nvme: add 'iopolicy' module parameter
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63         "primary APST timeout in ms");
64
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68         "secondary APST timeout in ms");
69
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73         "primary APST latency tolerance in us");
74
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78         "secondary APST latency tolerance in us");
79
80 static bool streams;
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83
84 /*
85  * nvme_wq - hosts nvme related works that are not reset or delete
86  * nvme_reset_wq - hosts nvme reset works
87  * nvme_delete_wq - hosts nvme delete works
88  *
89  * nvme_wq will host works such as scan, aen handling, fw activation,
90  * keep-alive, periodic reconnects etc. nvme_reset_wq
91  * runs reset works which also flush works hosted on nvme_wq for
92  * serialization purposes. nvme_delete_wq host controller deletion
93  * works which flush reset works for serialization.
94  */
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
97
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
100
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
103
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
106
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
111
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
115
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118                                            unsigned nsid);
119 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
120                                    struct nvme_command *cmd);
121
122 void nvme_queue_scan(struct nvme_ctrl *ctrl)
123 {
124         /*
125          * Only new queue scan work when admin and IO queues are both alive
126          */
127         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
128                 queue_work(nvme_wq, &ctrl->scan_work);
129 }
130
131 /*
132  * Use this function to proceed with scheduling reset_work for a controller
133  * that had previously been set to the resetting state. This is intended for
134  * code paths that can't be interrupted by other reset attempts. A hot removal
135  * may prevent this from succeeding.
136  */
137 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
138 {
139         if (ctrl->state != NVME_CTRL_RESETTING)
140                 return -EBUSY;
141         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
142                 return -EBUSY;
143         return 0;
144 }
145 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
146
147 static void nvme_failfast_work(struct work_struct *work)
148 {
149         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
150                         struct nvme_ctrl, failfast_work);
151
152         if (ctrl->state != NVME_CTRL_CONNECTING)
153                 return;
154
155         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
156         dev_info(ctrl->device, "failfast expired\n");
157         nvme_kick_requeue_lists(ctrl);
158 }
159
160 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
161 {
162         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
163                 return;
164
165         schedule_delayed_work(&ctrl->failfast_work,
166                               ctrl->opts->fast_io_fail_tmo * HZ);
167 }
168
169 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
170 {
171         if (!ctrl->opts)
172                 return;
173
174         cancel_delayed_work_sync(&ctrl->failfast_work);
175         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
176 }
177
178
179 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
180 {
181         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
182                 return -EBUSY;
183         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
184                 return -EBUSY;
185         return 0;
186 }
187 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
188
189 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
190 {
191         int ret;
192
193         ret = nvme_reset_ctrl(ctrl);
194         if (!ret) {
195                 flush_work(&ctrl->reset_work);
196                 if (ctrl->state != NVME_CTRL_LIVE)
197                         ret = -ENETRESET;
198         }
199
200         return ret;
201 }
202
203 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
204 {
205         dev_info(ctrl->device,
206                  "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
207
208         flush_work(&ctrl->reset_work);
209         nvme_stop_ctrl(ctrl);
210         nvme_remove_namespaces(ctrl);
211         ctrl->ops->delete_ctrl(ctrl);
212         nvme_uninit_ctrl(ctrl);
213 }
214
215 static void nvme_delete_ctrl_work(struct work_struct *work)
216 {
217         struct nvme_ctrl *ctrl =
218                 container_of(work, struct nvme_ctrl, delete_work);
219
220         nvme_do_delete_ctrl(ctrl);
221 }
222
223 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
224 {
225         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
226                 return -EBUSY;
227         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
228                 return -EBUSY;
229         return 0;
230 }
231 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
232
233 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
234 {
235         /*
236          * Keep a reference until nvme_do_delete_ctrl() complete,
237          * since ->delete_ctrl can free the controller.
238          */
239         nvme_get_ctrl(ctrl);
240         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
241                 nvme_do_delete_ctrl(ctrl);
242         nvme_put_ctrl(ctrl);
243 }
244
245 static blk_status_t nvme_error_status(u16 status)
246 {
247         switch (status & 0x7ff) {
248         case NVME_SC_SUCCESS:
249                 return BLK_STS_OK;
250         case NVME_SC_CAP_EXCEEDED:
251                 return BLK_STS_NOSPC;
252         case NVME_SC_LBA_RANGE:
253         case NVME_SC_CMD_INTERRUPTED:
254         case NVME_SC_NS_NOT_READY:
255                 return BLK_STS_TARGET;
256         case NVME_SC_BAD_ATTRIBUTES:
257         case NVME_SC_ONCS_NOT_SUPPORTED:
258         case NVME_SC_INVALID_OPCODE:
259         case NVME_SC_INVALID_FIELD:
260         case NVME_SC_INVALID_NS:
261                 return BLK_STS_NOTSUPP;
262         case NVME_SC_WRITE_FAULT:
263         case NVME_SC_READ_ERROR:
264         case NVME_SC_UNWRITTEN_BLOCK:
265         case NVME_SC_ACCESS_DENIED:
266         case NVME_SC_READ_ONLY:
267         case NVME_SC_COMPARE_FAILED:
268                 return BLK_STS_MEDIUM;
269         case NVME_SC_GUARD_CHECK:
270         case NVME_SC_APPTAG_CHECK:
271         case NVME_SC_REFTAG_CHECK:
272         case NVME_SC_INVALID_PI:
273                 return BLK_STS_PROTECTION;
274         case NVME_SC_RESERVATION_CONFLICT:
275                 return BLK_STS_NEXUS;
276         case NVME_SC_HOST_PATH_ERROR:
277                 return BLK_STS_TRANSPORT;
278         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
279                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
280         case NVME_SC_ZONE_TOO_MANY_OPEN:
281                 return BLK_STS_ZONE_OPEN_RESOURCE;
282         default:
283                 return BLK_STS_IOERR;
284         }
285 }
286
287 static void nvme_retry_req(struct request *req)
288 {
289         unsigned long delay = 0;
290         u16 crd;
291
292         /* The mask and shift result must be <= 3 */
293         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
294         if (crd)
295                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
296
297         nvme_req(req)->retries++;
298         blk_mq_requeue_request(req, false);
299         blk_mq_delay_kick_requeue_list(req->q, delay);
300 }
301
302 enum nvme_disposition {
303         COMPLETE,
304         RETRY,
305         FAILOVER,
306 };
307
308 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
309 {
310         if (likely(nvme_req(req)->status == 0))
311                 return COMPLETE;
312
313         if (blk_noretry_request(req) ||
314             (nvme_req(req)->status & NVME_SC_DNR) ||
315             nvme_req(req)->retries >= nvme_max_retries)
316                 return COMPLETE;
317
318         if (req->cmd_flags & REQ_NVME_MPATH) {
319                 if (nvme_is_path_error(nvme_req(req)->status) ||
320                     blk_queue_dying(req->q))
321                         return FAILOVER;
322         } else {
323                 if (blk_queue_dying(req->q))
324                         return COMPLETE;
325         }
326
327         return RETRY;
328 }
329
330 static inline void nvme_end_req_zoned(struct request *req)
331 {
332         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
333             req_op(req) == REQ_OP_ZONE_APPEND)
334                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
335                         le64_to_cpu(nvme_req(req)->result.u64));
336 }
337
338 static inline void nvme_end_req(struct request *req)
339 {
340         blk_status_t status = nvme_error_status(nvme_req(req)->status);
341
342         nvme_end_req_zoned(req);
343         nvme_trace_bio_complete(req);
344         blk_mq_end_request(req, status);
345 }
346
347 void nvme_complete_rq(struct request *req)
348 {
349         trace_nvme_complete_rq(req);
350         nvme_cleanup_cmd(req);
351
352         if (nvme_req(req)->ctrl->kas)
353                 nvme_req(req)->ctrl->comp_seen = true;
354
355         switch (nvme_decide_disposition(req)) {
356         case COMPLETE:
357                 nvme_end_req(req);
358                 return;
359         case RETRY:
360                 nvme_retry_req(req);
361                 return;
362         case FAILOVER:
363                 nvme_failover_req(req);
364                 return;
365         }
366 }
367 EXPORT_SYMBOL_GPL(nvme_complete_rq);
368
369 void nvme_complete_batch_req(struct request *req)
370 {
371         nvme_cleanup_cmd(req);
372         nvme_end_req_zoned(req);
373 }
374 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
375
376 /*
377  * Called to unwind from ->queue_rq on a failed command submission so that the
378  * multipathing code gets called to potentially failover to another path.
379  * The caller needs to unwind all transport specific resource allocations and
380  * must return propagate the return value.
381  */
382 blk_status_t nvme_host_path_error(struct request *req)
383 {
384         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
385         blk_mq_set_request_complete(req);
386         nvme_complete_rq(req);
387         return BLK_STS_OK;
388 }
389 EXPORT_SYMBOL_GPL(nvme_host_path_error);
390
391 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
392 {
393         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
394                                 "Cancelling I/O %d", req->tag);
395
396         /* don't abort one completed request */
397         if (blk_mq_request_completed(req))
398                 return true;
399
400         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
401         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
402         blk_mq_complete_request(req);
403         return true;
404 }
405 EXPORT_SYMBOL_GPL(nvme_cancel_request);
406
407 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
408 {
409         if (ctrl->tagset) {
410                 blk_mq_tagset_busy_iter(ctrl->tagset,
411                                 nvme_cancel_request, ctrl);
412                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
413         }
414 }
415 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
416
417 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
418 {
419         if (ctrl->admin_tagset) {
420                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
421                                 nvme_cancel_request, ctrl);
422                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
423         }
424 }
425 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
426
427 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
428                 enum nvme_ctrl_state new_state)
429 {
430         enum nvme_ctrl_state old_state;
431         unsigned long flags;
432         bool changed = false;
433
434         spin_lock_irqsave(&ctrl->lock, flags);
435
436         old_state = ctrl->state;
437         switch (new_state) {
438         case NVME_CTRL_LIVE:
439                 switch (old_state) {
440                 case NVME_CTRL_NEW:
441                 case NVME_CTRL_RESETTING:
442                 case NVME_CTRL_CONNECTING:
443                         changed = true;
444                         fallthrough;
445                 default:
446                         break;
447                 }
448                 break;
449         case NVME_CTRL_RESETTING:
450                 switch (old_state) {
451                 case NVME_CTRL_NEW:
452                 case NVME_CTRL_LIVE:
453                         changed = true;
454                         fallthrough;
455                 default:
456                         break;
457                 }
458                 break;
459         case NVME_CTRL_CONNECTING:
460                 switch (old_state) {
461                 case NVME_CTRL_NEW:
462                 case NVME_CTRL_RESETTING:
463                         changed = true;
464                         fallthrough;
465                 default:
466                         break;
467                 }
468                 break;
469         case NVME_CTRL_DELETING:
470                 switch (old_state) {
471                 case NVME_CTRL_LIVE:
472                 case NVME_CTRL_RESETTING:
473                 case NVME_CTRL_CONNECTING:
474                         changed = true;
475                         fallthrough;
476                 default:
477                         break;
478                 }
479                 break;
480         case NVME_CTRL_DELETING_NOIO:
481                 switch (old_state) {
482                 case NVME_CTRL_DELETING:
483                 case NVME_CTRL_DEAD:
484                         changed = true;
485                         fallthrough;
486                 default:
487                         break;
488                 }
489                 break;
490         case NVME_CTRL_DEAD:
491                 switch (old_state) {
492                 case NVME_CTRL_DELETING:
493                         changed = true;
494                         fallthrough;
495                 default:
496                         break;
497                 }
498                 break;
499         default:
500                 break;
501         }
502
503         if (changed) {
504                 ctrl->state = new_state;
505                 wake_up_all(&ctrl->state_wq);
506         }
507
508         spin_unlock_irqrestore(&ctrl->lock, flags);
509         if (!changed)
510                 return false;
511
512         if (ctrl->state == NVME_CTRL_LIVE) {
513                 if (old_state == NVME_CTRL_CONNECTING)
514                         nvme_stop_failfast_work(ctrl);
515                 nvme_kick_requeue_lists(ctrl);
516         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
517                 old_state == NVME_CTRL_RESETTING) {
518                 nvme_start_failfast_work(ctrl);
519         }
520         return changed;
521 }
522 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
523
524 /*
525  * Returns true for sink states that can't ever transition back to live.
526  */
527 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
528 {
529         switch (ctrl->state) {
530         case NVME_CTRL_NEW:
531         case NVME_CTRL_LIVE:
532         case NVME_CTRL_RESETTING:
533         case NVME_CTRL_CONNECTING:
534                 return false;
535         case NVME_CTRL_DELETING:
536         case NVME_CTRL_DELETING_NOIO:
537         case NVME_CTRL_DEAD:
538                 return true;
539         default:
540                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
541                 return true;
542         }
543 }
544
545 /*
546  * Waits for the controller state to be resetting, or returns false if it is
547  * not possible to ever transition to that state.
548  */
549 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
550 {
551         wait_event(ctrl->state_wq,
552                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
553                    nvme_state_terminal(ctrl));
554         return ctrl->state == NVME_CTRL_RESETTING;
555 }
556 EXPORT_SYMBOL_GPL(nvme_wait_reset);
557
558 static void nvme_free_ns_head(struct kref *ref)
559 {
560         struct nvme_ns_head *head =
561                 container_of(ref, struct nvme_ns_head, ref);
562
563         nvme_mpath_remove_disk(head);
564         ida_simple_remove(&head->subsys->ns_ida, head->instance);
565         cleanup_srcu_struct(&head->srcu);
566         nvme_put_subsystem(head->subsys);
567         kfree(head);
568 }
569
570 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
571 {
572         return kref_get_unless_zero(&head->ref);
573 }
574
575 void nvme_put_ns_head(struct nvme_ns_head *head)
576 {
577         kref_put(&head->ref, nvme_free_ns_head);
578 }
579
580 static void nvme_free_ns(struct kref *kref)
581 {
582         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
583
584         put_disk(ns->disk);
585         nvme_put_ns_head(ns->head);
586         nvme_put_ctrl(ns->ctrl);
587         kfree(ns);
588 }
589
590 static inline bool nvme_get_ns(struct nvme_ns *ns)
591 {
592         return kref_get_unless_zero(&ns->kref);
593 }
594
595 void nvme_put_ns(struct nvme_ns *ns)
596 {
597         kref_put(&ns->kref, nvme_free_ns);
598 }
599 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
600
601 static inline void nvme_clear_nvme_request(struct request *req)
602 {
603         nvme_req(req)->status = 0;
604         nvme_req(req)->retries = 0;
605         nvme_req(req)->flags = 0;
606         req->rq_flags |= RQF_DONTPREP;
607 }
608
609 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
610 {
611         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
612 }
613
614 static inline void nvme_init_request(struct request *req,
615                 struct nvme_command *cmd)
616 {
617         if (req->q->queuedata)
618                 req->timeout = NVME_IO_TIMEOUT;
619         else /* no queuedata implies admin queue */
620                 req->timeout = NVME_ADMIN_TIMEOUT;
621
622         /* passthru commands should let the driver set the SGL flags */
623         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
624
625         req->cmd_flags |= REQ_FAILFAST_DRIVER;
626         if (req->mq_hctx->type == HCTX_TYPE_POLL)
627                 req->cmd_flags |= REQ_POLLED;
628         nvme_clear_nvme_request(req);
629         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
630 }
631
632 struct request *nvme_alloc_request(struct request_queue *q,
633                 struct nvme_command *cmd, blk_mq_req_flags_t flags)
634 {
635         struct request *req;
636
637         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
638         if (!IS_ERR(req))
639                 nvme_init_request(req, cmd);
640         return req;
641 }
642 EXPORT_SYMBOL_GPL(nvme_alloc_request);
643
644 static struct request *nvme_alloc_request_qid(struct request_queue *q,
645                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
646 {
647         struct request *req;
648
649         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
650                         qid ? qid - 1 : 0);
651         if (!IS_ERR(req))
652                 nvme_init_request(req, cmd);
653         return req;
654 }
655
656 /*
657  * For something we're not in a state to send to the device the default action
658  * is to busy it and retry it after the controller state is recovered.  However,
659  * if the controller is deleting or if anything is marked for failfast or
660  * nvme multipath it is immediately failed.
661  *
662  * Note: commands used to initialize the controller will be marked for failfast.
663  * Note: nvme cli/ioctl commands are marked for failfast.
