nvme: Namepace identification descriptor list is optional
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such are scan, aen handling, fw activation,
70  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95                                            unsigned nsid);
96
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99         /*
100          * Revalidating a dead namespace sets capacity to 0. This will end
101          * buffered writers dirtying pages that can't be synced.
102          */
103         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104                 return;
105         blk_set_queue_dying(ns->queue);
106         /* Forcibly unquiesce queues to avoid blocking dispatch */
107         blk_mq_unquiesce_queue(ns->queue);
108         /*
109          * Revalidate after unblocking dispatchers that may be holding bd_butex
110          */
111         revalidate_disk(ns->disk);
112 }
113
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116         /*
117          * Only new queue scan work when admin and IO queues are both alive
118          */
119         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120                 queue_work(nvme_wq, &ctrl->scan_work);
121 }
122
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131         if (ctrl->state != NVME_CTRL_RESETTING)
132                 return -EBUSY;
133         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134                 return -EBUSY;
135         return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142                 return -EBUSY;
143         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144                 return -EBUSY;
145         return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151         int ret;
152
153         ret = nvme_reset_ctrl(ctrl);
154         if (!ret) {
155                 flush_work(&ctrl->reset_work);
156                 if (ctrl->state != NVME_CTRL_LIVE)
157                         ret = -ENETRESET;
158         }
159
160         return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166         dev_info(ctrl->device,
167                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168
169         flush_work(&ctrl->reset_work);
170         nvme_stop_ctrl(ctrl);
171         nvme_remove_namespaces(ctrl);
172         ctrl->ops->delete_ctrl(ctrl);
173         nvme_uninit_ctrl(ctrl);
174         nvme_put_ctrl(ctrl);
175 }
176
177 static void nvme_delete_ctrl_work(struct work_struct *work)
178 {
179         struct nvme_ctrl *ctrl =
180                 container_of(work, struct nvme_ctrl, delete_work);
181
182         nvme_do_delete_ctrl(ctrl);
183 }
184
185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 {
187         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188                 return -EBUSY;
189         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190                 return -EBUSY;
191         return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194
195 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197         int ret = 0;
198
199         /*
200          * Keep a reference until nvme_do_delete_ctrl() complete,
201          * since ->delete_ctrl can free the controller.
202          */
203         nvme_get_ctrl(ctrl);
204         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
205                 ret = -EBUSY;
206         if (!ret)
207                 nvme_do_delete_ctrl(ctrl);
208         nvme_put_ctrl(ctrl);
209         return ret;
210 }
211
212 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
213 {
214         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
215 }
216
217 static blk_status_t nvme_error_status(u16 status)
218 {
219         switch (status & 0x7ff) {
220         case NVME_SC_SUCCESS:
221                 return BLK_STS_OK;
222         case NVME_SC_CAP_EXCEEDED:
223                 return BLK_STS_NOSPC;
224         case NVME_SC_LBA_RANGE:
225                 return BLK_STS_TARGET;
226         case NVME_SC_BAD_ATTRIBUTES:
227         case NVME_SC_ONCS_NOT_SUPPORTED:
228         case NVME_SC_INVALID_OPCODE:
229         case NVME_SC_INVALID_FIELD:
230         case NVME_SC_INVALID_NS:
231                 return BLK_STS_NOTSUPP;
232         case NVME_SC_WRITE_FAULT:
233         case NVME_SC_READ_ERROR:
234         case NVME_SC_UNWRITTEN_BLOCK:
235         case NVME_SC_ACCESS_DENIED:
236         case NVME_SC_READ_ONLY:
237         case NVME_SC_COMPARE_FAILED:
238                 return BLK_STS_MEDIUM;
239         case NVME_SC_GUARD_CHECK:
240         case NVME_SC_APPTAG_CHECK:
241         case NVME_SC_REFTAG_CHECK:
242         case NVME_SC_INVALID_PI:
243                 return BLK_STS_PROTECTION;
244         case NVME_SC_RESERVATION_CONFLICT:
245                 return BLK_STS_NEXUS;
246         case NVME_SC_HOST_PATH_ERROR:
247                 return BLK_STS_TRANSPORT;
248         default:
249                 return BLK_STS_IOERR;
250         }
251 }
252
253 static inline bool nvme_req_needs_retry(struct request *req)
254 {
255         if (blk_noretry_request(req))
256                 return false;
257         if (nvme_req(req)->status & NVME_SC_DNR)
258                 return false;
259         if (nvme_req(req)->retries >= nvme_max_retries)
260                 return false;
261         return true;
262 }
263
264 static void nvme_retry_req(struct request *req)
265 {
266         struct nvme_ns *ns = req->q->queuedata;
267         unsigned long delay = 0;
268         u16 crd;
269
270         /* The mask and shift result must be <= 3 */
271         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
272         if (ns && crd)
273                 delay = ns->ctrl->crdt[crd - 1] * 100;
274
275         nvme_req(req)->retries++;
276         blk_mq_requeue_request(req, false);
277         blk_mq_delay_kick_requeue_list(req->q, delay);
278 }
279
280 void nvme_complete_rq(struct request *req)
281 {
282         blk_status_t status = nvme_error_status(nvme_req(req)->status);
283
284         trace_nvme_complete_rq(req);
285
286         nvme_cleanup_cmd(req);
287
288         if (nvme_req(req)->ctrl->kas)
289                 nvme_req(req)->ctrl->comp_seen = true;
290
291         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
292                 if ((req->cmd_flags & REQ_NVME_MPATH) &&
293                     blk_path_error(status)) {
294                         nvme_failover_req(req);
295                         return;
296                 }
297
298                 if (!blk_queue_dying(req->q)) {
299                         nvme_retry_req(req);
300                         return;
301                 }
302         }
303
304         nvme_trace_bio_complete(req, status);
305         blk_mq_end_request(req, status);
306 }
307 EXPORT_SYMBOL_GPL(nvme_complete_rq);
308
309 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
310 {
311         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
312                                 "Cancelling I/O %d", req->tag);
313
314         /* don't abort one completed request */
315         if (blk_mq_request_completed(req))
316                 return true;
317
318         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
319         blk_mq_complete_request(req);
320         return true;
321 }
322 EXPORT_SYMBOL_GPL(nvme_cancel_request);
323
324 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
325                 enum nvme_ctrl_state new_state)
326 {
327         enum nvme_ctrl_state old_state;
328         unsigned long flags;
329         bool changed = false;
330
331         spin_lock_irqsave(&ctrl->lock, flags);
332
333         old_state = ctrl->state;
334         switch (new_state) {
335         case NVME_CTRL_LIVE:
336                 switch (old_state) {
337                 case NVME_CTRL_NEW:
338                 case NVME_CTRL_RESETTING:
339                 case NVME_CTRL_CONNECTING:
340                         changed = true;
341                         /* FALLTHRU */
342                 default:
343                         break;
344                 }
345                 break;
346         case NVME_CTRL_RESETTING:
347                 switch (old_state) {
348                 case NVME_CTRL_NEW:
349                 case NVME_CTRL_LIVE:
350                         changed = true;
351                         /* FALLTHRU */
352                 default:
353                         break;
354                 }
355                 break;
356         case NVME_CTRL_CONNECTING:
357                 switch (old_state) {
358                 case NVME_CTRL_NEW:
359                 case NVME_CTRL_RESETTING:
360                         changed = true;
361                         /* FALLTHRU */
362                 default:
363                         break;
364                 }
365                 break;
366         case NVME_CTRL_DELETING:
367                 switch (old_state) {
368                 case NVME_CTRL_LIVE:
369                 case NVME_CTRL_RESETTING:
370                 case NVME_CTRL_CONNECTING:
371                         changed = true;
372                         /* FALLTHRU */
373                 default:
374                         break;
375                 }
376                 break;
377         case NVME_CTRL_DEAD:
378                 switch (old_state) {
379                 case NVME_CTRL_DELETING:
380                         changed = true;
381                         /* FALLTHRU */
382                 default:
383                         break;
384                 }
385                 break;
386         default:
387                 break;
388         }
389
390         if (changed) {
391                 ctrl->state = new_state;
392                 wake_up_all(&ctrl->state_wq);
393         }
394
395         spin_unlock_irqrestore(&ctrl->lock, flags);
396         if (changed && ctrl->state == NVME_CTRL_LIVE)
397                 nvme_kick_requeue_lists(ctrl);
398         return changed;
399 }
400 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
401
402 /*
403  * Returns true for sink states that can't ever transition back to live.
404  */
405 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
406 {
407         switch (ctrl->state) {
408         case NVME_CTRL_NEW:
409         case NVME_CTRL_LIVE:
410         case NVME_CTRL_RESETTING:
411         case NVME_CTRL_CONNECTING:
412                 return false;
413         case NVME_CTRL_DELETING:
414         case NVME_CTRL_DEAD:
415                 return true;
416         default:
417                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
418                 return true;
419         }
420 }
421
422 /*
423  * Waits for the controller state to be resetting, or returns false if it is
424  * not possible to ever transition to that state.
425  */
426 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
427 {
428         wait_event(ctrl->state_wq,
429                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
430                    nvme_state_terminal(ctrl));
431         return ctrl->state == NVME_CTRL_RESETTING;
432 }
433 EXPORT_SYMBOL_GPL(nvme_wait_reset);
434
435 static void nvme_free_ns_head(struct kref *ref)
436 {
437         struct nvme_ns_head *head =
438                 container_of(ref, struct nvme_ns_head, ref);
439
440         nvme_mpath_remove_disk(head);
441         ida_simple_remove(&head->subsys->ns_ida, head->instance);
442         list_del_init(&head->entry);
443         cleanup_srcu_struct(&head->srcu);
444         nvme_put_subsystem(head->subsys);
445         kfree(head);
446 }
447
448 static void nvme_put_ns_head(struct nvme_ns_head *head)
449 {
450         kref_put(&head->ref, nvme_free_ns_head);
451 }
452
453 static void nvme_free_ns(struct kref *kref)
454 {
455         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
456
457         if (ns->ndev)
458                 nvme_nvm_unregister(ns);
459
460         put_disk(ns->disk);
461         nvme_put_ns_head(ns->head);
462         nvme_put_ctrl(ns->ctrl);
463         kfree(ns);
464 }
465
466 static void nvme_put_ns(struct nvme_ns *ns)
467 {
468         kref_put(&ns->kref, nvme_free_ns);
469 }
470
471 static inline void nvme_clear_nvme_request(struct request *req)
472 {
473         if (!(req->rq_flags & RQF_DONTPREP)) {
474                 nvme_req(req)->retries = 0;
475                 nvme_req(req)->flags = 0;
476                 req->rq_flags |= RQF_DONTPREP;
477         }
478 }
479
480 struct request *nvme_alloc_request(struct request_queue *q,
481                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
482 {
483         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
484         struct request *req;
485
486         if (qid == NVME_QID_ANY) {
487                 req = blk_mq_alloc_request(q, op, flags);
488         } else {
489                 req = blk_mq_alloc_request_hctx(q, op, flags,
490                                 qid ? qid - 1 : 0);
491         }
492         if (IS_ERR(req))
493                 return req;
494
495         req->cmd_flags |= REQ_FAILFAST_DRIVER;
496         nvme_clear_nvme_request(req);
497         nvme_req(req)->cmd = cmd;
498
499         return req;
500 }
501 EXPORT_SYMBOL_GPL(nvme_alloc_request);
502
503 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
504 {
505         struct nvme_command c;
506
507         memset(&c, 0, sizeof(c));
508
509         c.directive.opcode = nvme_admin_directive_send;
510         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
511         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
512         c.directive.dtype = NVME_DIR_IDENTIFY;
513         c.directive.tdtype = NVME_DIR_STREAMS;
514         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
515
516         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
517 }
518
519 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
520 {
521         return nvme_toggle_streams(ctrl, false);
522 }
523
524 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
525 {
526         return nvme_toggle_streams(ctrl, true);
527 }
528
529 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
530                                   struct streams_directive_params *s, u32 nsid)
531 {
532         struct nvme_command c;
533
534         memset(&c, 0, sizeof(c));
535         memset(s, 0, sizeof(*s));
536
537         c.directive.opcode = nvme_admin_directive_recv;
538         c.directive.nsid = cpu_to_le32(nsid);
539         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
540         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
541         c.directive.dtype = NVME_DIR_STREAMS;
542
543         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
544 }
545
546 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
547 {
548         struct streams_directive_params s;
549         int ret;
550
551         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
552                 return 0;
553         if (!streams)
554                 return 0;
555
556         ret = nvme_enable_streams(ctrl);
557         if (ret)
558                 return ret;
559
560         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
561         if (ret)
562                 return ret;
563
564         ctrl->nssa = le16_to_cpu(s.nssa);
565         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
566                 dev_info(ctrl->device, "too few streams (%u) available\n",
567                                         ctrl->nssa);
568                 nvme_disable_streams(ctrl);
569                 return 0;
570         }
571
572         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
573         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
574         return 0;
575 }
576
577 /*
578  * Check if 'req' has a write hint associated with it. If it does, assign
579  * a valid namespace stream to the write.
580  */
581 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
582                                      struct request *req, u16 *control,
583                                      u32 *dsmgmt)
584 {
585         enum rw_hint streamid = req->write_hint;
586
587         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
588                 streamid = 0;
589         else {
590                 streamid--;
591                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
592                         return;
593
594                 *control |= NVME_RW_DTYPE_STREAMS;
595                 *dsmgmt |= streamid << 16;
596         }
597
598         if (streamid < ARRAY_SIZE(req->q->write_hints))
599                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
600 }
601
602 static inline void nvme_setup_flush(struct nvme_ns *ns,
603                 struct nvme_command *cmnd)
604 {
605         cmnd->common.opcode = nvme_cmd_flush;
606         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
607 }
608
609 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
610                 struct nvme_command *cmnd)
611 {
612         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
613         struct nvme_dsm_range *range;
614         struct bio *bio;
615
616         /*
617          * Some devices do not consider the DSM 'Number of Ranges' field when
618          * determining how much data to DMA. Always allocate memory for maximum
619          * number of segments to prevent device reading beyond end of buffer.
620          */
621         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
622
623         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
624         if (!range) {
625                 /*
626                  * If we fail allocation our range, fallback to the controller
627                  * discard page. If that's also busy, it's safe to return
628                  * busy, as we know we can make progress once that's freed.
