24165daee3c8f0819b83d90f6c4293560c04a2c6
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63         "primary APST timeout in ms");
64
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68         "secondary APST timeout in ms");
69
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73         "primary APST latency tolerance in us");
74
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78         "secondary APST latency tolerance in us");
79
80 /*
81  * nvme_wq - hosts nvme related works that are not reset or delete
82  * nvme_reset_wq - hosts nvme reset works
83  * nvme_delete_wq - hosts nvme delete works
84  *
85  * nvme_wq will host works such as scan, aen handling, fw activation,
86  * keep-alive, periodic reconnects etc. nvme_reset_wq
87  * runs reset works which also flush works hosted on nvme_wq for
88  * serialization purposes. nvme_delete_wq host controller deletion
89  * works which flush reset works for serialization.
90  */
91 struct workqueue_struct *nvme_wq;
92 EXPORT_SYMBOL_GPL(nvme_wq);
93
94 struct workqueue_struct *nvme_reset_wq;
95 EXPORT_SYMBOL_GPL(nvme_reset_wq);
96
97 struct workqueue_struct *nvme_delete_wq;
98 EXPORT_SYMBOL_GPL(nvme_delete_wq);
99
100 static LIST_HEAD(nvme_subsystems);
101 static DEFINE_MUTEX(nvme_subsystems_lock);
102
103 static DEFINE_IDA(nvme_instance_ida);
104 static dev_t nvme_ctrl_base_chr_devt;
105 static struct class *nvme_class;
106 static struct class *nvme_subsys_class;
107
108 static DEFINE_IDA(nvme_ns_chr_minor_ida);
109 static dev_t nvme_ns_chr_devt;
110 static struct class *nvme_ns_chr_class;
111
112 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
113 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
114                                            unsigned nsid);
115 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
116                                    struct nvme_command *cmd);
117
118 void nvme_queue_scan(struct nvme_ctrl *ctrl)
119 {
120         /*
121          * Only new queue scan work when admin and IO queues are both alive
122          */
123         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
124                 queue_work(nvme_wq, &ctrl->scan_work);
125 }
126
127 /*
128  * Use this function to proceed with scheduling reset_work for a controller
129  * that had previously been set to the resetting state. This is intended for
130  * code paths that can't be interrupted by other reset attempts. A hot removal
131  * may prevent this from succeeding.
132  */
133 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
134 {
135         if (ctrl->state != NVME_CTRL_RESETTING)
136                 return -EBUSY;
137         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
138                 return -EBUSY;
139         return 0;
140 }
141 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
142
143 static void nvme_failfast_work(struct work_struct *work)
144 {
145         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
146                         struct nvme_ctrl, failfast_work);
147
148         if (ctrl->state != NVME_CTRL_CONNECTING)
149                 return;
150
151         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
152         dev_info(ctrl->device, "failfast expired\n");
153         nvme_kick_requeue_lists(ctrl);
154 }
155
156 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
157 {
158         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
159                 return;
160
161         schedule_delayed_work(&ctrl->failfast_work,
162                               ctrl->opts->fast_io_fail_tmo * HZ);
163 }
164
165 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
166 {
167         if (!ctrl->opts)
168                 return;
169
170         cancel_delayed_work_sync(&ctrl->failfast_work);
171         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
172 }
173
174
175 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
176 {
177         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
178                 return -EBUSY;
179         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
180                 return -EBUSY;
181         return 0;
182 }
183 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
184
185 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
186 {
187         int ret;
188
189         ret = nvme_reset_ctrl(ctrl);
190         if (!ret) {
191                 flush_work(&ctrl->reset_work);
192                 if (ctrl->state != NVME_CTRL_LIVE)
193                         ret = -ENETRESET;
194         }
195
196         return ret;
197 }
198
199 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
200 {
201         dev_info(ctrl->device,
202                  "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
203
204         flush_work(&ctrl->reset_work);
205         nvme_stop_ctrl(ctrl);
206         nvme_remove_namespaces(ctrl);
207         ctrl->ops->delete_ctrl(ctrl);
208         nvme_uninit_ctrl(ctrl);
209 }
210
211 static void nvme_delete_ctrl_work(struct work_struct *work)
212 {
213         struct nvme_ctrl *ctrl =
214                 container_of(work, struct nvme_ctrl, delete_work);
215
216         nvme_do_delete_ctrl(ctrl);
217 }
218
219 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
220 {
221         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
222                 return -EBUSY;
223         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
224                 return -EBUSY;
225         return 0;
226 }
227 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
228
229 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
230 {
231         /*
232          * Keep a reference until nvme_do_delete_ctrl() complete,
233          * since ->delete_ctrl can free the controller.
234          */
235         nvme_get_ctrl(ctrl);
236         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
237                 nvme_do_delete_ctrl(ctrl);
238         nvme_put_ctrl(ctrl);
239 }
240
241 static blk_status_t nvme_error_status(u16 status)
242 {
243         switch (status & 0x7ff) {
244         case NVME_SC_SUCCESS:
245                 return BLK_STS_OK;
246         case NVME_SC_CAP_EXCEEDED:
247                 return BLK_STS_NOSPC;
248         case NVME_SC_LBA_RANGE:
249         case NVME_SC_CMD_INTERRUPTED:
250         case NVME_SC_NS_NOT_READY:
251                 return BLK_STS_TARGET;
252         case NVME_SC_BAD_ATTRIBUTES:
253         case NVME_SC_ONCS_NOT_SUPPORTED:
254         case NVME_SC_INVALID_OPCODE:
255         case NVME_SC_INVALID_FIELD:
256         case NVME_SC_INVALID_NS:
257                 return BLK_STS_NOTSUPP;
258         case NVME_SC_WRITE_FAULT:
259         case NVME_SC_READ_ERROR:
260         case NVME_SC_UNWRITTEN_BLOCK:
261         case NVME_SC_ACCESS_DENIED:
262         case NVME_SC_READ_ONLY:
263         case NVME_SC_COMPARE_FAILED:
264                 return BLK_STS_MEDIUM;
265         case NVME_SC_GUARD_CHECK:
266         case NVME_SC_APPTAG_CHECK:
267         case NVME_SC_REFTAG_CHECK:
268         case NVME_SC_INVALID_PI:
269                 return BLK_STS_PROTECTION;
270         case NVME_SC_RESERVATION_CONFLICT:
271                 return BLK_STS_NEXUS;
272         case NVME_SC_HOST_PATH_ERROR:
273                 return BLK_STS_TRANSPORT;
274         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
275                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
276         case NVME_SC_ZONE_TOO_MANY_OPEN:
277                 return BLK_STS_ZONE_OPEN_RESOURCE;
278         default:
279                 return BLK_STS_IOERR;
280         }
281 }
282
283 static void nvme_retry_req(struct request *req)
284 {
285         unsigned long delay = 0;
286         u16 crd;
287
288         /* The mask and shift result must be <= 3 */
289         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
290         if (crd)
291                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
292
293         nvme_req(req)->retries++;
294         blk_mq_requeue_request(req, false);
295         blk_mq_delay_kick_requeue_list(req->q, delay);
296 }
297
298 static void nvme_log_error(struct request *req)
299 {
300         struct nvme_ns *ns = req->q->queuedata;
301         struct nvme_request *nr = nvme_req(req);
302
303         if (ns) {
304                 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
305                        ns->disk ? ns->disk->disk_name : "?",
306                        nvme_get_opcode_str(nr->cmd->common.opcode),
307                        nr->cmd->common.opcode,
308                        (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
309                        (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
310                        nvme_get_error_status_str(nr->status),
311                        nr->status >> 8 & 7,     /* Status Code Type */
312                        nr->status & 0xff,       /* Status Code */
313                        nr->status & NVME_SC_MORE ? "MORE " : "",
314                        nr->status & NVME_SC_DNR  ? "DNR "  : "");
315                 return;
316         }
317
318         pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
319                            dev_name(nr->ctrl->device),
320                            nvme_get_admin_opcode_str(nr->cmd->common.opcode),
321                            nr->cmd->common.opcode,
322                            nvme_get_error_status_str(nr->status),
323                            nr->status >> 8 & 7, /* Status Code Type */
324                            nr->status & 0xff,   /* Status Code */
325                            nr->status & NVME_SC_MORE ? "MORE " : "",
326                            nr->status & NVME_SC_DNR  ? "DNR "  : "");
327 }
328
329 enum nvme_disposition {
330         COMPLETE,
331         RETRY,
332         FAILOVER,
333 };
334
335 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
336 {
337         if (likely(nvme_req(req)->status == 0))
338                 return COMPLETE;
339
340         if (blk_noretry_request(req) ||
341             (nvme_req(req)->status & NVME_SC_DNR) ||
342             nvme_req(req)->retries >= nvme_max_retries)
343                 return COMPLETE;
344
345         if (req->cmd_flags & REQ_NVME_MPATH) {
346                 if (nvme_is_path_error(nvme_req(req)->status) ||
347                     blk_queue_dying(req->q))
348                         return FAILOVER;
349         } else {
350                 if (blk_queue_dying(req->q))
351                         return COMPLETE;
352         }
353
354         return RETRY;
355 }
356
357 static inline void nvme_end_req_zoned(struct request *req)
358 {
359         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
360             req_op(req) == REQ_OP_ZONE_APPEND)
361                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
362                         le64_to_cpu(nvme_req(req)->result.u64));
363 }
364
365 static inline void nvme_end_req(struct request *req)
366 {
367         blk_status_t status = nvme_error_status(nvme_req(req)->status);
368
369         if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
370                 nvme_log_error(req);
371         nvme_end_req_zoned(req);
372         nvme_trace_bio_complete(req);
373         blk_mq_end_request(req, status);
374 }
375
376 void nvme_complete_rq(struct request *req)
377 {
378         trace_nvme_complete_rq(req);
379         nvme_cleanup_cmd(req);
380
381         if (nvme_req(req)->ctrl->kas)
382                 nvme_req(req)->ctrl->comp_seen = true;
383
384         switch (nvme_decide_disposition(req)) {
385         case COMPLETE:
386                 nvme_end_req(req);
387                 return;
388         case RETRY:
389                 nvme_retry_req(req);
390                 return;
391         case FAILOVER:
392                 nvme_failover_req(req);
393                 return;
394         }
395 }
396 EXPORT_SYMBOL_GPL(nvme_complete_rq);
397
398 void nvme_complete_batch_req(struct request *req)
399 {
400         trace_nvme_complete_rq(req);
401         nvme_cleanup_cmd(req);
402         nvme_end_req_zoned(req);
403 }
404 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
405
406 /*
407  * Called to unwind from ->queue_rq on a failed command submission so that the
408  * multipathing code gets called to potentially failover to another path.
409  * The caller needs to unwind all transport specific resource allocations and
410  * must return propagate the return value.
411  */
412 blk_status_t nvme_host_path_error(struct request *req)
413 {
414         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
415         blk_mq_set_request_complete(req);
416         nvme_complete_rq(req);
417         return BLK_STS_OK;
418 }
419 EXPORT_SYMBOL_GPL(nvme_host_path_error);
420
421 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
422 {
423         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
424                                 "Cancelling I/O %d", req->tag);
425
426         /* don't abort one completed request */
427         if (blk_mq_request_completed(req))
428                 return true;
429
430         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
431         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
432         blk_mq_complete_request(req);
433         return true;
434 }
435 EXPORT_SYMBOL_GPL(nvme_cancel_request);
436
437 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
438 {
439         if (ctrl->tagset) {
440                 blk_mq_tagset_busy_iter(ctrl->tagset,
441                                 nvme_cancel_request, ctrl);
442                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
443         }
444 }
445 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
446
447 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
448 {
449         if (ctrl->admin_tagset) {
450                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
451                                 nvme_cancel_request, ctrl);
452                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
453         }
454 }
455 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
456
457 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
458                 enum nvme_ctrl_state new_state)
459 {
460         enum nvme_ctrl_state old_state;
461         unsigned long flags;
462         bool changed = false;
463
464         spin_lock_irqsave(&ctrl->lock, flags);
465
466         old_state = ctrl->state;
467         switch (new_state) {
468         case NVME_CTRL_LIVE:
469                 switch (old_state) {
470                 case NVME_CTRL_NEW:
471                 case NVME_CTRL_RESETTING:
472                 case NVME_CTRL_CONNECTING:
473                         changed = true;
474                         fallthrough;
475                 default:
476                         break;
477                 }
478                 break;
479         case NVME_CTRL_RESETTING:
480                 switch (old_state) {
481                 case NVME_CTRL_NEW:
482                 case NVME_CTRL_LIVE:
483                         changed = true;
484                         fallthrough;
485                 default:
486                         break;
487                 }
488                 break;
489         case NVME_CTRL_CONNECTING:
490                 switch (old_state) {
491                 case NVME_CTRL_NEW:
492                 case NVME_CTRL_RESETTING:
493                         changed = true;
494                         fallthrough;
495                 default:
496                         break;
497                 }
498                 break;
499         case NVME_CTRL_DELETING:
500                 switch (old_state) {
501                 case NVME_CTRL_LIVE:
502                 case NVME_CTRL_RESETTING:
503                 case NVME_CTRL_CONNECTING:
504                         changed = true;
505                         fallthrough;
506                 default:
507                         break;
508                 }
509                 break;
510         case NVME_CTRL_DELETING_NOIO:
511                 switch (old_state) {
512                 case NVME_CTRL_DELETING:
513                 case NVME_CTRL_DEAD:
514                         changed = true;
515                         fallthrough;
516                 default:
517                         break;
518                 }
519                 break;
520         case NVME_CTRL_DEAD:
521                 switch (old_state) {
522                 case NVME_CTRL_DELETING:
523                         changed = true;
524                         fallthrough;
525                 default:
526                         break;
527                 }
528                 break;
529         default:
530                 break;
531         }
532
533         if (changed) {
534                 ctrl->state = new_state;
535                 wake_up_all(&ctrl->state_wq);
536         }
537
538         spin_unlock_irqrestore(&ctrl->lock, flags);
539         if (!changed)
540                 return false;
541
542         if (ctrl->state == NVME_CTRL_LIVE) {
543                 if (old_state == NVME_CTRL_CONNECTING)
544                         nvme_stop_failfast_work(ctrl);
545                 nvme_kick_requeue_lists(ctrl);
546         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
547                 old_state == NVME_CTRL_RESETTING) {
548                 nvme_start_failfast_work(ctrl);
549         }
550         return changed;
551 }
552 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
553
554 /*
555  * Returns true for sink states that can't ever transition back to live.
556  */
557 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
558 {
559         switch (ctrl->state) {
560         case NVME_CTRL_NEW:
561         case NVME_CTRL_LIVE:
562         case NVME_CTRL_RESETTING:
563         case NVME_CTRL_CONNECTING:
564                 return false;
565         case NVME_CTRL_DELETING:
566         case NVME_CTRL_DELETING_NOIO:
567         case NVME_CTRL_DEAD:
568                 return true;
569         default:
570                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
571                 return true;
572         }
573 }
574
575 /*
576  * Waits for the controller state to be resetting, or returns false if it is
577  * not possible to ever transition to that state.
578  */
579 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
580 {
581         wait_event(ctrl->state_wq,
582                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
583                    nvme_state_terminal(ctrl));
584         return ctrl->state == NVME_CTRL_RESETTING;
585 }
586 EXPORT_SYMBOL_GPL(nvme_wait_reset);
587
588 static void nvme_free_ns_head(struct kref *ref)
589 {
590         struct nvme_ns_head *head =
591                 container_of(ref, struct nvme_ns_head, ref);
592
593         nvme_mpath_remove_disk(head);
594         ida_free(&head->subsys->ns_ida, head->instance);
595         cleanup_srcu_struct(&head->srcu);
596         nvme_put_subsystem(head->subsys);
597         kfree(head);
598 }
599
600 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
601 {
602         return kref_get_unless_zero(&head->ref);
603 }
604
605 void nvme_put_ns_head(struct nvme_ns_head *head)
606 {
607         kref_put(&head->ref, nvme_free_ns_head);
608 }
609
610 static void nvme_free_ns(struct kref *kref)
611 {
612         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
613
614         put_disk(ns->disk);
615         nvme_put_ns_head(ns->head);
616         nvme_put_ctrl(ns->ctrl);
617         kfree(ns);
618 }
619
620 static inline bool nvme_get_ns(struct nvme_ns *ns)
621 {
622         return kref_get_unless_zero(&ns->kref);
623 }
624
625 void nvme_put_ns(struct nvme_ns *ns)
626 {
627         kref_put(&ns->kref, nvme_free_ns);
628 }
629 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
630
631 static inline void nvme_clear_nvme_request(struct request *req)
632 {
633         nvme_req(req)->status = 0;
634         nvme_req(req)->retries = 0;
635         nvme_req(req)->flags = 0;
636         req->rq_flags |= RQF_DONTPREP;
637 }
638
639 /* initialize a passthrough request */
640 void nvme_init_request(struct request *req, struct nvme_command *cmd)
641 {
642         if (req->q->queuedata)
643                 req->timeout = NVME_IO_TIMEOUT;
644         else /* no queuedata implies admin queue */
645                 req->timeout = NVME_ADMIN_TIMEOUT;
646
647         /* passthru commands should let the driver set the SGL flags */
648         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
649
650         req->cmd_flags |= REQ_FAILFAST_DRIVER;
651         if (req->mq_hctx->type == HCTX_TYPE_POLL)
652                 req->cmd_flags |= REQ_POLLED;
653         nvme_clear_nvme_request(req);
654         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
655 }
656 EXPORT_SYMBOL_GPL(nvme_init_request);
657
658 /*
659  * For something we're not in a state to send to the device the default action
660  * is to busy it and retry it after the controller state is recovered.  However,
661  * if the controller is deleting or if anything is marked for failfast or
662  * nvme multipath it is immediately failed.
