  * admin connect
2847                  */
2848                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2849                         dev_err(ctrl->device,
2850                                 "Mismatching cntlid: Connect %u vs Identify "
2851                                 "%u, rejecting\n",
2852                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
2853                         ret = -EINVAL;
2854                         goto out_free;
2855                 }
2856
2857                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2858                         dev_err(ctrl->device,
2859                                 "keep-alive support is mandatory for fabrics\n");
2860                         ret = -EINVAL;
2861                         goto out_free;
2862                 }
2863         } else {
2864                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2865                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2866                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2867                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2868         }
2869
2870         ret = nvme_mpath_init(ctrl, id);
2871         if (ret < 0)
2872                 goto out_free;
2873
2874         if (ctrl->apst_enabled && !prev_apst_enabled)
2875                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2876         else if (!ctrl->apst_enabled && prev_apst_enabled)
2877                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2878
2879 out_free:
2880         kfree(id);
2881         return ret;
2882 }
2883
2884 /*
2885  * Initialize the cached copies of the Identify data and various controller
2886  * register in our nvme_ctrl structure.  This should be called as soon as
2887  * the admin queue is fully up and running.
2888  */
2889 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
2890 {
2891         int ret;
2892
2893         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2894         if (ret) {
2895                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2896                 return ret;
2897         }
2898
2899         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2900
2901         if (ctrl->vs >= NVME_VS(1, 1, 0))
2902                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2903
2904         ret = nvme_init_identify(ctrl);
2905         if (ret)
2906                 return ret;
2907
2908         ret = nvme_init_non_mdts_limits(ctrl);
2909         if (ret < 0)
2910                 return ret;
2911
2912         ret = nvme_configure_apst(ctrl);
2913         if (ret < 0)
2914                 return ret;
2915
2916         ret = nvme_configure_timestamp(ctrl);
2917         if (ret < 0)
2918                 return ret;
2919
2920         ret = nvme_configure_directives(ctrl);
2921         if (ret < 0)
2922                 return ret;
2923
2924         ret = nvme_configure_acre(ctrl);
2925         if (ret < 0)
2926                 return ret;
2927
2928         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
2929                 ret = nvme_hwmon_init(ctrl);
2930                 if (ret < 0)
2931                         return ret;
2932         }
2933
2934         ctrl->identified = true;
2935
2936         return 0;
2937 }
2938 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
2939
2940 static int nvme_dev_open(struct inode *inode, struct file *file)
2941 {
2942         struct nvme_ctrl *ctrl =
2943                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2944
2945         switch (ctrl->state) {
2946         case NVME_CTRL_LIVE:
2947                 break;
2948         default:
2949                 return -EWOULDBLOCK;
2950         }
2951
2952         nvme_get_ctrl(ctrl);
2953         if (!try_module_get(ctrl->ops->module)) {
2954                 nvme_put_ctrl(ctrl);
2955                 return -EINVAL;
2956         }
2957
2958         file->private_data = ctrl;
2959         return 0;
2960 }
2961
2962 static int nvme_dev_release(struct inode *inode, struct file *file)
2963 {
2964         struct nvme_ctrl *ctrl =
2965                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2966
2967         module_put(ctrl->ops->module);
2968         nvme_put_ctrl(ctrl);
2969         return 0;
2970 }
2971
2972 static const struct file_operations nvme_dev_fops = {
2973         .owner          = THIS_MODULE,
2974         .open           = nvme_dev_open,
2975         .release        = nvme_dev_release,
2976         .unlocked_ioctl = nvme_dev_ioctl,
2977         .compat_ioctl   = compat_ptr_ioctl,
2978 };
2979
2980 static ssize_t nvme_sysfs_reset(struct device *dev,
2981                                 struct device_attribute *attr, const char *buf,
2982                                 size_t count)
2983 {
2984         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2985         int ret;
2986
2987         ret = nvme_reset_ctrl_sync(ctrl);
2988         if (ret < 0)
2989                 return ret;
2990         return count;
2991 }
2992 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2993
2994 static ssize_t nvme_sysfs_rescan(struct device *dev,
2995                                 struct device_attribute *attr, const char *buf,
2996                                 size_t count)
2997 {
2998         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2999
3000         nvme_queue_scan(ctrl);
3001         return count;
3002 }
3003 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3004
3005 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3006 {
3007         struct gendisk *disk = dev_to_disk(dev);
3008
3009         if (disk->fops == &nvme_bdev_ops)
3010                 return nvme_get_ns_from_dev(dev)->head;
3011         else
3012                 return disk->private_data;
3013 }
3014
3015 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3016                 char *buf)
3017 {
3018         struct nvme_ns_head *head = dev_to_ns_head(dev);
3019         struct nvme_ns_ids *ids = &head->ids;
3020         struct nvme_subsystem *subsys = head->subsys;
3021         int serial_len = sizeof(subsys->serial);
3022         int model_len = sizeof(subsys->model);
3023
3024         if (!uuid_is_null(&ids->uuid))
3025                 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3026
3027         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3028                 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3029
3030         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3031                 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3032
3033         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3034                                   subsys->serial[serial_len - 1] == '\0'))
3035                 serial_len--;
3036         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3037                                  subsys->model[model_len - 1] == '\0'))
3038                 model_len--;
3039
3040         return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3041                 serial_len, subsys->serial, model_len, subsys->model,
3042                 head->ns_id);
3043 }
3044 static DEVICE_ATTR_RO(wwid);
3045
3046 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3047                 char *buf)
3048 {
3049         return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3050 }
3051 static DEVICE_ATTR_RO(nguid);
3052
3053 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3054                 char *buf)
3055 {
3056         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3057
3058         /* For backward compatibility expose the NGUID to userspace if
3059          * we have no UUID set
3060          */
3061         if (uuid_is_null(&ids->uuid)) {
3062                 printk_ratelimited(KERN_WARNING
3063                                    "No UUID available providing old NGUID\n");
3064                 return sysfs_emit(buf, "%pU\n", ids->nguid);
3065         }
3066         return sysfs_emit(buf, "%pU\n", &ids->uuid);
3067 }
3068 static DEVICE_ATTR_RO(uuid);
3069
3070 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3071                 char *buf)
3072 {