629                  */
630                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
631                         return BLK_STS_RESOURCE;
632
633                 range = page_address(ns->ctrl->discard_page);
634         }
635
636         __rq_for_each_bio(bio, req) {
637                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
638                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
639
640                 if (n < segments) {
641                         range[n].cattr = cpu_to_le32(0);
642                         range[n].nlb = cpu_to_le32(nlb);
643                         range[n].slba = cpu_to_le64(slba);
644                 }
645                 n++;
646         }
647
648         if (WARN_ON_ONCE(n != segments)) {
649                 if (virt_to_page(range) == ns->ctrl->discard_page)
650                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
651                 else
652                         kfree(range);
653                 return BLK_STS_IOERR;
654         }
655
656         cmnd->dsm.opcode = nvme_cmd_dsm;
657         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
658         cmnd->dsm.nr = cpu_to_le32(segments - 1);
659         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
660
661         req->special_vec.bv_page = virt_to_page(range);
662         req->special_vec.bv_offset = offset_in_page(range);
663         req->special_vec.bv_len = alloc_size;
664         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
665
666         return BLK_STS_OK;
667 }
668
669 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
670                 struct request *req, struct nvme_command *cmnd)
671 {
672         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
673                 return nvme_setup_discard(ns, req, cmnd);
674
675         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
676         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
677         cmnd->write_zeroes.slba =
678                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
679         cmnd->write_zeroes.length =
680                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
681         cmnd->write_zeroes.control = 0;
682         return BLK_STS_OK;
683 }
684
685 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
686                 struct request *req, struct nvme_command *cmnd)
687 {
688         struct nvme_ctrl *ctrl = ns->ctrl;
689         u16 control = 0;
690         u32 dsmgmt = 0;
691
692         if (req->cmd_flags & REQ_FUA)
693                 control |= NVME_RW_FUA;
694         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
695                 control |= NVME_RW_LR;
696
697         if (req->cmd_flags & REQ_RAHEAD)
698                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
699
700         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
701         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
702         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
703         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
704
705         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
706                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
707
708         if (ns->ms) {
709                 /*
710                  * If formated with metadata, the block layer always provides a
711                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
712                  * we enable the PRACT bit for protection information or set the
713                  * namespace capacity to zero to prevent any I/O.
714                  */
715                 if (!blk_integrity_rq(req)) {
716                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
717                                 return BLK_STS_NOTSUPP;
718                         control |= NVME_RW_PRINFO_PRACT;
719                 }
720
721                 switch (ns->pi_type) {
722                 case NVME_NS_DPS_PI_TYPE3:
723                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
724                         break;
725                 case NVME_NS_DPS_PI_TYPE1:
726                 case NVME_NS_DPS_PI_TYPE2:
727                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
728                                         NVME_RW_PRINFO_PRCHK_REF;
729                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
730                         break;
731                 }
732         }
733
734         cmnd->rw.control = cpu_to_le16(control);
735         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
736         return 0;
737 }
738
739 void nvme_cleanup_cmd(struct request *req)
740 {
741         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
742                 struct nvme_ns *ns = req->rq_disk->private_data;
743                 struct page *page = req->special_vec.bv_page;
744
745                 if (page == ns->ctrl->discard_page)
746                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
747                 else
748                         kfree(page_address(page) + req->special_vec.bv_offset);
749         }
750 }
751 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
752
753 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
754                 struct nvme_command *cmd)
755 {
756         blk_status_t ret = BLK_STS_OK;
757
758         nvme_clear_nvme_request(req);
759
760         memset(cmd, 0, sizeof(*cmd));
761         switch (req_op(req)) {
762         case REQ_OP_DRV_IN:
763         case REQ_OP_DRV_OUT:
764                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
765                 break;
766         case REQ_OP_FLUSH:
767                 nvme_setup_flush(ns, cmd);
768                 break;
769         case REQ_OP_WRITE_ZEROES:
770                 ret = nvme_setup_write_zeroes(ns, req, cmd);
771                 break;
772         case REQ_OP_DISCARD:
773                 ret = nvme_setup_discard(ns, req, cmd);
774                 break;
775         case REQ_OP_READ:
776         case REQ_OP_WRITE:
777                 ret = nvme_setup_rw(ns, req, cmd);
778                 break;
779         default:
780                 WARN_ON_ONCE(1);
781                 return BLK_STS_IOERR;
782         }
783
784         cmd->common.command_id = req->tag;
785         trace_nvme_setup_cmd(req, cmd);
786         return ret;
787 }
788 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
789
790 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
791 {
792         struct completion *waiting = rq->end_io_data;
793
794         rq->end_io_data = NULL;
795         complete(waiting);
796 }
797
798 static void nvme_execute_rq_polled(struct request_queue *q,
799                 struct gendisk *bd_disk, struct request *rq, int at_head)
800 {
801         DECLARE_COMPLETION_ONSTACK(wait);
802
803         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
804
805         rq->cmd_flags |= REQ_HIPRI;
806         rq->end_io_data = &wait;
807         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
808
809         while (!completion_done(&wait)) {
810                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
811                 cond_resched();
812         }
813 }
814
815 /*
816  * Returns 0 on success.  If the result is negative, it's a Linux error code;
817  * if the result is positive, it's an NVM Express status code
818  */
819 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
820                 union nvme_result *result, void *buffer, unsigned bufflen,
821                 unsigned timeout, int qid, int at_head,
822                 blk_mq_req_flags_t flags, bool poll)
823 {
824         struct request *req;
825         int ret;
826
827         req = nvme_alloc_request(q, cmd, flags, qid);
828         if (IS_ERR(req))
829                 return PTR_ERR(req);
830
831         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
832
833         if (buffer && bufflen) {
834                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
835                 if (ret)
836                         goto out;
837         }
838
839         if (poll)
840                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
841         else
842                 blk_execute_rq(req->q, NULL, req, at_head);
843         if (result)
844                 *result = nvme_req(req)->result;
845         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
846                 ret = -EINTR;
847         else
848                 ret = nvme_req(req)->status;
849  out:
850         blk_mq_free_request(req);
851         return ret;
852 }
853 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
854
855 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
856                 void *buffer, unsigned bufflen)
857 {
858         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
859                         NVME_QID_ANY, 0, 0, false);
860 }
861 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
862
863 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
864                 unsigned len, u32 seed, bool write)
865 {
866         struct bio_integrity_payload *bip;
867         int ret = -ENOMEM;
868         void *buf;
869
870         buf = kmalloc(len, GFP_KERNEL);
871         if (!buf)
872                 goto out;
873
874         ret = -EFAULT;
875         if (write && copy_from_user(buf, ubuf, len))
876                 goto out_free_meta;
877
878         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
879         if (IS_ERR(bip)) {
880                 ret = PTR_ERR(bip);
881                 goto out_free_meta;
882         }
883
884         bip->bip_iter.bi_size = len;
885         bip->bip_iter.bi_sector = seed;
886         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
887                         offset_in_page(buf));
888         if (ret == len)
889                 return buf;
890         ret = -ENOMEM;
891 out_free_meta:
892         kfree(buf);
893 out:
894         return ERR_PTR(ret);
895 }
896
897 static int nvme_submit_user_cmd(struct request_queue *q,
898                 struct nvme_command *cmd, void __user *ubuffer,
899                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
900                 u32 meta_seed, u64 *result, unsigned timeout)
901 {
902         bool write = nvme_is_write(cmd);
903         struct nvme_ns *ns = q->queuedata;
904         struct gendisk *disk = ns ? ns->disk : NULL;
905         struct request *req;
906         struct bio *bio = NULL;
907         void *meta = NULL;
908         int ret;
909
910         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
911         if (IS_ERR(req))
912                 return PTR_ERR(req);
913
914         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
915         nvme_req(req)->flags |= NVME_REQ_USERCMD;
916
917         if (ubuffer && bufflen) {
918                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
919                                 GFP_KERNEL);
920                 if (ret)
921                         goto out;
922                 bio = req->bio;
923                 bio->bi_disk = disk;
924                 if (disk && meta_buffer && meta_len) {
925                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
926                                         meta_seed, write);
927                         if (IS_ERR(meta)) {
928                                 ret = PTR_ERR(meta);
929                                 goto out_unmap;
930                         }
931                         req->cmd_flags |= REQ_INTEGRITY;
932                 }
933         }
934
935         blk_execute_rq(req->q, disk, req, 0);
936         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
937                 ret = -EINTR;
938         else
939                 ret = nvme_req(req)->status;
940         if (result)
941                 *result = le64_to_cpu(nvme_req(req)->result.u64);
942         if (meta && !ret && !write) {
943                 if (copy_to_user(meta_buffer, meta, meta_len))
944                         ret = -EFAULT;
945         }
946         kfree(meta);
947  out_unmap:
948         if (bio)
949                 blk_rq_unmap_user(bio);
950  out:
951         blk_mq_free_request(req);
952         return ret;
953 }
954
955 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
956 {
957         struct nvme_ctrl *ctrl = rq->end_io_data;
958         unsigned long flags;
959         bool startka = false;
960
961         blk_mq_free_request(rq);
962
963         if (status) {
964                 dev_err(ctrl->device,
965                         "failed nvme_keep_alive_end_io error=%d\n",
966                                 status);
967                 return;
968         }
969
970         ctrl->comp_seen = false;
971         spin_lock_irqsave(&ctrl->lock, flags);
972         if (ctrl->state == NVME_CTRL_LIVE ||
973             ctrl->state == NVME_CTRL_CONNECTING)
974                 startka = true;
975         spin_unlock_irqrestore(&ctrl->lock, flags);
976         if (startka)
977                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
978 }
979
980 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
981 {
982         struct request *rq;
983
984         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
985                         NVME_QID_ANY);
986         if (IS_ERR(rq))
987                 return PTR_ERR(rq);
988
989         rq->timeout = ctrl->kato * HZ;
990         rq->end_io_data = ctrl;
991
992         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
993
994         return 0;
995 }
996
997 static void nvme_keep_alive_work(struct work_struct *work)
998 {
999         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1000                         struct nvme_ctrl, ka_work);
1001         bool comp_seen = ctrl->comp_seen;
1002
1003         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1004                 dev_dbg(ctrl->device,
1005                         "reschedule traffic based keep-alive timer\n");
1006                 ctrl->comp_seen = false;
1007                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1008                 return;
1009         }
1010
1011         if (nvme_keep_alive(ctrl)) {
1012                 /* allocation failure, reset the controller */
1013                 dev_err(ctrl->device, "keep-alive failed\n");
1014                 nvme_reset_ctrl(ctrl);
1015                 return;
1016         }
1017 }
1018
1019 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1020 {
1021         if (unlikely(ctrl->kato == 0))
1022                 return;
1023
1024         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1025 }
1026
1027 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1028 {
1029         if (unlikely(ctrl->kato == 0))
1030                 return;
1031
1032         cancel_delayed_work_sync(&ctrl->ka_work);
1033 }
1034 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1035
1036 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1037 {
1038         struct nvme_command c = { };
1039         int error;
1040
1041         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1042         c.identify.opcode = nvme_admin_identify;
1043         c.identify.cns = NVME_ID_CNS_CTRL;
1044
1045         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1046         if (!*id)
1047                 return -ENOMEM;
1048
1049         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1050                         sizeof(struct nvme_id_ctrl));
1051         if (error)
1052                 kfree(*id);
1053         return error;
1054 }
1055
1056 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1057                 struct nvme_ns_ids *ids)
1058 {
1059         struct nvme_command c = { };
1060         int status;
1061         void *data;
1062         int pos;
1063         int len;
1064
1065         c.identify.opcode = nvme_admin_identify;
1066         c.identify.nsid = cpu_to_le32(nsid);
1067         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1068
1069         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1070         if (!data)
1071                 return -ENOMEM;
1072
1073         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1074                                       NVME_IDENTIFY_DATA_SIZE);
1075         if (status)
1076                 goto free_data;
1077
1078         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1079                 struct nvme_ns_id_desc *cur = data + pos;
1080
1081                 if (cur->nidl == 0)
1082                         break;
1083
1084                 switch (cur->nidt) {
1085                 case NVME_NIDT_EUI64:
1086                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1087                                 dev_warn(ctrl->device,
1088                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1089                                          cur->nidl);
1090                                 goto free_data;
1091                         }
1092                         len = NVME_NIDT_EUI64_LEN;
1093                         memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1094                         break;
1095                 case NVME_NIDT_NGUID:
1096                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1097                                 dev_warn(ctrl->device,
1098                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1099                                          cur->nidl);
1100                                 goto free_data;
1101                         }
1102                         len = NVME_NIDT_NGUID_LEN;
1103                         memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1104                         break;
1105                 case NVME_NIDT_UUID:
1106                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
1107                                 dev_warn(ctrl->device,
1108                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1109                                          cur->nidl);
1110                                 goto free_data;
1111                         }
1112                         len = NVME_NIDT_UUID_LEN;
1113                         uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1114                         break;
1115                 default:
1116                         /* Skip unknown types */
1117                         len = cur->nidl;
1118                         break;
1119                 }
1120
1121                 len += sizeof(*cur);
1122         }
1123 free_data:
1124         kfree(data);
1125         return status;
1126 }
1127
1128 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1129 {
1130         struct nvme_command c = { };
1131
1132         c.identify.opcode = nvme_admin_identify;
1133         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1134         c.identify.nsid = cpu_to_le32(nsid);
1135         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1136                                     NVME_IDENTIFY_DATA_SIZE);
1137 }
1138
1139 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1140                 unsigned nsid, struct nvme_id_ns **id)
1141 {
1142         struct nvme_command c = { };
1143         int error;
1144
1145         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1146         c.identify.opcode = nvme_admin_identify;
1147         c.identify.nsid = cpu_to_le32(nsid);
1148         c.identify.cns = NVME_ID_CNS_NS;
1149
1150         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1151         if (!*id)
1152                 return -ENOMEM;
1153
1154         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1155         if (error) {
1156                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1157                 kfree(*id);
1158         }
1159
1160         return error;
1161 }
1162
1163 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1164                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1165 {
1166         struct nvme_command c;
1167         union nvme_result res;
1168         int ret;
1169
1170         memset(&c, 0, sizeof(c));
1171         c.features.opcode = op;
1172         c.features.fid = cpu_to_le32(fid);
1173         c.features.dword11 = cpu_to_le32(dword11);
1174
1175         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1176                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1177         if (ret >= 0 && result)
1178                 *result = le32_to_cpu(res.u32);
1179         return ret;
1180 }
1181
1182 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1183                       unsigned int dword11, void *buffer, size_t buflen,
1184                       u32 *result)
1185 {
1186         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1187                              buflen, result);
1188 }
1189 EXPORT_SYMBOL_GPL(nvme_set_features);
1190
1191 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1192                       unsigned int dword11, void *buffer, size_t buflen,
1193                       u32 *result)
1194 {
1195         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1196                              buflen, result);
1197 }
1198 EXPORT_SYMBOL_GPL(nvme_get_features);
1199
1200 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1201 {
1202         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1203         u32 result;
1204         int status, nr_io_queues;
1205
1206         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1207                         &result);
1208         if (status < 0)
1209                 return status;
1210
1211         /*
1212          * Degraded controllers might return an error when setting the queue
1213          * count.  We still want to be able to bring them online and offer
1214          * access to the admin queue, as that might be only way to fix them up.