663  *
664  * Note: commands used to initialize the controller will be marked for failfast.
665  * Note: nvme cli/ioctl commands are marked for failfast.
666  */
667 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
668                 struct request *rq)
669 {
670         if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
671             ctrl->state != NVME_CTRL_DELETING &&
672             ctrl->state != NVME_CTRL_DEAD &&
673             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
674             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
675                 return BLK_STS_RESOURCE;
676         return nvme_host_path_error(rq);
677 }
678 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
679
680 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
681                 bool queue_live)
682 {
683         struct nvme_request *req = nvme_req(rq);
684
685         /*
686          * currently we have a problem sending passthru commands
687          * on the admin_q if the controller is not LIVE because we can't
688          * make sure that they are going out after the admin connect,
689          * controller enable and/or other commands in the initialization
690          * sequence. until the controller will be LIVE, fail with
691          * BLK_STS_RESOURCE so that they will be rescheduled.
692          */
693         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
694                 return false;
695
696         if (ctrl->ops->flags & NVME_F_FABRICS) {
697                 /*
698                  * Only allow commands on a live queue, except for the connect
699                  * command, which is require to set the queue live in the
700                  * appropinquate states.
701                  */
702                 switch (ctrl->state) {
703                 case NVME_CTRL_CONNECTING:
704                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
705                             req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
706                                 return true;
707                         break;
708                 default:
709                         break;
710                 case NVME_CTRL_DEAD:
711                         return false;
712                 }
713         }
714
715         return queue_live;
716 }
717 EXPORT_SYMBOL_GPL(__nvme_check_ready);
718
719 static inline void nvme_setup_flush(struct nvme_ns *ns,
720                 struct nvme_command *cmnd)
721 {
722         memset(cmnd, 0, sizeof(*cmnd));
723         cmnd->common.opcode = nvme_cmd_flush;
724         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
725 }
726
727 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
728                 struct nvme_command *cmnd)
729 {
730         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
731         struct nvme_dsm_range *range;
732         struct bio *bio;
733
734         /*
735          * Some devices do not consider the DSM 'Number of Ranges' field when
736          * determining how much data to DMA. Always allocate memory for maximum
737          * number of segments to prevent device reading beyond end of buffer.
738          */
739         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
740
741         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
742         if (!range) {
743                 /*
744                  * If we fail allocation our range, fallback to the controller
745                  * discard page. If that's also busy, it's safe to return
746                  * busy, as we know we can make progress once that's freed.
747                  */
748                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
749                         return BLK_STS_RESOURCE;
750
751                 range = page_address(ns->ctrl->discard_page);
752         }
753
754         __rq_for_each_bio(bio, req) {
755                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
756                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
757
758                 if (n < segments) {
759                         range[n].cattr = cpu_to_le32(0);
760                         range[n].nlb = cpu_to_le32(nlb);
761                         range[n].slba = cpu_to_le64(slba);
762                 }
763                 n++;
764         }
765
766         if (WARN_ON_ONCE(n != segments)) {
767                 if (virt_to_page(range) == ns->ctrl->discard_page)
768                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
769                 else
770                         kfree(range);
771                 return BLK_STS_IOERR;
772         }
773
774         memset(cmnd, 0, sizeof(*cmnd));
775         cmnd->dsm.opcode = nvme_cmd_dsm;
776         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
777         cmnd->dsm.nr = cpu_to_le32(segments - 1);
778         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
779
780         req->special_vec.bv_page = virt_to_page(range);
781         req->special_vec.bv_offset = offset_in_page(range);
782         req->special_vec.bv_len = alloc_size;
783         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
784
785         return BLK_STS_OK;
786 }
787
788 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
789                               struct request *req)
790 {
791         u32 upper, lower;
792         u64 ref48;
793
794         /* both rw and write zeroes share the same reftag format */
795         switch (ns->guard_type) {
796         case NVME_NVM_NS_16B_GUARD:
797                 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
798                 break;
799         case NVME_NVM_NS_64B_GUARD:
800                 ref48 = ext_pi_ref_tag(req);
801                 lower = lower_32_bits(ref48);
802                 upper = upper_32_bits(ref48);
803
804                 cmnd->rw.reftag = cpu_to_le32(lower);
805                 cmnd->rw.cdw3 = cpu_to_le32(upper);
806                 break;
807         default:
808                 break;
809         }
810 }
811
812 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
813                 struct request *req, struct nvme_command *cmnd)
814 {
815         memset(cmnd, 0, sizeof(*cmnd));
816
817         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
818                 return nvme_setup_discard(ns, req, cmnd);
819
820         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
821         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
822         cmnd->write_zeroes.slba =
823                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
824         cmnd->write_zeroes.length =
825                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
826
827         if (nvme_ns_has_pi(ns)) {
828                 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
829
830                 switch (ns->pi_type) {
831                 case NVME_NS_DPS_PI_TYPE1:
832                 case NVME_NS_DPS_PI_TYPE2:
833                         nvme_set_ref_tag(ns, cmnd, req);
834                         break;
835                 }
836         }
837
838         return BLK_STS_OK;
839 }
840
841 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
842                 struct request *req, struct nvme_command *cmnd,
843                 enum nvme_opcode op)
844 {
845         u16 control = 0;
846         u32 dsmgmt = 0;
847
848         if (req->cmd_flags & REQ_FUA)
849                 control |= NVME_RW_FUA;
850         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
851                 control |= NVME_RW_LR;
852
853         if (req->cmd_flags & REQ_RAHEAD)
854                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
855
856         cmnd->rw.opcode = op;
857         cmnd->rw.flags = 0;
858         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
859         cmnd->rw.cdw2 = 0;
860         cmnd->rw.cdw3 = 0;
861         cmnd->rw.metadata = 0;
862         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
863         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
864         cmnd->rw.reftag = 0;
865         cmnd->rw.apptag = 0;
866         cmnd->rw.appmask = 0;
867
868         if (ns->ms) {
869                 /*
870                  * If formated with metadata, the block layer always provides a
871                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
872                  * we enable the PRACT bit for protection information or set the
873                  * namespace capacity to zero to prevent any I/O.
874                  */
875                 if (!blk_integrity_rq(req)) {
876                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
877                                 return BLK_STS_NOTSUPP;
878                         control |= NVME_RW_PRINFO_PRACT;
879                 }
880
881                 switch (ns->pi_type) {
882                 case NVME_NS_DPS_PI_TYPE3:
883                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
884                         break;
885                 case NVME_NS_DPS_PI_TYPE1:
886                 case NVME_NS_DPS_PI_TYPE2:
887                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
888                                         NVME_RW_PRINFO_PRCHK_REF;
889                         if (op == nvme_cmd_zone_append)
890                                 control |= NVME_RW_APPEND_PIREMAP;
891                         nvme_set_ref_tag(ns, cmnd, req);
892                         break;
893                 }
894         }
895
896         cmnd->rw.control = cpu_to_le16(control);
897         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
898         return 0;
899 }
900
901 void nvme_cleanup_cmd(struct request *req)
902 {
903         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
904                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
905
906                 if (req->special_vec.bv_page == ctrl->discard_page)
907                         clear_bit_unlock(0, &ctrl->discard_page_busy);
908                 else
909                         kfree(bvec_virt(&req->special_vec));
910         }
911 }
912 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
913
914 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
915 {
916         struct nvme_command *cmd = nvme_req(req)->cmd;
917         blk_status_t ret = BLK_STS_OK;
918
919         if (!(req->rq_flags & RQF_DONTPREP))
920                 nvme_clear_nvme_request(req);
921
922         switch (req_op(req)) {
923         case REQ_OP_DRV_IN:
924         case REQ_OP_DRV_OUT:
925                 /* these are setup prior to execution in nvme_init_request() */
926                 break;
927         case REQ_OP_FLUSH:
928                 nvme_setup_flush(ns, cmd);
929                 break;
930         case REQ_OP_ZONE_RESET_ALL:
931         case REQ_OP_ZONE_RESET:
932                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
933                 break;
934         case REQ_OP_ZONE_OPEN:
935                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
936                 break;
937         case REQ_OP_ZONE_CLOSE:
938                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
939                 break;
940         case REQ_OP_ZONE_FINISH:
941                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
942                 break;
943         case REQ_OP_WRITE_ZEROES:
944                 ret = nvme_setup_write_zeroes(ns, req, cmd);
945                 break;
946         case REQ_OP_DISCARD:
947                 ret = nvme_setup_discard(ns, req, cmd);
948                 break;
949         case REQ_OP_READ:
950                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
951                 break;
952         case REQ_OP_WRITE:
953                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
954                 break;
955         case REQ_OP_ZONE_APPEND:
956                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
957                 break;
958         default:
959                 WARN_ON_ONCE(1);
960                 return BLK_STS_IOERR;
961         }
962
963         cmd->common.command_id = nvme_cid(req);
964         trace_nvme_setup_cmd(req, cmd);
965         return ret;
966 }
967 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
968
969 /*
970  * Return values:
971  * 0:  success
972  * >0: nvme controller's cqe status response
973  * <0: kernel error in lieu of controller response
974  */
975 static int nvme_execute_rq(struct request *rq, bool at_head)
976 {
977         blk_status_t status;
978
979         status = blk_execute_rq(rq, at_head);
980         if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
981                 return -EINTR;
982         if (nvme_req(rq)->status)
983                 return nvme_req(rq)->status;
984         return blk_status_to_errno(status);
985 }
986
987 /*
988  * Returns 0 on success.  If the result is negative, it's a Linux error code;
989  * if the result is positive, it's an NVM Express status code
990  */
991 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
992                 union nvme_result *result, void *buffer, unsigned bufflen,
993                 unsigned timeout, int qid, int at_head,
994                 blk_mq_req_flags_t flags)
995 {
996         struct request *req;
997         int ret;
998
999         if (qid == NVME_QID_ANY)
1000                 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1001         else
1002                 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1003                                                 qid ? qid - 1 : 0);
1004
1005         if (IS_ERR(req))
1006                 return PTR_ERR(req);
1007         nvme_init_request(req, cmd);
1008
1009         if (timeout)
1010                 req->timeout = timeout;
1011
1012         if (buffer && bufflen) {
1013                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1014                 if (ret)
1015                         goto out;
1016         }
1017
1018         req->rq_flags |= RQF_QUIET;
1019         ret = nvme_execute_rq(req, at_head);
1020         if (result && ret >= 0)
1021                 *result = nvme_req(req)->result;
1022  out:
1023         blk_mq_free_request(req);
1024         return ret;
1025 }
1026 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1027
1028 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1029                 void *buffer, unsigned bufflen)
1030 {
1031         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1032                         NVME_QID_ANY, 0, 0);
1033 }
1034 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1035
1036 static u32 nvme_known_admin_effects(u8 opcode)
1037 {
1038         switch (opcode) {
1039         case nvme_admin_format_nvm:
1040                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1041                         NVME_CMD_EFFECTS_CSE_MASK;
1042         case nvme_admin_sanitize_nvm:
1043                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1044         default:
1045                 break;
1046         }
1047         return 0;
1048 }
1049
1050 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1051 {
1052         u32 effects = 0;
1053
1054         if (ns) {
1055                 if (ns->head->effects)
1056                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1057                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1058                         dev_warn_once(ctrl->device,
1059                                 "IO command:%02x has unhandled effects:%08x\n",
1060                                 opcode, effects);
1061                 return 0;
1062         }
1063
1064         if (ctrl->effects)
1065                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1066         effects |= nvme_known_admin_effects(opcode);
1067
1068         return effects;
1069 }
1070 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1071
1072 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1073                                u8 opcode)
1074 {
1075         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1076
1077         /*
1078          * For simplicity, IO to all namespaces is quiesced even if the command
1079          * effects say only one namespace is affected.
1080          */
1081         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1082                 mutex_lock(&ctrl->scan_lock);
1083                 mutex_lock(&ctrl->subsys->lock);
1084                 nvme_mpath_start_freeze(ctrl->subsys);
1085                 nvme_mpath_wait_freeze(ctrl->subsys);
1086                 nvme_start_freeze(ctrl);
1087                 nvme_wait_freeze(ctrl);
1088         }
1089         return effects;
1090 }
1091
1092 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1093                               struct nvme_command *cmd, int status)
1094 {
1095         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1096                 nvme_unfreeze(ctrl);
1097                 nvme_mpath_unfreeze(ctrl->subsys);
1098                 mutex_unlock(&ctrl->subsys->lock);
1099                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1100                 mutex_unlock(&ctrl->scan_lock);
1101         }
1102         if (effects & NVME_CMD_EFFECTS_CCC)
1103                 nvme_init_ctrl_finish(ctrl);
1104         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1105                 nvme_queue_scan(ctrl);
1106                 flush_work(&ctrl->scan_work);
1107         }
1108
1109         switch (cmd->common.opcode) {
1110         case nvme_admin_set_features:
1111                 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1112                 case NVME_FEAT_KATO:
1113                         /*
1114                          * Keep alive commands interval on the host should be
1115                          * updated when KATO is modified by Set Features
1116                          * commands.
1117                          */
1118                         if (!status)
1119                                 nvme_update_keep_alive(ctrl, cmd);
1120                         break;
1121                 default:
1122                         break;
1123                 }
1124                 break;
1125         default:
1126                 break;
1127         }
1128 }
1129
1130 int nvme_execute_passthru_rq(struct request *rq)
1131 {
1132         struct nvme_command *cmd = nvme_req(rq)->cmd;
1133         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1134         struct nvme_ns *ns = rq->q->queuedata;
1135         u32 effects;
1136         int  ret;
1137
1138         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1139         ret = nvme_execute_rq(rq, false);
1140         if (effects) /* nothing to be done for zero cmd effects */
1141                 nvme_passthru_end(ctrl, effects, cmd, ret);
1142
1143         return ret;
1144 }
1145 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1146
1147 /*
1148  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1149  * 
1150  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1151  *   accounting for transport roundtrip times [..].
1152  */
1153 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1154 {
1155         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1156 }
1157
1158 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1159 {
1160         struct nvme_ctrl *ctrl = rq->end_io_data;
1161         unsigned long flags;
1162         bool startka = false;
1163
1164         blk_mq_free_request(rq);
1165
1166         if (status) {
1167                 dev_err(ctrl->device,
1168                         "failed nvme_keep_alive_end_io error=%d\n",
1169                                 status);
1170                 return;
1171         }
1172
1173         ctrl->comp_seen = false;
1174         spin_lock_irqsave(&ctrl->lock, flags);
1175         if (ctrl->state == NVME_CTRL_LIVE ||
1176             ctrl->state == NVME_CTRL_CONNECTING)
1177                 startka = true;
1178         spin_unlock_irqrestore(&ctrl->lock, flags);
1179         if (startka)
1180                 nvme_queue_keep_alive_work(ctrl);
1181 }
1182
1183 static void nvme_keep_alive_work(struct work_struct *work)
1184 {
1185         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1186                         struct nvme_ctrl, ka_work);
1187         bool comp_seen = ctrl->comp_seen;
1188         struct request *rq;
1189
1190         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1191                 dev_dbg(ctrl->device,
1192                         "reschedule traffic based keep-alive timer\n");
1193                 ctrl->comp_seen = false;
1194                 nvme_queue_keep_alive_work(ctrl);
1195                 return;
1196         }
1197
1198         rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1199                                   BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1200         if (IS_ERR(rq)) {
1201                 /* allocation failure, reset the controller */
1202                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1203                 nvme_reset_ctrl(ctrl);
1204                 return;
1205         }
1206         nvme_init_request(rq, &ctrl->ka_cmd);
1207
1208         rq->timeout = ctrl->kato * HZ;
1209         rq->end_io = nvme_keep_alive_end_io;
1210         rq->end_io_data = ctrl;
1211         rq->rq_flags |= RQF_QUIET;
1212         blk_execute_rq_nowait(rq, false);
1213 }
1214
1215 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1216 {
1217         if (unlikely(ctrl->kato == 0))
1218                 return;
1219
1220         nvme_queue_keep_alive_work(ctrl);
1221 }
1222
1223 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1224 {
1225         if (unlikely(ctrl->kato == 0))
1226                 return;
1227
1228         cancel_delayed_work_sync(&ctrl->ka_work);
1229 }
1230 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1231
1232 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1233                                    struct nvme_command *cmd)
1234 {
1235         unsigned int new_kato =
1236                 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1237
1238         dev_info(ctrl->device,
1239                  "keep alive interval updated from %u ms to %u ms\n",
1240                  ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1241
1242         nvme_stop_keep_alive(ctrl);
1243         ctrl->kato = new_kato;
1244         nvme_start_keep_alive(ctrl);
1245 }
1246
1247 /*
1248  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1249  * flag, thus sending any new CNS opcodes has a big chance of not working.
1250  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1251  * (but not for any later version).
