Merge tag 'perf-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / nvdimm / region_devs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
12 #include <linux/io.h>
13 #include <linux/nd.h>
14 #include "nd-core.h"
15 #include "nd.h"
16
17 /*
18  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19  * irrelevant.
20  */
21 #include <linux/io-64-nonatomic-hi-lo.h>
22
23 static DEFINE_PER_CPU(int, flush_idx);
24
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26                 struct nd_region_data *ndrd)
27 {
28         int i, j;
29
30         dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31                         nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32         for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33                 struct resource *res = &nvdimm->flush_wpq[i];
34                 unsigned long pfn = PHYS_PFN(res->start);
35                 void __iomem *flush_page;
36
37                 /* check if flush hints share a page */
38                 for (j = 0; j < i; j++) {
39                         struct resource *res_j = &nvdimm->flush_wpq[j];
40                         unsigned long pfn_j = PHYS_PFN(res_j->start);
41
42                         if (pfn == pfn_j)
43                                 break;
44                 }
45
46                 if (j < i)
47                         flush_page = (void __iomem *) ((unsigned long)
48                                         ndrd_get_flush_wpq(ndrd, dimm, j)
49                                         & PAGE_MASK);
50                 else
51                         flush_page = devm_nvdimm_ioremap(dev,
52                                         PFN_PHYS(pfn), PAGE_SIZE);
53                 if (!flush_page)
54                         return -ENXIO;
55                 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56                                 + (res->start & ~PAGE_MASK));
57         }
58
59         return 0;
60 }
61
62 int nd_region_activate(struct nd_region *nd_region)
63 {
64         int i, j, num_flush = 0;
65         struct nd_region_data *ndrd;
66         struct device *dev = &nd_region->dev;
67         size_t flush_data_size = sizeof(void *);
68
69         nvdimm_bus_lock(&nd_region->dev);
70         for (i = 0; i < nd_region->ndr_mappings; i++) {
71                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
73
74                 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75                         nvdimm_bus_unlock(&nd_region->dev);
76                         return -EBUSY;
77                 }
78
79                 /* at least one null hint slot per-dimm for the "no-hint" case */
80                 flush_data_size += sizeof(void *);
81                 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82                 if (!nvdimm->num_flush)
83                         continue;
84                 flush_data_size += nvdimm->num_flush * sizeof(void *);
85         }
86         nvdimm_bus_unlock(&nd_region->dev);
87
88         ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89         if (!ndrd)
90                 return -ENOMEM;
91         dev_set_drvdata(dev, ndrd);
92
93         if (!num_flush)
94                 return 0;
95
96         ndrd->hints_shift = ilog2(num_flush);
97         for (i = 0; i < nd_region->ndr_mappings; i++) {
98                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
100                 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102                 if (rc)
103                         return rc;
104         }
105
106         /*
107          * Clear out entries that are duplicates. This should prevent the
108          * extra flushings.
109          */
110         for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111                 /* ignore if NULL already */
112                 if (!ndrd_get_flush_wpq(ndrd, i, 0))
113                         continue;
114
115                 for (j = i + 1; j < nd_region->ndr_mappings; j++)
116                         if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117                             ndrd_get_flush_wpq(ndrd, j, 0))
118                                 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119         }
120
121         return 0;
122 }
123
124 static void nd_region_release(struct device *dev)
125 {
126         struct nd_region *nd_region = to_nd_region(dev);
127         u16 i;
128
129         for (i = 0; i < nd_region->ndr_mappings; i++) {
130                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
132
133                 put_device(&nvdimm->dev);
134         }
135         free_percpu(nd_region->lane);
136         memregion_free(nd_region->id);
137         kfree(nd_region);
138 }
139
140 struct nd_region *to_nd_region(struct device *dev)
141 {
142         struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
143
144         WARN_ON(dev->type->release != nd_region_release);
145         return nd_region;
146 }
147 EXPORT_SYMBOL_GPL(to_nd_region);
148
149 struct device *nd_region_dev(struct nd_region *nd_region)
150 {
151         if (!nd_region)
152                 return NULL;
153         return &nd_region->dev;
154 }
155 EXPORT_SYMBOL_GPL(nd_region_dev);
156
157 void *nd_region_provider_data(struct nd_region *nd_region)
158 {
159         return nd_region->provider_data;
160 }
161 EXPORT_SYMBOL_GPL(nd_region_provider_data);
162
163 /**
164  * nd_region_to_nstype() - region to an integer namespace type
165  * @nd_region: region-device to interrogate
166  *
167  * This is the 'nstype' attribute of a region as well, an input to the
168  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
169  * namespace devices with namespace drivers.