3073         return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3074 }
3075 static DEVICE_ATTR_RO(eui);
3076
3077 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3078                 char *buf)
3079 {
3080         return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3081 }
3082 static DEVICE_ATTR_RO(nsid);
3083
3084 static struct attribute *nvme_ns_id_attrs[] = {
3085         &dev_attr_wwid.attr,
3086         &dev_attr_uuid.attr,
3087         &dev_attr_nguid.attr,
3088         &dev_attr_eui.attr,
3089         &dev_attr_nsid.attr,
3090 #ifdef CONFIG_NVME_MULTIPATH
3091         &dev_attr_ana_grpid.attr,
3092         &dev_attr_ana_state.attr,
3093 #endif
3094         NULL,
3095 };
3096
3097 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3098                 struct attribute *a, int n)
3099 {
3100         struct device *dev = container_of(kobj, struct device, kobj);
3101         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3102
3103         if (a == &dev_attr_uuid.attr) {
3104                 if (uuid_is_null(&ids->uuid) &&
3105                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3106                         return 0;
3107         }
3108         if (a == &dev_attr_nguid.attr) {
3109                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3110                         return 0;
3111         }
3112         if (a == &dev_attr_eui.attr) {
3113                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3114                         return 0;
3115         }
3116 #ifdef CONFIG_NVME_MULTIPATH
3117         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3118                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3119                         return 0;
3120                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3121                         return 0;
3122         }
3123 #endif
3124         return a->mode;
3125 }
3126
3127 static const struct attribute_group nvme_ns_id_attr_group = {
3128         .attrs          = nvme_ns_id_attrs,
3129         .is_visible     = nvme_ns_id_attrs_are_visible,
3130 };
3131
3132 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3133         &nvme_ns_id_attr_group,
3134 #ifdef CONFIG_NVM
3135         &nvme_nvm_attr_group,
3136 #endif
3137         NULL,
3138 };
3139
3140 #define nvme_show_str_function(field)                                           \
3141 static ssize_t  field##_show(struct device *dev,                                \
3142                             struct device_attribute *attr, char *buf)           \
3143 {                                                                               \
3144         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3145         return sysfs_emit(buf, "%.*s\n",                                        \
3146                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3147 }                                                                               \
3148 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3149
3150 nvme_show_str_function(model);
3151 nvme_show_str_function(serial);
3152 nvme_show_str_function(firmware_rev);
3153
3154 #define nvme_show_int_function(field)                                           \
3155 static ssize_t  field##_show(struct device *dev,                                \
3156                             struct device_attribute *attr, char *buf)           \
3157 {                                                                               \
3158         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3159         return sysfs_emit(buf, "%d\n", ctrl->field);                            \
3160 }                                                                               \
3161 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3162
3163 nvme_show_int_function(cntlid);
3164 nvme_show_int_function(numa_node);
3165 nvme_show_int_function(queue_count);
3166 nvme_show_int_function(sqsize);
3167
3168 static ssize_t nvme_sysfs_delete(struct device *dev,
3169                                 struct device_attribute *attr, const char *buf,
3170                                 size_t count)
3171 {
3172         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3173
3174         if (device_remove_file_self(dev, attr))
3175                 nvme_delete_ctrl_sync(ctrl);
3176         return count;
3177 }
3178 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3179
3180 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3181                                          struct device_attribute *attr,
3182                                          char *buf)
3183 {
3184         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3185
3186         return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3187 }
3188 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3189
3190 static ssize_t nvme_sysfs_show_state(struct device *dev,
3191                                      struct device_attribute *attr,
3192                                      char *buf)
3193 {
3194         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3195         static const char *const state_name[] = {
3196                 [NVME_CTRL_NEW]         = "new",
3197                 [NVME_CTRL_LIVE]        = "live",
3198                 [NVME_CTRL_RESETTING]   = "resetting",
3199                 [NVME_CTRL_CONNECTING]  = "connecting",
3200                 [NVME_CTRL_DELETING]    = "deleting",
3201                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3202                 [NVME_CTRL_DEAD]        = "dead",
3203         };
3204
3205         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3206             state_name[ctrl->state])
3207                 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3208
3209         return sysfs_emit(buf, "unknown state\n");
3210 }
3211
3212 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3213
3214 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3215                                          struct device_attribute *attr,
3216                                          char *buf)
3217 {
3218         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3219
3220         return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3221 }
3222 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3223
3224 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3225                                         struct device_attribute *attr,
3226                                         char *buf)
3227 {
3228         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3229
3230         return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3231 }
3232 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3233
3234 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3235                                         struct device_attribute *attr,
3236                                         char *buf)
3237 {
3238         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3239
3240         return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3241 }
3242 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3243
3244 static ssize_t nvme_sysfs_show_address(struct device *dev,
3245                                          struct device_attribute *attr,
3246                                          char *buf)
3247 {
3248         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3249
3250         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3251 }
3252 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3253
3254 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3255                 struct device_attribute *attr, char *buf)
3256 {
3257         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3258         struct nvmf_ctrl_options *opts = ctrl->opts;
3259
3260         if (ctrl->opts->max_reconnects == -1)
3261                 return sysfs_emit(buf, "off\n");
3262         return sysfs_emit(buf, "%d\n",
3263                           opts->max_reconnects * opts->reconnect_delay);
3264 }
3265
3266 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3267                 struct device_attribute *attr, const char *buf, size_t count)
3268 {