1252  */
1253 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1254 {
1255         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1256                 return ctrl->vs < NVME_VS(1, 2, 0);
1257         return ctrl->vs < NVME_VS(1, 1, 0);
1258 }
1259
1260 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1261 {
1262         struct nvme_command c = { };
1263         int error;
1264
1265         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1266         c.identify.opcode = nvme_admin_identify;
1267         c.identify.cns = NVME_ID_CNS_CTRL;
1268
1269         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1270         if (!*id)
1271                 return -ENOMEM;
1272
1273         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1274                         sizeof(struct nvme_id_ctrl));
1275         if (error)
1276                 kfree(*id);
1277         return error;
1278 }
1279
1280 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1281                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1282 {
1283         const char *warn_str = "ctrl returned bogus length:";
1284         void *data = cur;
1285
1286         switch (cur->nidt) {
1287         case NVME_NIDT_EUI64:
1288                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1289                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1290                                  warn_str, cur->nidl);
1291                         return -1;
1292                 }
1293                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1294                         return NVME_NIDT_EUI64_LEN;
1295                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1296                 return NVME_NIDT_EUI64_LEN;
1297         case NVME_NIDT_NGUID:
1298                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1299                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1300                                  warn_str, cur->nidl);
1301                         return -1;
1302                 }
1303                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1304                         return NVME_NIDT_NGUID_LEN;
1305                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1306                 return NVME_NIDT_NGUID_LEN;
1307         case NVME_NIDT_UUID:
1308                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1309                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1310                                  warn_str, cur->nidl);
1311                         return -1;
1312                 }
1313                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1314                         return NVME_NIDT_UUID_LEN;
1315                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1316                 return NVME_NIDT_UUID_LEN;
1317         case NVME_NIDT_CSI:
1318                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1319                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1320                                  warn_str, cur->nidl);
1321                         return -1;
1322                 }
1323                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1324                 *csi_seen = true;
1325                 return NVME_NIDT_CSI_LEN;
1326         default:
1327                 /* Skip unknown types */
1328                 return cur->nidl;
1329         }
1330 }
1331
1332 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1333                 struct nvme_ns_ids *ids)
1334 {
1335         struct nvme_command c = { };
1336         bool csi_seen = false;
1337         int status, pos, len;
1338         void *data;
1339
1340         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1341                 return 0;
1342         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1343                 return 0;
1344
1345         c.identify.opcode = nvme_admin_identify;
1346         c.identify.nsid = cpu_to_le32(nsid);
1347         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1348
1349         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1350         if (!data)
1351                 return -ENOMEM;
1352
1353         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1354                                       NVME_IDENTIFY_DATA_SIZE);
1355         if (status) {
1356                 dev_warn(ctrl->device,
1357                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1358                         nsid, status);
1359                 goto free_data;
1360         }
1361
1362         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1363                 struct nvme_ns_id_desc *cur = data + pos;
1364
1365                 if (cur->nidl == 0)
1366                         break;
1367
1368                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1369                 if (len < 0)
1370                         break;
1371
1372                 len += sizeof(*cur);
1373         }
1374
1375         if (nvme_multi_css(ctrl) && !csi_seen) {
1376                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1377                          nsid);
1378                 status = -EINVAL;
1379         }
1380
1381 free_data:
1382         kfree(data);
1383         return status;
1384 }
1385
1386 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1387                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1388 {
1389         struct nvme_command c = { };
1390         int error;
1391
1392         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1393         c.identify.opcode = nvme_admin_identify;
1394         c.identify.nsid = cpu_to_le32(nsid);
1395         c.identify.cns = NVME_ID_CNS_NS;
1396
1397         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1398         if (!*id)
1399                 return -ENOMEM;
1400
1401         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1402         if (error) {
1403                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1404                 goto out_free_id;
1405         }
1406
1407         error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1408         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1409                 goto out_free_id;
1410
1411
1412         if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1413                 dev_info(ctrl->device,
1414                          "Ignoring bogus Namespace Identifiers\n");
1415         } else {
1416                 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1417                     !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1418                         memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1419                 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1420                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1421                         memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1422         }
1423
1424         return 0;
1425
1426 out_free_id:
1427         kfree(*id);
1428         return error;
1429 }
1430
1431 static int nvme_identify_ns_cs_indep(struct nvme_ctrl *ctrl, unsigned nsid,
1432                         struct nvme_id_ns_cs_indep **id)
1433 {
1434         struct nvme_command c = {
1435                 .identify.opcode        = nvme_admin_identify,
1436                 .identify.nsid          = cpu_to_le32(nsid),
1437                 .identify.cns           = NVME_ID_CNS_NS_CS_INDEP,
1438         };
1439         int ret;
1440
1441         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1442         if (!*id)
1443                 return -ENOMEM;
1444
1445         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1446         if (ret) {
1447                 dev_warn(ctrl->device,
1448                          "Identify namespace (CS independent) failed (%d)\n",
1449                          ret);
1450                 kfree(*id);
1451                 return ret;
1452         }
1453
1454         return 0;
1455 }
1456
1457 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1458                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1459 {
1460         union nvme_result res = { 0 };
1461         struct nvme_command c = { };
1462         int ret;
1463
1464         c.features.opcode = op;
1465         c.features.fid = cpu_to_le32(fid);
1466         c.features.dword11 = cpu_to_le32(dword11);
1467
1468         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1469                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1470         if (ret >= 0 && result)
1471                 *result = le32_to_cpu(res.u32);
1472         return ret;
1473 }
1474
1475 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1476                       unsigned int dword11, void *buffer, size_t buflen,
1477                       u32 *result)
1478 {
1479         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1480                              buflen, result);
1481 }
1482 EXPORT_SYMBOL_GPL(nvme_set_features);
1483
1484 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1485                       unsigned int dword11, void *buffer, size_t buflen,
1486                       u32 *result)
1487 {
1488         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1489                              buflen, result);
1490 }
1491 EXPORT_SYMBOL_GPL(nvme_get_features);
1492
1493 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1494 {
1495         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1496         u32 result;
1497         int status, nr_io_queues;
1498
1499         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1500                         &result);
1501         if (status < 0)
1502                 return status;
1503
1504         /*
1505          * Degraded controllers might return an error when setting the queue
1506          * count.  We still want to be able to bring them online and offer
1507          * access to the admin queue, as that might be only way to fix them up.
1508          */
1509         if (status > 0) {
1510                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1511                 *count = 0;
1512         } else {
1513                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1514                 *count = min(*count, nr_io_queues);
1515         }
1516
1517         return 0;
1518 }
1519 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1520
1521 #define NVME_AEN_SUPPORTED \
1522         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1523          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1524
1525 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1526 {
1527         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1528         int status;
1529
1530         if (!supported_aens)
1531                 return;
1532
1533         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1534                         NULL, 0, &result);
1535         if (status)
1536                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1537                          supported_aens);
1538
1539         queue_work(nvme_wq, &ctrl->async_event_work);
1540 }
1541
1542 static int nvme_ns_open(struct nvme_ns *ns)
1543 {
1544
1545         /* should never be called due to GENHD_FL_HIDDEN */
1546         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1547                 goto fail;
1548         if (!nvme_get_ns(ns))
1549                 goto fail;
1550         if (!try_module_get(ns->ctrl->ops->module))
1551                 goto fail_put_ns;
1552
1553         return 0;
1554
1555 fail_put_ns:
1556         nvme_put_ns(ns);
1557 fail:
1558         return -ENXIO;
1559 }
1560
1561 static void nvme_ns_release(struct nvme_ns *ns)
1562 {
1563
1564         module_put(ns->ctrl->ops->module);
1565         nvme_put_ns(ns);
1566 }
1567
1568 static int nvme_open(struct block_device *bdev, fmode_t mode)
1569 {
1570         return nvme_ns_open(bdev->bd_disk->private_data);
1571 }
1572
1573 static void nvme_release(struct gendisk *disk, fmode_t mode)
1574 {
1575         nvme_ns_release(disk->private_data);
1576 }
1577
1578 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1579 {
1580         /* some standard values */
1581         geo->heads = 1 << 6;
1582         geo->sectors = 1 << 5;
1583         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1584         return 0;
1585 }
1586
1587 #ifdef CONFIG_BLK_DEV_INTEGRITY
1588 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1589                                 u32 max_integrity_segments)
1590 {
1591         struct blk_integrity integrity = { };
1592
1593         switch (ns->pi_type) {
1594         case NVME_NS_DPS_PI_TYPE3:
1595                 switch (ns->guard_type) {
1596                 case NVME_NVM_NS_16B_GUARD:
1597                         integrity.profile = &t10_pi_type3_crc;
1598                         integrity.tag_size = sizeof(u16) + sizeof(u32);
1599                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1600                         break;
1601                 case NVME_NVM_NS_64B_GUARD:
1602                         integrity.profile = &ext_pi_type3_crc64;
1603                         integrity.tag_size = sizeof(u16) + 6;
1604                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1605                         break;
1606                 default:
1607                         integrity.profile = NULL;
1608                         break;
1609                 }
1610                 break;
1611         case NVME_NS_DPS_PI_TYPE1:
1612         case NVME_NS_DPS_PI_TYPE2:
1613                 switch (ns->guard_type) {
1614                 case NVME_NVM_NS_16B_GUARD:
1615                         integrity.profile = &t10_pi_type1_crc;
1616                         integrity.tag_size = sizeof(u16);
1617                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1618                         break;
1619                 case NVME_NVM_NS_64B_GUARD:
1620                         integrity.profile = &ext_pi_type1_crc64;
1621                         integrity.tag_size = sizeof(u16);
1622                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1623                         break;
1624                 default:
1625                         integrity.profile = NULL;
1626                         break;
1627                 }
1628                 break;
1629         default:
1630                 integrity.profile = NULL;
1631                 break;
1632         }
1633
1634         integrity.tuple_size = ns->ms;
1635         blk_integrity_register(disk, &integrity);
1636         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1637 }
1638 #else
1639 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1640                                 u32 max_integrity_segments)
1641 {
1642 }
1643 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1644
1645 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1646 {
1647         struct nvme_ctrl *ctrl = ns->ctrl;
1648         struct request_queue *queue = disk->queue;
1649         u32 size = queue_logical_block_size(queue);
1650
1651         if (ctrl->max_discard_sectors == 0) {
1652                 blk_queue_max_discard_sectors(queue, 0);
1653                 return;
1654         }
1655
1656         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1657                         NVME_DSM_MAX_RANGES);
1658
1659         queue->limits.discard_granularity = size;
1660
1661         /* If discard is already enabled, don't reset queue limits */
1662         if (queue->limits.max_discard_sectors)
1663                 return;
1664
1665         if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1666                 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1667
1668         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1669         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1670
1671         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1672                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1673 }
1674
1675 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1676 {
1677         return uuid_equal(&a->uuid, &b->uuid) &&
1678                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1679                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1680                 a->csi == b->csi;
1681 }
1682
1683 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1684 {
1685         bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1686         unsigned lbaf = nvme_lbaf_index(id->flbas);
1687         struct nvme_ctrl *ctrl = ns->ctrl;
1688         struct nvme_command c = { };
1689         struct nvme_id_ns_nvm *nvm;
1690         int ret = 0;
1691         u32 elbaf;
1692
1693         ns->pi_size = 0;
1694         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1695         if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1696                 ns->pi_size = sizeof(struct t10_pi_tuple);
1697                 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1698                 goto set_pi;
1699         }
1700
1701         nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1702         if (!nvm)
1703                 return -ENOMEM;
1704
1705         c.identify.opcode = nvme_admin_identify;
1706         c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1707         c.identify.cns = NVME_ID_CNS_CS_NS;
1708         c.identify.csi = NVME_CSI_NVM;
1709
1710         ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1711         if (ret)
1712                 goto free_data;
1713
1714         elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1715
1716         /* no support for storage tag formats right now */
1717         if (nvme_elbaf_sts(elbaf))
1718                 goto free_data;
1719
1720         ns->guard_type = nvme_elbaf_guard_type(elbaf);
1721         switch (ns->guard_type) {
1722         case NVME_NVM_NS_64B_GUARD:
1723                 ns->pi_size = sizeof(struct crc64_pi_tuple);
1724                 break;
1725         case NVME_NVM_NS_16B_GUARD:
1726                 ns->pi_size = sizeof(struct t10_pi_tuple);
1727                 break;
1728         default:
1729                 break;
1730         }
1731
1732 free_data:
1733         kfree(nvm);
1734 set_pi:
1735         if (ns->pi_size && (first || ns->ms == ns->pi_size))
1736                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1737         else
1738                 ns->pi_type = 0;
1739
1740         return ret;
1741 }
1742
1743 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1744 {
1745         struct nvme_ctrl *ctrl = ns->ctrl;
1746
1747         if (nvme_init_ms(ns, id))
1748                 return;
1749
1750         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1751         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1752                 return;
1753
1754         if (ctrl->ops->flags & NVME_F_FABRICS) {
1755                 /*
1756                  * The NVMe over Fabrics specification only supports metadata as
1757                  * part of the extended data LBA.  We rely on HCA/HBA support to
1758                  * remap the separate metadata buffer from the block layer.
1759                  */
1760                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1761                         return;
1762
1763                 ns->features |= NVME_NS_EXT_LBAS;
1764
1765                 /*
1766                  * The current fabrics transport drivers support namespace
1767                  * metadata formats only if nvme_ns_has_pi() returns true.
1768                  * Suppress support for all other formats so the namespace will
1769                  * have a 0 capacity and not be usable through the block stack.
1770                  *
1771                  * Note, this check will need to be modified if any drivers
1772                  * gain the ability to use other metadata formats.
1773                  */
1774                 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1775                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1776         } else {
1777                 /*
1778                  * For PCIe controllers, we can't easily remap the separate
1779                  * metadata buffer from the block layer and thus require a
1780                  * separate metadata buffer for block layer metadata/PI support.
1781                  * We allow extended LBAs for the passthrough interface, though.
1782                  */
1783                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1784                         ns->features |= NVME_NS_EXT_LBAS;
1785                 else
1786                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1787         }
1788 }
1789
1790 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1791                 struct request_queue *q)
1792 {
1793         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1794
1795         if (ctrl->max_hw_sectors) {
1796                 u32 max_segments =
1797                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1798
1799                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1800                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1801                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1802         }
1803         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1804         blk_queue_dma_alignment(q, 3);
1805         blk_queue_write_cache(q, vwc, vwc);
1806 }
1807
1808 static void nvme_update_disk_info(struct gendisk *disk,
1809                 struct nvme_ns *ns, struct nvme_id_ns *id)
1810 {
1811         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1812         unsigned short bs = 1 << ns->lba_shift;
1813         u32 atomic_bs, phys_bs, io_opt = 0;
1814
1815         /*
1816          * The block layer can't support LBA sizes larger than the page size
1817          * yet, so catch this early and don't allow block I/O.
1818          */
1819         if (ns->lba_shift > PAGE_SHIFT) {
1820                 capacity = 0;
1821                 bs = (1 << 9);
1822         }
1823
1824         blk_integrity_unregister(disk);
1825
1826         atomic_bs = phys_bs = bs;
1827         if (id->nabo == 0) {
1828                 /*
1829                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1830                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1831                  * 0 then AWUPF must be used instead.
1832                  */
1833                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1834                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1835                 else
1836                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1837         }
1838
1839         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1840                 /* NPWG = Namespace Preferred Write Granularity */
1841                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1842                 /* NOWS = Namespace Optimal Write Size */
1843                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1844         }
1845
1846         blk_queue_logical_block_size(disk->queue, bs);
1847         /*
1848          * Linux filesystems assume writing a single physical block is
1849          * an atomic operation. Hence limit the physical block size to the
1850          * value of the Atomic Write Unit Power Fail parameter.
1851          */
1852         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1853         blk_queue_io_min(disk->queue, phys_bs);
1854         blk_queue_io_opt(disk->queue, io_opt);
1855
1856         /*
1857          * Register a metadata profile for PI, or the plain non-integrity NVMe
1858          * metadata masquerading as Type 0 if supported, otherwise reject block
1859          * I/O to namespaces with metadata except when the namespace supports
1860          * PI, as it can strip/insert in that case.
1861          */
1862         if (ns->ms) {
1863                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1864                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1865                         nvme_init_integrity(disk, ns,
1866                                             ns->ctrl->max_integrity_segments);
1867                 else if (!nvme_ns_has_pi(ns))
1868                         capacity = 0;
1869         }
1870
1871         set_capacity_and_notify(disk, capacity);
1872
1873         nvme_config_discard(disk, ns);
1874         blk_queue_max_write_zeroes_sectors(disk->queue,
1875                                            ns->ctrl->max_zeroes_sectors);
1876 }
1877
1878 static inline bool nvme_first_scan(struct gendisk *disk)
1879 {
1880         /* nvme_alloc_ns() scans the disk prior to adding it */
1881         return !disk_live(disk);
1882 }
1883
1884 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1885 {
1886         struct nvme_ctrl *ctrl = ns->ctrl;
1887         u32 iob;
1888
1889         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1890             is_power_of_2(ctrl->max_hw_sectors))
1891                 iob = ctrl->max_hw_sectors;
1892         else
1893                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1894
1895         if (!iob)
1896                 return;
1897
1898         if (!is_power_of_2(iob)) {
1899                 if (nvme_first_scan(ns->disk))
1900                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1901                                 ns->disk->disk_name, iob);
1902                 return;
1903         }
1904
1905         if (blk_queue_is_zoned(ns->disk->queue)) {
1906                 if (nvme_first_scan(ns->disk))
1907                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1908                                 ns->disk->disk_name);
1909                 return;
1910         }
1911
1912         blk_queue_chunk_sectors(ns->queue, iob);
1913 }
1914
1915 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1916 {
1917         unsigned lbaf = nvme_lbaf_index(id->flbas);
1918         int ret;
1919
1920         blk_mq_freeze_queue(ns->disk->queue);
1921         ns->lba_shift = id->lbaf[lbaf].ds;
1922         nvme_set_queue_limits(ns->ctrl, ns->queue);
1923
1924         nvme_configure_metadata(ns, id);
1925         nvme_set_chunk_sectors(ns, id);
1926         nvme_update_disk_info(ns->disk, ns, id);
1927
1928         if (ns->head->ids.csi == NVME_CSI_ZNS) {
1929                 ret = nvme_update_zone_info(ns, lbaf);
1930                 if (ret)
1931                         goto out_unfreeze;
1932         }
1933
1934         set_disk_ro(ns->disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1935                 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1936         set_bit(NVME_NS_READY, &ns->flags);
1937         blk_mq_unfreeze_queue(ns->disk->queue);
1938
1939         if (blk_queue_is_zoned(ns->queue)) {
1940                 ret = nvme_revalidate_zones(ns);
1941                 if (ret && !nvme_first_scan(ns->disk))
1942                         return ret;
1943         }
1944
1945         if (nvme_ns_head_multipath(ns->head)) {
1946                 blk_mq_freeze_queue(ns->head->disk->queue);
1947                 nvme_update_disk_info(ns->head->disk, ns, id);
1948                 set_disk_ro(ns->head->disk,
1949                             (id->nsattr & NVME_NS_ATTR_RO) ||
1950                                     test_bit(NVME_NS_FORCE_RO, &ns->flags));
1951                 nvme_mpath_revalidate_paths(ns);
1952                 blk_stack_limits(&ns->head->disk->queue->limits,
1953                                  &ns->queue->limits, 0);
1954                 disk_update_readahead(ns->head->disk);
1955                 blk_mq_unfreeze_queue(ns->head->disk->queue);
1956         }
1957         return 0;
1958
1959 out_unfreeze:
1960         /*
1961          * If probing fails due an unsupported feature, hide the block device,
1962          * but still allow other access.
