Merge tag 'configfs-for-4.15' of git://git.infradead.org/users/hch/configfs
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS             (1U << MINORBITS)
36
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 static unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 static u8 nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, byte, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54
55 static int nvme_char_major;
56 module_param(nvme_char_major, int, 0);
57
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61                  "max power saving latency for new devices; use PM QOS to change per device");
62
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70
71 struct workqueue_struct *nvme_wq;
72 EXPORT_SYMBOL_GPL(nvme_wq);
73
74 static LIST_HEAD(nvme_ctrl_list);
75 static DEFINE_SPINLOCK(dev_list_lock);
76
77 static struct class *nvme_class;
78
79 static __le32 nvme_get_log_dw10(u8 lid, size_t size)
80 {
81         return cpu_to_le32((((size / 4) - 1) << 16) | lid);
82 }
83
84 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
85 {
86         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
87                 return -EBUSY;
88         if (!queue_work(nvme_wq, &ctrl->reset_work))
89                 return -EBUSY;
90         return 0;
91 }
92 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
93
94 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
95 {
96         int ret;
97
98         ret = nvme_reset_ctrl(ctrl);
99         if (!ret)
100                 flush_work(&ctrl->reset_work);
101         return ret;
102 }
103
104 static blk_status_t nvme_error_status(struct request *req)
105 {
106         switch (nvme_req(req)->status & 0x7ff) {
107         case NVME_SC_SUCCESS:
108                 return BLK_STS_OK;
109         case NVME_SC_CAP_EXCEEDED:
110                 return BLK_STS_NOSPC;
111         case NVME_SC_ONCS_NOT_SUPPORTED:
112                 return BLK_STS_NOTSUPP;
113         case NVME_SC_WRITE_FAULT:
114         case NVME_SC_READ_ERROR:
115         case NVME_SC_UNWRITTEN_BLOCK:
116         case NVME_SC_ACCESS_DENIED:
117         case NVME_SC_READ_ONLY:
118                 return BLK_STS_MEDIUM;
119         case NVME_SC_GUARD_CHECK:
120         case NVME_SC_APPTAG_CHECK:
121         case NVME_SC_REFTAG_CHECK:
122         case NVME_SC_INVALID_PI:
123                 return BLK_STS_PROTECTION;
124         case NVME_SC_RESERVATION_CONFLICT:
125                 return BLK_STS_NEXUS;
126         default:
127                 return BLK_STS_IOERR;
128         }
129 }
130
131 static inline bool nvme_req_needs_retry(struct request *req)
132 {
133         if (blk_noretry_request(req))
134                 return false;
135         if (nvme_req(req)->status & NVME_SC_DNR)
136                 return false;
137         if (nvme_req(req)->retries >= nvme_max_retries)
138                 return false;
139         return true;
140 }
141
142 void nvme_complete_rq(struct request *req)
143 {
144         if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
145                 nvme_req(req)->retries++;
146                 blk_mq_requeue_request(req, true);
147                 return;
148         }
149
150         blk_mq_end_request(req, nvme_error_status(req));
151 }
152 EXPORT_SYMBOL_GPL(nvme_complete_rq);
153
154 void nvme_cancel_request(struct request *req, void *data, bool reserved)
155 {
156         int status;
157
158         if (!blk_mq_request_started(req))
159                 return;
160
161         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
162                                 "Cancelling I/O %d", req->tag);
163
164         status = NVME_SC_ABORT_REQ;
165         if (blk_queue_dying(req->q))
166                 status |= NVME_SC_DNR;
167         nvme_req(req)->status = status;
168         blk_mq_complete_request(req);
169
170 }
171 EXPORT_SYMBOL_GPL(nvme_cancel_request);
172
173 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
174                 enum nvme_ctrl_state new_state)
175 {
176         enum nvme_ctrl_state old_state;
177         unsigned long flags;
178         bool changed = false;
179
180         spin_lock_irqsave(&ctrl->lock, flags);
181
182         old_state = ctrl->state;
183         switch (new_state) {
184         case NVME_CTRL_LIVE:
185                 switch (old_state) {
186                 case NVME_CTRL_NEW:
187                 case NVME_CTRL_RESETTING:
188                 case NVME_CTRL_RECONNECTING:
189                         changed = true;
190                         /* FALLTHRU */
191                 default:
192                         break;
193                 }
194                 break;
195         case NVME_CTRL_RESETTING:
196                 switch (old_state) {
197                 case NVME_CTRL_NEW:
198                 case NVME_CTRL_LIVE:
199                         changed = true;
200                         /* FALLTHRU */
201                 default:
202                         break;
203                 }
204                 break;
205         case NVME_CTRL_RECONNECTING:
206                 switch (old_state) {
207                 case NVME_CTRL_LIVE:
208                         changed = true;
209                         /* FALLTHRU */
210                 default:
211                         break;
212                 }
213                 break;
214         case NVME_CTRL_DELETING:
215                 switch (old_state) {
216                 case NVME_CTRL_LIVE:
217                 case NVME_CTRL_RESETTING:
218                 case NVME_CTRL_RECONNECTING:
219                         changed = true;
220                         /* FALLTHRU */
221                 default:
222                         break;
223                 }
224                 break;
225         case NVME_CTRL_DEAD:
226                 switch (old_state) {
227                 case NVME_CTRL_DELETING:
228                         changed = true;
229                         /* FALLTHRU */
230                 default:
231                         break;
232                 }
233                 break;
234         default:
235                 break;
236         }
237
238         if (changed)
239                 ctrl->state = new_state;
240
241         spin_unlock_irqrestore(&ctrl->lock, flags);
242
243         return changed;
244 }
245 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
246
247 static void nvme_free_ns(struct kref *kref)
248 {
249         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
250
251         if (ns->ndev)
252                 nvme_nvm_unregister(ns);
253
254         if (ns->disk) {
255                 spin_lock(&dev_list_lock);
256                 ns->disk->private_data = NULL;
257                 spin_unlock(&dev_list_lock);
258         }
259
260         put_disk(ns->disk);
261         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
262         nvme_put_ctrl(ns->ctrl);
263         kfree(ns);
264 }
265
266 static void nvme_put_ns(struct nvme_ns *ns)
267 {
268         kref_put(&ns->kref, nvme_free_ns);
269 }
270
271 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
272 {
273         struct nvme_ns *ns;
274
275         spin_lock(&dev_list_lock);
276         ns = disk->private_data;
277         if (ns) {
278                 if (!kref_get_unless_zero(&ns->kref))
279                         goto fail;
280                 if (!try_module_get(ns->ctrl->ops->module))
281                         goto fail_put_ns;
282         }
283         spin_unlock(&dev_list_lock);
284
285         return ns;
286
287 fail_put_ns:
288         kref_put(&ns->kref, nvme_free_ns);
289 fail:
290         spin_unlock(&dev_list_lock);
291         return NULL;
292 }
293
294 struct request *nvme_alloc_request(struct request_queue *q,
295                 struct nvme_command *cmd, unsigned int flags, int qid)
296 {
297         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
298         struct request *req;
299
300         if (qid == NVME_QID_ANY) {
301                 req = blk_mq_alloc_request(q, op, flags);
302         } else {
303                 req = blk_mq_alloc_request_hctx(q, op, flags,
304                                 qid ? qid - 1 : 0);
305         }
306         if (IS_ERR(req))
307                 return req;
308
309         req->cmd_flags |= REQ_FAILFAST_DRIVER;
310         nvme_req(req)->cmd = cmd;
311
312         return req;
313 }
314 EXPORT_SYMBOL_GPL(nvme_alloc_request);
315
316 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
317 {
318         struct nvme_command c;
319
320         memset(&c, 0, sizeof(c));
321
322         c.directive.opcode = nvme_admin_directive_send;
323         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
324         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
325         c.directive.dtype = NVME_DIR_IDENTIFY;
326         c.directive.tdtype = NVME_DIR_STREAMS;
327         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
328
329         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
330 }
331
332 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
333 {
334         return nvme_toggle_streams(ctrl, false);
335 }
336
337 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
338 {
339         return nvme_toggle_streams(ctrl, true);
340 }
341
342 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
343                                   struct streams_directive_params *s, u32 nsid)
344 {
345         struct nvme_command c;
346
347         memset(&c, 0, sizeof(c));
348         memset(s, 0, sizeof(*s));
349
350         c.directive.opcode = nvme_admin_directive_recv;
351         c.directive.nsid = cpu_to_le32(nsid);
352         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
353         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
354         c.directive.dtype = NVME_DIR_STREAMS;
355
356         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
357 }
358
359 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
360 {
361         struct streams_directive_params s;
362         int ret;
363
364         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
365                 return 0;
366         if (!streams)
367                 return 0;
368
369         ret = nvme_enable_streams(ctrl);
370         if (ret)
371                 return ret;
372
373         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
374         if (ret)
375                 return ret;
376
377         ctrl->nssa = le16_to_cpu(s.nssa);
378         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
379                 dev_info(ctrl->device, "too few streams (%u) available\n",
380                                         ctrl->nssa);
381                 nvme_disable_streams(ctrl);
382                 return 0;
383         }
384
385         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
386         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
387         return 0;
388 }
389
390 /*
391  * Check if 'req' has a write hint associated with it. If it does, assign
392  * a valid namespace stream to the write.
393  */
394 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
395                                      struct request *req, u16 *control,
396                                      u32 *dsmgmt)
397 {
398         enum rw_hint streamid = req->write_hint;
399
400         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
401                 streamid = 0;
402         else {
403                 streamid--;
404                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
405                         return;
406
407                 *control |= NVME_RW_DTYPE_STREAMS;
408                 *dsmgmt |= streamid << 16;
409         }
410
411         if (streamid < ARRAY_SIZE(req->q->write_hints))
412                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
413 }
414
415 static inline void nvme_setup_flush(struct nvme_ns *ns,
416                 struct nvme_command *cmnd)
417 {
418         memset(cmnd, 0, sizeof(*cmnd));
419         cmnd->common.opcode = nvme_cmd_flush;
420         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
421 }
422
423 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
424                 struct nvme_command *cmnd)
425 {
426         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
427         struct nvme_dsm_range *range;
428         struct bio *bio;
429
430         range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
431         if (!range)
432                 return BLK_STS_RESOURCE;
433
434         __rq_for_each_bio(bio, req) {
435                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
436                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
437
438                 range[n].cattr = cpu_to_le32(0);
439                 range[n].nlb = cpu_to_le32(nlb);
440                 range[n].slba = cpu_to_le64(slba);
441                 n++;
442         }
443
444         if (WARN_ON_ONCE(n != segments)) {
445                 kfree(range);
446                 return BLK_STS_IOERR;
447         }
448
449         memset(cmnd, 0, sizeof(*cmnd));
450         cmnd->dsm.opcode = nvme_cmd_dsm;
451         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
452         cmnd->dsm.nr = cpu_to_le32(segments - 1);
453         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
454
455         req->special_vec.bv_page = virt_to_page(range);
456         req->special_vec.bv_offset = offset_in_page(range);
457         req->special_vec.bv_len = sizeof(*range) * segments;
458         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
459
460         return BLK_STS_OK;
461 }
462
463 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
464                 struct request *req, struct nvme_command *cmnd)
465 {
466         struct nvme_ctrl *ctrl = ns->ctrl;
467         u16 control = 0;
468         u32 dsmgmt = 0;
469
470         /*
471          * If formated with metadata, require the block layer provide a buffer
472          * unless this namespace is formated such that the metadata can be
473          * stripped/generated by the controller with PRACT=1.