1215          */
1216         if (status > 0) {
1217                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1218                 *count = 0;
1219         } else {
1220                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1221                 *count = min(*count, nr_io_queues);
1222         }
1223
1224         return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1227
1228 #define NVME_AEN_SUPPORTED \
1229         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1230          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1231
1232 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1233 {
1234         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1235         int status;
1236
1237         if (!supported_aens)
1238                 return;
1239
1240         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1241                         NULL, 0, &result);
1242         if (status)
1243                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1244                          supported_aens);
1245
1246         queue_work(nvme_wq, &ctrl->async_event_work);
1247 }
1248
1249 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1250 {
1251         struct nvme_user_io io;
1252         struct nvme_command c;
1253         unsigned length, meta_len;
1254         void __user *metadata;
1255
1256         if (copy_from_user(&io, uio, sizeof(io)))
1257                 return -EFAULT;
1258         if (io.flags)
1259                 return -EINVAL;
1260
1261         switch (io.opcode) {
1262         case nvme_cmd_write:
1263         case nvme_cmd_read:
1264         case nvme_cmd_compare:
1265                 break;
1266         default:
1267                 return -EINVAL;
1268         }
1269
1270         length = (io.nblocks + 1) << ns->lba_shift;
1271         meta_len = (io.nblocks + 1) * ns->ms;
1272         metadata = (void __user *)(uintptr_t)io.metadata;
1273
1274         if (ns->ext) {
1275                 length += meta_len;
1276                 meta_len = 0;
1277         } else if (meta_len) {
1278                 if ((io.metadata & 3) || !io.metadata)
1279                         return -EINVAL;
1280         }
1281
1282         memset(&c, 0, sizeof(c));
1283         c.rw.opcode = io.opcode;
1284         c.rw.flags = io.flags;
1285         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1286         c.rw.slba = cpu_to_le64(io.slba);
1287         c.rw.length = cpu_to_le16(io.nblocks);
1288         c.rw.control = cpu_to_le16(io.control);
1289         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1290         c.rw.reftag = cpu_to_le32(io.reftag);
1291         c.rw.apptag = cpu_to_le16(io.apptag);
1292         c.rw.appmask = cpu_to_le16(io.appmask);
1293
1294         return nvme_submit_user_cmd(ns->queue, &c,
1295                         (void __user *)(uintptr_t)io.addr, length,
1296                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1297 }
1298
1299 static u32 nvme_known_admin_effects(u8 opcode)
1300 {
1301         switch (opcode) {
1302         case nvme_admin_format_nvm:
1303                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1304                                         NVME_CMD_EFFECTS_CSE_MASK;
1305         case nvme_admin_sanitize_nvm:
1306                 return NVME_CMD_EFFECTS_CSE_MASK;
1307         default:
1308                 break;
1309         }
1310         return 0;
1311 }
1312
1313 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1314                                                                 u8 opcode)
1315 {
1316         u32 effects = 0;
1317
1318         if (ns) {
1319                 if (ctrl->effects)
1320                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1321                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1322                         dev_warn(ctrl->device,
1323                                  "IO command:%02x has unhandled effects:%08x\n",
1324                                  opcode, effects);
1325                 return 0;
1326         }
1327
1328         if (ctrl->effects)
1329                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1330         effects |= nvme_known_admin_effects(opcode);
1331
1332         /*
1333          * For simplicity, IO to all namespaces is quiesced even if the command
1334          * effects say only one namespace is affected.
1335          */
1336         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1337                 mutex_lock(&ctrl->scan_lock);
1338                 mutex_lock(&ctrl->subsys->lock);
1339                 nvme_mpath_start_freeze(ctrl->subsys);
1340                 nvme_mpath_wait_freeze(ctrl->subsys);
1341                 nvme_start_freeze(ctrl);
1342                 nvme_wait_freeze(ctrl);
1343         }
1344         return effects;
1345 }
1346
1347 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1348 {
1349         struct nvme_ns *ns;
1350
1351         down_read(&ctrl->namespaces_rwsem);
1352         list_for_each_entry(ns, &ctrl->namespaces, list)
1353                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1354                         nvme_set_queue_dying(ns);
1355         up_read(&ctrl->namespaces_rwsem);
1356 }
1357
1358 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1359 {
1360         /*
1361          * Revalidate LBA changes prior to unfreezing. This is necessary to
1362          * prevent memory corruption if a logical block size was changed by
1363          * this command.
1364          */
1365         if (effects & NVME_CMD_EFFECTS_LBCC)
1366                 nvme_update_formats(ctrl);
1367         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1368                 nvme_unfreeze(ctrl);
1369                 nvme_mpath_unfreeze(ctrl->subsys);
1370                 mutex_unlock(&ctrl->subsys->lock);
1371                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1372                 mutex_unlock(&ctrl->scan_lock);
1373         }
1374         if (effects & NVME_CMD_EFFECTS_CCC)
1375                 nvme_init_identify(ctrl);
1376         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1377                 nvme_queue_scan(ctrl);
1378 }
1379
1380 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1381                         struct nvme_passthru_cmd __user *ucmd)
1382 {
1383         struct nvme_passthru_cmd cmd;
1384         struct nvme_command c;
1385         unsigned timeout = 0;
1386         u32 effects;
1387         u64 result;
1388         int status;
1389
1390         if (!capable(CAP_SYS_ADMIN))
1391                 return -EACCES;
1392         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1393                 return -EFAULT;
1394         if (cmd.flags)
1395                 return -EINVAL;
1396
1397         memset(&c, 0, sizeof(c));
1398         c.common.opcode = cmd.opcode;
1399         c.common.flags = cmd.flags;
1400         c.common.nsid = cpu_to_le32(cmd.nsid);
1401         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1402         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1403         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1404         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1405         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1406         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1407         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1408         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1409
1410         if (cmd.timeout_ms)
1411                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1412
1413         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1414         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1415                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1416                         (void __user *)(uintptr_t)cmd.metadata,
1417                         cmd.metadata_len, 0, &result, timeout);
1418         nvme_passthru_end(ctrl, effects);
1419
1420         if (status >= 0) {
1421                 if (put_user(result, &ucmd->result))
1422                         return -EFAULT;
1423         }
1424
1425         return status;
1426 }
1427
1428 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1429                         struct nvme_passthru_cmd64 __user *ucmd)
1430 {
1431         struct nvme_passthru_cmd64 cmd;
1432         struct nvme_command c;
1433         unsigned timeout = 0;
1434         u32 effects;
1435         int status;
1436
1437         if (!capable(CAP_SYS_ADMIN))
1438                 return -EACCES;
1439         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1440                 return -EFAULT;
1441         if (cmd.flags)
1442                 return -EINVAL;
1443
1444         memset(&c, 0, sizeof(c));
1445         c.common.opcode = cmd.opcode;
1446         c.common.flags = cmd.flags;
1447         c.common.nsid = cpu_to_le32(cmd.nsid);
1448         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1449         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1450         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1451         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1452         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1453         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1454         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1455         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1456
1457         if (cmd.timeout_ms)
1458                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1459
1460         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1461         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1462                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1463                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1464                         0, &cmd.result, timeout);
1465         nvme_passthru_end(ctrl, effects);
1466
1467         if (status >= 0) {
1468                 if (put_user(cmd.result, &ucmd->result))
1469                         return -EFAULT;
1470         }
1471
1472         return status;
1473 }
1474
1475 /*
1476  * Issue ioctl requests on the first available path.  Note that unlike normal
1477  * block layer requests we will not retry failed request on another controller.
1478  */
1479 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1480                 struct nvme_ns_head **head, int *srcu_idx)
1481 {
1482 #ifdef CONFIG_NVME_MULTIPATH
1483         if (disk->fops == &nvme_ns_head_ops) {
1484                 struct nvme_ns *ns;
1485
1486                 *head = disk->private_data;
1487                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1488                 ns = nvme_find_path(*head);
1489                 if (!ns)
1490                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1491                 return ns;
1492         }
1493 #endif
1494         *head = NULL;
1495         *srcu_idx = -1;
1496         return disk->private_data;
1497 }
1498
1499 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1500 {
1501         if (head)
1502                 srcu_read_unlock(&head->srcu, idx);
1503 }
1504
1505 static bool is_ctrl_ioctl(unsigned int cmd)
1506 {
1507         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1508                 return true;
1509         if (is_sed_ioctl(cmd))
1510                 return true;
1511         return false;
1512 }
1513
1514 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1515                                   void __user *argp,
1516                                   struct nvme_ns_head *head,
1517                                   int srcu_idx)
1518 {
1519         struct nvme_ctrl *ctrl = ns->ctrl;
1520         int ret;
1521
1522         nvme_get_ctrl(ns->ctrl);
1523         nvme_put_ns_from_disk(head, srcu_idx);
1524
1525         switch (cmd) {
1526         case NVME_IOCTL_ADMIN_CMD:
1527                 ret = nvme_user_cmd(ctrl, NULL, argp);
1528                 break;
1529         case NVME_IOCTL_ADMIN64_CMD:
1530                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1531                 break;
1532         default:
1533                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1534                 break;
1535         }
1536         nvme_put_ctrl(ctrl);
1537         return ret;
1538 }
1539
1540 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1541                 unsigned int cmd, unsigned long arg)
1542 {
1543         struct nvme_ns_head *head = NULL;
1544         void __user *argp = (void __user *)arg;
1545         struct nvme_ns *ns;
1546         int srcu_idx, ret;
1547
1548         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1549         if (unlikely(!ns))
1550                 return -EWOULDBLOCK;
1551
1552         /*
1553          * Handle ioctls that apply to the controller instead of the namespace
1554          * seperately and drop the ns SRCU reference early.  This avoids a
1555          * deadlock when deleting namespaces using the passthrough interface.
1556          */
1557         if (is_ctrl_ioctl(cmd))
1558                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1559
1560         switch (cmd) {
1561         case NVME_IOCTL_ID:
1562                 force_successful_syscall_return();
1563                 ret = ns->head->ns_id;
1564                 break;
1565         case NVME_IOCTL_IO_CMD:
1566                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1567                 break;
1568         case NVME_IOCTL_SUBMIT_IO:
1569                 ret = nvme_submit_io(ns, argp);
1570                 break;
1571         case NVME_IOCTL_IO64_CMD:
1572                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1573                 break;
1574         default:
1575                 if (ns->ndev)
1576                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1577                 else
1578                         ret = -ENOTTY;
1579         }
1580
1581         nvme_put_ns_from_disk(head, srcu_idx);
1582         return ret;
1583 }
1584
1585 static int nvme_open(struct block_device *bdev, fmode_t mode)
1586 {
1587         struct nvme_ns *ns = bdev->bd_disk->private_data;
1588
1589 #ifdef CONFIG_NVME_MULTIPATH
1590         /* should never be called due to GENHD_FL_HIDDEN */
1591         if (WARN_ON_ONCE(ns->head->disk))
1592                 goto fail;
1593 #endif
1594         if (!kref_get_unless_zero(&ns->kref))
1595                 goto fail;
1596         if (!try_module_get(ns->ctrl->ops->module))
1597                 goto fail_put_ns;
1598
1599         return 0;
1600
1601 fail_put_ns:
1602         nvme_put_ns(ns);
1603 fail:
1604         return -ENXIO;
1605 }
1606
1607 static void nvme_release(struct gendisk *disk, fmode_t mode)
1608 {
1609         struct nvme_ns *ns = disk->private_data;
1610
1611         module_put(ns->ctrl->ops->module);
1612         nvme_put_ns(ns);
1613 }
1614
1615 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1616 {
1617         /* some standard values */
1618         geo->heads = 1 << 6;
1619         geo->sectors = 1 << 5;
1620         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1621         return 0;
1622 }
1623
1624 #ifdef CONFIG_BLK_DEV_INTEGRITY
1625 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1626 {
1627         struct blk_integrity integrity;
1628
1629         memset(&integrity, 0, sizeof(integrity));
1630         switch (pi_type) {
1631         case NVME_NS_DPS_PI_TYPE3:
1632                 integrity.profile = &t10_pi_type3_crc;
1633                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1634                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1635                 break;
1636         case NVME_NS_DPS_PI_TYPE1:
1637         case NVME_NS_DPS_PI_TYPE2:
1638                 integrity.profile = &t10_pi_type1_crc;
1639                 integrity.tag_size = sizeof(u16);
1640                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1641                 break;
1642         default:
1643                 integrity.profile = NULL;
1644                 break;
1645         }
1646         integrity.tuple_size = ms;
1647         blk_integrity_register(disk, &integrity);
1648         blk_queue_max_integrity_segments(disk->queue, 1);
1649 }
1650 #else
1651 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1652 {
1653 }
1654 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1655
1656 static void nvme_set_chunk_size(struct nvme_ns *ns)
1657 {
1658         u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1659         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1660 }
1661
1662 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1663 {
1664         struct nvme_ctrl *ctrl = ns->ctrl;
1665         struct request_queue *queue = disk->queue;
1666         u32 size = queue_logical_block_size(queue);
1667
1668         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1669                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1670                 return;
1671         }
1672
1673         if (ctrl->nr_streams && ns->sws && ns->sgs)
1674                 size *= ns->sws * ns->sgs;
1675
1676         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1677                         NVME_DSM_MAX_RANGES);
1678
1679         queue->limits.discard_alignment = 0;
1680         queue->limits.discard_granularity = size;
1681
1682         /* If discard is already enabled, don't reset queue limits */
1683         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1684                 return;
1685
1686         blk_queue_max_discard_sectors(queue, UINT_MAX);
1687         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1688
1689         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1690                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1691 }
1692
1693 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1694 {
1695         u64 max_blocks;
1696
1697         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1698             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1699                 return;
1700         /*
1701          * Even though NVMe spec explicitly states that MDTS is not
1702          * applicable to the write-zeroes:- "The restriction does not apply to
1703          * commands that do not transfer data between the host and the
1704          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1705          * In order to be more cautious use controller's max_hw_sectors value
1706          * to configure the maximum sectors for the write-zeroes which is
1707          * configured based on the controller's MDTS field in the
1708          * nvme_init_identify() if available.