1963          */
1964         if (ret == -ENODEV) {
1965                 ns->disk->flags |= GENHD_FL_HIDDEN;
1966                 set_bit(NVME_NS_READY, &ns->flags);
1967                 ret = 0;
1968         }
1969         blk_mq_unfreeze_queue(ns->disk->queue);
1970         return ret;
1971 }
1972
1973 static char nvme_pr_type(enum pr_type type)
1974 {
1975         switch (type) {
1976         case PR_WRITE_EXCLUSIVE:
1977                 return 1;
1978         case PR_EXCLUSIVE_ACCESS:
1979                 return 2;
1980         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1981                 return 3;
1982         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1983                 return 4;
1984         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1985                 return 5;
1986         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1987                 return 6;
1988         default:
1989                 return 0;
1990         }
1991 }
1992
1993 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1994                 struct nvme_command *c, u8 data[16])
1995 {
1996         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1997         int srcu_idx = srcu_read_lock(&head->srcu);
1998         struct nvme_ns *ns = nvme_find_path(head);
1999         int ret = -EWOULDBLOCK;
2000
2001         if (ns) {
2002                 c->common.nsid = cpu_to_le32(ns->head->ns_id);
2003                 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
2004         }
2005         srcu_read_unlock(&head->srcu, srcu_idx);
2006         return ret;
2007 }
2008         
2009 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2010                 u8 data[16])
2011 {
2012         c->common.nsid = cpu_to_le32(ns->head->ns_id);
2013         return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2014 }
2015
2016 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2017                                 u64 key, u64 sa_key, u8 op)
2018 {
2019         struct nvme_command c = { };
2020         u8 data[16] = { 0, };
2021
2022         put_unaligned_le64(key, &data[0]);
2023         put_unaligned_le64(sa_key, &data[8]);
2024
2025         c.common.opcode = op;
2026         c.common.cdw10 = cpu_to_le32(cdw10);
2027
2028         if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2029             bdev->bd_disk->fops == &nvme_ns_head_ops)
2030                 return nvme_send_ns_head_pr_command(bdev, &c, data);
2031         return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2032 }
2033
2034 static int nvme_pr_register(struct block_device *bdev, u64 old,
2035                 u64 new, unsigned flags)
2036 {
2037         u32 cdw10;
2038
2039         if (flags & ~PR_FL_IGNORE_KEY)
2040                 return -EOPNOTSUPP;
2041
2042         cdw10 = old ? 2 : 0;
2043         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2044         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2045         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2046 }
2047
2048 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2049                 enum pr_type type, unsigned flags)
2050 {
2051         u32 cdw10;
2052
2053         if (flags & ~PR_FL_IGNORE_KEY)
2054                 return -EOPNOTSUPP;
2055
2056         cdw10 = nvme_pr_type(type) << 8;
2057         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2058         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2059 }
2060
2061 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2062                 enum pr_type type, bool abort)
2063 {
2064         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2065
2066         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2067 }
2068
2069 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2070 {
2071         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2072
2073         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2074 }
2075
2076 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2077 {
2078         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2079
2080         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2081 }
2082
2083 const struct pr_ops nvme_pr_ops = {
2084         .pr_register    = nvme_pr_register,
2085         .pr_reserve     = nvme_pr_reserve,
2086         .pr_release     = nvme_pr_release,
2087         .pr_preempt     = nvme_pr_preempt,
2088         .pr_clear       = nvme_pr_clear,
2089 };
2090
2091 #ifdef CONFIG_BLK_SED_OPAL
2092 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2093                 bool send)
2094 {
2095         struct nvme_ctrl *ctrl = data;
2096         struct nvme_command cmd = { };
2097
2098         if (send)
2099                 cmd.common.opcode = nvme_admin_security_send;
2100         else
2101                 cmd.common.opcode = nvme_admin_security_recv;
2102         cmd.common.nsid = 0;
2103         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2104         cmd.common.cdw11 = cpu_to_le32(len);
2105
2106         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2107                         NVME_QID_ANY, 1, 0);
2108 }
2109 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2110 #endif /* CONFIG_BLK_SED_OPAL */
2111
2112 #ifdef CONFIG_BLK_DEV_ZONED
2113 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2114                 unsigned int nr_zones, report_zones_cb cb, void *data)
2115 {
2116         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2117                         data);
2118 }
2119 #else
2120 #define nvme_report_zones       NULL
2121 #endif /* CONFIG_BLK_DEV_ZONED */
2122
2123 static const struct block_device_operations nvme_bdev_ops = {
2124         .owner          = THIS_MODULE,
2125         .ioctl          = nvme_ioctl,
2126         .open           = nvme_open,
2127         .release        = nvme_release,
2128         .getgeo         = nvme_getgeo,
2129         .report_zones   = nvme_report_zones,
2130         .pr_ops         = &nvme_pr_ops,
2131 };
2132
2133 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 timeout, bool enabled)
2134 {
2135         unsigned long timeout_jiffies = ((timeout + 1) * HZ / 2) + jiffies;
2136         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2137         int ret;
2138
2139         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2140                 if (csts == ~0)
2141                         return -ENODEV;
2142                 if ((csts & NVME_CSTS_RDY) == bit)
2143                         break;
2144
2145                 usleep_range(1000, 2000);
2146                 if (fatal_signal_pending(current))
2147                         return -EINTR;
2148                 if (time_after(jiffies, timeout_jiffies)) {
2149                         dev_err(ctrl->device,
2150                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2151                                 enabled ? "initialisation" : "reset", csts);
2152                         return -ENODEV;
2153                 }
2154         }
2155
2156         return ret;
2157 }
2158
2159 /*
2160  * If the device has been passed off to us in an enabled state, just clear
2161  * the enabled bit.  The spec says we should set the 'shutdown notification
2162  * bits', but doing so may cause the device to complete commands to the
2163  * admin queue ... and we don't know what memory that might be pointing at!
2164  */
2165 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2166 {
2167         int ret;
2168
2169         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2170         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2171
2172         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2173         if (ret)
2174                 return ret;
2175
2176         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2177                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2178
2179         return nvme_wait_ready(ctrl, NVME_CAP_TIMEOUT(ctrl->cap), false);
2180 }
2181 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2182
2183 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2184 {
2185         unsigned dev_page_min;
2186         u32 timeout;
2187         int ret;
2188
2189         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2190         if (ret) {
2191                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2192                 return ret;
2193         }
2194         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2195
2196         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2197                 dev_err(ctrl->device,
2198                         "Minimum device page size %u too large for host (%u)\n",
2199                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2200                 return -ENODEV;
2201         }
2202
2203         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2204                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2205         else
2206                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2207
2208         if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2209                 u32 crto;
2210
2211                 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2212                 if (ret) {
2213                         dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2214                                 ret);
2215                         return ret;
2216                 }
2217
2218                 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2219                         ctrl->ctrl_config |= NVME_CC_CRIME;
2220                         timeout = NVME_CRTO_CRIMT(crto);
2221                 } else {
2222                         timeout = NVME_CRTO_CRWMT(crto);
2223                 }
2224         } else {
2225                 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2226         }
2227
2228         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2229         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2230         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2231         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2232         if (ret)
2233                 return ret;
2234
2235         /* Flush write to device (required if transport is PCI) */
2236         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2237         if (ret)
2238                 return ret;
2239
2240         ctrl->ctrl_config |= NVME_CC_ENABLE;
2241         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2242         if (ret)
2243                 return ret;
2244         return nvme_wait_ready(ctrl, timeout, true);
2245 }
2246 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2247
2248 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2249 {
2250         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2251         u32 csts;
2252         int ret;
2253
2254         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2255         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2256
2257         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2258         if (ret)
2259                 return ret;
2260
2261         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2262                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2263                         break;
2264
2265                 msleep(100);
2266                 if (fatal_signal_pending(current))
2267                         return -EINTR;
2268                 if (time_after(jiffies, timeout)) {
2269                         dev_err(ctrl->device,
2270                                 "Device shutdown incomplete; abort shutdown\n");
2271                         return -ENODEV;
2272                 }
2273         }
2274
2275         return ret;
2276 }
2277 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2278
2279 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2280 {
2281         __le64 ts;
2282         int ret;
2283
2284         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2285                 return 0;
2286
2287         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2288         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2289                         NULL);
2290         if (ret)
2291                 dev_warn_once(ctrl->device,
2292                         "could not set timestamp (%d)\n", ret);
2293         return ret;
2294 }
2295
2296 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2297 {
2298         struct nvme_feat_host_behavior *host;
2299         u8 acre = 0, lbafee = 0;
2300         int ret;
2301
2302         /* Don't bother enabling the feature if retry delay is not reported */
2303         if (ctrl->crdt[0])
2304                 acre = NVME_ENABLE_ACRE;
2305         if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2306                 lbafee = NVME_ENABLE_LBAFEE;
2307
2308         if (!acre && !lbafee)
2309                 return 0;
2310
2311         host = kzalloc(sizeof(*host), GFP_KERNEL);
2312         if (!host)
2313                 return 0;
2314
2315         host->acre = acre;
2316         host->lbafee = lbafee;
2317         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2318                                 host, sizeof(*host), NULL);
2319         kfree(host);
2320         return ret;
2321 }
2322
2323 /*
2324  * The function checks whether the given total (exlat + enlat) latency of
2325  * a power state allows the latter to be used as an APST transition target.
2326  * It does so by comparing the latency to the primary and secondary latency
2327  * tolerances defined by module params. If there's a match, the corresponding
2328  * timeout value is returned and the matching tolerance index (1 or 2) is
2329  * reported.
2330  */
2331 static bool nvme_apst_get_transition_time(u64 total_latency,
2332                 u64 *transition_time, unsigned *last_index)
2333 {
2334         if (total_latency <= apst_primary_latency_tol_us) {
2335                 if (*last_index == 1)
2336                         return false;
2337                 *last_index = 1;
2338                 *transition_time = apst_primary_timeout_ms;
2339                 return true;
2340         }
2341         if (apst_secondary_timeout_ms &&
2342                 total_latency <= apst_secondary_latency_tol_us) {
2343                 if (*last_index <= 2)
2344                         return false;
2345                 *last_index = 2;
2346                 *transition_time = apst_secondary_timeout_ms;
2347                 return true;
2348         }
2349         return false;
2350 }
2351
2352 /*
2353  * APST (Autonomous Power State Transition) lets us program a table of power
2354  * state transitions that the controller will perform automatically.
2355  *
2356  * Depending on module params, one of the two supported techniques will be used:
2357  *
2358  * - If the parameters provide explicit timeouts and tolerances, they will be
2359  *   used to build a table with up to 2 non-operational states to transition to.
2360  *   The default parameter values were selected based on the values used by
2361  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2362  *   regeneration of the APST table in the event of switching between external
2363  *   and battery power, the timeouts and tolerances reflect a compromise
2364  *   between values used by Microsoft for AC and battery scenarios.
2365  * - If not, we'll configure the table with a simple heuristic: we are willing
2366  *   to spend at most 2% of the time transitioning between power states.
2367  *   Therefore, when running in any given state, we will enter the next
2368  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2369  *   microseconds, as long as that state's exit latency is under the requested
2370  *   maximum latency.
2371  *
2372  * We will not autonomously enter any non-operational state for which the total
2373  * latency exceeds ps_max_latency_us.
2374  *
2375  * Users can set ps_max_latency_us to zero to turn off APST.
2376  */
2377 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2378 {
2379         struct nvme_feat_auto_pst *table;
2380         unsigned apste = 0;
2381         u64 max_lat_us = 0;
2382         __le64 target = 0;
2383         int max_ps = -1;
2384         int state;
2385         int ret;
2386         unsigned last_lt_index = UINT_MAX;
2387
2388         /*
2389          * If APST isn't supported or if we haven't been initialized yet,
2390          * then don't do anything.
2391          */
2392         if (!ctrl->apsta)
2393                 return 0;
2394
2395         if (ctrl->npss > 31) {
2396                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2397                 return 0;
2398         }
2399
2400         table = kzalloc(sizeof(*table), GFP_KERNEL);
2401         if (!table)
2402                 return 0;
2403
2404         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2405                 /* Turn off APST. */
2406                 dev_dbg(ctrl->device, "APST disabled\n");
2407                 goto done;
2408         }
2409
2410         /*
2411          * Walk through all states from lowest- to highest-power.
2412          * According to the spec, lower-numbered states use more power.  NPSS,
2413          * despite the name, is the index of the lowest-power state, not the
2414          * number of states.
2415          */
2416         for (state = (int)ctrl->npss; state >= 0; state--) {
2417                 u64 total_latency_us, exit_latency_us, transition_ms;
2418
2419                 if (target)
2420                         table->entries[state] = target;
2421
2422                 /*
2423                  * Don't allow transitions to the deepest state if it's quirked
2424                  * off.
2425                  */
2426                 if (state == ctrl->npss &&
2427                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2428                         continue;
2429
2430                 /*
2431                  * Is this state a useful non-operational state for higher-power
2432                  * states to autonomously transition to?
2433                  */
2434                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2435                         continue;
2436
2437                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2438                 if (exit_latency_us > ctrl->ps_max_latency_us)
2439                         continue;
2440
2441                 total_latency_us = exit_latency_us +
2442                         le32_to_cpu(ctrl->psd[state].entry_lat);
2443
2444                 /*
2445                  * This state is good. It can be used as the APST idle target
2446                  * for higher power states.
2447                  */
2448                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2449                         if (!nvme_apst_get_transition_time(total_latency_us,
2450                                         &transition_ms, &last_lt_index))
2451                                 continue;
2452                 } else {
2453                         transition_ms = total_latency_us + 19;
2454                         do_div(transition_ms, 20);
2455                         if (transition_ms > (1 << 24) - 1)
2456                                 transition_ms = (1 << 24) - 1;
2457                 }
2458
2459                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2460                 if (max_ps == -1)
2461                         max_ps = state;
2462                 if (total_latency_us > max_lat_us)
2463                         max_lat_us = total_latency_us;
2464         }
2465
2466         if (max_ps == -1)
2467                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2468         else
2469                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2470                         max_ps, max_lat_us, (int)sizeof(*table), table);
2471         apste = 1;
2472
2473 done:
2474         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2475                                 table, sizeof(*table), NULL);
2476         if (ret)
2477                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2478         kfree(table);
2479         return ret;
2480 }
2481
2482 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2483 {
2484         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2485         u64 latency;
2486
2487         switch (val) {
2488         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2489         case PM_QOS_LATENCY_ANY:
2490                 latency = U64_MAX;
2491                 break;
2492
2493         default:
2494                 latency = val;
2495         }
2496
2497         if (ctrl->ps_max_latency_us != latency) {
2498                 ctrl->ps_max_latency_us = latency;
2499                 if (ctrl->state == NVME_CTRL_LIVE)
2500                         nvme_configure_apst(ctrl);
2501         }
2502 }
2503
2504 struct nvme_core_quirk_entry {
2505         /*
2506          * NVMe model and firmware strings are padded with spaces.  For
2507          * simplicity, strings in the quirk table are padded with NULLs
2508          * instead.
2509          */
2510         u16 vid;
2511         const char *mn;
2512         const char *fr;
2513         unsigned long quirks;
2514 };
2515
2516 static const struct nvme_core_quirk_entry core_quirks[] = {
2517         {
2518                 /*
2519                  * This Toshiba device seems to die using any APST states.  See:
2520                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2521                  */
2522                 .vid = 0x1179,
2523                 .mn = "THNSF5256GPUK TOSHIBA",
2524                 .quirks = NVME_QUIRK_NO_APST,
2525         },
2526         {
2527                 /*
2528                  * This LiteON CL1-3D*-Q11 firmware version has a race
2529                  * condition associated with actions related to suspend to idle
2530                  * LiteON has resolved the problem in future firmware
2531                  */
2532                 .vid = 0x14a4,
2533                 .fr = "22301111",
2534                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2535         },
2536         {
2537                 /*
2538                  * This Kioxia CD6-V Series / HPE PE8030 device times out and
2539                  * aborts I/O during any load, but more easily reproducible
2540                  * with discards (fstrim).
2541                  *
2542                  * The device is left in a state where it is also not possible
2543                  * to use "nvme set-feature" to disable APST, but booting with
2544                  * nvme_core.default_ps_max_latency=0 works.