170  */
171 int nd_region_to_nstype(struct nd_region *nd_region)
172 {
173         if (is_memory(&nd_region->dev)) {
174                 u16 i, label;
175
176                 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
177                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
178                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
179
180                         if (test_bit(NDD_LABELING, &nvdimm->flags))
181                                 label++;
182                 }
183                 if (label)
184                         return ND_DEVICE_NAMESPACE_PMEM;
185                 else
186                         return ND_DEVICE_NAMESPACE_IO;
187         }
188
189         return 0;
190 }
191 EXPORT_SYMBOL(nd_region_to_nstype);
192
193 static unsigned long long region_size(struct nd_region *nd_region)
194 {
195         if (is_memory(&nd_region->dev)) {
196                 return nd_region->ndr_size;
197         } else if (nd_region->ndr_mappings == 1) {
198                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
199
200                 return nd_mapping->size;
201         }
202
203         return 0;
204 }
205
206 static ssize_t size_show(struct device *dev,
207                 struct device_attribute *attr, char *buf)
208 {
209         struct nd_region *nd_region = to_nd_region(dev);
210
211         return sprintf(buf, "%llu\n", region_size(nd_region));
212 }
213 static DEVICE_ATTR_RO(size);
214
215 static ssize_t deep_flush_show(struct device *dev,
216                 struct device_attribute *attr, char *buf)
217 {
218         struct nd_region *nd_region = to_nd_region(dev);
219
220         /*
221          * NOTE: in the nvdimm_has_flush() error case this attribute is
222          * not visible.
223          */
224         return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
225 }
226
227 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
228                 const char *buf, size_t len)
229 {
230         bool flush;
231         int rc = strtobool(buf, &flush);
232         struct nd_region *nd_region = to_nd_region(dev);
233
234         if (rc)
235                 return rc;
236         if (!flush)
237                 return -EINVAL;
238         rc = nvdimm_flush(nd_region, NULL);
239         if (rc)
240                 return rc;
241
242         return len;
243 }
244 static DEVICE_ATTR_RW(deep_flush);
245
246 static ssize_t mappings_show(struct device *dev,
247                 struct device_attribute *attr, char *buf)
248 {
249         struct nd_region *nd_region = to_nd_region(dev);
250
251         return sprintf(buf, "%d\n", nd_region->ndr_mappings);
252 }
253 static DEVICE_ATTR_RO(mappings);
254
255 static ssize_t nstype_show(struct device *dev,
256                 struct device_attribute *attr, char *buf)
257 {
258         struct nd_region *nd_region = to_nd_region(dev);
259
260         return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
261 }
262 static DEVICE_ATTR_RO(nstype);
263
264 static ssize_t set_cookie_show(struct device *dev,
265                 struct device_attribute *attr, char *buf)
266 {
267         struct nd_region *nd_region = to_nd_region(dev);
268         struct nd_interleave_set *nd_set = nd_region->nd_set;
269         ssize_t rc = 0;
270
271         if (is_memory(dev) && nd_set)
272                 /* pass, should be precluded by region_visible */;
273         else
274                 return -ENXIO;
275
276         /*
277          * The cookie to show depends on which specification of the
278          * labels we are using. If there are not labels then default to
279          * the v1.1 namespace label cookie definition. To read all this
280          * data we need to wait for probing to settle.
281          */
282         device_lock(dev);
283         nvdimm_bus_lock(dev);
284         wait_nvdimm_bus_probe_idle(dev);
285         if (nd_region->ndr_mappings) {
286                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
287                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
288
289                 if (ndd) {
290                         struct nd_namespace_index *nsindex;
291
292                         nsindex = to_namespace_index(ndd, ndd->ns_current);
293                         rc = sprintf(buf, "%#llx\n",
294                                         nd_region_interleave_set_cookie(nd_region,
295                                                 nsindex));
296                 }
297         }
298         nvdimm_bus_unlock(dev);
299         device_unlock(dev);
300
301         if (rc)
302                 return rc;
303         return sprintf(buf, "%#llx\n", nd_set->cookie1);
304 }
305 static DEVICE_ATTR_RO(set_cookie);
306
307 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
308 {
309         resource_size_t available;
310         int i;
311
312         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
313
314         available = 0;
315         for (i = 0; i < nd_region->ndr_mappings; i++) {
316                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
317                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
318
319                 /* if a dimm is disabled the available capacity is zero */
320                 if (!ndd)
321                         return 0;
322
323                 available += nd_pmem_available_dpa(nd_region, nd_mapping);
324         }
325
326         return available;
327 }
328
329 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
330 {
331         resource_size_t avail = 0;
332         int i;
333
334         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
335         for (i = 0; i < nd_region->ndr_mappings; i++) {
336                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
337
338                 avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
339                                                     nd_region, nd_mapping));
340         }
341         return avail * nd_region->ndr_mappings;
342 }
343
344 static ssize_t available_size_show(struct device *dev,
345                 struct device_attribute *attr, char *buf)
346 {
347         struct nd_region *nd_region = to_nd_region(dev);
348         unsigned long long available = 0;
349
350         /*
351          * Flush in-flight updates and grab a snapshot of the available
352          * size.  Of course, this value is potentially invalidated the
353          * memory nvdimm_bus_lock() is dropped, but that's userspace's
354          * problem to not race itself.