1709          */
1710         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1711                 max_blocks = (u64)USHRT_MAX + 1;
1712         else
1713                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1714
1715         blk_queue_max_write_zeroes_sectors(disk->queue,
1716                                            nvme_lba_to_sect(ns, max_blocks));
1717 }
1718
1719 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1720                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1721 {
1722         int ret = 0;
1723
1724         memset(ids, 0, sizeof(*ids));
1725
1726         if (ctrl->vs >= NVME_VS(1, 1, 0))
1727                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1728         if (ctrl->vs >= NVME_VS(1, 2, 0))
1729                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1730         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1731                  /* Don't treat error as fatal we potentially
1732                   * already have a NGUID or EUI-64
1733                   */
1734                 ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1735                 if (ret)
1736                         dev_warn(ctrl->device,
1737                                  "Identify Descriptors failed (%d)\n", ret);
1738                 if (ret > 0)
1739                         ret = 0;
1740         }
1741         return ret;
1742 }
1743
1744 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1745 {
1746         return !uuid_is_null(&ids->uuid) ||
1747                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1748                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1749 }
1750
1751 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1752 {
1753         return uuid_equal(&a->uuid, &b->uuid) &&
1754                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1755                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1756 }
1757
1758 static void nvme_update_disk_info(struct gendisk *disk,
1759                 struct nvme_ns *ns, struct nvme_id_ns *id)
1760 {
1761         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1762         unsigned short bs = 1 << ns->lba_shift;
1763         u32 atomic_bs, phys_bs, io_opt;
1764
1765         if (ns->lba_shift > PAGE_SHIFT) {
1766                 /* unsupported block size, set capacity to 0 later */
1767                 bs = (1 << 9);
1768         }
1769         blk_mq_freeze_queue(disk->queue);
1770         blk_integrity_unregister(disk);
1771
1772         if (id->nabo == 0) {
1773                 /*
1774                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1775                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1776                  * 0 then AWUPF must be used instead.
1777                  */
1778                 if (id->nsfeat & (1 << 1) && id->nawupf)
1779                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1780                 else
1781                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1782         } else {
1783                 atomic_bs = bs;
1784         }
1785         phys_bs = bs;
1786         io_opt = bs;
1787         if (id->nsfeat & (1 << 4)) {
1788                 /* NPWG = Namespace Preferred Write Granularity */
1789                 phys_bs *= 1 + le16_to_cpu(id->npwg);
1790                 /* NOWS = Namespace Optimal Write Size */
1791                 io_opt *= 1 + le16_to_cpu(id->nows);
1792         }
1793
1794         blk_queue_logical_block_size(disk->queue, bs);
1795         /*
1796          * Linux filesystems assume writing a single physical block is
1797          * an atomic operation. Hence limit the physical block size to the
1798          * value of the Atomic Write Unit Power Fail parameter.
1799          */
1800         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1801         blk_queue_io_min(disk->queue, phys_bs);
1802         blk_queue_io_opt(disk->queue, io_opt);
1803
1804         if (ns->ms && !ns->ext &&
1805             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1806                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1807         if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1808             ns->lba_shift > PAGE_SHIFT)
1809                 capacity = 0;
1810
1811         set_capacity(disk, capacity);
1812
1813         nvme_config_discard(disk, ns);
1814         nvme_config_write_zeroes(disk, ns);
1815
1816         if (id->nsattr & (1 << 0))
1817                 set_disk_ro(disk, true);
1818         else
1819                 set_disk_ro(disk, false);
1820
1821         blk_mq_unfreeze_queue(disk->queue);
1822 }
1823
1824 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1825 {
1826         struct nvme_ns *ns = disk->private_data;
1827
1828         /*
1829          * If identify namespace failed, use default 512 byte block size so
1830          * block layer can use before failing read/write for 0 capacity.
1831          */
1832         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1833         if (ns->lba_shift == 0)
1834                 ns->lba_shift = 9;
1835         ns->noiob = le16_to_cpu(id->noiob);
1836         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1837         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1838         /* the PI implementation requires metadata equal t10 pi tuple size */
1839         if (ns->ms == sizeof(struct t10_pi_tuple))
1840                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1841         else
1842                 ns->pi_type = 0;
1843
1844         if (ns->noiob)
1845                 nvme_set_chunk_size(ns);
1846         nvme_update_disk_info(disk, ns, id);
1847 #ifdef CONFIG_NVME_MULTIPATH
1848         if (ns->head->disk) {
1849                 nvme_update_disk_info(ns->head->disk, ns, id);
1850                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1851                 revalidate_disk(ns->head->disk);
1852         }
1853 #endif
1854 }
1855
1856 static int nvme_revalidate_disk(struct gendisk *disk)
1857 {
1858         struct nvme_ns *ns = disk->private_data;
1859         struct nvme_ctrl *ctrl = ns->ctrl;
1860         struct nvme_id_ns *id;
1861         struct nvme_ns_ids ids;
1862         int ret = 0;
1863
1864         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1865                 set_capacity(disk, 0);
1866                 return -ENODEV;
1867         }
1868
1869         ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1870         if (ret)
1871                 goto out;
1872
1873         if (id->ncap == 0) {
1874                 ret = -ENODEV;
1875                 goto free_id;
1876         }
1877
1878         __nvme_revalidate_disk(disk, id);
1879         ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1880         if (ret)
1881                 goto free_id;
1882
1883         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1884                 dev_err(ctrl->device,
1885                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1886                 ret = -ENODEV;
1887         }
1888
1889 free_id:
1890         kfree(id);
1891 out:
1892         /*
1893          * Only fail the function if we got a fatal error back from the
1894          * device, otherwise ignore the error and just move on.
1895          */
1896         if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1897                 ret = 0;
1898         else if (ret > 0)
1899                 ret = blk_status_to_errno(nvme_error_status(ret));
1900         return ret;
1901 }
1902
1903 static char nvme_pr_type(enum pr_type type)
1904 {
1905         switch (type) {
1906         case PR_WRITE_EXCLUSIVE:
1907                 return 1;
1908         case PR_EXCLUSIVE_ACCESS:
1909                 return 2;
1910         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1911                 return 3;
1912         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1913                 return 4;
1914         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1915                 return 5;
1916         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1917                 return 6;
1918         default:
1919                 return 0;
1920         }
1921 };
1922
1923 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1924                                 u64 key, u64 sa_key, u8 op)
1925 {
1926         struct nvme_ns_head *head = NULL;
1927         struct nvme_ns *ns;
1928         struct nvme_command c;
1929         int srcu_idx, ret;
1930         u8 data[16] = { 0, };
1931
1932         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1933         if (unlikely(!ns))
1934                 return -EWOULDBLOCK;
1935
1936         put_unaligned_le64(key, &data[0]);
1937         put_unaligned_le64(sa_key, &data[8]);
1938
1939         memset(&c, 0, sizeof(c));
1940         c.common.opcode = op;
1941         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1942         c.common.cdw10 = cpu_to_le32(cdw10);
1943
1944         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1945         nvme_put_ns_from_disk(head, srcu_idx);
1946         return ret;
1947 }
1948
1949 static int nvme_pr_register(struct block_device *bdev, u64 old,
1950                 u64 new, unsigned flags)
1951 {
1952         u32 cdw10;
1953
1954         if (flags & ~PR_FL_IGNORE_KEY)
1955                 return -EOPNOTSUPP;
1956
1957         cdw10 = old ? 2 : 0;
1958         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1959         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1960         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1961 }
1962
1963 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1964                 enum pr_type type, unsigned flags)
1965 {
1966         u32 cdw10;
1967
1968         if (flags & ~PR_FL_IGNORE_KEY)
1969                 return -EOPNOTSUPP;
1970
1971         cdw10 = nvme_pr_type(type) << 8;
1972         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1973         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1974 }
1975
1976 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1977                 enum pr_type type, bool abort)
1978 {
1979         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1980         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1981 }
1982
1983 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1984 {
1985         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1986         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1987 }
1988
1989 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1990 {
1991         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1992         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1993 }
1994
1995 static const struct pr_ops nvme_pr_ops = {
1996         .pr_register    = nvme_pr_register,
1997         .pr_reserve     = nvme_pr_reserve,
1998         .pr_release     = nvme_pr_release,
1999         .pr_preempt     = nvme_pr_preempt,
2000         .pr_clear       = nvme_pr_clear,
2001 };
2002
2003 #ifdef CONFIG_BLK_SED_OPAL
2004 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2005                 bool send)
2006 {
2007         struct nvme_ctrl *ctrl = data;
2008         struct nvme_command cmd;
2009
2010         memset(&cmd, 0, sizeof(cmd));
2011         if (send)
2012                 cmd.common.opcode = nvme_admin_security_send;
2013         else
2014                 cmd.common.opcode = nvme_admin_security_recv;
2015         cmd.common.nsid = 0;
2016         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2017         cmd.common.cdw11 = cpu_to_le32(len);
2018
2019         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2020                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2021 }
2022 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2023 #endif /* CONFIG_BLK_SED_OPAL */
2024
2025 static const struct block_device_operations nvme_fops = {
2026         .owner          = THIS_MODULE,
2027         .ioctl          = nvme_ioctl,
2028         .compat_ioctl   = nvme_ioctl,
2029         .open           = nvme_open,
2030         .release        = nvme_release,
2031         .getgeo         = nvme_getgeo,
2032         .revalidate_disk= nvme_revalidate_disk,
2033         .pr_ops         = &nvme_pr_ops,
2034 };
2035
2036 #ifdef CONFIG_NVME_MULTIPATH
2037 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2038 {
2039         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2040
2041         if (!kref_get_unless_zero(&head->ref))
2042                 return -ENXIO;
2043         return 0;
2044 }
2045
2046 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2047 {
2048         nvme_put_ns_head(disk->private_data);
2049 }
2050
2051 const struct block_device_operations nvme_ns_head_ops = {
2052         .owner          = THIS_MODULE,
2053         .open           = nvme_ns_head_open,
2054         .release        = nvme_ns_head_release,
2055         .ioctl          = nvme_ioctl,
2056         .compat_ioctl   = nvme_ioctl,
2057         .getgeo         = nvme_getgeo,
2058         .pr_ops         = &nvme_pr_ops,
2059 };
2060 #endif /* CONFIG_NVME_MULTIPATH */
2061
2062 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2063 {
2064         unsigned long timeout =
2065                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2066         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2067         int ret;
2068
2069         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2070                 if (csts == ~0)
2071                         return -ENODEV;
2072                 if ((csts & NVME_CSTS_RDY) == bit)
2073                         break;
2074
2075                 msleep(100);
2076                 if (fatal_signal_pending(current))
2077                         return -EINTR;
2078                 if (time_after(jiffies, timeout)) {
2079                         dev_err(ctrl->device,
2080                                 "Device not ready; aborting %s\n", enabled ?
2081                                                 "initialisation" : "reset");
2082                         return -ENODEV;
2083                 }
2084         }
2085
2086         return ret;
2087 }
2088
2089 /*
2090  * If the device has been passed off to us in an enabled state, just clear
2091  * the enabled bit.  The spec says we should set the 'shutdown notification
2092  * bits', but doing so may cause the device to complete commands to the
2093  * admin queue ... and we don't know what memory that might be pointing at!
2094  */
2095 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2096 {
2097         int ret;
2098
2099         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2100         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2101
2102         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2103         if (ret)
2104                 return ret;
2105
2106         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2107                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2108
2109         return nvme_wait_ready(ctrl, ctrl->cap, false);
2110 }
2111 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2112
2113 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2114 {
2115         /*
2116          * Default to a 4K page size, with the intention to update this
2117          * path in the future to accomodate architectures with differing
2118          * kernel and IO page sizes.
2119          */
2120         unsigned dev_page_min, page_shift = 12;
2121         int ret;
2122
2123         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2124         if (ret) {
2125                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2126                 return ret;
2127         }
2128         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2129
2130         if (page_shift < dev_page_min) {
2131                 dev_err(ctrl->device,
2132                         "Minimum device page size %u too large for host (%u)\n",
2133                         1 << dev_page_min, 1 << page_shift);
2134                 return -ENODEV;
2135         }
2136
2137         ctrl->page_size = 1 << page_shift;
2138
2139         ctrl->ctrl_config = NVME_CC_CSS_NVM;
2140         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2141         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2142         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2143         ctrl->ctrl_config |= NVME_CC_ENABLE;
2144
2145         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2146         if (ret)
2147                 return ret;
2148         return nvme_wait_ready(ctrl, ctrl->cap, true);
2149 }
2150 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2151
2152 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2153 {
2154         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2155         u32 csts;
2156         int ret;
2157
2158         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2159         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2160
2161         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2162         if (ret)
2163                 return ret;
2164
2165         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2166                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2167                         break;
2168
2169                 msleep(100);
2170                 if (fatal_signal_pending(current))
2171                         return -EINTR;
2172                 if (time_after(jiffies, timeout)) {
2173                         dev_err(ctrl->device,
2174                                 "Device shutdown incomplete; abort shutdown\n");
2175                         return -ENODEV;
2176                 }
2177         }
2178
2179         return ret;
2180 }
2181 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2182
2183 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2184                 struct request_queue *q)
2185 {
2186         bool vwc = false;
2187
2188         if (ctrl->max_hw_sectors) {
2189                 u32 max_segments =
2190                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2191
2192                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2193                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2194                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2195         }
2196         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2197             is_power_of_2(ctrl->max_hw_sectors))
2198                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2199         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2200         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2201                 vwc = true;
2202         blk_queue_write_cache(q, vwc, vwc);
2203 }
2204
2205 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2206 {
2207         __le64 ts;
2208         int ret;
2209
2210         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2211                 return 0;
2212
2213         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2214         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2215                         NULL);
2216         if (ret)
2217                 dev_warn_once(ctrl->device,
2218                         "could not set timestamp (%d)\n", ret);
2219         return ret;
2220 }
2221
2222 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2223 {
2224         struct nvme_feat_host_behavior *host;
2225         int ret;
2226
2227         /* Don't bother enabling the feature if retry delay is not reported */
2228         if (!ctrl->crdt[0])
2229                 return 0;
2230
2231         host = kzalloc(sizeof(*host), GFP_KERNEL);
2232         if (!host)
2233                 return 0;
2234
2235         host->acre = NVME_ENABLE_ACRE;
2236         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2237                                 host, sizeof(*host), NULL);
2238         kfree(host);
2239         return ret;
2240 }
2241
2242 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2243 {
2244         /*
2245          * APST (Autonomous Power State Transition) lets us program a
2246          * table of power state transitions that the controller will
2247          * perform automatically.  We configure it with a simple
2248          * heuristic: we are willing to spend at most 2% of the time
2249          * transitioning between power states.  Therefore, when running
2250          * in any given state, we will enter the next lower-power
2251          * non-operational state after waiting 50 * (enlat + exlat)
2252          * microseconds, as long as that state's exit latency is under
2253          * the requested maximum latency.
2254          *
2255          * We will not autonomously enter any non-operational state for
2256          * which the total latency exceeds ps_max_latency_us.  Users
2257          * can set ps_max_latency_us to zero to turn off APST.
2258          */
2259
2260         unsigned apste;
2261         struct nvme_feat_auto_pst *table;
2262         u64 max_lat_us = 0;
2263         int max_ps = -1;
2264         int ret;
2265
2266         /*
2267          * If APST isn't supported or if we haven't been initialized yet,
2268          * then don't do anything.