2545                  */
2546                 .vid = 0x1e0f,
2547                 .mn = "KCD6XVUL6T40",
2548                 .quirks = NVME_QUIRK_NO_APST,
2549         }
2550 };
2551
2552 /* match is null-terminated but idstr is space-padded. */
2553 static bool string_matches(const char *idstr, const char *match, size_t len)
2554 {
2555         size_t matchlen;
2556
2557         if (!match)
2558                 return true;
2559
2560         matchlen = strlen(match);
2561         WARN_ON_ONCE(matchlen > len);
2562
2563         if (memcmp(idstr, match, matchlen))
2564                 return false;
2565
2566         for (; matchlen < len; matchlen++)
2567                 if (idstr[matchlen] != ' ')
2568                         return false;
2569
2570         return true;
2571 }
2572
2573 static bool quirk_matches(const struct nvme_id_ctrl *id,
2574                           const struct nvme_core_quirk_entry *q)
2575 {
2576         return q->vid == le16_to_cpu(id->vid) &&
2577                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2578                 string_matches(id->fr, q->fr, sizeof(id->fr));
2579 }
2580
2581 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2582                 struct nvme_id_ctrl *id)
2583 {
2584         size_t nqnlen;
2585         int off;
2586
2587         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2588                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2589                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2590                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2591                         return;
2592                 }
2593
2594                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2595                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2596         }
2597
2598         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2599         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2600                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2601                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2602         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2603         off += sizeof(id->sn);
2604         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2605         off += sizeof(id->mn);
2606         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2607 }
2608
2609 static void nvme_release_subsystem(struct device *dev)
2610 {
2611         struct nvme_subsystem *subsys =
2612                 container_of(dev, struct nvme_subsystem, dev);
2613
2614         if (subsys->instance >= 0)
2615                 ida_free(&nvme_instance_ida, subsys->instance);
2616         kfree(subsys);
2617 }
2618
2619 static void nvme_destroy_subsystem(struct kref *ref)
2620 {
2621         struct nvme_subsystem *subsys =
2622                         container_of(ref, struct nvme_subsystem, ref);
2623
2624         mutex_lock(&nvme_subsystems_lock);
2625         list_del(&subsys->entry);
2626         mutex_unlock(&nvme_subsystems_lock);
2627
2628         ida_destroy(&subsys->ns_ida);
2629         device_del(&subsys->dev);
2630         put_device(&subsys->dev);
2631 }
2632
2633 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2634 {
2635         kref_put(&subsys->ref, nvme_destroy_subsystem);
2636 }
2637
2638 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2639 {
2640         struct nvme_subsystem *subsys;
2641
2642         lockdep_assert_held(&nvme_subsystems_lock);
2643
2644         /*
2645          * Fail matches for discovery subsystems. This results
2646          * in each discovery controller bound to a unique subsystem.
2647          * This avoids issues with validating controller values
2648          * that can only be true when there is a single unique subsystem.
2649          * There may be multiple and completely independent entities
2650          * that provide discovery controllers.
2651          */
2652         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2653                 return NULL;
2654
2655         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2656                 if (strcmp(subsys->subnqn, subsysnqn))
2657                         continue;
2658                 if (!kref_get_unless_zero(&subsys->ref))
2659                         continue;
2660                 return subsys;
2661         }
2662
2663         return NULL;
2664 }
2665
2666 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2667         struct device_attribute subsys_attr_##_name = \
2668                 __ATTR(_name, _mode, _show, NULL)
2669
2670 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2671                                     struct device_attribute *attr,
2672                                     char *buf)
2673 {
2674         struct nvme_subsystem *subsys =
2675                 container_of(dev, struct nvme_subsystem, dev);
2676
2677         return sysfs_emit(buf, "%s\n", subsys->subnqn);
2678 }
2679 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2680
2681 static ssize_t nvme_subsys_show_type(struct device *dev,
2682                                     struct device_attribute *attr,
2683                                     char *buf)
2684 {
2685         struct nvme_subsystem *subsys =
2686                 container_of(dev, struct nvme_subsystem, dev);
2687
2688         switch (subsys->subtype) {
2689         case NVME_NQN_DISC:
2690                 return sysfs_emit(buf, "discovery\n");
2691         case NVME_NQN_NVME:
2692                 return sysfs_emit(buf, "nvm\n");
2693         default:
2694                 return sysfs_emit(buf, "reserved\n");
2695         }
2696 }
2697 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2698
2699 #define nvme_subsys_show_str_function(field)                            \
2700 static ssize_t subsys_##field##_show(struct device *dev,                \
2701                             struct device_attribute *attr, char *buf)   \
2702 {                                                                       \
2703         struct nvme_subsystem *subsys =                                 \
2704                 container_of(dev, struct nvme_subsystem, dev);          \
2705         return sysfs_emit(buf, "%.*s\n",                                \
2706                            (int)sizeof(subsys->field), subsys->field);  \
2707 }                                                                       \
2708 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2709
2710 nvme_subsys_show_str_function(model);
2711 nvme_subsys_show_str_function(serial);
2712 nvme_subsys_show_str_function(firmware_rev);
2713
2714 static struct attribute *nvme_subsys_attrs[] = {
2715         &subsys_attr_model.attr,
2716         &subsys_attr_serial.attr,
2717         &subsys_attr_firmware_rev.attr,
2718         &subsys_attr_subsysnqn.attr,
2719         &subsys_attr_subsystype.attr,
2720 #ifdef CONFIG_NVME_MULTIPATH
2721         &subsys_attr_iopolicy.attr,
2722 #endif
2723         NULL,
2724 };
2725
2726 static const struct attribute_group nvme_subsys_attrs_group = {
2727         .attrs = nvme_subsys_attrs,
2728 };
2729
2730 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2731         &nvme_subsys_attrs_group,
2732         NULL,
2733 };
2734
2735 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2736 {
2737         return ctrl->opts && ctrl->opts->discovery_nqn;
2738 }
2739
2740 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2741                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2742 {
2743         struct nvme_ctrl *tmp;
2744
2745         lockdep_assert_held(&nvme_subsystems_lock);
2746
2747         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2748                 if (nvme_state_terminal(tmp))
2749                         continue;
2750
2751                 if (tmp->cntlid == ctrl->cntlid) {
2752                         dev_err(ctrl->device,
2753                                 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2754                                 ctrl->cntlid, dev_name(tmp->device),
2755                                 subsys->subnqn);
2756                         return false;
2757                 }
2758
2759                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2760                     nvme_discovery_ctrl(ctrl))
2761                         continue;
2762
2763                 dev_err(ctrl->device,
2764                         "Subsystem does not support multiple controllers\n");
2765                 return false;
2766         }
2767
2768         return true;
2769 }
2770
2771 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2772 {
2773         struct nvme_subsystem *subsys, *found;
2774         int ret;
2775
2776         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2777         if (!subsys)
2778                 return -ENOMEM;
2779
2780         subsys->instance = -1;
2781         mutex_init(&subsys->lock);
2782         kref_init(&subsys->ref);
2783         INIT_LIST_HEAD(&subsys->ctrls);
2784         INIT_LIST_HEAD(&subsys->nsheads);
2785         nvme_init_subnqn(subsys, ctrl, id);
2786         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2787         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2788         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2789         subsys->vendor_id = le16_to_cpu(id->vid);
2790         subsys->cmic = id->cmic;
2791
2792         /* Versions prior to 1.4 don't necessarily report a valid type */
2793         if (id->cntrltype == NVME_CTRL_DISC ||
2794             !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2795                 subsys->subtype = NVME_NQN_DISC;
2796         else
2797                 subsys->subtype = NVME_NQN_NVME;
2798
2799         if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2800                 dev_err(ctrl->device,
2801                         "Subsystem %s is not a discovery controller",
2802                         subsys->subnqn);
2803                 kfree(subsys);
2804                 return -EINVAL;
2805         }
2806         subsys->awupf = le16_to_cpu(id->awupf);
2807         nvme_mpath_default_iopolicy(subsys);
2808
2809         subsys->dev.class = nvme_subsys_class;
2810         subsys->dev.release = nvme_release_subsystem;
2811         subsys->dev.groups = nvme_subsys_attrs_groups;
2812         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2813         device_initialize(&subsys->dev);
2814
2815         mutex_lock(&nvme_subsystems_lock);
2816         found = __nvme_find_get_subsystem(subsys->subnqn);
2817         if (found) {
2818                 put_device(&subsys->dev);
2819                 subsys = found;
2820
2821                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2822                         ret = -EINVAL;
2823                         goto out_put_subsystem;
2824                 }
2825         } else {
2826                 ret = device_add(&subsys->dev);
2827                 if (ret) {
2828                         dev_err(ctrl->device,
2829                                 "failed to register subsystem device.\n");
2830                         put_device(&subsys->dev);
2831                         goto out_unlock;
2832                 }
2833                 ida_init(&subsys->ns_ida);
2834                 list_add_tail(&subsys->entry, &nvme_subsystems);
2835         }
2836
2837         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2838                                 dev_name(ctrl->device));
2839         if (ret) {
2840                 dev_err(ctrl->device,
2841                         "failed to create sysfs link from subsystem.\n");
2842                 goto out_put_subsystem;
2843         }
2844
2845         if (!found)
2846                 subsys->instance = ctrl->instance;
2847         ctrl->subsys = subsys;
2848         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2849         mutex_unlock(&nvme_subsystems_lock);
2850         return 0;
2851
2852 out_put_subsystem:
2853         nvme_put_subsystem(subsys);
2854 out_unlock:
2855         mutex_unlock(&nvme_subsystems_lock);
2856         return ret;
2857 }
2858
2859 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2860                 void *log, size_t size, u64 offset)
2861 {
2862         struct nvme_command c = { };
2863         u32 dwlen = nvme_bytes_to_numd(size);
2864
2865         c.get_log_page.opcode = nvme_admin_get_log_page;
2866         c.get_log_page.nsid = cpu_to_le32(nsid);
2867         c.get_log_page.lid = log_page;
2868         c.get_log_page.lsp = lsp;
2869         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2870         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2871         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2872         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2873         c.get_log_page.csi = csi;
2874
2875         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2876 }
2877
2878 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2879                                 struct nvme_effects_log **log)
2880 {
2881         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2882         int ret;
2883
2884         if (cel)
2885                 goto out;
2886
2887         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2888         if (!cel)
2889                 return -ENOMEM;
2890
2891         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2892                         cel, sizeof(*cel), 0);
2893         if (ret) {
2894                 kfree(cel);
2895                 return ret;
2896         }
2897
2898         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2899 out:
2900         *log = cel;
2901         return 0;
2902 }
2903
2904 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2905 {
2906         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2907
2908         if (check_shl_overflow(1U, units + page_shift - 9, &val))
2909                 return UINT_MAX;
2910         return val;
2911 }
2912
2913 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2914 {
2915         struct nvme_command c = { };
2916         struct nvme_id_ctrl_nvm *id;
2917         int ret;
2918
2919         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2920                 ctrl->max_discard_sectors = UINT_MAX;
2921                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2922         } else {
2923                 ctrl->max_discard_sectors = 0;
2924                 ctrl->max_discard_segments = 0;
2925         }
2926
2927         /*
2928          * Even though NVMe spec explicitly states that MDTS is not applicable
2929          * to the write-zeroes, we are cautious and limit the size to the
2930          * controllers max_hw_sectors value, which is based on the MDTS field
2931          * and possibly other limiting factors.
2932          */
2933         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2934             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2935                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2936         else
2937                 ctrl->max_zeroes_sectors = 0;
2938
2939         if (nvme_ctrl_limited_cns(ctrl))
2940                 return 0;
2941
2942         id = kzalloc(sizeof(*id), GFP_KERNEL);
2943         if (!id)
2944                 return 0;
2945
2946         c.identify.opcode = nvme_admin_identify;
2947         c.identify.cns = NVME_ID_CNS_CS_CTRL;
2948         c.identify.csi = NVME_CSI_NVM;
2949
2950         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2951         if (ret)
2952                 goto free_data;
2953
2954         if (id->dmrl)
2955                 ctrl->max_discard_segments = id->dmrl;
2956         ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2957         if (id->wzsl)
2958                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2959
2960 free_data:
2961         kfree(id);
2962         return ret;
2963 }
2964
2965 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2966 {
2967         struct nvme_id_ctrl *id;
2968         u32 max_hw_sectors;
2969         bool prev_apst_enabled;
2970         int ret;
2971
2972         ret = nvme_identify_ctrl(ctrl, &id);
2973         if (ret) {
2974                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2975                 return -EIO;
2976         }
2977
2978         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2979                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2980                 if (ret < 0)
2981                         goto out_free;
2982         }
2983
2984         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2985                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2986
2987         if (!ctrl->identified) {
2988                 unsigned int i;
2989
2990                 ret = nvme_init_subsystem(ctrl, id);
2991                 if (ret)
2992                         goto out_free;
2993
2994                 /*
2995                  * Check for quirks.  Quirk can depend on firmware version,
2996                  * so, in principle, the set of quirks present can change
2997                  * across a reset.  As a possible future enhancement, we
2998                  * could re-scan for quirks every time we reinitialize
2999                  * the device, but we'd have to make sure that the driver
3000                  * behaves intelligently if the quirks change.
3001                  */
3002                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3003                         if (quirk_matches(id, &core_quirks[i]))
3004                                 ctrl->quirks |= core_quirks[i].quirks;
3005                 }
3006         }
3007
3008         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3009                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3010                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3011         }
3012
3013         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3014         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3015         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3016
3017         ctrl->oacs = le16_to_cpu(id->oacs);
3018         ctrl->oncs = le16_to_cpu(id->oncs);
3019         ctrl->mtfa = le16_to_cpu(id->mtfa);
3020         ctrl->oaes = le32_to_cpu(id->oaes);
3021         ctrl->wctemp = le16_to_cpu(id->wctemp);
3022         ctrl->cctemp = le16_to_cpu(id->cctemp);
3023
3024         atomic_set(&ctrl->abort_limit, id->acl + 1);
3025         ctrl->vwc = id->vwc;
3026         if (id->mdts)
3027                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3028         else
3029                 max_hw_sectors = UINT_MAX;
3030         ctrl->max_hw_sectors =
3031                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3032
3033         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3034         ctrl->sgls = le32_to_cpu(id->sgls);
3035         ctrl->kas = le16_to_cpu(id->kas);
3036         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3037         ctrl->ctratt = le32_to_cpu(id->ctratt);
3038
3039         ctrl->cntrltype = id->cntrltype;
3040         ctrl->dctype = id->dctype;
3041
3042         if (id->rtd3e) {
3043                 /* us -> s */
3044                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3045
3046                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3047                                                  shutdown_timeout, 60);
3048
3049                 if (ctrl->shutdown_timeout != shutdown_timeout)
3050                         dev_info(ctrl->device,
3051                                  "Shutdown timeout set to %u seconds\n",
3052                                  ctrl->shutdown_timeout);
3053         } else
3054                 ctrl->shutdown_timeout = shutdown_timeout;
3055
3056         ctrl->npss = id->npss;
3057         ctrl->apsta = id->apsta;
3058         prev_apst_enabled = ctrl->apst_enabled;
3059         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3060                 if (force_apst && id->apsta) {
3061                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3062                         ctrl->apst_enabled = true;
3063                 } else {
3064                         ctrl->apst_enabled = false;
3065                 }
3066         } else {
3067                 ctrl->apst_enabled = id->apsta;
3068         }
3069         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3070
3071         if (ctrl->ops->flags & NVME_F_FABRICS) {
3072                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3073                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3074                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3075                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3076
3077                 /*
3078                  * In fabrics we need to verify the cntlid matches the
3079                  * admin connect
3080                  */
3081                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3082                         dev_err(ctrl->device,
3083                                 "Mismatching cntlid: Connect %u vs Identify "
3084                                 "%u, rejecting\n",
3085                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3086                         ret = -EINVAL;
3087                         goto out_free;
3088                 }
3089
3090                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3091                         dev_err(ctrl->device,
3092                                 "keep-alive support is mandatory for fabrics\n");
3093                         ret = -EINVAL;
3094                         goto out_free;
3095                 }
3096         } else {
3097                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3098                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3099                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3100                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3101         }
3102
3103         ret = nvme_mpath_init_identify(ctrl, id);
3104         if (ret < 0)
3105                 goto out_free;
3106
3107         if (ctrl->apst_enabled && !prev_apst_enabled)
3108                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3109         else if (!ctrl->apst_enabled && prev_apst_enabled)
3110                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3111
3112 out_free:
3113         kfree(id);
3114         return ret;
3115 }
3116
3117 /*
3118  * Initialize the cached copies of the Identify data and various controller
3119  * register in our nvme_ctrl structure.  This should be called as soon as
3120  * the admin queue is fully up and running.