355          */
356         device_lock(dev);
357         nvdimm_bus_lock(dev);
358         wait_nvdimm_bus_probe_idle(dev);
359         available = nd_region_available_dpa(nd_region);
360         nvdimm_bus_unlock(dev);
361         device_unlock(dev);
362
363         return sprintf(buf, "%llu\n", available);
364 }
365 static DEVICE_ATTR_RO(available_size);
366
367 static ssize_t max_available_extent_show(struct device *dev,
368                 struct device_attribute *attr, char *buf)
369 {
370         struct nd_region *nd_region = to_nd_region(dev);
371         unsigned long long available = 0;
372
373         device_lock(dev);
374         nvdimm_bus_lock(dev);
375         wait_nvdimm_bus_probe_idle(dev);
376         available = nd_region_allocatable_dpa(nd_region);
377         nvdimm_bus_unlock(dev);
378         device_unlock(dev);
379
380         return sprintf(buf, "%llu\n", available);
381 }
382 static DEVICE_ATTR_RO(max_available_extent);
383
384 static ssize_t init_namespaces_show(struct device *dev,
385                 struct device_attribute *attr, char *buf)
386 {
387         struct nd_region_data *ndrd = dev_get_drvdata(dev);
388         ssize_t rc;
389
390         nvdimm_bus_lock(dev);
391         if (ndrd)
392                 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
393         else
394                 rc = -ENXIO;
395         nvdimm_bus_unlock(dev);
396
397         return rc;
398 }
399 static DEVICE_ATTR_RO(init_namespaces);
400
401 static ssize_t namespace_seed_show(struct device *dev,
402                 struct device_attribute *attr, char *buf)
403 {
404         struct nd_region *nd_region = to_nd_region(dev);
405         ssize_t rc;
406
407         nvdimm_bus_lock(dev);
408         if (nd_region->ns_seed)
409                 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
410         else
411                 rc = sprintf(buf, "\n");
412         nvdimm_bus_unlock(dev);
413         return rc;
414 }
415 static DEVICE_ATTR_RO(namespace_seed);
416
417 static ssize_t btt_seed_show(struct device *dev,
418                 struct device_attribute *attr, char *buf)
419 {
420         struct nd_region *nd_region = to_nd_region(dev);
421         ssize_t rc;
422
423         nvdimm_bus_lock(dev);
424         if (nd_region->btt_seed)
425                 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
426         else
427                 rc = sprintf(buf, "\n");
428         nvdimm_bus_unlock(dev);
429
430         return rc;
431 }
432 static DEVICE_ATTR_RO(btt_seed);
433
434 static ssize_t pfn_seed_show(struct device *dev,
435                 struct device_attribute *attr, char *buf)
436 {
437         struct nd_region *nd_region = to_nd_region(dev);
438         ssize_t rc;
439
440         nvdimm_bus_lock(dev);
441         if (nd_region->pfn_seed)
442                 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
443         else
444                 rc = sprintf(buf, "\n");
445         nvdimm_bus_unlock(dev);
446
447         return rc;
448 }
449 static DEVICE_ATTR_RO(pfn_seed);
450
451 static ssize_t dax_seed_show(struct device *dev,
452                 struct device_attribute *attr, char *buf)
453 {
454         struct nd_region *nd_region = to_nd_region(dev);
455         ssize_t rc;
456
457         nvdimm_bus_lock(dev);
458         if (nd_region->dax_seed)
459                 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
460         else
461                 rc = sprintf(buf, "\n");
462         nvdimm_bus_unlock(dev);
463
464         return rc;
465 }
466 static DEVICE_ATTR_RO(dax_seed);
467
468 static ssize_t read_only_show(struct device *dev,
469                 struct device_attribute *attr, char *buf)
470 {
471         struct nd_region *nd_region = to_nd_region(dev);
472
473         return sprintf(buf, "%d\n", nd_region->ro);
474 }
475
476 static int revalidate_read_only(struct device *dev, void *data)
477 {
478         nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
479         return 0;
480 }
481
482 static ssize_t read_only_store(struct device *dev,
483                 struct device_attribute *attr, const char *buf, size_t len)
484 {
485         bool ro;
486         int rc = strtobool(buf, &ro);
487         struct nd_region *nd_region = to_nd_region(dev);
488
489         if (rc)
490                 return rc;
491
492         nd_region->ro = ro;
493         device_for_each_child(dev, NULL, revalidate_read_only);
494         return len;
495 }
496 static DEVICE_ATTR_RW(read_only);
497
498 static ssize_t align_show(struct device *dev,
499                 struct device_attribute *attr, char *buf)
500 {
501         struct nd_region *nd_region = to_nd_region(dev);
502
503         return sprintf(buf, "%#lx\n", nd_region->align);
504 }
505
506 static ssize_t align_store(struct device *dev,
507                 struct device_attribute *attr, const char *buf, size_t len)
508 {
509         struct nd_region *nd_region = to_nd_region(dev);
510         unsigned long val, dpa;
511         u32 remainder;
512         int rc;
513
514         rc = kstrtoul(buf, 0, &val);
515         if (rc)
516                 return rc;
517
518         if (!nd_region->ndr_mappings)
519                 return -ENXIO;
520
521         /*
522          * Ensure space-align is evenly divisible by the region
523          * interleave-width because the kernel typically has no facility
524          * to determine which DIMM(s), dimm-physical-addresses, would
525          * contribute to the tail capacity in system-physical-address
526          * space for the namespace.