474          */
475         if (ns && ns->ms &&
476             (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
477             !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
478                 return BLK_STS_NOTSUPP;
479
480         if (req->cmd_flags & REQ_FUA)
481                 control |= NVME_RW_FUA;
482         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
483                 control |= NVME_RW_LR;
484
485         if (req->cmd_flags & REQ_RAHEAD)
486                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
487
488         memset(cmnd, 0, sizeof(*cmnd));
489         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
490         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
491         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
492         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
493
494         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
495                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
496
497         if (ns->ms) {
498                 switch (ns->pi_type) {
499                 case NVME_NS_DPS_PI_TYPE3:
500                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
501                         break;
502                 case NVME_NS_DPS_PI_TYPE1:
503                 case NVME_NS_DPS_PI_TYPE2:
504                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
505                                         NVME_RW_PRINFO_PRCHK_REF;
506                         cmnd->rw.reftag = cpu_to_le32(
507                                         nvme_block_nr(ns, blk_rq_pos(req)));
508                         break;
509                 }
510                 if (!blk_integrity_rq(req))
511                         control |= NVME_RW_PRINFO_PRACT;
512         }
513
514         cmnd->rw.control = cpu_to_le16(control);
515         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
516         return 0;
517 }
518
519 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
520                 struct nvme_command *cmd)
521 {
522         blk_status_t ret = BLK_STS_OK;
523
524         if (!(req->rq_flags & RQF_DONTPREP)) {
525                 nvme_req(req)->retries = 0;
526                 nvme_req(req)->flags = 0;
527                 req->rq_flags |= RQF_DONTPREP;
528         }
529
530         switch (req_op(req)) {
531         case REQ_OP_DRV_IN:
532         case REQ_OP_DRV_OUT:
533                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
534                 break;
535         case REQ_OP_FLUSH:
536                 nvme_setup_flush(ns, cmd);
537                 break;
538         case REQ_OP_WRITE_ZEROES:
539                 /* currently only aliased to deallocate for a few ctrls: */
540         case REQ_OP_DISCARD:
541                 ret = nvme_setup_discard(ns, req, cmd);
542                 break;
543         case REQ_OP_READ:
544         case REQ_OP_WRITE:
545                 ret = nvme_setup_rw(ns, req, cmd);
546                 break;
547         default:
548                 WARN_ON_ONCE(1);
549                 return BLK_STS_IOERR;
550         }
551
552         cmd->common.command_id = req->tag;
553         return ret;
554 }
555 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
556
557 /*
558  * Returns 0 on success.  If the result is negative, it's a Linux error code;
559  * if the result is positive, it's an NVM Express status code
560  */
561 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
562                 union nvme_result *result, void *buffer, unsigned bufflen,
563                 unsigned timeout, int qid, int at_head, int flags)
564 {
565         struct request *req;
566         int ret;
567
568         req = nvme_alloc_request(q, cmd, flags, qid);
569         if (IS_ERR(req))
570                 return PTR_ERR(req);
571
572         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
573
574         if (buffer && bufflen) {
575                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
576                 if (ret)
577                         goto out;
578         }
579
580         blk_execute_rq(req->q, NULL, req, at_head);
581         if (result)
582                 *result = nvme_req(req)->result;
583         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
584                 ret = -EINTR;
585         else
586                 ret = nvme_req(req)->status;
587  out:
588         blk_mq_free_request(req);
589         return ret;
590 }
591 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
592
593 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
594                 void *buffer, unsigned bufflen)
595 {
596         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
597                         NVME_QID_ANY, 0, 0);
598 }
599 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
600
601 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
602                 unsigned len, u32 seed, bool write)
603 {
604         struct bio_integrity_payload *bip;
605         int ret = -ENOMEM;
606         void *buf;
607
608         buf = kmalloc(len, GFP_KERNEL);
609         if (!buf)
610                 goto out;
611
612         ret = -EFAULT;
613         if (write && copy_from_user(buf, ubuf, len))
614                 goto out_free_meta;
615
616         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
617         if (IS_ERR(bip)) {
618                 ret = PTR_ERR(bip);
619                 goto out_free_meta;
620         }
621
622         bip->bip_iter.bi_size = len;
623         bip->bip_iter.bi_sector = seed;
624         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
625                         offset_in_page(buf));
626         if (ret == len)
627                 return buf;
628         ret = -ENOMEM;
629 out_free_meta:
630         kfree(buf);
631 out:
632         return ERR_PTR(ret);
633 }
634
635 static int nvme_submit_user_cmd(struct request_queue *q,
636                 struct nvme_command *cmd, void __user *ubuffer,
637                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
638                 u32 meta_seed, u32 *result, unsigned timeout)
639 {
640         bool write = nvme_is_write(cmd);
641         struct nvme_ns *ns = q->queuedata;
642         struct gendisk *disk = ns ? ns->disk : NULL;
643         struct request *req;
644         struct bio *bio = NULL;
645         void *meta = NULL;
646         int ret;
647
648         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
649         if (IS_ERR(req))
650                 return PTR_ERR(req);
651
652         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
653
654         if (ubuffer && bufflen) {
655                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
656                                 GFP_KERNEL);
657                 if (ret)
658                         goto out;
659                 bio = req->bio;
660                 bio->bi_disk = disk;
661                 if (disk && meta_buffer && meta_len) {
662                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
663                                         meta_seed, write);
664                         if (IS_ERR(meta)) {
665                                 ret = PTR_ERR(meta);
666                                 goto out_unmap;
667                         }
668                 }
669         }
670
671         blk_execute_rq(req->q, disk, req, 0);
672         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
673                 ret = -EINTR;
674         else
675                 ret = nvme_req(req)->status;
676         if (result)
677                 *result = le32_to_cpu(nvme_req(req)->result.u32);
678         if (meta && !ret && !write) {
679                 if (copy_to_user(meta_buffer, meta, meta_len))
680                         ret = -EFAULT;
681         }
682         kfree(meta);
683  out_unmap:
684         if (bio)
685                 blk_rq_unmap_user(bio);
686  out:
687         blk_mq_free_request(req);
688         return ret;
689 }
690
691 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
692 {
693         struct nvme_ctrl *ctrl = rq->end_io_data;
694
695         blk_mq_free_request(rq);
696
697         if (status) {
698                 dev_err(ctrl->device,
699                         "failed nvme_keep_alive_end_io error=%d\n",
700                                 status);
701                 return;
702         }
703
704         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
705 }
706
707 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
708 {
709         struct nvme_command c;
710         struct request *rq;
711
712         memset(&c, 0, sizeof(c));
713         c.common.opcode = nvme_admin_keep_alive;
714
715         rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
716                         NVME_QID_ANY);
717         if (IS_ERR(rq))
718                 return PTR_ERR(rq);
719
720         rq->timeout = ctrl->kato * HZ;
721         rq->end_io_data = ctrl;
722
723         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
724
725         return 0;
726 }
727
728 static void nvme_keep_alive_work(struct work_struct *work)
729 {
730         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
731                         struct nvme_ctrl, ka_work);
732
733         if (nvme_keep_alive(ctrl)) {
734                 /* allocation failure, reset the controller */
735                 dev_err(ctrl->device, "keep-alive failed\n");
736                 nvme_reset_ctrl(ctrl);
737                 return;
738         }
739 }
740
741 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
742 {
743         if (unlikely(ctrl->kato == 0))
744                 return;
745
746         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
747         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
748 }
749 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
750
751 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
752 {
753         if (unlikely(ctrl->kato == 0))
754                 return;
755
756         cancel_delayed_work_sync(&ctrl->ka_work);
757 }
758 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
759
760 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
761 {
762         struct nvme_command c = { };
763         int error;
764
765         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
766         c.identify.opcode = nvme_admin_identify;
767         c.identify.cns = NVME_ID_CNS_CTRL;
768
769         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
770         if (!*id)
771                 return -ENOMEM;
772
773         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
774                         sizeof(struct nvme_id_ctrl));
775         if (error)
776                 kfree(*id);
777         return error;
778 }
779
780 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
781                 u8 *eui64, u8 *nguid, uuid_t *uuid)
782 {
783         struct nvme_command c = { };
784         int status;
785         void *data;
786         int pos;
787         int len;
788
789         c.identify.opcode = nvme_admin_identify;
790         c.identify.nsid = cpu_to_le32(nsid);
791         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
792
793         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
794         if (!data)
795                 return -ENOMEM;
796
797         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
798                                       NVME_IDENTIFY_DATA_SIZE);
799         if (status)
800                 goto free_data;
801
802         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
803                 struct nvme_ns_id_desc *cur = data + pos;
804
805                 if (cur->nidl == 0)
806                         break;
807
808                 switch (cur->nidt) {
809                 case NVME_NIDT_EUI64:
810                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
811                                 dev_warn(ctrl->device,
812                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
813                                          cur->nidl);
814                                 goto free_data;
815                         }
816                         len = NVME_NIDT_EUI64_LEN;
817                         memcpy(eui64, data + pos + sizeof(*cur), len);
818                         break;
819                 case NVME_NIDT_NGUID:
820                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
821                                 dev_warn(ctrl->device,
822                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
823                                          cur->nidl);
824                                 goto free_data;
825                         }
826                         len = NVME_NIDT_NGUID_LEN;
827                         memcpy(nguid, data + pos + sizeof(*cur), len);
828                         break;
829                 case NVME_NIDT_UUID:
830                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
831                                 dev_warn(ctrl->device,
832                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
833                                          cur->nidl);
834                                 goto free_data;
835                         }
836                         len = NVME_NIDT_UUID_LEN;
837                         uuid_copy(uuid, data + pos + sizeof(*cur));
838                         break;
839                 default:
840                         /* Skip unnkown types */
841                         len = cur->nidl;
842                         break;
843                 }
844
845                 len += sizeof(*cur);
846         }
847 free_data:
848         kfree(data);
849         return status;
850 }
851
852 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
853 {
854         struct nvme_command c = { };
855
856         c.identify.opcode = nvme_admin_identify;
857         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
858         c.identify.nsid = cpu_to_le32(nsid);
859         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
860 }
861
862 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
863                 unsigned nsid)
864 {
865         struct nvme_id_ns *id;
866         struct nvme_command c = { };
867         int error;
868
869         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
870         c.identify.opcode = nvme_admin_identify;
871         c.identify.nsid = cpu_to_le32(nsid);
872         c.identify.cns = NVME_ID_CNS_NS;
873
874         id = kmalloc(sizeof(*id), GFP_KERNEL);
875         if (!id)
876                 return NULL;
877
878         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
879         if (error) {
880                 dev_warn(ctrl->device, "Identify namespace failed\n");
881                 kfree(id);
882                 return NULL;
883         }
884
885         return id;
886 }
887
888 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
889                       void *buffer, size_t buflen, u32 *result)
890 {
891         struct nvme_command c;
892         union nvme_result res;
893         int ret;
894
895         memset(&c, 0, sizeof(c));
896         c.features.opcode = nvme_admin_set_features;
897         c.features.fid = cpu_to_le32(fid);
898         c.features.dword11 = cpu_to_le32(dword11);
899
900         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
901                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
902         if (ret >= 0 && result)
903                 *result = le32_to_cpu(res.u32);
904         return ret;
905 }
906
907 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
908 {
909         u32 q_count = (*count - 1) | ((*count - 1) << 16);
910         u32 result;
911         int status, nr_io_queues;
912
913         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
914                         &result);
915         if (status < 0)
916                 return status;
917
918         /*
919          * Degraded controllers might return an error when setting the queue
920          * count.  We still want to be able to bring them online and offer
921          * access to the admin queue, as that might be only way to fix them up.