3121  */
3122 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3123 {
3124         int ret;
3125
3126         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3127         if (ret) {
3128                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3129                 return ret;
3130         }
3131
3132         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3133
3134         if (ctrl->vs >= NVME_VS(1, 1, 0))
3135                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3136
3137         ret = nvme_init_identify(ctrl);
3138         if (ret)
3139                 return ret;
3140
3141         ret = nvme_configure_apst(ctrl);
3142         if (ret < 0)
3143                 return ret;
3144
3145         ret = nvme_configure_timestamp(ctrl);
3146         if (ret < 0)
3147                 return ret;
3148
3149         ret = nvme_configure_host_options(ctrl);
3150         if (ret < 0)
3151                 return ret;
3152
3153         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3154                 ret = nvme_hwmon_init(ctrl);
3155                 if (ret < 0)
3156                         return ret;
3157         }
3158
3159         ctrl->identified = true;
3160
3161         return 0;
3162 }
3163 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3164
3165 static int nvme_dev_open(struct inode *inode, struct file *file)
3166 {
3167         struct nvme_ctrl *ctrl =
3168                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3169
3170         switch (ctrl->state) {
3171         case NVME_CTRL_LIVE:
3172                 break;
3173         default:
3174                 return -EWOULDBLOCK;
3175         }
3176
3177         nvme_get_ctrl(ctrl);
3178         if (!try_module_get(ctrl->ops->module)) {
3179                 nvme_put_ctrl(ctrl);
3180                 return -EINVAL;
3181         }
3182
3183         file->private_data = ctrl;
3184         return 0;
3185 }
3186
3187 static int nvme_dev_release(struct inode *inode, struct file *file)
3188 {
3189         struct nvme_ctrl *ctrl =
3190                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3191
3192         module_put(ctrl->ops->module);
3193         nvme_put_ctrl(ctrl);
3194         return 0;
3195 }
3196
3197 static const struct file_operations nvme_dev_fops = {
3198         .owner          = THIS_MODULE,
3199         .open           = nvme_dev_open,
3200         .release        = nvme_dev_release,
3201         .unlocked_ioctl = nvme_dev_ioctl,
3202         .compat_ioctl   = compat_ptr_ioctl,
3203         .uring_cmd      = nvme_dev_uring_cmd,
3204 };
3205
3206 static ssize_t nvme_sysfs_reset(struct device *dev,
3207                                 struct device_attribute *attr, const char *buf,
3208                                 size_t count)
3209 {
3210         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3211         int ret;
3212
3213         ret = nvme_reset_ctrl_sync(ctrl);
3214         if (ret < 0)
3215                 return ret;
3216         return count;
3217 }
3218 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3219
3220 static ssize_t nvme_sysfs_rescan(struct device *dev,
3221                                 struct device_attribute *attr, const char *buf,
3222                                 size_t count)
3223 {
3224         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3225
3226         nvme_queue_scan(ctrl);
3227         return count;
3228 }
3229 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3230
3231 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3232 {
3233         struct gendisk *disk = dev_to_disk(dev);
3234
3235         if (disk->fops == &nvme_bdev_ops)
3236                 return nvme_get_ns_from_dev(dev)->head;
3237         else
3238                 return disk->private_data;
3239 }
3240
3241 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3242                 char *buf)
3243 {
3244         struct nvme_ns_head *head = dev_to_ns_head(dev);
3245         struct nvme_ns_ids *ids = &head->ids;
3246         struct nvme_subsystem *subsys = head->subsys;
3247         int serial_len = sizeof(subsys->serial);
3248         int model_len = sizeof(subsys->model);
3249
3250         if (!uuid_is_null(&ids->uuid))
3251                 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3252
3253         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3254                 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3255
3256         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3257                 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3258
3259         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3260                                   subsys->serial[serial_len - 1] == '\0'))
3261                 serial_len--;
3262         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3263                                  subsys->model[model_len - 1] == '\0'))
3264                 model_len--;
3265
3266         return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3267                 serial_len, subsys->serial, model_len, subsys->model,
3268                 head->ns_id);
3269 }
3270 static DEVICE_ATTR_RO(wwid);
3271
3272 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3273                 char *buf)
3274 {
3275         return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3276 }
3277 static DEVICE_ATTR_RO(nguid);
3278
3279 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3280                 char *buf)
3281 {
3282         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3283
3284         /* For backward compatibility expose the NGUID to userspace if
3285          * we have no UUID set
3286          */
3287         if (uuid_is_null(&ids->uuid)) {
3288                 printk_ratelimited(KERN_WARNING
3289                                    "No UUID available providing old NGUID\n");
3290                 return sysfs_emit(buf, "%pU\n", ids->nguid);
3291         }
3292         return sysfs_emit(buf, "%pU\n", &ids->uuid);
3293 }
3294 static DEVICE_ATTR_RO(uuid);
3295
3296 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3297                 char *buf)
3298 {
3299         return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3300 }
3301 static DEVICE_ATTR_RO(eui);
3302
3303 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3304                 char *buf)
3305 {
3306         return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3307 }
3308 static DEVICE_ATTR_RO(nsid);
3309
3310 static struct attribute *nvme_ns_id_attrs[] = {
3311         &dev_attr_wwid.attr,
3312         &dev_attr_uuid.attr,
3313         &dev_attr_nguid.attr,
3314         &dev_attr_eui.attr,
3315         &dev_attr_nsid.attr,
3316 #ifdef CONFIG_NVME_MULTIPATH
3317         &dev_attr_ana_grpid.attr,
3318         &dev_attr_ana_state.attr,
3319 #endif
3320         NULL,
3321 };
3322
3323 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3324                 struct attribute *a, int n)
3325 {
3326         struct device *dev = container_of(kobj, struct device, kobj);
3327         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3328
3329         if (a == &dev_attr_uuid.attr) {
3330                 if (uuid_is_null(&ids->uuid) &&
3331                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3332                         return 0;
3333         }
3334         if (a == &dev_attr_nguid.attr) {
3335                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3336                         return 0;
3337         }
3338         if (a == &dev_attr_eui.attr) {
3339                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3340                         return 0;
3341         }
3342 #ifdef CONFIG_NVME_MULTIPATH
3343         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3344                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3345                         return 0;
3346                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3347                         return 0;
3348         }
3349 #endif
3350         return a->mode;
3351 }
3352
3353 static const struct attribute_group nvme_ns_id_attr_group = {
3354         .attrs          = nvme_ns_id_attrs,
3355         .is_visible     = nvme_ns_id_attrs_are_visible,
3356 };
3357
3358 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3359         &nvme_ns_id_attr_group,
3360         NULL,
3361 };
3362
3363 #define nvme_show_str_function(field)                                           \
3364 static ssize_t  field##_show(struct device *dev,                                \
3365                             struct device_attribute *attr, char *buf)           \
3366 {                                                                               \
3367         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3368         return sysfs_emit(buf, "%.*s\n",                                        \
3369                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3370 }                                                                               \
3371 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3372
3373 nvme_show_str_function(model);
3374 nvme_show_str_function(serial);
3375 nvme_show_str_function(firmware_rev);
3376
3377 #define nvme_show_int_function(field)                                           \
3378 static ssize_t  field##_show(struct device *dev,                                \
3379                             struct device_attribute *attr, char *buf)           \
3380 {                                                                               \
3381         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3382         return sysfs_emit(buf, "%d\n", ctrl->field);                            \
3383 }                                                                               \
3384 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3385
3386 nvme_show_int_function(cntlid);
3387 nvme_show_int_function(numa_node);
3388 nvme_show_int_function(queue_count);
3389 nvme_show_int_function(sqsize);
3390 nvme_show_int_function(kato);
3391
3392 static ssize_t nvme_sysfs_delete(struct device *dev,
3393                                 struct device_attribute *attr, const char *buf,
3394                                 size_t count)
3395 {
3396         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3397
3398         if (device_remove_file_self(dev, attr))
3399                 nvme_delete_ctrl_sync(ctrl);
3400         return count;
3401 }
3402 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3403
3404 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3405                                          struct device_attribute *attr,
3406                                          char *buf)
3407 {
3408         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3409
3410         return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3411 }
3412 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3413
3414 static ssize_t nvme_sysfs_show_state(struct device *dev,
3415                                      struct device_attribute *attr,
3416                                      char *buf)
3417 {
3418         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3419         static const char *const state_name[] = {
3420                 [NVME_CTRL_NEW]         = "new",
3421                 [NVME_CTRL_LIVE]        = "live",
3422                 [NVME_CTRL_RESETTING]   = "resetting",
3423                 [NVME_CTRL_CONNECTING]  = "connecting",
3424                 [NVME_CTRL_DELETING]    = "deleting",
3425                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3426                 [NVME_CTRL_DEAD]        = "dead",
3427         };
3428
3429         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3430             state_name[ctrl->state])
3431                 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3432
3433         return sysfs_emit(buf, "unknown state\n");
3434 }
3435
3436 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3437
3438 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3439                                          struct device_attribute *attr,
3440                                          char *buf)
3441 {
3442         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3443
3444         return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3445 }
3446 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3447
3448 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3449                                         struct device_attribute *attr,
3450                                         char *buf)
3451 {
3452         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3453
3454         return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3455 }
3456 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3457
3458 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3459                                         struct device_attribute *attr,
3460                                         char *buf)
3461 {
3462         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3463
3464         return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3465 }
3466 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3467
3468 static ssize_t nvme_sysfs_show_address(struct device *dev,
3469                                          struct device_attribute *attr,
3470                                          char *buf)
3471 {
3472         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3473
3474         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3475 }
3476 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3477
3478 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3479                 struct device_attribute *attr, char *buf)
3480 {
3481         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3482         struct nvmf_ctrl_options *opts = ctrl->opts;
3483
3484         if (ctrl->opts->max_reconnects == -1)
3485                 return sysfs_emit(buf, "off\n");
3486         return sysfs_emit(buf, "%d\n",
3487                           opts->max_reconnects * opts->reconnect_delay);
3488 }
3489
3490 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3491                 struct device_attribute *attr, const char *buf, size_t count)
3492 {
3493         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3494         struct nvmf_ctrl_options *opts = ctrl->opts;
3495         int ctrl_loss_tmo, err;
3496
3497         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3498         if (err)
3499                 return -EINVAL;
3500
3501         if (ctrl_loss_tmo < 0)
3502                 opts->max_reconnects = -1;
3503         else
3504                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3505                                                 opts->reconnect_delay);
3506         return count;
3507 }
3508 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3509         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3510
3511 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3512                 struct device_attribute *attr, char *buf)
3513 {
3514         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3515
3516         if (ctrl->opts->reconnect_delay == -1)
3517                 return sysfs_emit(buf, "off\n");
3518         return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3519 }
3520
3521 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3522                 struct device_attribute *attr, const char *buf, size_t count)
3523 {
3524         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3525         unsigned int v;
3526         int err;
3527
3528         err = kstrtou32(buf, 10, &v);
3529         if (err)
3530                 return err;
3531
3532         ctrl->opts->reconnect_delay = v;
3533         return count;
3534 }
3535 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3536         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3537
3538 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3539                 struct device_attribute *attr, char *buf)
3540 {
3541         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3542
3543         if (ctrl->opts->fast_io_fail_tmo == -1)
3544                 return sysfs_emit(buf, "off\n");
3545         return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3546 }
3547
3548 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3549                 struct device_attribute *attr, const char *buf, size_t count)
3550 {
3551         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3552         struct nvmf_ctrl_options *opts = ctrl->opts;
3553         int fast_io_fail_tmo, err;
3554
3555         err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3556         if (err)
3557                 return -EINVAL;
3558
3559         if (fast_io_fail_tmo < 0)
3560                 opts->fast_io_fail_tmo = -1;
3561         else
3562                 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3563         return count;
3564 }
3565 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3566         nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3567
3568 static ssize_t cntrltype_show(struct device *dev,
3569                               struct device_attribute *attr, char *buf)
3570 {
3571         static const char * const type[] = {
3572                 [NVME_CTRL_IO] = "io\n",
3573                 [NVME_CTRL_DISC] = "discovery\n",
3574                 [NVME_CTRL_ADMIN] = "admin\n",
3575         };
3576         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3577
3578         if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
3579                 return sysfs_emit(buf, "reserved\n");
3580
3581         return sysfs_emit(buf, type[ctrl->cntrltype]);
3582 }
3583 static DEVICE_ATTR_RO(cntrltype);
3584
3585 static ssize_t dctype_show(struct device *dev,
3586                            struct device_attribute *attr, char *buf)
3587 {
3588         static const char * const type[] = {
3589                 [NVME_DCTYPE_NOT_REPORTED] = "none\n",
3590                 [NVME_DCTYPE_DDC] = "ddc\n",
3591                 [NVME_DCTYPE_CDC] = "cdc\n",
3592         };
3593         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3594
3595         if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
3596                 return sysfs_emit(buf, "reserved\n");
3597
3598         return sysfs_emit(buf, type[ctrl->dctype]);
3599 }
3600 static DEVICE_ATTR_RO(dctype);
3601
3602 static struct attribute *nvme_dev_attrs[] = {
3603         &dev_attr_reset_controller.attr,
3604         &dev_attr_rescan_controller.attr,
3605         &dev_attr_model.attr,
3606         &dev_attr_serial.attr,
3607         &dev_attr_firmware_rev.attr,
3608         &dev_attr_cntlid.attr,
3609         &dev_attr_delete_controller.attr,
3610         &dev_attr_transport.attr,
3611         &dev_attr_subsysnqn.attr,
3612         &dev_attr_address.attr,
3613         &dev_attr_state.attr,
3614         &dev_attr_numa_node.attr,
3615         &dev_attr_queue_count.attr,
3616         &dev_attr_sqsize.attr,
3617         &dev_attr_hostnqn.attr,
3618         &dev_attr_hostid.attr,
3619         &dev_attr_ctrl_loss_tmo.attr,
3620         &dev_attr_reconnect_delay.attr,
3621         &dev_attr_fast_io_fail_tmo.attr,
3622         &dev_attr_kato.attr,
3623         &dev_attr_cntrltype.attr,
3624         &dev_attr_dctype.attr,
3625         NULL
3626 };
3627
3628 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3629                 struct attribute *a, int n)
3630 {
3631         struct device *dev = container_of(kobj, struct device, kobj);
3632         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3633
3634         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3635                 return 0;
3636         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3637                 return 0;
3638         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3639                 return 0;
3640         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3641                 return 0;
3642         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3643                 return 0;
3644         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3645                 return 0;
3646         if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3647                 return 0;
3648
3649         return a->mode;
3650 }
3651
3652 static const struct attribute_group nvme_dev_attrs_group = {
3653         .attrs          = nvme_dev_attrs,
3654         .is_visible     = nvme_dev_attrs_are_visible,
3655 };
3656
3657 static const struct attribute_group *nvme_dev_attr_groups[] = {
3658         &nvme_dev_attrs_group,
3659         NULL,
3660 };
3661
3662 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3663                 unsigned nsid)
3664 {
3665         struct nvme_ns_head *h;
3666
3667         lockdep_assert_held(&ctrl->subsys->lock);
3668
3669         list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3670                 /*
3671                  * Private namespaces can share NSIDs under some conditions.
3672                  * In that case we can't use the same ns_head for namespaces
3673                  * with the same NSID.
3674                  */
3675                 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3676                         continue;
3677                 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3678                         return h;
3679         }
3680
3681         return NULL;
3682 }
3683
3684 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3685                 struct nvme_ns_ids *ids)
3686 {
3687         bool has_uuid = !uuid_is_null(&ids->uuid);
3688         bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3689         bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3690         struct nvme_ns_head *h;
3691
3692         lockdep_assert_held(&subsys->lock);
3693
3694         list_for_each_entry(h, &subsys->nsheads, entry) {
3695                 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3696                         return -EINVAL;
3697                 if (has_nguid &&
3698                     memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3699                         return -EINVAL;
3700                 if (has_eui64 &&
3701                     memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3702                         return -EINVAL;
3703         }
3704
3705         return 0;
3706 }
3707
3708 static void nvme_cdev_rel(struct device *dev)
3709 {
3710         ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3711 }
3712
3713 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3714 {
3715         cdev_device_del(cdev, cdev_device);
3716         put_device(cdev_device);
3717 }
3718
3719 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3720                 const struct file_operations *fops, struct module *owner)
3721 {
3722         int minor, ret;
3723
3724         minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3725         if (minor < 0)
3726                 return minor;
3727         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3728         cdev_device->class = nvme_ns_chr_class;
3729         cdev_device->release = nvme_cdev_rel;
3730         device_initialize(cdev_device);
3731         cdev_init(cdev, fops);
3732         cdev->owner = owner;
3733         ret = cdev_device_add(cdev, cdev_device);
3734         if (ret)
3735                 put_device(cdev_device);
3736
3737         return ret;
3738 }
3739
3740 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3741 {
3742         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3743 }
3744
3745 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3746 {
3747         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3748         return 0;
3749 }
3750
3751 static const struct file_operations nvme_ns_chr_fops = {
3752         .owner          = THIS_MODULE,
3753         .open           = nvme_ns_chr_open,
3754         .release        = nvme_ns_chr_release,
3755         .unlocked_ioctl = nvme_ns_chr_ioctl,
3756         .compat_ioctl   = compat_ptr_ioctl,
3757         .uring_cmd      = nvme_ns_chr_uring_cmd,
3758 };
3759
3760 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3761 {
3762         int ret;
3763
3764         ns->cdev_device.parent = ns->ctrl->device;
3765         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3766                            ns->ctrl->instance, ns->head->instance);
3767         if (ret)
3768                 return ret;
3769
3770         return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3771                              ns->ctrl->ops->module);
3772 }
3773
3774 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3775                 unsigned nsid, struct nvme_ns_ids *ids)
3776 {
3777         struct nvme_ns_head *head;
3778         size_t size = sizeof(*head);
3779         int ret = -ENOMEM;
3780
3781 #ifdef CONFIG_NVME_MULTIPATH
3782         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3783 #endif
3784
3785         head = kzalloc(size, GFP_KERNEL);
3786         if (!head)
3787                 goto out;
3788         ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3789         if (ret < 0)
3790                 goto out_free_head;
3791         head->instance = ret;
3792         INIT_LIST_HEAD(&head->list);
3793         ret = init_srcu_struct(&head->srcu);
3794         if (ret)
3795                 goto out_ida_remove;
3796         head->subsys = ctrl->subsys;
3797         head->ns_id = nsid;
3798         head->ids = *ids;
3799         kref_init(&head->ref);
3800
3801         if (head->ids.csi) {
3802                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3803                 if (ret)
3804                         goto out_cleanup_srcu;
3805         } else
3806                 head->effects = ctrl->effects;
3807
3808         ret = nvme_mpath_alloc_disk(ctrl, head);
3809         if (ret)
3810                 goto out_cleanup_srcu;
3811
3812         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3813
3814         kref_get(&ctrl->subsys->ref);
3815
3816         return head;
3817 out_cleanup_srcu:
3818         cleanup_srcu_struct(&head->srcu);
3819 out_ida_remove:
3820         ida_free(&ctrl->subsys->ns_ida, head->instance);
3821 out_free_head:
3822         kfree(head);
3823 out:
3824         if (ret > 0)
3825                 ret = blk_status_to_errno(nvme_error_status(ret));
3826         return ERR_PTR(ret);
3827 }
3828
3829 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3830                 struct nvme_ns_ids *ids)
3831 {
3832         struct nvme_subsystem *s;
3833         int ret = 0;
3834
3835         /*
3836          * Note that this check is racy as we try to avoid holding the global
3837          * lock over the whole ns_head creation.  But it is only intended as
3838          * a sanity check anyway.