664  */
665 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
666                 struct request *rq)
667 {
668         if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
669             ctrl->state != NVME_CTRL_DEAD &&
670             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
671             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
672                 return BLK_STS_RESOURCE;
673         return nvme_host_path_error(rq);
674 }
675 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
676
677 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
678                 bool queue_live)
679 {
680         struct nvme_request *req = nvme_req(rq);
681
682         /*
683          * currently we have a problem sending passthru commands
684          * on the admin_q if the controller is not LIVE because we can't
685          * make sure that they are going out after the admin connect,
686          * controller enable and/or other commands in the initialization
687          * sequence. until the controller will be LIVE, fail with
688          * BLK_STS_RESOURCE so that they will be rescheduled.
689          */
690         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
691                 return false;
692
693         if (ctrl->ops->flags & NVME_F_FABRICS) {
694                 /*
695                  * Only allow commands on a live queue, except for the connect
696                  * command, which is require to set the queue live in the
697                  * appropinquate states.
698                  */
699                 switch (ctrl->state) {
700                 case NVME_CTRL_CONNECTING:
701                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
702                             req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
703                                 return true;
704                         break;
705                 default:
706                         break;
707                 case NVME_CTRL_DEAD:
708                         return false;
709                 }
710         }
711
712         return queue_live;
713 }
714 EXPORT_SYMBOL_GPL(__nvme_check_ready);
715
716 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
717 {
718         struct nvme_command c = { };
719
720         c.directive.opcode = nvme_admin_directive_send;
721         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
722         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
723         c.directive.dtype = NVME_DIR_IDENTIFY;
724         c.directive.tdtype = NVME_DIR_STREAMS;
725         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
726
727         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
728 }
729
730 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
731 {
732         return nvme_toggle_streams(ctrl, false);
733 }
734
735 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
736 {
737         return nvme_toggle_streams(ctrl, true);
738 }
739
740 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
741                                   struct streams_directive_params *s, u32 nsid)
742 {
743         struct nvme_command c = { };
744
745         memset(s, 0, sizeof(*s));
746
747         c.directive.opcode = nvme_admin_directive_recv;
748         c.directive.nsid = cpu_to_le32(nsid);
749         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
750         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
751         c.directive.dtype = NVME_DIR_STREAMS;
752
753         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
754 }
755
756 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
757 {
758         struct streams_directive_params s;
759         int ret;
760
761         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
762                 return 0;
763         if (!streams)
764                 return 0;
765
766         ret = nvme_enable_streams(ctrl);
767         if (ret)
768                 return ret;
769
770         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
771         if (ret)
772                 goto out_disable_stream;
773
774         ctrl->nssa = le16_to_cpu(s.nssa);
775         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
776                 dev_info(ctrl->device, "too few streams (%u) available\n",
777                                         ctrl->nssa);
778                 goto out_disable_stream;
779         }
780
781         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
782         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
783         return 0;
784
785 out_disable_stream:
786         nvme_disable_streams(ctrl);
787         return ret;
788 }
789
790 /*
791  * Check if 'req' has a write hint associated with it. If it does, assign
792  * a valid namespace stream to the write.
793  */
794 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
795                                      struct request *req, u16 *control,
796                                      u32 *dsmgmt)
797 {
798         enum rw_hint streamid = req->write_hint;
799
800         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
801                 streamid = 0;
802         else {
803                 streamid--;
804                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
805                         return;
806
807                 *control |= NVME_RW_DTYPE_STREAMS;
808                 *dsmgmt |= streamid << 16;
809         }
810
811         if (streamid < ARRAY_SIZE(req->q->write_hints))
812                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
813 }
814
815 static inline void nvme_setup_flush(struct nvme_ns *ns,
816                 struct nvme_command *cmnd)
817 {
818         memset(cmnd, 0, sizeof(*cmnd));
819         cmnd->common.opcode = nvme_cmd_flush;
820         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
821 }
822
823 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
824                 struct nvme_command *cmnd)
825 {
826         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
827         struct nvme_dsm_range *range;
828         struct bio *bio;
829
830         /*
831          * Some devices do not consider the DSM 'Number of Ranges' field when
832          * determining how much data to DMA. Always allocate memory for maximum
833          * number of segments to prevent device reading beyond end of buffer.
834          */
835         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
836
837         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
838         if (!range) {
839                 /*
840                  * If we fail allocation our range, fallback to the controller
841                  * discard page. If that's also busy, it's safe to return
842                  * busy, as we know we can make progress once that's freed.
843                  */
844                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
845                         return BLK_STS_RESOURCE;
846
847                 range = page_address(ns->ctrl->discard_page);
848         }
849
850         __rq_for_each_bio(bio, req) {
851                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
852                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
853
854                 if (n < segments) {
855                         range[n].cattr = cpu_to_le32(0);
856                         range[n].nlb = cpu_to_le32(nlb);
857                         range[n].slba = cpu_to_le64(slba);
858                 }
859                 n++;
860         }
861
862         if (WARN_ON_ONCE(n != segments)) {
863                 if (virt_to_page(range) == ns->ctrl->discard_page)
864                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
865                 else
866                         kfree(range);
867                 return BLK_STS_IOERR;
868         }
869
870         memset(cmnd, 0, sizeof(*cmnd));
871         cmnd->dsm.opcode = nvme_cmd_dsm;
872         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
873         cmnd->dsm.nr = cpu_to_le32(segments - 1);
874         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
875
876         req->special_vec.bv_page = virt_to_page(range);
877         req->special_vec.bv_offset = offset_in_page(range);
878         req->special_vec.bv_len = alloc_size;
879         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
880
881         return BLK_STS_OK;
882 }
883
884 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
885                 struct request *req, struct nvme_command *cmnd)
886 {
887         memset(cmnd, 0, sizeof(*cmnd));
888
889         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
890                 return nvme_setup_discard(ns, req, cmnd);
891
892         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
893         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
894         cmnd->write_zeroes.slba =
895                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
896         cmnd->write_zeroes.length =
897                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
898
899         if (nvme_ns_has_pi(ns)) {
900                 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
901
902                 switch (ns->pi_type) {
903                 case NVME_NS_DPS_PI_TYPE1:
904                 case NVME_NS_DPS_PI_TYPE2:
905                         cmnd->write_zeroes.reftag =
906                                 cpu_to_le32(t10_pi_ref_tag(req));
907                         break;
908                 }
909         }
910
911         return BLK_STS_OK;
912 }
913
914 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
915                 struct request *req, struct nvme_command *cmnd,
916                 enum nvme_opcode op)
917 {
918         struct nvme_ctrl *ctrl = ns->ctrl;
919         u16 control = 0;
920         u32 dsmgmt = 0;
921
922         if (req->cmd_flags & REQ_FUA)
923                 control |= NVME_RW_FUA;
924         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
925                 control |= NVME_RW_LR;
926
927         if (req->cmd_flags & REQ_RAHEAD)
928                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
929
930         cmnd->rw.opcode = op;
931         cmnd->rw.flags = 0;
932         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
933         cmnd->rw.rsvd2 = 0;
934         cmnd->rw.metadata = 0;
935         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
936         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
937         cmnd->rw.reftag = 0;
938         cmnd->rw.apptag = 0;
939         cmnd->rw.appmask = 0;
940
941         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
942                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
943
944         if (ns->ms) {
945                 /*
946                  * If formated with metadata, the block layer always provides a
947                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
948                  * we enable the PRACT bit for protection information or set the
949                  * namespace capacity to zero to prevent any I/O.
950                  */
951                 if (!blk_integrity_rq(req)) {
952                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
953                                 return BLK_STS_NOTSUPP;
954                         control |= NVME_RW_PRINFO_PRACT;
955                 }
956
957                 switch (ns->pi_type) {
958                 case NVME_NS_DPS_PI_TYPE3:
959                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
960                         break;
961                 case NVME_NS_DPS_PI_TYPE1:
962                 case NVME_NS_DPS_PI_TYPE2:
963                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
964                                         NVME_RW_PRINFO_PRCHK_REF;
965                         if (op == nvme_cmd_zone_append)
966                                 control |= NVME_RW_APPEND_PIREMAP;
967                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
968                         break;
969                 }
970         }
971
972         cmnd->rw.control = cpu_to_le16(control);
973         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
974         return 0;
975 }
976
977 void nvme_cleanup_cmd(struct request *req)
978 {
979         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
980                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
981
982                 if (req->special_vec.bv_page == ctrl->discard_page)
983                         clear_bit_unlock(0, &ctrl->discard_page_busy);
984                 else
985                         kfree(bvec_virt(&req->special_vec));
986         }
987 }
988 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
989
990 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
991 {
992         struct nvme_command *cmd = nvme_req(req)->cmd;
993         blk_status_t ret = BLK_STS_OK;
994
995         if (!(req->rq_flags & RQF_DONTPREP))
996                 nvme_clear_nvme_request(req);
997
998         switch (req_op(req)) {
999         case REQ_OP_DRV_IN:
1000         case REQ_OP_DRV_OUT:
1001                 /* these are setup prior to execution in nvme_init_request() */
1002                 break;
1003         case REQ_OP_FLUSH:
1004                 nvme_setup_flush(ns, cmd);
1005                 break;
1006         case REQ_OP_ZONE_RESET_ALL:
1007         case REQ_OP_ZONE_RESET:
1008                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1009                 break;
1010         case REQ_OP_ZONE_OPEN:
1011                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1012                 break;
1013         case REQ_OP_ZONE_CLOSE:
1014                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1015                 break;
1016         case REQ_OP_ZONE_FINISH:
1017                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1018                 break;
1019         case REQ_OP_WRITE_ZEROES:
1020                 ret = nvme_setup_write_zeroes(ns, req, cmd);
1021                 break;
1022         case REQ_OP_DISCARD:
1023                 ret = nvme_setup_discard(ns, req, cmd);
1024                 break;
1025         case REQ_OP_READ:
1026                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1027                 break;
1028         case REQ_OP_WRITE:
1029                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1030                 break;
1031         case REQ_OP_ZONE_APPEND:
1032                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1033                 break;
1034         default:
1035                 WARN_ON_ONCE(1);
1036                 return BLK_STS_IOERR;
1037         }
1038
1039         cmd->common.command_id = nvme_cid(req);
1040         trace_nvme_setup_cmd(req, cmd);
1041         return ret;
1042 }
1043 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1044
1045 /*
1046  * Return values:
1047  * 0:  success
1048  * >0: nvme controller's cqe status response
1049  * <0: kernel error in lieu of controller response
1050  */
1051 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1052                 bool at_head)
1053 {
1054         blk_status_t status;
1055
1056         status = blk_execute_rq(rq, at_head);
1057         if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1058                 return -EINTR;
1059         if (nvme_req(rq)->status)
1060                 return nvme_req(rq)->status;
1061         return blk_status_to_errno(status);
1062 }
1063
1064 /*
1065  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1066  * if the result is positive, it's an NVM Express status code
1067  */
1068 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1069                 union nvme_result *result, void *buffer, unsigned bufflen,
1070                 unsigned timeout, int qid, int at_head,
1071                 blk_mq_req_flags_t flags)
1072 {
1073         struct request *req;
1074         int ret;
1075
1076         if (qid == NVME_QID_ANY)
1077                 req = nvme_alloc_request(q, cmd, flags);
1078         else
1079                 req = nvme_alloc_request_qid(q, cmd, flags, qid);
1080         if (IS_ERR(req))
1081                 return PTR_ERR(req);
1082
1083         if (timeout)
1084                 req->timeout = timeout;
1085
1086         if (buffer && bufflen) {
1087                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1088                 if (ret)
1089                         goto out;
1090         }
1091
1092         ret = nvme_execute_rq(NULL, req, at_head);
1093         if (result && ret >= 0)
1094                 *result = nvme_req(req)->result;
1095  out:
1096         blk_mq_free_request(req);
1097         return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1100
1101 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1102                 void *buffer, unsigned bufflen)
1103 {
1104         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1105                         NVME_QID_ANY, 0, 0);
1106 }
1107 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1108
1109 static u32 nvme_known_admin_effects(u8 opcode)
1110 {
1111         switch (opcode) {
1112         case nvme_admin_format_nvm:
1113                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1114                         NVME_CMD_EFFECTS_CSE_MASK;
1115         case nvme_admin_sanitize_nvm:
1116                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1117         default:
1118                 break;
1119         }
1120         return 0;
1121 }
1122
1123 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1124 {
1125         u32 effects = 0;
1126
1127         if (ns) {
1128                 if (ns->head->effects)
1129                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1130                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1131                         dev_warn_once(ctrl->device,
1132                                 "IO command:%02x has unhandled effects:%08x\n",
1133                                 opcode, effects);
1134                 return 0;
1135         }
1136
1137         if (ctrl->effects)
1138                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1139         effects |= nvme_known_admin_effects(opcode);
1140
1141         return effects;
1142 }
1143 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1144
1145 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1146                                u8 opcode)
1147 {
1148         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1149
1150         /*
1151          * For simplicity, IO to all namespaces is quiesced even if the command
1152          * effects say only one namespace is affected.
1153          */
1154         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1155                 mutex_lock(&ctrl->scan_lock);
1156                 mutex_lock(&ctrl->subsys->lock);
1157                 nvme_mpath_start_freeze(ctrl->subsys);
1158                 nvme_mpath_wait_freeze(ctrl->subsys);
1159                 nvme_start_freeze(ctrl);
1160                 nvme_wait_freeze(ctrl);
1161         }
1162         return effects;
1163 }
1164
1165 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1166                               struct nvme_command *cmd, int status)
1167 {
1168         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1169                 nvme_unfreeze(ctrl);
1170                 nvme_mpath_unfreeze(ctrl->subsys);
1171                 mutex_unlock(&ctrl->subsys->lock);
1172                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1173                 mutex_unlock(&ctrl->scan_lock);
1174         }
1175         if (effects & NVME_CMD_EFFECTS_CCC)
1176                 nvme_init_ctrl_finish(ctrl);
1177         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1178                 nvme_queue_scan(ctrl);
1179                 flush_work(&ctrl->scan_work);
1180         }
1181
1182         switch (cmd->common.opcode) {
1183         case nvme_admin_set_features:
1184                 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1185                 case NVME_FEAT_KATO:
1186                         /*
1187                          * Keep alive commands interval on the host should be
1188                          * updated when KATO is modified by Set Features
1189                          * commands.
1190                          */
1191                         if (!status)
1192                                 nvme_update_keep_alive(ctrl, cmd);
1193                         break;
1194                 default:
1195                         break;
1196                 }
1197                 break;
1198         default:
1199                 break;
1200         }
1201 }
1202
1203 int nvme_execute_passthru_rq(struct request *rq)
1204 {
1205         struct nvme_command *cmd = nvme_req(rq)->cmd;
1206         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1207         struct nvme_ns *ns = rq->q->queuedata;
1208         struct gendisk *disk = ns ? ns->disk : NULL;
1209         u32 effects;
1210         int  ret;
1211
1212         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1213         ret = nvme_execute_rq(disk, rq, false);
1214         if (effects) /* nothing to be done for zero cmd effects */
1215                 nvme_passthru_end(ctrl, effects, cmd, ret);
1216
1217         return ret;
1218 }
1219 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1220
1221 /*
1222  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1223  * 
1224  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1225  *   accounting for transport roundtrip times [..].
1226  */
1227 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1228 {
1229         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1230 }
1231
1232 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1233 {
1234         struct nvme_ctrl *ctrl = rq->end_io_data;
1235         unsigned long flags;
1236         bool startka = false;
1237
1238         blk_mq_free_request(rq);
1239
1240         if (status) {
1241                 dev_err(ctrl->device,
1242                         "failed nvme_keep_alive_end_io error=%d\n",
1243                                 status);
1244                 return;
1245         }
1246
1247         ctrl->comp_seen = false;
1248         spin_lock_irqsave(&ctrl->lock, flags);
1249         if (ctrl->state == NVME_CTRL_LIVE ||
1250             ctrl->state == NVME_CTRL_CONNECTING)
1251                 startka = true;
1252         spin_unlock_irqrestore(&ctrl->lock, flags);
1253         if (startka)
1254                 nvme_queue_keep_alive_work(ctrl);
1255 }
1256
1257 static void nvme_keep_alive_work(struct work_struct *work)
1258 {
1259         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1260                         struct nvme_ctrl, ka_work);
1261         bool comp_seen = ctrl->comp_seen;
1262         struct request *rq;
1263
1264         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1265                 dev_dbg(ctrl->device,
1266                         "reschedule traffic based keep-alive timer\n");
1267                 ctrl->comp_seen = false;
1268                 nvme_queue_keep_alive_work(ctrl);
1269                 return;
1270         }
1271
1272         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1273                                 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1274         if (IS_ERR(rq)) {
1275                 /* allocation failure, reset the controller */
1276                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1277                 nvme_reset_ctrl(ctrl);
1278                 return;
1279         }
1280
1281         rq->timeout = ctrl->kato * HZ;
1282         rq->end_io_data = ctrl;
1283         blk_execute_rq_nowait(rq, false, nvme_keep_alive_end_io);
1284 }
1285
1286 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1287 {
1288         if (unlikely(ctrl->kato == 0))
1289                 return;
1290
1291         nvme_queue_keep_alive_work(ctrl);
1292 }
1293
1294 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1295 {
1296         if (unlikely(ctrl->kato == 0))
1297                 return;
1298
1299         cancel_delayed_work_sync(&ctrl->ka_work);
1300 }
1301 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1302
1303 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1304                                    struct nvme_command *cmd)
1305 {
1306         unsigned int new_kato =
1307                 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1308
1309         dev_info(ctrl->device,
1310                  "keep alive interval updated from %u ms to %u ms\n",
1311                  ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1312
1313         nvme_stop_keep_alive(ctrl);
1314         ctrl->kato = new_kato;
1315         nvme_start_keep_alive(ctrl);
1316 }
1317
1318 /*
1319  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1320  * flag, thus sending any new CNS opcodes has a big chance of not working.