922          */
923         if (status > 0) {
924                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
925                 *count = 0;
926         } else {
927                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
928                 *count = min(*count, nr_io_queues);
929         }
930
931         return 0;
932 }
933 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
934
935 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
936 {
937         struct nvme_user_io io;
938         struct nvme_command c;
939         unsigned length, meta_len;
940         void __user *metadata;
941
942         if (copy_from_user(&io, uio, sizeof(io)))
943                 return -EFAULT;
944         if (io.flags)
945                 return -EINVAL;
946
947         switch (io.opcode) {
948         case nvme_cmd_write:
949         case nvme_cmd_read:
950         case nvme_cmd_compare:
951                 break;
952         default:
953                 return -EINVAL;
954         }
955
956         length = (io.nblocks + 1) << ns->lba_shift;
957         meta_len = (io.nblocks + 1) * ns->ms;
958         metadata = (void __user *)(uintptr_t)io.metadata;
959
960         if (ns->ext) {
961                 length += meta_len;
962                 meta_len = 0;
963         } else if (meta_len) {
964                 if ((io.metadata & 3) || !io.metadata)
965                         return -EINVAL;
966         }
967
968         memset(&c, 0, sizeof(c));
969         c.rw.opcode = io.opcode;
970         c.rw.flags = io.flags;
971         c.rw.nsid = cpu_to_le32(ns->ns_id);
972         c.rw.slba = cpu_to_le64(io.slba);
973         c.rw.length = cpu_to_le16(io.nblocks);
974         c.rw.control = cpu_to_le16(io.control);
975         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
976         c.rw.reftag = cpu_to_le32(io.reftag);
977         c.rw.apptag = cpu_to_le16(io.apptag);
978         c.rw.appmask = cpu_to_le16(io.appmask);
979
980         return nvme_submit_user_cmd(ns->queue, &c,
981                         (void __user *)(uintptr_t)io.addr, length,
982                         metadata, meta_len, io.slba, NULL, 0);
983 }
984
985 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
986                         struct nvme_passthru_cmd __user *ucmd)
987 {
988         struct nvme_passthru_cmd cmd;
989         struct nvme_command c;
990         unsigned timeout = 0;
991         int status;
992
993         if (!capable(CAP_SYS_ADMIN))
994                 return -EACCES;
995         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
996                 return -EFAULT;
997         if (cmd.flags)
998                 return -EINVAL;
999
1000         memset(&c, 0, sizeof(c));
1001         c.common.opcode = cmd.opcode;
1002         c.common.flags = cmd.flags;
1003         c.common.nsid = cpu_to_le32(cmd.nsid);
1004         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1005         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1006         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1007         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1008         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1009         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1010         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1011         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1012
1013         if (cmd.timeout_ms)
1014                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1015
1016         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1017                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1018                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1019                         0, &cmd.result, timeout);
1020         if (status >= 0) {
1021                 if (put_user(cmd.result, &ucmd->result))
1022                         return -EFAULT;
1023         }
1024
1025         return status;
1026 }
1027
1028 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1029                 unsigned int cmd, unsigned long arg)
1030 {
1031         struct nvme_ns *ns = bdev->bd_disk->private_data;
1032
1033         switch (cmd) {
1034         case NVME_IOCTL_ID:
1035                 force_successful_syscall_return();
1036                 return ns->ns_id;
1037         case NVME_IOCTL_ADMIN_CMD:
1038                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1039         case NVME_IOCTL_IO_CMD:
1040                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1041         case NVME_IOCTL_SUBMIT_IO:
1042                 return nvme_submit_io(ns, (void __user *)arg);
1043         default:
1044 #ifdef CONFIG_NVM
1045                 if (ns->ndev)
1046                         return nvme_nvm_ioctl(ns, cmd, arg);
1047 #endif
1048                 if (is_sed_ioctl(cmd))
1049                         return sed_ioctl(ns->ctrl->opal_dev, cmd,
1050                                          (void __user *) arg);
1051                 return -ENOTTY;
1052         }
1053 }
1054
1055 #ifdef CONFIG_COMPAT
1056 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1057                         unsigned int cmd, unsigned long arg)
1058 {
1059         return nvme_ioctl(bdev, mode, cmd, arg);
1060 }
1061 #else
1062 #define nvme_compat_ioctl       NULL
1063 #endif
1064
1065 static int nvme_open(struct block_device *bdev, fmode_t mode)
1066 {
1067         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
1068 }
1069
1070 static void nvme_release(struct gendisk *disk, fmode_t mode)
1071 {
1072         struct nvme_ns *ns = disk->private_data;
1073
1074         module_put(ns->ctrl->ops->module);
1075         nvme_put_ns(ns);
1076 }
1077
1078 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1079 {
1080         /* some standard values */
1081         geo->heads = 1 << 6;
1082         geo->sectors = 1 << 5;
1083         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1084         return 0;
1085 }
1086
1087 #ifdef CONFIG_BLK_DEV_INTEGRITY
1088 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1089                 u16 bs)
1090 {
1091         struct nvme_ns *ns = disk->private_data;
1092         u16 old_ms = ns->ms;
1093         u8 pi_type = 0;
1094
1095         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1096         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1097
1098         /* PI implementation requires metadata equal t10 pi tuple size */
1099         if (ns->ms == sizeof(struct t10_pi_tuple))
1100                 pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1101
1102         if (blk_get_integrity(disk) &&
1103             (ns->pi_type != pi_type || ns->ms != old_ms ||
1104              bs != queue_logical_block_size(disk->queue) ||
1105              (ns->ms && ns->ext)))
1106                 blk_integrity_unregister(disk);
1107
1108         ns->pi_type = pi_type;
1109 }
1110
1111 static void nvme_init_integrity(struct nvme_ns *ns)
1112 {
1113         struct blk_integrity integrity;
1114
1115         memset(&integrity, 0, sizeof(integrity));
1116         switch (ns->pi_type) {
1117         case NVME_NS_DPS_PI_TYPE3:
1118                 integrity.profile = &t10_pi_type3_crc;
1119                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1120                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1121                 break;
1122         case NVME_NS_DPS_PI_TYPE1:
1123         case NVME_NS_DPS_PI_TYPE2:
1124                 integrity.profile = &t10_pi_type1_crc;
1125                 integrity.tag_size = sizeof(u16);
1126                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1127                 break;
1128         default:
1129                 integrity.profile = NULL;
1130                 break;
1131         }
1132         integrity.tuple_size = ns->ms;
1133         blk_integrity_register(ns->disk, &integrity);
1134         blk_queue_max_integrity_segments(ns->queue, 1);
1135 }
1136 #else
1137 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1138                 u16 bs)
1139 {
1140 }
1141 static void nvme_init_integrity(struct nvme_ns *ns)
1142 {
1143 }
1144 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1145
1146 static void nvme_set_chunk_size(struct nvme_ns *ns)
1147 {
1148         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1149         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1150 }
1151
1152 static void nvme_config_discard(struct nvme_ns *ns)
1153 {
1154         struct nvme_ctrl *ctrl = ns->ctrl;
1155         u32 logical_block_size = queue_logical_block_size(ns->queue);
1156
1157         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1158                         NVME_DSM_MAX_RANGES);
1159
1160         if (ctrl->nr_streams && ns->sws && ns->sgs) {
1161                 unsigned int sz = logical_block_size * ns->sws * ns->sgs;
1162
1163                 ns->queue->limits.discard_alignment = sz;
1164                 ns->queue->limits.discard_granularity = sz;
1165         } else {
1166                 ns->queue->limits.discard_alignment = logical_block_size;
1167                 ns->queue->limits.discard_granularity = logical_block_size;
1168         }
1169         blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1170         blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1171         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1172
1173         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1174                 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1175 }
1176
1177 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1178                 struct nvme_id_ns *id, u8 *eui64, u8 *nguid, uuid_t *uuid)
1179 {
1180         if (ctrl->vs >= NVME_VS(1, 1, 0))
1181                 memcpy(eui64, id->eui64, sizeof(id->eui64));
1182         if (ctrl->vs >= NVME_VS(1, 2, 0))
1183                 memcpy(nguid, id->nguid, sizeof(id->nguid));
1184         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1185                  /* Don't treat error as fatal we potentially
1186                   * already have a NGUID or EUI-64
1187                   */
1188                 if (nvme_identify_ns_descs(ctrl, nsid, eui64, nguid, uuid))
1189                         dev_warn(ctrl->device,
1190                                  "%s: Identify Descriptors failed\n", __func__);
1191         }
1192 }
1193
1194 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1195 {
1196         struct nvme_ns *ns = disk->private_data;
1197         struct nvme_ctrl *ctrl = ns->ctrl;
1198         u16 bs;
1199
1200         /*
1201          * If identify namespace failed, use default 512 byte block size so
1202          * block layer can use before failing read/write for 0 capacity.