2269          */
2270         if (!ctrl->apsta)
2271                 return 0;
2272
2273         if (ctrl->npss > 31) {
2274                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2275                 return 0;
2276         }
2277
2278         table = kzalloc(sizeof(*table), GFP_KERNEL);
2279         if (!table)
2280                 return 0;
2281
2282         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2283                 /* Turn off APST. */
2284                 apste = 0;
2285                 dev_dbg(ctrl->device, "APST disabled\n");
2286         } else {
2287                 __le64 target = cpu_to_le64(0);
2288                 int state;
2289
2290                 /*
2291                  * Walk through all states from lowest- to highest-power.
2292                  * According to the spec, lower-numbered states use more
2293                  * power.  NPSS, despite the name, is the index of the
2294                  * lowest-power state, not the number of states.
2295                  */
2296                 for (state = (int)ctrl->npss; state >= 0; state--) {
2297                         u64 total_latency_us, exit_latency_us, transition_ms;
2298
2299                         if (target)
2300                                 table->entries[state] = target;
2301
2302                         /*
2303                          * Don't allow transitions to the deepest state
2304                          * if it's quirked off.
2305                          */
2306                         if (state == ctrl->npss &&
2307                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2308                                 continue;
2309
2310                         /*
2311                          * Is this state a useful non-operational state for
2312                          * higher-power states to autonomously transition to?
2313                          */
2314                         if (!(ctrl->psd[state].flags &
2315                               NVME_PS_FLAGS_NON_OP_STATE))
2316                                 continue;
2317
2318                         exit_latency_us =
2319                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2320                         if (exit_latency_us > ctrl->ps_max_latency_us)
2321                                 continue;
2322
2323                         total_latency_us =
2324                                 exit_latency_us +
2325                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2326
2327                         /*
2328                          * This state is good.  Use it as the APST idle
2329                          * target for higher power states.
2330                          */
2331                         transition_ms = total_latency_us + 19;
2332                         do_div(transition_ms, 20);
2333                         if (transition_ms > (1 << 24) - 1)
2334                                 transition_ms = (1 << 24) - 1;
2335
2336                         target = cpu_to_le64((state << 3) |
2337                                              (transition_ms << 8));
2338
2339                         if (max_ps == -1)
2340                                 max_ps = state;
2341
2342                         if (total_latency_us > max_lat_us)
2343                                 max_lat_us = total_latency_us;
2344                 }
2345
2346                 apste = 1;
2347
2348                 if (max_ps == -1) {
2349                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2350                 } else {
2351                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2352                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2353                 }
2354         }
2355
2356         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2357                                 table, sizeof(*table), NULL);
2358         if (ret)
2359                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2360
2361         kfree(table);
2362         return ret;
2363 }
2364
2365 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2366 {
2367         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2368         u64 latency;
2369
2370         switch (val) {
2371         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2372         case PM_QOS_LATENCY_ANY:
2373                 latency = U64_MAX;
2374                 break;
2375
2376         default:
2377                 latency = val;
2378         }
2379
2380         if (ctrl->ps_max_latency_us != latency) {
2381                 ctrl->ps_max_latency_us = latency;
2382                 nvme_configure_apst(ctrl);
2383         }
2384 }
2385
2386 struct nvme_core_quirk_entry {
2387         /*
2388          * NVMe model and firmware strings are padded with spaces.  For
2389          * simplicity, strings in the quirk table are padded with NULLs
2390          * instead.
2391          */
2392         u16 vid;
2393         const char *mn;
2394         const char *fr;
2395         unsigned long quirks;
2396 };
2397
2398 static const struct nvme_core_quirk_entry core_quirks[] = {
2399         {
2400                 /*
2401                  * This Toshiba device seems to die using any APST states.  See:
2402                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2403                  */
2404                 .vid = 0x1179,
2405                 .mn = "THNSF5256GPUK TOSHIBA",
2406                 .quirks = NVME_QUIRK_NO_APST,
2407         },
2408         {
2409                 /*
2410                  * This LiteON CL1-3D*-Q11 firmware version has a race
2411                  * condition associated with actions related to suspend to idle
2412                  * LiteON has resolved the problem in future firmware
2413                  */
2414                 .vid = 0x14a4,
2415                 .fr = "22301111",
2416                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2417         },
2418         {
2419                 /*
2420                  * This Kingston E8FK11.T firmware version has no interrupt
2421                  * after resume with actions related to suspend to idle
2422                  * https://bugzilla.kernel.org/show_bug.cgi?id=204887
2423                  */
2424                 .vid = 0x2646,
2425                 .fr = "E8FK11.T",
2426                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2427         }
2428 };
2429
2430 /* match is null-terminated but idstr is space-padded. */
2431 static bool string_matches(const char *idstr, const char *match, size_t len)
2432 {
2433         size_t matchlen;
2434
2435         if (!match)
2436                 return true;
2437
2438         matchlen = strlen(match);
2439         WARN_ON_ONCE(matchlen > len);
2440
2441         if (memcmp(idstr, match, matchlen))
2442                 return false;
2443
2444         for (; matchlen < len; matchlen++)
2445                 if (idstr[matchlen] != ' ')
2446                         return false;
2447
2448         return true;
2449 }
2450
2451 static bool quirk_matches(const struct nvme_id_ctrl *id,
2452                           const struct nvme_core_quirk_entry *q)
2453 {
2454         return q->vid == le16_to_cpu(id->vid) &&
2455                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2456                 string_matches(id->fr, q->fr, sizeof(id->fr));
2457 }
2458
2459 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2460                 struct nvme_id_ctrl *id)
2461 {
2462         size_t nqnlen;
2463         int off;
2464
2465         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2466                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2467                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2468                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2469                         return;
2470                 }
2471
2472                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2473                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2474         }
2475
2476         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2477         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2478                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2479                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2480         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2481         off += sizeof(id->sn);
2482         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2483         off += sizeof(id->mn);
2484         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2485 }
2486
2487 static void nvme_release_subsystem(struct device *dev)
2488 {
2489         struct nvme_subsystem *subsys =
2490                 container_of(dev, struct nvme_subsystem, dev);
2491
2492         if (subsys->instance >= 0)
2493                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2494         kfree(subsys);
2495 }
2496
2497 static void nvme_destroy_subsystem(struct kref *ref)
2498 {
2499         struct nvme_subsystem *subsys =
2500                         container_of(ref, struct nvme_subsystem, ref);
2501
2502         mutex_lock(&nvme_subsystems_lock);
2503         list_del(&subsys->entry);
2504         mutex_unlock(&nvme_subsystems_lock);
2505
2506         ida_destroy(&subsys->ns_ida);
2507         device_del(&subsys->dev);
2508         put_device(&subsys->dev);
2509 }
2510
2511 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2512 {
2513         kref_put(&subsys->ref, nvme_destroy_subsystem);
2514 }
2515
2516 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2517 {
2518         struct nvme_subsystem *subsys;
2519
2520         lockdep_assert_held(&nvme_subsystems_lock);
2521
2522         /*
2523          * Fail matches for discovery subsystems. This results
2524          * in each discovery controller bound to a unique subsystem.
2525          * This avoids issues with validating controller values
2526          * that can only be true when there is a single unique subsystem.
2527          * There may be multiple and completely independent entities
2528          * that provide discovery controllers.
2529          */
2530         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2531                 return NULL;
2532
2533         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2534                 if (strcmp(subsys->subnqn, subsysnqn))
2535                         continue;
2536                 if (!kref_get_unless_zero(&subsys->ref))
2537                         continue;
2538                 return subsys;
2539         }
2540
2541         return NULL;
2542 }
2543
2544 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2545         struct device_attribute subsys_attr_##_name = \
2546                 __ATTR(_name, _mode, _show, NULL)
2547
2548 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2549                                     struct device_attribute *attr,
2550                                     char *buf)
2551 {
2552         struct nvme_subsystem *subsys =
2553                 container_of(dev, struct nvme_subsystem, dev);
2554
2555         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2556 }
2557 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2558
2559 #define nvme_subsys_show_str_function(field)                            \
2560 static ssize_t subsys_##field##_show(struct device *dev,                \
2561                             struct device_attribute *attr, char *buf)   \
2562 {                                                                       \
2563         struct nvme_subsystem *subsys =                                 \
2564                 container_of(dev, struct nvme_subsystem, dev);          \
2565         return sprintf(buf, "%.*s\n",                                   \
2566                        (int)sizeof(subsys->field), subsys->field);      \
2567 }                                                                       \
2568 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2569
2570 nvme_subsys_show_str_function(model);
2571 nvme_subsys_show_str_function(serial);
2572 nvme_subsys_show_str_function(firmware_rev);
2573
2574 static struct attribute *nvme_subsys_attrs[] = {
2575         &subsys_attr_model.attr,
2576         &subsys_attr_serial.attr,
2577         &subsys_attr_firmware_rev.attr,
2578         &subsys_attr_subsysnqn.attr,
2579 #ifdef CONFIG_NVME_MULTIPATH
2580         &subsys_attr_iopolicy.attr,
2581 #endif
2582         NULL,
2583 };
2584
2585 static struct attribute_group nvme_subsys_attrs_group = {
2586         .attrs = nvme_subsys_attrs,
2587 };
2588
2589 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2590         &nvme_subsys_attrs_group,
2591         NULL,
2592 };
2593
2594 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2595                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2596 {
2597         struct nvme_ctrl *tmp;
2598
2599         lockdep_assert_held(&nvme_subsystems_lock);
2600
2601         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2602                 if (tmp->state == NVME_CTRL_DELETING ||
2603                     tmp->state == NVME_CTRL_DEAD)
2604                         continue;
2605
2606                 if (tmp->cntlid == ctrl->cntlid) {
2607                         dev_err(ctrl->device,
2608                                 "Duplicate cntlid %u with %s, rejecting\n",
2609                                 ctrl->cntlid, dev_name(tmp->device));
2610                         return false;
2611                 }
2612
2613                 if ((id->cmic & (1 << 1)) ||
2614                     (ctrl->opts && ctrl->opts->discovery_nqn))
2615                         continue;
2616
2617                 dev_err(ctrl->device,
2618                         "Subsystem does not support multiple controllers\n");
2619                 return false;
2620         }
2621
2622         return true;
2623 }
2624
2625 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2626 {
2627         struct nvme_subsystem *subsys, *found;
2628         int ret;
2629
2630         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2631         if (!subsys)
2632                 return -ENOMEM;
2633
2634         subsys->instance = -1;
2635         mutex_init(&subsys->lock);
2636         kref_init(&subsys->ref);
2637         INIT_LIST_HEAD(&subsys->ctrls);
2638         INIT_LIST_HEAD(&subsys->nsheads);
2639         nvme_init_subnqn(subsys, ctrl, id);
2640         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2641         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2642         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2643         subsys->vendor_id = le16_to_cpu(id->vid);
2644         subsys->cmic = id->cmic;
2645         subsys->awupf = le16_to_cpu(id->awupf);
2646 #ifdef CONFIG_NVME_MULTIPATH
2647         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2648 #endif
2649
2650         subsys->dev.class = nvme_subsys_class;
2651         subsys->dev.release = nvme_release_subsystem;
2652         subsys->dev.groups = nvme_subsys_attrs_groups;
2653         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2654         device_initialize(&subsys->dev);
2655
2656         mutex_lock(&nvme_subsystems_lock);
2657         found = __nvme_find_get_subsystem(subsys->subnqn);
2658         if (found) {
2659                 put_device(&subsys->dev);
2660                 subsys = found;
2661
2662                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2663                         ret = -EINVAL;
2664                         goto out_put_subsystem;
2665                 }
2666         } else {
2667                 ret = device_add(&subsys->dev);
2668                 if (ret) {
2669                         dev_err(ctrl->device,
2670                                 "failed to register subsystem device.\n");
2671                         put_device(&subsys->dev);
2672                         goto out_unlock;
2673                 }
2674                 ida_init(&subsys->ns_ida);
2675                 list_add_tail(&subsys->entry, &nvme_subsystems);
2676         }
2677
2678         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2679                                 dev_name(ctrl->device));
2680         if (ret) {
2681                 dev_err(ctrl->device,
2682                         "failed to create sysfs link from subsystem.\n");
2683                 goto out_put_subsystem;
2684         }
2685
2686         if (!found)
2687                 subsys->instance = ctrl->instance;
2688         ctrl->subsys = subsys;
2689         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2690         mutex_unlock(&nvme_subsystems_lock);
2691         return 0;
2692
2693 out_put_subsystem:
2694         nvme_put_subsystem(subsys);
2695 out_unlock:
2696         mutex_unlock(&nvme_subsystems_lock);
2697         return ret;
2698 }
2699
2700 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2701                 void *log, size_t size, u64 offset)
2702 {
2703         struct nvme_command c = { };
2704         unsigned long dwlen = size / 4 - 1;
2705
2706         c.get_log_page.opcode = nvme_admin_get_log_page;
2707         c.get_log_page.nsid = cpu_to_le32(nsid);
2708         c.get_log_page.lid = log_page;
2709         c.get_log_page.lsp = lsp;
2710         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2711         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2712         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2713         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2714
2715         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2716 }
2717
2718 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2719 {
2720         int ret;
2721
2722         if (!ctrl->effects)
2723                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2724
2725         if (!ctrl->effects)
2726                 return 0;
2727
2728         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2729                         ctrl->effects, sizeof(*ctrl->effects), 0);
2730         if (ret) {
2731                 kfree(ctrl->effects);
2732                 ctrl->effects = NULL;
2733         }
2734         return ret;
2735 }
2736
2737 /*
2738  * Initialize the cached copies of the Identify data and various controller
2739  * register in our nvme_ctrl structure.  This should be called as soon as
2740  * the admin queue is fully up and running.
2741  */
2742 int nvme_init_identify(struct nvme_ctrl *ctrl)
2743 {
2744         struct nvme_id_ctrl *id;
2745         int ret, page_shift;
2746         u32 max_hw_sectors;
2747         bool prev_apst_enabled;
2748
2749         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2750         if (ret) {
2751                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2752                 return ret;
2753         }
2754         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2755         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2756
2757         if (ctrl->vs >= NVME_VS(1, 1, 0))
2758                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2759
2760         ret = nvme_identify_ctrl(ctrl, &id);
2761         if (ret) {
2762                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2763                 return -EIO;
2764         }
2765
2766         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2767                 ret = nvme_get_effects_log(ctrl);
2768                 if (ret < 0)
2769                         goto out_free;
2770         }
2771
2772         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2773                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2774
2775         if (!ctrl->identified) {
2776                 int i;
2777
2778                 ret = nvme_init_subsystem(ctrl, id);
2779                 if (ret)
2780                         goto out_free;
2781
2782                 /*
2783                  * Check for quirks.  Quirk can depend on firmware version,
2784                  * so, in principle, the set of quirks present can change
2785                  * across a reset.  As a possible future enhancement, we
2786                  * could re-scan for quirks every time we reinitialize
2787                  * the device, but we'd have to make sure that the driver
2788                  * behaves intelligently if the quirks change.