3269         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3270         struct nvmf_ctrl_options *opts = ctrl->opts;
3271         int ctrl_loss_tmo, err;
3272
3273         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3274         if (err)
3275                 return -EINVAL;
3276
3277         if (ctrl_loss_tmo < 0)
3278                 opts->max_reconnects = -1;
3279         else
3280                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3281                                                 opts->reconnect_delay);
3282         return count;
3283 }
3284 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3285         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3286
3287 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3288                 struct device_attribute *attr, char *buf)
3289 {
3290         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3291
3292         if (ctrl->opts->reconnect_delay == -1)
3293                 return sysfs_emit(buf, "off\n");
3294         return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3295 }
3296
3297 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3298                 struct device_attribute *attr, const char *buf, size_t count)
3299 {
3300         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3301         unsigned int v;
3302         int err;
3303
3304         err = kstrtou32(buf, 10, &v);
3305         if (err)
3306                 return err;
3307
3308         ctrl->opts->reconnect_delay = v;
3309         return count;
3310 }
3311 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3312         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3313
3314 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3315                 struct device_attribute *attr, char *buf)
3316 {
3317         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3318
3319         if (ctrl->opts->fast_io_fail_tmo == -1)
3320                 return sysfs_emit(buf, "off\n");
3321         return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3322 }
3323
3324 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3325                 struct device_attribute *attr, const char *buf, size_t count)
3326 {
3327         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3328         struct nvmf_ctrl_options *opts = ctrl->opts;
3329         int fast_io_fail_tmo, err;
3330
3331         err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3332         if (err)
3333                 return -EINVAL;
3334
3335         if (fast_io_fail_tmo < 0)
3336                 opts->fast_io_fail_tmo = -1;
3337         else
3338                 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3339         return count;
3340 }
3341 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3342         nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3343
3344 static struct attribute *nvme_dev_attrs[] = {
3345         &dev_attr_reset_controller.attr,
3346         &dev_attr_rescan_controller.attr,
3347         &dev_attr_model.attr,
3348         &dev_attr_serial.attr,
3349         &dev_attr_firmware_rev.attr,
3350         &dev_attr_cntlid.attr,
3351         &dev_attr_delete_controller.attr,
3352         &dev_attr_transport.attr,
3353         &dev_attr_subsysnqn.attr,
3354         &dev_attr_address.attr,
3355         &dev_attr_state.attr,
3356         &dev_attr_numa_node.attr,
3357         &dev_attr_queue_count.attr,
3358         &dev_attr_sqsize.attr,
3359         &dev_attr_hostnqn.attr,
3360         &dev_attr_hostid.attr,
3361         &dev_attr_ctrl_loss_tmo.attr,
3362         &dev_attr_reconnect_delay.attr,
3363         &dev_attr_fast_io_fail_tmo.attr,
3364         NULL
3365 };
3366
3367 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3368                 struct attribute *a, int n)
3369 {
3370         struct device *dev = container_of(kobj, struct device, kobj);
3371         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3372
3373         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3374                 return 0;
3375         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3376                 return 0;
3377         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3378                 return 0;
3379         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3380                 return 0;
3381         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3382                 return 0;
3383         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3384                 return 0;
3385
3386         return a->mode;
3387 }
3388
3389 static const struct attribute_group nvme_dev_attrs_group = {
3390         .attrs          = nvme_dev_attrs,
3391         .is_visible     = nvme_dev_attrs_are_visible,
3392 };
3393
3394 static const struct attribute_group *nvme_dev_attr_groups[] = {
3395         &nvme_dev_attrs_group,
3396         NULL,
3397 };
3398
3399 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3400                 unsigned nsid)
3401 {
3402         struct nvme_ns_head *h;
3403
3404         lockdep_assert_held(&subsys->lock);
3405
3406         list_for_each_entry(h, &subsys->nsheads, entry) {
3407                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3408                         return h;
3409         }
3410
3411         return NULL;
3412 }
3413
3414 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3415                 struct nvme_ns_head *new)
3416 {
3417         struct nvme_ns_head *h;
3418
3419         lockdep_assert_held(&subsys->lock);
3420
3421         list_for_each_entry(h, &subsys->nsheads, entry) {
3422                 if (nvme_ns_ids_valid(&new->ids) &&
3423                     nvme_ns_ids_equal(&new->ids, &h->ids))
3424                         return -EINVAL;
3425         }
3426
3427         return 0;
3428 }
3429
3430 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3431                 unsigned nsid, struct nvme_ns_ids *ids)
3432 {
3433         struct nvme_ns_head *head;
3434         size_t size = sizeof(*head);
3435         int ret = -ENOMEM;
3436
3437 #ifdef CONFIG_NVME_MULTIPATH
3438         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3439 #endif
3440
3441         head = kzalloc(size, GFP_KERNEL);
3442         if (!head)
3443                 goto out;
3444         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3445         if (ret < 0)
3446                 goto out_free_head;
3447         head->instance = ret;
3448         INIT_LIST_HEAD(&head->list);
3449         ret = init_srcu_struct(&head->srcu);
3450         if (ret)
3451                 goto out_ida_remove;
3452         head->subsys = ctrl->subsys;
3453         head->ns_id = nsid;
3454         head->ids = *ids;
3455         kref_init(&head->ref);
3456
3457         ret = __nvme_check_ids(ctrl->subsys, head);
3458         if (ret) {
3459                 dev_err(ctrl->device,
3460                         "duplicate IDs for nsid %d\n", nsid);
3461                 goto out_cleanup_srcu;
3462         }
3463
3464         if (head->ids.csi) {
3465                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3466                 if (ret)
3467                         goto out_cleanup_srcu;
3468         } else
3469                 head->effects = ctrl->effects;
3470
3471         ret = nvme_mpath_alloc_disk(ctrl, head);
3472         if (ret)
3473                 goto out_cleanup_srcu;
3474
3475         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3476
3477         kref_get(&ctrl->subsys->ref);
3478
3479         return head;
3480 out_cleanup_srcu:
3481         cleanup_srcu_struct(&head->srcu);
3482 out_ida_remove:
3483         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3484 out_free_head:
3485         kfree(head);
3486 out:
3487         if (ret > 0)
3488                 ret = blk_status_to_errno(nvme_error_status(ret));
3489         return ERR_PTR(ret);
3490 }
3491
3492 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3493                 struct nvme_ns_ids *ids, bool is_shared)
3494 {
3495         struct nvme_ctrl *ctrl = ns->ctrl;
3496         struct nvme_ns_head *head = NULL;
3497         int ret = 0;
3498
3499         mutex_lock(&ctrl->subsys->lock);