1203          */
1204         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1205         if (ns->lba_shift == 0)
1206                 ns->lba_shift = 9;
1207         bs = 1 << ns->lba_shift;
1208         ns->noiob = le16_to_cpu(id->noiob);
1209
1210         blk_mq_freeze_queue(disk->queue);
1211
1212         if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1213                 nvme_prep_integrity(disk, id, bs);
1214         blk_queue_logical_block_size(ns->queue, bs);
1215         if (ns->noiob)
1216                 nvme_set_chunk_size(ns);
1217         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1218                 nvme_init_integrity(ns);
1219         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1220                 set_capacity(disk, 0);
1221         else
1222                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1223
1224         if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1225                 nvme_config_discard(ns);
1226         blk_mq_unfreeze_queue(disk->queue);
1227 }
1228
1229 static int nvme_revalidate_disk(struct gendisk *disk)
1230 {
1231         struct nvme_ns *ns = disk->private_data;
1232         struct nvme_ctrl *ctrl = ns->ctrl;
1233         struct nvme_id_ns *id;
1234         u8 eui64[8] = { 0 }, nguid[16] = { 0 };
1235         uuid_t uuid = uuid_null;
1236         int ret = 0;
1237
1238         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1239                 set_capacity(disk, 0);
1240                 return -ENODEV;
1241         }
1242
1243         id = nvme_identify_ns(ctrl, ns->ns_id);
1244         if (!id)
1245                 return -ENODEV;
1246
1247         if (id->ncap == 0) {
1248                 ret = -ENODEV;
1249                 goto out;
1250         }
1251
1252         __nvme_revalidate_disk(disk, id);
1253         nvme_report_ns_ids(ctrl, ns->ns_id, id, eui64, nguid, &uuid);
1254         if (!uuid_equal(&ns->uuid, &uuid) ||
1255             memcmp(&ns->nguid, &nguid, sizeof(ns->nguid)) ||
1256             memcmp(&ns->eui, &eui64, sizeof(ns->eui))) {
1257                 dev_err(ctrl->device,
1258                         "identifiers changed for nsid %d\n", ns->ns_id);
1259                 ret = -ENODEV;
1260         }
1261
1262 out:
1263         kfree(id);
1264         return ret;
1265 }
1266
1267 static char nvme_pr_type(enum pr_type type)
1268 {
1269         switch (type) {
1270         case PR_WRITE_EXCLUSIVE:
1271                 return 1;
1272         case PR_EXCLUSIVE_ACCESS:
1273                 return 2;
1274         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1275                 return 3;
1276         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1277                 return 4;
1278         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1279                 return 5;
1280         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1281                 return 6;
1282         default:
1283                 return 0;
1284         }
1285 };
1286
1287 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1288                                 u64 key, u64 sa_key, u8 op)
1289 {
1290         struct nvme_ns *ns = bdev->bd_disk->private_data;
1291         struct nvme_command c;
1292         u8 data[16] = { 0, };
1293
1294         put_unaligned_le64(key, &data[0]);
1295         put_unaligned_le64(sa_key, &data[8]);
1296
1297         memset(&c, 0, sizeof(c));
1298         c.common.opcode = op;
1299         c.common.nsid = cpu_to_le32(ns->ns_id);
1300         c.common.cdw10[0] = cpu_to_le32(cdw10);
1301
1302         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1303 }
1304
1305 static int nvme_pr_register(struct block_device *bdev, u64 old,
1306                 u64 new, unsigned flags)
1307 {
1308         u32 cdw10;
1309
1310         if (flags & ~PR_FL_IGNORE_KEY)
1311                 return -EOPNOTSUPP;
1312
1313         cdw10 = old ? 2 : 0;
1314         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1315         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1316         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1317 }
1318
1319 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1320                 enum pr_type type, unsigned flags)
1321 {
1322         u32 cdw10;
1323
1324         if (flags & ~PR_FL_IGNORE_KEY)
1325                 return -EOPNOTSUPP;
1326
1327         cdw10 = nvme_pr_type(type) << 8;
1328         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1329         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1330 }
1331
1332 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1333                 enum pr_type type, bool abort)
1334 {
1335         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1336         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1337 }
1338
1339 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1340 {
1341         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1342         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1343 }
1344
1345 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1346 {
1347         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1348         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1349 }
1350
1351 static const struct pr_ops nvme_pr_ops = {
1352         .pr_register    = nvme_pr_register,
1353         .pr_reserve     = nvme_pr_reserve,
1354         .pr_release     = nvme_pr_release,
1355         .pr_preempt     = nvme_pr_preempt,
1356         .pr_clear       = nvme_pr_clear,
1357 };
1358
1359 #ifdef CONFIG_BLK_SED_OPAL
1360 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1361                 bool send)
1362 {
1363         struct nvme_ctrl *ctrl = data;
1364         struct nvme_command cmd;
1365
1366         memset(&cmd, 0, sizeof(cmd));
1367         if (send)
1368                 cmd.common.opcode = nvme_admin_security_send;
1369         else
1370                 cmd.common.opcode = nvme_admin_security_recv;
1371         cmd.common.nsid = 0;
1372         cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1373         cmd.common.cdw10[1] = cpu_to_le32(len);
1374
1375         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1376                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1377 }
1378 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1379 #endif /* CONFIG_BLK_SED_OPAL */
1380
1381 static const struct block_device_operations nvme_fops = {
1382         .owner          = THIS_MODULE,
1383         .ioctl          = nvme_ioctl,
1384         .compat_ioctl   = nvme_compat_ioctl,
1385         .open           = nvme_open,
1386         .release        = nvme_release,
1387         .getgeo         = nvme_getgeo,
1388         .revalidate_disk= nvme_revalidate_disk,
1389         .pr_ops         = &nvme_pr_ops,
1390 };
1391
1392 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1393 {
1394         unsigned long timeout =
1395                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1396         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1397         int ret;
1398
1399         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1400                 if (csts == ~0)
1401                         return -ENODEV;
1402                 if ((csts & NVME_CSTS_RDY) == bit)
1403                         break;
1404
1405                 msleep(100);
1406                 if (fatal_signal_pending(current))
1407                         return -EINTR;
1408                 if (time_after(jiffies, timeout)) {
1409                         dev_err(ctrl->device,
1410                                 "Device not ready; aborting %s\n", enabled ?
1411                                                 "initialisation" : "reset");
1412                         return -ENODEV;
1413                 }
1414         }
1415
1416         return ret;
1417 }
1418
1419 /*
1420  * If the device has been passed off to us in an enabled state, just clear
1421  * the enabled bit.  The spec says we should set the 'shutdown notification
1422  * bits', but doing so may cause the device to complete commands to the
1423  * admin queue ... and we don't know what memory that might be pointing at!
1424  */
1425 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1426 {
1427         int ret;
1428
1429         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1430         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1431
1432         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1433         if (ret)
1434                 return ret;
1435
1436         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1437                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1438
1439         return nvme_wait_ready(ctrl, cap, false);
1440 }
1441 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1442
1443 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1444 {
1445         /*
1446          * Default to a 4K page size, with the intention to update this
1447          * path in the future to accomodate architectures with differing
1448          * kernel and IO page sizes.
1449          */
1450         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1451         int ret;
1452
1453         if (page_shift < dev_page_min) {
1454                 dev_err(ctrl->device,
1455                         "Minimum device page size %u too large for host (%u)\n",
1456                         1 << dev_page_min, 1 << page_shift);
1457                 return -ENODEV;
1458         }
1459
1460         ctrl->page_size = 1 << page_shift;
1461
1462         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1463         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1464         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1465         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1466         ctrl->ctrl_config |= NVME_CC_ENABLE;
1467
1468         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1469         if (ret)
1470                 return ret;
1471         return nvme_wait_ready(ctrl, cap, true);
1472 }
1473 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1474
1475 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1476 {
1477         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1478         u32 csts;
1479         int ret;
1480
1481         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1482         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1483
1484         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1485         if (ret)
1486                 return ret;
1487
1488         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1489                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1490                         break;
1491
1492                 msleep(100);
1493                 if (fatal_signal_pending(current))
1494                         return -EINTR;
1495                 if (time_after(jiffies, timeout)) {
1496                         dev_err(ctrl->device,
1497                                 "Device shutdown incomplete; abort shutdown\n");
1498                         return -ENODEV;
1499                 }
1500         }
1501
1502         return ret;
1503 }
1504 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1505
1506 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1507                 struct request_queue *q)
1508 {
1509         bool vwc = false;
1510
1511         if (ctrl->max_hw_sectors) {
1512                 u32 max_segments =
1513                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1514
1515                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1516                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1517         }
1518         if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1519                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1520         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1521         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1522                 vwc = true;
1523         blk_queue_write_cache(q, vwc, vwc);
1524 }
1525
1526 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1527 {
1528         __le64 ts;
1529         int ret;
1530
1531         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1532                 return 0;
1533
1534         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1535         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1536                         NULL);
1537         if (ret)
1538                 dev_warn_once(ctrl->device,
1539                         "could not set timestamp (%d)\n", ret);
1540         return ret;
1541 }
1542
1543 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1544 {
1545         /*
1546          * APST (Autonomous Power State Transition) lets us program a
1547          * table of power state transitions that the controller will
1548          * perform automatically.  We configure it with a simple
1549          * heuristic: we are willing to spend at most 2% of the time
1550          * transitioning between power states.  Therefore, when running
1551          * in any given state, we will enter the next lower-power
1552          * non-operational state after waiting 50 * (enlat + exlat)
1553          * microseconds, as long as that state's exit latency is under
1554          * the requested maximum latency.
1555          *
1556          * We will not autonomously enter any non-operational state for
1557          * which the total latency exceeds ps_max_latency_us.  Users
1558          * can set ps_max_latency_us to zero to turn off APST.
1559          */
1560
1561         unsigned apste;
1562         struct nvme_feat_auto_pst *table;
1563         u64 max_lat_us = 0;
1564         int max_ps = -1;
1565         int ret;
1566
1567         /*
1568          * If APST isn't supported or if we haven't been initialized yet,
1569          * then don't do anything.
1570          */
1571         if (!ctrl->apsta)
1572                 return 0;
1573
1574         if (ctrl->npss > 31) {
1575                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1576                 return 0;
1577         }
1578
1579         table = kzalloc(sizeof(*table), GFP_KERNEL);
1580         if (!table)
1581                 return 0;
1582
1583         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1584                 /* Turn off APST. */
1585                 apste = 0;
1586                 dev_dbg(ctrl->device, "APST disabled\n");
1587         } else {
1588                 __le64 target = cpu_to_le64(0);
1589                 int state;
1590
1591                 /*
1592                  * Walk through all states from lowest- to highest-power.