2789                  */
2790                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2791                         if (quirk_matches(id, &core_quirks[i]))
2792                                 ctrl->quirks |= core_quirks[i].quirks;
2793                 }
2794         }
2795
2796         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2797                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2798                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2799         }
2800
2801         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2802         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2803         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2804
2805         ctrl->oacs = le16_to_cpu(id->oacs);
2806         ctrl->oncs = le16_to_cpu(id->oncs);
2807         ctrl->mtfa = le16_to_cpu(id->mtfa);
2808         ctrl->oaes = le32_to_cpu(id->oaes);
2809         ctrl->wctemp = le16_to_cpu(id->wctemp);
2810         ctrl->cctemp = le16_to_cpu(id->cctemp);
2811
2812         atomic_set(&ctrl->abort_limit, id->acl + 1);
2813         ctrl->vwc = id->vwc;
2814         if (id->mdts)
2815                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2816         else
2817                 max_hw_sectors = UINT_MAX;
2818         ctrl->max_hw_sectors =
2819                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2820
2821         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2822         ctrl->sgls = le32_to_cpu(id->sgls);
2823         ctrl->kas = le16_to_cpu(id->kas);
2824         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2825         ctrl->ctratt = le32_to_cpu(id->ctratt);
2826
2827         if (id->rtd3e) {
2828                 /* us -> s */
2829                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2830
2831                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2832                                                  shutdown_timeout, 60);
2833
2834                 if (ctrl->shutdown_timeout != shutdown_timeout)
2835                         dev_info(ctrl->device,
2836                                  "Shutdown timeout set to %u seconds\n",
2837                                  ctrl->shutdown_timeout);
2838         } else
2839                 ctrl->shutdown_timeout = shutdown_timeout;
2840
2841         ctrl->npss = id->npss;
2842         ctrl->apsta = id->apsta;
2843         prev_apst_enabled = ctrl->apst_enabled;
2844         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2845                 if (force_apst && id->apsta) {
2846                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2847                         ctrl->apst_enabled = true;
2848                 } else {
2849                         ctrl->apst_enabled = false;
2850                 }
2851         } else {
2852                 ctrl->apst_enabled = id->apsta;
2853         }
2854         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2855
2856         if (ctrl->ops->flags & NVME_F_FABRICS) {
2857                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2858                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2859                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2860                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2861
2862                 /*
2863                  * In fabrics we need to verify the cntlid matches the
2864                  * admin connect
2865                  */
2866                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2867                         dev_err(ctrl->device,
2868                                 "Mismatching cntlid: Connect %u vs Identify "
2869                                 "%u, rejecting\n",
2870                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
2871                         ret = -EINVAL;
2872                         goto out_free;
2873                 }
2874
2875                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2876                         dev_err(ctrl->device,
2877                                 "keep-alive support is mandatory for fabrics\n");
2878                         ret = -EINVAL;
2879                         goto out_free;
2880                 }
2881         } else {
2882                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2883                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2884                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2885                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2886         }
2887
2888         ret = nvme_mpath_init(ctrl, id);
2889         kfree(id);
2890
2891         if (ret < 0)
2892                 return ret;
2893
2894         if (ctrl->apst_enabled && !prev_apst_enabled)
2895                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2896         else if (!ctrl->apst_enabled && prev_apst_enabled)
2897                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2898
2899         ret = nvme_configure_apst(ctrl);
2900         if (ret < 0)
2901                 return ret;
2902         
2903         ret = nvme_configure_timestamp(ctrl);
2904         if (ret < 0)
2905                 return ret;
2906
2907         ret = nvme_configure_directives(ctrl);
2908         if (ret < 0)
2909                 return ret;
2910
2911         ret = nvme_configure_acre(ctrl);
2912         if (ret < 0)
2913                 return ret;
2914
2915         if (!ctrl->identified)
2916                 nvme_hwmon_init(ctrl);
2917
2918         ctrl->identified = true;
2919
2920         return 0;
2921
2922 out_free:
2923         kfree(id);
2924         return ret;
2925 }
2926 EXPORT_SYMBOL_GPL(nvme_init_identify);
2927
2928 static int nvme_dev_open(struct inode *inode, struct file *file)
2929 {
2930         struct nvme_ctrl *ctrl =
2931                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2932
2933         switch (ctrl->state) {
2934         case NVME_CTRL_LIVE:
2935                 break;
2936         default:
2937                 return -EWOULDBLOCK;
2938         }
2939
2940         file->private_data = ctrl;
2941         return 0;
2942 }
2943
2944 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2945 {
2946         struct nvme_ns *ns;
2947         int ret;
2948
2949         down_read(&ctrl->namespaces_rwsem);
2950         if (list_empty(&ctrl->namespaces)) {
2951                 ret = -ENOTTY;
2952                 goto out_unlock;
2953         }
2954
2955         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2956         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2957                 dev_warn(ctrl->device,
2958                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2959                 ret = -EINVAL;
2960                 goto out_unlock;
2961         }
2962
2963         dev_warn(ctrl->device,
2964                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2965         kref_get(&ns->kref);
2966         up_read(&ctrl->namespaces_rwsem);
2967
2968         ret = nvme_user_cmd(ctrl, ns, argp);
2969         nvme_put_ns(ns);
2970         return ret;
2971
2972 out_unlock:
2973         up_read(&ctrl->namespaces_rwsem);
2974         return ret;
2975 }
2976
2977 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2978                 unsigned long arg)
2979 {
2980         struct nvme_ctrl *ctrl = file->private_data;
2981         void __user *argp = (void __user *)arg;
2982
2983         switch (cmd) {
2984         case NVME_IOCTL_ADMIN_CMD:
2985                 return nvme_user_cmd(ctrl, NULL, argp);
2986         case NVME_IOCTL_ADMIN64_CMD:
2987                 return nvme_user_cmd64(ctrl, NULL, argp);
2988         case NVME_IOCTL_IO_CMD:
2989                 return nvme_dev_user_cmd(ctrl, argp);
2990         case NVME_IOCTL_RESET:
2991                 dev_warn(ctrl->device, "resetting controller\n");
2992                 return nvme_reset_ctrl_sync(ctrl);
2993         case NVME_IOCTL_SUBSYS_RESET:
2994                 return nvme_reset_subsystem(ctrl);
2995         case NVME_IOCTL_RESCAN:
2996                 nvme_queue_scan(ctrl);
2997                 return 0;
2998         default:
2999                 return -ENOTTY;
3000         }
3001 }
3002
3003 static const struct file_operations nvme_dev_fops = {
3004         .owner          = THIS_MODULE,
3005         .open           = nvme_dev_open,
3006         .unlocked_ioctl = nvme_dev_ioctl,
3007         .compat_ioctl   = nvme_dev_ioctl,
3008 };
3009
3010 static ssize_t nvme_sysfs_reset(struct device *dev,
3011                                 struct device_attribute *attr, const char *buf,
3012                                 size_t count)
3013 {
3014         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3015         int ret;
3016
3017         ret = nvme_reset_ctrl_sync(ctrl);
3018         if (ret < 0)
3019                 return ret;
3020         return count;
3021 }
3022 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3023
3024 static ssize_t nvme_sysfs_rescan(struct device *dev,
3025                                 struct device_attribute *attr, const char *buf,
3026                                 size_t count)
3027 {
3028         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3029
3030         nvme_queue_scan(ctrl);
3031         return count;
3032 }
3033 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3034
3035 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3036 {
3037         struct gendisk *disk = dev_to_disk(dev);
3038
3039         if (disk->fops == &nvme_fops)
3040                 return nvme_get_ns_from_dev(dev)->head;
3041         else
3042                 return disk->private_data;
3043 }
3044
3045 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3046                 char *buf)
3047 {
3048         struct nvme_ns_head *head = dev_to_ns_head(dev);
3049         struct nvme_ns_ids *ids = &head->ids;
3050         struct nvme_subsystem *subsys = head->subsys;
3051         int serial_len = sizeof(subsys->serial);
3052         int model_len = sizeof(subsys->model);
3053
3054         if (!uuid_is_null(&ids->uuid))
3055                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3056
3057         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3058                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3059
3060         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3061                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3062
3063         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3064                                   subsys->serial[serial_len - 1] == '\0'))
3065                 serial_len--;
3066         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3067                                  subsys->model[model_len - 1] == '\0'))
3068                 model_len--;
3069
3070         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3071                 serial_len, subsys->serial, model_len, subsys->model,
3072                 head->ns_id);
3073 }
3074 static DEVICE_ATTR_RO(wwid);
3075
3076 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3077                 char *buf)
3078 {
3079         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3080 }
3081 static DEVICE_ATTR_RO(nguid);
3082
3083 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3084                 char *buf)
3085 {
3086         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3087
3088         /* For backward compatibility expose the NGUID to userspace if
3089          * we have no UUID set
3090          */
3091         if (uuid_is_null(&ids->uuid)) {
3092                 printk_ratelimited(KERN_WARNING
3093                                    "No UUID available providing old NGUID\n");
3094                 return sprintf(buf, "%pU\n", ids->nguid);
3095         }
3096         return sprintf(buf, "%pU\n", &ids->uuid);
3097 }
3098 static DEVICE_ATTR_RO(uuid);
3099
3100 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3101                 char *buf)
3102 {
3103         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3104 }
3105 static DEVICE_ATTR_RO(eui);
3106
3107 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3108                 char *buf)
3109 {
3110         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3111 }
3112 static DEVICE_ATTR_RO(nsid);
3113
3114 static struct attribute *nvme_ns_id_attrs[] = {
3115         &dev_attr_wwid.attr,
3116         &dev_attr_uuid.attr,
3117         &dev_attr_nguid.attr,
3118         &dev_attr_eui.attr,
3119         &dev_attr_nsid.attr,
3120 #ifdef CONFIG_NVME_MULTIPATH
3121         &dev_attr_ana_grpid.attr,
3122         &dev_attr_ana_state.attr,
3123 #endif
3124         NULL,
3125 };
3126
3127 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3128                 struct attribute *a, int n)
3129 {
3130         struct device *dev = container_of(kobj, struct device, kobj);
3131         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3132
3133         if (a == &dev_attr_uuid.attr) {
3134                 if (uuid_is_null(&ids->uuid) &&
3135                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3136                         return 0;
3137         }
3138         if (a == &dev_attr_nguid.attr) {
3139                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3140                         return 0;
3141         }
3142         if (a == &dev_attr_eui.attr) {
3143                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3144                         return 0;
3145         }
3146 #ifdef CONFIG_NVME_MULTIPATH
3147         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3148                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3149                         return 0;
3150                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3151                         return 0;
3152         }
3153 #endif
3154         return a->mode;
3155 }
3156
3157 static const struct attribute_group nvme_ns_id_attr_group = {
3158         .attrs          = nvme_ns_id_attrs,
3159         .is_visible     = nvme_ns_id_attrs_are_visible,
3160 };
3161
3162 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3163         &nvme_ns_id_attr_group,
3164 #ifdef CONFIG_NVM
3165         &nvme_nvm_attr_group,
3166 #endif
3167         NULL,
3168 };
3169
3170 #define nvme_show_str_function(field)                                           \
3171 static ssize_t  field##_show(struct device *dev,                                \
3172                             struct device_attribute *attr, char *buf)           \
3173 {                                                                               \
3174         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3175         return sprintf(buf, "%.*s\n",                                           \
3176                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3177 }                                                                               \
3178 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3179
3180 nvme_show_str_function(model);
3181 nvme_show_str_function(serial);
3182 nvme_show_str_function(firmware_rev);
3183
3184 #define nvme_show_int_function(field)                                           \
3185 static ssize_t  field##_show(struct device *dev,                                \
3186                             struct device_attribute *attr, char *buf)           \
3187 {                                                                               \
3188         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3189         return sprintf(buf, "%d\n", ctrl->field);       \
3190 }                                                                               \
3191 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3192
3193 nvme_show_int_function(cntlid);
3194 nvme_show_int_function(numa_node);
3195 nvme_show_int_function(queue_count);
3196 nvme_show_int_function(sqsize);
3197
3198 static ssize_t nvme_sysfs_delete(struct device *dev,
3199                                 struct device_attribute *attr, const char *buf,
3200                                 size_t count)
3201 {
3202         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3203
3204         if (device_remove_file_self(dev, attr))
3205                 nvme_delete_ctrl_sync(ctrl);
3206         return count;
3207 }
3208 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3209
3210 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3211                                          struct device_attribute *attr,
3212                                          char *buf)
3213 {
3214         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3215
3216         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3217 }
3218 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3219
3220 static ssize_t nvme_sysfs_show_state(struct device *dev,
3221                                      struct device_attribute *attr,
3222                                      char *buf)
3223 {
3224         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3225         static const char *const state_name[] = {
3226                 [NVME_CTRL_NEW]         = "new",
3227                 [NVME_CTRL_LIVE]        = "live",
3228                 [NVME_CTRL_RESETTING]   = "resetting",
3229                 [NVME_CTRL_CONNECTING]  = "connecting",
3230                 [NVME_CTRL_DELETING]    = "deleting",
3231                 [NVME_CTRL_DEAD]        = "dead",
3232         };
3233
3234         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3235             state_name[ctrl->state])
3236                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3237
3238         return sprintf(buf, "unknown state\n");
3239 }
3240
3241 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3242
3243 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3244                                          struct device_attribute *attr,
3245                                          char *buf)
3246 {
3247         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3248
3249         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3250 }
3251 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3252
3253 static ssize_t nvme_sysfs_show_address(struct device *dev,
3254                                          struct device_attribute *attr,
3255                                          char *buf)
3256 {
3257         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3258