3839          */
3840         mutex_lock(&nvme_subsystems_lock);
3841         list_for_each_entry(s, &nvme_subsystems, entry) {
3842                 if (s == this)
3843                         continue;
3844                 mutex_lock(&s->lock);
3845                 ret = nvme_subsys_check_duplicate_ids(s, ids);
3846                 mutex_unlock(&s->lock);
3847                 if (ret)
3848                         break;
3849         }
3850         mutex_unlock(&nvme_subsystems_lock);
3851
3852         return ret;
3853 }
3854
3855 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3856                 struct nvme_ns_ids *ids, bool is_shared)
3857 {
3858         struct nvme_ctrl *ctrl = ns->ctrl;
3859         struct nvme_ns_head *head = NULL;
3860         int ret;
3861
3862         ret = nvme_global_check_duplicate_ids(ctrl->subsys, ids);
3863         if (ret) {
3864                 dev_err(ctrl->device,
3865                         "globally duplicate IDs for nsid %d\n", nsid);
3866                 return ret;
3867         }
3868
3869         mutex_lock(&ctrl->subsys->lock);
3870         head = nvme_find_ns_head(ctrl, nsid);
3871         if (!head) {
3872                 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, ids);
3873                 if (ret) {
3874                         dev_err(ctrl->device,
3875                                 "duplicate IDs in subsystem for nsid %d\n",
3876                                 nsid);
3877                         goto out_unlock;
3878                 }
3879                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3880                 if (IS_ERR(head)) {
3881                         ret = PTR_ERR(head);
3882                         goto out_unlock;
3883                 }
3884                 head->shared = is_shared;
3885         } else {
3886                 ret = -EINVAL;
3887                 if (!is_shared || !head->shared) {
3888                         dev_err(ctrl->device,
3889                                 "Duplicate unshared namespace %d\n", nsid);
3890                         goto out_put_ns_head;
3891                 }
3892                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3893                         dev_err(ctrl->device,
3894                                 "IDs don't match for shared namespace %d\n",
3895                                         nsid);
3896                         goto out_put_ns_head;
3897                 }
3898
3899                 if (!multipath && !list_empty(&head->list)) {
3900                         dev_warn(ctrl->device,
3901                                 "Found shared namespace %d, but multipathing not supported.\n",
3902                                 nsid);
3903                         dev_warn_once(ctrl->device,
3904                                 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3905                 }
3906         }
3907
3908         list_add_tail_rcu(&ns->siblings, &head->list);
3909         ns->head = head;
3910         mutex_unlock(&ctrl->subsys->lock);
3911         return 0;
3912
3913 out_put_ns_head:
3914         nvme_put_ns_head(head);
3915 out_unlock:
3916         mutex_unlock(&ctrl->subsys->lock);
3917         return ret;
3918 }
3919
3920 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3921 {
3922         struct nvme_ns *ns, *ret = NULL;
3923
3924         down_read(&ctrl->namespaces_rwsem);
3925         list_for_each_entry(ns, &ctrl->namespaces, list) {
3926                 if (ns->head->ns_id == nsid) {
3927                         if (!nvme_get_ns(ns))
3928                                 continue;
3929                         ret = ns;
3930                         break;
3931                 }
3932                 if (ns->head->ns_id > nsid)
3933                         break;
3934         }
3935         up_read(&ctrl->namespaces_rwsem);
3936         return ret;
3937 }
3938 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3939
3940 /*
3941  * Add the namespace to the controller list while keeping the list ordered.
3942  */
3943 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3944 {
3945         struct nvme_ns *tmp;
3946
3947         list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3948                 if (tmp->head->ns_id < ns->head->ns_id) {
3949                         list_add(&ns->list, &tmp->list);
3950                         return;
3951                 }
3952         }
3953         list_add(&ns->list, &ns->ctrl->namespaces);
3954 }
3955
3956 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3957                 struct nvme_ns_ids *ids)
3958 {
3959         struct nvme_ns *ns;
3960         struct gendisk *disk;
3961         struct nvme_id_ns *id;
3962         int node = ctrl->numa_node;
3963
3964         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3965                 return;
3966
3967         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3968         if (!ns)
3969                 goto out_free_id;
3970
3971         disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3972         if (IS_ERR(disk))
3973                 goto out_free_ns;
3974         disk->fops = &nvme_bdev_ops;
3975         disk->private_data = ns;
3976
3977         ns->disk = disk;
3978         ns->queue = disk->queue;
3979
3980         if (ctrl->opts && ctrl->opts->data_digest)
3981                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3982
3983         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3984         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3985                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3986
3987         ns->ctrl = ctrl;
3988         kref_init(&ns->kref);
3989
3990         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3991                 goto out_cleanup_disk;
3992
3993         /*
3994          * If multipathing is enabled, the device name for all disks and not
3995          * just those that represent shared namespaces needs to be based on the
3996          * subsystem instance.  Using the controller instance for private
3997          * namespaces could lead to naming collisions between shared and private
3998          * namespaces if they don't use a common numbering scheme.
3999          *
4000          * If multipathing is not enabled, disk names must use the controller
4001          * instance as shared namespaces will show up as multiple block
4002          * devices.
4003          */
4004         if (ns->head->disk) {
4005                 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4006                         ctrl->instance, ns->head->instance);
4007                 disk->flags |= GENHD_FL_HIDDEN;
4008         } else if (multipath) {
4009                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4010                         ns->head->instance);
4011         } else {
4012                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4013                         ns->head->instance);
4014         }
4015
4016         if (nvme_update_ns_info(ns, id))
4017                 goto out_unlink_ns;
4018
4019         down_write(&ctrl->namespaces_rwsem);
4020         nvme_ns_add_to_ctrl_list(ns);
4021         up_write(&ctrl->namespaces_rwsem);
4022         nvme_get_ctrl(ctrl);
4023
4024         if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
4025                 goto out_cleanup_ns_from_list;
4026
4027         if (!nvme_ns_head_multipath(ns->head))
4028                 nvme_add_ns_cdev(ns);
4029
4030         nvme_mpath_add_disk(ns, id);
4031         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4032         kfree(id);
4033
4034         return;
4035
4036  out_cleanup_ns_from_list:
4037         nvme_put_ctrl(ctrl);
4038         down_write(&ctrl->namespaces_rwsem);
4039         list_del_init(&ns->list);
4040         up_write(&ctrl->namespaces_rwsem);
4041  out_unlink_ns:
4042         mutex_lock(&ctrl->subsys->lock);
4043         list_del_rcu(&ns->siblings);
4044         if (list_empty(&ns->head->list))
4045                 list_del_init(&ns->head->entry);
4046         mutex_unlock(&ctrl->subsys->lock);
4047         nvme_put_ns_head(ns->head);
4048  out_cleanup_disk:
4049         blk_cleanup_disk(disk);
4050  out_free_ns:
4051         kfree(ns);
4052  out_free_id:
4053         kfree(id);
4054 }
4055
4056 static void nvme_ns_remove(struct nvme_ns *ns)
4057 {
4058         bool last_path = false;
4059
4060         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4061                 return;
4062
4063         clear_bit(NVME_NS_READY, &ns->flags);
4064         set_capacity(ns->disk, 0);
4065         nvme_fault_inject_fini(&ns->fault_inject);
4066
4067         /*
4068          * Ensure that !NVME_NS_READY is seen by other threads to prevent
4069          * this ns going back into current_path.
4070          */
4071         synchronize_srcu(&ns->head->srcu);
4072
4073         /* wait for concurrent submissions */
4074         if (nvme_mpath_clear_current_path(ns))
4075                 synchronize_srcu(&ns->head->srcu);
4076
4077         mutex_lock(&ns->ctrl->subsys->lock);
4078         list_del_rcu(&ns->siblings);
4079         if (list_empty(&ns->head->list)) {
4080                 list_del_init(&ns->head->entry);
4081                 last_path = true;
4082         }
4083         mutex_unlock(&ns->ctrl->subsys->lock);
4084
4085         /* guarantee not available in head->list */
4086         synchronize_rcu();
4087
4088         if (!nvme_ns_head_multipath(ns->head))
4089                 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4090         del_gendisk(ns->disk);
4091         blk_cleanup_queue(ns->queue);
4092
4093         down_write(&ns->ctrl->namespaces_rwsem);
4094         list_del_init(&ns->list);
4095         up_write(&ns->ctrl->namespaces_rwsem);
4096
4097         if (last_path)
4098                 nvme_mpath_shutdown_disk(ns->head);
4099         nvme_put_ns(ns);
4100 }
4101
4102 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4103 {
4104         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4105
4106         if (ns) {
4107                 nvme_ns_remove(ns);
4108                 nvme_put_ns(ns);
4109         }
4110 }
4111
4112 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4113 {
4114         struct nvme_id_ns *id;
4115         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4116
4117         if (test_bit(NVME_NS_DEAD, &ns->flags))
4118                 goto out;
4119
4120         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4121         if (ret)
4122                 goto out;
4123
4124         ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4125         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4126                 dev_err(ns->ctrl->device,
4127                         "identifiers changed for nsid %d\n", ns->head->ns_id);
4128                 goto out_free_id;
4129         }
4130
4131         ret = nvme_update_ns_info(ns, id);
4132
4133 out_free_id:
4134         kfree(id);
4135 out:
4136         /*
4137          * Only remove the namespace if we got a fatal error back from the
4138          * device, otherwise ignore the error and just move on.
4139          *
4140          * TODO: we should probably schedule a delayed retry here.
4141          */
4142         if (ret > 0 && (ret & NVME_SC_DNR))
4143                 nvme_ns_remove(ns);
4144 }
4145
4146 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4147 {
4148         struct nvme_ns_ids ids = { };
4149         struct nvme_id_ns_cs_indep *id;
4150         struct nvme_ns *ns;
4151         bool ready = true;
4152
4153         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4154                 return;
4155
4156         /*
4157          * Check if the namespace is ready.  If not ignore it, we will get an
4158          * AEN once it becomes ready and restart the scan.
4159          */
4160         if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) &&
4161             !nvme_identify_ns_cs_indep(ctrl, nsid, &id)) {
4162                 ready = id->nstat & NVME_NSTAT_NRDY;
4163                 kfree(id);
4164         }
4165
4166         if (!ready)
4167                 return;
4168
4169         ns = nvme_find_get_ns(ctrl, nsid);
4170         if (ns) {
4171                 nvme_validate_ns(ns, &ids);
4172                 nvme_put_ns(ns);
4173                 return;
4174         }
4175
4176         switch (ids.csi) {
4177         case NVME_CSI_NVM:
4178                 nvme_alloc_ns(ctrl, nsid, &ids);
4179                 break;
4180         case NVME_CSI_ZNS:
4181                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4182                         dev_warn(ctrl->device,
4183                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4184                                 nsid);
4185                         break;
4186                 }
4187                 if (!nvme_multi_css(ctrl)) {
4188                         dev_warn(ctrl->device,
4189                                 "command set not reported for nsid: %d\n",
4190                                 nsid);
4191                         break;
4192                 }
4193                 nvme_alloc_ns(ctrl, nsid, &ids);
4194                 break;
4195         default:
4196                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4197                         ids.csi, nsid);
4198                 break;
4199         }
4200 }
4201
4202 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4203                                         unsigned nsid)
4204 {
4205         struct nvme_ns *ns, *next;
4206         LIST_HEAD(rm_list);
4207
4208         down_write(&ctrl->namespaces_rwsem);
4209         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4210                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4211                         list_move_tail(&ns->list, &rm_list);
4212         }
4213         up_write(&ctrl->namespaces_rwsem);
4214
4215         list_for_each_entry_safe(ns, next, &rm_list, list)
4216                 nvme_ns_remove(ns);
4217
4218 }
4219
4220 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4221 {
4222         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4223         __le32 *ns_list;
4224         u32 prev = 0;
4225         int ret = 0, i;
4226
4227         if (nvme_ctrl_limited_cns(ctrl))
4228                 return -EOPNOTSUPP;
4229
4230         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4231         if (!ns_list)
4232                 return -ENOMEM;
4233
4234         for (;;) {
4235                 struct nvme_command cmd = {
4236                         .identify.opcode        = nvme_admin_identify,
4237                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4238                         .identify.nsid          = cpu_to_le32(prev),
4239                 };
4240
4241                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4242                                             NVME_IDENTIFY_DATA_SIZE);
4243                 if (ret) {
4244                         dev_warn(ctrl->device,
4245                                 "Identify NS List failed (status=0x%x)\n", ret);
4246                         goto free;
4247                 }
4248
4249                 for (i = 0; i < nr_entries; i++) {
4250                         u32 nsid = le32_to_cpu(ns_list[i]);
4251
4252                         if (!nsid)      /* end of the list? */
4253                                 goto out;
4254                         nvme_validate_or_alloc_ns(ctrl, nsid);
4255                         while (++prev < nsid)
4256                                 nvme_ns_remove_by_nsid(ctrl, prev);
4257                 }
4258         }
4259  out:
4260         nvme_remove_invalid_namespaces(ctrl, prev);
4261  free:
4262         kfree(ns_list);
4263         return ret;
4264 }
4265
4266 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4267 {
4268         struct nvme_id_ctrl *id;
4269         u32 nn, i;
4270
4271         if (nvme_identify_ctrl(ctrl, &id))
4272                 return;
4273         nn = le32_to_cpu(id->nn);
4274         kfree(id);
4275
4276         for (i = 1; i <= nn; i++)
4277                 nvme_validate_or_alloc_ns(ctrl, i);
4278
4279         nvme_remove_invalid_namespaces(ctrl, nn);
4280 }
4281
4282 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4283 {
4284         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4285         __le32 *log;
4286         int error;
4287
4288         log = kzalloc(log_size, GFP_KERNEL);
4289         if (!log)
4290                 return;
4291
4292         /*
4293          * We need to read the log to clear the AEN, but we don't want to rely
4294          * on it for the changed namespace information as userspace could have
4295          * raced with us in reading the log page, which could cause us to miss
4296          * updates.
4297          */
4298         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4299                         NVME_CSI_NVM, log, log_size, 0);
4300         if (error)
4301                 dev_warn(ctrl->device,
4302                         "reading changed ns log failed: %d\n", error);
4303
4304         kfree(log);
4305 }
4306
4307 static void nvme_scan_work(struct work_struct *work)
4308 {
4309         struct nvme_ctrl *ctrl =
4310                 container_of(work, struct nvme_ctrl, scan_work);
4311         int ret;
4312
4313         /* No tagset on a live ctrl means IO queues could not created */
4314         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4315                 return;
4316
4317         /*
4318          * Identify controller limits can change at controller reset due to
4319          * new firmware download, even though it is not common we cannot ignore
4320          * such scenario. Controller's non-mdts limits are reported in the unit
4321          * of logical blocks that is dependent on the format of attached
4322          * namespace. Hence re-read the limits at the time of ns allocation.
4323          */
4324         ret = nvme_init_non_mdts_limits(ctrl);
4325         if (ret < 0) {
4326                 dev_warn(ctrl->device,
4327                         "reading non-mdts-limits failed: %d\n", ret);
4328                 return;
4329         }
4330
4331         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4332                 dev_info(ctrl->device, "rescanning namespaces.\n");
4333                 nvme_clear_changed_ns_log(ctrl);
4334         }
4335
4336         mutex_lock(&ctrl->scan_lock);
4337         if (nvme_scan_ns_list(ctrl) != 0)
4338                 nvme_scan_ns_sequential(ctrl);
4339         mutex_unlock(&ctrl->scan_lock);
4340 }
4341
4342 /*
4343  * This function iterates the namespace list unlocked to allow recovery from
4344  * controller failure. It is up to the caller to ensure the namespace list is
4345  * not modified by scan work while this function is executing.
4346  */
4347 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4348 {
4349         struct nvme_ns *ns, *next;
4350         LIST_HEAD(ns_list);
4351
4352         /*
4353          * make sure to requeue I/O to all namespaces as these
4354          * might result from the scan itself and must complete
4355          * for the scan_work to make progress
4356          */
4357         nvme_mpath_clear_ctrl_paths(ctrl);
4358
4359         /* prevent racing with ns scanning */
4360         flush_work(&ctrl->scan_work);
4361
4362         /*
4363          * The dead states indicates the controller was not gracefully
4364          * disconnected. In that case, we won't be able to flush any data while
4365          * removing the namespaces' disks; fail all the queues now to avoid
4366          * potentially having to clean up the failed sync later.
4367          */
4368         if (ctrl->state == NVME_CTRL_DEAD)
4369                 nvme_kill_queues(ctrl);
4370
4371         /* this is a no-op when called from the controller reset handler */
4372         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4373
4374         down_write(&ctrl->namespaces_rwsem);
4375         list_splice_init(&ctrl->namespaces, &ns_list);
4376         up_write(&ctrl->namespaces_rwsem);
4377
4378         list_for_each_entry_safe(ns, next, &ns_list, list)
4379                 nvme_ns_remove(ns);
4380 }
4381 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4382
4383 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4384 {
4385         struct nvme_ctrl *ctrl =
4386                 container_of(dev, struct nvme_ctrl, ctrl_device);
4387         struct nvmf_ctrl_options *opts = ctrl->opts;
4388         int ret;
4389
4390         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4391         if (ret)
4392                 return ret;
4393
4394         if (opts) {
4395                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4396                 if (ret)
4397                         return ret;
4398
4399                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4400                                 opts->trsvcid ?: "none");
4401                 if (ret)
4402                         return ret;
4403
4404                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4405                                 opts->host_traddr ?: "none");
4406                 if (ret)
4407                         return ret;
4408
4409                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4410                                 opts->host_iface ?: "none");
4411         }
4412         return ret;
4413 }
4414
4415 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4416 {
4417         char *envp[2] = { envdata, NULL };
4418
4419         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4420 }
4421
4422 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4423 {
4424         char *envp[2] = { NULL, NULL };
4425         u32 aen_result = ctrl->aen_result;
4426
4427         ctrl->aen_result = 0;
4428         if (!aen_result)
4429                 return;
4430
4431         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4432         if (!envp[0])
4433                 return;
4434         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4435         kfree(envp[0]);
4436 }
4437
4438 static void nvme_async_event_work(struct work_struct *work)
4439 {
4440         struct nvme_ctrl *ctrl =
4441                 container_of(work, struct nvme_ctrl, async_event_work);
4442
4443         nvme_aen_uevent(ctrl);
4444
4445         /*
4446          * The transport drivers must guarantee AER submission here is safe by
4447          * flushing ctrl async_event_work after changing the controller state
4448          * from LIVE and before freeing the admin queue.