1593                  * According to the spec, lower-numbered states use more
1594                  * power.  NPSS, despite the name, is the index of the
1595                  * lowest-power state, not the number of states.
1596                  */
1597                 for (state = (int)ctrl->npss; state >= 0; state--) {
1598                         u64 total_latency_us, exit_latency_us, transition_ms;
1599
1600                         if (target)
1601                                 table->entries[state] = target;
1602
1603                         /*
1604                          * Don't allow transitions to the deepest state
1605                          * if it's quirked off.
1606                          */
1607                         if (state == ctrl->npss &&
1608                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1609                                 continue;
1610
1611                         /*
1612                          * Is this state a useful non-operational state for
1613                          * higher-power states to autonomously transition to?
1614                          */
1615                         if (!(ctrl->psd[state].flags &
1616                               NVME_PS_FLAGS_NON_OP_STATE))
1617                                 continue;
1618
1619                         exit_latency_us =
1620                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1621                         if (exit_latency_us > ctrl->ps_max_latency_us)
1622                                 continue;
1623
1624                         total_latency_us =
1625                                 exit_latency_us +
1626                                 le32_to_cpu(ctrl->psd[state].entry_lat);
1627
1628                         /*
1629                          * This state is good.  Use it as the APST idle
1630                          * target for higher power states.
1631                          */
1632                         transition_ms = total_latency_us + 19;
1633                         do_div(transition_ms, 20);
1634                         if (transition_ms > (1 << 24) - 1)
1635                                 transition_ms = (1 << 24) - 1;
1636
1637                         target = cpu_to_le64((state << 3) |
1638                                              (transition_ms << 8));
1639
1640                         if (max_ps == -1)
1641                                 max_ps = state;
1642
1643                         if (total_latency_us > max_lat_us)
1644                                 max_lat_us = total_latency_us;
1645                 }
1646
1647                 apste = 1;
1648
1649                 if (max_ps == -1) {
1650                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1651                 } else {
1652                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1653                                 max_ps, max_lat_us, (int)sizeof(*table), table);
1654                 }
1655         }
1656
1657         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1658                                 table, sizeof(*table), NULL);
1659         if (ret)
1660                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1661
1662         kfree(table);
1663         return ret;
1664 }
1665
1666 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1667 {
1668         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1669         u64 latency;
1670
1671         switch (val) {
1672         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1673         case PM_QOS_LATENCY_ANY:
1674                 latency = U64_MAX;
1675                 break;
1676
1677         default:
1678                 latency = val;
1679         }
1680
1681         if (ctrl->ps_max_latency_us != latency) {
1682                 ctrl->ps_max_latency_us = latency;
1683                 nvme_configure_apst(ctrl);
1684         }
1685 }
1686
1687 struct nvme_core_quirk_entry {
1688         /*
1689          * NVMe model and firmware strings are padded with spaces.  For
1690          * simplicity, strings in the quirk table are padded with NULLs
1691          * instead.
1692          */
1693         u16 vid;
1694         const char *mn;
1695         const char *fr;
1696         unsigned long quirks;
1697 };
1698
1699 static const struct nvme_core_quirk_entry core_quirks[] = {
1700         {
1701                 /*
1702                  * This Toshiba device seems to die using any APST states.  See:
1703                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1704                  */
1705                 .vid = 0x1179,
1706                 .mn = "THNSF5256GPUK TOSHIBA",
1707                 .quirks = NVME_QUIRK_NO_APST,
1708         }
1709 };
1710
1711 /* match is null-terminated but idstr is space-padded. */
1712 static bool string_matches(const char *idstr, const char *match, size_t len)
1713 {
1714         size_t matchlen;
1715
1716         if (!match)
1717                 return true;
1718
1719         matchlen = strlen(match);
1720         WARN_ON_ONCE(matchlen > len);
1721
1722         if (memcmp(idstr, match, matchlen))
1723                 return false;
1724
1725         for (; matchlen < len; matchlen++)
1726                 if (idstr[matchlen] != ' ')
1727                         return false;
1728
1729         return true;
1730 }
1731
1732 static bool quirk_matches(const struct nvme_id_ctrl *id,
1733                           const struct nvme_core_quirk_entry *q)
1734 {
1735         return q->vid == le16_to_cpu(id->vid) &&
1736                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1737                 string_matches(id->fr, q->fr, sizeof(id->fr));
1738 }
1739
1740 static void nvme_init_subnqn(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1741 {
1742         size_t nqnlen;
1743         int off;
1744
1745         nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1746         if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
1747                 strcpy(ctrl->subnqn, id->subnqn);
1748                 return;
1749         }
1750
1751         if (ctrl->vs >= NVME_VS(1, 2, 1))
1752                 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
1753
1754         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1755         off = snprintf(ctrl->subnqn, NVMF_NQN_SIZE,
1756                         "nqn.2014.08.org.nvmexpress:%4x%4x",
1757                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
1758         memcpy(ctrl->subnqn + off, id->sn, sizeof(id->sn));
1759         off += sizeof(id->sn);
1760         memcpy(ctrl->subnqn + off, id->mn, sizeof(id->mn));
1761         off += sizeof(id->mn);
1762         memset(ctrl->subnqn + off, 0, sizeof(ctrl->subnqn) - off);
1763 }
1764
1765 /*
1766  * Initialize the cached copies of the Identify data and various controller
1767  * register in our nvme_ctrl structure.  This should be called as soon as
1768  * the admin queue is fully up and running.
1769  */
1770 int nvme_init_identify(struct nvme_ctrl *ctrl)
1771 {
1772         struct nvme_id_ctrl *id;
1773         u64 cap;
1774         int ret, page_shift;
1775         u32 max_hw_sectors;
1776         bool prev_apst_enabled;
1777
1778         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1779         if (ret) {
1780                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1781                 return ret;
1782         }
1783
1784         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1785         if (ret) {
1786                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1787                 return ret;
1788         }
1789         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1790
1791         if (ctrl->vs >= NVME_VS(1, 1, 0))
1792                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1793
1794         ret = nvme_identify_ctrl(ctrl, &id);
1795         if (ret) {
1796                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1797                 return -EIO;
1798         }
1799
1800         nvme_init_subnqn(ctrl, id);
1801
1802         if (!ctrl->identified) {
1803                 /*
1804                  * Check for quirks.  Quirk can depend on firmware version,
1805                  * so, in principle, the set of quirks present can change
1806                  * across a reset.  As a possible future enhancement, we
1807                  * could re-scan for quirks every time we reinitialize
1808                  * the device, but we'd have to make sure that the driver
1809                  * behaves intelligently if the quirks change.
1810                  */
1811
1812                 int i;
1813
1814                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1815                         if (quirk_matches(id, &core_quirks[i]))
1816                                 ctrl->quirks |= core_quirks[i].quirks;
1817                 }
1818         }
1819
1820         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1821                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1822                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1823         }
1824
1825         ctrl->oacs = le16_to_cpu(id->oacs);
1826         ctrl->vid = le16_to_cpu(id->vid);
1827         ctrl->oncs = le16_to_cpup(&id->oncs);
1828         atomic_set(&ctrl->abort_limit, id->acl + 1);
1829         ctrl->vwc = id->vwc;
1830         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1831         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1832         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1833         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1834         if (id->mdts)
1835                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1836         else
1837                 max_hw_sectors = UINT_MAX;
1838         ctrl->max_hw_sectors =
1839                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1840
1841         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1842         ctrl->sgls = le32_to_cpu(id->sgls);
1843         ctrl->kas = le16_to_cpu(id->kas);
1844
1845         if (id->rtd3e) {
1846                 /* us -> s */
1847                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
1848
1849                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
1850                                                  shutdown_timeout, 60);
1851
1852                 if (ctrl->shutdown_timeout != shutdown_timeout)
1853                         dev_warn(ctrl->device,
1854                                  "Shutdown timeout set to %u seconds\n",
1855                                  ctrl->shutdown_timeout);
1856         } else
1857                 ctrl->shutdown_timeout = shutdown_timeout;
1858
1859         ctrl->npss = id->npss;
1860         ctrl->apsta = id->apsta;
1861         prev_apst_enabled = ctrl->apst_enabled;
1862         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1863                 if (force_apst && id->apsta) {
1864                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1865                         ctrl->apst_enabled = true;
1866                 } else {
1867                         ctrl->apst_enabled = false;
1868                 }
1869         } else {
1870                 ctrl->apst_enabled = id->apsta;
1871         }
1872         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1873
1874         if (ctrl->ops->flags & NVME_F_FABRICS) {
1875                 ctrl->icdoff = le16_to_cpu(id->icdoff);
1876                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1877                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1878                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1879
1880                 /*
1881                  * In fabrics we need to verify the cntlid matches the
1882                  * admin connect
1883                  */
1884                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
1885                         ret = -EINVAL;
1886                         goto out_free;
1887                 }
1888
1889                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1890                         dev_err(ctrl->device,
1891                                 "keep-alive support is mandatory for fabrics\n");
1892                         ret = -EINVAL;
1893                         goto out_free;
1894                 }
1895         } else {
1896                 ctrl->cntlid = le16_to_cpu(id->cntlid);
1897                 ctrl->hmpre = le32_to_cpu(id->hmpre);