1321  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1322  * (but not for any later version).
1323  */
1324 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1325 {
1326         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1327                 return ctrl->vs < NVME_VS(1, 2, 0);
1328         return ctrl->vs < NVME_VS(1, 1, 0);
1329 }
1330
1331 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1332 {
1333         struct nvme_command c = { };
1334         int error;
1335
1336         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1337         c.identify.opcode = nvme_admin_identify;
1338         c.identify.cns = NVME_ID_CNS_CTRL;
1339
1340         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1341         if (!*id)
1342                 return -ENOMEM;
1343
1344         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1345                         sizeof(struct nvme_id_ctrl));
1346         if (error)
1347                 kfree(*id);
1348         return error;
1349 }
1350
1351 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1352                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1353 {
1354         const char *warn_str = "ctrl returned bogus length:";
1355         void *data = cur;
1356
1357         switch (cur->nidt) {
1358         case NVME_NIDT_EUI64:
1359                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1360                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1361                                  warn_str, cur->nidl);
1362                         return -1;
1363                 }
1364                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1365                 return NVME_NIDT_EUI64_LEN;
1366         case NVME_NIDT_NGUID:
1367                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1368                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1369                                  warn_str, cur->nidl);
1370                         return -1;
1371                 }
1372                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1373                 return NVME_NIDT_NGUID_LEN;
1374         case NVME_NIDT_UUID:
1375                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1376                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1377                                  warn_str, cur->nidl);
1378                         return -1;
1379                 }
1380                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1381                 return NVME_NIDT_UUID_LEN;
1382         case NVME_NIDT_CSI:
1383                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1384                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1385                                  warn_str, cur->nidl);
1386                         return -1;
1387                 }
1388                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1389                 *csi_seen = true;
1390                 return NVME_NIDT_CSI_LEN;
1391         default:
1392                 /* Skip unknown types */
1393                 return cur->nidl;
1394         }
1395 }
1396
1397 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1398                 struct nvme_ns_ids *ids)
1399 {
1400         struct nvme_command c = { };
1401         bool csi_seen = false;
1402         int status, pos, len;
1403         void *data;
1404
1405         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1406                 return 0;
1407         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1408                 return 0;
1409
1410         c.identify.opcode = nvme_admin_identify;
1411         c.identify.nsid = cpu_to_le32(nsid);
1412         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1413
1414         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1415         if (!data)
1416                 return -ENOMEM;
1417
1418         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1419                                       NVME_IDENTIFY_DATA_SIZE);
1420         if (status) {
1421                 dev_warn(ctrl->device,
1422                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1423                         nsid, status);
1424                 goto free_data;
1425         }
1426
1427         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1428                 struct nvme_ns_id_desc *cur = data + pos;
1429
1430                 if (cur->nidl == 0)
1431                         break;
1432
1433                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1434                 if (len < 0)
1435                         break;
1436
1437                 len += sizeof(*cur);
1438         }
1439
1440         if (nvme_multi_css(ctrl) && !csi_seen) {
1441                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1442                          nsid);
1443                 status = -EINVAL;
1444         }
1445
1446 free_data:
1447         kfree(data);
1448         return status;
1449 }
1450
1451 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1452                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1453 {
1454         struct nvme_command c = { };
1455         int error;
1456
1457         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1458         c.identify.opcode = nvme_admin_identify;
1459         c.identify.nsid = cpu_to_le32(nsid);
1460         c.identify.cns = NVME_ID_CNS_NS;
1461
1462         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1463         if (!*id)
1464                 return -ENOMEM;
1465
1466         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1467         if (error) {
1468                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1469                 goto out_free_id;
1470         }
1471
1472         error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1473         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1474                 goto out_free_id;
1475
1476         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1477             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1478                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1479         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1480             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1481                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1482
1483         return 0;
1484
1485 out_free_id:
1486         kfree(*id);
1487         return error;
1488 }
1489
1490 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1491                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1492 {
1493         union nvme_result res = { 0 };
1494         struct nvme_command c = { };
1495         int ret;
1496
1497         c.features.opcode = op;
1498         c.features.fid = cpu_to_le32(fid);
1499         c.features.dword11 = cpu_to_le32(dword11);
1500
1501         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1502                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1503         if (ret >= 0 && result)
1504                 *result = le32_to_cpu(res.u32);
1505         return ret;
1506 }
1507
1508 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1509                       unsigned int dword11, void *buffer, size_t buflen,
1510                       u32 *result)
1511 {
1512         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1513                              buflen, result);
1514 }
1515 EXPORT_SYMBOL_GPL(nvme_set_features);
1516
1517 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1518                       unsigned int dword11, void *buffer, size_t buflen,
1519                       u32 *result)
1520 {
1521         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1522                              buflen, result);
1523 }
1524 EXPORT_SYMBOL_GPL(nvme_get_features);
1525
1526 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1527 {
1528         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1529         u32 result;
1530         int status, nr_io_queues;
1531
1532         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1533                         &result);
1534         if (status < 0)
1535                 return status;
1536
1537         /*
1538          * Degraded controllers might return an error when setting the queue
1539          * count.  We still want to be able to bring them online and offer
1540          * access to the admin queue, as that might be only way to fix them up.
1541          */
1542         if (status > 0) {
1543                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1544                 *count = 0;
1545         } else {
1546                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1547                 *count = min(*count, nr_io_queues);
1548         }
1549
1550         return 0;
1551 }
1552 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1553
1554 #define NVME_AEN_SUPPORTED \
1555         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1556          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1557
1558 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1559 {
1560         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1561         int status;
1562
1563         if (!supported_aens)
1564                 return;
1565
1566         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1567                         NULL, 0, &result);
1568         if (status)
1569                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1570                          supported_aens);
1571
1572         queue_work(nvme_wq, &ctrl->async_event_work);
1573 }
1574
1575 static int nvme_ns_open(struct nvme_ns *ns)
1576 {
1577
1578         /* should never be called due to GENHD_FL_HIDDEN */
1579         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1580                 goto fail;
1581         if (!nvme_get_ns(ns))
1582                 goto fail;
1583         if (!try_module_get(ns->ctrl->ops->module))
1584                 goto fail_put_ns;
1585
1586         return 0;
1587
1588 fail_put_ns:
1589         nvme_put_ns(ns);
1590 fail:
1591         return -ENXIO;
1592 }
1593
1594 static void nvme_ns_release(struct nvme_ns *ns)
1595 {
1596
1597         module_put(ns->ctrl->ops->module);
1598         nvme_put_ns(ns);
1599 }
1600
1601 static int nvme_open(struct block_device *bdev, fmode_t mode)
1602 {
1603         return nvme_ns_open(bdev->bd_disk->private_data);
1604 }
1605
1606 static void nvme_release(struct gendisk *disk, fmode_t mode)
1607 {
1608         nvme_ns_release(disk->private_data);
1609 }
1610
1611 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1612 {
1613         /* some standard values */
1614         geo->heads = 1 << 6;
1615         geo->sectors = 1 << 5;
1616         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1617         return 0;
1618 }
1619
1620 #ifdef CONFIG_BLK_DEV_INTEGRITY
1621 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1622                                 u32 max_integrity_segments)
1623 {
1624         struct blk_integrity integrity = { };
1625
1626         switch (pi_type) {
1627         case NVME_NS_DPS_PI_TYPE3:
1628                 integrity.profile = &t10_pi_type3_crc;
1629                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1630                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1631                 break;
1632         case NVME_NS_DPS_PI_TYPE1:
1633         case NVME_NS_DPS_PI_TYPE2:
1634                 integrity.profile = &t10_pi_type1_crc;
1635                 integrity.tag_size = sizeof(u16);
1636                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1637                 break;
1638         default:
1639                 integrity.profile = NULL;
1640                 break;
1641         }
1642         integrity.tuple_size = ms;
1643         blk_integrity_register(disk, &integrity);
1644         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1645 }
1646 #else
1647 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1648                                 u32 max_integrity_segments)
1649 {
1650 }
1651 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1652
1653 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1654 {
1655         struct nvme_ctrl *ctrl = ns->ctrl;
1656         struct request_queue *queue = disk->queue;
1657         u32 size = queue_logical_block_size(queue);
1658
1659         if (ctrl->max_discard_sectors == 0) {
1660                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1661                 return;
1662         }
1663
1664         if (ctrl->nr_streams && ns->sws && ns->sgs)
1665                 size *= ns->sws * ns->sgs;
1666
1667         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1668                         NVME_DSM_MAX_RANGES);
1669
1670         queue->limits.discard_alignment = 0;
1671         queue->limits.discard_granularity = size;
1672
1673         /* If discard is already enabled, don't reset queue limits */
1674         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1675                 return;
1676
1677         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1678         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1679
1680         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1681                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1682 }
1683
1684 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1685 {
1686         return !uuid_is_null(&ids->uuid) ||
1687                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1688                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1689 }
1690
1691 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1692 {
1693         return uuid_equal(&a->uuid, &b->uuid) &&
1694                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1695                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1696                 a->csi == b->csi;
1697 }
1698
1699 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1700                                  u32 *phys_bs, u32 *io_opt)
1701 {
1702         struct streams_directive_params s;
1703         int ret;
1704
1705         if (!ctrl->nr_streams)
1706                 return 0;
1707
1708         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1709         if (ret)
1710                 return ret;
1711
1712         ns->sws = le32_to_cpu(s.sws);
1713         ns->sgs = le16_to_cpu(s.sgs);
1714
1715         if (ns->sws) {
1716                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1717                 if (ns->sgs)
1718                         *io_opt = *phys_bs * ns->sgs;
1719         }
1720
1721         return 0;
1722 }
1723
1724 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1725 {
1726         struct nvme_ctrl *ctrl = ns->ctrl;
1727
1728         /*
1729          * The PI implementation requires the metadata size to be equal to the
1730          * t10 pi tuple size.
1731          */
1732         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1733         if (ns->ms == sizeof(struct t10_pi_tuple))
1734                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1735         else
1736                 ns->pi_type = 0;
1737
1738         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1739         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1740                 return 0;
1741         if (ctrl->ops->flags & NVME_F_FABRICS) {
1742                 /*
1743                  * The NVMe over Fabrics specification only supports metadata as
1744                  * part of the extended data LBA.  We rely on HCA/HBA support to
1745                  * remap the separate metadata buffer from the block layer.
1746                  */
1747                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1748                         return -EINVAL;
1749                 if (ctrl->max_integrity_segments)
1750                         ns->features |=
1751                                 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1752         } else {
1753                 /*
1754                  * For PCIe controllers, we can't easily remap the separate
1755                  * metadata buffer from the block layer and thus require a
1756                  * separate metadata buffer for block layer metadata/PI support.
1757                  * We allow extended LBAs for the passthrough interface, though.
1758                  */
1759                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1760                         ns->features |= NVME_NS_EXT_LBAS;
1761                 else
1762                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1763         }
1764
1765         return 0;
1766 }
1767
1768 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1769                 struct request_queue *q)
1770 {
1771         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1772
1773         if (ctrl->max_hw_sectors) {
1774                 u32 max_segments =
1775                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1776
1777                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1778                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1779                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1780         }
1781         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1782         blk_queue_dma_alignment(q, 7);
1783         blk_queue_write_cache(q, vwc, vwc);
1784 }
1785
1786 static void nvme_update_disk_info(struct gendisk *disk,
1787                 struct nvme_ns *ns, struct nvme_id_ns *id)
1788 {
1789         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1790         unsigned short bs = 1 << ns->lba_shift;
1791         u32 atomic_bs, phys_bs, io_opt = 0;
1792
1793         /*
1794          * The block layer can't support LBA sizes larger than the page size
1795          * yet, so catch this early and don't allow block I/O.
1796          */
1797         if (ns->lba_shift > PAGE_SHIFT) {
1798                 capacity = 0;
1799                 bs = (1 << 9);
1800         }
1801
1802         blk_integrity_unregister(disk);
1803
1804         atomic_bs = phys_bs = bs;
1805         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1806         if (id->nabo == 0) {
1807                 /*
1808                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1809                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1810                  * 0 then AWUPF must be used instead.
1811                  */
1812                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1813                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1814                 else
1815                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1816         }
1817
1818         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1819                 /* NPWG = Namespace Preferred Write Granularity */
1820                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1821                 /* NOWS = Namespace Optimal Write Size */
1822                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1823         }
1824
1825         blk_queue_logical_block_size(disk->queue, bs);
1826         /*
1827          * Linux filesystems assume writing a single physical block is
1828          * an atomic operation. Hence limit the physical block size to the
1829          * value of the Atomic Write Unit Power Fail parameter.
1830          */
1831         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1832         blk_queue_io_min(disk->queue, phys_bs);
1833         blk_queue_io_opt(disk->queue, io_opt);
1834
1835         /*
1836          * Register a metadata profile for PI, or the plain non-integrity NVMe
1837          * metadata masquerading as Type 0 if supported, otherwise reject block
1838          * I/O to namespaces with metadata except when the namespace supports
1839          * PI, as it can strip/insert in that case.
1840          */
1841         if (ns->ms) {
1842                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1843                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1844                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
1845                                             ns->ctrl->max_integrity_segments);
1846                 else if (!nvme_ns_has_pi(ns))
1847                         capacity = 0;
1848         }
1849
1850         set_capacity_and_notify(disk, capacity);
1851
1852         nvme_config_discard(disk, ns);
1853         blk_queue_max_write_zeroes_sectors(disk->queue,
1854                                            ns->ctrl->max_zeroes_sectors);
1855
1856         set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1857                 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1858 }
1859
1860 static inline bool nvme_first_scan(struct gendisk *disk)
1861 {
1862         /* nvme_alloc_ns() scans the disk prior to adding it */
1863         return !disk_live(disk);
1864 }
1865
1866 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1867 {
1868         struct nvme_ctrl *ctrl = ns->ctrl;
1869         u32 iob;
1870
1871         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1872             is_power_of_2(ctrl->max_hw_sectors))
1873                 iob = ctrl->max_hw_sectors;
1874         else
1875                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1876
1877         if (!iob)
1878                 return;
1879
1880         if (!is_power_of_2(iob)) {
1881                 if (nvme_first_scan(ns->disk))
1882                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1883                                 ns->disk->disk_name, iob);
1884                 return;
1885         }
1886
1887         if (blk_queue_is_zoned(ns->disk->queue)) {
1888                 if (nvme_first_scan(ns->disk))
1889                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1890                                 ns->disk->disk_name);
1891                 return;
1892         }
1893
1894         blk_queue_chunk_sectors(ns->queue, iob);
1895 }
1896
1897 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1898 {
1899         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1900         int ret;
1901
1902         blk_mq_freeze_queue(ns->disk->queue);
1903         ns->lba_shift = id->lbaf[lbaf].ds;
1904         nvme_set_queue_limits(ns->ctrl, ns->queue);
1905
1906         ret = nvme_configure_metadata(ns, id);
1907         if (ret)
1908                 goto out_unfreeze;
1909         nvme_set_chunk_sectors(ns, id);
1910         nvme_update_disk_info(ns->disk, ns, id);
1911
1912         if (ns->head->ids.csi == NVME_CSI_ZNS) {
1913                 ret = nvme_update_zone_info(ns, lbaf);
1914                 if (ret)
1915                         goto out_unfreeze;
1916         }
1917
1918         set_bit(NVME_NS_READY, &ns->flags);
1919         blk_mq_unfreeze_queue(ns->disk->queue);
1920
1921         if (blk_queue_is_zoned(ns->queue)) {
1922                 ret = nvme_revalidate_zones(ns);
1923                 if (ret && !nvme_first_scan(ns->disk))
1924                         goto out;
1925         }
1926
1927         if (nvme_ns_head_multipath(ns->head)) {
1928                 blk_mq_freeze_queue(ns->head->disk->queue);
1929                 nvme_update_disk_info(ns->head->disk, ns, id);
1930                 nvme_mpath_revalidate_paths(ns);
1931                 blk_stack_limits(&ns->head->disk->queue->limits,
1932                                  &ns->queue->limits, 0);
1933                 disk_update_readahead(ns->head->disk);
1934                 blk_mq_unfreeze_queue(ns->head->disk->queue);
1935         }
1936         return 0;
1937
1938 out_unfreeze:
1939         blk_mq_unfreeze_queue(ns->disk->queue);
1940 out:
1941         /*
1942          * If probing fails due an unsupported feature, hide the block device,
1943          * but still allow other access.