527          */
528         dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
529         if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
530                         || val > region_size(nd_region) || remainder)
531                 return -EINVAL;
532
533         /*
534          * Given that space allocation consults this value multiple
535          * times ensure it does not change for the duration of the
536          * allocation.
537          */
538         nvdimm_bus_lock(dev);
539         nd_region->align = val;
540         nvdimm_bus_unlock(dev);
541
542         return len;
543 }
544 static DEVICE_ATTR_RW(align);
545
546 static ssize_t region_badblocks_show(struct device *dev,
547                 struct device_attribute *attr, char *buf)
548 {
549         struct nd_region *nd_region = to_nd_region(dev);
550         ssize_t rc;
551
552         device_lock(dev);
553         if (dev->driver)
554                 rc = badblocks_show(&nd_region->bb, buf, 0);
555         else
556                 rc = -ENXIO;
557         device_unlock(dev);
558
559         return rc;
560 }
561 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
562
563 static ssize_t resource_show(struct device *dev,
564                 struct device_attribute *attr, char *buf)
565 {
566         struct nd_region *nd_region = to_nd_region(dev);
567
568         return sprintf(buf, "%#llx\n", nd_region->ndr_start);
569 }
570 static DEVICE_ATTR_ADMIN_RO(resource);
571
572 static ssize_t persistence_domain_show(struct device *dev,
573                 struct device_attribute *attr, char *buf)
574 {
575         struct nd_region *nd_region = to_nd_region(dev);
576
577         if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
578                 return sprintf(buf, "cpu_cache\n");
579         else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
580                 return sprintf(buf, "memory_controller\n");
581         else
582                 return sprintf(buf, "\n");
583 }
584 static DEVICE_ATTR_RO(persistence_domain);
585
586 static struct attribute *nd_region_attributes[] = {
587         &dev_attr_size.attr,
588         &dev_attr_align.attr,
589         &dev_attr_nstype.attr,
590         &dev_attr_mappings.attr,
591         &dev_attr_btt_seed.attr,
592         &dev_attr_pfn_seed.attr,
593         &dev_attr_dax_seed.attr,
594         &dev_attr_deep_flush.attr,
595         &dev_attr_read_only.attr,
596         &dev_attr_set_cookie.attr,
597         &dev_attr_available_size.attr,
598         &dev_attr_max_available_extent.attr,
599         &dev_attr_namespace_seed.attr,
600         &dev_attr_init_namespaces.attr,
601         &dev_attr_badblocks.attr,
602         &dev_attr_resource.attr,
603         &dev_attr_persistence_domain.attr,
604         NULL,
605 };
606
607 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
608 {
609         struct device *dev = container_of(kobj, typeof(*dev), kobj);
610         struct nd_region *nd_region = to_nd_region(dev);
611         struct nd_interleave_set *nd_set = nd_region->nd_set;
612         int type = nd_region_to_nstype(nd_region);
613
614         if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
615                 return 0;
616
617         if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
618                 return 0;
619
620         if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
621                 return 0;
622
623         if (a == &dev_attr_resource.attr && !is_memory(dev))
624                 return 0;
625
626         if (a == &dev_attr_deep_flush.attr) {
627                 int has_flush = nvdimm_has_flush(nd_region);
628
629                 if (has_flush == 1)
630                         return a->mode;
631                 else if (has_flush == 0)
632                         return 0444;
633                 else
634                         return 0;
635         }
636
637         if (a == &dev_attr_persistence_domain.attr) {
638                 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
639                                         | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
640                         return 0;
641                 return a->mode;
642         }
643
644         if (a == &dev_attr_align.attr)
645                 return a->mode;