4449         */
4450         if (ctrl->state == NVME_CTRL_LIVE)
4451                 ctrl->ops->submit_async_event(ctrl);
4452 }
4453
4454 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4455 {
4456
4457         u32 csts;
4458
4459         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4460                 return false;
4461
4462         if (csts == ~0)
4463                 return false;
4464
4465         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4466 }
4467
4468 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4469 {
4470         struct nvme_fw_slot_info_log *log;
4471
4472         log = kmalloc(sizeof(*log), GFP_KERNEL);
4473         if (!log)
4474                 return;
4475
4476         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4477                         log, sizeof(*log), 0))
4478                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4479         kfree(log);
4480 }
4481
4482 static void nvme_fw_act_work(struct work_struct *work)
4483 {
4484         struct nvme_ctrl *ctrl = container_of(work,
4485                                 struct nvme_ctrl, fw_act_work);
4486         unsigned long fw_act_timeout;
4487
4488         if (ctrl->mtfa)
4489                 fw_act_timeout = jiffies +
4490                                 msecs_to_jiffies(ctrl->mtfa * 100);
4491         else
4492                 fw_act_timeout = jiffies +
4493                                 msecs_to_jiffies(admin_timeout * 1000);
4494
4495         nvme_stop_queues(ctrl);
4496         while (nvme_ctrl_pp_status(ctrl)) {
4497                 if (time_after(jiffies, fw_act_timeout)) {
4498                         dev_warn(ctrl->device,
4499                                 "Fw activation timeout, reset controller\n");
4500                         nvme_try_sched_reset(ctrl);
4501                         return;
4502                 }
4503                 msleep(100);
4504         }
4505
4506         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4507                 return;
4508
4509         nvme_start_queues(ctrl);
4510         /* read FW slot information to clear the AER */
4511         nvme_get_fw_slot_info(ctrl);
4512 }
4513
4514 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4515 {
4516         u32 aer_notice_type = (result & 0xff00) >> 8;
4517
4518         trace_nvme_async_event(ctrl, aer_notice_type);
4519
4520         switch (aer_notice_type) {
4521         case NVME_AER_NOTICE_NS_CHANGED:
4522                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4523                 nvme_queue_scan(ctrl);
4524                 break;
4525         case NVME_AER_NOTICE_FW_ACT_STARTING:
4526                 /*
4527                  * We are (ab)using the RESETTING state to prevent subsequent
4528                  * recovery actions from interfering with the controller's
4529                  * firmware activation.
4530                  */
4531                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4532                         queue_work(nvme_wq, &ctrl->fw_act_work);
4533                 break;
4534 #ifdef CONFIG_NVME_MULTIPATH
4535         case NVME_AER_NOTICE_ANA:
4536                 if (!ctrl->ana_log_buf)
4537                         break;
4538                 queue_work(nvme_wq, &ctrl->ana_work);
4539                 break;
4540 #endif
4541         case NVME_AER_NOTICE_DISC_CHANGED:
4542                 ctrl->aen_result = result;
4543                 break;
4544         default:
4545                 dev_warn(ctrl->device, "async event result %08x\n", result);
4546         }
4547 }
4548
4549 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4550                 volatile union nvme_result *res)
4551 {
4552         u32 result = le32_to_cpu(res->u32);
4553         u32 aer_type = result & 0x07;
4554
4555         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4556                 return;
4557
4558         switch (aer_type) {
4559         case NVME_AER_NOTICE:
4560                 nvme_handle_aen_notice(ctrl, result);
4561                 break;
4562         case NVME_AER_ERROR:
4563         case NVME_AER_SMART:
4564         case NVME_AER_CSS:
4565         case NVME_AER_VS:
4566                 trace_nvme_async_event(ctrl, aer_type);
4567                 ctrl->aen_result = result;
4568                 break;
4569         default:
4570                 break;
4571         }
4572         queue_work(nvme_wq, &ctrl->async_event_work);
4573 }
4574 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4575
4576 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4577 {
4578         nvme_mpath_stop(ctrl);
4579         nvme_stop_keep_alive(ctrl);
4580         nvme_stop_failfast_work(ctrl);
4581         flush_work(&ctrl->async_event_work);
4582         cancel_work_sync(&ctrl->fw_act_work);
4583 }
4584 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4585
4586 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4587 {
4588         nvme_start_keep_alive(ctrl);
4589
4590         nvme_enable_aen(ctrl);
4591
4592         if (ctrl->queue_count > 1) {
4593                 nvme_queue_scan(ctrl);
4594                 nvme_start_queues(ctrl);
4595                 nvme_mpath_update(ctrl);
4596         }
4597
4598         nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4599 }
4600 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4601
4602 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4603 {
4604         nvme_hwmon_exit(ctrl);
4605         nvme_fault_inject_fini(&ctrl->fault_inject);
4606         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4607         cdev_device_del(&ctrl->cdev, ctrl->device);
4608         nvme_put_ctrl(ctrl);
4609 }
4610 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4611
4612 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4613 {
4614         struct nvme_effects_log *cel;
4615         unsigned long i;
4616
4617         xa_for_each(&ctrl->cels, i, cel) {
4618                 xa_erase(&ctrl->cels, i);
4619                 kfree(cel);
4620         }
4621
4622         xa_destroy(&ctrl->cels);
4623 }
4624
4625 static void nvme_free_ctrl(struct device *dev)
4626 {
4627         struct nvme_ctrl *ctrl =
4628                 container_of(dev, struct nvme_ctrl, ctrl_device);
4629         struct nvme_subsystem *subsys = ctrl->subsys;
4630
4631         if (!subsys || ctrl->instance != subsys->instance)
4632                 ida_free(&nvme_instance_ida, ctrl->instance);
4633
4634         nvme_free_cels(ctrl);
4635         nvme_mpath_uninit(ctrl);
4636         __free_page(ctrl->discard_page);
4637
4638         if (subsys) {
4639                 mutex_lock(&nvme_subsystems_lock);
4640                 list_del(&ctrl->subsys_entry);
4641                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4642                 mutex_unlock(&nvme_subsystems_lock);
4643         }
4644
4645         ctrl->ops->free_ctrl(ctrl);
4646
4647         if (subsys)
4648                 nvme_put_subsystem(subsys);
4649 }
4650
4651 /*
4652  * Initialize a NVMe controller structures.  This needs to be called during
4653  * earliest initialization so that we have the initialized structured around
4654  * during probing.
4655  */
4656 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4657                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4658 {
4659         int ret;
4660
4661         ctrl->state = NVME_CTRL_NEW;
4662         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4663         spin_lock_init(&ctrl->lock);
4664         mutex_init(&ctrl->scan_lock);
4665         INIT_LIST_HEAD(&ctrl->namespaces);
4666         xa_init(&ctrl->cels);
4667         init_rwsem(&ctrl->namespaces_rwsem);
4668         ctrl->dev = dev;
4669         ctrl->ops = ops;
4670         ctrl->quirks = quirks;
4671         ctrl->numa_node = NUMA_NO_NODE;
4672         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4673         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4674         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4675         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4676         init_waitqueue_head(&ctrl->state_wq);
4677
4678         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4679         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4680         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4681         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4682
4683         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4684                         PAGE_SIZE);
4685         ctrl->discard_page = alloc_page(GFP_KERNEL);
4686         if (!ctrl->discard_page) {
4687                 ret = -ENOMEM;
4688                 goto out;
4689         }
4690
4691         ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4692         if (ret < 0)
4693                 goto out;
4694         ctrl->instance = ret;
4695
4696         device_initialize(&ctrl->ctrl_device);
4697         ctrl->device = &ctrl->ctrl_device;
4698         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4699                         ctrl->instance);
4700         ctrl->device->class = nvme_class;
4701         ctrl->device->parent = ctrl->dev;
4702         ctrl->device->groups = nvme_dev_attr_groups;
4703         ctrl->device->release = nvme_free_ctrl;
4704         dev_set_drvdata(ctrl->device, ctrl);
4705         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4706         if (ret)
4707                 goto out_release_instance;
4708
4709         nvme_get_ctrl(ctrl);
4710         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4711         ctrl->cdev.owner = ops->module;
4712         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4713         if (ret)
4714                 goto out_free_name;
4715
4716         /*
4717          * Initialize latency tolerance controls.  The sysfs files won't
4718          * be visible to userspace unless the device actually supports APST.
4719          */
4720         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4721         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4722                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4723
4724         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4725         nvme_mpath_init_ctrl(ctrl);
4726
4727         return 0;
4728 out_free_name:
4729         nvme_put_ctrl(ctrl);
4730         kfree_const(ctrl->device->kobj.name);
4731 out_release_instance:
4732         ida_free(&nvme_instance_ida, ctrl->instance);
4733 out:
4734         if (ctrl->discard_page)
4735                 __free_page(ctrl->discard_page);
4736         return ret;
4737 }
4738 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4739
4740 static void nvme_start_ns_queue(struct nvme_ns *ns)
4741 {
4742         if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4743                 blk_mq_unquiesce_queue(ns->queue);
4744 }
4745
4746 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4747 {
4748         if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4749                 blk_mq_quiesce_queue(ns->queue);
4750         else
4751                 blk_mq_wait_quiesce_done(ns->queue);
4752 }
4753
4754 /*
4755  * Prepare a queue for teardown.
4756  *
4757  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4758  * the capacity to 0 after that to avoid blocking dispatchers that may be
4759  * holding bd_butex.  This will end buffered writers dirtying pages that can't
4760  * be synced.
4761  */
4762 static void nvme_set_queue_dying(struct nvme_ns *ns)
4763 {
4764         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4765                 return;
4766
4767         blk_mark_disk_dead(ns->disk);
4768         nvme_start_ns_queue(ns);
4769
4770         set_capacity_and_notify(ns->disk, 0);
4771 }
4772
4773 /**
4774  * nvme_kill_queues(): Ends all namespace queues
4775  * @ctrl: the dead controller that needs to end
4776  *
4777  * Call this function when the driver determines it is unable to get the
4778  * controller in a state capable of servicing IO.
4779  */
4780 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4781 {
4782         struct nvme_ns *ns;
4783
4784         down_read(&ctrl->namespaces_rwsem);
4785
4786         /* Forcibly unquiesce queues to avoid blocking dispatch */
4787         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4788                 nvme_start_admin_queue(ctrl);
4789
4790         list_for_each_entry(ns, &ctrl->namespaces, list)
4791                 nvme_set_queue_dying(ns);
4792
4793         up_read(&ctrl->namespaces_rwsem);
4794 }
4795 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4796
4797 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4798 {
4799         struct nvme_ns *ns;
4800
4801         down_read(&ctrl->namespaces_rwsem);
4802         list_for_each_entry(ns, &ctrl->namespaces, list)
4803                 blk_mq_unfreeze_queue(ns->queue);
4804         up_read(&ctrl->namespaces_rwsem);
4805 }
4806 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4807
4808 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4809 {
4810         struct nvme_ns *ns;
4811
4812         down_read(&ctrl->namespaces_rwsem);
4813         list_for_each_entry(ns, &ctrl->namespaces, list) {
4814                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4815                 if (timeout <= 0)
4816                         break;
4817         }
4818         up_read(&ctrl->namespaces_rwsem);
4819         return timeout;
4820 }
4821 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4822
4823 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4824 {
4825         struct nvme_ns *ns;
4826
4827         down_read(&ctrl->namespaces_rwsem);
4828         list_for_each_entry(ns, &ctrl->namespaces, list)
4829                 blk_mq_freeze_queue_wait(ns->queue);
4830         up_read(&ctrl->namespaces_rwsem);
4831 }
4832 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4833
4834 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4835 {
4836         struct nvme_ns *ns;
4837
4838         down_read(&ctrl->namespaces_rwsem);
4839         list_for_each_entry(ns, &ctrl->namespaces, list)
4840                 blk_freeze_queue_start(ns->queue);
4841         up_read(&ctrl->namespaces_rwsem);
4842 }
4843 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4844
4845 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4846 {
4847         struct nvme_ns *ns;
4848
4849         down_read(&ctrl->namespaces_rwsem);
4850         list_for_each_entry(ns, &ctrl->namespaces, list)
4851                 nvme_stop_ns_queue(ns);
4852         up_read(&ctrl->namespaces_rwsem);
4853 }
4854 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4855
4856 void nvme_start_queues(struct nvme_ctrl *ctrl)
4857 {
4858         struct nvme_ns *ns;
4859
4860         down_read(&ctrl->namespaces_rwsem);
4861         list_for_each_entry(ns, &ctrl->namespaces, list)
4862                 nvme_start_ns_queue(ns);
4863         up_read(&ctrl->namespaces_rwsem);
4864 }
4865 EXPORT_SYMBOL_GPL(nvme_start_queues);
4866
4867 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4868 {
4869         if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4870                 blk_mq_quiesce_queue(ctrl->admin_q);
4871         else
4872                 blk_mq_wait_quiesce_done(ctrl->admin_q);
4873 }
4874 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4875
4876 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4877 {
4878         if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4879                 blk_mq_unquiesce_queue(ctrl->admin_q);
4880 }
4881 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4882
4883 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4884 {
4885         struct nvme_ns *ns;
4886
4887         down_read(&ctrl->namespaces_rwsem);
4888         list_for_each_entry(ns, &ctrl->namespaces, list)
4889                 blk_sync_queue(ns->queue);
4890         up_read(&ctrl->namespaces_rwsem);
4891 }
4892 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4893
4894 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4895 {
4896         nvme_sync_io_queues(ctrl);
4897         if (ctrl->admin_q)
4898                 blk_sync_queue(ctrl->admin_q);
4899 }
4900 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4901
4902 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4903 {
4904         if (file->f_op != &nvme_dev_fops)
4905                 return NULL;
4906         return file->private_data;
4907 }
4908 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4909
4910 /*
4911  * Check we didn't inadvertently grow the command structure sizes:
4912  */
4913 static inline void _nvme_check_size(void)
4914 {
4915         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4916         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4917         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4918         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4919         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4920         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4921         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4922         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4923         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4924         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4925         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4926         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4927         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4928         BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4929                         NVME_IDENTIFY_DATA_SIZE);
4930         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4931         BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4932         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4933         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4934         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4935         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4936         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4937         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4938         BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4939 }
4940
4941
4942 static int __init nvme_core_init(void)
4943 {
4944         int result = -ENOMEM;
4945
4946         _nvme_check_size();
4947
4948         nvme_wq = alloc_workqueue("nvme-wq",
4949                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4950         if (!nvme_wq)
4951                 goto out;
4952
4953         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4954                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4955         if (!nvme_reset_wq)
4956                 goto destroy_wq;
4957
4958         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4959                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4960         if (!nvme_delete_wq)
4961                 goto destroy_reset_wq;
4962
4963         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4964                         NVME_MINORS, "nvme");
4965         if (result < 0)
4966                 goto destroy_delete_wq;
4967
4968         nvme_class = class_create(THIS_MODULE, "nvme");
4969         if (IS_ERR(nvme_class)) {
4970                 result = PTR_ERR(nvme_class);
4971                 goto unregister_chrdev;
4972         }
4973         nvme_class->dev_uevent = nvme_class_uevent;
4974
4975         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4976         if (IS_ERR(nvme_subsys_class)) {
4977                 result = PTR_ERR(nvme_subsys_class);
4978                 goto destroy_class;
4979         }
4980
4981         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4982                                      "nvme-generic");
4983         if (result < 0)
4984                 goto destroy_subsys_class;
4985
4986         nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4987         if (IS_ERR(nvme_ns_chr_class)) {
4988                 result = PTR_ERR(nvme_ns_chr_class);
4989                 goto unregister_generic_ns;
4990         }
4991
4992         return 0;
4993
4994 unregister_generic_ns:
4995         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4996 destroy_subsys_class:
4997         class_destroy(nvme_subsys_class);
4998 destroy_class:
4999         class_destroy(nvme_class);
5000 unregister_chrdev:
5001         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5002 destroy_delete_wq:
5003         destroy_workqueue(nvme_delete_wq);
5004 destroy_reset_wq:
5005         destroy_workqueue(nvme_reset_wq);
5006 destroy_wq:
5007         destroy_workqueue(nvme_wq);
5008 out:
5009         return result;
5010 }
5011
5012 static void __exit nvme_core_exit(void)
5013 {
5014         class_destroy(nvme_ns_chr_class);
5015         class_destroy(nvme_subsys_class);
5016         class_destroy(nvme_class);
5017         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5018         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5019         destroy_workqueue(nvme_delete_wq);
5020         destroy_workqueue(nvme_reset_wq);
5021         destroy_workqueue(nvme_wq);
5022         ida_destroy(&nvme_ns_chr_minor_ida);
5023         ida_destroy(&nvme_instance_ida);
5024 }
5025
5026 MODULE_LICENSE("GPL");
5027 MODULE_VERSION("1.0");
5028 module_init(nvme_core_init);
5029 module_exit(nvme_core_exit);