1944          */
1945         if (ret == -ENODEV) {
1946                 ns->disk->flags |= GENHD_FL_HIDDEN;
1947                 ret = 0;
1948         }
1949         return ret;
1950 }
1951
1952 static char nvme_pr_type(enum pr_type type)
1953 {
1954         switch (type) {
1955         case PR_WRITE_EXCLUSIVE:
1956                 return 1;
1957         case PR_EXCLUSIVE_ACCESS:
1958                 return 2;
1959         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1960                 return 3;
1961         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1962                 return 4;
1963         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1964                 return 5;
1965         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1966                 return 6;
1967         default:
1968                 return 0;
1969         }
1970 };
1971
1972 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1973                 struct nvme_command *c, u8 data[16])
1974 {
1975         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1976         int srcu_idx = srcu_read_lock(&head->srcu);
1977         struct nvme_ns *ns = nvme_find_path(head);
1978         int ret = -EWOULDBLOCK;
1979
1980         if (ns) {
1981                 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1982                 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1983         }
1984         srcu_read_unlock(&head->srcu, srcu_idx);
1985         return ret;
1986 }
1987         
1988 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1989                 u8 data[16])
1990 {
1991         c->common.nsid = cpu_to_le32(ns->head->ns_id);
1992         return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1993 }
1994
1995 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1996                                 u64 key, u64 sa_key, u8 op)
1997 {
1998         struct nvme_command c = { };
1999         u8 data[16] = { 0, };
2000
2001         put_unaligned_le64(key, &data[0]);
2002         put_unaligned_le64(sa_key, &data[8]);
2003
2004         c.common.opcode = op;
2005         c.common.cdw10 = cpu_to_le32(cdw10);
2006
2007         if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2008             bdev->bd_disk->fops == &nvme_ns_head_ops)
2009                 return nvme_send_ns_head_pr_command(bdev, &c, data);
2010         return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2011 }
2012
2013 static int nvme_pr_register(struct block_device *bdev, u64 old,
2014                 u64 new, unsigned flags)
2015 {
2016         u32 cdw10;
2017
2018         if (flags & ~PR_FL_IGNORE_KEY)
2019                 return -EOPNOTSUPP;
2020
2021         cdw10 = old ? 2 : 0;
2022         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2023         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2024         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2025 }
2026
2027 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2028                 enum pr_type type, unsigned flags)
2029 {
2030         u32 cdw10;
2031
2032         if (flags & ~PR_FL_IGNORE_KEY)
2033                 return -EOPNOTSUPP;
2034
2035         cdw10 = nvme_pr_type(type) << 8;
2036         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2037         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2038 }
2039
2040 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2041                 enum pr_type type, bool abort)
2042 {
2043         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2044
2045         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2046 }
2047
2048 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2049 {
2050         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2051
2052         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2053 }
2054
2055 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2056 {
2057         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2058
2059         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2060 }
2061
2062 const struct pr_ops nvme_pr_ops = {
2063         .pr_register    = nvme_pr_register,
2064         .pr_reserve     = nvme_pr_reserve,
2065         .pr_release     = nvme_pr_release,
2066         .pr_preempt     = nvme_pr_preempt,
2067         .pr_clear       = nvme_pr_clear,
2068 };
2069
2070 #ifdef CONFIG_BLK_SED_OPAL
2071 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2072                 bool send)
2073 {
2074         struct nvme_ctrl *ctrl = data;
2075         struct nvme_command cmd = { };
2076
2077         if (send)
2078                 cmd.common.opcode = nvme_admin_security_send;
2079         else
2080                 cmd.common.opcode = nvme_admin_security_recv;
2081         cmd.common.nsid = 0;
2082         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2083         cmd.common.cdw11 = cpu_to_le32(len);
2084
2085         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2086                         NVME_QID_ANY, 1, 0);
2087 }
2088 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2089 #endif /* CONFIG_BLK_SED_OPAL */
2090
2091 #ifdef CONFIG_BLK_DEV_ZONED
2092 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2093                 unsigned int nr_zones, report_zones_cb cb, void *data)
2094 {
2095         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2096                         data);
2097 }
2098 #else
2099 #define nvme_report_zones       NULL
2100 #endif /* CONFIG_BLK_DEV_ZONED */
2101
2102 static const struct block_device_operations nvme_bdev_ops = {
2103         .owner          = THIS_MODULE,
2104         .ioctl          = nvme_ioctl,
2105         .open           = nvme_open,
2106         .release        = nvme_release,
2107         .getgeo         = nvme_getgeo,
2108         .report_zones   = nvme_report_zones,
2109         .pr_ops         = &nvme_pr_ops,
2110 };
2111
2112 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2113 {
2114         unsigned long timeout =
2115                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2116         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2117         int ret;
2118
2119         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2120                 if (csts == ~0)
2121                         return -ENODEV;
2122                 if ((csts & NVME_CSTS_RDY) == bit)
2123                         break;
2124
2125                 usleep_range(1000, 2000);
2126                 if (fatal_signal_pending(current))
2127                         return -EINTR;
2128                 if (time_after(jiffies, timeout)) {
2129                         dev_err(ctrl->device,
2130                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2131                                 enabled ? "initialisation" : "reset", csts);
2132                         return -ENODEV;
2133                 }
2134         }
2135
2136         return ret;
2137 }
2138
2139 /*
2140  * If the device has been passed off to us in an enabled state, just clear
2141  * the enabled bit.  The spec says we should set the 'shutdown notification
2142  * bits', but doing so may cause the device to complete commands to the
2143  * admin queue ... and we don't know what memory that might be pointing at!
2144  */
2145 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2146 {
2147         int ret;
2148
2149         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2150         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2151
2152         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2153         if (ret)
2154                 return ret;
2155
2156         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2157                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2158
2159         return nvme_wait_ready(ctrl, ctrl->cap, false);
2160 }
2161 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2162
2163 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2164 {
2165         unsigned dev_page_min;
2166         int ret;
2167
2168         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2169         if (ret) {
2170                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2171                 return ret;
2172         }
2173         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2174
2175         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2176                 dev_err(ctrl->device,
2177                         "Minimum device page size %u too large for host (%u)\n",
2178                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2179                 return -ENODEV;
2180         }
2181
2182         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2183                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2184         else
2185                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2186         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2187         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2188         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2189         ctrl->ctrl_config |= NVME_CC_ENABLE;
2190
2191         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2192         if (ret)
2193                 return ret;
2194         return nvme_wait_ready(ctrl, ctrl->cap, true);
2195 }
2196 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2197
2198 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2199 {
2200         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2201         u32 csts;
2202         int ret;
2203
2204         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2205         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2206
2207         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2208         if (ret)
2209                 return ret;
2210
2211         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2212                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2213                         break;
2214
2215                 msleep(100);
2216                 if (fatal_signal_pending(current))
2217                         return -EINTR;
2218                 if (time_after(jiffies, timeout)) {
2219                         dev_err(ctrl->device,
2220                                 "Device shutdown incomplete; abort shutdown\n");
2221                         return -ENODEV;
2222                 }
2223         }
2224
2225         return ret;
2226 }
2227 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2228
2229 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2230 {
2231         __le64 ts;
2232         int ret;
2233
2234         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2235                 return 0;
2236
2237         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2238         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2239                         NULL);
2240         if (ret)
2241                 dev_warn_once(ctrl->device,
2242                         "could not set timestamp (%d)\n", ret);
2243         return ret;
2244 }
2245
2246 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2247 {
2248         struct nvme_feat_host_behavior *host;
2249         int ret;
2250
2251         /* Don't bother enabling the feature if retry delay is not reported */
2252         if (!ctrl->crdt[0])
2253                 return 0;
2254
2255         host = kzalloc(sizeof(*host), GFP_KERNEL);
2256         if (!host)
2257                 return 0;
2258
2259         host->acre = NVME_ENABLE_ACRE;
2260         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2261                                 host, sizeof(*host), NULL);
2262         kfree(host);
2263         return ret;
2264 }
2265
2266 /*
2267  * The function checks whether the given total (exlat + enlat) latency of
2268  * a power state allows the latter to be used as an APST transition target.
2269  * It does so by comparing the latency to the primary and secondary latency
2270  * tolerances defined by module params. If there's a match, the corresponding
2271  * timeout value is returned and the matching tolerance index (1 or 2) is
2272  * reported.
2273  */
2274 static bool nvme_apst_get_transition_time(u64 total_latency,
2275                 u64 *transition_time, unsigned *last_index)
2276 {
2277         if (total_latency <= apst_primary_latency_tol_us) {
2278                 if (*last_index == 1)
2279                         return false;
2280                 *last_index = 1;
2281                 *transition_time = apst_primary_timeout_ms;
2282                 return true;
2283         }
2284         if (apst_secondary_timeout_ms &&
2285                 total_latency <= apst_secondary_latency_tol_us) {
2286                 if (*last_index <= 2)
2287                         return false;
2288                 *last_index = 2;
2289                 *transition_time = apst_secondary_timeout_ms;
2290                 return true;
2291         }
2292         return false;
2293 }
2294
2295 /*
2296  * APST (Autonomous Power State Transition) lets us program a table of power
2297  * state transitions that the controller will perform automatically.
2298  *
2299  * Depending on module params, one of the two supported techniques will be used:
2300  *
2301  * - If the parameters provide explicit timeouts and tolerances, they will be
2302  *   used to build a table with up to 2 non-operational states to transition to.
2303  *   The default parameter values were selected based on the values used by
2304  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2305  *   regeneration of the APST table in the event of switching between external
2306  *   and battery power, the timeouts and tolerances reflect a compromise
2307  *   between values used by Microsoft for AC and battery scenarios.
2308  * - If not, we'll configure the table with a simple heuristic: we are willing
2309  *   to spend at most 2% of the time transitioning between power states.
2310  *   Therefore, when running in any given state, we will enter the next
2311  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2312  *   microseconds, as long as that state's exit latency is under the requested
2313  *   maximum latency.
2314  *
2315  * We will not autonomously enter any non-operational state for which the total
2316  * latency exceeds ps_max_latency_us.
2317  *
2318  * Users can set ps_max_latency_us to zero to turn off APST.
2319  */
2320 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2321 {
2322         struct nvme_feat_auto_pst *table;
2323         unsigned apste = 0;
2324         u64 max_lat_us = 0;
2325         __le64 target = 0;
2326         int max_ps = -1;
2327         int state;
2328         int ret;
2329         unsigned last_lt_index = UINT_MAX;
2330
2331         /*
2332          * If APST isn't supported or if we haven't been initialized yet,
2333          * then don't do anything.
2334          */
2335         if (!ctrl->apsta)
2336                 return 0;
2337
2338         if (ctrl->npss > 31) {
2339                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2340                 return 0;
2341         }
2342
2343         table = kzalloc(sizeof(*table), GFP_KERNEL);
2344         if (!table)
2345                 return 0;
2346
2347         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2348                 /* Turn off APST. */
2349                 dev_dbg(ctrl->device, "APST disabled\n");
2350                 goto done;
2351         }
2352
2353         /*
2354          * Walk through all states from lowest- to highest-power.
2355          * According to the spec, lower-numbered states use more power.  NPSS,
2356          * despite the name, is the index of the lowest-power state, not the
2357          * number of states.
2358          */
2359         for (state = (int)ctrl->npss; state >= 0; state--) {
2360                 u64 total_latency_us, exit_latency_us, transition_ms;
2361
2362                 if (target)
2363                         table->entries[state] = target;
2364
2365                 /*
2366                  * Don't allow transitions to the deepest state if it's quirked
2367                  * off.
2368                  */
2369                 if (state == ctrl->npss &&
2370                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2371                         continue;
2372
2373                 /*
2374                  * Is this state a useful non-operational state for higher-power
2375                  * states to autonomously transition to?
2376                  */
2377                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2378                         continue;
2379
2380                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2381                 if (exit_latency_us > ctrl->ps_max_latency_us)
2382                         continue;
2383
2384                 total_latency_us = exit_latency_us +
2385                         le32_to_cpu(ctrl->psd[state].entry_lat);
2386
2387                 /*
2388                  * This state is good. It can be used as the APST idle target
2389                  * for higher power states.
2390                  */
2391                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2392                         if (!nvme_apst_get_transition_time(total_latency_us,
2393                                         &transition_ms, &last_lt_index))
2394                                 continue;
2395                 } else {
2396                         transition_ms = total_latency_us + 19;
2397                         do_div(transition_ms, 20);
2398                         if (transition_ms > (1 << 24) - 1)
2399                                 transition_ms = (1 << 24) - 1;
2400                 }
2401
2402                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2403                 if (max_ps == -1)
2404                         max_ps = state;
2405                 if (total_latency_us > max_lat_us)
2406                         max_lat_us = total_latency_us;
2407         }
2408
2409         if (max_ps == -1)
2410                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2411         else
2412                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2413                         max_ps, max_lat_us, (int)sizeof(*table), table);
2414         apste = 1;
2415
2416 done:
2417         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2418                                 table, sizeof(*table), NULL);
2419         if (ret)
2420                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2421         kfree(table);
2422         return ret;
2423 }
2424
2425 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2426 {
2427         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2428         u64 latency;
2429
2430         switch (val) {
2431         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2432         case PM_QOS_LATENCY_ANY:
2433                 latency = U64_MAX;
2434                 break;
2435
2436         default:
2437                 latency = val;
2438         }
2439
2440         if (ctrl->ps_max_latency_us != latency) {
2441                 ctrl->ps_max_latency_us = latency;
2442                 if (ctrl->state == NVME_CTRL_LIVE)
2443                         nvme_configure_apst(ctrl);
2444         }
2445 }
2446
2447 struct nvme_core_quirk_entry {
2448         /*
2449          * NVMe model and firmware strings are padded with spaces.  For
2450          * simplicity, strings in the quirk table are padded with NULLs
2451          * instead.
2452          */
2453         u16 vid;
2454         const char *mn;
2455         const char *fr;
2456         unsigned long quirks;
2457 };
2458
2459 static const struct nvme_core_quirk_entry core_quirks[] = {
2460         {
2461                 /*
2462                  * This Toshiba device seems to die using any APST states.  See:
2463                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2464                  */
2465                 .vid = 0x1179,
2466                 .mn = "THNSF5256GPUK TOSHIBA",
2467                 .quirks = NVME_QUIRK_NO_APST,
2468         },
2469         {
2470                 /*
2471                  * This LiteON CL1-3D*-Q11 firmware version has a race
2472                  * condition associated with actions related to suspend to idle
2473                  * LiteON has resolved the problem in future firmware
2474                  */
2475                 .vid = 0x14a4,
2476                 .fr = "22301111",
2477                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2478         },
2479         {
2480                 /*
2481                  * This Kioxia CD6-V Series / HPE PE8030 device times out and
2482                  * aborts I/O during any load, but more easily reproducible
2483                  * with discards (fstrim).
2484                  *
2485                  * The device is left in a state where it is also not possible
2486                  * to use "nvme set-feature" to disable APST, but booting with
2487                  * nvme_core.default_ps_max_latency=0 works.