646
647         if (a != &dev_attr_set_cookie.attr
648                         && a != &dev_attr_available_size.attr)
649                 return a->mode;
650
651         if (type == ND_DEVICE_NAMESPACE_PMEM &&
652             a == &dev_attr_available_size.attr)
653                 return a->mode;
654         else if (is_memory(dev) && nd_set)
655                 return a->mode;
656
657         return 0;
658 }
659
660 static ssize_t mappingN(struct device *dev, char *buf, int n)
661 {
662         struct nd_region *nd_region = to_nd_region(dev);
663         struct nd_mapping *nd_mapping;
664         struct nvdimm *nvdimm;
665
666         if (n >= nd_region->ndr_mappings)
667                 return -ENXIO;
668         nd_mapping = &nd_region->mapping[n];
669         nvdimm = nd_mapping->nvdimm;
670
671         return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
672                         nd_mapping->start, nd_mapping->size,
673                         nd_mapping->position);
674 }
675
676 #define REGION_MAPPING(idx) \
677 static ssize_t mapping##idx##_show(struct device *dev,          \
678                 struct device_attribute *attr, char *buf)       \
679 {                                                               \
680         return mappingN(dev, buf, idx);                         \
681 }                                                               \
682 static DEVICE_ATTR_RO(mapping##idx)
683
684 /*
685  * 32 should be enough for a while, even in the presence of socket
686  * interleave a 32-way interleave set is a degenerate case.
687  */
688 REGION_MAPPING(0);
689 REGION_MAPPING(1);
690 REGION_MAPPING(2);
691 REGION_MAPPING(3);
692 REGION_MAPPING(4);
693 REGION_MAPPING(5);
694 REGION_MAPPING(6);
695 REGION_MAPPING(7);
696 REGION_MAPPING(8);
697 REGION_MAPPING(9);
698 REGION_MAPPING(10);
699 REGION_MAPPING(11);
700 REGION_MAPPING(12);
701 REGION_MAPPING(13);
702 REGION_MAPPING(14);
703 REGION_MAPPING(15);
704 REGION_MAPPING(16);
705 REGION_MAPPING(17);
706 REGION_MAPPING(18);
707 REGION_MAPPING(19);
708 REGION_MAPPING(20);
709 REGION_MAPPING(21);
710 REGION_MAPPING(22);
711 REGION_MAPPING(23);
712 REGION_MAPPING(24);
713 REGION_MAPPING(25);
714 REGION_MAPPING(26);
715 REGION_MAPPING(27);
716 REGION_MAPPING(28);
717 REGION_MAPPING(29);
718 REGION_MAPPING(30);
719 REGION_MAPPING(31);
720
721 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
722 {
723         struct device *dev = container_of(kobj, struct device, kobj);
724         struct nd_region *nd_region = to_nd_region(dev);
725
726         if (n < nd_region->ndr_mappings)
727                 return a->mode;
728         return 0;
729 }
730
731 static struct attribute *mapping_attributes[] = {
732         &dev_attr_mapping0.attr,
733         &dev_attr_mapping1.attr,
734         &dev_attr_mapping2.attr,
735         &dev_attr_mapping3.attr,
736         &dev_attr_mapping4.attr,
737         &dev_attr_mapping5.attr,
738         &dev_attr_mapping6.attr,
739         &dev_attr_mapping7.attr,
740         &dev_attr_mapping8.attr,
741         &dev_attr_mapping9.attr,
742         &dev_attr_mapping10.attr,
743         &dev_attr_mapping11.attr,
744         &dev_attr_mapping12.attr,
745         &dev_attr_mapping13.attr,
746         &dev_attr_mapping14.attr,
747         &dev_attr_mapping15.attr,
748         &dev_attr_mapping16.attr,
749         &dev_attr_mapping17.attr,
750         &dev_attr_mapping18.attr,
751         &dev_attr_mapping19.attr,
752         &dev_attr_mapping20.attr,
753         &dev_attr_mapping21.attr,
754         &dev_attr_mapping22.attr,
755         &dev_attr_mapping23.attr,
756         &dev_attr_mapping24.attr,
757         &dev_attr_mapping25.attr,
758         &dev_attr_mapping26.attr,
759         &dev_attr_mapping27.attr,
760         &dev_attr_mapping28.attr,
761         &dev_attr_mapping29.attr,
762         &dev_attr_mapping30.attr,
763         &dev_attr_mapping31.attr,
764         NULL,
765 };
766
767 static const struct attribute_group nd_mapping_attribute_group = {
768         .is_visible = mapping_visible,
769         .attrs = mapping_attributes,
770 };
771
772 static const struct attribute_group nd_region_attribute_group = {
773         .attrs = nd_region_attributes,
774         .is_visible = region_visible,