1898                 ctrl->hmmin = le32_to_cpu(id->hmmin);
1899                 ctrl->hmminds = le32_to_cpu(id->hmminds);
1900                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
1901         }
1902
1903         kfree(id);
1904
1905         if (ctrl->apst_enabled && !prev_apst_enabled)
1906                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1907         else if (!ctrl->apst_enabled && prev_apst_enabled)
1908                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1909
1910         ret = nvme_configure_apst(ctrl);
1911         if (ret < 0)
1912                 return ret;
1913         
1914         ret = nvme_configure_timestamp(ctrl);
1915         if (ret < 0)
1916                 return ret;
1917
1918         ret = nvme_configure_directives(ctrl);
1919         if (ret < 0)
1920                 return ret;
1921
1922         ctrl->identified = true;
1923
1924         return 0;
1925
1926 out_free:
1927         kfree(id);
1928         return ret;
1929 }
1930 EXPORT_SYMBOL_GPL(nvme_init_identify);
1931
1932 static int nvme_dev_open(struct inode *inode, struct file *file)
1933 {
1934         struct nvme_ctrl *ctrl;
1935         int instance = iminor(inode);
1936         int ret = -ENODEV;
1937
1938         spin_lock(&dev_list_lock);
1939         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1940                 if (ctrl->instance != instance)
1941                         continue;
1942
1943                 if (!ctrl->admin_q) {
1944                         ret = -EWOULDBLOCK;
1945                         break;
1946                 }
1947                 if (!kref_get_unless_zero(&ctrl->kref))
1948                         break;
1949                 file->private_data = ctrl;
1950                 ret = 0;
1951                 break;
1952         }
1953         spin_unlock(&dev_list_lock);
1954
1955         return ret;
1956 }
1957
1958 static int nvme_dev_release(struct inode *inode, struct file *file)
1959 {
1960         nvme_put_ctrl(file->private_data);
1961         return 0;
1962 }
1963
1964 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1965 {
1966         struct nvme_ns *ns;
1967         int ret;
1968
1969         mutex_lock(&ctrl->namespaces_mutex);
1970         if (list_empty(&ctrl->namespaces)) {
1971                 ret = -ENOTTY;
1972                 goto out_unlock;
1973         }
1974
1975         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1976         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1977                 dev_warn(ctrl->device,
1978                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1979                 ret = -EINVAL;
1980                 goto out_unlock;
1981         }
1982
1983         dev_warn(ctrl->device,
1984                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1985         kref_get(&ns->kref);
1986         mutex_unlock(&ctrl->namespaces_mutex);
1987
1988         ret = nvme_user_cmd(ctrl, ns, argp);
1989         nvme_put_ns(ns);
1990         return ret;
1991
1992 out_unlock:
1993         mutex_unlock(&ctrl->namespaces_mutex);
1994         return ret;
1995 }
1996
1997 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1998                 unsigned long arg)
1999 {
2000         struct nvme_ctrl *ctrl = file->private_data;
2001         void __user *argp = (void __user *)arg;
2002
2003         switch (cmd) {
2004         case NVME_IOCTL_ADMIN_CMD:
2005                 return nvme_user_cmd(ctrl, NULL, argp);
2006         case NVME_IOCTL_IO_CMD:
2007                 return nvme_dev_user_cmd(ctrl, argp);
2008         case NVME_IOCTL_RESET:
2009                 dev_warn(ctrl->device, "resetting controller\n");
2010                 return nvme_reset_ctrl_sync(ctrl);
2011         case NVME_IOCTL_SUBSYS_RESET:
2012                 return nvme_reset_subsystem(ctrl);
2013         case NVME_IOCTL_RESCAN:
2014                 nvme_queue_scan(ctrl);
2015                 return 0;
2016         default:
2017                 return -ENOTTY;
2018         }
2019 }
2020
2021 static const struct file_operations nvme_dev_fops = {
2022         .owner          = THIS_MODULE,
2023         .open           = nvme_dev_open,
2024         .release        = nvme_dev_release,
2025         .unlocked_ioctl = nvme_dev_ioctl,
2026         .compat_ioctl   = nvme_dev_ioctl,
2027 };
2028
2029 static ssize_t nvme_sysfs_reset(struct device *dev,
2030                                 struct device_attribute *attr, const char *buf,
2031                                 size_t count)
2032 {
2033         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2034         int ret;
2035
2036         ret = nvme_reset_ctrl_sync(ctrl);
2037         if (ret < 0)
2038                 return ret;
2039         return count;
2040 }
2041 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2042
2043 static ssize_t nvme_sysfs_rescan(struct device *dev,
2044                                 struct device_attribute *attr, const char *buf,
2045                                 size_t count)
2046 {
2047         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2048
2049         nvme_queue_scan(ctrl);
2050         return count;
2051 }
2052 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2053
2054 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2055                                                                 char *buf)
2056 {
2057         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2058         struct nvme_ctrl *ctrl = ns->ctrl;
2059         int serial_len = sizeof(ctrl->serial);
2060         int model_len = sizeof(ctrl->model);
2061
2062         if (!uuid_is_null(&ns->uuid))
2063                 return sprintf(buf, "uuid.%pU\n", &ns->uuid);
2064
2065         if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2066                 return sprintf(buf, "eui.%16phN\n", ns->nguid);
2067
2068         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2069                 return sprintf(buf, "eui.%8phN\n", ns->eui);
2070
2071         while (serial_len > 0 && (ctrl->serial[serial_len - 1] == ' ' ||
2072                                   ctrl->serial[serial_len - 1] == '\0'))
2073                 serial_len--;
2074         while (model_len > 0 && (ctrl->model[model_len - 1] == ' ' ||
2075                                  ctrl->model[model_len - 1] == '\0'))
2076                 model_len--;
2077
2078         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
2079                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
2080 }
2081 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
2082
2083 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2084                           char *buf)
2085 {
2086         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2087         return sprintf(buf, "%pU\n", ns->nguid);
2088 }
2089 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
2090
2091 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2092                                                                 char *buf)
2093 {
2094         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2095
2096         /* For backward compatibility expose the NGUID to userspace if
2097          * we have no UUID set
2098          */
2099         if (uuid_is_null(&ns->uuid)) {
2100                 printk_ratelimited(KERN_WARNING
2101                                    "No UUID available providing old NGUID\n");
2102                 return sprintf(buf, "%pU\n", ns->nguid);
2103         }
2104         return sprintf(buf, "%pU\n", &ns->uuid);
2105 }
2106 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
2107
2108 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2109                                                                 char *buf)
2110 {
2111         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2112         return sprintf(buf, "%8phd\n", ns->eui);
2113 }
2114 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
2115
2116 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2117                                                                 char *buf)
2118 {
2119         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2120         return sprintf(buf, "%d\n", ns->ns_id);
2121 }
2122 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
2123
2124 static struct attribute *nvme_ns_attrs[] = {
2125         &dev_attr_wwid.attr,
2126         &dev_attr_uuid.attr,
2127         &dev_attr_nguid.attr,
2128         &dev_attr_eui.attr,
2129         &dev_attr_nsid.attr,
2130         NULL,
2131 };
2132
2133 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
2134                 struct attribute *a, int n)
2135 {
2136         struct device *dev = container_of(kobj, struct device, kobj);
2137         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2138
2139         if (a == &dev_attr_uuid.attr) {
2140                 if (uuid_is_null(&ns->uuid) &&
2141                     !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2142                         return 0;
2143         }
2144         if (a == &dev_attr_nguid.attr) {
2145                 if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2146                         return 0;
2147         }
2148         if (a == &dev_attr_eui.attr) {
2149                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2150                         return 0;
2151         }
2152         return a->mode;
2153 }
2154
2155 static const struct attribute_group nvme_ns_attr_group = {
2156         .attrs          = nvme_ns_attrs,
2157         .is_visible     = nvme_ns_attrs_are_visible,
2158 };
2159
2160 #define nvme_show_str_function(field)                                           \
2161 static ssize_t  field##_show(struct device *dev,                                \
2162                             struct device_attribute *attr, char *buf)           \
2163 {                                                                               \
2164         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2165         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
2166 }                                                                               \
2167 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2168
2169 #define nvme_show_int_function(field)                                           \
2170 static ssize_t  field##_show(struct device *dev,                                \
2171                             struct device_attribute *attr, char *buf)           \
2172 {                                                                               \
2173         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2174         return sprintf(buf, "%d\n", ctrl->field);       \
2175 }                                                                               \
2176 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2177
2178 nvme_show_str_function(model);
2179 nvme_show_str_function(serial);
2180 nvme_show_str_function(firmware_rev);
2181 nvme_show_int_function(cntlid);
2182
2183 static ssize_t nvme_sysfs_delete(struct device *dev,
2184                                 struct device_attribute *attr, const char *buf,
2185                                 size_t count)
2186 {
2187         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2188
2189         if (device_remove_file_self(dev, attr))
2190                 ctrl->ops->delete_ctrl(ctrl);
2191         return count;
2192 }
2193 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2194
2195 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2196                                          struct device_attribute *attr,
2197                                          char *buf)
2198 {
2199         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2200
2201         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2202 }
2203 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2204
2205 static ssize_t nvme_sysfs_show_state(struct device *dev,
2206                                      struct device_attribute *attr,
2207                                      char *buf)
2208 {
2209         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2210         static const char *const state_name[] = {
2211                 [NVME_CTRL_NEW]         = "new",
2212                 [NVME_CTRL_LIVE]        = "live",
2213                 [NVME_CTRL_RESETTING]   = "resetting",
2214                 [NVME_CTRL_RECONNECTING]= "reconnecting",
2215                 [NVME_CTRL_DELETING]    = "deleting",
2216                 [NVME_CTRL_DEAD]        = "dead",
2217         };
2218