2488                  */
2489                 .vid = 0x1e0f,
2490                 .mn = "KCD6XVUL6T40",
2491                 .quirks = NVME_QUIRK_NO_APST,
2492         }
2493 };
2494
2495 /* match is null-terminated but idstr is space-padded. */
2496 static bool string_matches(const char *idstr, const char *match, size_t len)
2497 {
2498         size_t matchlen;
2499
2500         if (!match)
2501                 return true;
2502
2503         matchlen = strlen(match);
2504         WARN_ON_ONCE(matchlen > len);
2505
2506         if (memcmp(idstr, match, matchlen))
2507                 return false;
2508
2509         for (; matchlen < len; matchlen++)
2510                 if (idstr[matchlen] != ' ')
2511                         return false;
2512
2513         return true;
2514 }
2515
2516 static bool quirk_matches(const struct nvme_id_ctrl *id,
2517                           const struct nvme_core_quirk_entry *q)
2518 {
2519         return q->vid == le16_to_cpu(id->vid) &&
2520                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2521                 string_matches(id->fr, q->fr, sizeof(id->fr));
2522 }
2523
2524 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2525                 struct nvme_id_ctrl *id)
2526 {
2527         size_t nqnlen;
2528         int off;
2529
2530         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2531                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2532                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2533                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2534                         return;
2535                 }
2536
2537                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2538                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2539         }
2540
2541         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2542         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2543                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2544                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2545         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2546         off += sizeof(id->sn);
2547         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2548         off += sizeof(id->mn);
2549         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2550 }
2551
2552 static void nvme_release_subsystem(struct device *dev)
2553 {
2554         struct nvme_subsystem *subsys =
2555                 container_of(dev, struct nvme_subsystem, dev);
2556
2557         if (subsys->instance >= 0)
2558                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2559         kfree(subsys);
2560 }
2561
2562 static void nvme_destroy_subsystem(struct kref *ref)
2563 {
2564         struct nvme_subsystem *subsys =
2565                         container_of(ref, struct nvme_subsystem, ref);
2566
2567         mutex_lock(&nvme_subsystems_lock);
2568         list_del(&subsys->entry);
2569         mutex_unlock(&nvme_subsystems_lock);
2570
2571         ida_destroy(&subsys->ns_ida);
2572         device_del(&subsys->dev);
2573         put_device(&subsys->dev);
2574 }
2575
2576 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2577 {
2578         kref_put(&subsys->ref, nvme_destroy_subsystem);
2579 }
2580
2581 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2582 {
2583         struct nvme_subsystem *subsys;
2584
2585         lockdep_assert_held(&nvme_subsystems_lock);
2586
2587         /*
2588          * Fail matches for discovery subsystems. This results
2589          * in each discovery controller bound to a unique subsystem.
2590          * This avoids issues with validating controller values
2591          * that can only be true when there is a single unique subsystem.
2592          * There may be multiple and completely independent entities
2593          * that provide discovery controllers.
2594          */
2595         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2596                 return NULL;
2597
2598         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2599                 if (strcmp(subsys->subnqn, subsysnqn))
2600                         continue;
2601                 if (!kref_get_unless_zero(&subsys->ref))
2602                         continue;
2603                 return subsys;
2604         }
2605
2606         return NULL;
2607 }
2608
2609 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2610         struct device_attribute subsys_attr_##_name = \
2611                 __ATTR(_name, _mode, _show, NULL)
2612
2613 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2614                                     struct device_attribute *attr,
2615                                     char *buf)
2616 {
2617         struct nvme_subsystem *subsys =
2618                 container_of(dev, struct nvme_subsystem, dev);
2619
2620         return sysfs_emit(buf, "%s\n", subsys->subnqn);
2621 }
2622 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2623
2624 static ssize_t nvme_subsys_show_type(struct device *dev,
2625                                     struct device_attribute *attr,
2626                                     char *buf)
2627 {
2628         struct nvme_subsystem *subsys =
2629                 container_of(dev, struct nvme_subsystem, dev);
2630
2631         switch (subsys->subtype) {
2632         case NVME_NQN_DISC:
2633                 return sysfs_emit(buf, "discovery\n");
2634         case NVME_NQN_NVME:
2635                 return sysfs_emit(buf, "nvm\n");
2636         default:
2637                 return sysfs_emit(buf, "reserved\n");
2638         }
2639 }
2640 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2641
2642 #define nvme_subsys_show_str_function(field)                            \
2643 static ssize_t subsys_##field##_show(struct device *dev,                \
2644                             struct device_attribute *attr, char *buf)   \
2645 {                                                                       \
2646         struct nvme_subsystem *subsys =                                 \
2647                 container_of(dev, struct nvme_subsystem, dev);          \
2648         return sysfs_emit(buf, "%.*s\n",                                \
2649                            (int)sizeof(subsys->field), subsys->field);  \
2650 }                                                                       \
2651 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2652
2653 nvme_subsys_show_str_function(model);
2654 nvme_subsys_show_str_function(serial);
2655 nvme_subsys_show_str_function(firmware_rev);
2656
2657 static struct attribute *nvme_subsys_attrs[] = {
2658         &subsys_attr_model.attr,
2659         &subsys_attr_serial.attr,
2660         &subsys_attr_firmware_rev.attr,
2661         &subsys_attr_subsysnqn.attr,
2662         &subsys_attr_subsystype.attr,
2663 #ifdef CONFIG_NVME_MULTIPATH
2664         &subsys_attr_iopolicy.attr,
2665 #endif
2666         NULL,
2667 };
2668
2669 static const struct attribute_group nvme_subsys_attrs_group = {
2670         .attrs = nvme_subsys_attrs,
2671 };
2672
2673 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2674         &nvme_subsys_attrs_group,
2675         NULL,
2676 };
2677
2678 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2679 {
2680         return ctrl->opts && ctrl->opts->discovery_nqn;
2681 }
2682
2683 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2684                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2685 {
2686         struct nvme_ctrl *tmp;
2687
2688         lockdep_assert_held(&nvme_subsystems_lock);
2689
2690         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2691                 if (nvme_state_terminal(tmp))
2692                         continue;
2693
2694                 if (tmp->cntlid == ctrl->cntlid) {
2695                         dev_err(ctrl->device,
2696                                 "Duplicate cntlid %u with %s, rejecting\n",
2697                                 ctrl->cntlid, dev_name(tmp->device));
2698                         return false;
2699                 }
2700
2701                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2702                     nvme_discovery_ctrl(ctrl))
2703                         continue;
2704
2705                 dev_err(ctrl->device,
2706                         "Subsystem does not support multiple controllers\n");
2707                 return false;
2708         }
2709
2710         return true;
2711 }
2712
2713 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2714 {
2715         struct nvme_subsystem *subsys, *found;
2716         int ret;
2717
2718         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2719         if (!subsys)
2720                 return -ENOMEM;
2721
2722         subsys->instance = -1;
2723         mutex_init(&subsys->lock);
2724         kref_init(&subsys->ref);
2725         INIT_LIST_HEAD(&subsys->ctrls);
2726         INIT_LIST_HEAD(&subsys->nsheads);
2727         nvme_init_subnqn(subsys, ctrl, id);
2728         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2729         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2730         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2731         subsys->vendor_id = le16_to_cpu(id->vid);
2732         subsys->cmic = id->cmic;
2733
2734         /* Versions prior to 1.4 don't necessarily report a valid type */
2735         if (id->cntrltype == NVME_CTRL_DISC ||
2736             !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2737                 subsys->subtype = NVME_NQN_DISC;
2738         else
2739                 subsys->subtype = NVME_NQN_NVME;
2740
2741         if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2742                 dev_err(ctrl->device,
2743                         "Subsystem %s is not a discovery controller",
2744                         subsys->subnqn);
2745                 kfree(subsys);
2746                 return -EINVAL;
2747         }
2748         subsys->awupf = le16_to_cpu(id->awupf);
2749         nvme_mpath_default_iopolicy(subsys);
2750
2751         subsys->dev.class = nvme_subsys_class;
2752         subsys->dev.release = nvme_release_subsystem;
2753         subsys->dev.groups = nvme_subsys_attrs_groups;
2754         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2755         device_initialize(&subsys->dev);
2756
2757         mutex_lock(&nvme_subsystems_lock);
2758         found = __nvme_find_get_subsystem(subsys->subnqn);
2759         if (found) {
2760                 put_device(&subsys->dev);
2761                 subsys = found;
2762
2763                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2764                         ret = -EINVAL;
2765                         goto out_put_subsystem;
2766                 }
2767         } else {
2768                 ret = device_add(&subsys->dev);
2769                 if (ret) {
2770                         dev_err(ctrl->device,
2771                                 "failed to register subsystem device.\n");
2772                         put_device(&subsys->dev);
2773                         goto out_unlock;
2774                 }
2775                 ida_init(&subsys->ns_ida);
2776                 list_add_tail(&subsys->entry, &nvme_subsystems);
2777         }
2778
2779         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2780                                 dev_name(ctrl->device));
2781         if (ret) {
2782                 dev_err(ctrl->device,
2783                         "failed to create sysfs link from subsystem.\n");
2784                 goto out_put_subsystem;
2785         }
2786
2787         if (!found)
2788                 subsys->instance = ctrl->instance;
2789         ctrl->subsys = subsys;
2790         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2791         mutex_unlock(&nvme_subsystems_lock);
2792         return 0;
2793
2794 out_put_subsystem:
2795         nvme_put_subsystem(subsys);
2796 out_unlock:
2797         mutex_unlock(&nvme_subsystems_lock);
2798         return ret;
2799 }
2800
2801 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2802                 void *log, size_t size, u64 offset)
2803 {
2804         struct nvme_command c = { };
2805         u32 dwlen = nvme_bytes_to_numd(size);
2806
2807         c.get_log_page.opcode = nvme_admin_get_log_page;
2808         c.get_log_page.nsid = cpu_to_le32(nsid);
2809         c.get_log_page.lid = log_page;
2810         c.get_log_page.lsp = lsp;
2811         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2812         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2813         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2814         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2815         c.get_log_page.csi = csi;
2816
2817         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2818 }
2819
2820 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2821                                 struct nvme_effects_log **log)
2822 {
2823         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2824         int ret;
2825
2826         if (cel)
2827                 goto out;
2828
2829         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2830         if (!cel)
2831                 return -ENOMEM;
2832
2833         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2834                         cel, sizeof(*cel), 0);
2835         if (ret) {
2836                 kfree(cel);
2837                 return ret;
2838         }
2839
2840         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2841 out:
2842         *log = cel;
2843         return 0;
2844 }
2845
2846 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2847 {
2848         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2849
2850         if (check_shl_overflow(1U, units + page_shift - 9, &val))
2851                 return UINT_MAX;
2852         return val;
2853 }
2854
2855 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2856 {
2857         struct nvme_command c = { };
2858         struct nvme_id_ctrl_nvm *id;
2859         int ret;
2860
2861         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2862                 ctrl->max_discard_sectors = UINT_MAX;
2863                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2864         } else {
2865                 ctrl->max_discard_sectors = 0;
2866                 ctrl->max_discard_segments = 0;
2867         }
2868
2869         /*
2870          * Even though NVMe spec explicitly states that MDTS is not applicable
2871          * to the write-zeroes, we are cautious and limit the size to the
2872          * controllers max_hw_sectors value, which is based on the MDTS field
2873          * and possibly other limiting factors.
2874          */
2875         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2876             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2877                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2878         else
2879                 ctrl->max_zeroes_sectors = 0;
2880
2881         if (nvme_ctrl_limited_cns(ctrl))
2882                 return 0;
2883
2884         id = kzalloc(sizeof(*id), GFP_KERNEL);
2885         if (!id)
2886                 return 0;
2887
2888         c.identify.opcode = nvme_admin_identify;
2889         c.identify.cns = NVME_ID_CNS_CS_CTRL;
2890         c.identify.csi = NVME_CSI_NVM;
2891
2892         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2893         if (ret)
2894                 goto free_data;
2895
2896         if (id->dmrl)
2897                 ctrl->max_discard_segments = id->dmrl;
2898         if (id->dmrsl)
2899                 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2900         if (id->wzsl)
2901                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2902
2903 free_data:
2904         kfree(id);
2905         return ret;
2906 }
2907
2908 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2909 {
2910         struct nvme_id_ctrl *id;
2911         u32 max_hw_sectors;
2912         bool prev_apst_enabled;
2913         int ret;
2914
2915         ret = nvme_identify_ctrl(ctrl, &id);
2916         if (ret) {
2917                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2918                 return -EIO;
2919         }
2920
2921         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2922                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2923                 if (ret < 0)
2924                         goto out_free;
2925         }
2926
2927         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2928                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2929
2930         if (!ctrl->identified) {
2931                 unsigned int i;
2932
2933                 ret = nvme_init_subsystem(ctrl, id);
2934                 if (ret)
2935                         goto out_free;
2936
2937                 /*
2938                  * Check for quirks.  Quirk can depend on firmware version,
2939                  * so, in principle, the set of quirks present can change
2940                  * across a reset.  As a possible future enhancement, we
2941                  * could re-scan for quirks every time we reinitialize
2942                  * the device, but we'd have to make sure that the driver
2943                  * behaves intelligently if the quirks change.
2944                  */
2945                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2946                         if (quirk_matches(id, &core_quirks[i]))
2947                                 ctrl->quirks |= core_quirks[i].quirks;
2948                 }
2949         }
2950
2951         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2952                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2953                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2954         }
2955
2956         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2957         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2958         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2959
2960         ctrl->oacs = le16_to_cpu(id->oacs);
2961         ctrl->oncs = le16_to_cpu(id->oncs);
2962         ctrl->mtfa = le16_to_cpu(id->mtfa);
2963         ctrl->oaes = le32_to_cpu(id->oaes);
2964         ctrl->wctemp = le16_to_cpu(id->wctemp);
2965         ctrl->cctemp = le16_to_cpu(id->cctemp);
2966
2967         atomic_set(&ctrl->abort_limit, id->acl + 1);
2968         ctrl->vwc = id->vwc;
2969         if (id->mdts)
2970                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2971         else
2972                 max_hw_sectors = UINT_MAX;
2973         ctrl->max_hw_sectors =
2974                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2975
2976         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2977         ctrl->sgls = le32_to_cpu(id->sgls);
2978         ctrl->kas = le16_to_cpu(id->kas);
2979         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2980         ctrl->ctratt = le32_to_cpu(id->ctratt);
2981
2982         if (id->rtd3e) {
2983                 /* us -> s */
2984                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2985
2986                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2987                                                  shutdown_timeout, 60);
2988
2989                 if (ctrl->shutdown_timeout != shutdown_timeout)
2990                         dev_info(ctrl->device,
2991                                  "Shutdown timeout set to %u seconds\n",
2992                                  ctrl->shutdown_timeout);
2993         } else
2994                 ctrl->shutdown_timeout = shutdown_timeout;
2995
2996         ctrl->npss = id->npss;
2997         ctrl->apsta = id->apsta;
2998         prev_apst_enabled = ctrl->apst_enabled;
2999         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3000                 if (force_apst && id->apsta) {
3001                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3002                         ctrl->apst_enabled = true;
3003                 } else {
3004                         ctrl->apst_enabled = false;
3005                 }
3006         } else {
3007                 ctrl->apst_enabled = id->apsta;
3008         }
3009         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3010
3011         if (ctrl->ops->flags & NVME_F_FABRICS) {
3012                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3013                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3014                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3015                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3016
3017                 /*
3018                  * In fabrics we need to verify the cntlid matches the
3019                  * admin connect
3020                  */
3021                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3022                         dev_err(ctrl->device,
3023                                 "Mismatching cntlid: Connect %u vs Identify "
3024                                 "%u, rejecting\n",
3025                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3026                         ret = -EINVAL;
3027                         goto out_free;
3028                 }
3029
3030                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3031                         dev_err(ctrl->device,
3032                                 "keep-alive support is mandatory for fabrics\n");
3033                         ret = -EINVAL;
3034                         goto out_free;
3035                 }
3036         } else {
3037                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3038                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3039                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3040                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3041         }
3042
3043         ret = nvme_mpath_init_identify(ctrl, id);
3044         if (ret < 0)
3045                 goto out_free;
3046
3047         if (ctrl->apst_enabled && !prev_apst_enabled)
3048                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3049         else if (!ctrl->apst_enabled && prev_apst_enabled)
3050                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3051
3052 out_free:
3053         kfree(id);
3054         return ret;
3055 }
3056
3057 /*
3058  * Initialize the cached copies of the Identify data and various controller
3059  * register in our nvme_ctrl structure.  This should be called as soon as
3060  * the admin queue is fully up and running.