775 };
776
777 static const struct attribute_group *nd_region_attribute_groups[] = {
778         &nd_device_attribute_group,
779         &nd_region_attribute_group,
780         &nd_numa_attribute_group,
781         &nd_mapping_attribute_group,
782         NULL,
783 };
784
785 static const struct device_type nd_pmem_device_type = {
786         .name = "nd_pmem",
787         .release = nd_region_release,
788         .groups = nd_region_attribute_groups,
789 };
790
791 static const struct device_type nd_volatile_device_type = {
792         .name = "nd_volatile",
793         .release = nd_region_release,
794         .groups = nd_region_attribute_groups,
795 };
796
797 bool is_nd_pmem(struct device *dev)
798 {
799         return dev ? dev->type == &nd_pmem_device_type : false;
800 }
801
802 bool is_nd_volatile(struct device *dev)
803 {
804         return dev ? dev->type == &nd_volatile_device_type : false;
805 }
806
807 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
808                 struct nd_namespace_index *nsindex)
809 {
810         struct nd_interleave_set *nd_set = nd_region->nd_set;
811
812         if (!nd_set)
813                 return 0;
814
815         if (nsindex && __le16_to_cpu(nsindex->major) == 1
816                         && __le16_to_cpu(nsindex->minor) == 1)
817                 return nd_set->cookie1;
818         return nd_set->cookie2;
819 }
820
821 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
822 {
823         struct nd_interleave_set *nd_set = nd_region->nd_set;
824
825         if (nd_set)
826                 return nd_set->altcookie;
827         return 0;
828 }
829
830 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
831 {
832         struct nd_label_ent *label_ent, *e;
833
834         lockdep_assert_held(&nd_mapping->lock);
835         list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
836                 list_del(&label_ent->list);
837                 kfree(label_ent);
838         }
839 }
840
841 /*
842  * When a namespace is activated create new seeds for the next
843  * namespace, or namespace-personality to be configured.
844  */
845 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
846 {
847         nvdimm_bus_lock(dev);
848         if (nd_region->ns_seed == dev) {
849                 nd_region_create_ns_seed(nd_region);
850         } else if (is_nd_btt(dev)) {
851                 struct nd_btt *nd_btt = to_nd_btt(dev);
852
853                 if (nd_region->btt_seed == dev)
854                         nd_region_create_btt_seed(nd_region);
855                 if (nd_region->ns_seed == &nd_btt->ndns->dev)
856                         nd_region_create_ns_seed(nd_region);
857         } else if (is_nd_pfn(dev)) {
858                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
859
860                 if (nd_region->pfn_seed == dev)
861                         nd_region_create_pfn_seed(nd_region);
862                 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
863                         nd_region_create_ns_seed(nd_region);
864         } else if (is_nd_dax(dev)) {
865                 struct nd_dax *nd_dax = to_nd_dax(dev);
866
867                 if (nd_region->dax_seed == dev)
868                         nd_region_create_dax_seed(nd_region);
869                 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
870                         nd_region_create_ns_seed(nd_region);
871         }
872         nvdimm_bus_unlock(dev);
873 }
874
875 /**
876  * nd_region_acquire_lane - allocate and lock a lane
877  * @nd_region: region id and number of lanes possible
878  *
879  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
880  * We optimize for the common case where there are 256 lanes, one
881  * per-cpu.  For larger systems we need to lock to share lanes.  For now
882  * this implementation assumes the cost of maintaining an allocator for
883  * free lanes is on the order of the lock hold time, so it implements a
884  * static lane = cpu % num_lanes mapping.
885  *
886  * In the case of a BTT instance on top of a BLK namespace a lane may be
887  * acquired recursively.  We lock on the first instance.
888  *
889  * In the case of a BTT instance on top of PMEM, we only acquire a lane
890  * for the BTT metadata updates.