3500         head = nvme_find_ns_head(ctrl->subsys, nsid);
3501         if (!head) {
3502                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3503                 if (IS_ERR(head)) {
3504                         ret = PTR_ERR(head);
3505                         goto out_unlock;
3506                 }
3507                 head->shared = is_shared;
3508         } else {
3509                 ret = -EINVAL;
3510                 if (!is_shared || !head->shared) {
3511                         dev_err(ctrl->device,
3512                                 "Duplicate unshared namespace %d\n", nsid);
3513                         goto out_put_ns_head;
3514                 }
3515                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3516                         dev_err(ctrl->device,
3517                                 "IDs don't match for shared namespace %d\n",
3518                                         nsid);
3519                         goto out_put_ns_head;
3520                 }
3521         }
3522
3523         list_add_tail_rcu(&ns->siblings, &head->list);
3524         ns->head = head;
3525         mutex_unlock(&ctrl->subsys->lock);
3526         return 0;
3527
3528 out_put_ns_head:
3529         nvme_put_ns_head(head);
3530 out_unlock:
3531         mutex_unlock(&ctrl->subsys->lock);
3532         return ret;
3533 }
3534
3535 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3536 {
3537         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3538         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3539
3540         return nsa->head->ns_id - nsb->head->ns_id;
3541 }
3542
3543 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3544 {
3545         struct nvme_ns *ns, *ret = NULL;
3546
3547         down_read(&ctrl->namespaces_rwsem);
3548         list_for_each_entry(ns, &ctrl->namespaces, list) {
3549                 if (ns->head->ns_id == nsid) {
3550                         if (!kref_get_unless_zero(&ns->kref))
3551                                 continue;
3552                         ret = ns;
3553                         break;
3554                 }
3555                 if (ns->head->ns_id > nsid)
3556                         break;
3557         }
3558         up_read(&ctrl->namespaces_rwsem);
3559         return ret;
3560 }
3561 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3562
3563 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3564                 struct nvme_ns_ids *ids)
3565 {
3566         struct nvme_ns *ns;
3567         struct gendisk *disk;
3568         struct nvme_id_ns *id;
3569         int node = ctrl->numa_node;
3570
3571         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3572                 return;
3573
3574         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3575         if (!ns)
3576                 goto out_free_id;
3577
3578         ns->queue = blk_mq_init_queue(ctrl->tagset);
3579         if (IS_ERR(ns->queue))
3580                 goto out_free_ns;
3581
3582         if (ctrl->opts && ctrl->opts->data_digest)
3583                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3584
3585         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3586         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3587                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3588
3589         ns->queue->queuedata = ns;
3590         ns->ctrl = ctrl;
3591         kref_init(&ns->kref);
3592
3593         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3594                 goto out_free_queue;
3595
3596         disk = alloc_disk_node(0, node);
3597         if (!disk)
3598                 goto out_unlink_ns;
3599
3600         disk->fops = &nvme_bdev_ops;
3601         disk->private_data = ns;
3602         disk->queue = ns->queue;
3603         disk->flags = GENHD_FL_EXT_DEVT;
3604         /*
3605          * Without the multipath code enabled, multiple controller per
3606          * subsystems are visible as devices and thus we cannot use the
3607          * subsystem instance.
3608          */
3609         if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3610                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3611                         ns->head->instance);
3612         ns->disk = disk;
3613
3614         if (nvme_update_ns_info(ns, id))
3615                 goto out_put_disk;
3616
3617         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3618                 if (nvme_nvm_register(ns, disk->disk_name, node)) {
3619                         dev_warn(ctrl->device, "LightNVM init failure\n");
3620                         goto out_put_disk;
3621                 }
3622         }
3623
3624         down_write(&ctrl->namespaces_rwsem);
3625         list_add_tail(&ns->list, &ctrl->namespaces);
3626         up_write(&ctrl->namespaces_rwsem);
3627
3628         nvme_get_ctrl(ctrl);
3629
3630         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3631
3632         nvme_mpath_add_disk(ns, id);
3633         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3634         kfree(id);
3635
3636         return;
3637  out_put_disk:
3638         /* prevent double queue cleanup */
3639         ns->disk->queue = NULL;
3640         put_disk(ns->disk);
3641  out_unlink_ns:
3642         mutex_lock(&ctrl->subsys->lock);
3643         list_del_rcu(&ns->siblings);
3644         if (list_empty(&ns->head->list))
3645                 list_del_init(&ns->head->entry);
3646         mutex_unlock(&ctrl->subsys->lock);
3647         nvme_put_ns_head(ns->head);
3648  out_free_queue:
3649         blk_cleanup_queue(ns->queue);
3650  out_free_ns:
3651         kfree(ns);
3652  out_free_id:
3653         kfree(id);
3654 }
3655
3656 static void nvme_ns_remove(struct nvme_ns *ns)
3657 {
3658         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3659                 return;
3660
3661         set_capacity(ns->disk, 0);
3662         nvme_fault_inject_fini(&ns->fault_inject);
3663
3664         mutex_lock(&ns->ctrl->subsys->lock);
3665         list_del_rcu(&ns->siblings);
3666         if (list_empty(&ns->head->list))
3667                 list_del_init(&ns->head->entry);
3668         mutex_unlock(&ns->ctrl->subsys->lock);
3669
3670         synchronize_rcu(); /* guarantee not available in head->list */
3671         nvme_mpath_clear_current_path(ns);
3672         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3673
3674         if (ns->disk->flags & GENHD_FL_UP) {
3675                 del_gendisk(ns->disk);
3676                 blk_cleanup_queue(ns->queue);
3677                 if (blk_get_integrity(ns->disk))
3678                         blk_integrity_unregister(ns->disk);
3679         }
3680
3681         down_write(&ns->ctrl->namespaces_rwsem);
3682         list_del_init(&ns->list);
3683         up_write(&ns->ctrl->namespaces_rwsem);
3684
3685         nvme_mpath_check_last_path(ns);
3686         nvme_put_ns(ns);
3687 }
3688
3689 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3690 {
3691         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3692
3693         if (ns) {
3694                 nvme_ns_remove(ns);
3695                 nvme_put_ns(ns);
3696         }
3697 }
3698
3699 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3700 {
3701         struct nvme_id_ns *id;
3702         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3703
3704         if (test_bit(NVME_NS_DEAD, &ns->flags))
3705                 goto out;
3706
3707         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3708         if (ret)
3709                 goto out;
3710
3711         ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3712         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3713                 dev_err(ns->ctrl->device,
3714                         "identifiers changed for nsid %d\n", ns->head->ns_id);
3715                 goto out_free_id;
3716         }
3717
3718         ret = nvme_update_ns_info(ns, id);
3719
3720 out_free_id:
3721         kfree(id);
3722 out:
3723         /*
3724          * Only remove the namespace if we got a fatal error back from the
3725          * device, otherwise ignore the error and just move on.