3061  */
3062 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3063 {
3064         int ret;
3065
3066         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3067         if (ret) {
3068                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3069                 return ret;
3070         }
3071
3072         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3073
3074         if (ctrl->vs >= NVME_VS(1, 1, 0))
3075                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3076
3077         ret = nvme_init_identify(ctrl);
3078         if (ret)
3079                 return ret;
3080
3081         ret = nvme_init_non_mdts_limits(ctrl);
3082         if (ret < 0)
3083                 return ret;
3084
3085         ret = nvme_configure_apst(ctrl);
3086         if (ret < 0)
3087                 return ret;
3088
3089         ret = nvme_configure_timestamp(ctrl);
3090         if (ret < 0)
3091                 return ret;
3092
3093         ret = nvme_configure_directives(ctrl);
3094         if (ret < 0)
3095                 return ret;
3096
3097         ret = nvme_configure_acre(ctrl);
3098         if (ret < 0)
3099                 return ret;
3100
3101         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3102                 ret = nvme_hwmon_init(ctrl);
3103                 if (ret < 0)
3104                         return ret;
3105         }
3106
3107         ctrl->identified = true;
3108
3109         return 0;
3110 }
3111 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3112
3113 static int nvme_dev_open(struct inode *inode, struct file *file)
3114 {
3115         struct nvme_ctrl *ctrl =
3116                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3117
3118         switch (ctrl->state) {
3119         case NVME_CTRL_LIVE:
3120                 break;
3121         default:
3122                 return -EWOULDBLOCK;
3123         }
3124
3125         nvme_get_ctrl(ctrl);
3126         if (!try_module_get(ctrl->ops->module)) {
3127                 nvme_put_ctrl(ctrl);
3128                 return -EINVAL;
3129         }
3130
3131         file->private_data = ctrl;
3132         return 0;
3133 }
3134
3135 static int nvme_dev_release(struct inode *inode, struct file *file)
3136 {
3137         struct nvme_ctrl *ctrl =
3138                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3139
3140         module_put(ctrl->ops->module);
3141         nvme_put_ctrl(ctrl);
3142         return 0;
3143 }
3144
3145 static const struct file_operations nvme_dev_fops = {
3146         .owner          = THIS_MODULE,
3147         .open           = nvme_dev_open,
3148         .release        = nvme_dev_release,
3149         .unlocked_ioctl = nvme_dev_ioctl,
3150         .compat_ioctl   = compat_ptr_ioctl,
3151 };
3152
3153 static ssize_t nvme_sysfs_reset(struct device *dev,
3154                                 struct device_attribute *attr, const char *buf,
3155                                 size_t count)
3156 {
3157         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3158         int ret;
3159
3160         ret = nvme_reset_ctrl_sync(ctrl);
3161         if (ret < 0)
3162                 return ret;
3163         return count;
3164 }
3165 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3166
3167 static ssize_t nvme_sysfs_rescan(struct device *dev,
3168                                 struct device_attribute *attr, const char *buf,
3169                                 size_t count)
3170 {
3171         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3172
3173         nvme_queue_scan(ctrl);
3174         return count;
3175 }
3176 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3177
3178 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3179 {
3180         struct gendisk *disk = dev_to_disk(dev);
3181
3182         if (disk->fops == &nvme_bdev_ops)
3183                 return nvme_get_ns_from_dev(dev)->head;
3184         else
3185                 return disk->private_data;
3186 }
3187
3188 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3189                 char *buf)
3190 {
3191         struct nvme_ns_head *head = dev_to_ns_head(dev);
3192         struct nvme_ns_ids *ids = &head->ids;
3193         struct nvme_subsystem *subsys = head->subsys;
3194         int serial_len = sizeof(subsys->serial);
3195         int model_len = sizeof(subsys->model);
3196
3197         if (!uuid_is_null(&ids->uuid))
3198                 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3199
3200         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3201                 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3202
3203         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3204                 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3205
3206         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3207                                   subsys->serial[serial_len - 1] == '\0'))
3208                 serial_len--;
3209         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3210                                  subsys->model[model_len - 1] == '\0'))
3211                 model_len--;
3212
3213         return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3214                 serial_len, subsys->serial, model_len, subsys->model,
3215                 head->ns_id);
3216 }
3217 static DEVICE_ATTR_RO(wwid);
3218
3219 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3220                 char *buf)
3221 {
3222         return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3223 }
3224 static DEVICE_ATTR_RO(nguid);
3225
3226 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3227                 char *buf)
3228 {
3229         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3230
3231         /* For backward compatibility expose the NGUID to userspace if
3232          * we have no UUID set
3233          */
3234         if (uuid_is_null(&ids->uuid)) {
3235                 printk_ratelimited(KERN_WARNING
3236                                    "No UUID available providing old NGUID\n");
3237                 return sysfs_emit(buf, "%pU\n", ids->nguid);
3238         }
3239         return sysfs_emit(buf, "%pU\n", &ids->uuid);
3240 }
3241 static DEVICE_ATTR_RO(uuid);
3242
3243 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3244                 char *buf)
3245 {
3246         return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3247 }
3248 static DEVICE_ATTR_RO(eui);
3249
3250 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3251                 char *buf)
3252 {
3253         return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3254 }
3255 static DEVICE_ATTR_RO(nsid);
3256
3257 static struct attribute *nvme_ns_id_attrs[] = {
3258         &dev_attr_wwid.attr,
3259         &dev_attr_uuid.attr,
3260         &dev_attr_nguid.attr,
3261         &dev_attr_eui.attr,
3262         &dev_attr_nsid.attr,
3263 #ifdef CONFIG_NVME_MULTIPATH
3264         &dev_attr_ana_grpid.attr,
3265         &dev_attr_ana_state.attr,
3266 #endif
3267         NULL,
3268 };
3269
3270 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3271                 struct attribute *a, int n)
3272 {
3273         struct device *dev = container_of(kobj, struct device, kobj);
3274         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3275
3276         if (a == &dev_attr_uuid.attr) {
3277                 if (uuid_is_null(&ids->uuid) &&
3278                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3279                         return 0;
3280         }
3281         if (a == &dev_attr_nguid.attr) {
3282                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3283                         return 0;
3284         }
3285         if (a == &dev_attr_eui.attr) {
3286                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3287                         return 0;
3288         }
3289 #ifdef CONFIG_NVME_MULTIPATH
3290         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3291                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3292                         return 0;
3293                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3294                         return 0;
3295         }
3296 #endif
3297         return a->mode;
3298 }
3299
3300 static const struct attribute_group nvme_ns_id_attr_group = {
3301         .attrs          = nvme_ns_id_attrs,
3302         .is_visible     = nvme_ns_id_attrs_are_visible,
3303 };
3304
3305 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3306         &nvme_ns_id_attr_group,
3307         NULL,
3308 };
3309
3310 #define nvme_show_str_function(field)                                           \
3311 static ssize_t  field##_show(struct device *dev,                                \
3312                             struct device_attribute *attr, char *buf)           \
3313 {                                                                               \
3314         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3315         return sysfs_emit(buf, "%.*s\n",                                        \
3316                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3317 }                                                                               \
3318 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3319
3320 nvme_show_str_function(model);
3321 nvme_show_str_function(serial);
3322 nvme_show_str_function(firmware_rev);
3323
3324 #define nvme_show_int_function(field)                                           \
3325 static ssize_t  field##_show(struct device *dev,                                \
3326                             struct device_attribute *attr, char *buf)           \
3327 {                                                                               \
3328         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3329         return sysfs_emit(buf, "%d\n", ctrl->field);                            \
3330 }                                                                               \
3331 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3332
3333 nvme_show_int_function(cntlid);
3334 nvme_show_int_function(numa_node);
3335 nvme_show_int_function(queue_count);
3336 nvme_show_int_function(sqsize);
3337 nvme_show_int_function(kato);
3338
3339 static ssize_t nvme_sysfs_delete(struct device *dev,
3340                                 struct device_attribute *attr, const char *buf,
3341                                 size_t count)
3342 {
3343         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3344
3345         if (device_remove_file_self(dev, attr))
3346                 nvme_delete_ctrl_sync(ctrl);
3347         return count;
3348 }
3349 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3350
3351 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3352                                          struct device_attribute *attr,
3353                                          char *buf)
3354 {
3355         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3356
3357         return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3358 }
3359 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3360
3361 static ssize_t nvme_sysfs_show_state(struct device *dev,
3362                                      struct device_attribute *attr,
3363                                      char *buf)
3364 {
3365         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3366         static const char *const state_name[] = {
3367                 [NVME_CTRL_NEW]         = "new",
3368                 [NVME_CTRL_LIVE]        = "live",
3369                 [NVME_CTRL_RESETTING]   = "resetting",
3370                 [NVME_CTRL_CONNECTING]  = "connecting",
3371                 [NVME_CTRL_DELETING]    = "deleting",
3372                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3373                 [NVME_CTRL_DEAD]        = "dead",
3374         };
3375
3376         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3377             state_name[ctrl->state])
3378                 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3379
3380         return sysfs_emit(buf, "unknown state\n");
3381 }
3382
3383 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3384
3385 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3386                                          struct device_attribute *attr,
3387                                          char *buf)
3388 {
3389         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3390
3391         return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3392 }
3393 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3394
3395 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3396                                         struct device_attribute *attr,
3397                                         char *buf)
3398 {
3399         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3400
3401         return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3402 }
3403 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3404
3405 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3406                                         struct device_attribute *attr,
3407                                         char *buf)
3408 {
3409         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3410
3411         return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3412 }
3413 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3414
3415 static ssize_t nvme_sysfs_show_address(struct device *dev,
3416                                          struct device_attribute *attr,
3417                                          char *buf)
3418 {
3419         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3420
3421         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3422 }
3423 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3424
3425 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3426                 struct device_attribute *attr, char *buf)
3427 {
3428         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3429         struct nvmf_ctrl_options *opts = ctrl->opts;
3430
3431         if (ctrl->opts->max_reconnects == -1)
3432                 return sysfs_emit(buf, "off\n");
3433         return sysfs_emit(buf, "%d\n",
3434                           opts->max_reconnects * opts->reconnect_delay);
3435 }
3436
3437 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3438                 struct device_attribute *attr, const char *buf, size_t count)
3439 {
3440         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3441         struct nvmf_ctrl_options *opts = ctrl->opts;
3442         int ctrl_loss_tmo, err;
3443
3444         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3445         if (err)
3446                 return -EINVAL;
3447
3448         if (ctrl_loss_tmo < 0)
3449                 opts->max_reconnects = -1;
3450         else
3451                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3452                                                 opts->reconnect_delay);
3453         return count;
3454 }
3455 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3456         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3457
3458 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3459                 struct device_attribute *attr, char *buf)
3460 {
3461         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3462
3463         if (ctrl->opts->reconnect_delay == -1)
3464                 return sysfs_emit(buf, "off\n");
3465         return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3466 }
3467
3468 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3469                 struct device_attribute *attr, const char *buf, size_t count)
3470 {
3471         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3472         unsigned int v;
3473         int err;
3474
3475         err = kstrtou32(buf, 10, &v);
3476         if (err)
3477                 return err;
3478
3479         ctrl->opts->reconnect_delay = v;
3480         return count;
3481 }
3482 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3483         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3484
3485 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3486                 struct device_attribute *attr, char *buf)
3487 {
3488         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3489
3490         if (ctrl->opts->fast_io_fail_tmo == -1)
3491                 return sysfs_emit(buf, "off\n");
3492         return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3493 }
3494
3495 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3496                 struct device_attribute *attr, const char *buf, size_t count)
3497 {
3498         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3499         struct nvmf_ctrl_options *opts = ctrl->opts;
3500         int fast_io_fail_tmo, err;
3501
3502         err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3503         if (err)
3504                 return -EINVAL;
3505
3506         if (fast_io_fail_tmo < 0)
3507                 opts->fast_io_fail_tmo = -1;
3508         else
3509                 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3510         return count;
3511 }
3512 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3513         nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3514
3515 static struct attribute *nvme_dev_attrs[] = {
3516         &dev_attr_reset_controller.attr,
3517         &dev_attr_rescan_controller.attr,
3518         &dev_attr_model.attr,
3519         &dev_attr_serial.attr,
3520         &dev_attr_firmware_rev.attr,
3521         &dev_attr_cntlid.attr,
3522         &dev_attr_delete_controller.attr,
3523         &dev_attr_transport.attr,
3524         &dev_attr_subsysnqn.attr,
3525         &dev_attr_address.attr,
3526         &dev_attr_state.attr,
3527         &dev_attr_numa_node.attr,
3528         &dev_attr_queue_count.attr,
3529         &dev_attr_sqsize.attr,
3530         &dev_attr_hostnqn.attr,
3531         &dev_attr_hostid.attr,
3532         &dev_attr_ctrl_loss_tmo.attr,
3533         &dev_attr_reconnect_delay.attr,
3534         &dev_attr_fast_io_fail_tmo.attr,
3535         &dev_attr_kato.attr,
3536         NULL
3537 };
3538
3539 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3540                 struct attribute *a, int n)
3541 {
3542         struct device *dev = container_of(kobj, struct device, kobj);
3543         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3544
3545         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3546                 return 0;
3547         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3548                 return 0;
3549         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3550                 return 0;
3551         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3552                 return 0;
3553         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3554                 return 0;
3555         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3556                 return 0;
3557         if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3558                 return 0;
3559
3560         return a->mode;
3561 }
3562
3563 static const struct attribute_group nvme_dev_attrs_group = {
3564         .attrs          = nvme_dev_attrs,
3565         .is_visible     = nvme_dev_attrs_are_visible,
3566 };
3567
3568 static const struct attribute_group *nvme_dev_attr_groups[] = {
3569         &nvme_dev_attrs_group,
3570         NULL,
3571 };
3572
3573 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3574                 unsigned nsid)
3575 {
3576         struct nvme_ns_head *h;
3577
3578         lockdep_assert_held(&subsys->lock);
3579
3580         list_for_each_entry(h, &subsys->nsheads, entry) {
3581                 if (h->ns_id != nsid)
3582                         continue;
3583                 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3584                         return h;
3585         }
3586
3587         return NULL;
3588 }
3589
3590 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3591                 struct nvme_ns_head *new)
3592 {
3593         struct nvme_ns_head *h;
3594
3595         lockdep_assert_held(&subsys->lock);
3596
3597         list_for_each_entry(h, &subsys->nsheads, entry) {
3598                 if (nvme_ns_ids_valid(&new->ids) &&
3599                     nvme_ns_ids_equal(&new->ids, &h->ids))
3600                         return -EINVAL;
3601         }
3602
3603         return 0;
3604 }
3605
3606 static void nvme_cdev_rel(struct device *dev)
3607 {
3608         ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3609 }
3610
3611 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3612 {
3613         cdev_device_del(cdev, cdev_device);
3614         put_device(cdev_device);
3615 }
3616
3617 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3618                 const struct file_operations *fops, struct module *owner)
3619 {
3620         int minor, ret;
3621
3622         minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3623         if (minor < 0)
3624                 return minor;
3625         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3626         cdev_device->class = nvme_ns_chr_class;
3627         cdev_device->release = nvme_cdev_rel;
3628         device_initialize(cdev_device);
3629         cdev_init(cdev, fops);
3630         cdev->owner = owner;
3631         ret = cdev_device_add(cdev, cdev_device);
3632         if (ret)
3633                 put_device(cdev_device);
3634
3635         return ret;
3636 }
3637
3638 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3639 {
3640         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3641 }
3642
3643 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3644 {
3645         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3646         return 0;
3647 }
3648
3649 static const struct file_operations nvme_ns_chr_fops = {
3650         .owner          = THIS_MODULE,
3651         .open           = nvme_ns_chr_open,
3652         .release        = nvme_ns_chr_release,
3653         .unlocked_ioctl = nvme_ns_chr_ioctl,
3654         .compat_ioctl   = compat_ptr_ioctl,
3655 };
3656
3657 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3658 {
3659         int ret;
3660
3661         ns->cdev_device.parent = ns->ctrl->device;
3662         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3663                            ns->ctrl->instance, ns->head->instance);
3664         if (ret)
3665                 return ret;
3666
3667         return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3668                              ns->ctrl->ops->module);
3669 }
3670
3671 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3672                 unsigned nsid, struct nvme_ns_ids *ids)
3673 {
3674         struct nvme_ns_head *head;
3675         size_t size = sizeof(*head);
3676         int ret = -ENOMEM;
3677
3678 #ifdef CONFIG_NVME_MULTIPATH
3679         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3680 #endif
3681
3682         head = kzalloc(size, GFP_KERNEL);
3683         if (!head)
3684                 goto out;
3685         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3686         if (ret < 0)
3687                 goto out_free_head;
3688         head->instance = ret;
3689         INIT_LIST_HEAD(&head->list);
3690         ret = init_srcu_struct(&head->srcu);
3691         if (ret)
3692                 goto out_ida_remove;
3693         head->subsys = ctrl->subsys;
3694         head->ns_id = nsid;
3695         head->ids = *ids;
3696         kref_init(&head->ref);
3697
3698         ret = __nvme_check_ids(ctrl->subsys, head);
3699         if (ret) {
3700                 dev_err(ctrl->device,
3701                         "duplicate IDs for nsid %d\n", nsid);
3702                 goto out_cleanup_srcu;
3703         }
3704
3705         if (head->ids.csi) {
3706                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3707                 if (ret)
3708                         goto out_cleanup_srcu;
3709         } else
3710                 head->effects = ctrl->effects;
3711
3712         ret = nvme_mpath_alloc_disk(ctrl, head);
3713         if (ret)
3714                 goto out_cleanup_srcu;
3715
3716         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3717
3718         kref_get(&ctrl->subsys->ref);
3719
3720         return head;
3721 out_cleanup_srcu:
3722         cleanup_srcu_struct(&head->srcu);
3723 out_ida_remove:
3724         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3725 out_free_head:
3726         kfree(head);
3727 out:
3728         if (ret > 0)
3729                 ret = blk_status_to_errno(nvme_error_status(ret));
3730         return ERR_PTR(ret);
3731 }
3732
3733 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3734                 struct nvme_ns_ids *ids, bool is_shared)
3735 {
3736         struct nvme_ctrl *ctrl = ns->ctrl;
3737         struct nvme_ns_head *head = NULL;
3738         int ret = 0;
3739
3740         mutex_lock(&ctrl->subsys->lock);
3741         head = nvme_find_ns_head(ctrl->subsys, nsid);
3742         if (!head) {
3743                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3744                 if (IS_ERR(head)) {
3745                         ret = PTR_ERR(head);
3746                         goto out_unlock;
3747                 }
3748                 head->shared = is_shared;
3749         } else {
3750                 ret = -EINVAL;
3751                 if (!is_shared || !head->shared) {
3752                         dev_err(ctrl->device,
3753                                 "Duplicate unshared namespace %d\n", nsid);
3754                         goto out_put_ns_head;
3755                 }
3756                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3757                         dev_err(ctrl->device,
3758                                 "IDs don't match for shared namespace %d\n",
3759                                         nsid);
3760                         goto out_put_ns_head;
3761                 }
3762         }
3763
3764         list_add_tail_rcu(&ns->siblings, &head->list);
3765         ns->head = head;
3766         mutex_unlock(&ctrl->subsys->lock);
3767         return 0;
3768
3769 out_put_ns_head:
3770         nvme_put_ns_head(head);
3771 out_unlock:
3772         mutex_unlock(&ctrl->subsys->lock);
3773         return ret;
3774 }
3775
3776 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3777 {
3778         struct nvme_ns *ns, *ret = NULL;
3779
3780         down_read(&ctrl->namespaces_rwsem);
3781         list_for_each_entry(ns, &ctrl->namespaces, list) {
3782                 if (ns->head->ns_id == nsid) {
3783                         if (!nvme_get_ns(ns))
3784                                 continue;
3785                         ret = ns;
3786                         break;
3787                 }
3788                 if (ns->head->ns_id > nsid)
3789                         break;
3790         }
3791         up_read(&ctrl->namespaces_rwsem);
3792         return ret;
3793 }
3794 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3795
3796 /*
3797  * Add the namespace to the controller list while keeping the list ordered.