891  */
892 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
893 {
894         unsigned int cpu, lane;
895
896         cpu = get_cpu();
897         if (nd_region->num_lanes < nr_cpu_ids) {
898                 struct nd_percpu_lane *ndl_lock, *ndl_count;
899
900                 lane = cpu % nd_region->num_lanes;
901                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
902                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
903                 if (ndl_count->count++ == 0)
904                         spin_lock(&ndl_lock->lock);
905         } else
906                 lane = cpu;
907
908         return lane;
909 }
910 EXPORT_SYMBOL(nd_region_acquire_lane);
911
912 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
913 {
914         if (nd_region->num_lanes < nr_cpu_ids) {
915                 unsigned int cpu = get_cpu();
916                 struct nd_percpu_lane *ndl_lock, *ndl_count;
917
918                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
919                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
920                 if (--ndl_count->count == 0)
921                         spin_unlock(&ndl_lock->lock);
922                 put_cpu();
923         }
924         put_cpu();
925 }
926 EXPORT_SYMBOL(nd_region_release_lane);
927
928 /*
929  * PowerPC requires this alignment for memremap_pages(). All other archs
930  * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
931  */
932 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
933
934 static unsigned long default_align(struct nd_region *nd_region)
935 {
936         unsigned long align;
937         u32 remainder;
938         int mappings;
939
940         align = MEMREMAP_COMPAT_ALIGN_MAX;
941         if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
942                 align = PAGE_SIZE;
943
944         mappings = max_t(u16, 1, nd_region->ndr_mappings);
945         div_u64_rem(align, mappings, &remainder);
946         if (remainder)
947                 align *= mappings;
948
949         return align;
950 }
951
952 static struct lock_class_key nvdimm_region_key;
953
954 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
955                 struct nd_region_desc *ndr_desc,
956                 const struct device_type *dev_type, const char *caller)
957 {
958         struct nd_region *nd_region;
959         struct device *dev;
960         unsigned int i;
961         int ro = 0;
962
963         for (i = 0; i < ndr_desc->num_mappings; i++) {
964                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
965                 struct nvdimm *nvdimm = mapping->nvdimm;
966
967                 if ((mapping->start | mapping->size) % PAGE_SIZE) {
968                         dev_err(&nvdimm_bus->dev,
969                                 "%s: %s mapping%d is not %ld aligned\n",
970                                 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
971                         return NULL;
972                 }
973
974                 if (test_bit(NDD_UNARMED, &nvdimm->flags))
975                         ro = 1;
976
977         }
978
979         nd_region =
980                 kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
981                         GFP_KERNEL);
982
983         if (!nd_region)
984                 return NULL;
985         nd_region->id = memregion_alloc(GFP_KERNEL);
986         if (nd_region->id < 0)
987                 goto err_id;
988
989         nd_region->lane = alloc_percpu(struct nd_percpu_lane);
990         if (!nd_region->lane)
991                 goto err_percpu;
992
993         for (i = 0; i < nr_cpu_ids; i++) {
994                 struct nd_percpu_lane *ndl;
995
996                 ndl = per_cpu_ptr(nd_region->lane, i);
997                 spin_lock_init(&ndl->lock);
998                 ndl->count = 0;
999         }
1000
1001         for (i = 0; i < ndr_desc->num_mappings; i++) {
1002                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1003                 struct nvdimm *nvdimm = mapping->nvdimm;
1004
1005                 nd_region->mapping[i].nvdimm = nvdimm;
1006                 nd_region->mapping[i].start = mapping->start;
1007                 nd_region->mapping[i].size = mapping->size;
1008                 nd_region->mapping[i].position = mapping->position;
1009                 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1010                 mutex_init(&nd_region->mapping[i].lock);
1011
1012                 get_device(&nvdimm->dev);
1013         }
1014         nd_region->ndr_mappings = ndr_desc->num_mappings;
1015         nd_region->provider_data = ndr_desc->provider_data;
1016         nd_region->nd_set = ndr_desc->nd_set;
1017         nd_region->num_lanes = ndr_desc->num_lanes;
1018         nd_region->flags = ndr_desc->flags;
1019         nd_region->ro = ro;
1020         nd_region->numa_node = ndr_desc->numa_node;
1021         nd_region->target_node = ndr_desc->target_node;
1022         ida_init(&nd_region->ns_ida);
1023         ida_init(&nd_region->btt_ida);
1024         ida_init(&nd_region->pfn_ida);
1025         ida_init(&nd_region->dax_ida);
1026         dev = &nd_region->dev;
1027         dev_set_name(dev, "region%d", nd_region->id);
1028         dev->parent = &nvdimm_bus->dev;
1029         dev->type = dev_type;
1030         dev->groups = ndr_desc->attr_groups;
1031         dev->of_node = ndr_desc->of_node;
1032         nd_region->ndr_size = resource_size(ndr_desc->res);
1033         nd_region->ndr_start = ndr_desc->res->start;
1034         nd_region->align = default_align(nd_region);
1035         if (ndr_desc->flush)
1036                 nd_region->flush = ndr_desc->flush;
1037         else
1038                 nd_region->flush = NULL;
1039
1040         device_initialize(dev);
1041         lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1042         nd_device_register(dev);
1043
1044         return nd_region;
1045
1046  err_percpu:
1047         memregion_free(nd_region->id);
1048  err_id:
1049         kfree(nd_region);
1050         return NULL;
1051 }
1052
1053 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1054                 struct nd_region_desc *ndr_desc)
1055 {
1056         ndr_desc->num_lanes = ND_MAX_LANES;
1057         return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1058                         __func__);
1059 }
1060 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1061
1062 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1063                 struct nd_region_desc *ndr_desc)
1064 {
1065         ndr_desc->num_lanes = ND_MAX_LANES;
1066         return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1067                         __func__);
1068 }
1069 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1070
1071 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1072 {
1073         int rc = 0;
1074
1075         if (!nd_region->flush)
1076                 rc = generic_nvdimm_flush(nd_region);
1077         else {
1078                 if (nd_region->flush(nd_region, bio))
1079                         rc = -EIO;
1080         }
1081
1082         return rc;
1083 }
1084 /**
1085  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1086  * @nd_region: interleaved pmem region
1087  */
1088 int generic_nvdimm_flush(struct nd_region *nd_region)
1089 {
1090         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1091         int i, idx;
1092
1093         /*
1094          * Try to encourage some diversity in flush hint addresses
1095          * across cpus assuming a limited number of flush hints.