3259         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3260 }
3261 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3262
3263 static struct attribute *nvme_dev_attrs[] = {
3264         &dev_attr_reset_controller.attr,
3265         &dev_attr_rescan_controller.attr,
3266         &dev_attr_model.attr,
3267         &dev_attr_serial.attr,
3268         &dev_attr_firmware_rev.attr,
3269         &dev_attr_cntlid.attr,
3270         &dev_attr_delete_controller.attr,
3271         &dev_attr_transport.attr,
3272         &dev_attr_subsysnqn.attr,
3273         &dev_attr_address.attr,
3274         &dev_attr_state.attr,
3275         &dev_attr_numa_node.attr,
3276         &dev_attr_queue_count.attr,
3277         &dev_attr_sqsize.attr,
3278         NULL
3279 };
3280
3281 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3282                 struct attribute *a, int n)
3283 {
3284         struct device *dev = container_of(kobj, struct device, kobj);
3285         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3286
3287         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3288                 return 0;
3289         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3290                 return 0;
3291
3292         return a->mode;
3293 }
3294
3295 static struct attribute_group nvme_dev_attrs_group = {
3296         .attrs          = nvme_dev_attrs,
3297         .is_visible     = nvme_dev_attrs_are_visible,
3298 };
3299
3300 static const struct attribute_group *nvme_dev_attr_groups[] = {
3301         &nvme_dev_attrs_group,
3302         NULL,
3303 };
3304
3305 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3306                 unsigned nsid)
3307 {
3308         struct nvme_ns_head *h;
3309
3310         lockdep_assert_held(&subsys->lock);
3311
3312         list_for_each_entry(h, &subsys->nsheads, entry) {
3313                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3314                         return h;
3315         }
3316
3317         return NULL;
3318 }
3319
3320 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3321                 struct nvme_ns_head *new)
3322 {
3323         struct nvme_ns_head *h;
3324
3325         lockdep_assert_held(&subsys->lock);
3326
3327         list_for_each_entry(h, &subsys->nsheads, entry) {
3328                 if (nvme_ns_ids_valid(&new->ids) &&
3329                     !list_empty(&h->list) &&
3330                     nvme_ns_ids_equal(&new->ids, &h->ids))
3331                         return -EINVAL;
3332         }
3333
3334         return 0;
3335 }
3336
3337 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3338                 unsigned nsid, struct nvme_id_ns *id)
3339 {
3340         struct nvme_ns_head *head;
3341         size_t size = sizeof(*head);
3342         int ret = -ENOMEM;
3343
3344 #ifdef CONFIG_NVME_MULTIPATH
3345         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3346 #endif
3347
3348         head = kzalloc(size, GFP_KERNEL);
3349         if (!head)
3350                 goto out;
3351         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3352         if (ret < 0)
3353                 goto out_free_head;
3354         head->instance = ret;
3355         INIT_LIST_HEAD(&head->list);
3356         ret = init_srcu_struct(&head->srcu);
3357         if (ret)
3358                 goto out_ida_remove;
3359         head->subsys = ctrl->subsys;
3360         head->ns_id = nsid;
3361         kref_init(&head->ref);
3362
3363         ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3364         if (ret)
3365                 goto out_cleanup_srcu;
3366
3367         ret = __nvme_check_ids(ctrl->subsys, head);
3368         if (ret) {
3369                 dev_err(ctrl->device,
3370                         "duplicate IDs for nsid %d\n", nsid);
3371                 goto out_cleanup_srcu;
3372         }
3373
3374         ret = nvme_mpath_alloc_disk(ctrl, head);
3375         if (ret)
3376                 goto out_cleanup_srcu;
3377
3378         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3379
3380         kref_get(&ctrl->subsys->ref);
3381
3382         return head;
3383 out_cleanup_srcu:
3384         cleanup_srcu_struct(&head->srcu);
3385 out_ida_remove:
3386         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3387 out_free_head:
3388         kfree(head);
3389 out:
3390         if (ret > 0)
3391                 ret = blk_status_to_errno(nvme_error_status(ret));
3392         return ERR_PTR(ret);
3393 }
3394
3395 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3396                 struct nvme_id_ns *id)
3397 {
3398         struct nvme_ctrl *ctrl = ns->ctrl;
3399         bool is_shared = id->nmic & (1 << 0);
3400         struct nvme_ns_head *head = NULL;
3401         int ret = 0;
3402
3403         mutex_lock(&ctrl->subsys->lock);
3404         if (is_shared)
3405                 head = __nvme_find_ns_head(ctrl->subsys, nsid);
3406         if (!head) {
3407                 head = nvme_alloc_ns_head(ctrl, nsid, id);
3408                 if (IS_ERR(head)) {
3409                         ret = PTR_ERR(head);
3410                         goto out_unlock;
3411                 }
3412         } else {
3413                 struct nvme_ns_ids ids;
3414
3415                 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3416                 if (ret)
3417                         goto out_unlock;
3418
3419                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3420                         dev_err(ctrl->device,
3421                                 "IDs don't match for shared namespace %d\n",
3422                                         nsid);
3423                         ret = -EINVAL;
3424                         goto out_unlock;
3425                 }
3426         }
3427
3428         list_add_tail(&ns->siblings, &head->list);
3429         ns->head = head;
3430
3431 out_unlock:
3432         mutex_unlock(&ctrl->subsys->lock);
3433         if (ret > 0)
3434                 ret = blk_status_to_errno(nvme_error_status(ret));
3435         return ret;
3436 }
3437
3438 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3439 {
3440         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3441         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3442
3443         return nsa->head->ns_id - nsb->head->ns_id;
3444 }
3445
3446 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3447 {
3448         struct nvme_ns *ns, *ret = NULL;
3449
3450         down_read(&ctrl->namespaces_rwsem);
3451         list_for_each_entry(ns, &ctrl->namespaces, list) {
3452                 if (ns->head->ns_id == nsid) {
3453                         if (!kref_get_unless_zero(&ns->kref))
3454                                 continue;
3455                         ret = ns;
3456                         break;
3457                 }
3458                 if (ns->head->ns_id > nsid)
3459                         break;
3460         }
3461         up_read(&ctrl->namespaces_rwsem);
3462         return ret;
3463 }
3464
3465 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3466 {
3467         struct streams_directive_params s;
3468         int ret;
3469
3470         if (!ctrl->nr_streams)
3471                 return 0;
3472
3473         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3474         if (ret)
3475                 return ret;
3476
3477         ns->sws = le32_to_cpu(s.sws);
3478         ns->sgs = le16_to_cpu(s.sgs);
3479
3480         if (ns->sws) {
3481                 unsigned int bs = 1 << ns->lba_shift;
3482
3483                 blk_queue_io_min(ns->queue, bs * ns->sws);
3484                 if (ns->sgs)
3485                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3486         }
3487
3488         return 0;
3489 }
3490
3491 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3492 {
3493         struct nvme_ns *ns;
3494         struct gendisk *disk;
3495         struct nvme_id_ns *id;
3496         char disk_name[DISK_NAME_LEN];
3497         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3498
3499         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3500         if (!ns)
3501                 return -ENOMEM;
3502
3503         ns->queue = blk_mq_init_queue(ctrl->tagset);
3504         if (IS_ERR(ns->queue)) {
3505                 ret = PTR_ERR(ns->queue);
3506                 goto out_free_ns;
3507         }
3508
3509         if (ctrl->opts && ctrl->opts->data_digest)
3510                 ns->queue->backing_dev_info->capabilities
3511                         |= BDI_CAP_STABLE_WRITES;
3512
3513         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3514         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3515                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3516
3517         ns->queue->queuedata = ns;
3518         ns->ctrl = ctrl;
3519
3520         kref_init(&ns->kref);
3521         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3522
3523         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3524         nvme_set_queue_limits(ctrl, ns->queue);
3525
3526         ret = nvme_identify_ns(ctrl, nsid, &id);
3527         if (ret)
3528                 goto out_free_queue;
3529
3530         if (id->ncap == 0) {
3531                 ret = -EINVAL;
3532                 goto out_free_id;
3533         }
3534
3535         ret = nvme_init_ns_head(ns, nsid, id);
3536         if (ret)
3537                 goto out_free_id;
3538         nvme_setup_streams_ns(ctrl, ns);
3539         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3540
3541         disk = alloc_disk_node(0, node);
3542         if (!disk) {
3543                 ret = -ENOMEM;
3544                 goto out_unlink_ns;
3545         }
3546
3547         disk->fops = &nvme_fops;
3548         disk->private_data = ns;
3549         disk->queue = ns->queue;
3550         disk->flags = flags;
3551         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3552         ns->disk = disk;
3553
3554         __nvme_revalidate_disk(disk, id);
3555
3556         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3557                 ret = nvme_nvm_register(ns, disk_name, node);
3558                 if (ret) {
3559                         dev_warn(ctrl->device, "LightNVM init failure\n");
3560                         goto out_put_disk;
3561                 }
3562         }
3563
3564         down_write(&ctrl->namespaces_rwsem);
3565         list_add_tail(&ns->list, &ctrl->namespaces);
3566         up_write(&ctrl->namespaces_rwsem);
3567
3568         nvme_get_ctrl(ctrl);
3569
3570         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3571
3572         nvme_mpath_add_disk(ns, id);
3573         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3574         kfree(id);
3575
3576         return 0;
3577  out_put_disk:
3578         put_disk(ns->disk);
3579  out_unlink_ns:
3580         mutex_lock(&ctrl->subsys->lock);
3581         list_del_rcu(&ns->siblings);
3582         mutex_unlock(&ctrl->subsys->lock);
3583         nvme_put_ns_head(ns->head);
3584  out_free_id:
3585         kfree(id);
3586  out_free_queue:
3587         blk_cleanup_queue(ns->queue);
3588  out_free_ns:
3589         kfree(ns);
3590         if (ret > 0)
3591                 ret = blk_status_to_errno(nvme_error_status(ret));
3592         return ret;
3593 }
3594
3595 static void nvme_ns_remove(struct nvme_ns *ns)
3596 {
3597         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3598                 return;
3599
3600         nvme_fault_inject_fini(&ns->fault_inject);
3601
3602         mutex_lock(&ns->ctrl->subsys->lock);
3603         list_del_rcu(&ns->siblings);
3604         mutex_unlock(&ns->ctrl->subsys->lock);
3605         synchronize_rcu(); /* guarantee not available in head->list */
3606         nvme_mpath_clear_current_path(ns);
3607         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3608
3609         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3610                 del_gendisk(ns->disk);
3611                 blk_cleanup_queue(ns->queue);
3612                 if (blk_get_integrity(ns->disk))
3613                         blk_integrity_unregister(ns->disk);
3614         }
3615
3616         down_write(&ns->ctrl->namespaces_rwsem);
3617         list_del_init(&ns->list);
3618         up_write(&ns->ctrl->namespaces_rwsem);
3619
3620         nvme_mpath_check_last_path(ns);
3621         nvme_put_ns(ns);
3622 }
3623
3624 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3625 {
3626         struct nvme_ns *ns;
3627
3628         ns = nvme_find_get_ns(ctrl, nsid);
3629         if (ns) {
3630                 if (ns->disk && revalidate_disk(ns->disk))
3631                         nvme_ns_remove(ns);
3632                 nvme_put_ns(ns);
3633         } else
3634                 nvme_alloc_ns(ctrl, nsid);
3635 }
3636
3637 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3638                                         unsigned nsid)
3639 {
3640         struct nvme_ns *ns, *next;
3641         LIST_HEAD(rm_list);
3642
3643         down_write(&ctrl->namespaces_rwsem);
3644         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3645                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3646                         list_move_tail(&ns->list, &rm_list);
3647         }
3648         up_write(&ctrl->namespaces_rwsem);
3649
3650         list_for_each_entry_safe(ns, next, &rm_list, list)
3651                 nvme_ns_remove(ns);
3652
3653 }
3654
3655 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3656 {
3657         struct nvme_ns *ns;
3658         __le32 *ns_list;
3659         unsigned i, j, nsid, prev = 0;
3660         unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3661         int ret = 0;
3662
3663         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3664         if (!ns_list)
3665                 return -ENOMEM;
3666
3667         for (i = 0; i < num_lists; i++) {
3668                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3669                 if (ret)
3670                         goto free;
3671
3672                 for (j = 0; j < min(nn, 1024U); j++) {
3673                         nsid = le32_to_cpu(ns_list[j]);
3674                         if (!nsid)
3675                                 goto out;
3676
3677                         nvme_validate_ns(ctrl, nsid);
3678
3679                         while (++prev < nsid) {
3680                                 ns = nvme_find_get_ns(ctrl, prev);
3681                                 if (ns) {
3682                                         nvme_ns_remove(ns);
3683                                         nvme_put_ns(ns);
3684                                 }
3685                         }
3686                 }
3687                 nn -= j;
3688         }
3689  out:
3690         nvme_remove_invalid_namespaces(ctrl, prev);
3691  free:
3692         kfree(ns_list);
3693         return ret;
3694 }
3695
3696 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3697 {
3698         unsigned i;
3699
3700         for (i = 1; i <= nn; i++)
3701                 nvme_validate_ns(ctrl, i);
3702
3703         nvme_remove_invalid_namespaces(ctrl, nn);
3704 }
3705
3706 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3707 {
3708         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3709         __le32 *log;
3710         int error;
3711
3712         log = kzalloc(log_size, GFP_KERNEL);
3713         if (!log)
3714                 return;
3715
3716         /*
3717          * We need to read the log to clear the AEN, but we don't want to rely
3718          * on it for the changed namespace information as userspace could have
3719          * raced with us in reading the log page, which could cause us to miss
3720          * updates.
3721          */
3722         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3723                         log_size, 0);
3724         if (error)
3725                 dev_warn(ctrl->device,
3726                         "reading changed ns log failed: %d\n", error);
3727
3728         kfree(log);
3729 }
3730
3731 static void nvme_scan_work(struct work_struct *work)
3732 {
3733         struct nvme_ctrl *ctrl =
3734                 container_of(work, struct nvme_ctrl, scan_work);
3735         struct nvme_id_ctrl *id;
3736         unsigned nn;
3737
3738         /* No tagset on a live ctrl means IO queues could not created */
3739         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3740                 return;
3741
3742         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3743                 dev_info(ctrl->device, "rescanning namespaces.\n");
3744                 nvme_clear_changed_ns_log(ctrl);
3745         }
3746
3747         if (nvme_identify_ctrl(ctrl, &id))
3748                 return;
3749
3750         mutex_lock(&ctrl->scan_lock);
3751         nn = le32_to_cpu(id->nn);
3752         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3753             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3754                 if (!nvme_scan_ns_list(ctrl, nn))
3755                         goto out_free_id;
3756         }
3757         nvme_scan_ns_sequential(ctrl, nn);
3758 out_free_id:
3759         mutex_unlock(&ctrl->scan_lock);
3760         kfree(id);
3761         down_write(&ctrl->namespaces_rwsem);
3762         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3763         up_write(&ctrl->namespaces_rwsem);
3764 }
3765
3766 /*
3767  * This function iterates the namespace list unlocked to allow recovery from
3768  * controller failure. It is up to the caller to ensure the namespace list is
3769  * not modified by scan work while this function is executing.
3770  */
3771 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3772 {
3773         struct nvme_ns *ns, *next;
3774         LIST_HEAD(ns_list);
3775
3776         /*
3777          * make sure to requeue I/O to all namespaces as these
3778          * might result from the scan itself and must complete
3779          * for the scan_work to make progress
3780          */
3781         nvme_mpath_clear_ctrl_paths(ctrl);
3782
3783         /* prevent racing with ns scanning */
3784         flush_work(&ctrl->scan_work);
3785
3786         /*
3787          * The dead states indicates the controller was not gracefully
3788          * disconnected. In that case, we won't be able to flush any data while
3789          * removing the namespaces' disks; fail all the queues now to avoid
3790          * potentially having to clean up the failed sync later.