3798  */
3799 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3800 {
3801         struct nvme_ns *tmp;
3802
3803         list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3804                 if (tmp->head->ns_id < ns->head->ns_id) {
3805                         list_add(&ns->list, &tmp->list);
3806                         return;
3807                 }
3808         }
3809         list_add(&ns->list, &ns->ctrl->namespaces);
3810 }
3811
3812 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3813                 struct nvme_ns_ids *ids)
3814 {
3815         struct nvme_ns *ns;
3816         struct gendisk *disk;
3817         struct nvme_id_ns *id;
3818         int node = ctrl->numa_node;
3819
3820         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3821                 return;
3822
3823         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3824         if (!ns)
3825                 goto out_free_id;
3826
3827         disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3828         if (IS_ERR(disk))
3829                 goto out_free_ns;
3830         disk->fops = &nvme_bdev_ops;
3831         disk->private_data = ns;
3832
3833         ns->disk = disk;
3834         ns->queue = disk->queue;
3835
3836         if (ctrl->opts && ctrl->opts->data_digest)
3837                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3838
3839         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3840         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3841                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3842
3843         ns->ctrl = ctrl;
3844         kref_init(&ns->kref);
3845
3846         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3847                 goto out_cleanup_disk;
3848
3849         /*
3850          * Without the multipath code enabled, multiple controller per
3851          * subsystems are visible as devices and thus we cannot use the
3852          * subsystem instance.
3853          */
3854         if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3855                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3856                         ns->head->instance);
3857
3858         if (nvme_update_ns_info(ns, id))
3859                 goto out_unlink_ns;
3860
3861         down_write(&ctrl->namespaces_rwsem);
3862         nvme_ns_add_to_ctrl_list(ns);
3863         up_write(&ctrl->namespaces_rwsem);
3864         nvme_get_ctrl(ctrl);
3865
3866         if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3867                 goto out_cleanup_ns_from_list;
3868
3869         if (!nvme_ns_head_multipath(ns->head))
3870                 nvme_add_ns_cdev(ns);
3871
3872         nvme_mpath_add_disk(ns, id);
3873         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3874         kfree(id);
3875
3876         return;
3877
3878  out_cleanup_ns_from_list:
3879         nvme_put_ctrl(ctrl);
3880         down_write(&ctrl->namespaces_rwsem);
3881         list_del_init(&ns->list);
3882         up_write(&ctrl->namespaces_rwsem);
3883  out_unlink_ns:
3884         mutex_lock(&ctrl->subsys->lock);
3885         list_del_rcu(&ns->siblings);
3886         if (list_empty(&ns->head->list))
3887                 list_del_init(&ns->head->entry);
3888         mutex_unlock(&ctrl->subsys->lock);
3889         nvme_put_ns_head(ns->head);
3890  out_cleanup_disk:
3891         blk_cleanup_disk(disk);
3892  out_free_ns:
3893         kfree(ns);
3894  out_free_id:
3895         kfree(id);
3896 }
3897
3898 static void nvme_ns_remove(struct nvme_ns *ns)
3899 {
3900         bool last_path = false;
3901
3902         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3903                 return;
3904
3905         clear_bit(NVME_NS_READY, &ns->flags);
3906         set_capacity(ns->disk, 0);
3907         nvme_fault_inject_fini(&ns->fault_inject);
3908
3909         mutex_lock(&ns->ctrl->subsys->lock);
3910         list_del_rcu(&ns->siblings);
3911         if (list_empty(&ns->head->list)) {
3912                 list_del_init(&ns->head->entry);
3913                 last_path = true;
3914         }
3915         mutex_unlock(&ns->ctrl->subsys->lock);
3916
3917         /* guarantee not available in head->list */
3918         synchronize_rcu();
3919
3920         /* wait for concurrent submissions */
3921         if (nvme_mpath_clear_current_path(ns))
3922                 synchronize_srcu(&ns->head->srcu);
3923
3924         if (!nvme_ns_head_multipath(ns->head))
3925                 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3926         del_gendisk(ns->disk);
3927         blk_cleanup_queue(ns->queue);
3928
3929         down_write(&ns->ctrl->namespaces_rwsem);
3930         list_del_init(&ns->list);
3931         up_write(&ns->ctrl->namespaces_rwsem);
3932
3933         if (last_path)
3934                 nvme_mpath_shutdown_disk(ns->head);
3935         nvme_put_ns(ns);
3936 }
3937
3938 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3939 {
3940         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3941
3942         if (ns) {
3943                 nvme_ns_remove(ns);
3944                 nvme_put_ns(ns);
3945         }
3946 }
3947
3948 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3949 {
3950         struct nvme_id_ns *id;
3951         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3952
3953         if (test_bit(NVME_NS_DEAD, &ns->flags))
3954                 goto out;
3955
3956         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3957         if (ret)
3958                 goto out;
3959
3960         ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3961         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3962                 dev_err(ns->ctrl->device,
3963                         "identifiers changed for nsid %d\n", ns->head->ns_id);
3964                 goto out_free_id;
3965         }
3966
3967         ret = nvme_update_ns_info(ns, id);
3968
3969 out_free_id:
3970         kfree(id);
3971 out:
3972         /*
3973          * Only remove the namespace if we got a fatal error back from the
3974          * device, otherwise ignore the error and just move on.
3975          *
3976          * TODO: we should probably schedule a delayed retry here.
3977          */
3978         if (ret > 0 && (ret & NVME_SC_DNR))
3979                 nvme_ns_remove(ns);
3980 }
3981
3982 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3983 {
3984         struct nvme_ns_ids ids = { };
3985         struct nvme_ns *ns;
3986
3987         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3988                 return;
3989
3990         ns = nvme_find_get_ns(ctrl, nsid);
3991         if (ns) {
3992                 nvme_validate_ns(ns, &ids);
3993                 nvme_put_ns(ns);
3994                 return;
3995         }
3996
3997         switch (ids.csi) {
3998         case NVME_CSI_NVM:
3999                 nvme_alloc_ns(ctrl, nsid, &ids);
4000                 break;
4001         case NVME_CSI_ZNS:
4002                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4003                         dev_warn(ctrl->device,
4004                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4005                                 nsid);
4006                         break;
4007                 }
4008                 if (!nvme_multi_css(ctrl)) {
4009                         dev_warn(ctrl->device,
4010                                 "command set not reported for nsid: %d\n",
4011                                 nsid);
4012                         break;
4013                 }
4014                 nvme_alloc_ns(ctrl, nsid, &ids);
4015                 break;
4016         default:
4017                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4018                         ids.csi, nsid);
4019                 break;
4020         }
4021 }
4022
4023 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4024                                         unsigned nsid)
4025 {
4026         struct nvme_ns *ns, *next;
4027         LIST_HEAD(rm_list);
4028
4029         down_write(&ctrl->namespaces_rwsem);
4030         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4031                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4032                         list_move_tail(&ns->list, &rm_list);
4033         }
4034         up_write(&ctrl->namespaces_rwsem);
4035
4036         list_for_each_entry_safe(ns, next, &rm_list, list)
4037                 nvme_ns_remove(ns);
4038
4039 }
4040
4041 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4042 {
4043         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4044         __le32 *ns_list;
4045         u32 prev = 0;
4046         int ret = 0, i;
4047
4048         if (nvme_ctrl_limited_cns(ctrl))
4049                 return -EOPNOTSUPP;
4050
4051         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4052         if (!ns_list)
4053                 return -ENOMEM;
4054
4055         for (;;) {
4056                 struct nvme_command cmd = {
4057                         .identify.opcode        = nvme_admin_identify,
4058                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4059                         .identify.nsid          = cpu_to_le32(prev),
4060                 };
4061
4062                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4063                                             NVME_IDENTIFY_DATA_SIZE);
4064                 if (ret) {
4065                         dev_warn(ctrl->device,
4066                                 "Identify NS List failed (status=0x%x)\n", ret);
4067                         goto free;
4068                 }
4069
4070                 for (i = 0; i < nr_entries; i++) {
4071                         u32 nsid = le32_to_cpu(ns_list[i]);
4072
4073                         if (!nsid)      /* end of the list? */
4074                                 goto out;
4075                         nvme_validate_or_alloc_ns(ctrl, nsid);
4076                         while (++prev < nsid)
4077                                 nvme_ns_remove_by_nsid(ctrl, prev);
4078                 }
4079         }
4080  out:
4081         nvme_remove_invalid_namespaces(ctrl, prev);
4082  free:
4083         kfree(ns_list);
4084         return ret;
4085 }
4086
4087 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4088 {
4089         struct nvme_id_ctrl *id;
4090         u32 nn, i;
4091
4092         if (nvme_identify_ctrl(ctrl, &id))
4093                 return;
4094         nn = le32_to_cpu(id->nn);
4095         kfree(id);
4096
4097         for (i = 1; i <= nn; i++)
4098                 nvme_validate_or_alloc_ns(ctrl, i);
4099
4100         nvme_remove_invalid_namespaces(ctrl, nn);
4101 }
4102
4103 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4104 {
4105         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4106         __le32 *log;
4107         int error;
4108
4109         log = kzalloc(log_size, GFP_KERNEL);
4110         if (!log)
4111                 return;
4112
4113         /*
4114          * We need to read the log to clear the AEN, but we don't want to rely
4115          * on it for the changed namespace information as userspace could have
4116          * raced with us in reading the log page, which could cause us to miss
4117          * updates.
4118          */
4119         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4120                         NVME_CSI_NVM, log, log_size, 0);
4121         if (error)
4122                 dev_warn(ctrl->device,
4123                         "reading changed ns log failed: %d\n", error);
4124
4125         kfree(log);
4126 }
4127
4128 static void nvme_scan_work(struct work_struct *work)
4129 {
4130         struct nvme_ctrl *ctrl =
4131                 container_of(work, struct nvme_ctrl, scan_work);
4132
4133         /* No tagset on a live ctrl means IO queues could not created */
4134         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4135                 return;
4136
4137         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4138                 dev_info(ctrl->device, "rescanning namespaces.\n");
4139                 nvme_clear_changed_ns_log(ctrl);
4140         }
4141
4142         mutex_lock(&ctrl->scan_lock);
4143         if (nvme_scan_ns_list(ctrl) != 0)
4144                 nvme_scan_ns_sequential(ctrl);
4145         mutex_unlock(&ctrl->scan_lock);
4146 }
4147
4148 /*
4149  * This function iterates the namespace list unlocked to allow recovery from
4150  * controller failure. It is up to the caller to ensure the namespace list is
4151  * not modified by scan work while this function is executing.
4152  */
4153 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4154 {
4155         struct nvme_ns *ns, *next;
4156         LIST_HEAD(ns_list);
4157
4158         /*
4159          * make sure to requeue I/O to all namespaces as these
4160          * might result from the scan itself and must complete
4161          * for the scan_work to make progress
4162          */
4163         nvme_mpath_clear_ctrl_paths(ctrl);
4164
4165         /* prevent racing with ns scanning */
4166         flush_work(&ctrl->scan_work);
4167
4168         /*
4169          * The dead states indicates the controller was not gracefully
4170          * disconnected. In that case, we won't be able to flush any data while
4171          * removing the namespaces' disks; fail all the queues now to avoid
4172          * potentially having to clean up the failed sync later.