2219         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2220             state_name[ctrl->state])
2221                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2222
2223         return sprintf(buf, "unknown state\n");
2224 }
2225
2226 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2227
2228 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2229                                          struct device_attribute *attr,
2230                                          char *buf)
2231 {
2232         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2233
2234         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subnqn);
2235 }
2236 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2237
2238 static ssize_t nvme_sysfs_show_address(struct device *dev,
2239                                          struct device_attribute *attr,
2240                                          char *buf)
2241 {
2242         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2243
2244         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2245 }
2246 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2247
2248 static struct attribute *nvme_dev_attrs[] = {
2249         &dev_attr_reset_controller.attr,
2250         &dev_attr_rescan_controller.attr,
2251         &dev_attr_model.attr,
2252         &dev_attr_serial.attr,
2253         &dev_attr_firmware_rev.attr,
2254         &dev_attr_cntlid.attr,
2255         &dev_attr_delete_controller.attr,
2256         &dev_attr_transport.attr,
2257         &dev_attr_subsysnqn.attr,
2258         &dev_attr_address.attr,
2259         &dev_attr_state.attr,
2260         NULL
2261 };
2262
2263 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2264                 struct attribute *a, int n)
2265 {
2266         struct device *dev = container_of(kobj, struct device, kobj);
2267         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2268
2269         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2270                 return 0;
2271         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2272                 return 0;
2273
2274         return a->mode;
2275 }
2276
2277 static struct attribute_group nvme_dev_attrs_group = {
2278         .attrs          = nvme_dev_attrs,
2279         .is_visible     = nvme_dev_attrs_are_visible,
2280 };
2281
2282 static const struct attribute_group *nvme_dev_attr_groups[] = {
2283         &nvme_dev_attrs_group,
2284         NULL,
2285 };
2286
2287 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2288 {
2289         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2290         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2291
2292         return nsa->ns_id - nsb->ns_id;
2293 }
2294
2295 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2296 {
2297         struct nvme_ns *ns, *ret = NULL;
2298
2299         mutex_lock(&ctrl->namespaces_mutex);
2300         list_for_each_entry(ns, &ctrl->namespaces, list) {
2301                 if (ns->ns_id == nsid) {
2302                         kref_get(&ns->kref);
2303                         ret = ns;
2304                         break;
2305                 }
2306                 if (ns->ns_id > nsid)
2307                         break;
2308         }
2309         mutex_unlock(&ctrl->namespaces_mutex);
2310         return ret;
2311 }
2312
2313 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2314 {
2315         struct streams_directive_params s;
2316         int ret;
2317
2318         if (!ctrl->nr_streams)
2319                 return 0;
2320
2321         ret = nvme_get_stream_params(ctrl, &s, ns->ns_id);
2322         if (ret)
2323                 return ret;
2324
2325         ns->sws = le32_to_cpu(s.sws);
2326         ns->sgs = le16_to_cpu(s.sgs);
2327
2328         if (ns->sws) {
2329                 unsigned int bs = 1 << ns->lba_shift;
2330
2331                 blk_queue_io_min(ns->queue, bs * ns->sws);
2332                 if (ns->sgs)
2333                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2334         }
2335
2336         return 0;
2337 }
2338
2339 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2340 {
2341         struct nvme_ns *ns;
2342         struct gendisk *disk;
2343         struct nvme_id_ns *id;
2344         char disk_name[DISK_NAME_LEN];
2345         int node = dev_to_node(ctrl->dev);
2346
2347         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2348         if (!ns)
2349                 return;
2350
2351         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2352         if (ns->instance < 0)
2353                 goto out_free_ns;
2354
2355         ns->queue = blk_mq_init_queue(ctrl->tagset);
2356         if (IS_ERR(ns->queue))
2357                 goto out_release_instance;
2358         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2359         ns->queue->queuedata = ns;
2360         ns->ctrl = ctrl;
2361
2362         kref_init(&ns->kref);
2363         ns->ns_id = nsid;
2364         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2365
2366         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2367         nvme_set_queue_limits(ctrl, ns->queue);
2368         nvme_setup_streams_ns(ctrl, ns);
2369
2370         sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2371
2372         id = nvme_identify_ns(ctrl, nsid);
2373         if (!id)
2374                 goto out_free_queue;
2375
2376         if (id->ncap == 0)
2377                 goto out_free_id;
2378
2379         nvme_report_ns_ids(ctrl, ns->ns_id, id, ns->eui, ns->nguid, &ns->uuid);
2380
2381         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
2382                 if (nvme_nvm_register(ns, disk_name, node)) {
2383                         dev_warn(ctrl->device, "LightNVM init failure\n");
2384                         goto out_free_id;
2385                 }
2386         }
2387
2388         disk = alloc_disk_node(0, node);
2389         if (!disk)
2390                 goto out_free_id;
2391
2392         disk->fops = &nvme_fops;
2393         disk->private_data = ns;
2394         disk->queue = ns->queue;
2395         disk->flags = GENHD_FL_EXT_DEVT;
2396         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2397         ns->disk = disk;
2398
2399         __nvme_revalidate_disk(disk, id);
2400
2401         mutex_lock(&ctrl->namespaces_mutex);
2402         list_add_tail(&ns->list, &ctrl->namespaces);
2403         mutex_unlock(&ctrl->namespaces_mutex);
2404
2405         kref_get(&ctrl->kref);
2406
2407         kfree(id);
2408
2409         device_add_disk(ctrl->device, ns->disk);
2410         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2411                                         &nvme_ns_attr_group))
2412                 pr_warn("%s: failed to create sysfs group for identification\n",
2413                         ns->disk->disk_name);
2414         if (ns->ndev && nvme_nvm_register_sysfs(ns))
2415                 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2416                         ns->disk->disk_name);
2417         return;
2418  out_free_id:
2419         kfree(id);
2420  out_free_queue:
2421         blk_cleanup_queue(ns->queue);
2422  out_release_instance:
2423         ida_simple_remove(&ctrl->ns_ida, ns->instance);
2424  out_free_ns:
2425         kfree(ns);
2426 }
2427
2428 static void nvme_ns_remove(struct nvme_ns *ns)
2429 {
2430         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2431                 return;
2432
2433         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2434                 if (blk_get_integrity(ns->disk))
2435                         blk_integrity_unregister(ns->disk);
2436                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2437                                         &nvme_ns_attr_group);
2438                 if (ns->ndev)
2439                         nvme_nvm_unregister_sysfs(ns);
2440                 del_gendisk(ns->disk);
2441                 blk_cleanup_queue(ns->queue);
2442         }
2443
2444         mutex_lock(&ns->ctrl->namespaces_mutex);
2445         list_del_init(&ns->list);
2446         mutex_unlock(&ns->ctrl->namespaces_mutex);
2447
2448         nvme_put_ns(ns);
2449 }
2450
2451 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2452 {
2453         struct nvme_ns *ns;
2454
2455         ns = nvme_find_get_ns(ctrl, nsid);
2456         if (ns) {
2457                 if (ns->disk && revalidate_disk(ns->disk))
2458                         nvme_ns_remove(ns);
2459                 nvme_put_ns(ns);
2460         } else
2461                 nvme_alloc_ns(ctrl, nsid);
2462 }
2463
2464 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2465                                         unsigned nsid)
2466 {
2467         struct nvme_ns *ns, *next;
2468
2469         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2470                 if (ns->ns_id > nsid)
2471                         nvme_ns_remove(ns);
2472         }
2473 }
2474
2475 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2476 {
2477         struct nvme_ns *ns;
2478         __le32 *ns_list;
2479         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2480         int ret = 0;
2481
2482         ns_list = kzalloc(0x1000, GFP_KERNEL);
2483         if (!ns_list)
2484                 return -ENOMEM;
2485
2486         for (i = 0; i < num_lists; i++) {
2487                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2488                 if (ret)
2489                         goto free;
2490
2491                 for (j = 0; j < min(nn, 1024U); j++) {
2492                         nsid = le32_to_cpu(ns_list[j]);
2493                         if (!nsid)
2494                                 goto out;
2495
2496                         nvme_validate_ns(ctrl, nsid);
2497
2498                         while (++prev < nsid) {
2499                                 ns = nvme_find_get_ns(ctrl, prev);
2500                                 if (ns) {
2501                                         nvme_ns_remove(ns);
2502                                         nvme_put_ns(ns);
2503                                 }
2504                         }
2505                 }
2506                 nn -= j;
2507         }
2508  out:
2509         nvme_remove_invalid_namespaces(ctrl, prev);
2510  free:
2511         kfree(ns_list);
2512         return ret;
2513 }
2514
2515 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2516 {
2517         unsigned i;
2518
2519         for (i = 1; i <= nn; i++)
2520                 nvme_validate_ns(ctrl, i);
2521
2522         nvme_remove_invalid_namespaces(ctrl, nn);
2523 }
2524
2525 static void nvme_scan_work(struct work_struct *work)
2526 {
2527         struct nvme_ctrl *ctrl =
2528                 container_of(work, struct nvme_ctrl, scan_work);
2529         struct nvme_id_ctrl *id;
2530         unsigned nn;
2531
2532         if (ctrl->state != NVME_CTRL_LIVE)
2533                 return;
2534
2535         if (nvme_identify_ctrl(ctrl, &id))
2536                 return;
2537
2538         nn = le32_to_cpu(id->nn);
2539         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2540             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2541                 if (!nvme_scan_ns_list(ctrl, nn))
2542                         goto done;
2543         }
2544         nvme_scan_ns_sequential(ctrl, nn);
2545  done:
2546         mutex_lock(&ctrl->namespaces_mutex);
2547         list_sort(NULL, &ctrl->namespaces, ns_cmp);
2548         mutex_unlock(&ctrl->namespaces_mutex);
2549         kfree(id);
2550 }
2551
2552 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2553 {
2554         /*
2555          * Do not queue new scan work when a controller is reset during
2556          * removal.
2557          */
2558         if (ctrl->state == NVME_CTRL_LIVE)
2559                 queue_work(nvme_wq, &ctrl->scan_work);
2560 }
2561 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2562
2563 /*
2564  * This function iterates the namespace list unlocked to allow recovery from
2565  * controller failure. It is up to the caller to ensure the namespace list is
2566  * not modified by scan work while this function is executing.
2567  */
2568 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2569 {
2570         struct nvme_ns *ns, *next;
2571
2572         /*
2573          * The dead states indicates the controller was not gracefully
2574          * disconnected. In that case, we won't be able to flush any data while
2575          * removing the namespaces' disks; fail all the queues now to avoid
2576          * potentially having to clean up the failed sync later.