3726          *
3727          * TODO: we should probably schedule a delayed retry here.
3728          */
3729         if (ret > 0 && (ret & NVME_SC_DNR))
3730                 nvme_ns_remove(ns);
3731 }
3732
3733 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3734 {
3735         struct nvme_ns_ids ids = { };
3736         struct nvme_ns *ns;
3737
3738         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3739                 return;
3740
3741         ns = nvme_find_get_ns(ctrl, nsid);
3742         if (ns) {
3743                 nvme_validate_ns(ns, &ids);
3744                 nvme_put_ns(ns);
3745                 return;
3746         }
3747
3748         switch (ids.csi) {
3749         case NVME_CSI_NVM:
3750                 nvme_alloc_ns(ctrl, nsid, &ids);
3751                 break;
3752         case NVME_CSI_ZNS:
3753                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3754                         dev_warn(ctrl->device,
3755                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3756                                 nsid);
3757                         break;
3758                 }
3759                 if (!nvme_multi_css(ctrl)) {
3760                         dev_warn(ctrl->device,
3761                                 "command set not reported for nsid: %d\n",
3762                                 nsid);
3763                         break;
3764                 }
3765                 nvme_alloc_ns(ctrl, nsid, &ids);
3766                 break;
3767         default:
3768                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3769                         ids.csi, nsid);
3770                 break;
3771         }
3772 }
3773
3774 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3775                                         unsigned nsid)
3776 {
3777         struct nvme_ns *ns, *next;
3778         LIST_HEAD(rm_list);
3779
3780         down_write(&ctrl->namespaces_rwsem);
3781         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3782                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3783                         list_move_tail(&ns->list, &rm_list);
3784         }
3785         up_write(&ctrl->namespaces_rwsem);
3786
3787         list_for_each_entry_safe(ns, next, &rm_list, list)
3788                 nvme_ns_remove(ns);
3789
3790 }
3791
3792 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3793 {
3794         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3795         __le32 *ns_list;
3796         u32 prev = 0;
3797         int ret = 0, i;
3798
3799         if (nvme_ctrl_limited_cns(ctrl))
3800                 return -EOPNOTSUPP;
3801
3802         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3803         if (!ns_list)
3804                 return -ENOMEM;
3805
3806         for (;;) {
3807                 struct nvme_command cmd = {
3808                         .identify.opcode        = nvme_admin_identify,
3809                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
3810                         .identify.nsid          = cpu_to_le32(prev),
3811                 };
3812
3813                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3814                                             NVME_IDENTIFY_DATA_SIZE);
3815                 if (ret) {
3816                         dev_warn(ctrl->device,
3817                                 "Identify NS List failed (status=0x%x)\n", ret);
3818                         goto free;
3819                 }
3820
3821                 for (i = 0; i < nr_entries; i++) {
3822                         u32 nsid = le32_to_cpu(ns_list[i]);
3823
3824                         if (!nsid)      /* end of the list? */
3825                                 goto out;
3826                         nvme_validate_or_alloc_ns(ctrl, nsid);
3827                         while (++prev < nsid)
3828                                 nvme_ns_remove_by_nsid(ctrl, prev);
3829                 }
3830         }
3831  out:
3832         nvme_remove_invalid_namespaces(ctrl, prev);
3833  free:
3834         kfree(ns_list);
3835         return ret;
3836 }
3837
3838 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3839 {
3840         struct nvme_id_ctrl *id;
3841         u32 nn, i;
3842
3843         if (nvme_identify_ctrl(ctrl, &id))
3844                 return;
3845         nn = le32_to_cpu(id->nn);
3846         kfree(id);
3847
3848         for (i = 1; i <= nn; i++)
3849                 nvme_validate_or_alloc_ns(ctrl, i);
3850
3851         nvme_remove_invalid_namespaces(ctrl, nn);
3852 }
3853
3854 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3855 {
3856         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3857         __le32 *log;
3858         int error;
3859
3860         log = kzalloc(log_size, GFP_KERNEL);
3861         if (!log)
3862                 return;
3863
3864         /*
3865          * We need to read the log to clear the AEN, but we don't want to rely
3866          * on it for the changed namespace information as userspace could have
3867          * raced with us in reading the log page, which could cause us to miss
3868          * updates.
3869          */
3870         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3871                         NVME_CSI_NVM, log, log_size, 0);
3872         if (error)
3873                 dev_warn(ctrl->device,
3874                         "reading changed ns log failed: %d\n", error);
3875
3876         kfree(log);
3877 }
3878
3879 static void nvme_scan_work(struct work_struct *work)
3880 {
3881         struct nvme_ctrl *ctrl =
3882                 container_of(work, struct nvme_ctrl, scan_work);
3883
3884         /* No tagset on a live ctrl means IO queues could not created */
3885         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3886                 return;
3887
3888         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3889                 dev_info(ctrl->device, "rescanning namespaces.\n");
3890                 nvme_clear_changed_ns_log(ctrl);
3891         }
3892
3893         mutex_lock(&ctrl->scan_lock);
3894         if (nvme_scan_ns_list(ctrl) != 0)
3895                 nvme_scan_ns_sequential(ctrl);
3896         mutex_unlock(&ctrl->scan_lock);
3897
3898         down_write(&ctrl->namespaces_rwsem);
3899         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3900         up_write(&ctrl->namespaces_rwsem);
3901 }
3902
3903 /*
3904  * This function iterates the namespace list unlocked to allow recovery from
3905  * controller failure. It is up to the caller to ensure the namespace list is
3906  * not modified by scan work while this function is executing.