4173          */
4174         if (ctrl->state == NVME_CTRL_DEAD)
4175                 nvme_kill_queues(ctrl);
4176
4177         /* this is a no-op when called from the controller reset handler */
4178         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4179
4180         down_write(&ctrl->namespaces_rwsem);
4181         list_splice_init(&ctrl->namespaces, &ns_list);
4182         up_write(&ctrl->namespaces_rwsem);
4183
4184         list_for_each_entry_safe(ns, next, &ns_list, list)
4185                 nvme_ns_remove(ns);
4186 }
4187 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4188
4189 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4190 {
4191         struct nvme_ctrl *ctrl =
4192                 container_of(dev, struct nvme_ctrl, ctrl_device);
4193         struct nvmf_ctrl_options *opts = ctrl->opts;
4194         int ret;
4195
4196         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4197         if (ret)
4198                 return ret;
4199
4200         if (opts) {
4201                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4202                 if (ret)
4203                         return ret;
4204
4205                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4206                                 opts->trsvcid ?: "none");
4207                 if (ret)
4208                         return ret;
4209
4210                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4211                                 opts->host_traddr ?: "none");
4212                 if (ret)
4213                         return ret;
4214
4215                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4216                                 opts->host_iface ?: "none");
4217         }
4218         return ret;
4219 }
4220
4221 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4222 {
4223         char *envp[2] = { NULL, NULL };
4224         u32 aen_result = ctrl->aen_result;
4225
4226         ctrl->aen_result = 0;
4227         if (!aen_result)
4228                 return;
4229
4230         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4231         if (!envp[0])
4232                 return;
4233         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4234         kfree(envp[0]);
4235 }
4236
4237 static void nvme_async_event_work(struct work_struct *work)
4238 {
4239         struct nvme_ctrl *ctrl =
4240                 container_of(work, struct nvme_ctrl, async_event_work);
4241
4242         nvme_aen_uevent(ctrl);
4243         ctrl->ops->submit_async_event(ctrl);
4244 }
4245
4246 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4247 {
4248
4249         u32 csts;
4250
4251         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4252                 return false;
4253
4254         if (csts == ~0)
4255                 return false;
4256
4257         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4258 }
4259
4260 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4261 {
4262         struct nvme_fw_slot_info_log *log;
4263
4264         log = kmalloc(sizeof(*log), GFP_KERNEL);
4265         if (!log)
4266                 return;
4267
4268         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4269                         log, sizeof(*log), 0))
4270                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4271         kfree(log);
4272 }
4273
4274 static void nvme_fw_act_work(struct work_struct *work)
4275 {
4276         struct nvme_ctrl *ctrl = container_of(work,
4277                                 struct nvme_ctrl, fw_act_work);
4278         unsigned long fw_act_timeout;
4279
4280         if (ctrl->mtfa)
4281                 fw_act_timeout = jiffies +
4282                                 msecs_to_jiffies(ctrl->mtfa * 100);
4283         else
4284                 fw_act_timeout = jiffies +
4285                                 msecs_to_jiffies(admin_timeout * 1000);
4286
4287         nvme_stop_queues(ctrl);
4288         while (nvme_ctrl_pp_status(ctrl)) {
4289                 if (time_after(jiffies, fw_act_timeout)) {
4290                         dev_warn(ctrl->device,
4291                                 "Fw activation timeout, reset controller\n");
4292                         nvme_try_sched_reset(ctrl);
4293                         return;
4294                 }
4295                 msleep(100);
4296         }
4297
4298         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4299                 return;
4300
4301         nvme_start_queues(ctrl);
4302         /* read FW slot information to clear the AER */
4303         nvme_get_fw_slot_info(ctrl);
4304 }
4305
4306 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4307 {
4308         u32 aer_notice_type = (result & 0xff00) >> 8;
4309
4310         trace_nvme_async_event(ctrl, aer_notice_type);
4311
4312         switch (aer_notice_type) {
4313         case NVME_AER_NOTICE_NS_CHANGED:
4314                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4315                 nvme_queue_scan(ctrl);
4316                 break;
4317         case NVME_AER_NOTICE_FW_ACT_STARTING:
4318                 /*
4319                  * We are (ab)using the RESETTING state to prevent subsequent
4320                  * recovery actions from interfering with the controller's
4321                  * firmware activation.
4322                  */
4323                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4324                         queue_work(nvme_wq, &ctrl->fw_act_work);
4325                 break;
4326 #ifdef CONFIG_NVME_MULTIPATH
4327         case NVME_AER_NOTICE_ANA:
4328                 if (!ctrl->ana_log_buf)
4329                         break;
4330                 queue_work(nvme_wq, &ctrl->ana_work);
4331                 break;
4332 #endif
4333         case NVME_AER_NOTICE_DISC_CHANGED:
4334                 ctrl->aen_result = result;
4335                 break;
4336         default:
4337                 dev_warn(ctrl->device, "async event result %08x\n", result);
4338         }
4339 }
4340
4341 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4342                 volatile union nvme_result *res)
4343 {
4344         u32 result = le32_to_cpu(res->u32);
4345         u32 aer_type = result & 0x07;
4346
4347         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4348                 return;
4349
4350         switch (aer_type) {
4351         case NVME_AER_NOTICE:
4352                 nvme_handle_aen_notice(ctrl, result);
4353                 break;
4354         case NVME_AER_ERROR:
4355         case NVME_AER_SMART:
4356         case NVME_AER_CSS:
4357         case NVME_AER_VS:
4358                 trace_nvme_async_event(ctrl, aer_type);
4359                 ctrl->aen_result = result;
4360                 break;
4361         default:
4362                 break;
4363         }
4364         queue_work(nvme_wq, &ctrl->async_event_work);
4365 }
4366 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4367
4368 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4369 {
4370         nvme_mpath_stop(ctrl);
4371         nvme_stop_keep_alive(ctrl);
4372         nvme_stop_failfast_work(ctrl);
4373         flush_work(&ctrl->async_event_work);
4374         cancel_work_sync(&ctrl->fw_act_work);
4375 }
4376 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4377
4378 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4379 {
4380         nvme_start_keep_alive(ctrl);
4381
4382         nvme_enable_aen(ctrl);
4383
4384         if (ctrl->queue_count > 1) {
4385                 nvme_queue_scan(ctrl);
4386                 nvme_start_queues(ctrl);
4387         }
4388 }
4389 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4390
4391 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4392 {
4393         nvme_hwmon_exit(ctrl);
4394         nvme_fault_inject_fini(&ctrl->fault_inject);
4395         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4396         cdev_device_del(&ctrl->cdev, ctrl->device);
4397         nvme_put_ctrl(ctrl);
4398 }
4399 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4400
4401 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4402 {
4403         struct nvme_effects_log *cel;
4404         unsigned long i;
4405
4406         xa_for_each(&ctrl->cels, i, cel) {
4407                 xa_erase(&ctrl->cels, i);
4408                 kfree(cel);
4409         }
4410
4411         xa_destroy(&ctrl->cels);
4412 }
4413
4414 static void nvme_free_ctrl(struct device *dev)
4415 {
4416         struct nvme_ctrl *ctrl =
4417                 container_of(dev, struct nvme_ctrl, ctrl_device);
4418         struct nvme_subsystem *subsys = ctrl->subsys;
4419
4420         if (!subsys || ctrl->instance != subsys->instance)
4421                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4422
4423         nvme_free_cels(ctrl);
4424         nvme_mpath_uninit(ctrl);
4425         __free_page(ctrl->discard_page);
4426
4427         if (subsys) {
4428                 mutex_lock(&nvme_subsystems_lock);
4429                 list_del(&ctrl->subsys_entry);
4430                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4431                 mutex_unlock(&nvme_subsystems_lock);
4432         }
4433
4434         ctrl->ops->free_ctrl(ctrl);
4435
4436         if (subsys)
4437                 nvme_put_subsystem(subsys);
4438 }
4439
4440 /*
4441  * Initialize a NVMe controller structures.  This needs to be called during
4442  * earliest initialization so that we have the initialized structured around
4443  * during probing.
4444  */
4445 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4446                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4447 {
4448         int ret;
4449
4450         ctrl->state = NVME_CTRL_NEW;
4451         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4452         spin_lock_init(&ctrl->lock);
4453         mutex_init(&ctrl->scan_lock);
4454         INIT_LIST_HEAD(&ctrl->namespaces);
4455         xa_init(&ctrl->cels);
4456         init_rwsem(&ctrl->namespaces_rwsem);
4457         ctrl->dev = dev;
4458         ctrl->ops = ops;
4459         ctrl->quirks = quirks;
4460         ctrl->numa_node = NUMA_NO_NODE;
4461         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4462         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4463         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4464         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4465         init_waitqueue_head(&ctrl->state_wq);
4466
4467         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4468         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4469         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4470         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4471
4472         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4473                         PAGE_SIZE);
4474         ctrl->discard_page = alloc_page(GFP_KERNEL);
4475         if (!ctrl->discard_page) {
4476                 ret = -ENOMEM;
4477                 goto out;
4478         }
4479
4480         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4481         if (ret < 0)
4482                 goto out;
4483         ctrl->instance = ret;
4484
4485         device_initialize(&ctrl->ctrl_device);
4486         ctrl->device = &ctrl->ctrl_device;
4487         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4488                         ctrl->instance);
4489         ctrl->device->class = nvme_class;
4490         ctrl->device->parent = ctrl->dev;
4491         ctrl->device->groups = nvme_dev_attr_groups;
4492         ctrl->device->release = nvme_free_ctrl;
4493         dev_set_drvdata(ctrl->device, ctrl);
4494         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4495         if (ret)
4496                 goto out_release_instance;
4497
4498         nvme_get_ctrl(ctrl);
4499         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4500         ctrl->cdev.owner = ops->module;
4501         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4502         if (ret)
4503                 goto out_free_name;
4504
4505         /*
4506          * Initialize latency tolerance controls.  The sysfs files won't
4507          * be visible to userspace unless the device actually supports APST.
4508          */
4509         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4510         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4511                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4512
4513         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4514         nvme_mpath_init_ctrl(ctrl);
4515
4516         return 0;
4517 out_free_name:
4518         nvme_put_ctrl(ctrl);
4519         kfree_const(ctrl->device->kobj.name);
4520 out_release_instance:
4521         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4522 out:
4523         if (ctrl->discard_page)
4524                 __free_page(ctrl->discard_page);
4525         return ret;
4526 }
4527 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4528
4529 static void nvme_start_ns_queue(struct nvme_ns *ns)
4530 {
4531         if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4532                 blk_mq_unquiesce_queue(ns->queue);
4533 }
4534
4535 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4536 {
4537         if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4538                 blk_mq_quiesce_queue(ns->queue);
4539         else
4540                 blk_mq_wait_quiesce_done(ns->queue);
4541 }
4542
4543 /*
4544  * Prepare a queue for teardown.
4545  *
4546  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4547  * the capacity to 0 after that to avoid blocking dispatchers that may be
4548  * holding bd_butex.  This will end buffered writers dirtying pages that can't
4549  * be synced.
4550  */
4551 static void nvme_set_queue_dying(struct nvme_ns *ns)
4552 {
4553         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4554                 return;
4555
4556         blk_set_queue_dying(ns->queue);
4557         nvme_start_ns_queue(ns);
4558
4559         set_capacity_and_notify(ns->disk, 0);
4560 }
4561
4562 /**
4563  * nvme_kill_queues(): Ends all namespace queues
4564  * @ctrl: the dead controller that needs to end
4565  *
4566  * Call this function when the driver determines it is unable to get the
4567  * controller in a state capable of servicing IO.
4568  */
4569 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4570 {
4571         struct nvme_ns *ns;
4572
4573         down_read(&ctrl->namespaces_rwsem);
4574
4575         /* Forcibly unquiesce queues to avoid blocking dispatch */
4576         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4577                 nvme_start_admin_queue(ctrl);
4578
4579         list_for_each_entry(ns, &ctrl->namespaces, list)
4580                 nvme_set_queue_dying(ns);
4581
4582         up_read(&ctrl->namespaces_rwsem);
4583 }
4584 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4585
4586 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4587 {
4588         struct nvme_ns *ns;
4589
4590         down_read(&ctrl->namespaces_rwsem);
4591         list_for_each_entry(ns, &ctrl->namespaces, list)
4592                 blk_mq_unfreeze_queue(ns->queue);
4593         up_read(&ctrl->namespaces_rwsem);
4594 }
4595 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4596
4597 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4598 {
4599         struct nvme_ns *ns;
4600
4601         down_read(&ctrl->namespaces_rwsem);
4602         list_for_each_entry(ns, &ctrl->namespaces, list) {
4603                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4604                 if (timeout <= 0)
4605                         break;
4606         }
4607         up_read(&ctrl->namespaces_rwsem);
4608         return timeout;
4609 }
4610 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4611
4612 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4613 {
4614         struct nvme_ns *ns;
4615
4616         down_read(&ctrl->namespaces_rwsem);
4617         list_for_each_entry(ns, &ctrl->namespaces, list)
4618                 blk_mq_freeze_queue_wait(ns->queue);
4619         up_read(&ctrl->namespaces_rwsem);
4620 }
4621 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4622
4623 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4624 {
4625         struct nvme_ns *ns;
4626
4627         down_read(&ctrl->namespaces_rwsem);
4628         list_for_each_entry(ns, &ctrl->namespaces, list)
4629                 blk_freeze_queue_start(ns->queue);
4630         up_read(&ctrl->namespaces_rwsem);
4631 }
4632 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4633
4634 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4635 {
4636         struct nvme_ns *ns;
4637
4638         down_read(&ctrl->namespaces_rwsem);
4639         list_for_each_entry(ns, &ctrl->namespaces, list)
4640                 nvme_stop_ns_queue(ns);
4641         up_read(&ctrl->namespaces_rwsem);
4642 }
4643 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4644
4645 void nvme_start_queues(struct nvme_ctrl *ctrl)
4646 {
4647         struct nvme_ns *ns;
4648
4649         down_read(&ctrl->namespaces_rwsem);
4650         list_for_each_entry(ns, &ctrl->namespaces, list)
4651                 nvme_start_ns_queue(ns);
4652         up_read(&ctrl->namespaces_rwsem);
4653 }
4654 EXPORT_SYMBOL_GPL(nvme_start_queues);
4655
4656 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4657 {
4658         if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4659                 blk_mq_quiesce_queue(ctrl->admin_q);
4660         else
4661                 blk_mq_wait_quiesce_done(ctrl->admin_q);
4662 }
4663 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4664
4665 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4666 {
4667         if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4668                 blk_mq_unquiesce_queue(ctrl->admin_q);
4669 }
4670 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4671
4672 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4673 {
4674         struct nvme_ns *ns;
4675
4676         down_read(&ctrl->namespaces_rwsem);
4677         list_for_each_entry(ns, &ctrl->namespaces, list)
4678                 blk_sync_queue(ns->queue);
4679         up_read(&ctrl->namespaces_rwsem);
4680 }
4681 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4682
4683 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4684 {
4685         nvme_sync_io_queues(ctrl);
4686         if (ctrl->admin_q)
4687                 blk_sync_queue(ctrl->admin_q);
4688 }
4689 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4690
4691 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4692 {
4693         if (file->f_op != &nvme_dev_fops)
4694                 return NULL;
4695         return file->private_data;
4696 }
4697 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4698
4699 /*
4700  * Check we didn't inadvertently grow the command structure sizes:
4701  */
4702 static inline void _nvme_check_size(void)
4703 {
4704         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4705         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4706         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4707         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4708         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4709         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4710         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4711         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4712         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4713         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4714         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4715         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4716         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4717         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4718         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4719         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4720         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4721         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4722         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4723         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4724 }
4725
4726
4727 static int __init nvme_core_init(void)
4728 {
4729         int result = -ENOMEM;
4730
4731         _nvme_check_size();
4732
4733         nvme_wq = alloc_workqueue("nvme-wq",
4734                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4735         if (!nvme_wq)
4736                 goto out;
4737
4738         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4739                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4740         if (!nvme_reset_wq)
4741                 goto destroy_wq;
4742
4743         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4744                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4745         if (!nvme_delete_wq)
4746                 goto destroy_reset_wq;
4747
4748         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4749                         NVME_MINORS, "nvme");
4750         if (result < 0)
4751                 goto destroy_delete_wq;
4752
4753         nvme_class = class_create(THIS_MODULE, "nvme");
4754         if (IS_ERR(nvme_class)) {
4755                 result = PTR_ERR(nvme_class);
4756                 goto unregister_chrdev;
4757         }
4758         nvme_class->dev_uevent = nvme_class_uevent;
4759
4760         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4761         if (IS_ERR(nvme_subsys_class)) {
4762                 result = PTR_ERR(nvme_subsys_class);
4763                 goto destroy_class;
4764         }
4765
4766         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4767                                      "nvme-generic");
4768         if (result < 0)
4769                 goto destroy_subsys_class;
4770
4771         nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4772         if (IS_ERR(nvme_ns_chr_class)) {
4773                 result = PTR_ERR(nvme_ns_chr_class);
4774                 goto unregister_generic_ns;
4775         }
4776
4777         return 0;
4778
4779 unregister_generic_ns:
4780         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4781 destroy_subsys_class:
4782         class_destroy(nvme_subsys_class);
4783 destroy_class:
4784         class_destroy(nvme_class);
4785 unregister_chrdev:
4786         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4787 destroy_delete_wq:
4788         destroy_workqueue(nvme_delete_wq);
4789 destroy_reset_wq:
4790         destroy_workqueue(nvme_reset_wq);
4791 destroy_wq:
4792         destroy_workqueue(nvme_wq);
4793 out:
4794         return result;
4795 }
4796
4797 static void __exit nvme_core_exit(void)
4798 {
4799         class_destroy(nvme_ns_chr_class);
4800         class_destroy(nvme_subsys_class);
4801         class_destroy(nvme_class);
4802         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4803         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4804         destroy_workqueue(nvme_delete_wq);
4805         destroy_workqueue(nvme_reset_wq);
4806         destroy_workqueue(nvme_wq);
4807         ida_destroy(&nvme_ns_chr_minor_ida);
4808         ida_destroy(&nvme_instance_ida);
4809 }
4810
4811 MODULE_LICENSE("GPL");
4812 MODULE_VERSION("1.0");
4813 module_init(nvme_core_init);
4814 module_exit(nvme_core_exit);