1096          */
1097         idx = this_cpu_read(flush_idx);
1098         idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1099
1100         /*
1101          * The pmem_wmb() is needed to 'sfence' all
1102          * previous writes such that they are architecturally visible for
1103          * the platform buffer flush. Note that we've already arranged for pmem
1104          * writes to avoid the cache via memcpy_flushcache().  The final
1105          * wmb() ensures ordering for the NVDIMM flush write.
1106          */
1107         pmem_wmb();
1108         for (i = 0; i < nd_region->ndr_mappings; i++)
1109                 if (ndrd_get_flush_wpq(ndrd, i, 0))
1110                         writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1111         wmb();
1112
1113         return 0;
1114 }
1115 EXPORT_SYMBOL_GPL(nvdimm_flush);
1116
1117 /**
1118  * nvdimm_has_flush - determine write flushing requirements
1119  * @nd_region: interleaved pmem region
1120  *
1121  * Returns 1 if writes require flushing
1122  * Returns 0 if writes do not require flushing
1123  * Returns -ENXIO if flushing capability can not be determined
1124  */
1125 int nvdimm_has_flush(struct nd_region *nd_region)
1126 {
1127         int i;
1128
1129         /* no nvdimm or pmem api == flushing capability unknown */
1130         if (nd_region->ndr_mappings == 0
1131                         || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1132                 return -ENXIO;
1133
1134         /* Test if an explicit flush function is defined */
1135         if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1136                 return 1;
1137
1138         /* Test if any flush hints for the region are available */
1139         for (i = 0; i < nd_region->ndr_mappings; i++) {
1140                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1141                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1142
1143                 /* flush hints present / available */
1144                 if (nvdimm->num_flush)
1145                         return 1;
1146         }
1147
1148         /*
1149          * The platform defines dimm devices without hints nor explicit flush,
1150          * assume platform persistence mechanism like ADR
1151          */
1152         return 0;
1153 }
1154 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1155
1156 int nvdimm_has_cache(struct nd_region *nd_region)
1157 {
1158         return is_nd_pmem(&nd_region->dev) &&
1159                 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1160 }
1161 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1162
1163 bool is_nvdimm_sync(struct nd_region *nd_region)
1164 {
1165         if (is_nd_volatile(&nd_region->dev))
1166                 return true;
1167
1168         return is_nd_pmem(&nd_region->dev) &&
1169                 !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1170 }
1171 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1172
1173 struct conflict_context {
1174         struct nd_region *nd_region;
1175         resource_size_t start, size;
1176 };
1177
1178 static int region_conflict(struct device *dev, void *data)
1179 {
1180         struct nd_region *nd_region;
1181         struct conflict_context *ctx = data;
1182         resource_size_t res_end, region_end, region_start;
1183
1184         if (!is_memory(dev))
1185                 return 0;
1186
1187         nd_region = to_nd_region(dev);
1188         if (nd_region == ctx->nd_region)
1189                 return 0;
1190
1191         res_end = ctx->start + ctx->size;
1192         region_start = nd_region->ndr_start;
1193         region_end = region_start + nd_region->ndr_size;
1194         if (ctx->start >= region_start && ctx->start < region_end)
1195                 return -EBUSY;
1196         if (res_end > region_start && res_end <= region_end)
1197                 return -EBUSY;
1198         return 0;
1199 }
1200
1201 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1202                 resource_size_t size)
1203 {
1204         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1205         struct conflict_context ctx = {
1206                 .nd_region = nd_region,
1207                 .start = start,
1208                 .size = size,
1209         };
1210
1211         return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1212 }