3907  */
3908 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3909 {
3910         struct nvme_ns *ns, *next;
3911         LIST_HEAD(ns_list);
3912
3913         /*
3914          * make sure to requeue I/O to all namespaces as these
3915          * might result from the scan itself and must complete
3916          * for the scan_work to make progress
3917          */
3918         nvme_mpath_clear_ctrl_paths(ctrl);
3919
3920         /* prevent racing with ns scanning */
3921         flush_work(&ctrl->scan_work);
3922
3923         /*
3924          * The dead states indicates the controller was not gracefully
3925          * disconnected. In that case, we won't be able to flush any data while
3926          * removing the namespaces' disks; fail all the queues now to avoid
3927          * potentially having to clean up the failed sync later.
3928          */
3929         if (ctrl->state == NVME_CTRL_DEAD)
3930                 nvme_kill_queues(ctrl);
3931
3932         /* this is a no-op when called from the controller reset handler */
3933         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3934
3935         down_write(&ctrl->namespaces_rwsem);
3936         list_splice_init(&ctrl->namespaces, &ns_list);
3937         up_write(&ctrl->namespaces_rwsem);
3938
3939         list_for_each_entry_safe(ns, next, &ns_list, list)
3940                 nvme_ns_remove(ns);
3941 }
3942 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3943
3944 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3945 {
3946         struct nvme_ctrl *ctrl =
3947                 container_of(dev, struct nvme_ctrl, ctrl_device);
3948         struct nvmf_ctrl_options *opts = ctrl->opts;
3949         int ret;
3950
3951         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3952         if (ret)
3953                 return ret;
3954
3955         if (opts) {
3956                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3957                 if (ret)
3958                         return ret;
3959
3960                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3961                                 opts->trsvcid ?: "none");
3962                 if (ret)
3963                         return ret;
3964
3965                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3966                                 opts->host_traddr ?: "none");
3967         }
3968         return ret;
3969 }
3970
3971 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3972 {
3973         char *envp[2] = { NULL, NULL };
3974         u32 aen_result = ctrl->aen_result;
3975
3976         ctrl->aen_result = 0;
3977         if (!aen_result)
3978                 return;
3979
3980         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3981         if (!envp[0])
3982                 return;
3983         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3984         kfree(envp[0]);
3985 }
3986
3987 static void nvme_async_event_work(struct work_struct *work)
3988 {
3989         struct nvme_ctrl *ctrl =
3990                 container_of(work, struct nvme_ctrl, async_event_work);
3991
3992         nvme_aen_uevent(ctrl);
3993         ctrl->ops->submit_async_event(ctrl);
3994 }
3995
3996 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3997 {
3998
3999         u32 csts;
4000
4001         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4002                 return false;
4003
4004         if (csts == ~0)
4005                 return false;
4006
4007         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4008 }
4009
4010 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4011 {
4012         struct nvme_fw_slot_info_log *log;
4013
4014         log = kmalloc(sizeof(*log), GFP_KERNEL);
4015         if (!log)
4016                 return;
4017
4018         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4019                         log, sizeof(*log), 0))
4020                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4021         kfree(log);
4022 }
4023
4024 static void nvme_fw_act_work(struct work_struct *work)
4025 {
4026         struct nvme_ctrl *ctrl = container_of(work,
4027                                 struct nvme_ctrl, fw_act_work);
4028         unsigned long fw_act_timeout;
4029
4030         if (ctrl->mtfa)
4031                 fw_act_timeout = jiffies +
4032                                 msecs_to_jiffies(ctrl->mtfa * 100);
4033         else
4034                 fw_act_timeout = jiffies +
4035                                 msecs_to_jiffies(admin_timeout * 1000);
4036
4037         nvme_stop_queues(ctrl);
4038         while (nvme_ctrl_pp_status(ctrl)) {
4039                 if (time_after(jiffies, fw_act_timeout)) {
4040                         dev_warn(ctrl->device,
4041                                 "Fw activation timeout, reset controller\n");
4042                         nvme_try_sched_reset(ctrl);
4043                         return;
4044                 }
4045                 msleep(100);
4046         }
4047
4048         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4049                 return;
4050
4051         nvme_start_queues(ctrl);
4052         /* read FW slot information to clear the AER */
4053         nvme_get_fw_slot_info(ctrl);
4054 }
4055
4056 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4057 {
4058         u32 aer_notice_type = (result & 0xff00) >> 8;
4059
4060         trace_nvme_async_event(ctrl, aer_notice_type);
4061
4062         switch (aer_notice_type) {
4063         case NVME_AER_NOTICE_NS_CHANGED:
4064                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4065                 nvme_queue_scan(ctrl);
4066                 break;
4067         case NVME_AER_NOTICE_FW_ACT_STARTING:
4068                 /*
4069                  * We are (ab)using the RESETTING state to prevent subsequent
4070                  * recovery actions from interfering with the controller's
4071                  * firmware activation.