2577          */
2578         if (ctrl->state == NVME_CTRL_DEAD)
2579                 nvme_kill_queues(ctrl);
2580
2581         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2582                 nvme_ns_remove(ns);
2583 }
2584 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2585
2586 static void nvme_async_event_work(struct work_struct *work)
2587 {
2588         struct nvme_ctrl *ctrl =
2589                 container_of(work, struct nvme_ctrl, async_event_work);
2590
2591         spin_lock_irq(&ctrl->lock);
2592         while (ctrl->state == NVME_CTRL_LIVE && ctrl->event_limit > 0) {
2593                 int aer_idx = --ctrl->event_limit;
2594
2595                 spin_unlock_irq(&ctrl->lock);
2596                 ctrl->ops->submit_async_event(ctrl, aer_idx);
2597                 spin_lock_irq(&ctrl->lock);
2598         }
2599         spin_unlock_irq(&ctrl->lock);
2600 }
2601
2602 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
2603 {
2604
2605         u32 csts;
2606
2607         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
2608                 return false;
2609
2610         if (csts == ~0)
2611                 return false;
2612
2613         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
2614 }
2615
2616 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
2617 {
2618         struct nvme_command c = { };
2619         struct nvme_fw_slot_info_log *log;
2620
2621         log = kmalloc(sizeof(*log), GFP_KERNEL);
2622         if (!log)
2623                 return;
2624
2625         c.common.opcode = nvme_admin_get_log_page;
2626         c.common.nsid = cpu_to_le32(NVME_NSID_ALL);
2627         c.common.cdw10[0] = nvme_get_log_dw10(NVME_LOG_FW_SLOT, sizeof(*log));
2628
2629         if (!nvme_submit_sync_cmd(ctrl->admin_q, &c, log, sizeof(*log)))
2630                 dev_warn(ctrl->device,
2631                                 "Get FW SLOT INFO log error\n");
2632         kfree(log);
2633 }
2634
2635 static void nvme_fw_act_work(struct work_struct *work)
2636 {
2637         struct nvme_ctrl *ctrl = container_of(work,
2638                                 struct nvme_ctrl, fw_act_work);
2639         unsigned long fw_act_timeout;
2640
2641         if (ctrl->mtfa)
2642                 fw_act_timeout = jiffies +
2643                                 msecs_to_jiffies(ctrl->mtfa * 100);
2644         else
2645                 fw_act_timeout = jiffies +
2646                                 msecs_to_jiffies(admin_timeout * 1000);
2647
2648         nvme_stop_queues(ctrl);
2649         while (nvme_ctrl_pp_status(ctrl)) {
2650                 if (time_after(jiffies, fw_act_timeout)) {
2651                         dev_warn(ctrl->device,
2652                                 "Fw activation timeout, reset controller\n");
2653                         nvme_reset_ctrl(ctrl);
2654                         break;
2655                 }
2656                 msleep(100);
2657         }
2658
2659         if (ctrl->state != NVME_CTRL_LIVE)
2660                 return;
2661
2662         nvme_start_queues(ctrl);
2663         /* read FW slot informationi to clear the AER*/
2664         nvme_get_fw_slot_info(ctrl);
2665 }
2666
2667 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2668                 union nvme_result *res)
2669 {
2670         u32 result = le32_to_cpu(res->u32);
2671         bool done = true;
2672
2673         switch (le16_to_cpu(status) >> 1) {
2674         case NVME_SC_SUCCESS:
2675                 done = false;
2676                 /*FALLTHRU*/
2677         case NVME_SC_ABORT_REQ:
2678                 ++ctrl->event_limit;
2679                 if (ctrl->state == NVME_CTRL_LIVE)
2680                         queue_work(nvme_wq, &ctrl->async_event_work);
2681                 break;
2682         default:
2683                 break;
2684         }
2685
2686         if (done)
2687                 return;
2688
2689         switch (result & 0xff07) {
2690         case NVME_AER_NOTICE_NS_CHANGED:
2691                 dev_info(ctrl->device, "rescanning\n");
2692                 nvme_queue_scan(ctrl);
2693                 break;
2694         case NVME_AER_NOTICE_FW_ACT_STARTING:
2695                 queue_work(nvme_wq, &ctrl->fw_act_work);
2696                 break;
2697         default:
2698                 dev_warn(ctrl->device, "async event result %08x\n", result);
2699         }
2700 }
2701 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2702
2703 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2704 {
2705         ctrl->event_limit = NVME_NR_AERS;
2706         queue_work(nvme_wq, &ctrl->async_event_work);
2707 }
2708 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2709
2710 static DEFINE_IDA(nvme_instance_ida);
2711
2712 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2713 {
2714         int instance, error;
2715
2716         do {
2717                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2718                         return -ENODEV;
2719
2720                 spin_lock(&dev_list_lock);
2721                 error = ida_get_new(&nvme_instance_ida, &instance);
2722                 spin_unlock(&dev_list_lock);
2723         } while (error == -EAGAIN);
2724
2725         if (error)
2726                 return -ENODEV;
2727
2728         ctrl->instance = instance;
2729         return 0;
2730 }
2731
2732 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2733 {
2734         spin_lock(&dev_list_lock);
2735         ida_remove(&nvme_instance_ida, ctrl->instance);
2736         spin_unlock(&dev_list_lock);
2737 }
2738
2739 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
2740 {
2741         nvme_stop_keep_alive(ctrl);
2742         flush_work(&ctrl->async_event_work);
2743         flush_work(&ctrl->scan_work);
2744         cancel_work_sync(&ctrl->fw_act_work);
2745 }
2746 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
2747
2748 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
2749 {
2750         if (ctrl->kato)
2751                 nvme_start_keep_alive(ctrl);
2752
2753         if (ctrl->queue_count > 1) {
2754                 nvme_queue_scan(ctrl);
2755                 nvme_queue_async_events(ctrl);
2756                 nvme_start_queues(ctrl);
2757         }
2758 }
2759 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
2760
2761 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2762 {
2763         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2764
2765         spin_lock(&dev_list_lock);
2766         list_del(&ctrl->node);
2767         spin_unlock(&dev_list_lock);
2768 }
2769 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2770
2771 static void nvme_free_ctrl(struct kref *kref)
2772 {
2773         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2774
2775         put_device(ctrl->device);
2776         nvme_release_instance(ctrl);
2777         ida_destroy(&ctrl->ns_ida);
2778
2779         ctrl->ops->free_ctrl(ctrl);
2780 }
2781
2782 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2783 {
2784         kref_put(&ctrl->kref, nvme_free_ctrl);
2785 }
2786 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2787
2788 /*
2789  * Initialize a NVMe controller structures.  This needs to be called during
2790  * earliest initialization so that we have the initialized structured around
2791  * during probing.
2792  */
2793 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2794                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2795 {
2796         int ret;
2797
2798         ctrl->state = NVME_CTRL_NEW;
2799         spin_lock_init(&ctrl->lock);
2800         INIT_LIST_HEAD(&ctrl->namespaces);
2801         mutex_init(&ctrl->namespaces_mutex);
2802         kref_init(&ctrl->kref);
2803         ctrl->dev = dev;
2804         ctrl->ops = ops;
2805         ctrl->quirks = quirks;
2806         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2807         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2808         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
2809
2810         ret = nvme_set_instance(ctrl);
2811         if (ret)
2812                 goto out;
2813
2814         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2815                                 MKDEV(nvme_char_major, ctrl->instance),
2816                                 ctrl, nvme_dev_attr_groups,
2817                                 "nvme%d", ctrl->instance);
2818         if (IS_ERR(ctrl->device)) {
2819                 ret = PTR_ERR(ctrl->device);
2820                 goto out_release_instance;
2821         }
2822         get_device(ctrl->device);
2823         ida_init(&ctrl->ns_ida);
2824
2825         spin_lock(&dev_list_lock);
2826         list_add_tail(&ctrl->node, &nvme_ctrl_list);
2827         spin_unlock(&dev_list_lock);
2828
2829         /*
2830          * Initialize latency tolerance controls.  The sysfs files won't
2831          * be visible to userspace unless the device actually supports APST.
2832          */
2833         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2834         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2835                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2836
2837         return 0;
2838 out_release_instance:
2839         nvme_release_instance(ctrl);
2840 out:
2841         return ret;
2842 }
2843 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2844
2845 /**
2846  * nvme_kill_queues(): Ends all namespace queues
2847  * @ctrl: the dead controller that needs to end
2848  *
2849  * Call this function when the driver determines it is unable to get the
2850  * controller in a state capable of servicing IO.
2851  */
2852 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2853 {
2854         struct nvme_ns *ns;
2855
2856         mutex_lock(&ctrl->namespaces_mutex);
2857
2858         /* Forcibly unquiesce queues to avoid blocking dispatch */
2859         if (ctrl->admin_q)
2860                 blk_mq_unquiesce_queue(ctrl->admin_q);
2861
2862         list_for_each_entry(ns, &ctrl->namespaces, list) {
2863                 /*
2864                  * Revalidating a dead namespace sets capacity to 0. This will
2865                  * end buffered writers dirtying pages that can't be synced.
2866                  */
2867                 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2868                         continue;
2869                 revalidate_disk(ns->disk);
2870                 blk_set_queue_dying(ns->queue);
2871
2872                 /* Forcibly unquiesce queues to avoid blocking dispatch */
2873                 blk_mq_unquiesce_queue(ns->queue);
2874         }
2875         mutex_unlock(&ctrl->namespaces_mutex);
2876 }
2877 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2878
2879 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2880 {
2881         struct nvme_ns *ns;
2882
2883         mutex_lock(&ctrl->namespaces_mutex);
2884         list_for_each_entry(ns, &ctrl->namespaces, list)
2885                 blk_mq_unfreeze_queue(ns->queue);
2886         mutex_unlock(&ctrl->namespaces_mutex);
2887 }
2888 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2889
2890 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2891 {
2892         struct nvme_ns *ns;
2893
2894         mutex_lock(&ctrl->namespaces_mutex);
2895         list_for_each_entry(ns, &ctrl->namespaces, list) {
2896                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2897                 if (timeout <= 0)
2898                         break;
2899         }
2900         mutex_unlock(&ctrl->namespaces_mutex);
2901 }
2902 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2903
2904 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2905 {
2906         struct nvme_ns *ns;
2907
2908         mutex_lock(&ctrl->namespaces_mutex);
2909         list_for_each_entry(ns, &ctrl->namespaces, list)
2910                 blk_mq_freeze_queue_wait(ns->queue);
2911         mutex_unlock(&ctrl->namespaces_mutex);
2912 }
2913 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2914
2915 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2916 {
2917         struct nvme_ns *ns;
2918
2919         mutex_lock(&ctrl->namespaces_mutex);
2920         list_for_each_entry(ns, &ctrl->namespaces, list)
2921                 blk_freeze_queue_start(ns->queue);
2922         mutex_unlock(&ctrl->namespaces_mutex);
2923 }
2924 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2925
2926 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2927 {
2928         struct nvme_ns *ns;
2929
2930         mutex_lock(&ctrl->namespaces_mutex);
2931         list_for_each_entry(ns, &ctrl->namespaces, list)
2932                 blk_mq_quiesce_queue(ns->queue);
2933         mutex_unlock(&ctrl->namespaces_mutex);
2934 }
2935 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2936
2937 void nvme_start_queues(struct nvme_ctrl *ctrl)
2938 {
2939         struct nvme_ns *ns;
2940
2941         mutex_lock(&ctrl->namespaces_mutex);
2942         list_for_each_entry(ns, &ctrl->namespaces, list)
2943                 blk_mq_unquiesce_queue(ns->queue);
2944         mutex_unlock(&ctrl->namespaces_mutex);
2945 }
2946 EXPORT_SYMBOL_GPL(nvme_start_queues);
2947
2948 int __init nvme_core_init(void)
2949 {
2950         int result;
2951
2952         nvme_wq = alloc_workqueue("nvme-wq",
2953                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2954         if (!nvme_wq)
2955                 return -ENOMEM;
2956
2957         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2958                                                         &nvme_dev_fops);
2959         if (result < 0)
2960                 goto destroy_wq;
2961         else if (result > 0)
2962                 nvme_char_major = result;
2963
2964         nvme_class = class_create(THIS_MODULE, "nvme");
2965         if (IS_ERR(nvme_class)) {
2966                 result = PTR_ERR(nvme_class);
2967                 goto unregister_chrdev;
2968         }
2969
2970         return 0;
2971
2972 unregister_chrdev:
2973         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2974 destroy_wq:
2975         destroy_workqueue(nvme_wq);
2976         return result;
2977 }
2978
2979 void nvme_core_exit(void)
2980 {
2981         class_destroy(nvme_class);
2982         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2983         destroy_workqueue(nvme_wq);
2984 }
2985
2986 MODULE_LICENSE("GPL");
2987 MODULE_VERSION("1.0");
2988 module_init(nvme_core_init);
2989 module_exit(nvme_core_exit);