3791          */
3792         if (ctrl->state == NVME_CTRL_DEAD)
3793                 nvme_kill_queues(ctrl);
3794
3795         down_write(&ctrl->namespaces_rwsem);
3796         list_splice_init(&ctrl->namespaces, &ns_list);
3797         up_write(&ctrl->namespaces_rwsem);
3798
3799         list_for_each_entry_safe(ns, next, &ns_list, list)
3800                 nvme_ns_remove(ns);
3801 }
3802 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3803
3804 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3805 {
3806         struct nvme_ctrl *ctrl =
3807                 container_of(dev, struct nvme_ctrl, ctrl_device);
3808         struct nvmf_ctrl_options *opts = ctrl->opts;
3809         int ret;
3810
3811         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3812         if (ret)
3813                 return ret;
3814
3815         if (opts) {
3816                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3817                 if (ret)
3818                         return ret;
3819
3820                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3821                                 opts->trsvcid ?: "none");
3822                 if (ret)
3823                         return ret;
3824
3825                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3826                                 opts->host_traddr ?: "none");
3827         }
3828         return ret;
3829 }
3830
3831 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3832 {
3833         char *envp[2] = { NULL, NULL };
3834         u32 aen_result = ctrl->aen_result;
3835
3836         ctrl->aen_result = 0;
3837         if (!aen_result)
3838                 return;
3839
3840         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3841         if (!envp[0])
3842                 return;
3843         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3844         kfree(envp[0]);
3845 }
3846
3847 static void nvme_async_event_work(struct work_struct *work)
3848 {
3849         struct nvme_ctrl *ctrl =
3850                 container_of(work, struct nvme_ctrl, async_event_work);
3851
3852         nvme_aen_uevent(ctrl);
3853         ctrl->ops->submit_async_event(ctrl);
3854 }
3855
3856 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3857 {
3858
3859         u32 csts;
3860
3861         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3862                 return false;
3863
3864         if (csts == ~0)
3865                 return false;
3866
3867         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3868 }
3869
3870 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3871 {
3872         struct nvme_fw_slot_info_log *log;
3873
3874         log = kmalloc(sizeof(*log), GFP_KERNEL);
3875         if (!log)
3876                 return;
3877
3878         if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3879                         sizeof(*log), 0))
3880                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3881         kfree(log);
3882 }
3883
3884 static void nvme_fw_act_work(struct work_struct *work)
3885 {
3886         struct nvme_ctrl *ctrl = container_of(work,
3887                                 struct nvme_ctrl, fw_act_work);
3888         unsigned long fw_act_timeout;
3889
3890         if (ctrl->mtfa)
3891                 fw_act_timeout = jiffies +
3892                                 msecs_to_jiffies(ctrl->mtfa * 100);
3893         else
3894                 fw_act_timeout = jiffies +
3895                                 msecs_to_jiffies(admin_timeout * 1000);
3896
3897         nvme_stop_queues(ctrl);
3898         while (nvme_ctrl_pp_status(ctrl)) {
3899                 if (time_after(jiffies, fw_act_timeout)) {
3900                         dev_warn(ctrl->device,
3901                                 "Fw activation timeout, reset controller\n");
3902                         nvme_try_sched_reset(ctrl);
3903                         return;
3904                 }
3905                 msleep(100);
3906         }
3907
3908         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3909                 return;
3910
3911         nvme_start_queues(ctrl);
3912         /* read FW slot information to clear the AER */
3913         nvme_get_fw_slot_info(ctrl);
3914 }
3915
3916 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3917 {
3918         u32 aer_notice_type = (result & 0xff00) >> 8;
3919
3920         trace_nvme_async_event(ctrl, aer_notice_type);
3921
3922         switch (aer_notice_type) {
3923         case NVME_AER_NOTICE_NS_CHANGED:
3924                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3925                 nvme_queue_scan(ctrl);
3926                 break;
3927         case NVME_AER_NOTICE_FW_ACT_STARTING:
3928                 /*
3929                  * We are (ab)using the RESETTING state to prevent subsequent
3930                  * recovery actions from interfering with the controller's
3931                  * firmware activation.
3932                  */
3933                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
3934                         queue_work(nvme_wq, &ctrl->fw_act_work);
3935                 break;
3936 #ifdef CONFIG_NVME_MULTIPATH
3937         case NVME_AER_NOTICE_ANA:
3938                 if (!ctrl->ana_log_buf)
3939                         break;
3940                 queue_work(nvme_wq, &ctrl->ana_work);
3941                 break;
3942 #endif
3943         case NVME_AER_NOTICE_DISC_CHANGED:
3944                 ctrl->aen_result = result;
3945                 break;
3946         default:
3947                 dev_warn(ctrl->device, "async event result %08x\n", result);
3948         }
3949 }
3950
3951 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3952                 volatile union nvme_result *res)
3953 {
3954         u32 result = le32_to_cpu(res->u32);
3955         u32 aer_type = result & 0x07;
3956
3957         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3958                 return;
3959
3960         switch (aer_type) {
3961         case NVME_AER_NOTICE:
3962                 nvme_handle_aen_notice(ctrl, result);
3963                 break;
3964         case NVME_AER_ERROR:
3965         case NVME_AER_SMART:
3966         case NVME_AER_CSS:
3967         case NVME_AER_VS:
3968                 trace_nvme_async_event(ctrl, aer_type);
3969                 ctrl->aen_result = result;
3970                 break;
3971         default:
3972                 break;
3973         }
3974         queue_work(nvme_wq, &ctrl->async_event_work);
3975 }
3976 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3977
3978 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3979 {
3980         nvme_mpath_stop(ctrl);
3981         nvme_stop_keep_alive(ctrl);
3982         flush_work(&ctrl->async_event_work);
3983         cancel_work_sync(&ctrl->fw_act_work);
3984 }
3985 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3986
3987 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3988 {
3989         if (ctrl->kato)
3990                 nvme_start_keep_alive(ctrl);
3991
3992         nvme_enable_aen(ctrl);
3993
3994         if (ctrl->queue_count > 1) {
3995                 nvme_queue_scan(ctrl);
3996                 nvme_start_queues(ctrl);
3997         }
3998 }
3999 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4000
4001 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4002 {
4003         nvme_fault_inject_fini(&ctrl->fault_inject);
4004         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4005         cdev_device_del(&ctrl->cdev, ctrl->device);
4006 }
4007 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4008
4009 static void nvme_free_ctrl(struct device *dev)
4010 {
4011         struct nvme_ctrl *ctrl =
4012                 container_of(dev, struct nvme_ctrl, ctrl_device);
4013         struct nvme_subsystem *subsys = ctrl->subsys;
4014
4015         if (subsys && ctrl->instance != subsys->instance)
4016                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4017
4018         kfree(ctrl->effects);
4019         nvme_mpath_uninit(ctrl);
4020         __free_page(ctrl->discard_page);
4021
4022         if (subsys) {
4023                 mutex_lock(&nvme_subsystems_lock);
4024                 list_del(&ctrl->subsys_entry);
4025                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4026                 mutex_unlock(&nvme_subsystems_lock);
4027         }
4028
4029         ctrl->ops->free_ctrl(ctrl);
4030
4031         if (subsys)
4032                 nvme_put_subsystem(subsys);
4033 }
4034
4035 /*
4036  * Initialize a NVMe controller structures.  This needs to be called during
4037  * earliest initialization so that we have the initialized structured around
4038  * during probing.
4039  */
4040 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4041                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4042 {
4043         int ret;
4044
4045         ctrl->state = NVME_CTRL_NEW;
4046         spin_lock_init(&ctrl->lock);
4047         mutex_init(&ctrl->scan_lock);
4048         INIT_LIST_HEAD(&ctrl->namespaces);
4049         init_rwsem(&ctrl->namespaces_rwsem);
4050         ctrl->dev = dev;
4051         ctrl->ops = ops;
4052         ctrl->quirks = quirks;
4053         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4054         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4055         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4056         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4057         init_waitqueue_head(&ctrl->state_wq);
4058
4059         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4060         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4061         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4062
4063         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4064                         PAGE_SIZE);
4065         ctrl->discard_page = alloc_page(GFP_KERNEL);
4066         if (!ctrl->discard_page) {
4067                 ret = -ENOMEM;
4068                 goto out;
4069         }
4070
4071         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4072         if (ret < 0)
4073                 goto out;
4074         ctrl->instance = ret;
4075
4076         device_initialize(&ctrl->ctrl_device);
4077         ctrl->device = &ctrl->ctrl_device;
4078         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4079         ctrl->device->class = nvme_class;
4080         ctrl->device->parent = ctrl->dev;
4081         ctrl->device->groups = nvme_dev_attr_groups;
4082         ctrl->device->release = nvme_free_ctrl;
4083         dev_set_drvdata(ctrl->device, ctrl);
4084         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4085         if (ret)
4086                 goto out_release_instance;
4087
4088         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4089         ctrl->cdev.owner = ops->module;
4090         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4091         if (ret)
4092                 goto out_free_name;
4093
4094         /*
4095          * Initialize latency tolerance controls.  The sysfs files won't
4096          * be visible to userspace unless the device actually supports APST.
4097          */
4098         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4099         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4100                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4101
4102         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4103
4104         return 0;
4105 out_free_name:
4106         kfree_const(ctrl->device->kobj.name);
4107 out_release_instance:
4108         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4109 out:
4110         if (ctrl->discard_page)
4111                 __free_page(ctrl->discard_page);
4112         return ret;
4113 }
4114 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4115
4116 /**
4117  * nvme_kill_queues(): Ends all namespace queues
4118  * @ctrl: the dead controller that needs to end
4119  *
4120  * Call this function when the driver determines it is unable to get the
4121  * controller in a state capable of servicing IO.
4122  */
4123 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4124 {
4125         struct nvme_ns *ns;
4126
4127         down_read(&ctrl->namespaces_rwsem);
4128
4129         /* Forcibly unquiesce queues to avoid blocking dispatch */
4130         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4131                 blk_mq_unquiesce_queue(ctrl->admin_q);
4132
4133         list_for_each_entry(ns, &ctrl->namespaces, list)
4134                 nvme_set_queue_dying(ns);
4135
4136         up_read(&ctrl->namespaces_rwsem);
4137 }
4138 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4139
4140 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4141 {
4142         struct nvme_ns *ns;
4143
4144         down_read(&ctrl->namespaces_rwsem);
4145         list_for_each_entry(ns, &ctrl->namespaces, list)
4146                 blk_mq_unfreeze_queue(ns->queue);
4147         up_read(&ctrl->namespaces_rwsem);
4148 }
4149 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4150
4151 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4152 {
4153         struct nvme_ns *ns;
4154
4155         down_read(&ctrl->namespaces_rwsem);
4156         list_for_each_entry(ns, &ctrl->namespaces, list) {
4157                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4158                 if (timeout <= 0)
4159                         break;
4160         }
4161         up_read(&ctrl->namespaces_rwsem);
4162 }
4163 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4164
4165 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4166 {
4167         struct nvme_ns *ns;
4168
4169         down_read(&ctrl->namespaces_rwsem);
4170         list_for_each_entry(ns, &ctrl->namespaces, list)
4171                 blk_mq_freeze_queue_wait(ns->queue);
4172         up_read(&ctrl->namespaces_rwsem);
4173 }
4174 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4175
4176 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4177 {
4178         struct nvme_ns *ns;
4179
4180         down_read(&ctrl->namespaces_rwsem);
4181         list_for_each_entry(ns, &ctrl->namespaces, list)
4182                 blk_freeze_queue_start(ns->queue);
4183         up_read(&ctrl->namespaces_rwsem);
4184 }
4185 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4186
4187 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4188 {
4189         struct nvme_ns *ns;
4190
4191         down_read(&ctrl->namespaces_rwsem);
4192         list_for_each_entry(ns, &ctrl->namespaces, list)
4193                 blk_mq_quiesce_queue(ns->queue);
4194         up_read(&ctrl->namespaces_rwsem);
4195 }
4196 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4197
4198 void nvme_start_queues(struct nvme_ctrl *ctrl)
4199 {
4200         struct nvme_ns *ns;
4201
4202         down_read(&ctrl->namespaces_rwsem);
4203         list_for_each_entry(ns, &ctrl->namespaces, list)
4204                 blk_mq_unquiesce_queue(ns->queue);
4205         up_read(&ctrl->namespaces_rwsem);
4206 }
4207 EXPORT_SYMBOL_GPL(nvme_start_queues);
4208
4209
4210 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4211 {
4212         struct nvme_ns *ns;
4213
4214         down_read(&ctrl->namespaces_rwsem);
4215         list_for_each_entry(ns, &ctrl->namespaces, list)
4216                 blk_sync_queue(ns->queue);
4217         up_read(&ctrl->namespaces_rwsem);
4218
4219         if (ctrl->admin_q)
4220                 blk_sync_queue(ctrl->admin_q);
4221 }
4222 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4223
4224 /*
4225  * Check we didn't inadvertently grow the command structure sizes:
4226  */
4227 static inline void _nvme_check_size(void)
4228 {
4229         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4230         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4231         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4232         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4233         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4234         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4235         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4236         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4237         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4238         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4239         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4240         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4241         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4242         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4243         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4244         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4245         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4246 }
4247
4248
4249 static int __init nvme_core_init(void)
4250 {
4251         int result = -ENOMEM;
4252
4253         _nvme_check_size();
4254
4255         nvme_wq = alloc_workqueue("nvme-wq",
4256                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4257         if (!nvme_wq)
4258                 goto out;
4259
4260         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4261                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4262         if (!nvme_reset_wq)
4263                 goto destroy_wq;
4264
4265         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4266                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4267         if (!nvme_delete_wq)
4268                 goto destroy_reset_wq;
4269
4270         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4271         if (result < 0)
4272                 goto destroy_delete_wq;
4273
4274         nvme_class = class_create(THIS_MODULE, "nvme");
4275         if (IS_ERR(nvme_class)) {
4276                 result = PTR_ERR(nvme_class);
4277                 goto unregister_chrdev;
4278         }
4279         nvme_class->dev_uevent = nvme_class_uevent;
4280
4281         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4282         if (IS_ERR(nvme_subsys_class)) {
4283                 result = PTR_ERR(nvme_subsys_class);
4284                 goto destroy_class;
4285         }
4286         return 0;
4287
4288 destroy_class:
4289         class_destroy(nvme_class);
4290 unregister_chrdev:
4291         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4292 destroy_delete_wq:
4293         destroy_workqueue(nvme_delete_wq);
4294 destroy_reset_wq:
4295         destroy_workqueue(nvme_reset_wq);
4296 destroy_wq:
4297         destroy_workqueue(nvme_wq);
4298 out:
4299         return result;
4300 }
4301
4302 static void __exit nvme_core_exit(void)
4303 {
4304         class_destroy(nvme_subsys_class);
4305         class_destroy(nvme_class);
4306         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4307         destroy_workqueue(nvme_delete_wq);
4308         destroy_workqueue(nvme_reset_wq);
4309         destroy_workqueue(nvme_wq);
4310 }
4311
4312 MODULE_LICENSE("GPL");
4313 MODULE_VERSION("1.0");
4314 module_init(nvme_core_init);
4315 module_exit(nvme_core_exit);