4072                  */
4073                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4074                         queue_work(nvme_wq, &ctrl->fw_act_work);
4075                 break;
4076 #ifdef CONFIG_NVME_MULTIPATH
4077         case NVME_AER_NOTICE_ANA:
4078                 if (!ctrl->ana_log_buf)
4079                         break;
4080                 queue_work(nvme_wq, &ctrl->ana_work);
4081                 break;
4082 #endif
4083         case NVME_AER_NOTICE_DISC_CHANGED:
4084                 ctrl->aen_result = result;
4085                 break;
4086         default:
4087                 dev_warn(ctrl->device, "async event result %08x\n", result);
4088         }
4089 }
4090
4091 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4092                 volatile union nvme_result *res)
4093 {
4094         u32 result = le32_to_cpu(res->u32);
4095         u32 aer_type = result & 0x07;
4096
4097         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4098                 return;
4099
4100         switch (aer_type) {
4101         case NVME_AER_NOTICE:
4102                 nvme_handle_aen_notice(ctrl, result);
4103                 break;
4104         case NVME_AER_ERROR:
4105         case NVME_AER_SMART:
4106         case NVME_AER_CSS:
4107         case NVME_AER_VS:
4108                 trace_nvme_async_event(ctrl, aer_type);
4109                 ctrl->aen_result = result;
4110                 break;
4111         default:
4112                 break;
4113         }
4114         queue_work(nvme_wq, &ctrl->async_event_work);
4115 }
4116 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4117
4118 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4119 {
4120         nvme_mpath_stop(ctrl);
4121         nvme_stop_keep_alive(ctrl);
4122         nvme_stop_failfast_work(ctrl);
4123         flush_work(&ctrl->async_event_work);
4124         cancel_work_sync(&ctrl->fw_act_work);
4125 }
4126 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4127
4128 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4129 {
4130         nvme_start_keep_alive(ctrl);
4131
4132         nvme_enable_aen(ctrl);
4133
4134         if (ctrl->queue_count > 1) {
4135                 nvme_queue_scan(ctrl);
4136                 nvme_start_queues(ctrl);
4137         }
4138 }
4139 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4140
4141 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4142 {
4143         nvme_hwmon_exit(ctrl);
4144         nvme_fault_inject_fini(&ctrl->fault_inject);
4145         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4146         cdev_device_del(&ctrl->cdev, ctrl->device);
4147         nvme_put_ctrl(ctrl);
4148 }
4149 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4150
4151 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4152 {
4153         struct nvme_effects_log *cel;
4154         unsigned long i;
4155
4156         xa_for_each(&ctrl->cels, i, cel) {
4157                 xa_erase(&ctrl->cels, i);
4158                 kfree(cel);
4159         }
4160
4161         xa_destroy(&ctrl->cels);
4162 }
4163
4164 static void nvme_free_ctrl(struct device *dev)
4165 {
4166         struct nvme_ctrl *ctrl =
4167                 container_of(dev, struct nvme_ctrl, ctrl_device);
4168         struct nvme_subsystem *subsys = ctrl->subsys;
4169
4170         if (!subsys || ctrl->instance != subsys->instance)
4171                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4172
4173         nvme_free_cels(ctrl);
4174         nvme_mpath_uninit(ctrl);
4175         __free_page(ctrl->discard_page);
4176
4177         if (subsys) {
4178                 mutex_lock(&nvme_subsystems_lock);
4179                 list_del(&ctrl->subsys_entry);
4180                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4181                 mutex_unlock(&nvme_subsystems_lock);
4182         }
4183
4184         ctrl->ops->free_ctrl(ctrl);
4185
4186         if (subsys)
4187                 nvme_put_subsystem(subsys);
4188 }
4189
4190 /*
4191  * Initialize a NVMe controller structures.  This needs to be called during
4192  * earliest initialization so that we have the initialized structured around
4193  * during probing.
4194  */
4195 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4196                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4197 {
4198         int ret;
4199
4200         ctrl->state = NVME_CTRL_NEW;
4201         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4202         spin_lock_init(&ctrl->lock);
4203         mutex_init(&ctrl->scan_lock);
4204         INIT_LIST_HEAD(&ctrl->namespaces);
4205         xa_init(&ctrl->cels);
4206         init_rwsem(&ctrl->namespaces_rwsem);
4207         ctrl->dev = dev;
4208         ctrl->ops = ops;
4209         ctrl->quirks = quirks;
4210         ctrl->numa_node = NUMA_NO_NODE;
4211         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4212         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4213         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4214         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4215         init_waitqueue_head(&ctrl->state_wq);
4216
4217         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4218         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4219         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4220         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4221
4222         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4223                         PAGE_SIZE);
4224         ctrl->discard_page = alloc_page(GFP_KERNEL);
4225         if (!ctrl->discard_page) {
4226                 ret = -ENOMEM;
4227                 goto out;
4228         }
4229
4230         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4231         if (ret < 0)
4232                 goto out;
4233         ctrl->instance = ret;
4234
4235         device_initialize(&ctrl->ctrl_device);
4236         ctrl->device = &ctrl->ctrl_device;
4237         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4238                         ctrl->instance);
4239         ctrl->device->class = nvme_class;
4240         ctrl->device->parent = ctrl->dev;
4241         ctrl->device->groups = nvme_dev_attr_groups;
4242         ctrl->device->release = nvme_free_ctrl;
4243         dev_set_drvdata(ctrl->device, ctrl);
4244         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4245         if (ret)
4246                 goto out_release_instance;
4247
4248         nvme_get_ctrl(ctrl);
4249         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4250         ctrl->cdev.owner = ops->module;
4251         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4252         if (ret)
4253                 goto out_free_name;
4254
4255         /*
4256          * Initialize latency tolerance controls.  The sysfs files won't
4257          * be visible to userspace unless the device actually supports APST.
4258          */
4259         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4260         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4261                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4262
4263         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4264
4265         return 0;
4266 out_free_name:
4267         nvme_put_ctrl(ctrl);
4268         kfree_const(ctrl->device->kobj.name);
4269 out_release_instance:
4270         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4271 out:
4272         if (ctrl->discard_page)
4273                 __free_page(ctrl->discard_page);
4274         return ret;
4275 }
4276 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4277
4278 /**
4279  * nvme_kill_queues(): Ends all namespace queues
4280  * @ctrl: the dead controller that needs to end
4281  *
4282  * Call this function when the driver determines it is unable to get the
4283  * controller in a state capable of servicing IO.
4284  */
4285 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4286 {
4287         struct nvme_ns *ns;
4288
4289         down_read(&ctrl->namespaces_rwsem);
4290
4291         /* Forcibly unquiesce queues to avoid blocking dispatch */
4292         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4293                 blk_mq_unquiesce_queue(ctrl->admin_q);
4294
4295         list_for_each_entry(ns, &ctrl->namespaces, list)
4296                 nvme_set_queue_dying(ns);
4297
4298         up_read(&ctrl->namespaces_rwsem);
4299 }
4300 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4301
4302 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4303 {
4304         struct nvme_ns *ns;
4305
4306         down_read(&ctrl->namespaces_rwsem);
4307         list_for_each_entry(ns, &ctrl->namespaces, list)
4308                 blk_mq_unfreeze_queue(ns->queue);
4309         up_read(&ctrl->namespaces_rwsem);
4310 }
4311 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4312
4313 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4314 {
4315         struct nvme_ns *ns;
4316
4317         down_read(&ctrl->namespaces_rwsem);
4318         list_for_each_entry(ns, &ctrl->namespaces, list) {
4319                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4320                 if (timeout <= 0)
4321                         break;
4322         }
4323         up_read(&ctrl->namespaces_rwsem);
4324         return timeout;
4325 }
4326 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4327
4328 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4329 {
4330         struct nvme_ns *ns;
4331
4332         down_read(&ctrl->namespaces_rwsem);
4333         list_for_each_entry(ns, &ctrl->namespaces, list)
4334                 blk_mq_freeze_queue_wait(ns->queue);
4335         up_read(&ctrl->namespaces_rwsem);
4336 }
4337 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4338
4339 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4340 {
4341         struct nvme_ns *ns;
4342
4343         down_read(&ctrl->namespaces_rwsem);
4344         list_for_each_entry(ns, &ctrl->namespaces, list)
4345                 blk_freeze_queue_start(ns->queue);
4346         up_read(&ctrl->namespaces_rwsem);
4347 }
4348 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4349
4350 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4351 {
4352         struct nvme_ns *ns;
4353
4354         down_read(&ctrl->namespaces_rwsem);
4355         list_for_each_entry(ns, &ctrl->namespaces, list)
4356                 blk_mq_quiesce_queue(ns->queue);
4357         up_read(&ctrl->namespaces_rwsem);
4358 }
4359 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4360
4361 void nvme_start_queues(struct nvme_ctrl *ctrl)
4362 {
4363         struct nvme_ns *ns;
4364
4365         down_read(&ctrl->namespaces_rwsem);
4366         list_for_each_entry(ns, &ctrl->namespaces, list)
4367                 blk_mq_unquiesce_queue(ns->queue);
4368         up_read(&ctrl->namespaces_rwsem);
4369 }
4370 EXPORT_SYMBOL_GPL(nvme_start_queues);
4371
4372 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4373 {
4374         struct nvme_ns *ns;
4375
4376         down_read(&ctrl->namespaces_rwsem);
4377         list_for_each_entry(ns, &ctrl->namespaces, list)
4378                 blk_sync_queue(ns->queue);
4379         up_read(&ctrl->namespaces_rwsem);
4380 }
4381 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4382
4383 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4384 {
4385         nvme_sync_io_queues(ctrl);
4386         if (ctrl->admin_q)
4387                 blk_sync_queue(ctrl->admin_q);
4388 }
4389 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4390
4391 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4392 {
4393         if (file->f_op != &nvme_dev_fops)
4394                 return NULL;
4395         return file->private_data;
4396 }
4397 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4398
4399 /*
4400  * Check we didn't inadvertently grow the command structure sizes:
4401  */
4402 static inline void _nvme_check_size(void)
4403 {
4404         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4405         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4406         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4407         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4408         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4409         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4410         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4411         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4412         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4413         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4414         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4415         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4416         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4417         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4418         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4419         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4420         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4421         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4422         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4423         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4424 }
4425
4426
4427 static int __init nvme_core_init(void)
4428 {
4429         int result = -ENOMEM;
4430
4431         _nvme_check_size();
4432
4433         nvme_wq = alloc_workqueue("nvme-wq",
4434                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4435         if (!nvme_wq)
4436                 goto out;
4437
4438         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4439                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4440         if (!nvme_reset_wq)
4441                 goto destroy_wq;
4442
4443         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4444                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4445         if (!nvme_delete_wq)
4446                 goto destroy_reset_wq;
4447
4448         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4449                         NVME_MINORS, "nvme");
4450         if (result < 0)
4451                 goto destroy_delete_wq;
4452
4453         nvme_class = class_create(THIS_MODULE, "nvme");
4454         if (IS_ERR(nvme_class)) {
4455                 result = PTR_ERR(nvme_class);
4456                 goto unregister_chrdev;
4457         }
4458         nvme_class->dev_uevent = nvme_class_uevent;
4459
4460         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4461         if (IS_ERR(nvme_subsys_class)) {
4462                 result = PTR_ERR(nvme_subsys_class);
4463                 goto destroy_class;
4464         }
4465         return 0;
4466
4467 destroy_class:
4468         class_destroy(nvme_class);
4469 unregister_chrdev:
4470         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4471 destroy_delete_wq:
4472         destroy_workqueue(nvme_delete_wq);
4473 destroy_reset_wq:
4474         destroy_workqueue(nvme_reset_wq);
4475 destroy_wq:
4476         destroy_workqueue(nvme_wq);
4477 out:
4478         return result;
4479 }
4480
4481 static void __exit nvme_core_exit(void)
4482 {
4483         class_destroy(nvme_subsys_class);
4484         class_destroy(nvme_class);
4485         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4486         destroy_workqueue(nvme_delete_wq);
4487         destroy_workqueue(nvme_reset_wq);
4488         destroy_workqueue(nvme_wq);
4489         ida_destroy(&nvme_instance_ida);
4490 }
4491
4492 MODULE_LICENSE("GPL");
4493 MODULE_VERSION("1.0");
4494 module_init(nvme_core_init);
4495 module_exit(nvme_core_exit);